

MPC855TUM/D
4/2002

REV 0.1

MPC855T User’s Manual
Integrated Communications Microprocessor

RXZB30
logo

RXZB30
hibbertleft

RXZB30
hibbertleft

RXZB30
disclaimer

RXZB30
logo

III

II
2

3
4
5
6
7

9

10
11

12
13
14

8

15
16

1
I

IV

Part I—Overview

MPC855T Overview
Memory Map

Part II—PowerPC Microprocessor Module

PowerPC Core
PowerPC Core Register Set

MPC855T Instruction Set
Exceptions

Instruction and Data Caches
Memory Management Unit

Instruction Execution Timing

Part III—PowerPC Microprocessor Module

System Interface Unit
Reset

Part IV—Hardware Interface

External Signals
External Bus Interface

Clocks and Power Control
Memory Controller
PCMCIA Interface

III

II
2

3
4
5
6
7

9

10
11

12
13
14

8

15
16

1
I

IV

Part I—Overview

MPC855T Overview
Memory Map

Part II—PowerPC Microprocessor Module

PowerPC Core
PowerPC Core Register Set
MPC855T Instruction Set
Exceptions
Instruction and Data Caches
Memory Management Unit
Instruction Execution Timing

Part III—PowerPC Microprocessor Module

System Interface Unit
Reset

PartIV—Hardware Interface

External Signals
External Bus Interface
Clocks and Power Control
Memory Controller
PCMCIA Interface

V
17
18
19
20
21
22
23
24

26
27
28
29
30
31

25

32
33
34

35
36
37
38
39
40
41
42

VI

A
B
C

E

I

D

4344
45

VIII

F

43GLO
IND

VII
43

Part V—Communications Processor Module

Communications Processor Module and Timers
Communications Processor

SDMA Channels and IDMA Emulation
Serial Interface

SCC Introduction
SCC UART Mode
SCC HDLC Mode

SCC AppleTalk Mode
SCC Asynchronous HDLC Mode and IrDA

SCC BISYNC Mode
SCC Ethernet Mode

SCC Transparent Mode
Serial Management Controllers

Serial Peripheral Interface

Parallel Interface Port
Parallel I/O Ports

CPM Interrupt Controller

Part VI—Asynchronous Transfer Mode

ATM Overview
Buffer Descriptors and Connection Tables

ATM Parameter RAM
ATM Controller

ATM Pace Control
ATM Exceptions

Interface Configuration
UTOPIA Interface

Fast Ethernet Controller

Fast Ethernet Controller

Part VII—System Debugging and Testing Support

System Development and Debugging
IEEE 1149.1 Test Access Port

Byte Ordering
Serial Communication Performance

Register Quick Reference Guide
Instruction Set Listings

Glossary
Index

 I

2

C Controller

 Serial ATM

V
17
18
19
20
21
22
23
24

26
27
28
29
30
31

25

32
33
34

35
36
37
38
39
40
41
42

VI

A
B
C

E

I

D

4344
45

VIII

F

43GLO
IND

VII
43

Part V—Communications Processor Module

Communications Processor Module and Timers
Communications Processor
SDMA Channels and IDMA Emulation
Serial Interface
SCC Introduction
SCC UART Mode
SCC HDLC Mode
SCC AppleTalk Mode
SCC Asynchronous HDLC Mode and IrDA
SCC BISYNC Mode
SCC Ethernet Mode
SCC Transparent Mode
Serial Management Controllers
Serial Peripheral Interface
I

2

C Controller
Parallel Interface Ports
Parallel I/O Ports
CPM Interrupt Controller

Part VI—Asynchronous Transfer Mode

ATM Overview
Buffer Descriptors and Connection Tables
ATM Parameter RAM
ATM Controller
ATM Pace Controller
ATM Exceptions
Interface Configuration
UTOPIA Interface

Fast Ethernet Controller

Fast Ethernet Controller

Part VIII – System Debugging and Testing Support

System Development and Debugging
IEEE 1149.1 Test Access Port

Byte Ordering
Serial Communication Performance
Register Quick Reference Guide
Instruction Set Listings
Serial ATM
Glossary
Index

Contents

Section
Number Title

 Page
Number

Contents

 vii

Contents

Paragraph
Number Title

 Page
Number

Part I
Overview

Chapter 1
MPC855T Overview

1.1 Features ..1–1
1.2 Embedded MPC8xx Core ..1–5
1.3 System Interface Unit (SIU) ..1–6
1.4 PCMCIA Controller...1–7
1.5 Power Management..1–7
1.6 Communications Processor Module (CPM) ..1–7
1.7 ATM Capabilities ...1–8

Chapter 2
Memory Map

Part II
PowerPC Microprocessor Module

Chapter 3
The MPC8xx Core

3.1 The MPC855T Core as a PowerPC Implementation ...3–1
3.2 PowerPC Architecture Overview ...3–1
3.2.1 Levels of the PowerPC Architecture ..3–3
3.3 Features ..3–4
3.4 Basic Structure of the Core ..3–6
3.4.1 Instruction Flow...3–7
3.4.2 Basic Instruction Pipeline ..3–8
3.4.3 Instruction Unit ..3–8
3.4.3.1 Branch Operations ...3–8
3.4.3.2 Dispatching Instructions ..3–10
3.5 Register Set ..3–10
3.6 Execution Units..3–10

Contents

Paragraph
Number Title

Page
Number

MPC855T User’s Manual

3.6.1 Branch Processing Unit ...3–11
3.6.2 Integer Unit ..3–11
3.6.3 Load/Store Unit..3–11
3.6.3.1 Executing Load/Store Instructions...3–13
3.6.3.2 Serializing Load/Store Instructions ...3–13
3.6.3.3 Store Accesses ...3–13
3.6.3.4 Nonspeculative Load Instructions..3–14
3.6.3.5 Unaligned Accesses ...3–14
3.6.3.6 Atomic Update Primitives..3–15
3.7 The MPC855T and Implementation of the PowerPC Architecture3–15

Chapter 4
MPC8xx Core Register Set

4.1 MPC855T Register Implementation ..4–1
4.1.1 PowerPC Registers—User Registers ...4–2
4.1.1.1 PowerPC User-Level Register Bit Assignments ..4–2
4.1.1.1.1 Condition Register (CR) ..4–3
4.1.1.1.2 Condition Register CR0 Field Definition ..4–3
4.1.1.1.3 XER ...4–4
4.1.1.1.4 Time Base Registers ..4–5
4.1.2 PowerPC Registers—Supervisor Registers ...4–5
4.1.2.1 DAR, DSISR, and BAR Operation..4–6
4.1.2.2 Unsupported Registers...4–6
4.1.2.3 PowerPC Supervisor-Level Register Bit Assignments4–6
4.1.2.3.1 Machine State Register (MSR)..4–7
4.1.2.3.2 Processor Version Register ..4–8
4.1.3 MPC855T-Specific SPRs ...4–9
4.1.3.1 Accessing SPRs ...4–11
4.2 Register Initialization at Reset ...4–12

Chapter 5
MPC855T Instruction Set

5.1 Operand Conventions...5–1
5.1.1 Data Organization in Memory and Data Transfers ..5–1
5.1.2 Aligned and Misaligned Accesses ...5–1
5.2 Instruction Set Summary..5–2
5.2.1 Classes of Instructions ...5–3
5.2.1.1 Definition of Boundedly Undefined...5–4
5.2.1.2 Defined Instruction Class...5–4
5.2.1.3 Illegal Instruction Class ...5–4

Contents

Paragraph
Number Title

Page
Number

Contents

 ix

5.2.1.4 Reserved Instruction Class...5–5
5.2.2 Addressing Modes ...5–5
5.2.2.1 Memory Addressing...5–6
5.2.2.2 Effective Address Calculation..5–6
5.2.2.3 Synchronization ...5–6
5.2.2.3.1 Context Synchronization ...5–6
5.2.2.3.2 Execution Synchronization..5–7
5.2.2.3.3 Instruction-Related Exceptions..5–7
5.2.3 Instruction Set Overview ...5–8
5.2.4 PowerPC UISA Instructions ..5–8
5.2.4.1 Integer Instructions ..5–8
5.2.4.1.1 Integer Arithmetic Instructions ..5–8
5.2.4.1.2 Integer Compare Instructions ..5–9
5.2.4.1.3 Integer Logical Instructions...5–10
5.2.4.1.4 Integer Rotate and Shift Instructions ...5–11
5.2.4.2 Load and Store Instructions ...5–12
5.2.4.2.1 Integer Load and Store Address Generation..5–12
5.2.4.2.2 Register Indirect Integer Load Instructions ...5–12
5.2.4.2.3 Integer Store Instructions...5–14
5.2.4.2.4 Integer Load and Store with Byte-Reverse Instructions5–14
5.2.4.2.5 Integer Load and Store Multiple Instructions..5–15
5.2.4.2.6 Integer Load and Store String Instructions..5–15
5.2.4.3 Branch and Flow Control Instructions...5–16
5.2.4.3.1 Branch Instruction Address Calculation ..5–17
5.2.4.3.2 Branch Instructions..5–17
5.2.4.3.3 Condition Register Logical Instructions..5–17
5.2.4.4 Trap Instructions ..5–18
5.2.4.5 Processor Control Instructions...5–18
5.2.4.5.1 Move to/from Condition Register Instructions......................................5–18
5.2.4.6 Memory Synchronization Instructions—UISA ...5–19
5.2.5 PowerPC VEA Instructions..5–21
5.2.5.1 Processor Control Instructions...5–21
5.2.5.2 Memory Synchronization Instructions—VEA ..5–21
5.2.5.2.1 eieio Behavior ..5–22
5.2.5.2.2 isync Behavior ...5–22
5.2.5.3 Memory Control Instructions—VEA ..5–22
5.2.6 PowerPC OEA Instructions ...5–23
5.2.6.1 System Linkage Instructions..5–23

Contents

Paragraph
Number Title

Page
Number

MPC855T User’s Manual

5.2.6.2 Processor Control Instructions—OEA ..5–23
5.2.6.2.1 Move to/from Machine State Register Instructions5–24
5.2.6.2.2 Move to/from Special-Purpose Register Instructions5–24
5.2.6.3 Memory Control Instructions—OEA ..5–24

Chapter 6
Exceptions

6.1 Exceptions..6–2
6.1.1 Exception Ordering..6–3
6.1.2 PowerPC-Defined Exceptions..6–4
6.1.2.1 System Reset Interrupt (0x00100) ...6–5
6.1.2.2 Machine Check Interrupt (0x00200) ...6–5
6.1.2.3 DSI Exception (0x00300) ..6–6
6.1.2.4 ISI Exception (0x00400)..6–6
6.1.2.5 External Interrupt Exception (0x00500) ..6–6
6.1.2.6 Alignment Exception (0x00600) ...6–7
6.1.2.6.1 Integer Alignment Exceptions ...6–8
6.1.2.7 Program Exception (0x00700)...6–9
6.1.2.8 Decrementer Exception (0x00900)..6–10
6.1.2.9 System Call Exception (0x00C00) ..6–11
6.1.2.10 Trace Exception (0x00D00)...6–11
6.1.2.11 Floating-Point Assist Exception ..6–12
6.1.3 Implementation-Specific Exceptions ...6–12
6.1.3.1 Software Emulation Exception (0x01000) ..6–12
6.1.3.2 Instruction TLB Miss Exception (0x01100)..6–13
6.1.3.3 Data TLB Miss Exception (0x01200)..6–13
6.1.3.4 Instruction TLB Error Exception (0x01300) ...6–14
6.1.3.5 Data TLB Error Exception (0x014000) ...6–14
6.1.3.6 Debug Exceptions (0x01C00–0x01F00) ...6–15
6.1.4 Implementing the Precise Exception Model ..6–16
6.1.5 Recoverability after an Exception..6–17
6.1.6 Exception Latency ...6–18
6.1.7 Partially Completed Instructions ...6–20

Chapter 7
Instruction and Data Caches

7.1 Instruction Cache Organization ... 7-2
7.2 Data Cache Organization ... 7-5
7.3 Cache Control Registers .. 7-6
7.3.1 Instruction Cache Control Registers .. 7-6

Contents

Paragraph
Number Title

Page
Number

Contents

 xi

7.3.1.1 Reading Data and Tags in the Instruction Cache ... 7-8
7.3.1.2 IC_CST Commands... 7-9
7.3.1.2.1 Instruction Cache Enable/Disable Commands .. 7-9
7.3.1.2.2 Instruction Cache Load & Lock Cache Block Command 7-10
7.3.1.2.3 Instruction Cache Unlock Cache Block Command............................... 7-11
7.3.1.2.4 Instruction Cache Unlock All Command... 7-11
7.3.1.2.5 Instruction Cache Invalidate All Command... 7-11
7.3.2 Data Cache Control Registers.. 7-11
7.3.2.1 Reading Data Cache Tags and Copyback Buffer....................................... 7-14
7.3.2.2 DC_CST Commands ... 7-15
7.3.2.2.1 Data Cache Enable/Disable Commands .. 7-15
7.3.2.2.2 Data Cache Load & Lock Cache Block Command............................... 7-16
7.3.2.2.3 Data Cache Unlock Cache Block Command... 7-16
7.3.2.2.4 Data Cache Unlock All Command .. 7-17
7.3.2.2.5 Data Cache Invalidate All Command .. 7-17
7.3.2.2.6 Data Cache Flush Cache Block Command.. 7-17
7.4 PowerPC Cache Control Instructions .. 7-18
7.4.1 Instruction Cache Block Invalidate (

icbi

) .. 7-18
7.4.2 Data Cache Block Touch (

dcbt

) and
 Data Cache Block Touch for Store (

dcbtst

) .. 7-18
7.4.3 Data Cache Block Zero (

dcbz

) .. 7-19
7.4.4 Data Cache Block Store (

dcbst

) .. 7-19
7.4.5 Data Cache Block Flush (

dcbf

) ... 7-19
7.4.6 Data Cache Block Invalidate (

dcbi

)... 7-20
7.5 Instruction Cache Operations... 7-20
7.5.1 Instruction Cache Hit ... 7-22
7.5.2 Instruction Cache Miss .. 7-22
7.5.3 Instruction Fetching on a Predicted Path ... 7-23
7.5.4 Fetching Instructions from Caching-Inhibited Regions................................. 7-23
7.5.5 Updating Code and Memory Region Attributes .. 7-23
7.6 Data Cache Operation .. 7-24
7.6.1 Data Cache Load Hit.. 7-25
7.6.2 Data Cache Read Miss... 7-25
7.6.3 Write-Through Mode... 7-26
7.6.3.1 Data Cache Store Hit in Write-Through Mode.. 7-26
7.6.3.2 Data Cache Store Miss in Write-Through Mode 7-26
7.6.4 Write-Back Mode .. 7-26
7.6.4.1 Data Cache Store Hit in Write-Back Mode ... 7-26
7.6.4.2 Data Cache Store Miss in Write-Back Mode... 7-26
7.6.5 Data Accesses to Caching-Inhibited Memory Regions 7-27
7.6.6 Atomic Memory References.. 7-28

Contents

Paragraph
Number Title

Page
Number

MPC855T User’s Manual

7.7 Cache Initialization after Reset.. 7-29
7.8 Debug Support ... 7-29
7.8.1 Instruction and Data Cache Operation in Debug Mode................................. 7-29
7.8.2 Instruction and Data Cache Operation with a Software Monitor Debugger. 7-30

Chapter 8
Memory Management Unit

8.1 Features ..8–1
8.2 PowerPC Architecture Compliance ...8–2
8.3 Address Translation ...8–3
8.3.1 Translation Disabled ..8–3
8.3.2 Translation Enabled ...8–3
8.3.3 TLB Operation...8–5
8.4 Using Access Protection Groups..8–6
8.5 Protection Resolution Modes...8–7
8.6 Memory Attributes ...8–8
8.7 Translation Table Structure ..8–9
8.7.1 Level-One Descriptor...8–13
8.7.2 Level-Two Descriptor ..8–14
8.7.3 Page Size..8–15
8.8 Programming Model ..8–15
8.8.1 IMMU Control Register (MI_CTR) ..8–16
8.8.2 DMMU Control Register (MD_CTR) ...8–17
8.8.3 IMMU/DMMU Effective Page Number Register (Mx_EPN).......................8–18
8.8.4 IMMU Tablewalk Control Register (MI_TWC)..8–19
8.8.5 DMMU Tablewalk Control Register (MD_TWC)...8–20
8.8.6 IMMU Real Page Number Register (MI_RPN) ..8–21
8.8.7 DMMU Real Page Number Register (MD_RPN) ...8–22
8.8.8 MMU Tablewalk Base Register (M_TWB)...8–24
8.8.9 MMU Current Address Space ID Register (M_CASID)8–24
8.8.10 MMU Access Protection Registers (MI_AP/MD_AP)..................................8–25
8.8.11 MMU Tablewalk Special Register (M_TW)..8–25
8.8.12 MMU Debug Registers ..8–26
8.8.12.1 IMMU CAM Entry Read Register (MI_CAM)...8–26
8.8.12.2 IMMU RAM Entry Read Register 0 (MI_RAM0)....................................8–27
8.8.12.3 IMMU RAM Entry Read Register 1 (MI_RAM1)....................................8–28
8.8.12.4 DMMU CAM Entry Read Register (MD_CAM)......................................8–29
8.8.12.5 DMMU RAM Entry Read Register 0 (MD_RAM0).................................8–30
8.8.13 DMMU RAM Entry Read Register 1 (MD_RAM1).....................................8–31
8.9 Memory Management Unit Exceptions ...8–33
8.10 TLB Manipulation ...8–33

Contents

Paragraph
Number Title

Page
Number

Contents

 xiii

8.10.1 TLB Reload..8–33
8.10.1.1 Translation Reload Examples ..8–34
8.10.2 Locking TLB Entries ...8–35
8.10.3 Loading Locked TLB Entries ..8–36
8.10.4 TLB Invalidation..8–36

Chapter 9
Instruction Execution Timing

9.1 Instruction Execution Timing Examples..9–1
9.1.1 Data Cache Load with a Data Dependency ...9–1
9.1.2 Writeback Arbitration ..9–2
9.1.3 Private Writeback Bus Load ..9–3
9.1.4 Fastest External Load (Data Cache Miss)..9–3
9.1.5 A Full Completion Queue..9–4
9.1.6 Branch Instruction Handling..9–5
9.1.7 Branch Prediction ..9–5
9.2 Instruction Timing List ..9–6
9.2.1 Load/Store Instruction Timing...9–8
9.2.2 String Instruction Latency ...9–8
9.2.3 Accessing Off-Core SPRs..9–8

Part III
Configuration and Reset

Chapter 10
System Interface Unit

10.1 Features ..10–1
10.2 System Configuration and Protection ..10–2
10.3 Multiplexing SIU Pins ...10–3
10.4 Programming the SIU ..10–4
10.4.1 Internal Memory Map Register (IMMR)...10–4
10.4.2 SIU Module Configuration Register (SIUMCR) ...10–5
10.4.3 System Protection Control Register (SYPCR) ..10–7
10.4.4 Transfer Error Status Register (TESR) ..10–8
10.4.5 Register Lock Mechanism ...10–9
10.5 System Configuration...10–11
10.5.1 Interrupt Structure..10–11
10.5.2 Priority of Interrupt Sources ..10–13
10.5.3 SIU Interrupt Processing..10–13

Contents

Paragraph
Number Title

Page
Number

MPC855T User’s Manual

10.5.3.1 Nonmaskable Interrupts—IRQ0 and SWT..10–14
10.5.4 Programming the SIU Interrupt Controller..10–15
10.5.4.1 SIU Interrupt Pending Register (SIPEND)..10–15
10.5.4.2 SIU Interrupt Mask Register (SIMASK) ...10–16
10.5.4.3 SIU Interrupt Edge/Level Register (SIEL) ..10–17
10.5.4.4 SIU Interrupt Vector Register (SIVEC) ...10–18
10.6 The Bus Monitor ..10–19
10.7 Software Watchdog Timer..10–20
10.7.1 Software Service Register (SWSR) ...10–21
10.8 The Decrementer..10–22
10.8.1 Decrementer Register (DEC)...10–22
10.9 The Timebase ...10–23
10.9.1 Timebase Register (TBU and TBL)...10–23
10.9.2 Timebase Reference Registers (TBREFA and

TBREFB)...10–24
10.9.3 Timebase Status and Control Register (TBSCR)...10–25
10.10 The Real-Time Clock...10–26
10.10.1 Real-Time Clock Status and Control Register (RTCSC)........................10–27
10.10.2 Real-Time Clock Register (RTC) ..10–28
10.10.3 Real-Time Clock Alarm Register (RTCAL) ..10–28
10.10.4 Real-Time Clock Alarm Seconds Register (RTSEC)10–29
10.11 Periodic Interrupt Timer (PIT) ...10–30
10.11.1 Periodic Interrupt Status and Control Register (PISCR)10–31
10.11.2 PIT Count Register (PITC) ..10–32
10.11.3 PIT Register (PITR)...10–32
10.12 General SIU Timers Operation ..10–33
10.12.1 Freeze Operation..10–33
10.12.2 Low-Power Stop Operation ...10–33

Chapter 11
Reset

11.1 Types of Reset..11–1
11.1.1 Power-On Reset ...11–2
11.1.2 External Hard Reset ...11–2
11.1.3 Internal Hard Reset ..11–3
11.1.3.1 PLL Loss of Lock ..11–3
11.1.3.2 Software Watchdog Reset ..11–3
11.1.3.3 Checkstop Reset...11–4
11.1.4 Debug Port Hard or Soft Reset ..11–4
11.1.5 JTAG Reset ..11–4
11.1.6 Power-On and Hard Reset Sequence ...11–4

Contents

Paragraph
Number Title

Page
Number

Contents

 xv

11.1.7 External Soft Reset ..11–5
11.1.8 Internal Soft Reset ...11–5
11.1.9 Soft Reset Sequence...11–5
11.2 Reset Status Register (RSR) ..11–5
11.3 MPC855T Reset Configuration..11–7
11.3.1 Hard Reset..11–7
11.3.1.1 Hard Reset Configuration Word...11–10
11.3.2 Soft Reset ...11–12
11.4 TRST and Power Mode Considerations...11–12

Part IV
The Hardware Interface

Chapter 12
External Signals

12.1 System Bus Signals..12–5
12.2 Active Pull-Up Buffers ..12–22
12.3 Internal Pull-Up and Pull-Down Resistors..12–23
12.4 Recommended Basic Pin Connections ..12–23
12.4.1 Reset Configuration ...12–24
12.4.1.1 Bus Control Signals and Interrupts..12–24
12.4.2 JTAG and Debug Ports...12–24
12.4.3 Unused Inputs ..12–25
12.4.4 Unused Outputs..12–25
12.5 Signal States during Reset ...12–25

Chapter 13
External Bus Interface

13.1 Features ..13–1
13.2 Bus Transfer Overview ..13–1
13.3 Bus Interface Signal Descriptions..13–2
13.4 Bus Operations...13–6
13.4.1 Basic Transfer Protocol..13–7
13.4.2 Single-Beat Transfer ..13–7
13.4.2.1 Single-Beat Read Flow ..13–7
13.4.2.2 Single-Beat Write Flow ...13–10
13.4.3 Burst Transfers...13–14
13.4.4 Burst Operations ..13–15
13.4.5 Alignment and Data Packing on Transfers ..13–24

Contents

Paragraph
Number Title

Page
Number

MPC855T User’s Manual

13.4.6 Arbitration Phase ...13–27
13.4.6.1 Bus Request (BR) ..13–28
13.4.6.2 Bus Grant (BG)..13–28
13.4.6.3 Bus Busy (BB)...13–28
13.4.6.4 External Bus Parking ...13–31
13.4.7 Address Transfer Phase-Related Signals ...13–31
13.4.7.1 Transfer Start (TS) ...13–31
13.4.7.2 Address Bus ...13–32
13.4.7.3 Transfer Attributes ...13–32
13.4.7.3.1 Read/Write (RD/WR) ..13–32
13.4.7.3.2 Burst Indicator (BURST)...13–32
13.4.7.3.3 Transfer Size (TSIZ)..13–32
13.4.7.3.4 Address Types (AT) ...13–33
13.4.7.3.5 Burst Data in Progress (BDIP) ..13–35
13.4.8 Termination Signals ...13–35
13.4.8.1 Transfer Acknowledge (TA) ..13–35
13.4.8.2 Burst Inhibit (BI) ...13–35
13.4.8.3 Transfer Error Acknowledge (TEA) ..13–35
13.4.8.4 Termination Signals Protocol...13–35
13.4.9 Memory Reservation..13–37
13.4.9.1 Cancel Reservation (CR) ...13–37
13.4.9.2 Kill Reservation (KR)..13–38
13.4.10 Bus Exception Control Cycles...13–39
13.4.10.1 RETRY ..13–40

Chapter 14
Clocks and Power Control

14.1 Features ..14–1
14.2 The Clock Module ...14–2
14.2.1 External Reference Clocks...14–3
14.2.1.1 Off-Chip Oscillator Input (EXTCLK) ...14–4
14.2.1.2 Crystal Oscillator Support (EXTAL and XTAL).......................................14–4
14.2.2 System PLL..14–5
14.2.2.1 SPLL Reset Configuration...14–6
14.2.2.2 SPLL Output Characteristics and Stability..14–7
14.2.2.3 System Phase-Locked Loop Pins (VDDSYN, VSSSYN,

VSSSYN1, XFC)...14–8
14.2.2.4 Disabling the SPLL..14–9
14.3 Clock Signals ...14–9
14.3.1 Clocks Derived from the SPLL Output ...14–9

Contents

Paragraph
Number Title

Page
Number

Contents

 xvii

14.3.1.1 The Internal General System Clocks (GCLK1C, GCLK2C,
GCLK1, GCLK2) ..14–10

14.3.1.2 Memory Controller and External Bus Clocks (GCLK1_50, GCLK2_50,
CLKOUT)..14–11

14.3.1.3 CLKOUT Special Considerations: 1:2:1 Mode.......................................14–14
14.3.1.4 The Baud Rate Generator Clock (BRGCLK)..14–14
14.3.1.5 The Synchronization Clock (SYNCCLK, SYNCCLKS)14–14
14.3.2 The PIT and RTC Clock (PITRTCLK)..14–15
14.3.3 The Time Base and Decrementer Clock (TMBCLK)..................................14–16
14.4 Power Distribution ...14–16
14.4.1 I/O Buffer Power (VDDH) ..14–17
14.4.2 Internal Logic Power (VDDL)...14–18
14.4.3 Clock Synthesizer Power (VDDSYN, VSSSYN, VSSYN1)...................14–18
14.4.4 Keep-Alive Power (KAPWR)..14–18
14.5 Power Control (Low-Power Modes) ..14–18
14.5.1 Normal High Mode..14–22
14.5.2 Normal Low Mode...14–22
14.5.3 Doze High Mode..14–22
14.5.4 Doze Low Mode ..14–23
14.5.5 Sleep Mode ..14–24
14.5.6 Deep-Sleep Mode ..14–24
14.5.7 Power-Down Mode ..14–25
14.5.7.1 Software Initiation of Power-Down Mode, with Automatic Wake-up...14–26
14.5.7.2 Maintaining the Real-Time Clock (RTC) During Shutdown or

Power Failure...14–27
14.5.7.3 Register Lock Mechanism: Protecting SIU Registers in

Power-Down Mode..14–28
14.5.8 TMIST: Facilitating Nesting of SIU Timer Interrupts14–28
14.6 Clock and Power Control Registers ...14–29
14.6.1 System Clock and Reset Control Register (SCCR)14–29
14.6.2 PLL, Low-Power, and Reset Control Register (PLPRCR)14–31

Chapter 15
Memory Controller

15.1 Features ..15–1
15.2 Basic Architecture..15–4
15.3 Chip-Select Programming Common to the GPCM and UPM.........................15–6
15.3.1 Address Space Programming...15–7
15.3.2 Register Programming Order...15–7
15.3.3 Memory Bank Write Protection...15–7
15.3.4 Address Type Protection ..15–7

Contents

Paragraph
Number Title

Page
Number

MPC855T User’s Manual

15.3.5 8-, 16-, and 32-Bit Port Size Configuration ...15–7
15.3.6 Parity Configuration...15–8
15.3.7 Memory Bank Protection Status ..15–8
15.3.8 UPM-Specific Registers...15–8
15.3.9 GPCM-Specific Registers ..15–8
15.4 Register Descriptions ...15–9
15.4.1 Base Registers (BRx)...15–9
15.4.2 Option Registers (ORx) ...15–10
15.4.3 Memory Status Register (MSTAT) ..15–13
15.4.4 Machine A Mode Register/Machine B Mode Registers (MxMR)............15–13
15.4.5 Memory Command Register (MCR) ...15–15
15.4.6 Memory Data Register (MDR) ..15–17
15.4.7 Memory Address Register (MAR)...15–17
15.4.8 Memory Periodic Timer Prescaler Register (MPTPR)15–18
15.5 General-Purpose Chip-Select Machine (GPCM)...15–18
15.5.1 Timing Configuration...15–19
15.5.1.1 Chip-Select Assertion Timing..15–20
15.5.1.2 Chip-Select and Write Enable Deassertion Timing15–21
15.5.1.3 Relaxed Timing..15–23
15.5.1.4 Output Enable (OE) Timing...15–26
15.5.1.5 Programmable Wait State Configuration ...15–26
15.5.1.6 Extended Hold Time on Read Accesses ..15–26
15.5.2 Boot Chip-Select Operation...15–30
15.5.3 External Asynchronous Master Support ..15–31
15.5.4 Special Case: Bursting with External Transfer Acknowledge:15–32
15.6 User-Programmable Machines (UPMs)...15–33
15.6.1 Requests ...15–34
15.6.1.1 Internal/External Memory Access Requests ..15–35
15.6.1.2 UPM Periodic Timer Requests ..15–35
15.6.1.3 Software Requests—MCR run Command...15–35
15.6.1.4 Exception Requests..15–36
15.6.2 Programming the UPM..15–36
15.6.3 Control Signal Generation Timing...15–36
15.6.4 The RAM Array ...15–39
15.6.4.1 RAM Words ...15–39
15.6.4.2 Chip-Select Signals (CSTx)...15–43
15.6.4.3 Byte-Select Signals (BSTx)...15–44
15.6.4.4 General-Purpose Signals (GxTx, G0x)..15–45
15.6.4.5 Loop Control (LOOP)..15–46
15.6.4.6 Exception Pattern Entry (EXEN)...15–47
15.6.4.7 Address Multiplexing (AMX) ...15–47

Contents

Paragraph
Number Title

Page
Number

Contents

 xix

15.6.4.8 Transfer Acknowledge and Data Sample Control (UTA, DLT3).............15–52
15.6.4.9 Disable Timer Mechanism (TODT)...15–53
15.6.4.10 The Last Word (LAST)..15–53
15.6.4.11 The Wait Mechanism (WAEN)..15–53
15.6.4.11.1 Internal and External Synchronous Masters ..15–54
15.6.4.11.2 External Asynchronous Masters ..15–54
15.7 Handling Devices with Slow or Variable Access Times15–55
15.7.1 Hierarchical Bus Interface Example ..15–56
15.7.2 Slow Devices Example ..15–56
15.8 External Master Support ..15–56
15.8.1 Synchronous External Masters ..15–57
15.8.2 Asynchronous External Masters ..15–57
15.8.3 Special Case: Address Type Signals for External Masters15–57
15.8.4 UPM Features Supporting External Masters ...15–57
15.8.4.1 Address Incrementing for External Synchronous Bursting Masters15–58
15.8.4.2 Handshake Mechanism for Asynchronous External Masters15–58
15.8.4.3 Special Signal for External Address Multiplexer Control15–58
15.8.5 External Master Examples ...15–58
15.8.5.1 External Masters and the GPCM ...15–58
15.8.5.2 External Masters and the UPM..15–60
15.9 Memory System Interface Examples ...15–65
15.9.1 Page-Mode DRAM Interface Example..15–65
15.9.2 Page Mode Extended Data-Out Interface Example15–77

Chapter 16
PCMCIA Interface

16.1 System Configuration...16–1
16.2 PCMCIA Module Signal Definitions...16–1
16.2.1 PCMCIA Cycle Control Signals..16–3
16.2.2 PCMCIA Input Port Signals ..16–4
16.2.3 PCMCIA Output Port Signals (OP[0–4]) ..16–5
16.2.4 Other PCMCIA Signals ...16–5
16.3 Operation Description..16–6
16.3.1 Memory-Only Cards ..16–6
16.3.2 I/O Cards..16–6
16.3.3 Interrupts..16–7
16.3.4 Power Control ..16–7
16.3.5 Reset and Three-State Control ...16–7
16.3.6 DMA ..16–7
16.4 Programming Model ..16–8
16.4.1 PCMCIA Interface Input Pins Register (PIPR) ...16–9

Contents

Paragraph
Number Title

Page
Number

MPC855T User’s Manual

16.4.2 PCMCIA Interface Status Changed Register (PSCR)16–10
16.4.3 PCMCIA Interface Enable Register (PER)..16–11
16.4.4 PCMCIA Interface General Control Register (PGCRx)..............................16–13
16.4.5 PCMCIA Base Registers 0–7 (PBR0–PBR7)..16–14
16.4.6 PCMCIA Option Register 0–7 (POR0–POR7) ...16–14
16.5 PCMCIA Controller Timing Examples ...16–17

Part V
Communications Processor Module

Chapter 17
Communications Processor Module and CPM Timers

17.1 Features ..17–2
17.2 CPM General-Purpose Timers ...17–4
17.2.1 Features..17–5
17.2.2 CPM Timer Operation ...17–6
17.2.2.1 Timer Clock Source ...17–6
17.2.2.2 Timer Reference Count..17–6
17.2.2.3 Timer Capture ..17–6
17.2.2.4 Timer Gating..17–7
17.2.2.5 Cascaded Mode..17–7
17.2.2.6 Timer 1 and SPKROUT...17–8
17.2.3 CPM Timer Register Set ..17–8
17.2.3.1 Timer Global Configuration Register (TGCR) ..17–8
17.2.4 Timer Mode Registers (TMR1–TMR4)...17–9
17.2.4.1 Timer Reference Registers (TRR1–TRR4) ...17–10
17.2.4.2 Timer Capture Registers (TCR1–TCR4) ...17–10
17.2.4.3 Timer Counter Registers (TCN1–TCN4) ..17–11
17.2.4.4 Timer Event Registers (TER1–TER4)...17–11
17.2.5 Timer Initialization Examples..17–13

Chapter 18
Communications Processor

18.1 Features ..18–1
18.2 Communicating with the Core ...18–2
18.3 Communicating with the Peripherals...18–2
18.4 CP Microcode Revision Number ...18–3
18.5 CP Register Set and CP Commands ..18–4
18.5.1 RISC Controller Configuration Register (RCCR) ...18–4

Contents

Paragraph
Number Title

Page
Number

Contents

 xxi

18.5.2 RISC Microcode Development Support Control Register (RMDS)...........18–5
18.5.3 CP Command Register (CPCR)...18–6
18.5.4 CP Commands ...18–7
18.5.4.1 CP Command Examples ..18–8
18.5.4.2 CP Command Execution Latency..18–8
18.6 Dual-Port RAM..18–8
18.6.1 System RAM and Microcode Packages...18–10
18.6.2 The Buffer Descriptor (BD)...18–11
18.6.3 Parameter RAM ...18–11
18.7 The RISC Timer Table ...18–12
18.7.1 RISC Timer Table Scan Algorithm ..18–13
18.7.2 The set timer Command...18–13
18.7.3 RISC Timer Table Parameter RAM and Timer Table Entries...................18–13
18.7.3.1 RISC Timer Command Register (TM_CMD) ...18–15
18.7.3.2 RISC Timer Table Entries..18–15
18.7.4 RISC Timer Event Register (RTER)/Mask Register (RTMR)..................18–15
18.7.5 PWM Mode..18–16
18.7.6 RISC Timer Initialization...18–17
18.7.7 RISC Timer Interrupt Handling ...18–18
18.7.8 Using the RISC Timers to Track CP Loading..18–18

Chapter 19
SDMA Channels and IDMA Emulation

19.1 SDMA Channels ..19–1
19.1.1 SDMA Transfers ..19–2
19.1.2 U-Bus Arbitration and the SDMA Channels ...19–2
19.2 SDMA Registers ..19–3
19.2.1 SDMA Configuration Register (SDCR) ..19–3
19.2.2 SDMA Status Register (SDSR) ...19–4
19.2.3 SDMA Mask Register (SDMR)...19–5
19.2.4 SDMA Address Register (SDAR)..19–5
19.3 IDMA Emulation ...19–5
19.3.1 IDMA Features ..19–6
19.3.2 IDMA Parameter RAM ...19–6
19.3.3 IDMA Registers ...19–7
19.3.3.1 DMA Channel Mode Registers (DCMR) ..19–7
19.3.3.2 IDMA Status Registers (IDSR1 and IDSR2) ..19–8
19.3.3.3 IDMA Mask Registers (IDMR1 and IDMR2)...19–9
19.3.4 IDMA Buffer Descriptors (BD)...19–9
19.3.4.1 Function Code Registers—SFCR and DFCR..19–12
19.3.4.2 Auto-Buffering and Buffer-Chaining...19–12

Contents

Paragraph
Number Title

Page
Number

MPC855T User’s Manual

19.3.5 IDMA CP Commands..19–13
19.3.6 IDMA Channel Operation ...19–13
19.3.6.1 Activating an IDMA Channel ..19–13
19.3.6.2 Suspending an IDMA Channel ..19–14
19.3.7 IDMA Interface Signals—DREQ and SDACK...19–14
19.3.7.1 IDMA Requests for Memory/Memory Transfers19–14
19.3.7.2 IDMA Requests for Peripheral/Memory Transfers19–15
19.3.7.2.1 Level-Sensitive Requests ...19–15
19.3.7.2.2 Edge-Sensitive Requests..19–15
19.3.8 IDMA Transfers—Dual-Address and Single-Address19–15
19.3.8.1 Dual-Address (Dual-Cycle) Transfer...19–16
19.3.8.2 Single-Address (Single-Cycle) Transfer (Fly-By)...................................19–16
19.3.9 Single-Buffer Mode on IDMA1—A Special Case19–19
19.3.9.1 IDMA1 Channel Mode Register (DCMR) (Single-Buffer Mode)19–20
19.3.9.2 IDMA1 Status Register (IDSR1) (Single-Buffer Mode)19–21
19.3.9.3 IDMA1 Mask Register (IDMR1) (Single-Buffer Mode).........................19–21
19.3.9.4 Burst Timing (Single-Buffer Mode) ..19–21
19.3.10 External Recognition of an IDMA Transfer ..19–22
19.3.11 Interrupts During an IDMA Bus Transfer..19–23

Chapter 20
Serial Interface

20.1 SI Features ...20–2
20.2 The Time-Slot Assigner (TSA) ..20–3
20.2.1 TSA Signals ...20–6
20.2.2 Enabling Connections to the TSA..20–6
20.2.3 SI RAM..20–6
20.2.3.1 Disabling and Reenabling the TSA ...20–7
20.2.3.2 TDMa Channel with Static Frames ...20–7
20.2.3.3 SI RAM Dynamic Changes ...20–7
20.2.3.4 TDMa Channel with Dynamic Frames..20–10
20.2.3.5 Programming the SI RAM...20–10
20.2.4 The SI Registers...20–12
20.2.4.1 SI Global Mode Register (SIGMR) ...20–12
20.2.4.2 SI Mode Register (SIMODE) ..20–13
20.2.4.3 SI Clock Route Register (SICR)..20–18
20.2.4.4 SI Command Register (SICMR)..20–19
20.2.4.5 SI Status Register (SISTR) ..20–20
20.2.4.6 SI RAM Pointer Register (SIRP)...20–21
20.3 NMSI Configuration ..20–22
20.4 Baud Rate Generators (BRGs)...20–24

Contents

Paragraph
Number Title

Page
Number

Contents

 xxiii

20.4.1 Baud Rate Generator Configuration Registers
(BRGCn)..20–25

20.4.2 Autobaud Operation on the SCC UART..20–27
20.4.3 UART Baud Rate Examples ..20–28

Chapter 21
Serial Communications Controller

21.1 Features ..21–2
21.2 SCC Registers ...21–3
21.2.1 General SCC Mode Register (GSMR)...21–3
21.2.2 Protocol-Specific Mode Register (PSMR)...21–10
21.2.3 Data Synchronization Register (DSR) ...21–10
21.2.4 Transmit-on-Demand Register (TODR) ..21–10
21.3 SCC Buffer Descriptors (BDs) ..21–11
21.4 SCC Parameter RAM...21–14
21.4.1 Function Code Registers (RFCR and TFCR) ..21–16
21.4.2 Handling SCC Interrupts ...21–16
21.4.3 SCC Initialization ..21–17
21.4.4 Controlling SCC Timing with RTS, CTS, and CD......................................21–18
21.4.4.1 Synchronous Protocols ..21–18
21.4.4.2 Asynchronous Protocols ..21–21
21.4.5 Digital Phase-Locked Loop (DPLL) Operation...21–22
21.4.5.1 Encoding Data with a DPLL..21–24
21.4.6 Clock Glitch Detection ..21–26
21.4.7 Reconfiguring the SCC ..21–26
21.4.7.1 General Reconfiguration Sequence for the SCC Transmitter21–26
21.4.7.2 Reset Sequence for the SCC Transmitter...21–27
21.4.7.3 General Reconfiguration Sequence for the SCC Receiver21–27
21.4.7.4 Reset Sequence for the SCC Receiver ...21–27
21.4.7.5 Switching Protocols ...21–27
21.4.8 Saving Power ...21–28

Chapter 22
SCC UART Mode

22.1 Features ..22–2
22.2 Normal Asynchronous Mode ...22–3
22.3 Synchronous Mode ..22–3
22.4 SCC UART Parameter RAM ...22–4
22.5 Data-Handling Methods: Character- or Message-Based22–5
22.6 Error and Status Reporting...22–6

Contents

Paragraph
Number Title

Page
Number

MPC855T User’s Manual

22.7 SCC UART Commands ...22–6
22.8 Multidrop Systems and Address Recognition..22–7
22.9 Receiving Control Characters ..22–7
22.10 Hunt Mode (Receiver) ...22–9
22.11 Inserting Control Characters into the Transmit Data Stream.............................22–9
22.12 Sending a Break (Transmitter) ...22–10
22.13 Sending a Preamble (Transmitter) ...22–10
22.14 Fractional Stop Bits (Transmitter) ...22–11
22.15 Handling Errors in the SCC UART Controller ..22–12
22.16 UART Mode Register (PSMR) ..22–13
22.17 SCC UART Receive Buffer Descriptor (RxBD)..22–16
22.18 SCC UART Transmit Buffer Descriptor (TxBD) ..22–19
22.19 SCC UART Event Register (SCCE) and Mask Register (SCCM)...................22–20
22.20 SCC UART Status Register (SCCS) ..22–22
22.21 SCC UART Programming Example ..22–23
22.22 S-Records Loader Application...22–24

Chapter 23
SCC HDLC Mode

23.1 SCC HDLC Features..23–2
23.2 SCC HDLC Channel Frame Transmission ..23–2
23.3 SCC HDLC Channel Frame Reception ...23–3
23.4 SCC HDLC Parameter RAM...23–4
23.5 Programming the SCC HDLC Controller..23–5
23.6 SCC HDLC Commands...23–5
23.7 Handling Errors in the SCC HDLC Controller..23–6
23.8 HDLC Mode Register (PSMR)..23–7
23.9 SCC HDLC Receive Buffer Descriptor (RxBD) ...23–9
23.10 SCC HDLC Transmit Buffer Descriptor (TxBD) ..23–12
23.11 HDLC Event Register (SCCE)/HDLC Mask Register (SCCM)23–13
23.12 SCC HDLC Status Register (SCCS)..23–15
23.13 SCC HDLC Programming Examples ..23–15
23.13.1 SCC HDLC Programming Example #1...23–16
23.13.2 SCC HDLC Programming Example #2...23–17
23.14 HDLC Bus Mode with Collision Detection...23–17
23.14.1 HDLC Bus Features...23–20
23.14.2 Accessing the HDLC Bus ..23–20
23.14.3 Increasing Performance ...23–21
23.14.4 Delayed RTS Mode..23–22
23.14.5 Using the Time-Slot Assigner (TSA)...23–23
23.14.6 HDLC Bus Protocol Programming..23–24

Contents

Paragraph
Number Title

Page
Number

Contents

 xxv

23.14.6.1 Programming GSMR and PSMR for the HDLC Bus Protocol23–24
23.14.6.2 HDLC Bus Controller Programming Example..23–24

Chapter 24
SCC AppleTalk Mode

24.1 Operating the LocalTalk Bus ...24–1
24.2 Features ..24–2
24.3 Connecting to AppleTalk ...24–3
24.4 Programming the SCC in AppleTalk Mode ...24–3
24.4.1 Programming the GSMR ...24–3
24.4.2 Programming the PSMR..24–4
24.4.3 Programming the TODR..24–4
24.4.4 SCC AppleTalk Programming Example ..24–4

Chapter 25
SCC Asynchronous HDLC Mode and IrDA

25.1 Asynchronous HDLC Features ..25–1
25.2 Asynchronous HDLC Frame Transmission Processing.....................................25–1
25.3 Asynchronous HDLC Frame Reception Processing..25–2
25.4 Transmitter Transparency Encoding ..25–3
25.5 Receiver Transparency Decoding ..25–3
25.6 Exceptions to RFC 1549 ..25–4
25.7 Asynchronous HDLC Channel Implementation..25–5
25.8 Asynchronous HDLC Mode Parameter RAM...25–5
25.9 Configuring GSMR and DSR for Asynchronous HDLC...................................25–6
25.9.1 General SCC Mode Register (GSMR)...25–7
25.9.2 Data Synchronization Register (DSR) ...25–7
25.10 Programming the Asynchronous HDLC Controller ..25–7
25.11 Asynchronous HDLC Commands ...25–7
25.12 Handling Errors in the Asynchronous HDLC Controller25–8
25.13 SCC Asynchronous HDLC Registers ..25–9
25.13.1 Asynchronous HDLC Event Register (SCCE)/Asynchronous HDLC Mask

Register (SCCM) ...25–9
25.13.2 SCC Asynchronous HDLC Status Register (SCCS)....................................25–10
25.13.3 Asynchronous HDLC Mode Register (PSMR) ...25–11
25.14 SCC Asynchronous HDLC RxBDs ...25–12
25.15 SCC Asynchronous HDLC TxBDs..25–13
25.16 Differences between HDLC and Asynchronous HDLC25–14
25.17 SCC Asynchronous HDLC Programming Example ..25–15

Contents

Paragraph
Number Title

Page
Number

MPC855T User’s Manual

Chapter 26
SCC BISYNC Mode

26.1 Features ..26–2
26.2 SCC BISYNC Channel Frame Transmission ..26–2
26.3 SCC BISYNC Channel Frame Reception..26–3
26.4 SCC BISYNC Parameter RAM ...26–4
26.5 SCC BISYNC Commands ...26–5
26.6 SCC BISYNC Control Character Recognition ..26–6
26.7 BISYNC SYNC Register (BSYNC)..26–7
26.8 SCC BISYNC DLE Register (BDLE) ...26–8
26.9 Sending and Receiving the Synchronization Sequence26–9
26.10 Handling Errors in the SCC BISYNC ...26–9
26.11 BISYNC Mode Register (PSMR)..26–10
26.12 SCC BISYNC Receive BD (RxBD) ..26–12
26.13 SCC BISYNC Transmit BD (TxBD)...26–14
26.14 BISYNC Event Register (SCCE)/BISYNC Mask Register (SCCM).............26–15
26.15 SCC Status Registers (SCCS)..26–16
26.16 Programming the SCC BISYNC Controller ..26–17
26.17 SCC BISYNC Programming Example ..26–18

Chapter 27
SCC Ethernet Mode

27.1 Ethernet on the MPC855T ...27–2
27.2 Features ..27–3
27.3 Learning Ethernet on the MPC855T..27–4
27.4 Connecting the MPC855T to Ethernet...27–5
27.5 SCC Ethernet Channel Frame Transmission..27–6
27.6 SCC Ethernet Channel Frame Reception...27–7
27.7 Content-Addressable Memory (CAM) Interface ...27–8
27.7.1 Serial CAM Interface...27–8
27.7.2 Parallel CAM Interface ..27–10
27.8 SCC Ethernet Parameter RAM ..27–12
27.9 Programming the Ethernet Controller..27–14
27.10 SCC Ethernet Commands ..27–15
27.11 SCC Ethernet Address Recognition ...27–16
27.12 Hash Table Algorithm ..27–17
27.13 Interpacket Gap Time...27–18
27.14 Handling Collisions ...27–18
27.15 Internal and External Loopback...27–18
27.16 Full-Duplex Ethernet Support..27–18

Contents
Paragraph
Number Title

Page
Number

Contents xxvii

27.17 Handling Errors in the Ethernet Controller..27–19
27.18 Ethernet Mode Register (PSMR) ...27–19
27.19 SCC Ethernet Receive Buffer Descriptor ..27–21
27.20 SCC Ethernet Transmit Buffer Descriptor ...27–24
27.21 SCC Ethernet Event Register (SCCE)/Mask Register (SCCM)27–25
27.22 SCC Ethernet Programming Example ...27–27

Chapter 28
SCC Transparent Mode

28.1 Features ..28–1
28.2 SCC Transparent Channel Frame Transmission Process28–2
28.3 SCC Transparent Channel Frame Reception Process ..28–2
28.4 Achieving Synchronization in Transparent Mode ...28–3
28.4.1 Synchronization in NMSI Mode..28–3
28.4.1.1 In-Line Synchronization Pattern..28–3
28.4.1.2 External Synchronization Signals..28–4
28.4.1.2.1 External Synchronization Example ...28–4
28.4.1.3 Transparent Mode without Explicit Synchronization28–5
28.4.1.4 End of Frame Detection...28–6
28.4.2 Synchronization and the TSA ..28–6
28.4.2.1 In-line Synchronization Pattern ...28–6
28.4.2.2 Inherent Synchronization...28–6
28.5 CRC Calculation in Transparent Mode..28–6
28.6 SCC Transparent Parameter RAM...28–7
28.7 SCC Transparent Commands...28–7
28.8 Handling Errors in the Transparent Controller ..28–8
28.9 Transparent Mode and the PSMR..28–9
28.10 SCC Transparent Receive Buffer Descriptor (RxBD)28–9
28.11 SCC Transparent Transmit Buffer Descriptor (TxBD)28–11
28.12 SCC Transparent Event Register (SCCE)/

Mask Register (SCCM) ...28–12
28.13 SCC Status Register in Transparent Mode

(SCCS) ...28–13
28.14 SCC1 Transparent Programming Example..28–14

Chapter 29
Serial Management Controllers (SMCs)

29.1 SMC Features...29–2
29.2 Common SMC Settings and Configurations..29–3
29.2.1 SMC Mode Registers (SMCMRn) ..29–3

Contents
Paragraph
Number Title

Page
Number

MPC855T User’s Manual

29.2.2 SMC Buffer Descriptors (BDs) ...29–5
29.2.3 SMC Parameter RAM..29–6
29.2.3.1 SMC Function Code Registers (RFCR/TFCR) ...29–8
29.2.4 Disabling SMCs On-the-Fly ..29–9
29.2.4.1 SMC Transmitter Full Sequence..29–9
29.2.4.2 SMC Transmitter Shortcut Sequence...29–9
29.2.4.3 SMC Receiver Full Sequence ..29–10
29.2.4.4 SMC Receiver Shortcut Sequence ...29–10
29.2.4.5 Changing SMC Protocols ..29–10
29.2.5 Saving Power ...29–10
29.2.6 Handling Interrupts in the SMC...29–10
29.3 SMC in UART Mode ...29–11
29.3.1 SMC UART Features ...29–11
29.3.2 SMC UART-Specific Parameter RAM ..29–12
29.3.3 SMC UART Channel Transmission Process..29–12
29.3.4 SMC UART Channel Reception Process...29–13
29.3.5 Data Handling Modes: Character- and Message-Oriented29–13
29.3.6 SMC UART Commands ..29–14
29.3.7 Sending a Break ...29–14
29.3.8 Sending a Preamble ...29–14
29.3.9 Handling Errors in the SMC UART Controller ...29–15
29.3.10 SMC UART Receive BD (RxBD) ...29–15
29.3.11 SMC UART Transmit BD (TxBD) ..29–19
29.3.12 SMC UART Event Register (SMCE)/Mask Register (SMCM)29–20
29.3.13 SMC UART Controller Programming Example..29–21
29.4 SMC in Transparent Mode...29–22
29.4.1 SMC Transparent Mode Features ..29–23
29.4.2 SMC Transparent-Specific Parameter RAM..29–23
29.4.3 SMC Transparent Channel Transmission Process29–23
29.4.4 SMC Transparent Channel Reception Process ..29–24
29.4.5 Using SMSYN for Synchronization ..29–24
29.4.6 Using TSA for Synchronization...29–25
29.4.7 SMC Transparent Commands..29–27
29.4.8 Handling Errors in the SMC Transparent Controller...................................29–28
29.4.9 SMC Transparent Receive BD (RxBD)...29–28
29.4.10 SMC Transparent Transmit BD (TxBD)..29–29
29.4.11 SMC Transparent Event Register (SMCE)/

Mask Register (SMCM)...29–31
29.4.12 SMC Transparent NMSI Programming Example..29–32
29.4.13 SMC Transparent TSA Programming Example ..29–33
29.5 SMC in GCI Mode...29–34

Contents
Paragraph
Number Title

Page
Number

Contents xxix

29.5.1 SMC GCI Parameter RAM..29–35
29.5.2 Handling the GCI Monitor Channel ..29–35
29.5.2.1 SMC GCI Monitor Channel Transmission Process29–35
29.5.2.1.1 SMC GCI Monitor Channel Reception Process29–36
29.5.3 Handling the GCI C/I Channel ..29–36
29.5.3.1 SMC GCI C/I Channel Transmission Process ...29–36
29.5.3.2 SMC GCI C/I Channel Reception Process ..29–36
29.5.4 SMC GCI Commands..29–36
29.5.5 SMC GCI Monitor Channel RxBD ...29–37
29.5.6 SMC GCI Monitor Channel TxBD..29–37
29.5.7 SMC GCI C/I Channel RxBD ...29–38
29.5.8 SMC GCI C/I Channel TxBD..29–38
29.5.9 SMC GCI Event Register (SMCE)/

Mask Register (SMCM)...29–39

Chapter 30
Serial Peripheral Interface (SPI)

30.1 Features ..30–2
30.2 SPI Clocking and Signal Functions ...30–2
30.3 Configuring the SPI Controller ..30–3
30.3.1 The SPI as a Master Device ...30–3
30.3.2 The SPI as a Slave Device ...30–5
30.3.3 The SPI in Multi-master Operation ...30–5
30.4 SPI Registers ..30–7
30.4.1 SPI Mode Register (SPMODE) ...30–7
30.4.1.1 SPI Transfers with Different Clocking Modes ..30–8
30.4.1.2 SPI Examples with Different SPMODE[LEN] Values30–9
30.4.2 SPI Event/Mask Registers (SPIE/SPIM) ...30–10
30.4.3 SPI Command Register (SPCOM) ..30–11
30.5 SPI Parameter RAM ..30–11
30.5.1 Receive/Transmit Function Code Registers (RFCR/TFCR).......................30–13
30.6 SPI Commands...30–13
30.7 The SPI Buffer Descriptor (BD) Table ..30–14
30.7.1 SPI Buffer Descriptors (BDs) ..30–14
30.7.1.1 SPI Receive BD (RxBD) ...30–15
30.7.1.2 SPI Transmit BD (TxBD) ..30–16
30.8 SPI Master Programming Example ...30–17
30.9 SPI Slave Programming Example..30–18
30.10 Handling Interrupts in the SPI ...30–19

Contents
Paragraph
Number Title

Page
Number

MPC855T User’s Manual

Chapter 31
I2C Controller

31.1 I2C Features ...31–2
31.2 I2C Controller Clocking and Signal Functions..31–2
31.3 I2C Controller Transfers ..31–3
31.3.1 I2C Master Write (Slave Read) ..31–4
31.3.2 I2C Loopback Testing ..31–4
31.3.3 I2C Master Read (Slave Write) ..31–4
31.3.4 I2C Multi-Master Considerations ..31–6
31.4 I2C Registers..31–6
31.4.1 I2C Mode Register (I2MOD)...31–6
31.4.2 I2C Address Register (I2ADD) ..31–7
31.4.3 I2C Baud Rate Generator Register (I2BRG)..31–8
31.4.4 I2C Event/Mask Registers (I2CER/I2CMR)..31–8
31.4.5 I2C Command Register (I2COM)..31–9
31.5 I2C Parameter RAM ..31–9
31.6 I2C Commands ..31–11
31.7 I2C Buffer Descriptor (BD) Tables..31–12
31.7.1 I2C Buffer Descriptors (BDs) ..31–12
31.7.1.1 I2C Receive Buffer Descriptor (RxBD)...31–13
31.7.1.2 I2C Transmit Buffer Descriptor (TxBD)..31–14

Chapter 32
Parallel Interface Port (PIP)

32.1 Features ..32–1
32.2 Core Control vs. CP Control..32–2
32.2.1 Core Control ..32–2
32.2.2 CP Control ...32–2
32.3 The PIP Parameter RAM ...32–3
32.3.1 PIP Transmitter Parameter RAM...32–3
32.3.1.1 PIP Function Code Register (PFCR) ...32–4
32.3.1.2 Status Mask Register (SMASK) ..32–4
32.3.2 PIP Receiver Parameter RAM ...32–5
32.3.2.1 Control Character Table, RCCM, and RCCR..32–6
32.4 The PIP Registers...32–8
32.4.1 PIP Configuration Register (PIPC) ..32–8
32.4.2 PIP Event Register (PIPE) ...32–9
32.4.3 PIP Mask Register ...32–10
32.4.4 PIP Timing Parameters Register (PTPR)...32–10
32.4.5 The Port B Registers ..32–11

Contents
Paragraph
Number Title

Page
Number

Contents xxxi

32.5 PIP Buffer Descriptors ...32–11
32.5.1 The PIP Tx Buffer Descriptor (TxBD) ..32–12
32.5.2 The PIP Rx Buffer Descriptor (RxBD)..32–13
32.6 PIP CP Commands...32–14
32.7 Handshaking I/O Modes ..32–15
32.7.1 Interlocked Handshake Mode ..32–15
32.7.2 Pulsed Handshake Mode..32–16
32.7.2.1 The BUSY Signal ..32–18
32.7.2.2 Pulsed Handshake Timing ...32–18
32.8 Transparent Transfers...32–20
32.9 Implementing Centronics...32–20
32.9.1 PIP as a Centronics Transmitter...32–21
32.9.1.1 Centronics Tx Errors and the PIPE..32–22
32.9.2 PIP as a Centronics Receiver ...32–23
32.9.2.1 Centronics Rx Errors and the PIPE ...32–23

Chapter 33
Parallel I/O Ports

33.1 Features ..33–2
33.2 Port A ...33–2
33.2.1 Port A Registers ...33–3
33.2.1.1 Port A Open-Drain Register (PAODR) ..33–3
33.2.1.2 Port A Data Register (PADAT) ..33–4
33.2.1.3 Port A Data Direction Register (PADIR)...33–4
33.2.1.4 Port A Pin Assignment Register (PAPAR)...33–5
33.2.2 Port A Configuration Examples ...33–5
33.2.3 Port A Functional Block Diagrams..33–6
33.3 Port B ...33–7
33.3.1 The Port B Registers ..33–8
33.3.1.1 Port B Open-Drain Register (PBODR)..33–9
33.3.1.2 Port B Data Register (PBDAT) ..33–9
33.3.1.3 Port B Data Direction Register (PBDIR)...33–10
33.3.1.4 Port B Pin Assignment Register (PBPAR)...33–11
33.3.2 Port B Configuration Example...33–11
33.4 Port C ...33–11
33.4.1 Port C—RxClav Signal..33–14
33.4.2 Port C Registers ...33–14
33.4.2.1 Port C Data Register (PCDAT) ..33–14
33.4.2.2 Port C Data Direction Register (PCDIR)...33–15
33.4.2.3 Port C Pin Assignment Register (PCPAR)...33–15
33.4.2.4 Port C Special Options Register (PCSO)...33–16

Contents
Paragraph
Number Title

Page
Number

MPC855T User’s Manual

33.4.2.5 Port C Interrupt Control Register (PCINT) ...33–16
33.5 Port D...33–17
33.5.1 Port D Registers ...33–18
33.5.1.1 Port D Data Register ..33–18
33.5.1.2 Port D Data Direction Register (PDDIR) ..33–18
33.5.2 Port D Pin Assignment Register (PDPAR) ..33–19

Chapter 34
CPM Interrupt Controller

34.1 Features ..34–1
34.2 CPM Interrupt Source Priorities ..34–3
34.2.1 Highest Priority Interrupt...34–3
34.2.2 Nested Interrupts..34–4
34.3 Masking Interrupt Sources in the CPM ...34–4
34.4 Generating and Calculating Interrupt Vectors..34–5
34.5 CPIC Registers...34–6
34.5.1 CPM Interrupt Configuration Register (CICR) ...34–7
34.5.2 CPM Interrupt Pending Register (CIPR) ...34–7
34.5.3 CPM Interrupt Mask Register..34–8
34.5.4 CPM Interrupt In-Service Register (CISR)..34–8
34.5.5 CPM Interrupt Vector Register (CIVR) ...34–9
34.6 Interrupt Handler Example—Single-Event Interrupt Source34–10
34.7 Interrupt Handler Example—Multiple-Event Interrupt Source34–10

Part VI
Asynchronous Transfer Mode (ATM)

Chapter 35
ATM Overview

35.1 ATM Capabilities ...35–1
35.2 MPC855T and MPC860 Differences...35–1
35.2.1 Parameter RAM Conflicts..35–1
35.2.2 IDMA2 Restriction ..35–2
35.2.3 UTOPIA Conflicts ...35–2
35.2.4 The ATM Pace Controller (APC) and APC Timer...35–2
35.3 ATM Features...35–2
35.4 MPC855T Application Example..35–4
35.5 Overview of ATM Operation ...35–5
35.6 UTOPIA Operation..35–5

Contents
Paragraph
Number Title

Page
Number

Contents xxxiii

35.6.1 UTOPIA Transmit Overview ...35–5
35.6.2 UTOPIA Receive Overview...35–6
35.6.3 Expanded Cells ..35–7
35.7 Serial ATM Operation ..35–7
35.7.1 Serial ATM Transmit Overview ...35–8
35.7.2 Serial ATM Receive Overview...35–9
35.7.2.1 Cell Delineation ...35–9
35.7.3 Cell Payload Scrambling/Descrambling ..35–10
35.8 ATM Pace Control (APC)..35–10
35.9 Internal and External Channels (Extended Channel Mode)35–10

Chapter 36
Buffer Descriptors and Connection Tables

36.1 ATM Buffer Descriptors (BDs)..36–1
36.1.1 AAL5 Buffers ..36–2
36.1.2 AAL0 Buffers ..36–3
36.1.3 ATM Receive Buffer Descriptors (RxBDs) ...36–3
36.1.4 ATM Transmit Buffer Descriptors (TxBDs)..36–6
36.2 Receive and Transmit Connection Tables

(RCTs and TCTs)...36–8
36.2.1 Receive Connection Table (RCT) ..36–9
36.2.2 Transmit Connection Table (TCT)...36–12

Chapter 37
ATM Parameter RAM

37.1 SAR Receive Function Code Register (SRFCR) ...37–6
37.2 SAR Receive State Register (SRSTATE)...37–7
37.3 SAR Transmit Function Code Register (STFCR)..37–8
37.4 SAR Transmit State Register (STSTATE) ...37–8
37.5 Address Match Parameters (AM1–AM5)..37–9
37.6 APC State Register (APCST) ..37–12
37.7 Serial Cell Synchronization Status Register (ASTATUS)37–13

Chapter 38
ATM Controller

38.1 Address Mapping ...38–1
38.1.1 Internal Look-up Mechanism (SRSTATE[EXT] = 0)....................................38–1
38.1.1.1 Adding a New Internal Channel ..38–2
38.1.1.2 Removing an Internal Channel ..38–2

Contents
Paragraph
Number Title

Page
Number

MPC855T User’s Manual

38.1.2 Address Compression (SRSTATE[EXT,ACP] = 11)38–3
38.1.2.1 First-Level Addressing Table (FLT)...38–3
38.1.2.2 Second-Level Addressing Tables (SLTs) ...38–3
38.1.2.3 Address Compression Example...38–4
38.1.2.4 Preventing Channel Aliasing..38–5
38.1.2.5 OAM Screening ...38–5
38.1.3 CAM Address Mapping (SRSTATE[EXT,ACP] = 10)..................................38–5
38.2 Multi-PHY Configuration (MPHY)...38–5
38.2.1 Setting Multi-PHY mode ...38–6
38.2.2 Receive Multi-PHY Operation ..38–6
38.2.2.1 Look-up Table MPHY Support..38–6
38.2.2.2 Address Compression Multi-PHY Support ...38–7
38.2.2.3 CAM Multi-PHY Support ...38–7
38.2.3 Transmit Multi-PHY Operation...38–7
38.2.4 APC Multi-PHY Parameters..38–8
38.3 ATM Commands..38–8

Chapter 39
ATM Pace Control

39.1 APC Algorithm ..39–1
39.1.1 APC Implementation ...39–2
39.1.2 APC Parameters ...39–3
39.1.3 Programming APC Scheduling Table Size and NCITS.................................39–3
39.1.4 Defining APC Slot Time ..39–4
39.1.5 Programming Rates for Channels ..39–5
39.1.6 APC Initialization and Operating Considerations ...39–6
39.1.7 Modifying Channel Transmit Pace ..39–6
39.1.8 Minimizing Cell Delay Variation...39–6
39.2 Direct Scheduling of Cells ...39–6
39.3 Using the APC with Multiple ATM Ports ..39–7
39.4 Using the APC Without Using UTOPIA..39–8
39.5 APC Scheduling Tables ...39–9
39.6 PHY Transmit Queues ...39–10
39.7 APC Priority Levels ...39–10

Chapter 40
ATM Exceptions

40.1 ATM Event Registers ...40–2
40.1.1 UTOPIA Event Register (IDSR1)..40–2
40.1.2 Serial ATM Event Register (SCCE)...40–3

Contents
Paragraph
Number Title

Page
Number

Contents xxxv

40.2 Interrupt Queue Entry ..40–4
40.3 Interrupt Queue Mask (IMASK)..40–6

Chapter 41
Interface Configuration

41.1 General ATM Registers..41–1
41.1.1 Port D Pin Assignment Register (PDPAR) ..41–1
41.1.2 APC Timer (CPM Timer 4) ...41–2
41.1.3 RISC Timer ..41–2
41.2 UTOPIA Mode Registers...41–2
41.2.1 System Clock Control Register (SCCR)..41–2
41.2.2 Port B—TxClav ...41–3
41.2.3 Port C—RxClav Signal..41–4
41.2.4 Port D—UTOPIA Data and Control Signals ...41–4
41.2.5 RISC Controller Configuration Register (RCCR) ...41–4
41.2.6 UTOPIA Mode Initialization ...41–5
41.3 Serial ATM Configuration..41–5
41.3.1 RISC Controller Configuration Register (RCCR) ...41–5
41.3.2 SCC Configuration for Serial ATM ...41–5
41.3.2.1 General SCC Mode Register (GSMR)...41–5
41.3.2.2 Serial ATM Mode Register (PSMR)..41–6
41.3.3 SI Configuration for Serial ATM ...41–6

Chapter 42
UTOPIA Interface

42.1 UTOPIA Single-PHY ..42–1
42.1.1 Receive Cell Transfer Operation..42–2
42.1.2 Transmit Cell Transfer Operation ..42–3
42.1.2.1 UTOPIA Bus and SOC Drive ..42–4
42.2 UTOPIA Multi-PHY Operations ...42–5
42.2.1 Setting up PHSEL and PHREQ Pins ...42–5
42.2.2 Receive Cell Transfer Operation..42–6
42.2.3 Transmit Cell Transfer Operation ..42–6
42.2.4 Example MPHY Implementation ..42–7
42.3 UTOPIA Interface Transfer Timing...42–9

Part VII
Fast Ethernet Controller (FEC)

Contents
Paragraph
Number Title

Page
Number

MPC855T User’s Manual

Chapter 43
Fast Ethernet Controller (FEC)

43.1 Features ..43–1
43.1.1 FEC Block Diagram...43–2
43.2 Fast Ethernet Controller Operation..43–2
43.2.1 Transceiver Connection ...43–3
43.2.2 FEC Frame Transmission...43–4
43.2.3 FEC Frame Reception..43–4
43.2.4 CAM Interface ...43–6
43.2.5 FEC Command Set ..43–6
43.2.6 Ethernet Address Recognition ...43–6
43.2.7 Hash Table Algorithm ..43–7
43.2.8 Inter-Packet Gap Time ...43–8
43.2.9 Collision Handling...43–8
43.2.10 Internal and External Loopback...43–8
43.2.11 Ethernet Error-Handling Procedure ...43–9
43.2.11.1 Transmission Errors ...43–9
43.2.11.2 Reception Errors ..43–9
43.2.12 SDMA Bus Arbitration and Transfers ...43–10
43.2.13 The SDMA Registers...43–10
43.2.13.1 SDMA Configuration Register (SDCR) ..43–10
43.3 Signal Descriptions ..43–11
43.4 Programming Model ..43–13
43.4.1 Parameter RAM ...43–13
43.4.1.1 RAM Perfect Match Address Low Register (ADDR_LOW)43–15
43.4.1.2 RAM Perfect Match Address High (ADDR_HIGH)...............................43–15
43.4.1.3 RAM Hash Table High (HASH_TABLE_HIGH)43–16
43.4.1.4 RAM Hash Table Low (HASH_TABLE_LOW)43–17
43.4.1.5 Beginning of RxBD Ring (R_DES_START) ..43–17
43.4.1.6 Beginning of TxBD Ring (X_DES_START)...43–18
43.4.1.7 Receive Buffer Size Register (R_BUFF_SIZE)43–19
43.4.1.8 Ethernet Control Register (ECNTRL) ...43–19
43.4.1.9 Interrupt Event (I_EVENT)/Interrupt Mask Register (I_MASK)43–20
43.4.1.10 Ethernet Interrupt Vector Register (IVEC) ..43–22
43.4.1.11 RxBD Active Register (R_DES_ACTIVE) ...43–22
43.4.1.12 TxBD Active Register (X_DES_ACTIVE) ...43–23
43.4.1.13 MII Management Frame Register (MII_DATA)......................................43–24
43.4.1.14 MII Speed Control Register (MII_SPEED)...43–26
43.4.1.15 FIFO Receive Bound Register (R_BOUND) ..43–27
43.4.1.16 FIFO Receive Start Register (R_FSTART)..43–28
43.4.1.17 Transmit Watermark Register (X_WMRK)...43–29

Contents
Paragraph
Number Title

Page
Number

Contents xxxvii

43.4.1.18 FIFO Transmit Start Register (X_FSTART)..43–30
43.4.1.19 DMA Function Code Register (FUN_CODE)...43–31
43.4.1.20 Receive Control Register (R_CNTRL)..43–31
43.4.1.21 Receive Hash Register (R_HASH)..43–32
43.4.1.22 Transmit Control Register (X_CNTRL)..43–33
43.4.2 Initialization Sequence...43–34
43.4.2.1 Hardware Initialization ..43–34
43.4.2.2 User Initialization (before Setting ECNTRL[ETHER_EN])...................43–35
43.4.2.2.1 Descriptor Controller Initialization..43–36
43.4.2.2.2 User Initialization (after Setting ECNTRL[ETHER_EN])..................43–36
43.4.3 Buffer Descriptors (BDs)...43–36
43.4.3.1 Ethernet Receive Buffer Descriptor (RxBD) ...43–37
43.4.3.2 Ethernet Transmit Buffer Descriptor (TxBD)..43–38

Part VIII
System Debugging and Testing Support

Chapter 44
System Development and Debugging

44.1 Tracking Program Flow ...44–1
44.1.1 Program Trace Functional Description ..44–2
44.1.2 Instruction Fetch Show Cycle Control...44–3
44.1.3 Program Trace Signals ...44–3
44.1.4 Program Trace Special Cases...44–4
44.1.4.1 Queue Flush Information Special Case ...44–4
44.1.4.2 Program Trace When In Debug Mode ...44–5
44.1.4.3 Sequential Instructions Marked as Indirect Branch...................................44–5
44.1.5 Reconstructing Program Trace...44–5
44.1.5.1 Back Trace ...44–5
44.1.5.2 Window Trace ..44–6
44.1.5.2.1 Synchronizing the Trace Window to Internal Core Events....................44–6
44.1.5.3 Detecting the Trace Window Start Address ...44–7
44.1.5.4 Detecting the Assertion/Negation of VSYNC ...44–7
44.1.5.5 Detecting the Trace Window End Address ..44–7
44.1.5.6 Efficient Trace Information Capture ..44–8
44.2 Watchpoints and Breakpoints Support...44–8
44.2.1 Key Features ..44–9
44.2.2 Internal Watchpoints and Breakpoints Logic...44–10
44.2.3 Functional Description...44–11
44.2.3.1 Instruction Support Detailed Description ..44–12

Contents
Paragraph
Number Title

Page
Number

MPC855T User’s Manual

44.2.3.2 Load/Store Support Detailed Description..44–12
44.2.3.3 The Counters..44–14
44.2.3.4 Trap Enable Programming...44–15
44.2.4 Operation Details ...44–15
44.2.4.1 Restrictions ..44–15
44.2.4.2 Byte and Half Word Working Modes...44–15
44.2.4.2.1 Examples ...44–16
44.2.4.3 Context Dependent Filter...44–17
44.2.4.4 Ignore First Match ...44–18
44.2.4.5 Generating Six Compare Types ...44–18
44.2.5 Load/Store Breakpoint Example..44–18
44.3 Development System Interface ..44–19
44.3.1 Debug Mode Operation..44–21
44.3.1.1 Debug Mode Enable vs. Debug Mode Disable..44–22
44.3.1.2 Entering Debug Mode..44–23
44.3.1.3 Debug Mode Indication ...44–24
44.3.1.4 Checkstop State and Debug Mode...44–24
44.3.1.5 Saving Machine State when Entering Debug Mode44–25
44.3.1.6 Running in Debug Mode..44–25
44.3.1.7 Exiting Debug Mode..44–25
44.3.2 Development Port Communication..44–26
44.3.2.1 Development Port Pins ..44–26
44.3.2.1.1 Development Serial Clock (DSCK)...44–26
44.3.2.1.2 Development Serial Data In (DSDI)..44–26
44.3.2.1.3 Development Serial Data Out (DSDO) ...44–27
44.3.2.1.4 Freeze...44–27
44.3.2.2 Development Port Registers ..44–27
44.3.2.2.1 Development Port Shift Register ...44–27
44.3.2.2.2 Trap Enable Control Register (TECR) ..44–28
44.3.2.2.3 Development Port Registers Decode ...44–28
44.3.2.3 Development Port Serial Communications–Clock Mode........................44–28
44.3.2.3.1 Asynchronous Clocked Mode—Using DSCK44–28
44.3.2.3.2 Synchronous Self-Clocked Mode—Using CLKOUT44–29
44.3.2.3.3 Selection of Development Port Clock Mode44–30
44.3.2.4 Development Port Serial Communications–Trap Enable Mode............44–31
44.3.2.4.1 Serial Data Into Development Port ..44–31
44.3.2.4.2 Serial Data Out of Development Port ..44–32
44.3.2.5 Development Port Serial Communications–Debug Mode.......................44–33
44.3.2.5.1 Serial Data Into Development Port ..44–33
44.3.2.5.2 Serial Data Out of Development Port ..44–34
44.3.2.5.3 Fast Download Procedure..44–35

Contents
Paragraph
Number Title

Page
Number

Contents xxxix

44.4 Software Monitor Debugger Support...44–36
44.4.1 Freeze Indication..44–36
44.5 Development Support Programming Model ..44–36
44.5.1 Development Support Registers...44–38
44.5.1.1 Comparator A–H Value Registers (CMPA–CMPH)44–38
44.5.1.2 Breakpoint Address Register (BAR)..44–39
44.5.1.3 Instruction Support Control Register (ICTRL)..44–40
44.5.1.4 Load/Store Support Comparators Control Register (LCTRL1)44–41
44.5.1.5 Load/Store Support AND-OR Control Register (LCTRL2)....................44–42
44.5.1.6 Breakpoint Counter Value and Control Registers

(COUNTA/COUNTB)...44–45
44.5.2 Debug Mode Registers...44–45
44.5.2.1 Interrupt Cause Register (ICR) ..44–45
44.5.2.2 Debug Enable Register (DER)...44–47
44.5.2.3 Development Port Data Register (DPDR) ...44–49

Chapter 45
IEEE 1149.1 Test Access Port

45.1 Overview..45–1
45.2 TAP Controller ...45–2
45.3 Boundary Scan Register...45–3
45.4 Instruction Register ..45–5
45.4.1 EXTEST...45–6
45.4.2 SAMPLE/PRELOAD ..45–6
45.4.3 BYPASS...45–7
45.4.4 CLAMP..45–7
45.4.5 HI–Z...45–7
45.5 TAP Usage Considerations ..45–7
45.6 Recommended TAP Configuration ..45–8
45.7 Motorola MPC855T BSDL Description..45–8

Appendix A
Byte Ordering

A.1 Byte Ordering Overview...A–1
A.2 Byte-Ordering Mechanisms ..A–1
A.3 BE Mode ...A–2
A.4 TLE Mode...A–2
A.4.1 TLE Mode System Examples ...A–4
A.5 MOD-LE Mode...A–6
A.5.1 I/O Addressing in MOD-LE Mode ...A–8

Contents
Paragraph
Number Title

Page
Number

MPC855T User’s Manual

A.6 Setting the Endian Mode Of Operation ..A–8

Appendix B
Serial Communications Performance

B.1 Serial Clocking (Peak Rate Limitation)..B–1
B.2 Bus Utilization ..B–2
B.3 CPM Bandwidth (Average Rate Limitation) ..B–2
B.3.1 Performance of Serial Channels ...B–3
B.3.2 IDMA Considerations...B–4
B.3.3 Performance Calculations ...B–5
B.4 ATM Performance...B–8
B.5 Receiver ..B–9
B.6 Transmitter ..B–11

Appendix C
Register Quick Reference Guide

C.1 User Registers ...C–1
C.2 Supervisor Registers ...C–2
C.3 MPC855T-Specific SPRs ..C–3

Appendix D
Instruction Set Listings

D.1 Instructions Sorted by Mnemonic... D-1
D.2 Instructions Sorted by Opcode.. D-9
D.3 Instructions Grouped by Functional Categories ... D-16
D.4 Instructions Sorted by Form.. D-26
D.5 Instruction Set Legend .. D-37

Appendix E
Serial ATM Scrambling, Reception, and SI Programming

E.1 ATM Cell Payload Scrambling ... E–1
E.2 Receiving Serial ATM Cells.. E–1
E.2.1 HEC Delineation Mechanism ... E–3
E.3 Serial Interface Programming Example for Serial ATM..................................... E–4
E.3.1 Serial Interface RAM.. E–4
E.3.2 Parallel Port Registers... E–5

Figures
Figure
Number Title

 Page
Number

Figures xliii

1-1 MPC855T Block Diagram ..1–5
3-1 Block Diagram of the Core ...3–5
3-2 Instruction Flow Conceptual Diagram ..3–7
3-3 Basic Instruction Pipeline Timing...3–8
3-4 Sequencer Data Path ...3–9
3-5 LSU Functional Block Diagram ...3–12
4-1 Condition Register (CR) ...4–3
4-2 XER Register ..4–4
4-3 Machine State Register (MSR) ...4–7
6-1 Exception Latency...6–19
7-1 Instruction Cache Organization... 7-3
7-2 Data Cache Organization .. 7-5
7-3 Instruction Cache Control and Status Register (IC_CST) .. 7-7
7-4 Instruction Cache Address Register (IC_ADR) .. 7-8
7-5 Instruction Cache Data Port Register (IC_DAT)... 7-8
7-6 Data Cache Control and Status Register (DC_CST)... 7-12
7-7 Data Cache Address Register (DC_ADR) .. 7-13
7-8 Data Cache Data Port Register (DC_DAT)... 7-14
7-9 Instruction Cache Data Path.. 7-21
8-1 Read/Instruction Fetch Flow Diagram ..8–4
8-2 Flow of Load/Store Access ...8–5
8-3 Effective-to-Physical Address Translation for 4-Kbyte Pages Block Diagram...........8–6
8-4 Two-Level Translation Table (MD_CTR[TWAM] = 1)..8–10
8-5 Two-Level Translation Table (MD_CTR[TWAM] = 0)..8–12
8-6 IMMU Control Register (MI_CTR)..8–16
8-7 DMMU Control Register (MD_CTR) ..8–17
8-8 IMMU/DMMU Effective Page Number Register (Mx_EPN)8–18
8-9 IMMU Tablewalk Control Register (MI_TWC) ...8–19
8-10 DMMU Tablewalk Control Register (MD_TWC) ..8–20
8-11 IMMU Real Page Number Register (MI_RPN)..8–21
8-12 DMMU Real Page Number Register (MD_RPN)...8–23
8-13 MMU Tablewalk Base Register (M_TWB) ..8–24
8-14 MMU Current Address Space ID Register (M_CASID) ..8–24
8-15 MMU Access Protection Registers (MI_AP/MD_AP) ...8–25
8-16 MMU Tablewalk Special Register (M_TW)...8–25

Figures
Figure
Number Title

Page
Number

MPC855T User’s Manual

8-17 IMMU CAM Entry Read Register (MI_CAM) ..8–26
8-18 IMMU RAM Entry Read Register 0 (MI_RAM0) ...8–27
8-19 IMMU RAM Entry Read Register 1 (MI_RAM1) ...8–28
8-20 DMMU CAM Entry Read Register (MD_CAM) ...8–29
8-21 DMMU RAM Entry Read Register 0 (MD_RAM0) ..8–30
8-22 DMMU RAM Entry Read Register 1 (MD_RAM1) ..8–31
8-23 DTLB Reload Code Example ...8–34
8-24 ITLB Reload Code Example...8–35
8-25 Configuring the TLB Replacement Counter ...8–35
9-1 Data Cache Load Timing ..9–2
9-2 Writeback Arbitration Timing—Example 1..9–2
9-3 Writeback Arbitration Timing—Example 2..9–2
9-4 Private Writeback Bus Load Timing ...9–3
9-5 External Load Timing ...9–4
9-6 Full Completion Queue Timing ..9–4
9-7 Branch Folding Timing ...9–5
9-8 Branch Prediction Timing ...9–6
9-9 Bus Latency for String Instructions ..9–8
10-1 System Configuration and Protection Logic ...10–3
10-2 Internal Memory Map Register (IMMR) ..10–5
10-3 SIU Module Configuration Register (SIUMCR) ..10–6
10-4 System Protection Control Register (SYPCR)..10–8
10-5 Transfer Error Status Register (TESR) ...10–9
10-6 Register Lock Mechanism...10–11
10-7 MPC855T Interrupt Structure ...10–12
10-8 SIU Interrupt Processing ...10–14
10-9 IRQ0 Logical Representation..10–14
10-10 SIU Interrupt Pending Register (SIPEND) ...10–15
10-11 SIU Interrupt Mask Register (SIMASK) ..10–16
10-12 SIU Interrupt Edge/Level Register (SIEL)..10–17
10-13 SIU Interrupt Vector Register (SIVEC)...10–18
10-14 Interrupt Table Handling Example..10–19
10-15 Software Watchdog Timer Service State Diagram..10–20
10-16 Software Watchdog Timer Block Diagram ...10–21
10-17 Software Service Register (SWSR) ..10–21
10-18 Decrementer Register (DEC) ..10–23
10-19 Timebase Upper Register (TBU) ..10–24
10-20 Timebase Lower Register (TBL) ..10–24
10-21 Timebase Reference Registers (TBREFA and TBREFB).......................................10–25
10-22 Timebase Status and Control Register (TBSCR)..10–25
10-23 Real-Time Clock Block Diagram..10–27

Figures
Figure
Number Title

Page
Number

Figures xlv

10-24 Real-Time Clock Status and Control Register (RTCSC) ..10–27
10-25 Real-Time Clock Register (RTC)..10–28
10-26 Real-Time Clock Alarm Register (RTCAL) ...10–29
10-27 Real-Time Clock Alarm Seconds Register (RTSEC)..10–29
10-28 Periodic Interrupt Timer Block Diagram ..10–30
10-29 Periodic Interrupt Status and Control Register (PISCR)...10–31
10-30 PIT Count Register (PITC) ...10–32
10-31 PIT Register (PITR) ..10–33
11-1 Power-On and Hard Reset Sequence ..11–4
11-2 Soft Reset Sequence..11–5
11-3 Reset Status Register (RSR)..11–6
11-4 Data Bus Configuration Input Circuit ...11–8
11-5 Reset Configuration Sampling for Short PORESET Assertion11–9
11-6 Reset Configuration Sampling for Long PORESET Assertion.................................11–9
11-7 Reset Configuration Sampling Timing Requirements ..11–10
11-8 Hard Reset Configuration Word..11–10
12-1 MPC855T External Signals ..12–2
12-2 Signals and Pin Numbers (Part 1) ...12–3
12-3 Signals and Pin Numbers (Part 2) ...12–4
12-4 Three-State Buffers and Active Pull-Up Buffers...12–22
13-1 Input Sample Window...13–2
13-2 MPC855T Bus Signals..13–3
13-3 Basic Transfer Protocol ...13–7
13-4 Basic Flow Diagram of a Single-Beat Read Cycle ...13–8
13-5 Basic Timing: Single-Beat Read Cycle, Zero Wait States ..13–9
13-6 Basic Timing: Single-Beat Read Cycle, One Wait State...13–10
13-7 Basic Flow of a Single-Beat Write Cycle ...13–11
13-8 Basic Timing: Single-Beat Write Cycle, Zero Wait States......................................13–12
13-9 Basic Timing: Single-Beat Write Cycle, One Wait State ..13–13
13-10 Basic Timing: Single-Beat, 32-Bit Data Write Cycle, 16-Bit Port Size13–14
13-11 Basic Flow of a Burst-Read Cycle ..13–17
13-12 Burst-Read Cycle: 32-Bit Port Size, Zero Wait State ...13–18
13-13 Burst-Read Cycle: 32-Bit Port Size, One Wait State ..13–19
13-14 Burst-Read Cycle: 32-Bit Port Size, Wait States between Beats13–20
13-15 Burst-Read Cycle: 16-Bit Port Size, One Wait State between Beats13–21
13-16 Basic Flow of a Burst Write Cycle..13–22
13-17 Burst-Write Cycle: 32-Bit Port Size, Zero Wait States ...13–23
13-18 Burst-Inhibit Cycle: 32-Bit Port Size..13–24
13-19 Internal Operand Representation...13–25
13-20 Interface to Different Port Size Devices..13–26
13-21 Basic Bus Arbitration Protocol ...13–28

Figures
Figure
Number Title

Page
Number

MPC855T User’s Manual

13-22 Bus Busy (BB) and Transfer Start (TS) Connection Example................................13–29
13-23 Bus Arbitration Timing Diagram ..13–30
13-24 Internal Bus Arbitration State Machine...13–31
13-25 Termination Signals Protocol Basic Connection...13–36
13-26 Termination Signals Protocol Timing Diagram ..13–36
13-27 Reservation On Local Bus ..13–38
13-28 Reservation on Multilevel Bus Hierarchy ...13–39
13-29 Retry Transfer Timing–Internal Arbiter ..13–41
13-30 Retry Transfer Timing–External Arbiter ...13–42
13-31 Retry on Burst Cycle...13–43
14-1 Clock Source and Distribution ..14–2
14-2 Clock Module Components ..14–3
14-3 Crystal Circuit Examples ..14–5
14-4 SPLL Block Diagram..14–6
14-5 Clock Dividers ..14–10
14-6 Low-power dividers for GCLKx...14–11
14-7 Divided System Clocks (GCLKx) Timing Diagram...14–11
14-8 Memory Controller and External Bus Clocks Timing Diagram for EBDF=0 and

EBDF=1 ...14–12
14-9 Memory Controller and External Bus Clocks Timing Diagram for (CSRC=0 and

DFNH=1) or (CSRC=1 and DFNL=0) ..14–13
14-10 BRGCLK Divider ...14–14
14-11 SYNCCLK Divider ...14–15
14-12 MPC855T Power Rails ...14–17
14-13 MPC855T Low-Power Mode Flowchart...14–21
14-14 Software-Initiated Power-Down Configuration ..14–27
14-15 System Clock and Reset Control Register (SCCR) ..14–29
14-16 PLL, Low-Power, and Reset Control Register (PLPRCR)14–32
15-1 Memory Controller Block Diagram ...15–3
15-2 Memory Controller Machine Selection...15–4
15-3 Simple System Configuration ...15–5
15-4 Basic Memory Controller Operation...15–6
15-5 Base Registers (BRx) ..15–9
15-6 BR0 Reset Defaults ...15–9
15-7 Option Registers (ORx)...15–11
15-8 OR0 Reset Defaults...15–11
15-9 Memory Status Register (MSTAT) ...15–13
15-10 Machine A Mode Register/Machine B Mode Register (MxMR)............................15–14
15-11 Memory Command Register (MCR) ..15–16
15-12 Memory Data Register (MDR) ...15–17
15-13 Memory Address Register (MAR) ..15–17

Figures
Figure
Number Title

Page
Number

Figures xlvii

15-14 Memory Periodic Timer Prescaler Register (MPTPR) ...15–18
15-15 GPCM-to-SRAM Configuration ...15–19
15-16 GPCM Peripheral Device Interface...15–21
15-17 GPCM Peripheral Device Basic Timing (ACS = 1x and TRLX = 0)15–21
15-18 GPCM Memory Device Interface ...15–22
15-19 GPCM Memory Device Basic Timing (ACS = 00, CSNT = 1, TRLX = 0)15–22
15-20 GPCM Memory Device Basic Timing (ACS ≠ 00, CSNT = 1, TRLX = 0)15–23
15-21 GPCM Relaxed Timing Read (ACS = 1x, SCY = 1, CSNT = 0, and

TRLX = 1)..15–24
15-22 GPCM Relaxed-Timing Write (ACS = 1x, SCY = 0, CSNT = 0, TRLX = 1)........15–24
15-23 GPCM Relaxed-Timing Write (ACS = 1x, SCY = 0, CSNT = 1, TRLX =1).........15–25
15-24 GPCM Relaxed-Timing Write (ACS = 00, SCY = 0, CSNT = 1, TRLX =1).........15–26
15-25 GPCM Read Followed by Write (EHTR = 0)...15–27
15-26 GPCM Read Followed by Write (EHTR = 1)...15–28
15-27 GPCM Read Followed by Read from Different Banks (EHTR = 1)15–29
15-28 GPCM Read Followed by Read from Same Bank (EHTR = 1)..............................15–30
15-29 Asynchronous External Master Configuration for GPCM-Handled Memory Devices

15–31
15-30 Asynchronous External Master, GPCM-Handled Memory Access Timing (TRLX = 0) .

15–32
15-31 User-Programmable Machine Block Diagram..15–33
15-32 RAM Array Indexing ..15–34
15-33 Memory Periodic Timer Request Block Diagram...15–35
15-34 UPM Clock Scheme One (Division Factor = 1) ...15–36
15-35 UPM Clock Scheme Two (Division Factor = 2) ...15–37
15-36 UPM Signals Timing Example One (Division Factor = 1, EBDF = 00).................15–38
15-37 UPM Signals Timing Example Two (Division Factor = 2, EBDF = 01)15–38
15-38 RAM Array and Signal Generation...15–39
15-39 The RAM Word...15–40
15-40 CSx Signal Selection...15–43
15-41 BSx Signal Selection...15–44
15-42 Early GPL5 Control ..15–45
15-43 Address Multiplex Timing ..15–48
15-44 UPM Read Access Data Sampling..15–53
15-45 Wait Mechanism Timing for Internal and External Synchronous Masters15–54
15-46 Wait Mechanism Timing for an External Asynchronous Master15–55
15-47 Synchronous External Master Access ...15–59
15-48 Asynchronous External Master Access...15–60
15-49 Synchronous External Master Interconnect Example ...15–61
15-50 Synchronous External Master: Burst Read Access to Page Mode DRAM.............15–63
15-51 Asynchronous External Master Interconnect Example...15–63

Figures
Figure
Number Title

Page
Number

MPC855T User’s Manual

15-52 Asynchronous External Master Timing Example ...15–64
15-53 Page-Mode DRAM Interface Connection...15–65
15-54 Single-Beat Read Access to Page-Mode DRAM ..15–67
15-55 Single-Beat Write Access to Page Mode DRAM..15–68
15-56 Burst Read Access to Page-Mode DRAM (No LOOP) ..15–69
15-57 Burst Read Access to Page-Mode DRAM (LOOP) ..15–70
15-58 Burst Write Access to Page-Mode DRAM (No LOOP) ...15–71
15-59 Burst Write Access to Page-Mode DRAM (LOOP) ...15–72
15-60 Refresh Cycle (CAS before RAS) to Page-Mode DRAM15–73
15-61 Exception Cycle ..15–74
15-62 Optimized DRAM Burst Read Access..15–76
15-63 EDO DRAM Interface Connection...15–77
15-64 EDO DRAM Single-Beat Read Access ..15–79
15-65 EDO DRAM Single-Beat Write Access..15–80
15-66 EDO DRAM Burst Read Access ..15–81
15-67 EDO DRAM Burst Write Access..15–82
15-68 EDO DRAM Refresh Cycle (CAS before RAS) ..15–83
15-69 EDO DRAM Exception Cycle ..15–84
15-70 Blank Work Sheet for a UPM ...15–85
16-1 System with Two PCMCIA Sockets ...16–2
16-2 Internal DMA Request Logic..16–8
16-3 PCMCIA Interface Input Pins Register (PIPR) ..16–9
16-4 PCMCIA Interface Status Changed Register (PSCR) ..16–10
16-5 PCMCIA Interface Enable Register (PER)...16–11
16-6 PCMCIA Interface General Control Register (PGCRx) ...16–13
16-7 PCMCIA Base Register (PBR) ...16–14
16-8 PCMCIA Option Register 0–7 (POR0–POR7)...16–14
16-9 PCMCIA Single-Beat Read Cycle PRS = 0 PSST = 1 PSL = 3 PSHT = 116–17
16-10 PCMCIA Single-Beat Read Cycle PRS = 0 PSST = 2 PSL = 4 PSHT = 116–18
16-11 PCMCIA Single-Beat Read Cycle PRS = 0 PSST = 1 PSL = 3 PSHT = 016–19
16-12 PCMCIA Single-Beat Write Cycle PRS = 2 PSST = 1 PSL = 3 PSHT = 116–20
16-13 PCMCIA Single-Beat Write Cycle PRS = 3 PSST = 1 PSL = 4 PSHT = 316–21
16-14 PCMCIA Single-Beat Write with Wait PRS = 3 PSST = 1 PSL = 3

PSHT = 0..16–22
16-15 PCMCIA Single-Beat Read with Wait PRS = 3 PSST = 1 PSL = 3

PSHT =1...16–23
16-16 PCMCIA I/O Read PPS = 1 PRS = 3 PSST = 1 PSL = 2 PSHT = 016–24
16-17 PCMCIA I/O Read PPS = 1 PRS = 3 PSST = 1 PSL = 2 PSHT = 016–25
16-18 PCMCIA DMA Read Cycle PRS = 4 PSST = 1 PSL = 3 PSHT = 0......................16–26
17-1 CPM Block Diagram...17–2
17-2 MPC855TApplication Design Example..17–4

Figures
Figure
Number Title

Page
Number

Figures xlix

17-3 CPM Timer Block Diagram ..17–5
17-4 Timer Cascaded Mode Block Diagram...17–7
17-5 Timer Global Configuration Register (TGCR) ...17–8
17-6 Timer Mode Registers (TMR1–TMR4)..17–9
17-7 Timer Reference Registers (TRR1–TRR4)...17–10
17-8 Timer Capture Registers (TCR1–TCR4) ..17–11
17-9 Timer Counter Registers (TCN1–TCN4)..17–11
17-10 Timer Event Registers (TER1–TER4) ..17–12
18-1 Communications Processor (CP) Block Diagram...18–2
18-2 RISC Controller Configuration Register (RCCR)...18–4
18-3 RISC Microcode Development Support Control Register (RMDS)18–5
18-4 CP Command Register (CPCR) ..18–6
18-5 Dual-Port RAM Block Diagram ...18–9
18-6 Dual-Port RAM Memory Map..18–10
18-7 RISC Timer Table RAM Usage ..18–14
18-8 RISC Timer Command Register (TM_CMD)...18–15
18-9 RISC Timer Event Register (RTER)/Mask Register (RTMR)18–16
19-1 MPC855T SDMA Data Paths ...19–1
19-2 SDMA U-Bus Arbitration (Cycle Steal) ...19–3
19-3 SDMA Configuration Register (SDCR)..19–4
19-4 SDMA Status Register (SDSR) ..19–5
19-5 DMA Channel Mode Register (DCMR) ...19–8
19-6 IDMA Status Registers (IDSR1/IDSR2) ..19–9
19-7 IDMAx Channel’s BD Table...19–10
19-8 IDMA Buffer Descriptor Structure ...19–11
19-9 Function Code Registers—SFCR and DFCR ...19–12
19-10 SDACK Timing Diagram: Single-Address

Peripheral Write, Externally-Generated TA ...19–17
19-11 SDACK Timing Diagram: Single-Address

Peripheral Write, Internally-Generated TA ..19–18
19-12 SDACK Timing Diagram: Single-Address

Peripheral Read, Internally-Generated TA ...19–19
19-13 IDMA Channel Mode Register (DCMR) (Single-Buffer Mode)............................19–20
19-14 IDMA1 Status Register (IDSR1) (Single-Buffer Mode) ..19–21
19-15 Single-Address IDMA1 Burst Timing (Single-Buffer Mode)19–22
20-1 MPC855T SI Block Diagram..20–2
20-2 Various Configurations of a TDM Channel ..20–5
20-3 Enabling Connections through the SI ...20–6
20-4 SI RAM Partitioning Using TDMa with Static Frames ..20–7
20-5 SI RAM Dynamic Changes with TDMa...20–9
20-6 SI RAM Partitioning Using TDMa with Dynamic Frames.....................................20–10

Figures
Figure
Number Title

Page
Number

MPC855T User’s Manual

20-7 SIRAM Entry ..20–10
20-8 Example Using SI RAMn[SWTR] ...20–12
20-9 SI Global Mode Register (SIGMR) ..20–12
20-10 SI Mode Register (SIMODE)..20–13
20-11 One Clock Delay from Sync to Data (xFSD = 01) ...20–15
20-12 No Delay from Sync to Data (xFSD = 00)..20–16
20-13 Falling Edge (FE) Effect When CE = 1 and xFSD = 01 ...20–16
20-14 Falling Edge (FE) Effect When CE = 0 and xFSD = 01 ...20–16
20-15 Falling Edge (FE) Effect When CE = 1 and xFSD = 00 ...20–17
20-16 Falling Edge (FE) Effect When CE = 0 and xFSD = 00 ...20–18
20-17 SI Clock Route Register (SICR) ...20–19
20-18 SI Command Register (SICMR) ...20–20
20-19 SI Status Register (SISTR)..20–20
20-20 SI RAM Pointer Register (SIRP) ..20–21
20-21 Bank-of-Clocks Selection Logic for NMSI ..20–23
20-22 Baud Rate Generator (BRG) Block Diagram..20–25
20-23 Baud Rate Generator Configuration Registers (BRGCn)20–26
21-1 SCC Block Diagram..21–2
21-2 GSMR_H—General SCC Mode Register (High Order)...21–4
21-3 GSMR_L—General SCC Mode Register (Low Order) ..21–6
21-4 Data Synchronization Register (DSR) ..21–10
21-5 Transmit-on-Demand Register (TODR) ...21–10
21-6 SCC Buffer Descriptors (BDs)..21–12
21-7 SCC Buffer Descriptor and Buffer Structure ..21–13
21-8 Function Code Registers (RFCR and TFCR)..21–16
21-9 Output Delay from RTS Asserted for Synchronous Protocols................................21–19
21-10 Output Delay from CTS Asserted for Synchronous Protocols................................21–19
21-11 CTS Lost in Synchronous Protocols ...21–20
21-12 Using CD to Control Synchronous Protocol Reception..21–21
21-13 DPLL Receiver Block Diagram ..21–22
21-14 DPLL Transmitter Block Diagram..21–23
21-15 DPLL Encoding Examples..21–25
22-1 UART Character Format ...22–1
22-2 Two UART Multidrop Configurations ..22–7
22-3 Control Character Table, RCCM, and RCCR ...22–8
22-4 Transmit Out-of-Sequence Register (TOSEQ) ...22–10
22-5 Data Synchronization Register (DSR) ..22–11
22-6 Protocol-Specific Mode Register for UART (PSMR)...22–13
22-7 SCC UART Receiving using RxBDs ..22–17
22-8 SCC UART RxBD ..22–18
22-9 SCC UART Transmit Buffer Descriptor (TxBD)..22–19

Figures
Figure
Number Title

Page
Number

Figures li

22-10 SCC UART Interrupt Event Example ...22–21
22-11 SCC UART Event Register (SCCE) and Mask Register (SCCM)..........................22–21
22-12 SCC Status Register for UART Mode (SCCS) ...22–22
23-1 HDLC Framing Structure..23–2
23-2 HDLC Address Recognition ...23–5
23-3 HDLC Mode Register (PSMR)...23–7
23-4 SCC HDLC Receive Buffer Descriptor (RxBD) ..23–9
23-5 SCC HDLC Receiving using RxBDs..23–11
23-6 SCC HDLC Transmit Buffer Descriptor (TxBD) ...23–12
23-7 HDLC Event Register (SCCE)/HDLC Mask Register (SCCM).............................23–13
23-8 SCC HDLC Interrupt Event Example...23–14
23-9 SCC HDLC Status Register (SCCS)...23–15
23-10 Typical HDLC Bus Multimaster Configuration ..23–19
23-11 Typical HDLC Bus Single-Master Configuration...23–20
23-12 Detecting an HDLC Bus Collision..23–21
23-13 Nonsymmetrical Tx Clock Duty Cycle for Increased Performance23–22
23-14 HDLC Bus Transmission Line Configuration...23–22
23-15 Delayed RTS Mode ...23–23
23-16 HDLC Bus TDM Transmission Line Configuration...23–23
24-1 LocalTalk Frame Format...24–1
24-2 Connecting the MPC855T to LocalTalk ...24–3
25-1 Asynchronous HDLC Frame Structure...25–2
25-2 Receive Flowchart ...25–4
25-3 TXCTL_TBL/RXCTL_TBL ..25–6
25-4 Asynchronous HDLC Event Register (SCCE)/Asynchronous HDLC Mask Register

(SCCM) ..25–9
25-5 SCC Status Register for Asynchronous HDLC Mode (SCCS)...............................25–10
25-6 Asynchronous HDLC Mode Register (PSMR)...25–11
25-7 SCC Asynchronous HDLC RxBDs...25–12
25-8 SCC Asynchronous HDLC TxBDs...25–13
26-1 Classes of BISYNC Frames ..26–1
26-2 Control Character Table and RCCM...26–6
26-3 BISYNC SYNC (BSYNC) ...26–7
26-4 BISYNC DLE (BDLE) ...26–8
26-5 Protocol-Specific Mode Register for BISYNC (PSMR)...26–10
26-6 SCC BISYNC RxBD ..26–12
26-7 SCC BISYNC TxBD...26–14
26-8 BISYNC Event Register (SCCE)/BISYNC Mask Register (SCCM)26–15
26-9 SCC Status Registers (SCCS) ...26–16
27-1 Ethernet Frame Structure ..27–1
27-2 Ethernet Block Diagram..27–2

Figures
Figure
Number Title

Page
Number

MPC855T User’s Manual

27-3 Connecting the MPC855T to Ethernet..27–5
27-4 MPC855T Ethernet Serial CAM Interface..27–10
27-5 MPC855T Ethernet Parallel CAM Interface...27–11
27-6 Ethernet Address Recognition Flowchart..27–16
27-7 Ethernet Mode Register (PSMR) ..27–20
27-8 SCC Ethernet RxBD ...27–21
27-9 Ethernet Receiving using RxBDs..27–23
27-10 SCC Ethernet TxBD..27–24
27-11 SCC Ethernet Event Register (SCCE)/Mask Register (SCCM)27–25
27-12 Ethernet Interrupt Events Example ...27–26
28-1 Sending Transparent Frames between MPC855T...28–5
28-2 SCC Transparent Receive Buffer Descriptor (RxBD) ..28–9
28-3 SCC Transparent Transmit Buffer Descriptor (TxBD) ...28–11
28-4 SCC Transparent Event Register (SCCE)/Mask Register (SCCM)28–12
28-5 SCC Status Register in Transparent Mode (SCCS) ..28–13
29-1 SMC Block Diagram...29–2
29-2 SMC Mode Registers (SMCMRn)..29–3
29-3 SMC Memory Structure..29–6
29-4 SMC Function Code Registers (RFCR/TFCR)...29–8
29-5 SMC UART Frame Format ...29–11
29-6 SMC UART Receive BD (RxBD)...29–16
29-7 SMC UART Receiving using RxBDs ...29–18
29-8 SMC UART Transmit BD (TxBD) ...29–19
29-9 SMC UART Event Register (SMCE)/Mask Register (SMCM)..............................29–20
29-10 SMC UART Interrupts Example ...29–21
29-11 Synchronization with SMSYNx..29–25
29-12 Synchronization with the TSA ..29–26
29-13 SMC Transparent Receive BD (RxBD) ..29–28
29-14 SMC Transparent Transmit BD (TxBD)...29–30
29-15 SMC Transparent Event Register (SMCE)/Mask Register (SMCM)29–31
29-16 SMC GCI Monitor Channel RxBD...29–37
29-17 SMC GCI Monitor Channel TxBD...29–37
29-18 SMC C/I Channel RxBD...29–38
29-19 SMC C/I Channel TxBD...29–38
29-20 SMC GCI Event Register (SMCE)/Mask Register (SMCM)29–39
30-1 SPI Block Diagram ...30–1
30-2 Single-Master/Multi-Slave Configuration...30–4
30-3 Multimaster Configuration ..30–6
30-4 SPI Mode Register (SPMODE) ..30–7
30-5 SPI Transfer Format with SPMODE[CP] = 0 ...30–8
30-6 SPI Transfer Format with SPMODE[CP] = 1 ...30–9

Figures
Figure
Number Title

Page
Number

Figures liii

30-7 SPI Event/Mask Registers (SPIE/SPIM)...30–10
30-8 SPI Command Register (SPCOM)..30–11
30-9 Receive/Transmit Function Code Registers (RFCR/TFCR)30–13
30-10 SPI Memory Structure ..30–14
30-11 SPI Receive BD (RxBD)...30–15
30-12 SPI Transmit BD (TxBD) ...30–16
31-1 I2C Controller Block Diagram..31–1
31-2 I2C Master/Slave General Configuration..31–2
31-3 I2C Transfer Timing..31–3
31-4 I2C Master Write Timing ..31–4
31-5 I2C Master Read Timing...31–5
31-6 I2C Mode Register (I2MOD)..31–6
31-7 I2C Address Register (I2ADD)...31–7
31-8 I2C Baud Rate Generator Register (I2BRG) ..31–8
31-9 I2C Event/Mask Registers (I2CER/I2CMR)...31–8
31-10 I2C Command Register (I2COM)...31–9
31-11 I2C Function Code Registers (RFCR/TFCR) ...31–11
31-12 I2C Memory Structure...31–12
31-13 I2C Receive Buffer Descriptor (RxBD)..31–13
31-14 I2C Transmit Buffer Descriptor (TxBD)...31–14
32-1 PIP Block Diagram ...32–2
32-2 PIP Function Code Register (PFCR)...32–4
32-3 Status Mask Register (SMASK) ...32–5
32-4 Control Character Table, RCCM, and RCCR ...32–7
32-5 PIP Configuration Register (PIPC) ...32–8
32-6 PIP Event Register (PIPE)...32–9
32-7 PIP Timing Parameters Register (PTPR) ..32–10
32-8 Port B General-Purpose I/O ..32–11
32-9 PIP Tx Buffer Descriptor (TxBD)...32–12
32-10 PIP Rx Buffer Descriptor (RxBD) ..32–13
32-11 Interlocked Handshake Mode Timing...32–16
32-12 Pulsed Handshake Full Cycle..32–17
32-13 Pulsed Handshake BUSY Signal ..32–18
32-14 PIP Transmitter Timing Diagram..32–19
32-15 PIP Receiver Timing—Mode 0 ...32–19
32-16 PIP Receiver Timing—Mode 1 ...32–19
32-17 PIP Receiver Timing—Mode 2 ...32–19
32-18 PIP Receiver Timing—Mode 3 ...32–20
32-19 PIP Transparent Transfers ...32–20
32-20 The PIP Centronics Interface Signals ...32–21
32-21 PIP as a Centronics Transmitter ..32–22

Figures
Figure
Number Title

Page
Number

MPC855T User’s Manual

32-22 PIP as a Centronics Receiver ..32–23
33-1 Port A Open-Drain Register (PAODR) ...33–3
33-2 Port A Data Register (PADAT)..33–4
33-3 Port A Data Direction Register (PADIR) ..33–4
33-4 Port A Pin Assignment Register (PAPAR) ..33–5
33-5 Block Diagram for PA15 (True for all Non-Open-Drain Port Signals)33–6
33-6 Block Diagram for PA14 (True for all Open-Drain Port Signals)33–7
33-7 Port B Open-Drain Register (PBODR) ...33–9
33-8 Port B Data Register (PBDAT) ...33–9
33-9 Port B Data Direction Register (PBDIR) ..33–10
33-10 Port B Pin Assignment Register (PBPAR)..33–11
33-11 Port C Data Register (PCDAT) ...33–14
33-12 Port C Data Direction Register (PCDIR) ..33–15
33-13 Port C Pin Assignment Register (PCPAR)..33–15
33-14 Port C Special Options Register (PCSO) ..33–16
33-15 Port C Interrupt Control Register (PCINT)...33–17
33-16 Port D Data Register (PDDAT)...33–18
33-17 Port D Data Direction Register (PDDIR)..33–18
33-18 Port D Pin Assignment Register (PDPAR) ..33–19
34-1 MPC855T Interrupt Structure ...34–2
34-2 Interrupt Request Masking..34–5
34-3 CPM Interrupt Configuration Register (CICR)...34–7
34-4 CPM Interrupt Pending/Mask/In-Service Registers (CIPR/CIMR/CISR)................34–8
34-5 CPM Interrupt Vector Register (CIVR)...34–9
35-1 MPC855T Application Example ...35–4
35-2 Expanded Cell Structure ...35–7
36-1 Transmit Buffer and TxBD Table Example ..36–2
36-2 AAL0 Buffer Structure ...36–3
36-3 ATM RxBD ...36–3
36-4 ATM RxBD in Expanded Cell Mode (UTOPIA Only)...36–4
36-5 ATM TxBD ...36–6
36-6 ATM TxBD in Expanded Cell Mode (UTOPIA Only) ...36–7
36-7 Connection Tables in Dual-port RAM and External Memory36–9
36-8 Receive Connection Table (RCT) ...36–10
36-9 Transmit Connection Table (TCT) ..36–13
37-1 SAR Receive Function Code Register (SRFCR) ..37–6
37-2 SAR Receive State Register (SRSTATE)..37–7
37-3 SAR Transmit Function Code Register (STFCR)...37–8
37-4 SAR Transmit State Register (STSTATE) ..37–8
37-5 HMASK Cell Header Mask Fields ...37–10
37-6 FLMASK ..37–11

Figures
Figure
Number Title

Page
Number

Figures lv

37-7 APC State Register (APCST)..37–12
37-8 Serial Cell Synchronization Status Register (ASTATUS).......................................37–13
38-1 Address Mapping Tables for Internal Channels ..38–2
38-2 Address Compression ...38–4
38-3 Multi-PHY Pointing Table Entry ..38–6
38-4 Address Mapping Tables for Multi-PHY Operations ...38–7
38-5 CP Command Register (CPCR) (ATM-Specific)..38–8
39-1 APC in UTOPIA Mode—Transmit Flow ...39–2
39-2 Example of Single PHY and Single Serial APC Configuration................................39–8
39-3 Example of Maximum Multi-PHY and Single-Serial APC Configuration...............39–8
39-4 APC Scheduling Tables...39–9
39-5 PHY Transmit Queue ..39–10
40-1 ATM Interrupt Queue..40–1
40-2 UTOPIA Event Register (IDSR1) and Mask Register (IDMR1)..............................40–2
40-3 Serial ATM Event Register (SCCE) and Mask Register (SCCM)40–3
40-4 Interrupt Queue Entry ...40–4
40-5 Interrupt Queue Mask (IMASK)...40–6
41-1 Port D Pin Assignment Register (PDPAR) ...41–1
41-2 System Clock Control Register (SCCR) ...41–3
41-3 Serial ATM Mode Register (PSMR) ...41–6
42-1 MPC855T UTOPIA Interface ...42–2
42-2 UTOPIA Receiver Start of Cell...42–3
42-3 UTOPIA Receiver End of Cell..42–3
42-4 UTOPIA Transmitter Start of Cell ..42–4
42-5 UTOPIA Transmitter End of Cell ...42–5
42-6 Multi-PHY Implementation Example ...42–8
42-7 UTOPIA Receiver Multi-PHY Example...42–9
42-8 UTOPIA Transmitter Multi-PHY Example ..42–9
43-1 FEC Block Diagram..43–2
43-2 Ethernet Address Recognition Flowchart..43–7
43-3 SDMA Bus Arbitration ...43–10
43-4 ADDR_LOW Register ..43–15
43-5 ADDR_HIGH Register ...43–16
43-6 HASH_TABLE_HIGH Register ...43–16
43-7 HASH_TABLE_LOW Register ..43–17
43-8 R_DES_START Register ..43–18
43-9 X_DES_START Register ..43–18
43-10 R_BUFF_SIZE Register ...43–19
43-11 ECNTRL Register ...43–20
43-12 I_EVENT/I_MASK Registers ..43–21
43-13 IVEC Register ...43–22

Figures
Figure
Number Title

Page
Number

MPC855T User’s Manual

43-14 R_DES_ACTIVE Register..43–23
43-15 X_DES_ACTIVE Register ...43–24
43-16 MII_DATA Register ..43–25
43-17 MII_SPEED Register ..43–26
43-18 R_BOUND Register..43–27
43-19 R_FSTART Register ...43–29
43-20 X_WMRK Register...43–29
43-21 X_FSTART Register ...43–30
43-22 FUN_CODE Register..43–31
43-23 R_CNTRL Register...43–32
43-24 R_HASH Register ...43–33
43-25 X_CNTRL Register ..43–34
43-26 Receive Buffer Descriptor (RxBD)...43–37
43-27 Transmit Buffer Descriptor (TxBD)..43–39
44-1 Watchpoints and Breakpoint Support in the Core...44–9
44-2 Instruction Support General Structure ..44–12
44-3 Load/Store Support General Structure ..44–13
44-4 Partially Supported Watchpoints/Breakpoint Example...44–17
44-5 Functional Diagram of the MPC855T Debug Mode Support44–20
44-6 Debug Mode Logic Diagram ..44–21
44-7 Debug Mode Reset Configuration Timing Diagram ...44–22
44-8 Development Port/BDM Connector Pinout Options...44–27
44-9 Asynchronous Clocked Serial Communications...44–29
44-10 Synchronous Self-Clocked Serial Communications ...44–30
44-11 Enabling Clock Mode after Reset ...44–30
44-12 Download Procedure Code Example ..44–35
44-13 Fast and Slow Download Procedure Loops ..44–35
44-14 Comparator A–D Value Register (CMPA–CMPD)...44–38
44-15 Comparator E–F Value Registers (CMPE–CMPF) ...44–38
44-16 Comparator G–H Value Registers (CMPG–CMPH)...44–39
44-17 Breakpoint Address Register (BAR) ...44–39
44-18 Instruction Support Control Register (ICTRL) ...44–40
44-19 Load/Store Support Comparators Control Register (LCTRL1)..............................44–41
44-20 Load/Store Support AND-OR Control Register (LCTRL2)44–42
44-21 Breakpoint Counter Value and Control Registers (COUNTA/COUNTB)..............44–45
44-22 Interrupt Cause Register (ICR) ...44–46
44-23 Debug Enable Register (DER) ..44–47
45-1 Test Logic Block Diagram ..45–2
45-2 TAP Controller State Machine ..45–3
45-3 Output Signal Boundary Scan Cell (Output Cell)...45–4
45-4 Observe-Only Input Signal Boundary Scan Cell (Input Cell)45–4

Figures
Figure
Number Title

Page
Number

Figures lvii

45-5 Input/Output Control Boundary Scan Cell (I/O Control Cell)..................................45–5
45-6 Bidirectional (I/O) Signal Boundary Scan Cell ..45–5
45-7 Bypass Register ...45–7
A-1 TLE Mode Mechanisms.. A–3
A-2 Byte Swapping .. A–4
A-3 MOD-LE Mode Mechanisms.. A–7
E-1 ATM Cell Payload Scrambling Mechanism ... E–1
E-2 Serial ATM Receive Procedure .. E–2
E-3 Cell Delineation State Diagram .. E–3

Figures
Figure
Number Title

Page
Number

MPC855T User’s Manual

Tables
Table
Number Title

 Page
Number

Tables lxxiii

2-1 MPC855T Internal Memory Map ...2–1
3-1 Static Branch Prediction..3–9
3-2 Bus Cycles Needed for Single-Register Load/Store Accesses..................................3–14
3-3 UISA-Level Features...3–16
3-4 VEA-Level Features..3–17
3-5 OEA-Level Features..3–18
4-1 User-Level PowerPC Registers ...4–2
4-2 User-Level PowerPC SPRs ...4–2
4-3 Bit Settings for CR0 Field of CR ..4–3
4-4 XER Field Definitions...4–4
4-5 Supervisor-Level PowerPC Registers ...4–5
4-6 Supervisor-Level PowerPC SPRs ...4–5
4-7 Value Summary of the DAR, BAR, and DSISR Registers..4–6
4-8 MSR Field Descriptions..4–7
4-9 MPC855T-Specific Supervisor-Level SPRs..4–9
4-10 MPC855T-Specific Debug-Level SPRs ..4–10
4-11 Addresses of SPRs Located Outside of the Core ..4–11
5-1 Memory Operands...5–2
5-2 Integer Arithmetic Instructions ...5–8
5-3 Integer Compare Instructions..5–10
5-4 Integer Logical Instructions ..5–10
5-5 Integer Rotate Instructions ..5–11
5-6 Integer Shift Instructions...5–11
5-7 Integer Load Instructions ..5–12
5-8 Integer Store Instructions ..5–14
5-9 Integer Load and Store with Byte-Reverse Instructions ..5–15
5-10 Integer Load and Store Multiple Instructions ...5–15
5-11 Integer Load and Store String Instructions ...5–15
5-12 Branch Instructions ...5–17
5-13 Condition Register Logical Instructions ...5–17
5-14 Trap Instructions ...5–18
5-15 Move to/from Condition Register Instructions ...5–18
5-16 Memory Synchronization Instructions—UISA ..5–19
5-17 Move from Time Base Instruction ..5–21
5-18 Memory Synchronization Instructions—VEA..5–21

Tables
Table
Number Title

Page
Number

MPC855T User’s Manual

5-19 User-Level Cache Instructions ..5–23
5-20 System Linkage Instructions ...5–23
5-21 Move to/from Machine State Register Instructions ..5–24
5-22 Move to/from Special-Purpose Register Instructions ...5–24
6-1 Offset of First Instruction by Exception Type...6–2
6-2 Instruction-Related Exception Detection Order..6–4
6-3 Exception Priority ...6–4
6-4 Register Settings after a System Reset Interrupt Exception..6–5
6-5 Register Settings after a Machine Check Interrupt Exception6–5
6-6 Register Settings after an External Interrupt ...6–7
6-7 Register Settings after an Alignment Exception ...6–8
6-8 Register Settings after a Program Exception ..6–9
6-9 Register Settings after a Decrementer Exception..6–10
6-10 Register Settings after a System Call Exception...6–11
6-11 Register Settings after a Trace Exception ...6–11
6-12 Register Settings after a Software Emulation Exception ..6–12
6-13 Register Settings after an Instruction TLB Miss Exception......................................6–13
6-14 Register Settings after a Data TLB Miss Exception ...6–13
6-15 Register Settings after an Instruction TLB Error Exception6–14
6-16 Register Settings after a Data TLB Error Exception...6–15
6-17 Register Settings after a Debug Exception..6–15
6-18 Additional SPRs that Affect MSR Bits ...6–18
6-19 Exception Latency..6–19
6-20 Before and After Exceptions ...6–20
7-1 Instruction Cache Control and Status Register—IC_CST .. 7-7
7-2 Instruction Cache Address Register—IC_ADR.. 7-8
7-3 Instruction Cache Data Port Register—IC_DAT .. 7-8
7-4 IC_ADR Fields for Cache Read Commands .. 7-9
7-5 IC_DAT Format for a Tag Read (IC_ADR[18] = 0) .. 7-9
7-6 Data Cache Control and Status Register—DC_CST .. 7-12
7-7 Data Cache Address Register—DC_ADR .. 7-14
7-8 Data Cache Data Port Register—DC_DAT... 7-14
7-9 DC_ADR Fields for Cache Read Commands... 7-14
7-10 DC_DAT Format for a Tag Read (DC_ADR[18] = 0) ... 7-15
7-11 Copyback Buffer Select Field (DC_ADR[21–27]) Encoding................................... 7-15
8-1 Identical Entries Required in Level-One/Level-Two Tables8–11
8-2 Number of Replaced EA Bits per Page Size...8–13
8-3 Level-One Segment Descriptor Format ..8–13
8-4 Level-Two (Page) Descriptor Format..8–14
8-5 Page Size Selection ...8–15
8-6 MPC855T-Specific MMU SPRs ...8–15

Tables
Table
Number Title

Page
Number

Tables lxxv

8-7 MI_CTR Field Descriptions..8–17
8-8 MD_CTR Field Descriptions ..8–18
8-9 Mx_EPN Field Descriptions ...8–19
8-10 MI_TWC Field Descriptions ..8–19
8-11 MD_TWC Field Descriptions ...8–20
8-12 MI_RPN Field Descriptions..8–22
8-13 MD_RPN Field Descriptions ..8–23
8-14 M_TWB Field Descriptions..8–24
8-15 M_CASID Field Descriptions...8–25
8-16 MI_AP/MD_AP Field Descriptions..8–25
8-17 MI_CAM Field Descriptions ..8–26
8-18 MI_RAM0 Field Descriptions ..8–27
8-19 MI_RAM1 Field Descriptions ..8–28
8-20 MD_CAM Field Descriptions...8–29
8-21 MD_RAM0 Field Descriptions...8–31
8-22 MD_RAM1 Field Descriptions...8–32
8-23 MPC855T-Specific MMU Exceptions ..8–33
9-1 Instruction Execution Timing..9–6
9-2 Load/Store Instructions Timing ..9–8
10-1 Multiplexing Control...10–4
10-2 MMR Field Descriptions ..10–5
10-3 SIUMCR Field Descriptions ...10–6
10-4 SYPCR Field Descriptions..10–8
10-5 TESR Field Descriptions ..10–9
10-6 Key Registers ..10–10
10-7 Priority of SIU Interrupt Sources ..10–13
10-8 IRQ0 Versus IRQx Operation ...10–14
10-9 SIPEND Field Descriptions ..10–15
10-10 SIMASK Field Descriptions ...10–17
10-11 SIEL Field Descriptions..10–18
10-12 SIVEC Field Descriptions...10–18
10-13 SWSR Field Descriptions ...10–22
10-14 Decrementer Timeout Values ..10–22
10-15 DEC Field Descriptions ..10–23
10-16 TBU Field Descriptions ..10–24
10-17 TBL Field Descriptions...10–24
10-18 TBREFA/TBREFB Field Descriptions ...10–25
10-19 TBSCR Field Descriptions..10–26
10-20 RTCSC Field Descriptions..10–27
10-21 RTC Field Description ..10–28
10-22 RTCAL Field Descriptions ...10–29

Tables
Table
Number Title

Page
Number

MPC855T User’s Manual

10-23 RTSEC Field Descriptions ..10–30
10-24 PISCR Field Descriptions ...10–31
10-25 PITC Field Descriptions..10–32
10-26 PITR Field Descriptions..10–33
11-1 MPC855T Reset Responses ..11–1
11-2 Reset Status Register Bit Settings ...11–6
11-3 Hard Reset Configuration Word Field Descriptions ...11–10
12-1 Signal Descriptions ..12–5
12-2 Configuration-Dependent Signal Behavior during Reset..12–21
12-3 Active Pull-Up Resistors Enabled as Outputs...12–23
12-4 TCK/DSCK and TDI/DSDI Connection Based on MPC860 Revision12–25
12-5 General Signal Behavior during Reset ..12–25
13-1 MPC855T Signal Overview..13–3
13-2 Data Bus Requirements for Read Cycles ..13–26
13-3 Data Bus Contents for Write Cycles ...13–27
13-4 BURST/TSIZ Encoding ..13–32
13-5 Address Types Definition ..13–33
13-6 Termination Signals Protocol ..13–44
14-1 Power-On Reset SPLL Configuration ...14–7
14-2 XFC Capacitor Values Based on PLPRCR[MF]...14–8
14-3 Functionality Summary of the Clocks ..14–9
14-4 PITRTCLK Configuration at PORESET ..14–16
14-5 TMBCLK Configuration...14–16
14-6 MPC855T Modules vs. Power Rails ...14–17
14-7 MPC855T Low-Power Modes ..14–19
14-8 SCCR Field Descriptions ..14–30
14-9 PLPRCR Field Descriptions ...14–32
14-10 PLPRCR[CSR] and DER[CHSTPE] Bit Combinations ...14–33
15-1 Memory Controller Register Usage ..15–6
15-2 Access Granularities for Predefined Port Sizes...15–8
15-3 BRx Field Descriptions ...15–10
15-4 ORx Field Descriptions...15–12
15-5 MSTAT Field Descriptions..15–13
15-6 MxMR Field Descriptions ..15–14
15-7 MCR Field Descriptions ...15–16
15-8 MDR Field Descriptions ...15–17
15-9 MAR Field Description...15–18
15-10 MPTPR Field Descriptions ...15–18
15-11 GPCM Strobe Signal Behavior ...15–19
15-12 Boot Bank Field Values after Reset...15–31
15-13 UPM Start Address Locations...15–39

Tables
Table
Number Title

Page
Number

Tables lxxvii

15-14 RAM Word Bit Settings ..15–40
15-15 Enabling Byte-Selects ...15–44
15-16 GPL_X5 Signal Behavior ...15–46
15-17 MxMR Loop Field Usage ...15–47
15-18 Address Multiplexing..15–48
15-19 AMA/AMB Definition for DRAM Interface ..15–49
15-20 UPMA Register Settings ...15–66
15-21 UPMB Register Settings ...15–78
16-1 PCMCIA Cycle Control Signals ...16–3
16-2 PCMCIA Input Port Signals ...16–4
16-3 PCMCIA Output Port Signals...16–5
16-4 Other PCMCIA Signals ..16–5
16-5 Host Programming for Memory Cards ...16–6
16-6 Host Programming For I/O Cards ...16–6
16-7 PCMCIA Registers..16–8
16-8 PIPR Field Descriptions..16–9
16-9 PSCR Field Descriptions ..16–10
16-10 PER Field Descriptions ...16–12
16-11 PGCRx Field Descriptions..16–13
16-12 PBR Field Descriptions...16–14
16-13 POR Field Descriptions ..16–15
17-1 TGCR Field Descriptions...17–8
17-2 TMR1–TMR4 Field Descriptions ...17–9
17-3 TER Field Descriptions..17–13
18-1 Peripheral Prioritization ..18–2
18-2 CP Microcode Revision Number ..18–3
18-3 RCCR Field Descriptions..18–4
18-4 RMDS Field Descriptions ...18–6
18-5 CPCR Field Descriptions ..18–6
18-6 CP Commands...18–7
18-7 General BD Structure..18–11
18-8 Parameter RAM Memory Map ..18–11
18-9 I2C and SPI Parameter RAM Relocation..18–12
18-10 RISC Timer Table Parameter RAM Memory Map ...18–14
18-11 TM_CMD Field Descriptions ...18–15
18-12 PWM Channel Pin Assignments ...18–16
19-1 U-Bus Arbitration IDs ...19–2
19-2 SDCR Bit Settings ..19–4
19-3 SDSR Field Descriptions ..19–5
19-4 IDMA Parameter RAM Memory Map..19–7
19-5 DCMR Field Descriptions ..19–8

Tables
Table
Number Title

Page
Number

MPC855T User’s Manual

19-6 IDSR1/IDSR2 Field Descriptions ...19–9
19-7 IDMA BD Status and Control Bits ...19–11
19-8 SFCR and DFCR Field Descriptions ...19–12
19-9 Single-Buffer Mode IDMA1 Parameter RAM Map ...19–20
19-10 DCMR Field Descriptions (Single-Buffer Mode)...19–20
20-1 TSA Signals ..20–6
20-2 SIRAM Field Descriptions..20–11
20-3 SIGMR Field Descriptions..20–13
20-4 SIMODE Field Descriptions ...20–14
20-5 SICR Field Descriptions ...20–19
20-6 SICMR Field Descriptions..20–20
20-7 SISTR Field Descriptions ...20–20
20-8 SIRP Field Descriptions..20–21
20-9 SIRP Pointer Values ...20–22
20-10 BRGCn Field Descriptions ...20–26
20-11 Typical Baud Rates for Asynchronous Communication ...20–28
21-1 GSMR_H Field Descriptions ..21–4
21-2 GSMR_L Field Descriptions ..21–7
21-3 TODR Field Descriptions ...21–11
21-4 SCC Parameter RAM Map for All Protocols ..21–14
21-5 RFCR /TFCR Field Descriptions ..21–16
21-6 SCCx Event, Mask, and Status Registers ...21–17
21-7 Preamble Requirements ..21–24
21-8 DPLL Codings ..21–25
22-1 UART-Specific SCC Parameter RAM Memory Map ...22–4
22-2 Transmit Commands ...22–6
22-3 Receive Commands...22–6
22-4 Control Character Table, RCCM, and RCCR Descriptions22–8
22-5 TOSEQ Field Descriptions ...22–10
22-6 DSR Fields Descriptions ...22–11
22-7 Transmission Errors ..22–12
22-8 Reception Errors ...22–12
22-9 PSMR UART Field Descriptions ..22–13
22-10 SCC UART RxBD Status and Control Field Descriptions22–18
22-11 SCC UART TxBD Status and Control Field Descriptions......................................22–19
22-12 SCCE/SCCM Field Descriptions for UART Mode...22–22
22-13 UART SCCS Field Descriptions ...22–23
22-14 UART Control Characters for S-Records Example ..22–25
23-1 HDLC-Specific SCC Parameter RAM Memory Map...23–4
23-2 Transmit Commands ...23–5
23-3 Receive Commands ..23–6

Tables
Table
Number Title

Page
Number

Tables lxxix

23-4 Transmit Errors ...23–6
23-5 Receive Errors ...23–7
23-6 PSMR HDLC Field Descriptions..23–8
23-7 SCC HDLC RxBD Status and Control Field Descriptions.......................................23–9
23-8 SCC HDLC TxBD Status and Control Field Descriptions23–12
23-9 SCCE/SCCM Field Descriptions ..23–13
23-10 HDLC SCCS Field Descriptions...23–15
25-1 Asynchronous HDLC-Specific SCC Parameter RAM

Memory Map..25–5
25-2 Asynchronous HDLC-Specific GSMR Field Descriptions.......................................25–7
25-3 Transmit Commands ...25–8
25-4 Receive Commands..25–8
25-5 Transmit Errors ...25–8
25-6 Receive Errors ...25–9
25-7 SCCE/SCCM Field Descriptions ..25–10
25-8 Asynchronous HDLC SCCS Field Descriptions ..25–11
25-9 PSMR Field Descriptions..25–11
25-10 Asynchronous HDLC RxBD Status and Control Field

Descriptions..25–12
25-11 Asynchronous HDLC TxBD Status and Control Field

Descriptions..25–13
26-1 SCC BISYNC Parameter RAM Memory Map ...26–4
26-2 Transmit Commands ...26–5
26-3 Receive Commands...26–5
26-4 Control Character Table and RCCM Field Descriptions ..26–7
26-5 BSYNC Field Descriptions ...26–8
26-6 BDLE Field Descriptions..26–8
26-7 Receiver SYNC Pattern Lengths of the DSR..26–9
26-8 Transmit Errors ...26–9
26-9 Receive Errors ...26–10
26-10 PSMR Field Descriptions..26–11
26-11 SCC BISYNC RxBD Status and Control Field Descriptions26–13
26-12 SCC BISYNC TxBD Status and Control Field Descriptions26–14
26-13 SCCE/SCCM Field Descriptions ..26–16
26-14 SCCS Field Descriptions ..26–16
26-15 Control Characters ..26–17
27-1 SCC Ethernet Parameter RAM Memory Map ..27–12
27-2 Transmit Commands ...27–15
27-3 Receive Commands...27–15
27-4 Transmission Errors ..27–19
27-5 Reception Errors ...27–19

Tables
Table
Number Title

Page
Number

MPC855T User’s Manual

27-6 PSMR Field Descriptions..27–20
27-7 SCC Ethernet RxBD Status and Control Field Descriptions27–21
27-8 SCC Ethernet TxBD Status and Control Field Descriptions27–24
27-9 SCCE/SCCM Field Descriptions ..27–25
28-1 Receiver SYNC Pattern Lengths of the DSR..28–3
28-2 SCC Transparent Parameter RAM Memory Map...28–7
28-3 Transmit Commands ...28–7
28-4 Receive Commands...28–8
28-5 Transmit Errors ...28–8
28-6 Receive Errors ...28–9
28-7 SCC Transparent RxBD Status

and Control Field Descriptions ..28–10
28-8 SCC Transparent Tx BD Status

and Control Field Descriptions ..28–11
28-9 SCCE/SCCM Field Descriptions ..28–13
28-10 SCCS Field Descriptions ..28–14
29-1 SMCMR Field Descriptions..29–3
29-2 SMC UART and Transparent Parameter RAM Memory Map29–7
29-3 RFCR/TFCR Field Descriptions ...29–8
29-4 SMC UART-Specific Parameter RAM Memory Map...29–12
29-5 Transmit Commands ...29–14
29-6 Receive Commands...29–14
29-7 SMC UART Errors..29–15
29-8 SMC UART RxBD Status and Control Field Descriptions29–16
29-9 SMC UART TxBD Status and Control Field Descriptions.....................................29–19
29-10 SMCE/SMCM Field Descriptions ..29–20
29-11 SMC Transparent Transmit Commands..29–27
29-12 SMC Transparent Receive Commands ...29–27
29-13 SMC Transparent Error Conditions ..29–28
29-14 SMC Transparent RxBD Field Descriptions...29–29
29-15 SMC Transparent TxBD Field Descriptions ...29–30
29-16 SMCE/SMCM Field Descriptions ..29–31
29-17 SMC GCI Parameter RAM Memory Map ...29–35
29-18 SMC GCI Commands ...29–36
29-19 SMC Monitor Channel RxBD Field Descriptions ..29–37
29-20 SMC Monitor Channel TxBD Field Descriptions ..29–37
29-21 SMC C/I Channel RxBD Field Descriptions ..29–38
29-22 SMC C/I Channel TxBD Field Descriptions ..29–39
29-23 SMCE/SMCM Field Descriptions ..29–39
30-1 SPMODE Field Descriptions ..30–7
30-2 Example Conventions ...30–9

Tables
Table
Number Title

Page
Number

Tables lxxxi

30-3 SPIE/SPIM Field Descriptions..30–10
30-4 SPCOM Field Descriptions...30–11
30-5 SPI Parameter RAM Memory Map...30–11
30-6 RFCR/TFCR Field Descriptions ...30–13
30-7 SPI Commands..30–13
30-8 SPI RxBD Status and Control Field Descriptions ..30–15
30-9 SPI TxBD Status and Control Field Descriptions...30–16
31-1 I2MOD Field Descriptions..31–7
31-2 I2ADD Field Descriptions ..31–7
31-3 I2BRG Field Descriptions...31–8
31-4 I2CER/I2CMR Field Descriptions..31–9
31-5 I2COM Field Descriptions..31–9
31-6 I2C Parameter RAM Memory Map...31–10
31-7 RFCR/TFCR Field Descriptions ...31–11
31-8 I2C Transmit/Receive Commands ..31–11
31-9 I2C RxBD Status and Control Bits ...31–13
31-10 I2C TxBD Status and Control Bits..31–14
32-1 PIP Transmitter Parameter RAM Memory Map ...32–3
32-2 PFCR Field Descriptions ..32–4
32-3 SMASK Field Descriptions ..32–5
32-4 PIP Receiver Parameter RAM Memory Map..32–5
32-5 Control Character Table, RCCM, and RCCR Descriptions32–7
32-6 PIPC Field Descriptions..32–8
32-7 PIPE Field Descriptions ..32–10
32-8 PTPR Field Descriptions...32–11
32-9 PIP TxBD Status and Control Field Descriptions...32–12
32-10 PIP RxBD Status and Control Field Descriptions ..32–14
32-11 PIP Transmit CP Commands...32–14
32-12 PIP Receive CP Commands ..32–15
32-13 Centronics Tx Errors ...32–22
32-14 Centronics Rx Error ..32–23
33-1 Port A Pin Assignment ..33–2
33-2 PAODR Bit Descriptions...33–4
33-3 PADAT Bit Descriptions ...33–4
33-4 PADIR Bit Descriptions ..33–5
33-5 PAPAR Bit Descriptions ...33–5
33-6 Port B Pin Assignment ..33–8
33-7 PBODR Bit Descriptions ..33–9
33-8 PBDAT Bit Descriptions ...33–10
33-9 PBDIR Bit Descriptions...33–10
33-10 PBPAR Bit Descriptions ...33–11

Tables
Table
Number Title

Page
Number

MPC855T User’s Manual

33-11 Port C Pin Assignment ..33–12
33-12 PCDAT Bit Descriptions ...33–14
33-13 PCDIR Bit Descriptions..33–15
33-14 PCPAR Bit Descriptions ...33–15
33-15 PCSO Bit Descriptions..33–16
33-16 PCINT Bit Descriptions ..33–17
33-17 Port D Pin Assignment ..33–17
33-18 PDDAT Bit Descriptions...33–18
33-19 PDDIR Bit Descriptions..33–19
33-20 PDPAR Field Descriptions..33–19
34-1 Prioritization of CPM Interrupt Sources ...34–3
34-2 Interrupt Vector Encodings..34–5
34-3 CICR Field Descriptions ...34–7
34-4 CIVR Field Descriptions...34–9
36-1 ATM RxBD Field Descriptions...36–4
36-2 ATM TxBD Field Descriptions...36–7
36-3 RCT Field Descriptions ..36–10
36-4 TCT Field Descriptions...36–13
37-1 Serial ATM and UTOPIA Interface Parameter RAM Map37–1
37-2 Serial ATM Parameter RAM Map...37–5
37-3 SRFCR Field Descriptions..37–6
37-4 SRSTATE Field Descriptions..37–7
37-5 STFCR Field Descriptions ..37–8
37-6 STSTATE Field Descriptions ..37–9
37-7 AM1–AM5 Parameters for the Internal Look-up Table..37–10
37-8 HMASK Field Descriptions..37–10
37-9 AM1–AM5 Parameters for Extended Channel Address Compression37–11
37-10 FLMASK Field Descriptions ..37–11
37-11 AM1–AM5 Parameters for Extended Channel CAM Operation............................37–12
37-12 APCST Field Descriptions..37–12
37-13 ASTATUS Register Field Descriptions...37–14
38-1 CPCR ATM-Specific Field Descriptions...38–9
38-2 ATM Commands ...38–10
39-1 APC Priority Levels ..39–10
39-2 APC Priority Level Parameter Descriptions ...39–11
40-1 UTOPIA Event Register (IDSR1) Field Descriptions ..40–2
40-2 Serial ATM Event Register (SCCE) Field Descriptions..40–3
40-3 Interrupt Queue Entry Field Descriptions ...40–5
41-1 PDPAR Field Descriptions..41–1
41-2 SCCR Field Descriptions for the UTOPIA Clock ..41–3
41-3 Port D Pin Assignment ..41–4

Tables
Table
Number Title

Page
Number

Tables lxxxiii

41-4 PSMR Serial ATM Field Descriptions ..41–6
42-1 UTOPIA Interface Transfer Timing ..42–10
43-1 MII Signals..43–3
43-2 Serial Mode Connections to the External Transceiver ..43–3
43-3 Transmission Errors ..43–9
43-4 Reception Errors ...43–9
43-5 FEC Signal Descriptions ...43–11
43-6 FEC Parameter RAM Memory Map ...43–13
43-7 ADDR_LOW Field Descriptions ..43–15
43-8 ADDR_HIGH Field Descriptions ...43–16
43-9 HASH_TABLE_HIGH Field Descriptions...43–17
43-10 HASH_TABLE_LOW Field Descriptions..43–17
43-11 R_DES_START Field Descriptions ..43–18
43-12 X_DES_START Field Descriptions..43–19
43-13 R_BUFF_SIZE Field Descriptions ...43–19
43-14 ECNTRL Field Descriptions...43–20
43-15 I_EVENT/I_MASK Field Descriptions..43–21
43-16 IVEC Field Descriptions ...43–22
43-17 R_DES_ACTIVE Field Descriptions..43–23
43-18 X_DES_ACTIVE Field Descriptions ...43–24
43-19 MII_DATA Field Descriptions ..43–25
43-20 MII_SPEED Field Descriptions..43–26
43-21 Programming Examples for MII_SPEED Register...43–27
43-22 R_BOUND Field Descriptions ...43–28
43-23 R_FSTART Field Descriptions ...43–29
43-24 X_WMRK Field Descriptions ..43–30
43-25 X_FSTART Field Descriptions ...43–30
43-26 FUN_CODE Field Descriptions ...43–31
43-27 R_CNTRL Field Descriptions ..43–32
43-28 R_HASH Field Descriptions...43–33
43-29 X_CNTRL Field Descriptions ..43–34
43-30 Hardware Initialization..43–35
43-31 ECNTRL[ETHER_EN] Deassertion Initialization ...43–35
43-32 User Initialization (before Setting ECNTRL[ETHER_EN])43–35
43-33 User Initialization (after Setting ECNTRL[ETHER_EN])43–36
43-34 Receive Buffer Descriptor (RxBD) Field Description ...43–37
43-35 Transmit Buffer Descriptor (TxBD) Field Descriptions ...43–39
44-1 Fetch Show Cycles Control...44–3
44-2 Status Pin Groupings...44–3
44-3 VF Pins Encoding: Instruction Queue Flushes ...44–4
44-4 VF Pins Encoding: Instruction Fetch Types..44–4

Tables
Table
Number Title

Page
Number

MPC855T User’s Manual

44-5 Detecting the Trace Buffer Start Point ..44–7
44-6 Instruction Watchpoints Programming Options ..44–12
44-7 Load/Store Data Events...44–14
44-8 Load/Store Watchpoints Programming Options ...44–14
44-9 Checkstop State and Debug Mode ..44–24
44-10 Trap Enable Data Shifted into Development Port Shift Register............................44–31
44-11 Debug Port Command Shifted Into Development Port Shift Register....................44–32
44-12 Status/Data Shifted Out of Development Port Shift Register44–32
44-13 Debug Instructions/Data Shifted Into Development Port Shift Register44–33
44-14 MPC855T-Specific Development Support and Debug SPRs..................................44–36
44-15 Development Support/Debug Registers Protection...44–37
44-16 CMPA–CMPD Field Descriptions ..44–38
44-17 CMPE–CMPF Field Descriptions...44–38
44-18 CMPG–CMPH Field Descriptions..44–39
44-19 BAR Field Descriptions ..44–39
44-20 ICTRL Field Descriptions...44–40
44-21 LCTRL1 Field Descriptions..44–42
44-22 LCTRL2 Field Descriptions..44–43
44-23 COUNTA/COUNTB Field Descriptions ..44–45
44-24 ICR Field Descriptions..44–46
44-25 DER Field Descriptions ..44–48
45-1 Instruction Register Decoding...45–6
A-1 Byte-Ordering Parameters..A–2
A-2 TLE 2-bit Munging ..A–3
A-3 Little-Endian Program/Data Path Between the

Register and 32-Bit Memory...A–5
A-4 Little-Endian Program/Data Path Between the

Register and 16-Bit Memory...A–5
A-5 Little-Endian Program/Data Path between the Register and

8-Bit Memory..A–6
A-6 MOD-LE 3-bit Munging..A–7
B-1 MPC855T Serial Performance at 25 MHz...B–3
B-2 IDMA Performance at 25 MHz..B–5
B-3 Receiver Performance (with 50MHz System Clock) ..B–9
B-4 Additional Features Load...B–9
B-5 Transmitter (Including 1 Priority APC) Performance

(with 50MHz System Clock)...B–11
B-6 Performance Calculation..B–11
C-1 User-Level Registers ..C–1
C-2 User-Level SPRs ..C–1
C-3 Supervisor-Level Registers ..C–2

Tables
Table
Number Title

Page
Number

Tables lxxxv

C-4 Supervisor-Level SPRs...C–2
C-5 MPC855T-Specific Supervisor-Level SPRs...C–3
C-6 MPC855T-Specific Debug-Level SPRs ...C–4
D-1 Complete Instruction List Sorted by Mnemonic.. D-1
D-2 Complete Instruction List Sorted by Opcode... D-9
D-3 Integer Arithmetic Instructions .. D-16
D-4 Integer Compare Instructions... D-17
D-5 Integer Logical Instructions ... D-17
D-6 Integer Rotate Instructions ... D-17
D-7 Integer Shift Instructions.. D-18
D-8 Floating-Point Arithmetic Instructions6... D-18
D-9 Floating-Point Multiply-Add Instructions6 ... D-19
D-10 Floating-Point Rounding and Conversion Instructions6 .. D-19
D-11 Floating-Point Compare Instructions6 ... D-19
D-12 Floating-Point Status and Control Register Instructions6.. D-19
D-13 Integer Load Instructions ... D-20
D-14 Integer Store Instructions ... D-20
D-15 Integer Load and Store with Byte-Reverse Instructions .. D-21
D-16 Integer Load and Store Multiple Instructions .. D-21
D-17 Integer Load and Store String Instructions .. D-21
D-18 Memory Synchronization Instructions... D-21
D-19 Floating-Point Load Instructions6 ... D-22
D-20 Floating-Point Store Instructions6 ... D-22
D-21 Floating-Point Move Instructions6 .. D-22
D-22 Branch Instructions .. D-23
D-23 Condition Register Logical Instructions .. D-23
D-24 System Linkage Instructions .. D-23
D-25 Trap Instructions .. D-23
D-26 Processor Control Instructions ... D-23
D-27 Cache Management Instructions .. D-24
D-28 Segment Register Manipulation Instructions ... D-24
D-29 Lookaside Buffer Management Instructions .. D-24
D-30 External Control Instructions ... D-25
D-31 I-Form .. D-26
D-32 B-Form ... D-26
D-33 SC-Form... D-26
D-34 D-Form... D-26
D-35 DS-Form... D-28
D-36 X-Form... D-28
D-37 XL-Form .. D-32
D-38 XFX-Form.. D-33

Tables
Table
Number Title

Page
Number

MPC855T User’s Manual

D-39 XFL-Form .. D-33
D-40 XS-Form... D-33
D-41 XO-Form.. D-33
D-42 A-Form... D-34
D-43 M-Form .. D-35
D-44 MD-Form ... D-35
D-45 MDS-Form ... D-35
D-46 Instruction Set Legend ... D-37
E-1 Serial Interface Register Programming Example for Serial ATM.............................. E–4
E-2 ATM Cell Transmission and Reception Programming Example E–4
E-3 TDMA Port Pin Requirements... E–5
E-4 Port Register Programming Example... E–5

About This Book

About This Book
The primary objective of this manual is to help communications system designers build
systems using the Motorola MPC855T and to help software designers provide operating
systems and user-level applications to take fullest advantage of the MPC855T.

Although this book describes aspects regarding the PowerPC architecture that are critical
for understanding the MPC8xx core, it does not contain a complete description of the
architecture. Where additional information might help the reader, references are made to
Programming Environments Manual for the PowerPC Architecture. Ordering information
for this book are provided in the section “Related Documentation.”

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation. Contact your sales representative for more information.

Before Using This Manual
Before using this manual, determine whether it is the latest revision and if there are errata
or addenda. To locate any published errata or updates for this document, refer to the
world-wide web at http://www.motorola.com.

Audience
This manual is intended for software and hardware developers and application
programmers who want to develop products for the MPC855T. It is assumed that the reader
has a basic understanding of computer networking, OSI layers, and RISC architecture. In
addition, it is assumed that the reader has a basic understanding of the communications
protocols described here. Where it is considered useful, additional sources are provided that
provide in-depth discussions of such topics.

Organization
Following is a summary and a brief description of the chapters of this manual:

• Part I, “Overview,” provides a high-level description of the MPC855T, describing
general operation and listing basic features.

MPC855T User’s Manual

— Chapter 1, “MPC855T Overview, ” provides a high-level description of
MPC855T functions and features. It roughly follows the structure of this book,
summarizing the relevant features and providing references for the reader who
needs additional information.

— Chapter 2, “Memory Map,” presents a table showing where MPC855T registers
are mapped in memory. It includes cross references that indicate where each
register is described in detail.

• Part II, “MPC8xx Microprocessor Module,” describes the MPC8xx core. These
chapters provide details concerning the processor core as an implementation of the
PowerPC architecture.

— Chapter 3, “The MPC8xx Core,” provides an overview of the MPC855T core.

— Chapter 4, “MPC8xx Core Register Set,” describes the hardware registers
accessible to the MPC855T core. These include both architecturally-defined and
MPC855T-specific registers.

— Chapter 5, “MPC855T Instruction Set,” describes the PowerPC instructions
implemented by the MPC855T. These instructions are organized by the level of
architecture in which they are implemented—UISA, VEA, and OEA.

— Chapter 6, “Exceptions,” describes the PowerPC exception model as it is
implemented on the MPC855T.

— Chapter 7, “Instruction and Data Caches,” describes the organization of the
on-chip instruction and data caches, cache control, various cache operations, and
the interaction between the caches, the load/store unit (LSU), the instruction
sequencer, and the system interface unit (SIU).

— Chapter 8, “Memory Management Unit” describes how the PowerPC MMU
model is implemented on the MPC855T. Although the MPC855T MMU is based
on the PowerPC MMU model, it differs greatly in many respects, which are
described in this chapter.

— Chapter 9, “Instruction Execution Timing,” describes the MPC855T instruction
unit, and provides ways to make greatest advantage of its RISC architecture
characteristics, such as pipelining and parallel execution. It includes a table of
instruction latencies and lists dependencies and potential bottlenecks.

• Part III, “Configuration and Reset,” describes start-up behavior of the MPC855T.

— Chapter 10, “System Interface Unit,” describes the SIU, which controls system
start-up, initialization and operation, protection, as well as the external system
bus.

— Chapter 11, “Reset,” describes the behavior of the MPC855T at reset and
start-up.

• Part IV, “Hardware Interface,” describes external signals, clocking, memory control,
and power management of the MPC855T.

About This Book

— Chapter 12, “External Signals,” provides a detailed description of the external
signals that comprise the MPC855T external interface.

— Chapter 13, “External Bus Interface,” describes interactions among signals
described in the previous chapter, including numerous examples and timing
diagrams.

— Chapter 14, “Clocks and Power Control,” describes on-chip and external
devices, including the phase-locked loop circuitry and frequency dividers that
generate programmable clock timing for baud-rate generators, timers, and a
variety of low-power mode options.

— Chapter 15, “Memory Controller,” describes the memory controller, which
controlling a maximum of eight memory banks shared between a
general-purpose chip-select machine (GPCM) and a pair of user-programmable
machines (UPMs).

— Chapter 16, “PCMCIA Interface,” describes the PCMCIA host adapter module,
which provides all control logic for a PCMCIA socket interface and requires
only additional external analog power switching logic and buffering.

• Part V, “Communications Processor Module,” describes the configuration, clocking,
and operation of the various communications protocols supported by the MPC855T.

— Chapter 17, “Communications Processor Module and CPM Timers,” provides a
brief overview of the MPC855T CPM and a detailed discussion of the clocking
mechanisms supported.

— Chapter 18, “Communications Processor,” describes the RISC communications
processor (CP), which handles the low-level communications tasks, freeing the
core for higher-level tasks.

— Chapter 19, “SDMA Channels and IDMA Emulation,” describes the two
physical serial DMA (SDMA) channels on the MPC855T with which the CP
implements virtual SDMA channels.

— Chapter 20, “Serial Interface,” describes the serial interface (SI) in which the
physical interface to the SCC and SMCs is implemented.

— Chapter 21, “Serial Communications Controller,” describes the serial
communications controller (SCC1), which can be configured independently to
implement different protocols for bridging functions, routers, and gateways, and
to interface with a wide variety of standard WANs, LANs, and proprietary
networks.

— Chapter 22, “SCC UART Mode,” describes the MPC855T implementation of
universal asynchronous receiver transmitter (UART) protocol, used for sending
low-speed data between devices.

— Chapter 23, “SCC HDLC Mode,” describes the MPC855T implementation of
HDLC protocol.

— Chapter 24, “SCC AppleTalk Mode,” describes the MPC855T implementation
of AppleTalk, a set of protocols developed by Apple Computer, Inc. to provide a
LAN service between Macintosh computers and printers.

MPC855T User’s Manual

— Chapter 25, “SCC Asynchronous HDLC Mode and IrDA,” describes the
asynchronous HDLC and IrDA use of HDLC framing techniques with
UART-type characters.

— Chapter 26, “SCC BISYNC Mode,” describes the MPC855T implementation of
byte-oriented BISYNC protocol developed by IBM for use in networking
products.

— Chapter 27, “SCC Ethernet Mode,” describes the MPC855T implementation of
Ethernet protocol.

— Chapter 28, “SCC Transparent Mode,” describes the MPC855T implementation
of transparent mode (also called totally transparent mode), which provides a
clear channel on which the SCC can send or receive serial data without bit-level
manipulation.

— Chapter 29, “Serial Management Controllers (SMCs),” describes two serial
management controllers, full-duplex ports that can be configured independently
to support one of three protocols—UART, transparent, or general-circuit
interface (GCI).

— Chapter 30, “Serial Peripheral Interface (SPI),” describes the serial peripheral
interface, which allows the MPC855T to exchange data between other
MPC855T chips, the MC68360, the MC68302, the M68HC11 and M68HC05
microcontroller families, and peripheral devices such as EEPROMs, real-time
clocks, A/D converters.

— Chapter 31, “I2C Controller,” describes the MPC855T implementation of the
inter-integrated circuit (I2C®) controller, which allows data to be exchanged with
other I2C devices, such as microcontrollers, EEPROMs, real-time clock devices,
and A/D converters.

— Chapter 32, “Parallel Interface Port (PIP),” describes the parallel interface port
which allows data to be sent to and from the MPC855T over 8 or 16 parallel data
lines with two handshake control signals.

— Chapter 33, “Parallel I/O Ports,” describes the four general-purpose I/O
ports—A, B, C, and D. Each signal in the I/O ports can be configured as a
general-purpose I/O signal or as a signal dedicated to supporting
communications devices, such as SMCs and the SCC.

— Chapter 34, “CPM Interrupt Controller,” describes how the CPM interrupt
controller (CPIC) accepts and prioritizes the internal and external interrupt
requests from the CPM blocks and passes them to the system interface unit
(SIU). The CPIC also provides a vector during the core interrupt acknowledge
cycle.

• Part VI, “Asynchronous Transfer Mode (ATM),” describes ATM implementation. It
consists of the following chapters:

— Chapter 35, “ATM Overview,” gives a high-level description of the MPC855T
ATM implementation.

About This Book

— Chapter 36, “Buffer Descriptors and Connection Tables,” describes the structure
and configuration of the buffer descriptors (BDs) and the transmit and receive
connection tables (TCTs and RCTs) used with ATM.

— Chapter 37, “ATM Parameter RAM,” describes how the parameter RAM is used
to configure the SCC for serial ATM and the UTOPIA interface. The CP also uses
parameter RAM to store operational and temporary values used during SAR
activities.

— Chapter 38, “ATM Controller,” describes the address mapping mechanisms of
the ATM controller to support connection tables for single- interfaces, and the
commands provided to control ATM transmit and receive operations on a
channel-by-channel basis.

— Chapter 39, “ATM Pace Control,” describes how the ATM pace control unit
(APC) processes traffic parameters of each channel and defines the multiplex
timing for all the channels.

— Chapter 40, “ATM Exceptions,” describes how the circular ATM interrupt queue
operates with an event register (SCCE or IDSR1) to provide an interrupt model
for ATM operations.

— Chapter 41, “Interface Configuration,” describes the programming of registers
and parameters for ATM operations through both the UTOPIA and serial
interfaces.

— Chapter 42, “UTOPIA Interface,” describes the classic SAR MPHY ATM
operation, including the UTOPIA modes and the signals provided for UTOPIA
support.

• Part VII, “Fast Ethernet Controller (FEC),” describes the MPC855Tsupport for
10/100 base-T Ethernet. It consists of the following chapter:

— Chapter 43, “Fast Ethernet Controller (FEC),” describes the Fast Ethernet
controller. It provides general descriptions of supported operations, full
descriptions of the supporting registers, and initialization information.

• Part VIII, “System Debugging and Testing Support,” describes how to use the
MPC855T facilities for debugging and system testing.

— Chapter 44, “System Development and Debugging,” describes support provided
for program flow tracking, internal watchpoint and breakpoint generation, and
emulation systems control.

— Chapter 45, “IEEE 1149.1 Test Access Port,” describes the dedicated
user-accessible test access port (TAP), which is fully compatible with the IEEE
1149.1 Standard Test Access Port and Boundary Scan Architecture.

• Appendix A, “Byte Ordering,” discusses the MPC855T implementation of little-
and big-endian byte mapping.

MPC855T User’s Manual

• Appendix B, “Serial Communications Performance,”provides guidelines for
maximizing performance of MPC855T-based systems.

• Appendix C, “Register Quick Reference Guide,” contains a quick reference guide to
the MPC855T- registers.

• Appendix D, “Instruction Set Listings,” contains tables of the PowerPC instructions
supported by the MPC855T.

• Appendix E, “Serial ATM Scrambling, Reception, and SI Programming,” describes
payload rescrambling and the MPC855Treceive procedure. It also provides a serial
interface programming example.

This manual also includes a glossary and an index.

Suggested Reading
This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

MPC8xx Documentation

Supporting documentation for the MPC855T can be accessed through the world-wide web
at http://www.motorola.com. This documentation includes technical specifications,
reference materials, and detailed applications notes.

Related Documentation
The documentation is organized in the following types of documents:

• Programming Environments Manual for 32-Bit Implementations of the PowerPC
Architecture (MPEFPC32B/AD)—Describes resources defined by the PowerPC
architecture.

• User’s manuals—These books provide details about individual implementations and
are intended for use with the Programming Environments Manual.

• Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and functionality
changes. These addenda are intended for use with the corresponding user’s manuals.

• Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations. Separate hardware specifications are provided for each
part described in this book.

• Technical summaries—Each device has a technical summary that provides an
overview of its features. This document is roughly the equivalent to the overview
(Chapter 1) of an implementation’s user’s manual.

About This Book

• The Programmer’s Reference Guide for the PowerPC Architecture:
MPCPRG/D—This concise reference includes the register summary, memory
control model, exception vectors, and the PowerPC instruction set.

• The Programmer’s Pocket Reference Guide for the PowerPC Architecture:
MPCPRGREF/D—This foldout card provides an overview of PowerPC registers,
instructions, and exceptions for 32-bit implementations.

• Application notes—These short documents address specific design issues useful to
programmers and engineers working with Motorola processors.

Additional literature is published as new processors become available. For a current list of
documentation, refer to http://www.motorola.com/motorola.

MPC855T User’s Manual

Conventions
This document uses the following notational conventions:

Bold entries in figures and tables showing registers and parameter
RAM should be initialized by the user.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

REG[FIELD] Abbreviations or acronyms for registers or buffer descriptors are
shown in uppercase text. Specific bits, fields, or numerical ranges
appear in brackets. For example, MSR[LE] refers to the little-endian
mode enable bit in the machine state register.

x In certain contexts, such as in a signal encoding or a bit field,
indicates a don’t care.

n Used to express an undefined numerical value

¬ NOT logical operator

& AND logical operator

| OR logical operator

Acronyms and Abbreviations
Table i contains acronyms and abbreviations used in this document. Note that the meanings
for some acronyms (such as SDR1 and DSISR) are historical, and the words for which an
acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

A/D Analog-to-digital

ALU Arithmetic logic unit

ATM Asynchronous transfer mode

BD Buffer descriptor

BIST Built-in self test

BPU Branch processing unit

Bold

About This Book

BRI Basic rate interface.

BUID Bus unit ID

CAM Content-addressable memory

CEPT Conference des administrations Europeanes des Postes et Telecommunications (European
Conference of Postal and Telecommunications Administrations).

CP Communications processor

CPM Communications processor module

CR Condition register

CRC Cyclic redundancy check

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DEC Decrementer register

DMA Direct memory access

DPLL Digital phase-locked loop

DRAM Dynamic random access memory

DSISR Register used for determining the source of a DSI exception

DTLB Data translation lookaside buffer

EA Effective address

EEST Enhanced Ethernet serial transceiver

EPROM Erasable programmable read-only memory

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GCI General circuit interface

GPCM General-purpose chip-select machine

GPR General-purpose register

GUI Graphical user interface

HDLC High-level data link control

I2C Inter-integrated circuit

IDL Inter-chip digital link

IEEE Institute of Electrical and Electronics Engineers

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

MPC855T User’s Manual

IrDA Infrared Data Association

ISDN Integrated services digital network

ITLB Instruction translation lookaside buffer

IU Integer unit

JTAG Joint test action group

LIFO Last-in-first-out

LR Link register

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

LSU Load/store unit

MAC Multiply accumulate

MESI Modified/exclusive/shared/invalid—cache coherency protocol

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

NIA Next instruction address

NMSI Nonmultiplexed serial interface

No-op No operation

OEA Operating environment architecture

OSI Open systems interconnection

PCI Peripheral component interconnect

PCMCIA Personal Computer Memory Card International Association

PIR Processor identification register

PRI Primary rate interface

PVR Processor version register

RISC Reduced instruction set computing

RTOS Real-time operating system

RWITM Read with intent to modify

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

About This Book

Rx Receive

SCC Serial communications controller

SCP Serial control port

SDLC Synchronous Data Link Control

SDMA Serial DMA

SI Serial interface

SIMM Signed immediate value

SIU System interface unit

SMC Serial management controller

SNA Systems network architecture

SPI Serial peripheral interface

SPR Special-purpose register

SPRGn Registers available for general purposes

SRAM Static random access memory

SRR0 Machine status save/restore register 0

SRR1 Machine status save/restore register 1

TAP Test access port

TB Time base register

TDM Time-division multiplexed

TLB Translation lookaside buffer

TSA Time-slot assigner

Tx Transmit

UART Universal asynchronous receiver/transmitter

UIMM Unsigned immediate value

UISA User instruction set architecture

UPM User-programmable machine

USART Universal synchronous/asynchronous receiver/transmitter

VA Virtual address

VEA Virtual environment architecture

XER Register used primarily for indicating conditions such as carries and overflows for integer operations

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

MPC855T User’s Manual

PowerPC Architecture Terminology Conventions
Table ii lists certain terms used in this manual that differ from the architecture terminology
conventions.

Table iii describes instruction field notation conventions used in this manual.

Table ii. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Instruction storage interrupt (ISI) ISI exception

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

Part I. Overview

Part I
Overview

Intended Audience
Part I is intended for anyone who requires a high-level understanding of the MPC855T
family of PowerQUICC devices.

Contents
Part I provides an overview of the features and functions of the MPC855T. It includes the
following chapters:

• Chapter 1, “MPC855T Overview, ” provides a high-level description of MPC855T
functions and features. It roughly follows the structure of this book, summarizing the
relevant features and providing references for the reader who needs additional
information.

• Chapter 2, “Memory Map,” presents a table showing where MPC855T registers are
mapped in memory. It includes cross references that indicate where each register is
described in detail.

Conventions
Part I uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

MPC855T User’s Manual

REG[FIELD] Abbreviations or acronyms for registers or buffer descriptors are
shown in uppercase text. Specific bits, fields, or numerical ranges
appear in brackets. For example, MSR[LE] refers to the little-endian
mode enable bit in the machine state register.

x In certain contexts, such as in a signal encoding or a bit field,
indicates a don’t care.

n Indicates an undefined numerical value

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning

BD Buffer descriptor

BPU Branch processing unit

CP Communications processor

CPM Communications processor module

DMA Direct memory access

DPLL Digital phase-locked loop

DRAM Dynamic random access memory

DTLB Data translation lookaside buffer

EA Effective address

GPCM General-purpose chip-select machine

GPR General-purpose register

HDLC High-level data link control

I2C Inter-integrated circuit

IEEE Institute of Electrical and Electronics Engineers

IrDA Infrared Data Association

ISDN Integrated services digital network

ITLB Instruction translation lookaside buffer

IU Integer unit

JTAG Joint Test Action Group

LRU Least recently used (cache replacement algorithm)

LSU Load/store unit

MMU Memory management unit

MSR Machine state register

NMSI Nonmultiplexed serial interface

Part I. Overview

OEA Operating environment architecture

OSI Open systems interconnection

PCI Peripheral component interconnect

PCMCIA Personal Computer Memory Card International Association

RISC Reduced instruction set computing

RTOS Real-time operating system

Rx Receive

SCC Serial communications controller

SDLC Synchronous data link control

SDMA Serial DMA

SI Serial interface

SIU System interface unit

SMC Serial management controller

SPI Serial peripheral interface

SPR Special-purpose register

SRAM Static random access memory

TB Time base register

TDM Time-division multiplexed

TLB Translation lookaside buffer

TSA Time-slot assigner

Tx Transmit

UART Universal asynchronous receiver/transmitter

UISA User instruction set architecture

UPM User-programmable machine

VEA Virtual environment architecture

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

MPC855T User’s Manual

Chapter 1. MPC855T Overview

Chapter 1
MPC855T Overview
The MPC855T is a versatile one-chip integrated microprocessor and peripheral
combination that can be used in a variety of controller applications. It particularly excels in
both communications and networking systems. Unless otherwise specified, the
PowerQUICC unit is referred to as the MPC855T in this manual.

The MPC855T is a PowerPC architecture-based derivative of Motorola’s MPC860 Quad
Integrated Communications Controller (PowerQUICC™). The CPU on the MPC855T is
the MPC8xx core, a 32-bit microprocessor which implements the PowerPC architecture,
incorporating memory management units (MMUs) and instruction and data caches.

The purpose of this manual is to describe the operation of MPC855T functionality with
concentration on the I/O functions. Additional information can be found in Programming
Environments Manual for 32-Bit Implementations of the PowerPC Architecture.

1.1 Features
The following list summarizes the key MPC855T features:

• Embedded MPC8xx core

• Single-issue, 32-bit core (compatible with the PowerPC architecture definition) with
32, 32-bit general-purpose registers (GPRs)

— The core performs branch prediction with conditional prefetch, without
conditional execution

— 4-Kbyte data cache and 4- Kbyte instruction cache.

– 4-Kbyte instruction cache is two-way, set-associative with 128 sets.

– 4-Kbyte data cache is two-way, set-associative with 128 sets.

– Cache coherency for both instruction and data caches is maintained on 128-bit
(4-word) cache blocks.

– Caches are physically addressed, implement a least recently used (LRU)
replacement algorithm, and are lockable on a cache block basis.

— MMUs with 32-entry TLB, fully associative instruction and data TLBs

— MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16
virtual address spaces and 16 protection groups

MPC855T User’s Manual

Features

— Advanced on-chip-emulation debug mode

• The MPC855T provides the same ATM functionality as that of the MPC860SAR

• Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)

• 32 address lines

• Memory controller (eight banks)

— Contains complete dynamic RAM (DRAM) controller

— Each bank can be a chip select or RAS to support a DRAM bank

— Up to 30 wait states programmable per memory bank

— Glueless interface to DRAM, SIMMS, SRAM, EPROMs, flash EPROMs, and
other memory devices.

— DRAM controller programmable to support most size and speed memory
interfaces

— Four CAS lines, four WE lines, one OE line

— Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)

— Variable block sizes (32 Kbyte–256 Mbyte)

— Selectable write protection

— On-chip bus arbitration logic

• General-purpose timers

— Four 16-bit timers or two 32-bit timers

— Gate mode can enable/disable counting

— Interrupt can be masked on reference match and event capture

• Fast Ethernet controller (FEC)

• System integration unit (SIU)

— Bus monitor

— Software watchdog

— Periodic interrupt timer (PIT)

— Low-power stop mode

— Clock synthesizer

— Decrementer and time base

— Real-time clock (RTC)

— Reset controller

— IEEE 1149.1 test access port (JTAG)

• Interrupts

— Seven external interrupt request (IRQ) lines

— 12 port pins with interrupt capability

Chapter 1. MPC855T Overview

Features

— 20 internal interrupt sources

— Programmable highest priority request

• Communications processor module (CPM)

— RISC controller

— Communication-specific commands (for example, GRACEFUL STOP TRANSMIT,
ENTER HUNT MODE, and RESTART TRANSMIT)

— Supports continuous mode transmission and reception on all serial channels

— 8-Kbytes of dual-port RAM

— 16 serial DMA (SDMA) channels

• Three parallel I/O registers with open-drain capability

• Four baud rate generators

— Independent (can be connected to any SCC or SMC)

— Allow changes during operation

— Autobaud support option

• One SCC (serial communication controller)

— Serial ATM capability

— Ethernet/IEEE 802.3 supporting full 10-Mbps operation

— HDLC/SDLC

— HDLC bus (implements an HDLC-based local area network (LAN))

— Asynchronous HDLC to support PPP (point-to-point protocol)

— AppleTalk

— Universal asynchronous receiver transmitter (UART)

— Synchronous UART

— Serial infrared (IrDA)

— Binary synchronous communication (BISYNC)

— Totally transparent (bit streams)

— Totally transparent (frame based with optional cyclic redundancy check (CRC))

• Two SMCs (serial management channels)

— UART

— Transparent

— General circuit interface (GCI) controller

— Can be connected to the time-division multiplexed (TDM) channel

• One SPI (serial peripheral interface)
— Supports master and slave modes
— Supports multimaster operation on the same bus

MPC855T User’s Manual

Features

• One I2C (inter-integrated circuit) port
— Supports master and slave modes
— Multiple-master environment support

• Time-slot assigner (TSA)
— Allows SCC and SMCs to run in multiplexed and/or non-multiplexed operation
— Supports T1, CEPT, PCM highway, user defined
— 1- or 8-bit resolution
— Allows independent transmit and receive routing, frame synchronization,

clocking
— Allows dynamic changes
— Can be internally connected to three serial channels (one SCC and two SMCs)

• Parallel interface port (PIP)
— Centronics interface support
— Supports fast connection between compatible ports on MPC855T or MC68360

• PCMCIA interface
— Master (socket) interface, release 2.1 compliant
— Supports two independent PCMCIA sockets
— 8 memory or I/O windows supported

• Low power support
— Full on—All units fully powered
— Doze—Core functional units disabled except time base decrementer, PLL,

memory controller, RTC, and CPM in low-power standby
— Sleep—All units disabled except RTC, PIT, time base, and decrementer with

PLL active for fast wake up
— Deep sleep—All units disabled including PLL except RTC, PIT, time base, and

decrementer.
— Power down mode— All units powered down except RTC, PIT, time base and

decrementer
• Debug interface

— Eight comparators: four operate on instruction address, two operate on data
address, and two operate on data

— Supports conditions: = ≠ < >
— Each watchpoint can generate a break point internally

• 3.3 V operation
• 357-pin ball grid array (BGA) package

The MPC855T is comprised of three modules that each use the 32-bit internal bus: the
MPC8xx core, the system integration unit (SIU), and the communication processor module
(CPM). The MPC855T block diagram is shown in Figure 1-1.

Chapter 1. MPC855T Overview

Embedded MPC8xx Core

Figure 1-1. MPC855T Block Diagram

1.2 Embedded MPC8xx Core
The MPC855T integrates an embedded MPC8xx core with high-performance, low-power
peripherals to extend the Motorola Data Communications family of embedded processors
farther into high-end communications and networking products.

The core is compliant with the UISA (user instruction set architecture) portion of the
PowerPC architecture. It has an integer unit (IU) and a load/store unit (LSU) that execute
all integer and load/store operations in hardware. The core supports integer operations on a
32-bit internal data path and 32-bit arithmetic hardware. The core interface to the internal
and external buses is 32 bits.

The IU uses 32, 32-bit GPRs for source and target operands. Typically, it can execute one
integer instruction each clock cycle. Each element in the integer block is clocked only when
valid data is in the data queue and is ready for operation. This holds power consumption of
the device to the absolute minimum.

Bus

System Interface Unit (SIU)

Embedded

Parallel I/O

Memory Controller

4
Timers

Interrupt
Controllers

8-Kbyte
Dual-Port RAM

16 Virtual
Serial
and
2

Independent
DMA

Channels

System Functions

Real-Time Clock

PCMCIA-ATA Interface

4-Kbyte
Instruction Cache

32-Entry ITLB

Instruction MMU

4-Kbyte
Data Cache

32-Entry DTLB

Data MMU

Instruction
Bus

Load/Store
Bus

Unified

4 Baud Rate
Generators

Parallel Interface Port
and UTOPIA

Internal
Bus Interface

Unit

External
Bus Interface

Unit

Timers

32-Bit RISC Controller
and Program

ROM

SCC1

Serial Interface

I2CSPISMC2SMC1

Time Slot Assigner

MPC8xx

Core

DMAs

FIFOs

10/100

MII

Base-T
Media Access

SCC1

Serial Interface

SPISMC2SMC1

Time Slot Assigner

Control

Fast Ethernet
Controller

Processor

MPC855T User’s Manual

System Interface Unit (SIU)

The core is integrated with MMUs as well as instruction and data caches. Each MMU
provides a 32-entry, fully associative instruction and data TLB, with multiple page sizes of
4, 16, 512, and 256 Kbytes and 8 Mbytes. It supports 16 virtual address spaces with
8 protection groups. Three special scratch registers support software table search and
update operations.

The instruction cache is four-way, set associative with physical addressing. It allows
single-cycle access on hits with no added latency for misses. It has four words per block,
supporting a four-beat burst line fill using an LRU (least recently used) replacement
algorithm. The cache can be locked on a per cache block basis for application-critical
routines.

The data cache is two-way, set associative with physical addressing. It allows single-cycle
accesses on hits with one added clock latency for misses. It has four words per cache block,
supporting burst line fill using LRU replacement. The cache can be locked on a per block
basis for application critical routines. The data cache can be programmed through the
MMU to support copy-back or write-through. Cache-inhibit mode can be programmed per
MMU page.

The debug interface provides superior debug capabilities without degrading operation
speed. This interface supports six watchpoint pins that are used to detect software events.
Four of its eight internal comparators operate on the effective address on the address bus,
two operate on the effective address on the data address bus, and two operate on the data
bus. The core can make =, ≠, <, and > comparisons to generate watchpoints. Each
watchpoint can then generate a break point that can be configured to trigger in a
programmable number of events.

1.3 System Interface Unit (SIU)
The SIU on the MPC855T integrates general-purpose features useful in almost any 32-bit
processor system. Dynamic bus sizing allows 8-, 16-, and 32-bit peripherals and memory
to exist in the 32-bit system bus mode.

The SIU also provides power management functions, reset control, decrementer, timebase
and the real-time clock.

The memory controller supports up to eight memory banks with glueless interfaces to
DRAM, SRAM, SSRAM, EPROM, Flash EPROM, SDRAM, EDO, and other peripherals
with 2-clock-cycle access to external SRAM and bursting support. It provides variable
block sizes from 32 Kbytes to 256 Mbytes. The memory controller provides 0–30 wait
states for each memory bank and can use address type matching to qualify each memory
bank access. It provides four byte-enable signals, an output-enable signal. and a boot chip
select available at reset.

The DRAM interface supports port sizes of 8, 16, and 32 bits. Memory banks can be
defined in depths of 256 or 512 Kbytes or 1, 2, 4, 8, 16, 32, or 64 Mbytes for all port sizes.

Chapter 1. MPC855T Overview

PCMCIA Controller

The memory depth can be 64 and 128 Kbytes for 8-bit memory or 128 and 256 Mbytes for
32-bit memory. The DRAM controller supports page-mode access for successive transfers
within bursts. The MPC855T supports a glueless interface to one bank of DRAM while
external buffers are required for additional memory banks. The refresh unit provides CAS
before RAS, a programmable refresh timer, refresh active during external reset, disable
refresh mode, and stacking up to 7 refresh cycles. The DRAM interface uses a
programmable state machine to support almost any memory interface.

1.4 PCMCIA Controller
The PCMCIA interface is a master (socket) controller and is compliant with release 2.1.
The interface supports up to two independent PCMCIA sockets requiring only external
transceivers/buffers. The interface provides eight memory or I/O windows where each
window can be allocated to a particular socket. If only one PCMCIA port is used, the
unused port may be used as general-purpose input with interrupt capability.

1.5 Power Management
The MPC855T supports a wide range of power management features including full on,
doze, sleep, deep sleep, and low power stop.

• Full on mode leaves the MPC855T processor fully powered with all internal units
operating at the full processor speed. A gear mode is determined by a clock divider,
allowing the operating system to reduce the processor’s operational frequency.

• Doze mode disables core functional units other than the time base decrementer,
PLL, memory controller, RTC, and places the CPM in low-power standby mode.

• Sleep mode disables everything except the RTC and PIT, leaving the PLL active for
quick wake-up.

• Deep sleep mode disables the PLL for lower power but slower wake-up.

• Low-power stop disables all logic in the processor except the minimum logic
required to restart the device, providing the lowest power consumption but requiring
the longest wake-up time.

1.6 Communications Processor Module (CPM)
The MPC855T is the next generation of the MPC8xx PowerQUICC family of devices. Like
its predecessor it implements a dual-processor architecture, which provides both a
high-performance, general-purpose processor for application programming use as well as
a special-purpose communication processor (CPM) uniquely designed for communications
applications.

MPC855T User’s Manual

ATM Capabilities

The CPM contains features that, like its predecessor, allow the MPC855T to excel in
communications and networking products. These features are grouped as follows:

• Communications processor (CP)

• Sixteen independent DMA (SDMA) controllers

• Four general-purpose timers

The CP provides the communication features of the MPC855T. Included are a RISC
processor, one serial communication controller (SCC1), two serial management controllers
(SMCs), a serial peripheral interface (SPI), an I2C interface, 8 Kbytes of dual-port RAM,
an interrupt controller, a time-slot assigner, three parallel ports, a parallel interface port,
four independent baud rate generators, and sixteen serial DMA channels to support the
SCC, SMCs, SPI, and I2C.

The SDMAs provide two channels of general-purpose DMA capability for each
communications channel. They offer high-speed transfers, 32-bit data movement, buffer
chaining, and independent request and acknowledge logic.

The four general-purpose timers on the CPM are identical to the timers found on the
MPC8xx, which support the internal cascading of two timers to form a 32-bit timer.

1.7 ATM Capabilities
The MPC855T can be used as an adaptable ATM controller suited for a variety of
applications, including the following:

• ATM line card controllers

• ATM-to-WAN interworking, including frame relay, T1/E1 circuit emulation service
(CES), and xDSL applications

• Residential broadband network interface units (ATM-to-Ethernet)

• Set-top controllers

• ATM25 applications

• Bridging and routing applications

Chapter 2. Memory Map

Chapter 2
Memory Map
Each memory resource in the MPC855T is mapped within a contiguous block of 16 Kbyte
memory. The location of this block within the global 4-Gbyte physical memory space can
be mapped on 64-Kbyte resolution through an implementation-specific special-purpose
register (SPR) called the internal memory map register (IMMR). See Section 10.4.1,
“Internal Memory Map Register (IMMR).” Table 2-1 defines the internal memory map.

Table 2-1. MPC855T Internal Memory Map

Offset Name Size Section/Page

General System Interface Unit

000 SIUMCR—SIU module configuration register 32 bits 10.4.2/-5

004 SYPCR—System protection control register 32 bits 10.4.3/-7

008–00D Reserved 6 bytes —

00E SWSR—Software service register 16 bits 10.7.1/-21

010 SIPEND—SIU interrupt pending register 32 bits 10.5.4.1/-15

014 SIMASK—SIU interrupt mask register 32 bits 10.5.4.2/-16

018 SIEL—SIU interrupt edge/level register 32 bits 10.5.4.3/-17

01C SIVEC—SIU interrupt vector register 32 bits 10.5.4.4/-18

020 TESR—Transfer error status register 32 bits 10.4.4/-8

024–02F Reserved 12 bytes —

030 SDCR—SDMA configuration register 32 bits 19.2.1/-3

034–07F Reserved 76 bytes —

PCMCIA

080 PBR0—PCMCIA interface base register 0 32 bits 16.4.5/-14

084 POR0—PCMCIA interface option register 0 32 bits 16.4.6/-14

088 PBR1—PCMCIA interface base register 1 32 bits 16.4.5/-14

08C POR1—PCMCIA interface option register 1 32 bits 16.4.6/-14

090 PBR2—PCMCIA interface base register 2 32 bits 16.4.5/-14

094 POR2—PCMCIA interface option register 2 32 bits 16.4.6/-14

MPC855T User’s Manual

098 PBR3—PCMCIA interface base register 3 32 bits 16.4.5/-14

09C POR3—PCMCIA interface option register 3 32 bits 16.4.6/-14

0A0 PBR4—PCMCIA interface base register 4 32 bits 16.4.5/-14

0A4 POR4—PCMCIA interface option register 4 32 bits 16.4.6/-14

0A8 PBR5—PCMCIA interface base register 5 32 bits 16.4.5/-14

0AC POR5—PCMCIA interface option register 5 32 bits 16.4.6/-14

0B0 PBR6—PCMCIA interface base register 6 32 bits 16.4.5/-14

0B4 POR6—PCMCIA interface option register 6 32 bits 16.4.6/-14

0B8 PBR7—PCMCIA interface base register 7 32 bits 16.4.5/-14

0BC POR7—PCMCIA interface option register 7 32 bits 16.4.6/-14

0C0–0DF Reserved 32 bytes —

0E0 PGCRA—PCMCIA interface general control
register A

32 bits 16.4.4/-13

0E4 PGCRB—PCMCIA interface general control
register B

32 bits 16.4.4/-13

0E8 PSCR—PCMCIA interface status changed
register

32 bits 16.4.2/-10

0EC–0EF Reserved 4 bytes —

0F0 PIPR—PCMCIA interface input pins register 32 bits 16.4.1/-9

0F4–0F7 Reserved 4 bytes —

0F8 PER—PCMCIA interface enable register 32 bits 16.4.3/-11

0FC–0FF Reserved 4 bytes —

Memory Controller

100 BR0—Base register bank 0 32 bits 15.4.1/-9

104 OR0—Option register bank 0 32 bits 15.4.2/-10

108 BR1—Base register bank 1 32 bits 15.4.1/-9

10C OR1—Option register bank 1 32 bits 15.4.2/-10

110 BR2—Base register bank 2 32 bits 15.4.1/-9

114 OR2—Option register bank 2 32 bits 15.4.2/-10

118 BR3—Base register bank 3 32 bits 15.4.1/-9

11C OR3—Option register bank 3 32 bits 15.4.2/-10

120 BR4—Base register bank 4 32 bits 15.4.1/-9

124 OR4—Option register bank 4 32 bits 15.4.2/-10

128 BR5—Base register bank 5 32 bits 15.4.1/-9

Table 2-1. MPC855T Internal Memory Map (continued)

Offset Name Size Section/Page

Chapter 2. Memory Map

12C OR5—Option register bank 5 32 bits 15.4.2/-10

130 BR6—Base register bank 6 32 bits 15.4.1/-9

134 OR6—Option register bank 6 32 bits 15.4.2/-10

138 BR7—Base register bank 7 32 bits 15.4.1/-9

13C OR7—Option register bank 7 32 bits 15.4.2/-10

140–163 Reserved 36 bytes —

164 MAR—Memory address register 32 bits 15.4.7/-17

168 MCR—Memory command register 32 bits 15.4.5/-15

16C–16F Reserved 4 bytes —

170 MAMR—Machine A mode register 32 bits 15.4.4/-13

174 MBMR—Machine B mode register 32 bits 15.4.4/-13

178 MSTAT—Memory status register 16 bits 15.4.3/-13

17A MPTPR—Memory periodic timer prescaler 16 bits 15.4.8/-18

17C MDR—Memory data register 32 bits 15.4.6/-17

180–1FF Reserved 128 bytes —

System Integration Timers

200 TBSCR—Timebase status and control register 16 bits 10.9.3/-25

202–203 Reserved 2 bytes —

204 TBREFA—Timebase reference register A 32 bits 10.9.2/-24

208 TBREFB—Timebase reference register B 32 bits

20C–21F Reserved 20 bytes —

220 RTCSC—Real-time clock status and control
register

16 bits 10.10.1/-27

222–223 Reserved 2 bytes —

224 RTC—Real-time clock register 32 bits 10.10.2/-28

228 RTSEC—Real-time alarm seconds 32 bits 10.10.4/-29

22C RTCAL—Real-time alarm register 32 bits 10.10.3/-28

230–23F Reserved 16 bytes —

240 PISCR—Periodic interrupt status and control
register

16 bits 10.11.1/-31

242–243 Reserved 2 bytes —

244 PITC—Periodic interrupt count register 32 bits 10.11.2/-32

248 PITR—Periodic interrupt timer register 32 bits 10.11.3/-32

24C–27F Reserved 52 bytes —

Table 2-1. MPC855T Internal Memory Map (continued)

Offset Name Size Section/Page

MPC855T User’s Manual

Clocks and Reset

280 SCCR—System clock control register 32 bits 14.6.1/-29

284 PLPRCR—PLL, low-power, and reset control
register

32 bits 14.6.2/-31

288 RSR—Reset status register 32 bits 11.2/-5

28C–2FF Reserved 116 bytes —

System Integration Timers Keys

300 TBSCRK—Timebase status and control register
key

32 bits 10.4.5/-9

304 TBREFAK—Timebase reference register A key 32 bits 10.4.5/-9

308 TBREFBK—Timebase reference register B key 32 bits 10.4.5/-9

30C TBK—Timebase/decrementer register key 32 bits 10.4.5/-9

310–31F Reserved 16 bytes —

320 RTCSCK—Real-time clock status and control
register key

32 bits 10.4.5/-9

324 RTCK—Real-time clock register key 32 bits 10.4.5/-9

328 RTSECK—Real-time alarm seconds key 32 bits 10.4.5/-9

32C RTCALK—Real-time alarm register key 32 bits 10.4.5/-9

330–33F Reserved 16 bytes —

340 PISCRK—Periodic interrupt status and control
register key

32 bits 10.4.5/-9

344 PITCK—Periodic interrupt count register key 32 bits 10.4.5/-9

348–37F Reserved 56 bytes —

Clocks and Reset Keys

380 SCCRK—System clock control key 32 bits 10.4.5/-9

384 PLPRCRK—PLL, low power and reset control
register key

32 bits 10.4.5/-9

388 RSRK—Reset status register key 32 bits 10.4.5/-9

38C–85F Reserved 1236 bytes —

I2C Controller

860 I2MOD—I2C mode register 8 bits 31.4.1/-6

861–863 Reserved 3 bytes —

864 I2ADD—I2C address register 8 bits 31.4.2/-7

865–867 Reserved 3 bytes —

Table 2-1. MPC855T Internal Memory Map (continued)

Offset Name Size Section/Page

Chapter 2. Memory Map

868 I2BRG—I2C BRG register 8 bits 31.4.3/-8

869–86B Reserved 3 bytes —

86C I2COM—I2C command register 8 bits 31.4.5/-9

86D–86F Reserved 3 bytes —

870 I2CER—I2C event register 8 bits 31.4.4/-8

871–873 Reserved 3 bytes —

874 I2CMR—I2C mask register 8 bits 31.4.4/-8

875–8FF Reserved 139 bytes —

DMA

900–903 Reserved 4 bytes —

904 SDAR—SDMA address register 32 bits 19.2.4/-5

908 SDSR—SDMA status register 8 bits 19.2.2/-4

909–90B Reserved 3 bytes —

90C SDMR—SDMA mask register 8 bits 19.2.3/-5

90D–90F Reserved 3 bytes —

910 IDSR1—IDMA1 status register 8 bits 19.3.9.2/-21

911–913 Reserved 3 bytes —

914 IDMR1—IDMA1 mask register 8 bits 19.3.9.3/-21

915–917 Reserved 3 bytes —

918 IDSR2—IDMA2 status register 8 bits 19.3.9.2/-21

919–91B Reserved 3 bytes —

91C IDMR2—IDMA2 mask register 8 bits 19.3.9.3/-21

91D–92F Reserved 19 bytes —

Communications Processor Module Interrupt Control

930 CIVR—CPM interrupt vector register 16 bits 34.5.5/-9

932–93F Reserved 14 bytes —

940 CICR—CPM interrupt configuration register 32 bits 34.5.1/-7

944 CIPR—CPM interrupt pending register 32 bits 34.5.2/-7

948 CIMR—CPM interrupt mask register 32 bits 34.5.3/-8

94C CISR—CPM in-service register 32 bits 34.5.4/-8

Input/Output Port

950 PADIR—Port A data direction register 16 bits 33.2.1.3/-4

952 PAPAR—Port A pin assignment register 16 bits 33.2.1.4/-5

Table 2-1. MPC855T Internal Memory Map (continued)

Offset Name Size Section/Page

MPC855T User’s Manual

954 PAODR—Port A open drain register 16 bits 33.2.1.1/-3

956 PADAT—Port A data register 16 bits 33.2.1.2/-4

958–95F Reserved 8 bytes —

960 PCDIR—Port C data direction register 16 bits 33.4.2.2/-15

962 PCPAR—Port C pin assignment register 16 bits 33.4.2.3/-15

964 PCSO—Port C special options register 16 bits 33.4.2.4/-16

966 PCDAT—Port C data register 16 bits 33.4.2.1/-14

968 PCINT—Port C interrupt control register 16 bits 33.4.2.5/-16

96A–96F Reserved 6 bytes —

970 PDDIR—Port D data direction register 16 bits 33.5.1.2/-18

972 PDPAR—Port D pin assignment register 16 bits 33.5.2/-19

974 Reserved 2 bytes —

976 PDDAT—Port D data register 16 bits 33.5.1.1/-18

978–97F Reserved 8 bytes —

CPM General-Purpose Timers

980 TGCR—Timer global configuration register 16 bits 17.2.3.1/-8

982–98F Reserved 14 bytes —

990 TMR1—Timer 1 mode register 16 bits 17.2.4/-9

992 TMR2—Timer 2 mode register 16 bits 17.2.4/-9

994 TRR1—Timer 1 reference register 16 bits 17.2.4.1/-10

996 TRR2—Timer 2 reference register 16 bits 17.2.4.1/-10

998 TCR1—Timer 1 capture register 16 bits 17.2.4.2/-10

99A TCR2—Timer 2 capture register 16 bits 17.2.4.2/-10

99C TCN1—Timer 1 counter 16 bits 17.2.4.3/-11

99E TCN2—Timer 2 counter 16 bits 17.2.4.3/-11

9A0 TMR3—Timer 3 mode register 16 bits 17.2.4/-9

9A2 TMR4—Timer 4 mode register 16 bits 17.2.4/-9

9A4 TRR3—Timer 3 reference register 16 bits 17.2.4.1/-10

9A6 TRR4—Timer 4 reference register 16 bits 17.2.4.1/-10

9A8 TCR3—Timer 3 capture register 16 bits 17.2.4.2/-10

9AA TCR4—Timer 4 capture register 16 bits 17.2.4.2/-10

9AC TCN3—Timer 3 counter 16 bits 17.2.4.3/-11

9AE TCN4—Timer 4 counter 16 bits 17.2.4.3/-11

Table 2-1. MPC855T Internal Memory Map (continued)

Offset Name Size Section/Page

Chapter 2. Memory Map

9B0 TER1—Timer 1 event register 16 bits 17.2.4.4/-11

9B2 TER2—Timer 2 event register 16 bits 17.2.4.4/-11

9B4 TER3—Timer 3 event register 16 bits 17.2.4.4/-11

9B6 TER4—Timer 4 event register 16 bits 17.2.4.4/-11

9B8–9BF Reserved 8 bytes —

Communications Processor (CP)

9C0 CPCR—CP command register 16 bits 18.5.3/-6

9C2–9C3 Reserved 2 bytes —

9C4 RCCR—RISC controller configuration register 16 bits 18.5.1/-4

9C6 Reserved 8 bits —

9C7 RMDS—RISC microcode development support
control register

8 bits 18.5.2/-5

9C8–9CB Reserved 4 bytes —

9CC RCTR1—RISC controller trap register 1 16 bits Used only by optional RAM microcode

9CE RCTR2—RISC controller trap register 2 16 bits Used only by optional RAM microcode

9D0 RCTR3—RISC controller trap register 3 16 bits Used only by optional RAM microcode

9D2 RCTR4—RISC controller trap register 4 16 bits Used only by optional RAM microcode

9D4–9D5 Reserved 2 bytes —

9D6 RTER—RISC timer event register 16 bits 18.7.4/-15

9D8–9D9 Reserved 2 bytes —

9DA RTMR—RISC timers mask register 16 bits 18.7.4/-15

9DC–9EF Reserved 20 bytes —

Baud Rate Generators

9F0 BRGC1—BRG1 configuration register 32 bits 20.4.1/-25

9F4 BRGC2—BRG2 configuration register 32 bits 20.4.1/-25

9F8 BRGC3—BRG3 configuration register 32 bits 20.4.1/-25

9FC BRGC4—BRG4 configuration register 32 bits 20.4.1/-25

Serial Communications Controller 1 (SCC1)

A00 GSMR_L1—SCC1 general mode register 32 bits 21.2.1/-3

A04 GSMR_H1—SCC1 general mode register 32 bits 21.2.1/-3

Table 2-1. MPC855T Internal Memory Map (continued)

Offset Name Size Section/Page

MPC855T User’s Manual

A08 PSMR1—SCC1 protocol specific mode register 16 bits 21.2.2/-10
22.16/-13 (UART)
25.13.3/-11 (Asynchronous HDLC)
26.11/-10 (BiSYNC)
27.18/-19 (Ethernet)
28.9/-9 (Transparent)

A0A–A0B Reserved 2 bytes —

A0C TODR1—SCC1 transmit-on-demand register 16 bits 21.2.4/-10

A0E DSR1—SCC1 data synchronization register 16 bits 21.2.3/-10

A10 SCCE1—SCC1 event register 16 bits 22.19/-20 (UART)
23.11/-13 (HDLC)
25.13.1/-9 (Asynchronous HDLC)
26.14/-15 (BiSYNC)
27.21/-25 (Ethernet)
28.12/-12 (Transparent)

A12–A13 Reserved 2 bytes

A14 SCCM1—SCC1 mask register 16 bits

A16 Reserved 1 byte —

A17 SCCS1—SCC1 status register 8 bits 22.20/-22 (UART)
23.12/-15 (HDLC)
25.13.2/-10 (Asynchronous HDLC)
26.15/-16 (BiSYNC)
28.13/-13 (Transparent)

A18–A1F Reserved 8 bytes —

Serial Management Controller 1 (SMC1)

A82 SMCMR1—SMC1 mode register 16 bits 29.2.1/-3

A84–A85 Reserved 2 bytes —

A86 SMCE1—SMC1 event register 8 bits 29.3.12/-20 (UART)
29.4.11/-31 (Transparent)
29.5.9/-39 (GCI)

A87–A89 Reserved 3 bytes —

A8A SMCM1—SMC1 mask register 8 bits 29.3.12/-20 (UART)
29.4.11/-31 (Transparent)
29.5.9/-39 (GCI)

A8B–A91 Reserved 7 bytes —

Serial Management Controller 2 (SMC2)

A92 SMCMR2—SMC2 mode register 16 bits 29.2.1/-3

A94–A95 Reserved 2 bytes —

A96 SMCE2—SMC2 event register 8 bits 29.3.12/-20 (UART)
29.4.11/-31 (Transparent)
29.5.9/-39 (GCI)

A97–A99 Reserved 3 bytes —

Table 2-1. MPC855T Internal Memory Map (continued)

Offset Name Size Section/Page

Chapter 2. Memory Map

A9A SMCM2—SMC2 mask register 8 bits 29.3.12/-20 (UART)
29.4.11/-31 (Transparent)
29.5.9/-39 (GCI)

A9B–A9F Reserved 5 bytes —

Serial Peripheral Interface (SPI)

AA0 SPMODE—SPI mode register 16 bits 30.4.1/-7

AA2–AA5 Reserved 4 bytes —

AA6 SPIE—SPI event register 8 bits 30.4.2/-10

AA7–AA9 Reserved 3 bytes —

AAA SPIM—SPI mask register 8 bits 30.4.2/-10

AAB–AAC Reserved 2 bytes —

AAD SPCOM—SPI command register 8 bits 30.4.3/-11

AAE–AB Reserved 4 bytes —

Parallel Interface Port (PIP) and Port B

AB2 PIPC—PIP configuration register 16 bits 32.4.1/-8

AB4–AB5 Reserved 2 bytes —

AB6 PTPR—PIP timing parameters register 16 bits 32.4.4/-10

AB8 PBDIR—Port B data direction register 32 bits 33.3.1.3/-10

ABC PBPAR—Port B pin assignment register 32 bits 33.3.1.4/-11

AC0 PBODR—Port B open drain register 32 bits 33.3.1.1/-9

AC4 PBDAT—Port B data register 32 bits 33.3.1.2/-9

AC8–ADF Reserved 24 bytes —

Serial Interface (SI)

AE0 SIMODE—SI mode register 32 bits 20.2.4.2/-13

AE4 SIGMR—SI global mode register 8 bits 20.2.4.1/-12

AE5 Reserved 8 bits —

AE6 SISTR—SI status register 8 bits 20.2.4.5/-20

AE7 SICMR—SI command register 8 bits 20.2.4.4/-19

AE8–AEB Reserved 4 bytes —

AEC SICR—SI clock route register 32 bits 20.2.4.3/-18

AF0 SIRP—Serial interface RAM pointer register 32 bits 20.2.4.6/-21

AF4–BFF Reserved 268 bytes —

C00–DFF SIRAM—SI routing RAM 512 bytes 20.2.3.5/-10

Table 2-1. MPC855T Internal Memory Map (continued)

Offset Name Size Section/Page

MPC855T User’s Manual

E00-1FFF Reserved 4,608 bytes —

Fast Ethernet Controller (FEC)

E00 ADDR_LOW register 32 bits 43.4.1.1/-15

E04 ADDR_HIGH 32 bits 43.4.1.2/-15

E08 HASH_TABLE_HIGH 32 bits 43.4.1.3/-16

E0C HASH_TABLE_LOW 32 bits 43.4.1.4/-17

E10 R_DES_START 32 bits 43.4.1.5/-17

E14 X_DES_START 32 bits 43.4.1.6/-18

E18 R_BUFF_SIZE 32 bits 43.4.1.7/-19

E40 ECNTRL 32 bits 43.4.1.8/-19

E44 IEVENT 32 bits 43.4.1.9/-20

E48 IMASK 32 bits 43.4.1.9/-20

E4C IVEC 32 bits 43.4.1.10/-22

E50 R_DES_ACTIVE 32 bits 43.4.1.11/-22

E54 X_DES_ACTIVE 32 bits 43.4.1.12/-23

E80 MII_DATA 32 bits /-24

E84 MII_SPEED 32 bits 43.4.1.14/-26

ECC R_BOUND 32 bits 43.4.1.15/-27

ED0 R_FSTART 32 bits 43.4.1.16/-28

EE4 X_WMRK 32 bits 43.4.1.17/-29

EEC X_FSTART 32 bits 43.4.1.18/-30

F34 FUN_CODE 32 bits 43.4.1.19/-31

F44 R_CNTRL 32 bits 43.4.1.20/-31

F48 R_HASH 32 bits 43.4.1.21/-32

F84 X_CNTRL 32 bits 43.4.1.22/-33

F88-1FFF Reserved 4,215 bytes

Dual-Port RAM (DPRAM)

2000–2FFF Dual-port system RAM 4,096 bytes 18.6.1/-10

3000–3BFF Dual-port system RAM expansion 3,072 bytes 18.6.1/-10

3C00–3FFF PRAM—Dual-port parameter RAM 1,024 bytes 18.6.3/-11

Table 2-1. MPC855T Internal Memory Map (continued)

Offset Name Size Section/Page

Part II. MPC8xx Microprocessor Module

Part II
MPC8xx Microprocessor Module

Intended Audience
Part II is intended for users who need to understand the programming model of the
embedded microprocessor. It assumes some familiarity with RISC architectures.

Contents
Part II describes the MPC8xx microprocessor embedded in the MPC855T. It provides
detailed information on the registers and instructions that are implemented, the memory
management unit (MMU), cache model, exception model, and an overview of instruction
timing. It contains the following chapters:

• Chapter 3, “The MPC8xx Core,” provides an overview of the MPC855T core,
summarizing topics described in further detail in subsequent chapters in Part II.

• Chapter 4, “MPC8xx Core Register Set,” describes the hardware registers accessible
to the MPC855T core. These include both architecturally-defined and
MPC855T-specific registers.

• Chapter 5, “MPC855T Instruction Set,” describes the instructions implemented by
the MPC855T. These instructions are organized by the level of architecture in which
they are implemented—UISA, VEA, and OEA.

• Chapter 6, “Exceptions,” describes the exception model implemented on the
MPC855T.

• Chapter 7, “Instruction and Data Caches,” describes the organization of the on-chip
instruction and data caches, cache control, various cache operations, and the
interaction between the caches, the load/store unit (LSU), the instruction sequencer,
and the system interface unit (SIU).

• Chapter 8, “Memory Management Unit” describes how the MMU is implemented
on the MPC855T. Although the MPC855T MMU is based on the PowerPC MMU
model, it differs greatly in many respects, which are described in this chapter.

MPC855T User’s Manual

• Chapter 9, “Instruction Execution Timing,” describes the MPC855T instruction
unit, and provides ways to make greatest advantage of its RISC architecture
characteristics, such as pipelining and parallel execution. It includes a table of
instruction latencies and lists dependencies and potential bottlenecks.

Suggested Reading
This section lists additional reading that provides background for the information in this
manual.

MPC8xx Documentation

Supporting documentation for the MPC855T can be accessed through the world-wide web
at http://www.motorola.com. This documentation includes technical specifications,
reference materials, and detailed application notes.

Related Documentation
The documentation is organized in the following types of documents:

• Programming Environments Manual for 32-Bit Implementations of the PowerPC
Architecture (MPEFPC32B/AD)—Describes resources defined by the PowerPC
architecture.

• User’s manuals—These books provide details about individual implementations and
are intended for use with the Programming Environments Manual.

• Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and functionality
changes. These addenda are intended for use with the corresponding user’s manuals.

• Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations. Separate hardware specifications are provided for each
part described in this book.

• Technical summaries—Each device has a technical summary that provides an
overview of its features. This document is roughly the equivalent to the overview
(Chapter 1) of an implementation’s user’s manual.

• The Programmer’s Reference Guide for the PowerPC Architecture:
MPCPRG/D—This concise reference includes the register summary, memory
control model, exception vectors, and the PowerPC instruction set.

• The Programmer’s Pocket Reference Guide for the PowerPC Architecture:
MPCPRGREF/D—This foldout card provides an overview of PowerPC registers,
instructions, and exceptions for 32-bit implementations.

• Application notes—These short documents address specific design issues useful to
programmers and engineers working with Motorola processors.

Part II. MPC8xx Microprocessor Module

Additional literature is published as new processors become available. For a current list of
documentation, refer to http://www.motorola.com/motorola.

Conventions
This chapter uses the following notational conventions:

Bold entries in figures and tables showing registers and parameter
RAM should be initialized by the user.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

REG[FIELD] Abbreviations or acronyms for registers or buffer descriptors are
shown in uppercase text. Specific bits, fields, or numerical ranges
appear in brackets. For example, MSR[LE] refers to the little-endian
mode enable bit in the machine state register.

x In certain contexts, such as in a signal encoding or a bit field,
indicates a don’t care.

n Indicates an undefined numerical value

¬ NOT logical operator

& AND logical operator

| OR logical operator

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document. Note that the
meanings for some acronyms (such as SDR1 and DSISR) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

BIST Built-in self test

BPU Branch processing unit

BUID Bus unit ID

Bold

MPC855T User’s Manual

CR Condition register

CRC Cyclic redundancy check

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DEC Decrementer register

DMA Direct memory access

DRAM Dynamic random access memory

DSISR Register used for determining the source of a DSI exception

DTLB Data translation lookaside buffer

EA Effective address

FPR Floating-point register

FPSCR Floating-point status and control register

GPR General-purpose register

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

IU Integer unit

LIFO Last-in-first-out

LR Link register

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

LSU Load/store unit

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

No-op No operation

OEA Operating environment architecture

PCI Peripheral component interconnect

PVR Processor version register

RISC Reduced instruction set computing

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

Part II. MPC8xx Microprocessor Module

Architecture Terminology Conventions
Table ii lists certain terms used in this manual that differ from the architecture terminology
conventions.

RTOS Real-time operating system

RWITM Read with intent to modify

Rx Receive

SIMM Signed immediate value

SPR Special-purpose register

SPRGn Registers available for general purposes

SR Segment register

SRR0 Machine status save/restore register 0

SRR1 Machine status save/restore register 1

TB Time base register

TLB Translation lookaside buffer

Tx Transmit

UIMM Unsigned immediate value

UISA User instruction set architecture

VA Virtual address

VEA Virtual environment architecture

XER Register used primarily for indicating conditions such as carries and overflows for integer operations

Table ii. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Instruction storage interrupt (ISI) ISI exception

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

MPC855T User’s Manual

Table iii describes instruction field notation conventions used in this manual.
Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

Chapter 3. The MPC8xx Core

Chapter 3
The MPC8xx Core
This chapter provides an overview of the MPC8xx core, summarizing topics described in
further detail in subsequent chapters in Part II. This chapter describes the functional
specifications of the core. It is based on the Programming Environments Manual for 32-Bit
Implementations of the PowerPC Architecture, which provides a more in-depth discussion
of issues related to the 32-bit portion of the PowerPC architecture implementation.

The subset of PowerPC instructions supported by the MPC855T are listed in Chapter 5,
“MPC855T Instruction Set.”

3.1 The MPC855T Core as a PowerPC Implementation
The core implements all PowerPC user-level instructions defined for 32-bit
implementations except floating-point instructions (load/store and arithmetic). Likewise, it
supports the registers defined by the PowerPC architecture necessary for the supported
instructions.

The MPC855T core adheres to portions of the PowerPC architecture definition for
supervisor operations. For example, it implements the PowerPC exception model
(excluding inappropriate exceptions, such as those that support floating-point operations).
The architecture-defined memory management model has been modified to suit the specific
needs of the MPC855T core. Additional exceptions are defined (as permitted by the
architecture) to support address translation.

The PowerPC architecture defines features not supported on the MPC855T hardware.
These features include support for 64-bit addressing, multiprocessing, floating-point
arithmetic, and some memory management features.

The core also implements MPC855T-specific development support features such as
breakpoint and watchpoint mechanisms, program-flow tracking data generation, and debug
mode operation.

3.2 PowerPC Architecture Overview
The PowerPC architecture takes advantage of recent technological advances in such areas
as process technology, compiler design, and reduced instruction set computing (RISC)

MPC855T User’s Manual

PowerPC Architecture Overview

microprocessor design to provide software compatibility across a diverse family of
implementations, primarily single-chip microprocessors, intended for a wide range of
systems, including battery-powered personal computers; embedded controllers; high-end
scientific and graphics workstations; and multiprocessing, microprocessor-based
mainframes.

To provide a single architecture for such a broad assortment of processor environments, the
PowerPC architecture is both flexible and scalable.

The flexibility of the PowerPC architecture offers many price/performance options.
Designers can choose whether to implement architecturally-defined features in hardware or
in software. For example, a processor designed for a high-end workstation has greater need
for the performance gained from implementing floating-point normalization and
denormalization in hardware than a device using a PowerPC embedded controller might.

The PowerPC architecture defines the following features:

• Separate 32-entry register files for integer instructions. The general-purpose
registers (GPRs) hold source data for integer arithmetic instructions.

• Instructions for loading and storing data between the memory system and the GPRs
• Uniform-length instructions to allow simplified instruction pipelining and parallel

processing instruction dispatch mechanisms
• Non-destructive use of registers for arithmetic instructions in which the second,

third, and sometimes the fourth operand, typically specify source registers for
calculations whose results are typically stored in the target register specified by the
first operand.

• A precise exception model
• A flexible architecture definition that allows certain features to be performed in

either hardware or with assistance from implementation-specific software
depending on the needs of the processor design

• User-level instructions for explicitly storing, flushing, and invalidating data in the
on-chip caches. The architecture also defines special instructions (cache block touch
instructions) for speculatively loading data before it is needed, reducing the effect of
memory latency.

• A memory model that allows weakly-ordered memory accesses. This allows bus
operations to be reordered dynamically, which improves overall performance and in
particular reduces the effect of memory latency on instruction throughput.

• Support for separate instruction and data caches (Harvard architecture) and for
unified caches

• Support for both big- and little-endian addressing modes

Chapter 3. The MPC8xx Core

PowerPC Architecture Overview

• Support for 64-bit addressing. The architecture supports both 32-bit or 64-bit
implementations. This document describes the 32-bit portion of the PowerPC
architecture. For information about the 64-bit architecture, see Programming
Environments Manual for Implementations of the PowerPC Architecture.

3.2.1 Levels of the PowerPC Architecture
The PowerPC architecture is defined in three levels that correspond to three programming
environments, roughly described from the most general, user-level instruction set
environment, to the more specific, operating environment.

This layering of the architecture provides flexibility, allowing degrees of software
compatibility across a wide range of implementations. For example, an implementation
such as an embedded controller may support the user instruction set, whereas it may be
impractical for it to adhere to the memory management, exception, and cache models.

The three levels of the PowerPC architecture are defined as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level (referred to as problem state in the architecture
specification) software should conform. The UISA defines the base user-level
instruction set, user-level registers, data types, the exception model as seen by user
programs, and the memory and programming models.

• PowerPC virtual environment architecture (VEA)—The VEA defines additional
user-level functionality that falls outside typical user-level software requirements.
The VEA describes the memory model for an environment in which multiple
devices can access memory, defines aspects of the cache model, defines cache
control instructions, and defines the time base facility from a user-level perspective.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)—The OEA defines
supervisor-level (referred to as privileged state in the architecture specification)
resources typically required by an operating system. The OEA defines the PowerPC
memory management model, supervisor-level registers, synchronization
requirements, and the exception model. The OEA also defines the time base feature
from a supervisor-level perspective.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

The MPC855T adheres to the OEA definition of the exception model and provides
a subset of the memory management model. It includes OEA-defined registers and
instructions for configuration and exception handling.

Implementations that adhere to the VEA level are guaranteed to adhere to the UISA level;
likewise, implementations that conform to the OEA level are also guaranteed to conform to

MPC855T User’s Manual

Features

the UISA and the VEA levels. For a more detailed discussion of the characteristics of the
PowerPC architecture, see the Programming Environments Manual for Implementations of
the PowerPC Architecture.

For details regarding the MPC8xx core as an implementation of the PowerPC architecture,
see Section 3.7, “The MPC855T and Implementation of the PowerPC Architecture.”

3.3 Features
Figure 3-1 shows the basic features of the MPC855T.

Chapter 3. The MPC8xx Core

Features

Figure 3-1. Block Diagram of the Core

The following is a list of the MPC8xx core main features:

• 32-bit implementation of PowerPC architecture features

— User-level instruction set (not including floating-point instructions)

— Thirty-two, 32-bit general-purpose registers (GPRs)

32-Bit (One Instruction)

CQ5
CQ4
CQ3
CQ2
CQ1
CQ0

Completion
Queue

Sequential

IQ3
IQ2
IQ1
IQ0

Instruction
Queue

CTR
CR
LR

Branch
Processing Unit

Integer
Unit

XER

GPR File
(32-Entry) Load/Store

Unit (LSU)

Data
MMU

Tags

U-Bus Interface

Instruction
MMU

Tags

Fetcher
32-Bit

32-Bit

One Instruction Retired
per Clock

32-Bit (One Instruction)

32-Bit32-Bit

ALU
Performs

EA
Calculation

32-Bit

32-Bit

L-Bus

• Power Dissipation Control
• Time Base Counter
• Decrementer
• JTAG

Additional Features

INSTRUCTION UNIT

⁄ * +

•••

• BDM interface
• Clock Multiplier

 Kbyte
I-Cache

 Kbyte
D-Cache

 Entry
DTLB

 Entry
ITLB

MPC855T User’s Manual

Basic Structure of the Core

— Registers required to support PowerPC user-level instruction set (except
floating-point instructions). These include the integer exception register (XER),
condition register (CR), link register (LR), and counter register (CTR).

— Time base upper and time base lower and registers (TBU and TBL)

— A subset of the supervisor-level registers for compliance with the following
PowerPC models:

– Configuration—Machine state register (MSR)

– Exception model—Save/restore registers 0 and 1 (SRR0 and SRR1), DSI
status register (DSISR), data address register (DAR)

— Core-specific registers compliant with PowerPC architecture

— Static branch prediction

— Precise exception model that includes the subset of the PowerPC exceptions
which supports the instruction set and memory management. The MPC855T
implements all PowerPC asynchronous exceptions (interrupts)—system reset,
machine check, decrementer, and external interrupts. MPC855T-specific
exceptions are PowerPC-compliant.

— Separate 32-entry instruction and data translation lookaside buffers (TLBs)

• Core-specific features

— Fully static design
— Additional registers that support the MPC855T-specific features
— The ability to optimally issue and retire one instruction per clock cycle
— Out-of-order execution and in-order completion
— Extensive debug/testing support

3.4 Basic Structure of the Core
The MPC855T core consists of the following subunits:

• Instruction unit (sequencer)—Consists of the branch processing unit (BPU), the
instruction queue, and the exception handling mechanism.

• Execution units—These consist of the following:
— Integer unit—Implements all integer arithmetic and logical instructions defined

by the PowerPC architecture:
— Load/store unit (LSU)—Implements all load and store instructions except

floating-point load/store instructions. Note that because the MPC855T does not
implement floating-point load and store instructions, this document refers to
integer load/store instructions simply as load/store instructions.

Chapter 3. The MPC8xx Core

Basic Structure of the Core

3.4.1 Instruction Flow

As many as one instruction per clock cycle is fetched into the four-entry instruction queue
(IQ). The branch processing unit (BPU) predicts the outcome of branch instructions and in
some cases, resolves whether the branch is taken. Figure 3-2 shows general instruction
flow.

Figure 3-2. Instruction Flow Conceptual Diagram

Non-branch instructions reaching IQ0 are dispatched to the execution units at an optimal
rate of one instruction per clock cycle. An instruction cannot be dispatched unless it can
also take a position in the six-entry completion queue (CQ).

All branch instructions, including unconditional branch instructions, reaching IQ0 must
also take a position in the completion queue. This allows program order to be maintained,
it ensures a precise execution model, and it allows branch instructions to be used as
breakpoints.

All instructions enter the CQ along with processor state information that can be affected by
the instruction’s execution. Executed arithmetic instructions pass their results both to
rename buffers and to the architected registers (typically GPRs), but to ensure program
order, instructions remain in the CQ until they can be retired.

If an exception occurs before the instruction can be retired, any results are removed from
the rename buffer and GPR and the instruction is flushed from the completion queue, along
with subsequent instructions that have not executed or have not dispatched.

This information is used to enable out-of-order completion of instructions and ensure a
precise exception model. An instruction can be retired after all instructions ahead of it have
retired and it updates the architected destination registers without taking an exception.

IQ3

IQ2

IQ1

IQ0

CQ5

CQ4

CQ3

CQ2

CQ1

CQ0

Branch
Unit

ExecutionCompletion Queue

Dispatch (maximum one instruction per clock cycle)

Instruction Queue

Fetch (maximum one instruction per clock cycle)

Retire (maximum one instruction per clock cycle)

Units

MPC855T User’s Manual

Basic Structure of the Core

3.4.2 Basic Instruction Pipeline

Figure 3-3 shows instruction pipeline timing, showing how by distributing the processes
required to fetch, execute, and retire an instruction into stages, multiple instructions can be
processed during a single clock cycle.

Figure 3-3. Basic Instruction Pipeline Timing

3.4.3 Instruction Unit

The instruction unit implements the basic instruction pipeline, fetches instructions from the
memory system, dispatches them to available execution units, and maintains a state history
to ensure a precise exception model and that operations finish in order. The instruction unit
implements all branch processor instructions, including flow control and CR instructions.
Table 9-1. describes instruction latencies.

3.4.3.1 Branch Operations

Because branch instructions can change program flow and because most branches cannot
be resolved at the same time they are fetched, program branching can keep a processor from
operating at maximum instruction throughput.

If a branch is mispredicted, additional time is required to flush the incorrect branch
instructions and begin fetching from the correct target stream, which can create bubbles in
the pipeline. To reduce the latency caused by misprediction, branch instructions allow the
programmer to indicate whether a branch is likely to be taken. This is called static branch
prediction.

lwz sub mulli addiaddicFetch

Decode

Read + Execute

Writeback

L Address Drive

L Data

Load Write Back

lwz sub

Bubble

addic

lwz sub

sub

addic

ld

ld

ld

Gclk1

addic

Chapter 3. The MPC8xx Core

Basic Structure of the Core

Figure 3-4. Sequencer Data Path

The instruction unit executes branches in parallel with those instructions that must be
dispatched to an execution unit. Ideally, a instruction is dispatched to an execution unit
every clock cycle, even when branches are in the code. The IQ also eliminates stalls due to
instruction fetches that miss in the instruction cache or that generate a page fault. All
instructions are fetched into the IQ, and all instructions except branch instructions are
dispatched to the execution units when they reach IQ0. Branches enter the queue to mark
watchpoints. See Chapter 44, “System Development and Debugging.” Because branches do
not prevent the issue of nonbranch instructions unless they come in pairs, the performance
impact of entering branches in the IQ is negligible.

The core also implements a branch reservation station and static branch prediction so
branches can be resolved as early as possible. The reservation station allows a branch
instruction to pass from the IQ before its condition is ready. With the branch out of the way,
fetching can continue as the branch is evaluated. Static branch prediction (defined by the
PowerPC UISA) determines which instruction stream is prefetched while the branch is
being resolved. When the branch operand becomes available, it is forwarded to the BPU
and the condition is evaluated. The static branch prediction mechanism is shown in
Table 3-1.

Table 3-1. Static Branch Prediction

Branch Type Default Prediction (y=0) Modified Prediction (y=1)

BC with negative offset Taken Fall through

BC with positive offset Fall through Taken

BCLR or BCCTR (LR or CTR) address ready Fall through Taken

Instruction Memory System

Instruction Address Generator Instruction Buffer

Instruction
Queue (4)

(IQ)

Branch
Condition
Evaluation

CC Unit

Execution Units and Registers Files

32-Bit

32-Bit

32-Bit

Read/Write
Busses

MPC855T User’s Manual

Register Set

Branch instructions whose condition is unavailable are issued to the reservation station
until they are predicted. Branch instructions that issue with source data already available do
not require prediction (and are said to be resolved). Instructions fetched under a predicted
branch are conditionally fetched. The core flushes instructions conditionally fetched under
a mispredicted branch.

3.4.3.2 Dispatching Instructions

The sequencer can dispatch a sequential instruction on each clock if the appropriate
execution unit is available and a position is free in the completion queue. The execution unit
must be able to discern whether source data is available and to ensure that no other
executing instruction targets the same destination register. The sequencer informs the
execution units of the existence of the instruction on the instruction bus. The execution units
decode the instruction, check whether the source and destination operands are free, and
inform the sequencer whether instructions can be dispatched.

3.5 Register Set
Registers implemented in the MPC855T core can be grouped as follows:

• PowerPC registers. The MPC855T implements the user registers defined by the
UISA and VEA portions of the architecture except for those that support
floating-point operations. PowerPC registers implemented on the MPC855T are
described in Section Chapter 4, “MPC8xx Core Register Set,” and Section 4.1.2,
“PowerPC Registers—Supervisor Registers.”

• Implementation-specific registers. These are all special-purpose registers (SPRs).
These are described in Section 4.1.3, “MPC855T-Specific SPRs.”

3.6 Execution Units
As shown in Figure 3-1, the MPC855T allows parallel execution of instructions using
separate branch processing unit (BPU), load/store unit (LSU), and integer unit (IU). These
execution units are described in the following sections.

BCLR or BCCTR (LR or CTR) address not ready Wait Wait

B (unconditional branch) Taken Taken

Table 3-1. Static Branch Prediction (continued)

Branch Type Default Prediction (y=0) Modified Prediction (y=1)

Chapter 3. The MPC8xx Core

Execution Units

3.6.1 Branch Processing Unit

The branch processing unit differs from the other execution units in that it examines branch
instructions while they are in the IQ. Other instructions are dispatched to the IU and LSU
from IQ0. For details about the performance of various instructions, see Table 3-1.

The core supports the UISA-defined static branch prediction. That is, the y bit is used to
provide a hint as to whether the branch the branch is likely to be taken or not taken. No
prediction is done for branches to the link register or count register if the target address is
not ready (see Table 3-1 for details).

3.6.2 Integer Unit
The core implements the following types of integer instructions:

• Arithmetic instructions

• Compare instructions

• Trap instructions

• Logical instructions

• Rotate and shift instructions

Most integer instructions can execute in one clock cycle. For details about the performance
of the various instructions, see Table 3-1 of this manual.

Note the following special cases:

• If an mtspr or mfspr instruction specifies an invalid SPR in which spr[0] = 1, a
program exception occurs if the processor is in user mode. Valid SPRs are listed in
Chapter 4, “MPC8xx Core Register Set.”

• If divw[o][.] is used to perform either (0x80000000 ÷ -1) or (<anything> ÷ 0), the
contents of rD are 0x8000_0000 and if Rc = 1, the contents of the bits in the CR field
0 are LT = 1, GT = 0, EQ = 0, and SO is set to the correct value.

• In the cmpi, cmp, cmpli, and cmpl instructions, the L bit is applicable for 64-bit
implementations. For the MPC855T, if L = 1 the instruction form is invalid. The
core ignores this bit and, therefore, the behavior when L = 1 is identical to the valid
form instruction with L = 0.

3.6.3 Load/Store Unit

The load/store unit (LSU) transfers all data between the GPRs and the processor’s internal
bus. It is implemented as an independent execution unit so that stalls in the memory
pipeline affect the master instruction pipeline only if there is a data dependency.

The following lists the LSU’s main features:

MPC855T User’s Manual

Execution Units

• All instructions implemented in hardware, including unaligned, string, and multiple
accesses

• Two-entry load/store instruction address queue

• Pipelined operation. The LSU pipelines load accesses. Individual cache accesses of
all multiple-register instructions and unaligned accesses are pipelined into the data
cache interface.

• Load/store multiple and string instructions synchronize

• Load/store breakpoint/watchpoint detection support

• The LSU implements cache and TLB management instructions as special bus write
cycles, which are issued to the data cache interface.

Figure 3-5 is a block diagram of the LSU and its two queues. The address queue is a 2-entry
queue shared by all load/store instructions and the integer data queue is a 2-entry, 32-bit
queue that holds integer data.

The LSU has a dedicated writeback bus so that loaded data received from the internal bus
is written directly back to the GPRs.

Figure 3-5. LSU Functional Block Diagram

To execute multiple/string instructions and unaligned accesses, the LSU increments the EA
to access all necessary data. This allows the LSU to execute unaligned accesses without
stalling the master instruction pipeline.

Integer
Unit GPRs

32-Bit

Integer
Load Data

32-Bit

Address Integer
Store Data

Integer
Data Queue

LOAD/STORE

CORE

32-Bit32-Bit D-Cache/D-MMU
Interface

Address
Queue

and
Increment

32-Bit

32-Bit

UNIT

Chapter 3. The MPC8xx Core

Execution Units

3.6.3.1 Executing Load/Store Instructions
When load or store instructions are dispatched, the LSU determines if all of the operands
are available. These operands include the following:

• Address register operands

• Source data register operands (for store instructions)

• Destination data registers (for load instructions)

• Destination address GPRs (for load/store with update instructions)

If all operands are available, the LSU takes the instruction and enables the sequencer to
issue a new instruction. Then, using a dedicated interface, the LSU notifies the integer unit
of the need to calculate the EA. All load/store instructions are executed and finished in
order. If no prior instructions are in the address queue, the load/store operation is issued to
the data cache when the instruction executes. Otherwise, if prior instructions remain whose
addresses have not been issued to the data cache, the instruction’s address and data are
placed in their respective queues. For load/store with update instructions, the destination
address register is written back on the following clock cycle, regardless of the address
queue’s state.

3.6.3.2 Serializing Load/Store Instructions
The following load/store instructions are not executed until all previous instructions have
finished.

• Load/store multiple instructions—lmw, stmw

• Memory synchronization instructions—lwarx, stwcx., sync

• String instructions—lswi, lswx, stswi, stswx

• Move to SPRs

The following load/store instructions must finish before more instructions can be issued.

• Load/store multiple instructions—lmw, stmw

• Memory synchronization instructions—lwarx, stwcx., sync

• String instructions—lswi, lswx, stswi, stswx

3.6.3.3 Store Accesses

Because the core supports the precise exception model, a new store instruction cannot
update the data cache until all prior instructions have finished without an exception. If a
store instruction follows a load instruction, a one-clock delay is inserted between the load
bus cycle termination and the store cycle issue.

MPC855T User’s Manual

Execution Units

3.6.3.4 Nonspeculative Load Instructions

Load instructions targeted at nonspeculative memory are identified as nonspeculative one
clock cycle after the previous load/store bus cycle ends, only if all prior instructions have
finished without an exception.

The nonspeculative identification relates to the state of the cycle’s associated instruction.
For lmw, although the accesses are pipelined into the bus, they are all marked as
nonspeculative because the instruction is nonspeculative. If a single-register load
instruction generates more than one bus cycle, some of the cycles can be marked as
speculative and later cycles can be marked as nonspeculative after all prior instructions end.
Speculative load accesses to external memory marked nonspeculative cannot occur until the
load instruction becomes nonspeculative.

3.6.3.5 Unaligned Accesses

Although the 32-bit U-bus supports only naturally aligned transfers, the LSU supports
unaligned accesses in hardware by breaking them into a pipelined series of aligned
transfers. Table 3-2 shows the number of bus cycles needed for single-register load/store
accesses.

Table 3-2. Bus Cycles Needed for Single-Register Load/Store Accesses

Transfer Size Transfer Address (Last Two Bits) Number of Bus Cycles Transfer Type Address/Size

Byte 0x00 1 Aligned 0x00/byte

0x01 1 Aligned 0x01/byte

0x02 1 Aligned 0x02/byte

0x03 1 Aligned 0x03/byte

Half Word 0x00 1 Aligned 0x00/halfword

0x01 2 Unaligned 0x01/byte
0x02/byte

0x02 1 Aligned 0x02/halfword

0x03 2 Unaligned 0x03/byte
0x04/byte

Word 0x00 1 Aligned 0x00/word

0x01 3 Unaligned 0x01/byte
0x02/halfword

0x05/byte

0x02 2 Unaligned 0x02/halfword
0x04/halfword

0x03 3 Unaligned 0x03/byte
0x04/halfword

0x06/byte

Chapter 3. The MPC8xx Core

The MPC855T and Implementation of the PowerPC Architecture

3.6.3.6 Atomic Update Primitives

The lwarx and stwcx. instructions are atomic update primitives and are used to set and clear
memory reservations. Reservation accesses made by the same processor are implemented
by the LSU. The external bus interface implements memory reservations as they relate to
accesses made by external bus devices. Accesses made by other internal devices to internal
memories implement memory reservations as they relate to special internal bus snoop logic.

When an lwarx instruction executes, the LSU issues a cycle to the data cache with a special
attribute. For external memory accesses, this attribute causes the external bus interface to
set a memory reservation during the address tenure. External logic must then snoop the
external bus to determine if another device breaks the memory reservation by accessing the
same location. KR and CR signals are available to external logic to signal loss of a
reservation to the external bus interface. When an stwcx. instruction addresses external
memory and the external bus interface determines that the reservation was lost, it blocks the
external bus access and notifies the LSU.

The MPC855T supports the memory reservation mechanism in a hierarchical bus structure.
For reservations on internal memory, an lwarx causes on-chip snoop logic to latch the
address. This logic notifies the LSU of any internal master store access and resets the
reservation. If a new lwarx instruction address tenure executes successfully, it replaces any
previous reservation address at the appropriate snoop logic. However, executing an stwcx.
instruction cancels the reservation unless an alignment exception is detected.

3.7 The MPC855T and Implementation of the
PowerPC Architecture

This section describes the relationship between the MPC855T and implementation of the
PowerPC architecture. It indicates the types of distinguishing features of the MPC855T
described in the following:

• In many cases, the PowerPC architecture specification is flexible enough to allow
implementation options. For example, the architecture does not specify whether
unaligned transfers must be handled in hardware or whether instruction execution
must be performed in hardware or software.

• The PowerPC architecture defines optional features, some of which are
implemented on the MPC855T (such as TLBs) and some of which are not, such as
the eciwx and ecowx instructions.

• The PowerPC architecture defines features, such as virtual memory and
floating-point instructions, that are not implemented on the MPC855T.

MPC855T User’s Manual

The MPC855T and Implementation of the PowerPC Architecture

Table 3-3 summarizes MPC855T features with respect to the UISA definition.
Table 3-3. UISA-Level Features

Functionality Description

Reserved fields Reserved fields in instructions are described under the specific instruction definition in Chapter 5,
“MPC855T Instruction Set.” Unless otherwise stated, instruction fields marked I, II, and III are
discarded during decoding. Thus, this type of instruction yields results of the defined instructions
with the appropriate field = 0. In most cases, reserved fields in registers are ignored on write and
return zeros for them on read for any control register implemented by the core. Exceptions are
XER[16–23] and the reserved bits of MSR, which are set by the source value on write and return
the value last set for it on read.

Classes of
Instructions

Required instructions (except floating-point load, store, and compute instructions) are implemented
in hardware. Optional instructions are executed by implementation-dependent code; any attempt
to execute one of these commands causes the core to take the software emulation exception (offset
0x01000). Illegal and reserved instruction class instructions are supported by
implementation-dependent code and, thus the core hardware generates a software emulation
exception.

Exceptions Invocation of the system software for any exception caused by an instruction in the core is precise,
regardless of the type and setting.

Fetching
instructions

The core fetches a number of instructions into its IQ from which they are dispatched to the
execution units. If a program modifies instructions, it should call a system library program to ensure
that the instruction fetching mechanism can detect changes before execution.

Branch
instructions

The core implements all UISA instructions defined for the branch processor in hardware. For details
about the performance of various instructions, see Table 3-1.

Invalid branch
instruction forms

Bits marked with z in the BO encoding definition default to z = 0 and are discarded by the core
decoding. Thus, these instructions yield results of defined instructions for which z = 0. If the
decrement and test CTR option is specified for the bcctr or bcctrl instructions, the target address
of the branch is the new value of the CTR. Condition is evaluated correctly, including the value of
the counter after decrement.

Branch prediction The core uses the y bit to predict path for prefetch. Prediction is only done for not-ready branch
conditions. No prediction is done for branches to the link or count register if the target address is
not ready (see Table 3-1.).

Integer processor The core implements the following integer instructions:
 • Arithmetic instructions
 • Compare instructions
 • Trap instructions
 • Logical instructions
 • Rotate and shift instructions

Move to/from
SPR instructions

Move to/from invalid SPRs in which SPR[0] = 1 invokes the privileged instruction error exception
handler if the processor is in user mode.

Integer arithmetic
instructions

Attempting to use divw to perform either 0x80000000 ÷ -1 or <anything> ÷ 0 sets the contents of
rD to 0x80000000 and if Rc =1, the contents CR0 are LT = 1, GT = 0, and EQ = 0. SO is set to the
correct value.
In the cmpi, cmp, cmpli, and cmpl instructions, the L bit is applicable for 64-bit implementations.
For the MPC855T, if L = 1 the instruction form is invalid. The core ignores this bit and, therefore,
the behavior when L = 1 is identical to the valid form instruction with L = 0.

Integer load/store
with update
instructions

For load with update and store with update instructions where rA = 0, the EA is written into r0. For
load with update instructions where rA = rD, rA is boundedly undefined.

Chapter 3. The MPC8xx Core

The MPC855T and Implementation of the PowerPC Architecture

Table 3-4 summarizes MPC855T features with respect to the VEA definition.

Integer load/ store
multiple
instructions

For these types of instructions, EA must be a multiple of four. If it is not, the system alignment error
handler is invoked. For an lmw instruction (if rA is in the range of registers to be loaded), the
instruction completes normally. rA is then loaded from the memory location as follows:
rA <- MEM(EA+(rA-rD)*4, 4)

Integer load string
instructions

Load string instructions behave like load multiple instructions with respect to invalid format in which
rA is in the range of registers to be loaded. If rA is in the range, it is updated from memory.

Memory
synchronization
instructions

For these instructions, if EA is not a multiple of four, the system alignment error handler is invoked.

Optional
instructions

No optional instructions are supported.

Little-endian byte
ordering

The LSU supports little-endian byte ordering as specified in the UISA. In little-endian mode, trying
to execute an unaligned individual scalar or multiple/string access causes an alignment exception.

Table 3-4. VEA-Level Features

Functionality Description

Memory
coherency

Memory coherency is not supported in the MPC855T hardware, but can be performed in the software
or by defining memory as cache inhibited. In addition, the MPC855T does not provide any data storage
attributes to an external system.

Atomic update
primitives

Both the lwarx and stwcx. instructions are implemented according to the PowerPC architecture
requirements. When memory accessed by the lwarx and stwcx. instructions is in the cache-allowed
mode, it is assumed that the system works with the single master in this memory region. Therefore, if
a data cache miss occurs, the access on the internal and external buses does not have a reservation
attribute. The MPC855TMPC855T does not cause the system DSI exception handler to be invoked if
memory accessed by the lwarx and stwcx. instructions is in write-through required mode. Also, the
MPC855T does not support snooping an external bus activity outside the chip. The provision is made
to cancel the reservation inside the MPC855T by using the CR and KR input signals. For accesses to
internal resources, internal snoop logic monitors the internal bus for communication processor module
(CPM) accesses of the address associated with the last lwarx instruction.

The effect of
operand
placement on
performance

The LSU hardware supports all PowerPC integer load/store instructions. Naturally-aligned operands
give optimal performance for a maximum size of four bytes. Unaligned operands are supported in
hardware and are broken into a series of aligned transfers. The effect of operand placement on
performance is as stated in the VEA, except for 8-byte operands. Because the MPC855T uses a 32-bit
data bus, performance is good rather than optimal. See Section 3.6.3.5, “Unaligned Accesses for a
description of integer unaligned instruction execution and timing and to Section 9.2.2, “String
Instruction Latency,” for a description of string instruction timing.

Table 3-3. UISA-Level Features (continued)

Functionality Description

MPC855T User’s Manual

The MPC855T and Implementation of the PowerPC Architecture

Table 3-5 summarizes MPC855T features with respect to the OEA definition.

Memory
control
instructions

The MPC855T interprets cache control instructions as if they pertain only to the MPC855T cache.
These instructions do not broadcast. Any bus activity caused by these instructions results from an
operation performed on the MPC855T cache and not because of the instruction itself.
 • •Instruction Cache Block Invalidate (icbi)—The MMU translates the EA and the associated

instruction cache block is invalidated if hit.
 • •Instruction Synchronize (isync)—The isync instruction waits for all previous instructions to

complete and then discards any prefetched instructions, causing subsequent instructions to be
fetched or refetched from memory and executed.

 • •Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst)—The appropriate
cache block is checked for a hit. If it is a miss, the instruction is treated as a regular miss, except
that bus error does not cause an exception. If no error occurs, the cache is updated.

 • •Data Cache Block Set to Zero (dcbz)—Executes as defined in the VEA.
 • •Data Cache Block Store (dcbst)—Executes as defined in the VEA.
 • •Data Cache Block Invalidate (dcbi)—The MMU translates the EA and the associative data cache

block is invalidated if hit.
 • •Data Cache Block Flush (dcbf)—Executes as defined in the VEA.
 • •Enforce In-Order Execution of I/O (eieio)—When executing an eieio instruction, the LSU waits for

previous accesses to terminate before beginning accesses associated with load/store instructions
after the eieio instruction.

Time base The time base functions as defined by the VEA and supports an additional implementation-specific
exception. The time base is described in Chapter 10, “System Interface Unit,” and in Chapter 14,
“Clocks and Power Control.”

Table 3-5. OEA-Level Features

Functionality Description

Machine state
register

The floating-point exception mode (bits FE0 and FE1) is ignored by the MPC855T. The IP bit initial
state after reset is set as programmed by the reset configuration specified in Section 6.1.2.1, “System
Reset Interrupt (0x00100).”

Processor
version register

The value of the PVR register’s version field is 0x0050. The value of the revision field is 0x0000 and
it is incremented each time the software distinguishes between the revisions.

Other OEA
registers

The following registers are not implemented: SDR1, BAT registers, segment registers, and EAR

Page size The MPC855T differs from the OEA-defined memory management mode with respect to page sizes.
Page sizes are 4, 16, and 512 Kbytes, and 8 Mbytes with an optional subpage granularity of 1 Kbyte
for 4-Kbyte pages in a maximum physical memory size of 4 Gbytes. Neither ordinary or direct-store
segments are supported.

Address space The MPC855T differs from the OEA-defined memory management model. Specifically, it does not
support the same address translation mechanism that requires an intermediate 52-bit virtual
address. It also does not support block address translation or the associated block address
translation SPRs. In its place, the MPC855T’s internal memory space includes memory-mapped
control registers and memory used by various modules on the chip. This memory is part of the main
memory as seen by the core but cannot be accessed by any external system device.

Table 3-4. VEA-Level Features (continued)

Functionality Description

Chapter 3. The MPC8xx Core

The MPC855T and Implementation of the PowerPC Architecture

Address
translation

If address translation is disabled (MSR[IR] = 0 for instruction accesses or MSR[DR] = 0 for data
accesses), the EA is treated as the physical address and is passed directly to the memory
subsystem. Otherwise, the EA is translated by using the MMU’s TLB mechanism. Instructions are not
fetched from no-execute or guarded memory and data accesses are not executed speculatively to or
from the guarded memory. The features of the MMU hardware are as follows:
 • 8entry fully associative ITLB
 • 8-entry fully associative DTLB
 • Supports up to 16 virtual address spaces
 • Supports 16 access protection groups
 • Supports fast software table search mechanism
The MPC855T MMU is described in detail in Chapter 8, “Memory Management Unit.”

Reference and
change bits

No reference bit is supported by the MPC855T. However, the change bit is supported by using the
data TLB error exception mechanism when writing to an unmodified page.

Memory
protection

Two protection modes are supported by the MPC855T:
 • Domain manager mode
 • PowerPC mode
See Chapter 8, “Memory Management Unit.”

Table 3-5. OEA-Level Features (continued)

Functionality Description

MPC855T User’s Manual

The MPC855T and Implementation of the PowerPC Architecture

Chapter 4. MPC8xx Core Register Set

Chapter 4
MPC8xx Core Register Set
This chapter describes the software-accessible registers implemented on the MPC855T.
These include registers that are defined by the PowerPC architecture and registers that are
specific to the MPC855T. This section does not include registers that are part of the
communication processor module (CPM); these registers are described in Part V,
“Communications Processor Module.” Refer to the Programming Environments Manual
for 32-Bit Implementations of the PowerPC Architecture for more information about the
architecture’s register definition.

4.1 MPC855T Register Implementation
Registers implemented in the MPC855T core can be grouped as follows:

• Two types of registers as defined by the PowerPC architecture.

— User registers, which can be accessed by user-level software. All PowerPC
user-level registers are defined by the user instruction set architecture (UISA)
except for the time base registers, which can be read by user-level software and
are defined by the virtual environment architecture (VEA). User registers are
described in Section 4.1.1, “PowerPC Registers—User Registers.”

— Supervisor registers, which can be accessed by supervisor software and in some
cases are the automatic result of hardware activity, such as when an exception is
taken and when the system is reset. All supervisor registers are defined by the
operating environment architecture (OEA), except the time base registers, which
can be written to only by supervisor software and are defined by the VEA.
PowerPC supervisor registers are described in Section 4.1.2, “PowerPC
Registers—Supervisor Registers.”

The UISA, VEA, and OEA architecture definitions are described in Section 3.2.1,
“Levels of the PowerPC Architecture.”

• MPC855T-specific registers. These registers are either supervisor-level registers or
debug registers. These are described briefly in Section 4.1.3, “MPC855T-Specific
SPRs,” Table 4-9 and Table 2-1 provide cross references to the sections in this book
where each register is described.

MPC855T User’s Manual

MPC855T Register Implementation

4.1.1 PowerPC Registers—User Registers

The MPC855T implements the user-level registers defined by the PowerPC architecture
except those required for supporting floating-point operations (the floating-point register
file (FPRs) and the floating-point status and control register (FPSCR)). User-level,
PowerPC registers are listed in Table 4-1 and Table 4-2. Table 4-2 lists user-level
special-purpose registers (SPRs).

Table 4-2 lists SPRs defined by the PowerPC architecture implemented on the MPC855T.

4.1.1.1 PowerPC User-Level Register Bit Assignments

This section describes bit assignments of PowerPC registers implemented by the
MPC855T. For more details, see the Programming Environments Manual for 32-Bit
Processors.

Table 4-1. User-Level PowerPC Registers

Description Name Comments Access Level Serialize Access

General-purpose
registers

GPRs The thirty-two 32-bit (GPRs) are used for source
and destination operands.

User —

Condition register CR See Section 4.1.1.1.1, “Condition Register (CR).” User Only mtcrf

Table 4-2. User-Level PowerPC SPRs

SPR Number
Name Comments Serialize Access

Decimal SPR [5–9] SPR [0–4]

1 00000 00001 XER See Section 4.1.1.1.3,
“XER.”

Write: Full sync
Read: Sync relative to load/store operations

8 00000 01000 LR See the Programming
Environments Manual

No

9 00000 01001 CTR See the Programming
Environments Manual

No

268 01000 01100 TBL read 1

1 Extended opcode for mftb, 371 rather than 339.

Section 10.9, “The
Timebase.”

Write (as a store)

269 01000 01101 TBU read 2

2 Any write (mtspr) to this address causes an implementation-dependent software emulation exception.

Chapter 4. MPC8xx Core Register Set

MPC855T Register Implementation

4.1.1.1.1 Condition Register (CR)

The condition register (CR) is a 32-bit register that reflects the result of certain operations
and provides a mechanism for testing and branching. The bits in the CR are grouped into
eight 4-bit fields, CR0–CR7, as shown in Figure 4-1.

Figure 4-1. Condition Register (CR)

The CR fields can be set in one of the following ways:

• Specified fields of the CR can be set from a GPR by using the mtcrf instruction.
• An mcrf instruction can move the contents of XER[0–3] to a CR field.
• An mcrxr instruction can copy a specified XER field to a specified CR field.
• Condition register logical instructions perform logical operations on specified CR

bits.
• CR0 can be the implicit result of an integer instruction.
• A specified CR field can indicate the result of an integer compare instruction.

Note that branch instructions are provided to test individual CR bits.

4.1.1.1.2 Condition Register CR0 Field Definition

For all integer instructions, when the CR is set to reflect the result of the operation (that is,
when Rc = 1), and for addic., andi., and andis., CR0[0–2] are set by an algebraic
comparison of the result to zero; CR0[3] is copied from XER[SO]. For integer instructions,
CR[0–3] reflects the result as a signed quantity.

The CR bits are interpreted as shown in Table 4-3. If any portion of the result is undefined,
the value placed into CR0[0–3] is undefined.

Note that CR0 may not reflect the true (that is, infinitely precise) result if overflow occurs.

Table 4-3. Bit Settings for CR0 Field of CR

CR0 Bit Description

0 Negative (LT). Set when the result is negative.

1 Positive (GT). Set when the result is positive (and not zero).

2 Zero (EQ). Set when the result is zero.

3 Summary overflow (SO). This is a copy of the final state of XER[SO] at the completion of the instruction.

CR0

0 3

CR1

4 7

CR2

8 11

CR3

12 15

CR4

16 19

CR5

20 23

CR6

24 27

CR7

28 31

MPC855T User’s Manual

MPC855T Register Implementation

4.1.1.1.3 XER

Figure 4-2 shows XER bit assignments. Settings are based on the final result produced by
executing an instruction.

XER bits are described in Table 4-4.

Although divide instructions have a relatively long latency, they can update XER[OV] after
one cycle. Therefore, data dependency on the XER is limited to one cycle, although the
divide instruction latency can be a maximum of 11 clocks.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field SO OV CA —

Reset 0000_0000_0000_0000

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — BCNT

Reset 0000_0000_0000_0000

R/W R/W

Figure 4-2. XER Register

Table 4-4. XER Field Definitions

Bit(s) Name Description

0 SO Summary overflow. Set when an instruction (except mtspr) sets the overflow bit (OV). Once set, SO
remains set until it is cleared by an mtspr(XER) or an mcrxr instruction. It is not altered by compare
instructions or other instructions (except mtspr(XER) and mcrxr) that cannot overflow.

1 OV Overflow. Set to indicate that an overflow occurred during execution of an instruction. Add, subtract
from, and negate instructions with OE = 1 set OV if the carry out of the msb is not equal to the carry
out of the msb + 1 and clear it otherwise. Multiply low and divide instructions with OE = 1 set OV if
the result cannot be represented in 32 bits (mullw, divw, divwu) and clear it otherwise. The OV bit
is not altered by compare instructions that cannot overflow (except mtspr(XER) and mcrxr).

2 CA Carry. Set during execution of the following instructions:
 • •Add carrying, subtract from carrying, add extended, and subtract from extended instructions set

CA if there is a carry out of the msb, and clear it otherwise.
 • • Shift right algebraic instructions set CA if any 1 bits have been shifted out of a negative operand,

and clear it otherwise.
The CA bit is not altered by compare instructions, nor by other instructions that cannot carry (except
shift right algebraic, mtspr(XER), and mcrxr).

3–24 — Reserved

25–31 BCNT Specifies the number of bytes to be transferred by a Load String Word Indexed (lswx) or Store String
Word Indexed (stswx) instruction.

Chapter 4. MPC8xx Core Register Set

MPC855T Register Implementation

4.1.1.1.4 Time Base Registers

The time base registers (TBU and TBL) are described in Section 10.9, “The Timebase,” and
in Chapter 14, “Clocks and Power Control.” The PowerPC architecture does not define an
exception associated directly with the time base, but one is implemented in the MPC855T.

4.1.2 PowerPC Registers—Supervisor Registers
All supervisor-level registers implemented on the MPC855T are SPRs, except for the
machine state register (MSR), described in Table 4-5.

Table 4-6 lists supervisor-level SPRs defined by the PowerPC architecture.

Table 4-5. Supervisor-Level PowerPC Registers

Description Name Comments Serialize Access

Machine state register MSR See Section 4.1.2.3.1, “Machine State Register (MSR).” Write fetch sync

Table 4-6. Supervisor-Level PowerPC SPRs

SPR Number
Name Comments Serialize Access

Decimal SPR[5–9] SPR[0–4]

18 00000 10010 DSISR See the Programming Environments
Manual and Section 4.1.2.1, “DAR,
DSISR, and BAR Operation.”

Write: Full sync
Read: Sync relative to
load/store operations

19 00000 10011 DAR See the Programming Environments
Manual and Section 4.1.2.1, “DAR,
DSISR, and BAR Operation.”

Write: Full sync
Read: Sync relative to
load/store operations

22 00000 10110 DEC See Section 10.8.1, “Decrementer
Register (DEC),” and in Chapter 14,
“Clocks and Power Control”

Write

26 00000 11010 SRR0 See SRR0 settings for individual
exceptions in Chapter 6, “Exceptions.”

Write

27 00000 11011 SRR1 See SRR1 settings for individual
exceptions in Chapter 6, “Exceptions.”

Write

272 01000 10000 SPRG0 See the Programming Environments
Manual.

Write

273 01000 10001 SPRG1

274 01000 10010 SPRG2

275 01000 10011 SPRG3

284 01000 11100 TBL write 1

1 Any read (mftb) to this address causes an implementation-dependent software emulation exception.

See Section 10.9, “The Timebase,”
and Chapter 14, “Clocks and Power
Control.”

Write (as a store)

285 01000 11101 TBU write1

287 01000 11111 PVR Section 4.1.2.3.2, “Processor Version
Register.”

No (read-only register)

MPC855T User’s Manual

MPC855T Register Implementation

4.1.2.1 DAR, DSISR, and BAR Operation
The LSU updates the DAR, DSISR, and BAR when an exception is taken.

• When a bus error occurs, the data address register (DAR) is loaded with the effective
address. For instructions that generate multiple accesses, the effective address of the
first offending tenure is loaded.

• The DSI status register (DSISR) notifies the error handler when an exception is
caused by a load or store. For a data MMU error, the data MMU loads the DSISR
with error status. For alignment exceptions, the DSISR is loaded with the instruction
information as defined by the PowerPC architecture.

• The breakpoint address register (BAR) notifies the address on which a data
breakpoint occurred. For a multiple-cycle instruction, the BAR contains the address
of the first cycle with which the breakpoint condition was associated. The BAR has
a valid value only when a data breakpoint exception is taken. At any other time, its
value is boundedly undefined (this term is defined very specifically by the PowerPC
architecture and is discussed in the Programming Environments Manual).

The following situations cause the DAR, BAR, and DSISR registers to be updated.

4.1.2.2 Unsupported Registers
The MPC855T does not support the following OEA registers:

• DBATs and IBATs —The MPC855T does not support block address translation.
• EAR—The MPC855T does not support the optional external access facility.
• SDR1—The MPC855T does not support memory segments.
• Segment registers—The MPC855T does not support memory segments.

4.1.2.3 PowerPC Supervisor-Level Register Bit Assignments

This section describes bit assignments of supervisor-level PowerPC registers implemented
by the MPC855T. For more details, see the Programming Environments Manual for 32-Bit
Processors.

Table 4-7. Value Summary of the DAR, BAR, and DSISR Registers

Exception Type DAR Value DSISR Value BAR Value

DSI Cycle EA Data MMU error status Undefined

Alignment Data EA Instruction information Undefined

Data breakpoint Does not change Does not change Cycle EA

Machine check Cycle EA Instruction information Undefined

Software emulation exception Does not change Does not change Undefined

Floating-point unavailable Does not change Does not change Undefined

Program exception Does not change Does not change Does not change

Chapter 4. MPC8xx Core Register Set

MPC855T Register Implementation

4.1.2.3.1 Machine State Register (MSR)

The 32-bit machine state register (MSR) is used to configure such parameters as the
privilege level, whether translation is enabled, and the endian-mode. It can be read by the
mfmsr instruction and modified by the mtmsr, sc, and rfi instructions.

When an exception is taken, most MSR bits are saved in the SRR1 and the MSR is
reconfigured with the state of the exception handler using the values in Figure 4-3. This
process is described in Section 6.1.6, “Exception Latency.”

After a hard reset, MSR[IP] takes the value specified in hard reset configuration word. See
Section 11.3.1.1, “Hard Reset Configuration Word.” MSR bits are described in Table 4-8.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — POW — ILE

Reset 0000_0000_0000_0000

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field EE PR FP ME — SE BE — IP IR DR — RI LE

Reset 0 0 0 0 0 0 0 0 0 — 0 0 — 0 0

R/W R/W

Figure 4-3. Machine State Register (MSR)

Table 4-8. MSR Field Descriptions

Bit(s) Name Description

0–12 — Reserved

13 POW Power management enable
0 Power management disabled (normal operation mode)
1 Power management enabled (reduced power mode)
Note: Power management functions are implementation-dependent; see Section 14.5, “Power Control
(Low-Power Modes).”

14 — Reserved

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select the
endian mode for the context established by the exception.

16 EE 1 External interrupt enable
0 The processor delays recognition of external and decrementer interrupt conditions.
1 The processor is enabled to take an external or decrementer interrupt.

17 PR1 Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP1 Floating-point available.
0 The processor prevents dispatch of floating-point instructions, including floating-point loads, stores,

and moves.
1 The processor can execute floating-point instructions. (This setting is invalid on the MPC855T)

MPC855T User’s Manual

MPC855T Register Implementation

4.1.2.3.2 Processor Version Register

The value of the PVR register’s version field is 0x0050. The value of the revision field is
incremented each time the core is revised.

19 ME1 Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 — Reserved

21 SE1 Single-step trace enable (Optional)
0 The processor executes instructions normally.
1 A single-step trace exception is generated when the next instruction executes successfully.
Note: If the function is not implemented, SE is treated as reserved.

22 BE1 Branch trace enable (Optional)
0 The processor executes branch instructions normally.
1 The processor generates a branch trace exception after completing the execution of a branch

instruction, regardless of whether the branch was taken.
Note: If the function is not implemented, this bit is treated as reserved.

23–24 — Reserved

25 IP Exception prefix. The setting of IP specifies whether an exception vector offset is prepended with Fs
or 0s. In the following description, nnnnn is the offset of the exception vector. See Table 6-1.
0 Exceptions are vectored to the physical address 0x000n_nnnn
1 Exceptions are vectored to the physical address 0xFFFn_nnnn
The reset value of IP is determined by the IIP bit (bit 2) in the hard reset configuration word. See
Section 11.3.1.1, “Hard Reset Configuration Word.” Subsequent soft resets cause IP to revert to the
value latched during hard reset configuration.

26 IR1 Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information, see Chapter 8, “Memory Management Unit.”

27 DR1 Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information, see Chapter 8, “Memory Management Unit.”

28–29 — Reserved

30 RI1 Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.
1 Exception is recoverable.
For more information, see Chapter 6, “Exceptions.”

31 L E1 Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

1 These bits are loaded into SRR1 when an exception is taken. These bits are written back into the MSR when an rfi
is executed.

Table 4-8. MSR Field Descriptions (continued)

Bit(s) Name Description

Chapter 4. MPC8xx Core Register Set

MPC855T Register Implementation

4.1.3 MPC855T-Specific SPRs

Table 4-2 and Table 4-9 list SPRs specific to the MPC855T. Debug registers, which have
additional protection, are described in Chapter 44, “System Development and Debugging.”
Supervisor-level registers are described in Table 4-9.

Table 4-9. MPC855T-Specific Supervisor-Level SPRs

SPR Number
Name Comments Serialize Access

Decimal SPR[5–9] SPR[0–4]

80 00010 10000 EIE See Section 6.1.5, “Recoverability
after an Exception.”

Write

81 00010 10001 EID — Write

82 00010 10010 NRI — Write

631 10011 10111 DPIR 1 — Fetch-only

638 10011 11110 IMMR Section 10.4.1, “Internal Memory Map
Register (IMMR).”

Write (as a store)

560 10001 10000 IC_CST Section 7.3.1, “Instruction Cache
Control Registers”

Write (as a store)

561 10001 10001 IC_ADR Section 7.3.1, “Instruction Cache
Control Registers””

Write (as a store)

562 10001 10010 IC_DAT Section 7.3.1, “Instruction Cache
Control Registers””

Write (as a store)

568 10001 11000 DC_CST Section 7.3.2, “Data Cache Control
Registers”

Write (as a store)

569 10001 11001 DC_ADR Section 7.3.2, “Data Cache Control
Registers”

Write (as a store)

570 10001 11010 DC_DAT Section 7.3.2, “Data Cache Control
Registers”

Write (as a store)

784 11000 10000 MI_CTR Section 8.8.1, “IMMU Control Register
(MI_CTR)”

Write (as a store)

786 11000 10010 MI_AP Section 8.8.10, “MMU Access
Protection Registers
(MI_AP/MD_AP)”

Write (as a store)

787 11000 10011 MI_EPN Section 8.8.3, “IMMU/DMMU Effective
Page Number Register (Mx_EPN)”

Write (as a store)

789 11000 10101 MI_TWC
(MI_L1DL2P)

Section 8.8.4, “IMMU Tablewalk
Control Register (MI_TWC)

Write (as a store)

790 11000 10110 MI_RPN Section 8.8.6, “IMMU Real Page
Number Register (MI_RPN)”

Write (as a store)

816 11001 10000 MI_CAM Section 8.8.12.1, “IMMU CAM Entry
Read Register (MI_CAM)”

Write (as a store)

817 11001 10001 MI_RAM0 Section 8.8.12.2, “IMMU RAM Entry
Read Register 0 (MI_RAM0)”

Write (as a store)

MPC855T User’s Manual

MPC855T Register Implementation

Debug-level registers are described in Table 4-10. These registers are described in
Section 44.5.1, “Development Support Registers.”

818 11001 10010 MI_RAM1 Section 8.8.13, “DMMU RAM Entry
Read Register 1 (MD_RAM1)”

Write (as a store)

792 11000 11000 MD_CTR Section 8.8.2, “DMMU Control
Register (MD_CTR).”

Write (as a store)

793 11000 11001 M_CASID Section 8.8.9, “MMU Current Address
Space ID Register (M_CASID)”

Write (as a store)

794 11000 11010 MD_AP Section 8.8.10, “MMU Access
Protection Registers
(MI_AP/MD_AP)”

Write (as a store)

795 11000 11011 MD_EPN Section 8.8.3, “IMMU/DMMU Effective
Page Number Register (Mx_EPN)”

Write (as a store)

796 11000 11100 M_TWB
(MD_L1P)

Section 8.8.8, “MMU Tablewalk Base
Register (M_TWB)”

Write (as a store)

797 11000 11101 MD_TWC
(MD_L1DL2P)

Section 8.8.5, “DMMU Tablewalk
Control Register (MD_TWC)”

Write (as a store)

798 11000 11110 MD_RPN Section 8.8.7, “DMMU Real Page
Number Register (MD_RPN)”

Write (as a store)

799 11000 11111 M_TW (M_SAVE) Section 8.8.11, “MMU Tablewalk
Special Register (M_TW)”

Write (as a store)

824 11001 11000 MD_CAM Section 8.8.12.4, “DMMU CAM Entry
Read Register (MD_CAM)”

Write (as a store)

825 11001 11001 MD_RAM0 Section 8.8.12.5, “DMMU RAM Entry
Read Register 0 (MD_RAM0)”

Write (as a store)

826 11001 11010 MD_RAM1 Section 8.8.13, “DMMU RAM Entry
Read Register 1 (MD_RAM1)”

Write (as a store)

1 Fetch-only register; mtspr is ignored; using mfspr gives an undefined value.

Table 4-10. MPC855T-Specific Debug-Level SPRs

SPR Number
Name Serialize Access

Decimal SPR[5–9] SPR[0–4]

144 00100 10000 CMPA Fetch sync on write

145 00100 10001 CMPB Fetch sync on write

146 00100 10010 CMPC Fetch sync on write

147 00100 10011 CMPD Fetch sync on write

148 00100 10100 ICR Fetch sync on write

Table 4-9. MPC855T-Specific Supervisor-Level SPRs (continued)

SPR Number
Name Comments Serialize Access

Decimal SPR[5–9] SPR[0–4]

Chapter 4. MPC8xx Core Register Set

MPC855T Register Implementation

4.1.3.1 Accessing SPRs

All SPRs are accessed using the mtspr and mfspr instructions, regardless of whether they
are within the processor core. To access registers outside of the core, an internal bus tenure
occurs using the address lines as described in Table 4-11.

Address errors in this tenure cause a software emulation exception.

149 00100 10101 DER Fetch sync on write

150 00100 10110 COUNTA Fetch sync on write

151 00100 10111 COUNTB Fetch sync on write

152 00100 11000 CMPE Write: Fetch sync
Read: Sync relative to load/store operations

153 00100 11001 CMPF Write: Fetch sync
Read: Sync relative to load/store operations

154 00100 11010 CMPG Write: Fetch sync
Read: Sync relative to load/store operations

155 00100 11011 CMPH Write: Fetch sync
Read: Sync relative to load/store operations

156 00100 11100 LCTRL1 Write: Fetch sync
Read: Sync relative to load/store operations

157 00100 11101 LCTRL2 Write: Fetch sync
Read: Sync relative to load/store operations

158 00100 11110 ICTRL Fetch sync on write

159 00100 11111 BAR Write: Fetch sync
Read: Sync relative to load/store operations. See
Section 4.1.2.1, “DAR, DSISR, and BAR Operation.”

630 10011 10110 DPDR Read and Write

Table 4-11. Addresses of SPRs Located Outside of the Core

Address Lines

0–17 18–22 23–27 28–31

0...0 SPR[0–4] SPR[5–9] 0000

Table 4-10. MPC855T-Specific Debug-Level SPRs (continued)

SPR Number
Name Serialize Access

Decimal SPR[5–9] SPR[0–4]

MPC855T User’s Manual

Register Initialization at Reset

4.2 Register Initialization at Reset
This section describes how basic registers are set under reset conditions, other register
settings are described in Chapter 7, “Instruction and Data Caches,” and Chapter 8,
“Memory Management Unit.”

A system reset interrupt occurs when a nonmaskable interrupt is generated either by the
software watchdog timer or the assertion of IRQ0. The only registers affected by the system
reset interrupt are MSR, SRR0, and SRR1; no other reset activity occurs. Section 6.1.2.1,
“System Reset Interrupt (0x00100),” describes values for these registers after system reset.

When a hard or soft reset occurs, registers are set in the same way, as follows:

• SRR0, SRR1—Set to an undefined value.
• MSR[IP]—Programmable through the IIP bit in the hard reset configuration word.
• MSR[ME]—Cleared.
• ICTRL—Cleared.
• LCTRL1—Cleared.
• LCTRL2—Cleared.
• COUNTA[16–31]—Cleared.
• COUNTB[16–31]—Cleared.
• ICR—Cleared (no exception occurred).
• DER[2,14,28–31]—Set (all debug-specific exceptions cause debug mode entry).

Reset values for memory-mapped registers are provided with individual register
descriptions throughout this manual.

Chapter 5. MPC855T Instruction Set

Chapter 5
MPC855T Instruction Set
This chapter describes the instructions implemented by the MPC855T. These instructions
are organized by the level of architecture in which they are implemented—UISA, VEA, and
OEA. These levels are described in Section 3.2.1, “Levels of the PowerPC Architecture.”

5.1 Operand Conventions
This section describes the operand conventions as they are represented in two levels of the
architecture. It also provides detailed descriptions of conventions used for storing values in
registers and memory, accessing the MPC855T’s registers, and representation of data in
these registers.

5.1.1 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and move assist instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).

5.1.2 Aligned and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 5-1 (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands.).

MPC855T User’s Manual

Instruction Set Summary

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Any memory access that crosses an alignment boundary must be broken into multiple
discrete accesses. For the case of string accesses, the hardware makes no attempt to get
aligned in an effort to reduce the number of discrete accesses. (Multiword accesses are
architecturally required to be aligned.) The resulting performance degradation depends
upon how well each individual access behaves with respect to the memory hierarchy. At a
minimum, additional cache access cycles are required. More dramatically, for the case of
access to a noncacheable page, each discrete access involves an individual bus operation
which will reduce the effective bandwidth of the bus.

The frequent use of misaligned accesses is discouraged since they can compromise the
overall performance of the processor.

5.2 Instruction Set Summary
This section describes instructions and addressing modes defined for the MPC855T. These
instructions are divided into the following functional categories:

• Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 5.2.4.1, “Integer Instructions.”

• Load and store instructions—These include integer load and store instructions only.
For more information, see Section 5.2.4.2, “Load and Store Instructions.”

• Flow control instructions—These include branching instructions, condition register
logical instructions, and other instructions that affect the instruction flow. For more
information, see Section 5.2.4.3, “Branch and Flow Control Instructions.”

• Trap instructions—These instructions are used to test for a specified set of
conditions; see Section 5.2.4.4, “Trap Instructions,” for more information.

• Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches and TLBs. For more information, see
Sections 5.2.4.5, 5.2.5.1, and 5.2.6.2.

Table 5-1. Memory Operands

Operand Length Addr[28–31] If Aligned

Byte 8 bits xxxx

Half word 2 bytes xxx0

Word 4 bytes xx00

Double word 8 bytes x000

Quad word 16 bytes 0000

Note: An “x” in an address bit position indicates that the bit can be 0 or 1
independent of the state of other bits in the address.

Chapter 5. MPC855T Instruction Set

Instruction Set Summary

• Memory synchronization instructions—These instructions are used for memory
synchronizing. See Sections 5.2.4.6 and 5.2.5.2 for more information.

• Memory control instructions—These instructions provide control of caches, and
TLBs. For more information, see Sections 5.2.5.3 and 5.2.6.3.

• System linkage instructions—For more information, see Section 5.2.6.1, “System
Linkage Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful
in taking full advantage of the MPC855T’s parallel instruction execution, is provided in
Chapter 8, “Instruction Set,” in The Programming Environments Manual.

Integer instructions operate on word operands. The architecture uses instructions that are
four bytes long and word-aligned. It provides for byte, half word, and word operand loads
and stores between memory and a set of 32 general-purpose registers (GPRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics (extended
mnemonics in the architecture specification) and symbols is provided for some of the
frequently-used instructions; see Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonic examples.

5.2.1 Classes of Instructions
The MPC855T instructions belong to one of the following three classes:

• Defined
• Illegal
• Reserved

Note that while the definitions of these terms are consistent among the MPC8xx processors,
the assignment of these classifications is not. For example, an instruction that is specific to
64-bit implementations is considered defined for 64-bit implementations but illegal for
32-bit implementations such as the MPC855T.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

MPC855T User’s Manual

Instruction Set Summary

In future versions of the architecture, instruction codings that are now illegal may become
assigned to instructions in the architecture, or may be reserved by being assigned to
processor-specific instructions.

5.2.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

5.2.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all MPC8xx implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” in The
Programming Environments Manual. The MPC855T provides hardware support for all
instructions defined for 32-bit implementations, except floating-point instructions.

An MPC8xx processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented instructions are encountered so they may be emulated
in software, as required.

A defined instruction can have invalid forms, as described in the following section.

5.2.1.3 Illegal Instruction Class
Illegal instructions can be grouped into the following categories:

• Instructions that are not implemented in the architecture. These opcodes are
available for future extensions of the architecture; that is, future versions of the
architecture may define any of these instructions to perform new functions.

The following primary opcodes are defined as illegal but may be used in future
extensions to the architecture:

1, 4, 5, 6, 9, 22, 56, 57, 60, 61

• Instructions that are not implemented in a specific MPC8xx implementation. For
example, instructions that can be executed on 64-bit processors are considered
illegal by 32-bit processors.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on the MPC855T:

2, 30, 58, 62

Chapter 5. MPC855T Instruction Set

Instruction Set Summary

• All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” in
the Programming Environments Manual and Section 5.2.1.4, “Reserved Instruction
Class.” Notice that extended opcodes for instructions that are defined only for 64-bit
implementations are illegal in 32-bit implementations, and vice versa.

The following primary opcodes have unused extended opcodes.

17, 19, 31, 59, 63 (primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes)

• An instruction consisting entirely of zeros is guaranteed to be an illegal instruction.
This increases the probability that an attempt to execute data or uninitialized
memory invokes the system illegal instruction error handler (a program exception).
Note that if only the primary opcode consists of all zeros, the instruction is
considered a reserved instruction. This is further described in Section 5.2.1.4,
“Reserved Instruction Class.”

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a
program exception) but has no other effect. See Section 6.1.2.7, “Program Exception
(0x00700),” for additional information about illegal and invalid instruction exceptions.

With the exception of the instruction consisting entirely of binary zeros, the illegal
instructions are available for further additions to the architecture.

5.2.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the architecture. An attempt to execute an unimplemented reserved instruction
invokes the illegal instruction error handler (a program exception). See Section 6.1.2.7,
“Program Exception (0x00700),” for additional information about illegal and invalid
instruction exceptions.

The following types of instructions are included in this class:

• Implementation-specific instructions

• Optional instructions defined by the architecture but not implemented by the
MPC855T (for example, Floating Square Root (fsqrt) and Floating Square Root
Single (fsqrts) instructions)

5.2.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses. For more detailed information, see “Conventions,” in
Chapter 4, “Addressing Modes and Instruction Set Summary,” of Programming
Environments Manual.

MPC855T User’s Manual

Instruction Set Summary

5.2.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

5.2.2.2 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

• Register indirect with immediate index mode
• Register indirect with index mode
• Register indirect mode

Refer to Section 5.2.4.2.1, “Integer Load and Store Address Generation,” for further
discussion of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

• Immediate
• Link register indirect
• Count register indirect

Refer to Section 5.2.4.3.1, “Branch Instruction Address Calculation,” for further discussion
of branch instruction effective address generation.

5.2.2.3 Synchronization

The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

5.2.2.3.1 Context Synchronization
The System Call (sc) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
a change in context. Execution of one of these instructions ensures the following:

• No higher priority exception exists (sc).

Chapter 5. MPC855T Instruction Set

Instruction Set Summary

• All previous instructions have completed to a point where they can no longer cause
an exception.

• Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The instructions following the sc or rfi instruction execute in the context established
by these instructions.

5.2.2.3.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of the Synchronize (sync)
and Instruction Synchronize (isync) instructions, before the instruction completes. For
example, the Move to Machine State Register (mtmsr) instruction is execution
synchronizing. It ensures that all preceding instructions have completed execution and will
not cause an exception before the instruction executes, but does not ensure subsequent
instructions execute in the newly established environment. For example, if the mtmsr sets
the MSR[PR] bit, unless an isync immediately follows the mtmsr instruction, a privileged
instruction could be executed or privileged access could be performed without causing an
exception even though the MSR[PR] bit indicates user mode.

5.2.2.3.3 Instruction-Related Exceptions

There are two kinds of exceptions in the MPC855T—those caused directly by the execution
of an instruction and those caused by an asynchronous event. Either may cause components
of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

• An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The MPC855T provides the following
supervisor-level instructions—dcbi, mfmsr, mfspr, mtmsr, mtspr, rfi, tlbie, and
tlbsync. Note that the privilege level of the mfspr and mtspr instructions depends
on the SPR encoding.

• An attempt to access memory that is not available (page fault) causes the ISI
exception handler to be invoked.

• An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked. See
Section 6.1.2.6, “Alignment Exception (0x00600),” for restrictions on operand
alignment.

• The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

MPC855T User’s Manual

Instruction Set Summary

• The execution of a trap instruction invokes the program exception trap handler.

Exceptions caused by asynchronous events are described in Chapter 6, “Exceptions.”

5.2.3 Instruction Set Overview

This section provides a brief overview of the instructions implemented in the MPC855T
and highlights any special information with respect to how the MPC855T implements a
particular instruction. Note that the categories used in this section correspond to those used
in Chapter 4, “Addressing Modes and Instruction Set Summary,” in The Programming
Environments Manual.

Note that some of the instructions have the following optional features:

• CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.
• Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

5.2.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

5.2.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions
• Integer compare instructions
• Integer logical instructions
• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the XER, and into condition register (CR) fields.

5.2.4.1.1 Integer Arithmetic Instructions

Table 5-2 lists the integer arithmetic instructions for the MPC855T.
Table 5-2. Integer Arithmetic Instructions

Name Mnemonic Syntax

Add Immediate addi rD,rA,SIMM

Add Immediate Shifted addis rD,rA,SIMM

Add add (add.addoaddo.) rD,rA,rB

Chapter 5. MPC855T Instruction Set

Instruction Set Summary

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (rA) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

5.2.4.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of rA with
either the UIMM operand, the SIMM operand, or the contents of rB. The comparison is

Subtract From subf (subf.subfo subfo.) rD,rA,rB

Add Immediate Carrying addic rD,rA,SIMM

Add Immediate Carrying and Record addic. rD,rA,SIMM

Subtract from Immediate Carrying subfic rD,rA,SIMM

Add Carrying addc (addc.addcoaddco.) rD,rA,rB

Subtract from Carrying subfc (subfc.subfcosubfco.) rD,rA,rB

Add Extended adde (adde.addeoaddeo.) rD,rA,rB

Subtract from Extended subfe (subfe.subfeosubfeo.) rD,rA,rB

Add to Minus One Extended addme (addme.addmeoaddmeo.) rD,rA

Subtract from Minus One Extended subfme (subfme.subfmeosubfmeo.) rD,rA

Add to Zero Extended addze (addze.addzeoaddzeo.) rD,rA

Subtract from Zero Extended subfze (subfze.subfzeosubfzeo.) rD,rA

Negate neg (neg.negonego.) rD,rA

Multiply Low Immediate mulli rD,rA,SIMM

Multiply Low mullw (mullw.mullwomullwo.) rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Divide Word divw 1 (divw.divwodivwo.) rD,rA,rB

Divide Word Unsigned divwu (divwu.divwuodivwuo.) rD,rA,rB

1 Implementation Note: Attempting to use divw to perform either 0x80000000 ÷ -1 or <anything> ÷ 0 sets the
contents of rD to 0x80000000 and if Rc =1, the contents CR0 are LT = 1, GT = 0, and EQ = 0. SO is set to the correct
value.

Table 5-2. Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax

MPC855T User’s Manual

Instruction Set Summary

signed for the cmpi and cmp instructions, and unsigned for the cmpli and cmpl
instructions. Table 5-3 lists the integer compare instructions.

The crfD operand can be omitted if the result of the comparison is to be placed in CR0.
Otherwise the target CR field must be specified in the instruction crfD field.

For more information refer to Appendix F, “Simplified Mnemonics,” in The Programming
Environments Manual.

5.2.4.1.3 Integer Logical Instructions

The logical instructions shown in Table 5-4 perform bit-parallel operations. Logical
instructions with the CR update enabled and instructions andi. and andis. set CR field CR0
to characterize the result of the logical operation. These fields are set as if the sign-extended
low-order 32 bits of the result were algebraically compared to zero. Logical instructions
without CR update and the remaining logical instructions do not modify the CR. Logical
instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

For simplified mnemonics examples for the integer logical operations see Appendix F,
“Simplified Mnemonics,” in The Programming Environments Manual.

Table 5-3. Integer Compare Instructions

Name Mnemonic Syntax 1

1 Implementation Note: In these instructions, the L bit is applicable for 64-bit implementations. For the MPC855T, if
L = 1 the instruction form is invalid. The core ignores this bit and, therefore, the behavior when L = 1 is identical to
the valid form instruction with L = 0.

Compare Immediate cmpi crfD,L,rA,SIMM

Compare cmp crfD,L,rA,rB

Compare Logical Immediate cmpli crfD,L,rA,UIMM

Compare Logical cmpl crfD,L,rA,rB

Table 5-4. Integer Logical Instructions

Name Mnemonic Syntax

AND Immediate andi. rA,rS,UIMM

AND Immediate Shifted andis. rA,rS,UIMM

OR Immediate ori rA,rS,UIMM

OR Immediate Shifted oris rA,rS,UIMM

XOR Immediate xori rA,rS,UIMM

XOR Immediate Shifted xoris rA,rS,UIMM

AND and (and.) rA,rS,rB

OR or (or.) rA,rS,rB

XOR xor (xor.) rA,rS,rB

Chapter 5. MPC855T Instruction Set

Instruction Set Summary

5.2.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register. The integer rotate instructions are listed in Table 5-5.

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics are provided to make coding of such shifts
simpler and easier to understand. The integer shift instructions are listed in Table 5-6.

NAND nand (nand.) rA,rS,rB

NOR nor (nor.) rA,rS,rB

Equivalent eqv (eqv.) rA,rS,rB

AND with Complement andc (andc.) rA,rS,rB

OR with Complement orc (orc.) rA,rS,rB

Extend Sign Byte extsb (extsb.) rA,rS

Extend Sign Half Word extsh (extsh.) rA,rS

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS

Table 5-5. Integer Rotate Instructions

Name Mnemonic Syntax

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

Table 5-6. Integer Shift Instructions

Name Mnemonic Syntax

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Word srw (srw.) rA,rS,rB

Table 5-4. Integer Logical Instructions (continued)

Name Mnemonic Syntax

MPC855T User’s Manual

Instruction Set Summary

5.2.4.2 Load and Store Instructions
Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions of the MPC855T, which
consist of the following:

• Integer load instructions
• Integer store instructions
• Integer load and store with byte-reverse instructions
• Integer load and store multiple instructions
• Integer load and store string instructions

5.2.4.2.1 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 5.2.2.2, “Effective Address Calculation,” for information about calculating
effective addresses. Note that the MPC855T is optimized for load and store operations that
are aligned on natural boundaries, and operations that are not naturally aligned may suffer
performance degradation. Refer to Section 6.1.2.6.1, “Integer Alignment Exceptions,” for
additional information about load and store address alignment exceptions.

5.2.4.2.2 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, or word addressed by the EA is loaded
into rD. Many integer load instructions have an update form, in which rA is updated with
the generated effective address. For these forms, the EA is placed into rA and the memory
element (byte, half word, word, or double word) addressed by EA is loaded into rD.
Table 5-7 lists the integer load instructions.

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

Table 5-7. Integer Load Instructions

Name Mnemonic Syntax

Load Byte and Zero lbz rD,d(rA)

Load Byte and Zero Indexed lbzx rD,rA,rB

Load Byte and Zero with Update lbzu rD,d(rA)

Load Byte and Zero with Update Indexed lbzux rD,rA,rB

Table 5-6. Integer Shift Instructions (continued)

Name Mnemonic Syntax

Chapter 5. MPC855T Instruction Set

Instruction Set Summary

Load Half Word and Zero lhz rD,d(rA)

Load Half Word and Zero Indexed lhzx rD,rA,rB

Load Half Word and Zero with Update lhzu rD,d(rA)

Load Half Word and Zero with Update Indexed lhzux rD,rA,rB

Load Half Word Algebraic lha rD,d(rA)

Load Half Word Algebraic Indexed lhax rD,rA,rB

Load Half Word Algebraic with Update lhau rD,d(rA)

Load Half Word Algebraic with Update Indexed lhaux rD,rA,rB

Load Word and Zero lwz rD,d(rA)

Load Word and Zero Indexed lwzx rD,rA,rB

Load Word and Zero with Update lwzu rD,d(rA)

Load Word and Zero with Update Indexed lwzux rD,rA,rB

Table 5-7. Integer Load Instructions (continued)

Name Mnemonic Syntax

MPC855T User’s Manual

Instruction Set Summary

5.2.4.2.3 Integer Store Instructions
For integer store instructions, the contents of rS are stored into the byte, half word, word,
or double word in memory addressed by the effective address (EA). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following
rules apply:

• If rA ≠ 0, the EA is placed into rA.

• If rS = rA, the contents of rS are copied to the target memory element, then the
generated EA is placed into rA (rS).

The MPC855T defines store with update instructions with rA = 0 and integer store
instructions with the CR update option enabled (Rc[31] = 1) to be invalid forms. Table 5-8
lists integer store instructions for the MPC855T.

5.2.4.2.4 Integer Load and Store with Byte-Reverse Instructions

Table 5-9 describes integer load and store with byte-reverse instructions. When used in a
system operating with the default big-endian byte order, these instructions have the effect
of loading and storing data in little-endian order. Likewise, when used in a system operating
with little-endian byte order, these instructions have the effect of loading and storing data
in big-endian order. For more information about big-endian and little-endian byte ordering,
see “Byte Ordering” in Chapter 3, “Operand Conventions,” in The Programming
Environments Manual.

Table 5-8. Integer Store Instructions

Name Mnemonic Syntax

Store Byte stb rS,d(rA)

Store Byte Indexed stbx rS,rA,rB

Store Byte with Update stbu rS,d(rA)

Store Byte with Update Indexed stbux rS,rA,rB

Store Half Word sth rS,d(rA)

Store Half Word Indexed sthx rS,rA,rB

Store Half Word with Update sthu rS,d(rA)

Store Half Word with Update Indexed sthux rS,rA,rB

Store Word stw rS,d(rA)

Store Word Indexed stwx rS,rA,rB

Store Word with Update stwu rS,d(rA)

Store Word with Update Indexed stwux rS,rA,rB

Chapter 5. MPC855T Instruction Set

Instruction Set Summary

5.2.4.2.5 Integer Load and Store Multiple Instructions

The integer load/store multiple instructions are used to move blocks of data to and from the
GPRs. In some implementations, these instructions are likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

When the MPC855T is operating with little-endian byte order, execution of a load or store
multiple instruction causes the system alignment error handler to be invoked; see “Byte
Ordering” in Chapter 3, “Operand Conventions,” in The Programming Environments
Manual for more information. Table 5-10 lists the integer load and store multiple
instructions for the MPC855T.

5.2.4.2.6 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields.

When the MPC855T is operating with little-endian byte order, execution of a load or store
string instruction causes the system alignment error handler to be invoked; see “Byte
Ordering” in Chapter 3, “Operand Conventions,” in The Programming Environments
Manual for more information. Table 5-11 lists the integer load and store string instructions.

Table 5-9. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax

Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB

Load Word Byte-Reverse Indexed lwbrx rD,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

Table 5-10. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax

Load Multiple Word lmw rD,d(rA)

Store Multiple Word stmw rS,d(rA)

Table 5-11. Integer Load and Store String Instructions

Name Mnemonic Syntax

Load String Word Immediate lswi rD,rA,NB

Load String Word Indexed lswx rD,rA,rB

MPC855T User’s Manual

Instruction Set Summary

Load string and store string instructions may involve operands that are not word-aligned.
As described in “Alignment Exception (0x00600)” in Chapter 6, “Exceptions,” in The
Programming Environments Manual, a misaligned string operation suffers a performance
penalty compared to a word-aligned operation of the same type.

When a string operation crosses a page boundary, the instruction may be interrupted by a
DSI exception associated with the address translation of the second page. In this case, the
MPC855T performs some or all memory references from the first page and none from the
second before taking the exception. On return from the DSI exception, the load or store
string instruction will re-execute from the beginning. For more information, refer to “DSI
Exception (0x00300)” in Chapter 6, “Exceptions,” in The Programming Environments
Manual.

5.2.4.3 Branch and Flow Control Instructions

Branch instructions are executed by the branch processing unit (BPU). The BPU receives
branch instructions from the fetch unit and performs condition register (CR) lookahead
operations on conditional branches to resolve them early, achieving the effect of a
zero-cycle branch in many cases.

Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the branch processor encounters one of these instructions, it
scans the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch is predicted using static branch prediction as described in “Conditional Branch
Control” in Chapter 4, “Addressing Modes and Instruction Set Summary,” in the
Programming Environments Manual. The interlock is monitored while instructions are
fetched for the predicted branch. When the interlock is cleared, the branch processor
determines whether the prediction was correct based on the value of the CR bit. If the
prediction is correct, the branch is considered completed and instruction fetching continues.
If the prediction is incorrect, the fetched instructions are purged, and instruction fetching
continues along the alternate path. See Chapter 9, “Instruction Execution Timing” for
information about how branches are executed.

Store String Word Immediate stswi rS,rA,NB

Store String Word Indexed stswx rS,rA,rB

Table 5-11. Integer Load and Store String Instructions (continued)

Name Mnemonic Syntax

Chapter 5. MPC855T Instruction Set

Instruction Set Summary

5.2.4.3.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the processor ignores the two low-order bits of the
generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

• Branch relative
• Branch conditional to relative address
• Branch to absolute address
• Branch conditional to absolute address
• Branch conditional to link register
• Branch conditional to count register

5.2.4.3.2 Branch Instructions

Table 5-12 lists the branch instructions. To simplify assembly language programming, a set
of simplified mnemonics and symbols is provided for the most frequently used forms of
branch conditional, compare, trap, rotate and shift, and certain other instructions. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for a list
of simplified mnemonics.

5.2.4.3.3 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 5-13, and the Move Condition
Register Field (mcrf) instruction are also defined as flow control instructions.

Table 5-12. Branch Instructions

Name Mnemonic Syntax

Branch b (bablbla) target_addr

Branch Conditional bc (bcabclbcla) BO,BI,target_addr

Branch Conditional to Link Register bclr (bclrl) BO,BI

Branch Conditional to Count Register bcctr (bcctrl) BO,BI

Table 5-13. Condition Register Logical Instructions

Name Mnemonic Syntax

Condition Register AND crand crbD,crbA,crbB

Condition Register OR cror crbD,crbA,crbB

Condition Register XOR crxor crbD,crbA,crbB

Condition Register NAND crnand crbD,crbA,crbB

Condition Register NOR crnor crbD,crbA,crbB

MPC855T User’s Manual

Instruction Set Summary

Note that if the LR update option is enabled for any of these instructions, these forms of the
instructions are invalid in the MPC855T.

5.2.4.4 Trap Instructions

The trap instructions shown in Table 5-14 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
a complete set of simplified mnemonics.

5.2.4.5 Processor Control Instructions

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs), and to read from
the time base register (TBU or TBL).

5.2.4.5.1 Move to/from Condition Register Instructions

Table 5-15 lists the instructions provided by the MPC855T for reading from or writing to
the CR.

Condition Register Equivalent creqv crbD,crbA,crbB

Condition Register AND with Complement crandc crbD,crbA,crbB

Condition Register OR with Complement crorc crbD,crbA,crbB

Move Condition Register Field mcrf crfD,crfS

Table 5-14. Trap Instructions

Name Mnemonic Syntax

Trap Word Immediate twi TO,rA,SIMM

Trap Word tw TO,rA,rB

Table 5-15. Move to/from Condition Register Instructions

Name Mnemonic Syntax

Move to Condition Register Fields mtcrf CRM,rS

Move to Condition Register from XER mcrxr crfD

Move from Condition Register mfcr rD

Table 5-13. Condition Register Logical Instructions (continued)

Name Mnemonic Syntax

Chapter 5. MPC855T Instruction Set

Instruction Set Summary

5.2.4.6 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Section 7.6.6, “Atomic
Memory References,” for additional information about these instructions and about related
aspects of memory synchronization. Table 5-16 lists the UISA memory synchronization
instructions for the MPC855T.

The sync instruction delays execution of subsequent instructions until previous instructions
have completed to the point that they can no longer cause an exception and until all previous
memory accesses are performed globally; the sync operation is not broadcast onto the
MPC855T bus interface. Additionally, all load and store cache/bus activities initiated by
prior instructions are completed. Touch load operations (dcbt and dcbtst) are required to
complete at least through address translation, but not required to complete on the bus.

The functions performed by the sync instruction normally take a significant amount of time
to complete; as a result, frequent use of this instruction may adversely affect performance.
In addition, the number of cycles required to complete a sync instruction depends on
system parameters and on the processor's state when the instruction is issued.

The proper paired use of the lwarx and stwcx. instructions allows programmers to emulate
common semaphore operations such as “test and set,” “compare and swap,” “exchange
memory,” and “fetch and add.” Examples of these semaphore operations can be found in
Appendix E, “Synchronization Programming Examples,” in The Programming
Environments Manual. The lwarx instruction must be paired with an stwcx. instruction
with the same effective address used for both instructions of the pair. Note that the
reservation granularity is 16 bytes.

The lwarx and stwcx. instructions are implemented according to the PowerPC architecture
requirements. The concept behind the use of the lwarx and stwcx. instructions is that a
processor may load a semaphore from memory, compute a result based on the value of the
semaphore, and conditionally store it back to the same location (only if that location has
not been modified since it was first read), and determine if the store was successful. The
conditional store is performed based upon the existence of a reservation established by the
preceding lwarx instruction. If the reservation exists when the store is executed, the store
is performed and a bit is set in the CR. If the reservation does not exist when the store is
executed, the target memory location is not modified and a bit is cleared in the CR.

Table 5-16. Memory Synchronization Instructions—UISA

Name Mnemonic Syntax

Load Word and Reserve Indexed lwarx rD,rA,rB

Store Word Conditional Indexed stwcx. rS,rA,rB

Synchronize sync —

MPC855T User’s Manual

Instruction Set Summary

If the store was successful, the sequence of instructions from the read of the semaphore to
the store that updated the semaphore appear to have been executed atomically (that is, no
other processor or mechanism modified the semaphore location between the read and the
update), thus providing the equivalent of a real atomic operation. However, in reality, other
processors may have read from the location during this operation. In the MPC855T, the
reservations are made on behalf of aligned 16-byte sections of the memory address space.

The lwarx and stwcx. instructions require the EA to be aligned. Exception handling
software should not attempt to emulate a misaligned lwarx or stwcx. instruction, because
there is no correct way to define the address associated with the reservation.

In general, the lwarx and stwcx. instructions should be used only in system programs,
which can be invoked by application programs as needed.

At most, one reservation exists simultaneously on any processor. The address associated
with the reservation can be changed by a subsequent lwarx instruction. The conditional
store is performed based upon the existence of a reservation established by the preceding
lwarx, regardless of whether the address generated by the lwarx matches that generated by
the stwcx. instruction. A reservation held by the processor is cleared by one of the
following:

• Executing an stwcx. instruction to any address
• Attempt by another device to modify a location in the reservation granularity

(16 bytes)

In write-through mode, lwarx and stwcx. do not cause a DSI exception.

The sync instruction guarantees that previously fetched instructions finish before any
subsequent instructions are dispatched to the execution units. It does not affect fetching;
instructions continue to be fetched up to the instruction queue limit, but dispatch stalls until
the sync finishes.

The original purpose of the sync instruction was to synchronize coherent memory with
other processors in a multiprocessor system; it makes sure that memory as seen by one
processor is the same as memory seen by the other processors, and broadcasts a special
signal to signal that the action is taking place. However, the MPC855T does not support this
enforcement of coherency in a multiprocessor system, and it broadcasts no special
synchronization signal. The MPC855T simply expects other processors not to rely on
coherency of memory that it has cached in copy-back mode.

The only case where a sync instruction would be useful in an MPC8xx system is if software
modified the page table structure associated with the SMMU only and needed to guarantee
that data accesses after that instruction would be executed in the new data context.
However, this is an unexpected special case; isync would work here, but the pipeline need
not be flushed in this case, so sync is sufficient.

Chapter 5. MPC855T Instruction Set

Instruction Set Summary

5.2.5 PowerPC VEA Instructions

The PowerPC VEA describes the semantics of the memory model that can be assumed by
software processes, and includes descriptions of the cache model, cache control
instructions, address aliasing, and other related issues.

5.2.5.1 Processor Control Instructions

In addition to the move to condition register instructions specified by the UISA, the VEA
defines the Move from Time Base (mftb) instruction for reading the contents of the time
base register. The mftb is a user-level instruction, it is shown in Table 5-17

Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. The
mftb instruction serves as both a basic and simplified mnemonic. Assemblers recognize an
mftb mnemonic with two operands as the basic form, and an mftb mnemonic with one
operand as the simplified form. Simplified mnemonics are also provided for Move from
Time Base Upper (mftbu), which is a variant of the mftb instruction rather than of mfspr.
The MPC855T ignores the extended opcode differences between mftb and mfspr by
ignoring bit 25 of both instructions and treating them both identically. For more information
refer to Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

5.2.5.2 Memory Synchronization Instructions—VEA
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 7, “Instruction
and Data Caches,” for additional information about these instructions and about related
aspects of memory synchronization.

Table 5-18 lists the VEA memory synchronization instructions for the MPC855T.

Table 5-17. Move from Time Base Instruction

Name Mnemonic Syntax

Move from Time Base mftb rD, TBR

Table 5-18. Memory Synchronization Instructions—VEA

Name Mnemonic Syntax MPC855T Notes

Enforce In-Order
Execution of I/O

eieio — During execution, the LSU waits for previous accesses to terminate before
beginning accesses associated with load/store instructions after an eieio.

Instruction
Synchronize

isync — The isync instruction waits for all previous instructions to complete and
discards any prefetched instructions, causing subsequent instructions to be
refetched from memory.

MPC855T User’s Manual

Instruction Set Summary

5.2.5.2.1 eieio Behavior

The purpose of eieio is to prevent loads and stores from executing speculatively when
appropriate, This might be desirable for a FIFO, where performing a read or write changes
the FIFO's data. This should not be done unless it is certain that the instruction will be
completed and not cancelled.

The same function as eieio can be accomplished by defining a memory space as having the
guarded attribute in the MMU, in which case, the eieio instruction is redundant.

However, eieio could be useful in the rare event that a region where speculative accesses
are not allowed lies in the middle of a non-guarded page.

5.2.5.2.2 isync Behavior

The isync instruction is context synchronizing, which guarantees that all of effects of
previous instructions are in place and any instructions in the instruction queue are flushed
(which means all instructions that were in the instruction queue need to be refetched). In
the MPC855T, fetching an isync instruction causes fetch to stall, so that no refetching is
required. On the MPC855T, writes to SPRs and MSR that effect context are automatically
context synchronizing, so an isync is not required before these instructions. However, isync
should be inserted after these instructions to ensure that instructions are fetched in the
appropriate context. Furthermore, load/store instructions that update the MMU page tables
in external memory should both be preceded and followed by an isync, to ensure that
instructions before and after such instructions are fetched and completed in the appropriate
context.

5.2.5.3 Memory Control Instructions—VEA
Memory control instructions include the following types:

• Cache management instructions
• Translation lookaside buffer (TLB) management instructions

This section describes the user-level cache management instructions defined by the VEA.
See Section 5.2.6.3, “Memory Control Instructions—OEA,” for information about
supervisor-level cache and translation lookaside buffer management instructions.

The instructions listed in Table 5-19 provide user-level programs the ability to manage
on-chip caches.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed in the program following those instructions.

Chapter 5. MPC855T Instruction Set

Instruction Set Summary

Note that when data address translation is disabled (MSR[DR] = 0), the Data Cache Block
Set to Zero (dcbz) instruction allocates a cache block in the cache and may not verify that
the physical address is valid. If a cache block is created for an invalid physical address, a
machine check condition may result when an attempt is made to write that cache block back
to memory. The cache block could be written back as a result of the execution of an
instruction that causes a cache miss and the invalid addressed cache block is the target for
replacement or a Data Cache Block Store (dcbst) instruction.

Table 5-19 lists the cache instructions that are accessible to user-level programs.

5.2.6 PowerPC OEA Instructions

The PowerPC OEA includes the structure of the memory management model,
supervisor-level registers, and the exception model.

5.2.6.1 System Linkage Instructions
This section describes system linkage instructions (see Table 5-20). The sc instruction is a
user-level instruction that permits a user program to call on the system to perform a service
and causes the processor to take an exception. The Return from Interrupt (rfi) instruction is
a supervisor-level instruction that is useful for returning from an exception handler.

5.2.6.2 Processor Control Instructions—OEA

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs), and to read from
the time base register (TBU or TBL).

Table 5-19. User-Level Cache Instructions

Name Mnemonic Syntax MPC855T Notes

Data Cache Block Touch dcbt rA,rB The appropriate cache block is checked for a hit. If it is a miss,
the instruction is treated as a regular miss, except that bus error
does not cause an exception. If no error occurs, the cache is
updated.

Data Cache Block Touch for
Store

dcbtst rA,rB

Data Cache Block Set to Zero dcbz rA,rB Executes as defined in the VEA.

Data Cache Block Store dcbst rA,rB Executes as defined in the VEA.

Data Cache Block Flush dcbf rA,rB Executes as defined in the VEA.

Instruction Cache Block
Invalidate

icbi rA,rB The MMU translates the EA and the associated instruction
cache block is invalidated if hit.

Table 5-20. System Linkage Instructions

Name Mnemonic Syntax

System Call sc —

Return from Interrupt rfi —

MPC855T User’s Manual

Instruction Set Summary

5.2.6.2.1 Move to/from Machine State Register Instructions

Table 5-15 lists the instructions provided by the MPC855T for reading from or writing to
the MSR.

5.2.6.2.2 Move to/from Special-Purpose Register Instructions
Simplified mnemonics are provided for the mtspr and mfspr instructions so they can be
coded with the SPR name as part of the mnemonic rather than as a numeric operand. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples. The mtspr and mfspr instructions are shown in Table 5-22

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction encoding, with the high-order 5 bits
appearing in bits 16–20 of the instruction encoding and the low-order 5 bits in bits 11–15.

If the SPR field contains a value not shown in Section 4.1, “MPC855T Register
Implementation,” either the program exception handler is invoked or results are boundedly
undefined.

5.2.6.3 Memory Control Instructions—OEA
This section describes memory control instructions, which include the following types:

• Cache management instructions
• TLB management instructions

Table 5-21. Move to/from Machine State Register Instructions

Name Mnemonic Syntax

Move to Machine State Register mtmsr rS

Move from Machine State Register mfmsr rD

Table 5-22. Move to/from Special-Purpose Register Instructions

Name Mnemonic Syntax

Move to Special-Purpose Register mtspr SPR,rS

Move from Special-Purpose Register mfspr rD,SPR

Chapter 6. Exceptions

Chapter 6
Exceptions
Core exceptions can be generated when an exception condition occurs. Exception sources
in the MPC855T include the following:

• External interrupt request
• Certain memory access conditions (protection faults and bus errors)
• Internal errors, such as an attempt to execute an unimplemented opcode
• Trap instructions
• Internal exceptions (breakpoints and debug counter’s expiration)

Exception handling is transparent to user software and uses the same mechanism to handle
all types of exceptions. When an exception is taken, control is transferred to an exception
handler located at an offset defined for the type of exception encountered. The exception
prefix bit, MSR[IP], determines whether this base address for the vector table resides at
0x000n_nnnn (IP = 0) or 0xFFFn_nnnn (IP = 1). Exceptions are handled in supervisor
mode.

After the exception has been handled, the handler returns control to the interrupting
program. As specified in the Programming Environments Manual for 32-Bit
Implementations of the PowerPC Architecture, the core implements a precise exception
model. This means that when an exception is taken, the following conditions are met:

• Subsequent instructions in the program flow are discarded.

• Previous instructions finish and write back their results.

• The address of the faulting instruction is saved in SRR0 and the machine state of the
interrupted process is saved in SRR1.

• When the exception is taken, the instruction causing the exception might not have
started executing, could be partially executed, or has completed, depending on the
exception and instruction types. See Table 6-20.

For more information, see Section 6.1.4, “Implementing the Precise Exception Model.”

MPC855T User’s Manual

Exceptions

6.1 Exceptions
The OEA defines a set of exceptions for processors which implement the PowerPC
architecture, some of which are optional. The following sections describe exceptions
implemented on the MPC855T. Those defined by the OEA are described in Section 6.1.2,
“PowerPC-Defined Exceptions.” Section 6.1.3, “Implementation-Specific Exceptions,”
describes implementation-specific exceptions.

All exceptions associated with memory are implemented as precise, which means that a
load/store instruction is not complete until all possible error indications are sampled from
the load/store bus. This also implies that a store or nonspeculative load instruction is not
issued to the load/store bus until all previous instructions have completed. If a late error
occurs, a store cycle (or a nonspeculative load cycle) can be issued and aborted.

In each exception handler, when registers SRR0 and SRR1 are saved, MSR[RI] can be set.

Table 6-1 defines the offset value by exception type and the sections that follow describe
each exception in detail. Note that the base is determined by the setting of MSR[IP].

Table 6-1. Offset of First Instruction by Exception Type

Offset Exception Description

OEA-Defined Exceptions

0x00000 Reserved —

0x00100 System reset interrupt See Section 6.1.2.1, “System Reset Interrupt (0x00100).”

0x00200 Machine check interrupt See Section 6.1.2.2, “Machine Check Interrupt (0x00200).”

0x00300 DSI A DSI exception is never generated by hardware, but software may
branch to this location because of an data TLB error or miss exception.
See Section 6.1.2.3, “DSI Exception (0x00300).”

0x00400 ISI An ISI exception is never generated by the hardware, but software may
branch to this location because of an implementation-specific instruction
TLB error exception. See Section 6.1.2.4, “ISI Exception (0x00400).”

0x00500 External Interrupt See Section 6.1.2.5, “External Interrupt Exception (0x00500).”

0x00600 Alignment Alignment exceptions result from the following conditions:
 • The operand of a load/store multiple is not word-aligned.
 • The operand of a lwarx or stwcx. is not word-aligned.
 • The operand of a load/store instruction is not naturally aligned when

MSR[LE] = 1.
 • Trying to execute a multiple/string instruction when MSR[LE] = 1.
See Section 6.1.2.3, “DSI Exception (0x00300).”

0x00700 Program The MPC855T cannot generate a floating-point exception type exception.
See Section 6.1.2.7, “Program Exception (0x00700).” An
implementation-specific software emulation exception is generated
instead of an illegal instruction type program exception. A privileged
instruction program exception is generated for an on-core valid SPR field
or any SPR encoded as an external SPR if SPR[0] = 1 and MSR[PR] = 1,
as well as for attempts to execute supervisor-level instructions when
MSR[PR] = 1. See Table 6-11.

Chapter 6. Exceptions

Exceptions

6.1.1 Exception Ordering

There are two types of exceptions. Instruction-related exceptions (synchronous exceptions)
and asynchronous exceptions (interrupts).

Synchronous exceptions are detected while the core is processing the instruction. These
exceptions are handled in strict program order and cannot be nested. A single instruction
may generate multiple exceptions; however, any subsequent exceptions are not detected
until the first exception is handled and control is returned to the program.

If more than one instruction in the pipeline causes an exception or if one instructions causes
multiple exceptions, the first exception in program order is taken first. Subsequent
instructions are flushed and additional instruction-related exceptions are handled in order.

Typically, asynchronous exceptions are generated by signals or by other hardware
conditions. Table 6-2 lists the instruction-related exceptions in the order of detection within
the instruction processing.

0x00800 Floating-point unavailable The MPC855T cannot generate a floating-point exception. Attempting to
execute a floating-point instruction causes an implementation-specific
software emulation exception (see Section 6.1.3.1, “Software Emulation
Exception (0x01000)”) regardless of the setting of MSR[FP].

0x00900 Decrementer See Section 6.1.2.8, “Decrementer Exception (0x00900).”

0x00A00–
0x00B00

Reserved —

0x00C00 System call See Section 6.1.2.9, “System Call Exception (0x00C00).”

0x00D00 Trace See Section 6.1.2.10, “Trace Exception (0x00D00).”

0x00E00 Floating-point assist See Section 6.1.2.11, “Floating-Point Assist Exception.”

Implementation-Specific Exceptions

0x01000 Software emulation See Section 6.1.3.1, “Software Emulation Exception (0x01000).”

0x01100 Instruction TLB miss See Section 6.1.3.2, “Instruction TLB Miss Exception (0x01100).”

0x01200 Data TLB miss See Section 6.1.3.3, “Data TLB Miss Exception (0x01200).”

0x01300 Instruction TLB error See Section 6.1.3.4, “Instruction TLB Error Exception (0x01300).”

0x01400 Data TLB error See Section 6.1.3.5, “Data TLB Error Exception (0x014000).”

0x01500-0
x01B00

Reserved —

0x01C00 Data breakpoint See Section 6.1.3.6, “Debug Exceptions (0x01C00–0x01F00).”

0x01D00 Instruction breakpoint

0x01E00 Peripheral breakpoint

0x01F00 Nonmaskable development port

Table 6-1. Offset of First Instruction by Exception Type (continued)

Offset Exception Description

MPC855T User’s Manual

Exceptions

When multiple exception conditions exist, only the highest priority exception is taken, as
shown in Table 6-3.

6.1.2 PowerPC-Defined Exceptions

The following sections describe the exceptions as they are defined by the OEA, and
describes how they are implemented on the MPC855T.

Table 6-2. Instruction-Related Exception Detection Order

Number Exception Type Cause

1 Trace Trace bit asserted 1

1 The trace mechanism is implemented by letting one instruction go as if no trace is enabled and trapping the second
instruction. This, of course, refers to this second instruction.

2 ITLB miss 2

2 MPC855T-specific exception.

Instruction MMU TLB miss

3 ITLB error 2 Instruction MMU protection/translation error

4 Machine check Fetch error

5 Debug instruction breakpoint 2 Match detection

6 Software emulation exception 2 Attempt to invoke unimplemented feature

7 3

3 Exclusive for any one instruction.

Privileged instruction Attempt to execute privileged instruction in user mode

Alignment Load/store checking

System call sc instruction

Trap Trap instruction

8 DTLB miss 2 Data TLB miss

9 DTLB error 2 Data TLB protection/translation error

10 Machine check Load or store access error

11 Debug L- breakpoint 2 Match detection

Table 6-3. Exception Priority

Priority Exception Type Cause

1 Development port nonmaskable interrupt Signal from the development port

2 System reset interrupt IRQ0 assertion

3 Instruction-related exceptions Instruction processing

4 Peripheral breakpoint request or development port maskable interrupt Breakpoint signal from any peripheral

5 External interrupt (masked if MSR[EE] = 0) Signal from the interrupt controller

6 Decrementer interrupt (masked if MSR[EE] = 0) Decrementer request

Chapter 6. Exceptions

Exceptions

6.1.2.1 System Reset Interrupt (0x00100)

A system reset interrupt occurs when IRQ0 is asserted. When the exception is taken,
processing begins at offset 0x00100. A hard or soft reset also causes program execution to
begin fetching at 0x00100 after the associated reset actions. Table 6-4 shows register
settings.

6.1.2.2 Machine Check Interrupt (0x00200)

A machine check interrupt indication is received from the U bus in response to an address
or data tenure. It is typically caused by an access for which the address does not exist or a
data error occurs.

As defined in the OEA, machine check interrupts are enabled when MSR[ME] = 1. If
MSR[ME] = 0 and a machine check condition is detected, the processor enters the
checkstop state. The behavior of the core in checkstop state is dependent on the working
mode as defined in Section 44.3.1.1, “Debug Mode Enable vs. Debug Mode Disable.”
When debug mode is enabled, debug mode is entered instead of checkstop state. When
debug mode is disabled, instruction processing is suspended and cannot be restarted
without resetting the core.

An indication that can generate an automatic reset in this condition is sent to the system
interface unit. See Section 11.1.3.3, “Checkstop Reset,” and Section 14.6.2, “PLL,
Low-Power, and Reset Control Register (PLPRCR),” for more details. If MSR[ME] = 1, the
machine check interrupt is taken. If SRR1[30] = 1, the interrupt is recoverable. Instruction
fetching begins at offset 0x00200 and the registers are set as shown in Table 6-5.

Table 6-4. Register Settings after a System Reset Interrupt Exception

Register Setting

SRR0 Set to the EA of the next instruction of the interrupted process.

SRR1 Saves the machine status prior to exceptions and to restore status when an rfi instruction is executed.
1–40
10–150
Others Loaded from MSR[16-31]. SRR1[30] is cleared only by loading a zero from MSR[RI].

MSR IPNo change
MENo change
LE Value of MSR[ILE] of the interrupted process.
Others0

Table 6-5. Register Settings after a Machine Check Interrupt Exception

Register Setting

SRR0 Set to the EA of the instruction that caused the exception.

SRR1 1 1 for instruction fetch-related errors; 0 for load/store-related errors.
2–40
10–15 0
OthersLoaded from MSR[16-31]. SRR1[30] is cleared only by loading a zero from MSR[RI].

MPC855T User’s Manual

Exceptions

6.1.2.3 DSI Exception (0x00300)

DSI exceptions are never generated by the hardware. Software may branch to this location
as a result of either implementation specific DTLB error interrupt or implementation
specific STLB miss interrupt.

6.1.2.4 ISI Exception (0x00400)

ISI exceptions is never generated by the hardware. The software may branch to this location
as a result of an implementation-specific ITLB error interrupt.

6.1.2.5 External Interrupt Exception (0x00500)

In the MPC855T the external interrupt is generated by the on-chip interrupt controller. It is
software acknowledged and maskable by MSR[EE], which hardware clears automatically
to disable external interrupts when any exception is taken.

When an external interrupt is detected, program execution continues until all previous
instructions retire from the completion queue and the exception is assigned to the
instruction last entry in the completion queue (at point B in Table 6-19). However, the
following conditions must be met before the instruction at the end of the queue can retire.

• The instruction must be completed without exception

• The instruction must either be a mtspr, mtmsr, rfi, a memory reference, or a
memory- or cache-control instruction.

Instructions not fitting these criteria are discarded along with any execution results. After
the exception handler completes, execution resumes with the first instruction that was
discarded. If all the instructions in the completion queue were allowed to complete,
execution at the end of the exception handler resumes with the next instruction. External
exception latency depends on the time required to reference memory. The measurement is

MSR IPNo change
ME0
LE Copied from the ILE setting of the interrupted process
Others0

DSISR Set when the load/store bus is used:
0–140
15–16Set to bits 29-30 of the instruction if X-form instruction and to 0b00 if D-form.
17 Set to bit 25 of the instruction if X-form instruction and to bit 5 if D-form.
18–21Set to bits 21-24 of the instruction if X-form instruction and to bits 1-4 if D-form.
22–31Set to bits 6-15 of the instruction.

DAR When the load/store bus is used, DAR holds the EA of the data access that caused the exception.

Table 6-5. Register Settings after a Machine Check Interrupt Exception (continued)

Register Setting

Chapter 6. Exceptions

Exceptions

equal to the time taken for one of the following three events, in addition to the interval from
B to E as shown in Table 6-19.

• Longest load/store multiple/string instruction used

• One bus cycle for aligned access

• Two bus cycles for unaligned access

System-level exception latency can be longer than the interval from B to E. If an instruction
ahead of the exception-causing instruction also generates an exception, that exception is
recognized first. If it is important to minimize exception latency, exception handlers should
save the machine context and reenable exceptions as quickly as possible so pending
external exceptions are handled quickly.

Register settings for the external interrupt exception are shown in Table 6-6.

6.1.2.6 Alignment Exception (0x00600)

This section describes conditions that can cause alignment exceptions in the processor.
Similar to DSI exceptions, alignment exceptions use SRR0 and SRR1 to save the machine
state and DSISR to determine the source of the exception. An alignment exception occurs
when no higher priority exception exists and the implementation cannot perform a memory
access for one of the following reasons:

• The operand of lmw, stmw, lwarx, or stwcx. is not aligned.

• The instruction is lmw, stmw, lswi, lswx, stswi, or stswx and the processor is in
little-endian mode.

• An unaligned load or store in little-endian mode.

For lmw, stmw, lswi, lswx, stswi, and stswx instructions in little-endian mode, an
alignment exception always occurs. For lmw and stmw instructions with an operand that is
not aligned in big-endian mode, and for lwarx and stwcx. with an operand that is not

Table 6-6. Register Settings after an External Interrupt

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if
no interrupt conditions were present.

SRR1 0 Loaded with equivalent bits from the MSR
1–4 Cleared
5–9 Loaded with equivalent bits from the MSR
10–15 Cleared
16–31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, reserved bits in the MSR may not be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
SE 0
BE 0

IP —
IR 0
DR 0
RI 0

LE Set to value of ILE

MPC855T User’s Manual

Exceptions

aligned in either endian mode, an implementation may yield boundedly-undefined results
instead of causing an alignment exception. For all other cases listed above, an
implementation may execute the instruction correctly instead of causing an alignment
exception.

The register settings for alignment exceptions are shown in Table 6-7.

The architecture does not support the use of a misaligned EA by load/store with reservation
instructions. If one of these instructions specifies a misaligned EA, the exception handler
should not emulate the instruction but should treat the occurrence as a programming error.

6.1.2.6.1 Integer Alignment Exceptions

Operations that are not naturally aligned may suffer performance degradation, depending
on the processor design, the type of operation, the boundaries crossed, and the mode that
the processor is in during execution. More specifically, these operations may either cause

Table 6-7. Register Settings after an Alignment Exception

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception.

SRR1 0 Loaded with equivalent bits from the MSR
1–4 Cleared
5–9 Loaded with equivalent bits from the MSR
10–15 Cleared
16–31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, reserved bits in the MSR may not be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
SE 0
BE 0

IP —
IR 0
DR 0
RI 0

LE Set to value of ILE

DSISR 0–14Cleared
15–16 For instructions that use register indirect with index addressing—set to bits 29–30 of the

instruction encoding.
For instructions that use register indirect with immediate index addressing—cleared

17 For instructions that use register indirect with index addressing—set to bit 25 of the instruction
encoding.
For instructions that use register indirect with immediate index addressing— set to bit 5 of the
instruction encoding.

18–21 For instructions that use register indirect with index addressing—set to bits 21–24 of the
instruction encoding.
For instructions that use register indirect with immediate index addressing—set to bits 1–4 of the
instruction encoding.

22–26 Set to bits 6–10 (identifying either the source or destination) of the instruction encoding.
Undefined for dcbz.

27–31 Set to bits 11–15 of the instruction encoding (rA) for update-form instructions
Set to either bits 11–15 of the instruction encoding or to any register number not in the range of
registers loaded by a valid form instruction for lmw, lswi, and lswx instructions. Otherwise
undefined.

If there is no corresponding instruction, no alternative value can be specified.

DAR Set to the EA of the data access as computed by the instruction causing the alignment exception.

Chapter 6. Exceptions

Exceptions

an alignment exception or they may cause the processor to break the memory access into
multiple, smaller accesses with respect to the cache and the memory subsystem.

6.1.2.7 Program Exception (0x00700)

A program exception occurs when no higher priority exception exists and one or more of
the following exception conditions, which correspond to bit settings in SRR1, occur during
execution of an instruction:

• An lswx instruction for which rA or rB is in the range of registers to be loaded (may
cause results that are boundedly undefined)

• Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
processor is operating in user mode (MSR[PR] is set). It is also generated for mtspr
or mfspr instructions that have an invalid SPR field that contain one of the defined
values having spr[0] = 1 and if MSR[PR] = 1. Some implementations may also
generate a privileged instruction program exception if a specified SPR field (for a
move to/from SPR instruction) is not defined for a particular implementation, but
spr[0] = 1; in this case, the implementation may cause either a privileged instruction
program exception, or an illegal instruction program exception may occur instead.

• Trap—A trap program exception is generated when any of the conditions specified
in a trap instruction is met. Trap instructions are described in Section 5.2.4.4, “Trap
Instructions.”

The register settings when a program exception is taken are shown in Table 6-8.

Table 6-8. Register Settings after a Program Exception

Register Setting Description

SRR0 • Set to the EA of the instruction that causes the exception.

SRR1 0 Loaded with equivalent bits from the MSR
1–4 Cleared
5–9 Loaded with equivalent bits from the MSR
10 Cleared
Note that only one of bits 11–14 of SRR1 can be set at a time.
11 Cleared.
12 Set for an illegal instruction program exception; otherwise cleared.
13 Set for a privileged instruction program exception; otherwise cleared.
14 Set for a trap program exception; otherwise cleared.
15 Cleared if SRR0 contains the address of the instruction causing the exception, and set if

SRR0 contains the address of a subsequent instruction.
16–31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, reserved bits in the MSR may not be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
SE 0
BE 0

IP —
IR 0
DR 0
RI 0

LE Set to value of ILE

MPC855T User’s Manual

Exceptions

When a program exception is taken, instruction execution resumes at offset 0x00700 from
the physical base address indicated by MSR[IP].

6.1.2.8 Decrementer Exception (0x00900)

A decrementer exception occurs when no higher priority exception exists, a decrementer
exception condition occurs (for example, the decrementer register has completed
decremented), and MSR[EE] = 1. The decrementer register counts down, causing an
exception request when it passes through zero. A decrementer exception request remains
pending until the decrementer exception is taken and then it is cancelled. The decrementer
implementation meets the following requirements:

• The counters for the decrementer and the time-base counter are driven by the same
fundamental time base.

• Loading a GPR from the decrementer does not affect the decrementer.

• Storing a GPR value to DEC replaces the DEC contents with the value in the GPR.

• Whenever bit 0 of the decrementer changes from 0 to 1, a decrementer exception
request is signaled. If multiple decrementer exception requests are received before
the first can be reported, only one exception is reported.

• If the decrementer is altered by software and if bit 0 is changed from 0 to 1, an
exception request is signaled.

The register settings for the decrementer exception are shown in Table 6-9.

When a decrementer exception is taken, instruction execution resumes at offset 0x00900
from the physical base address indicated by MSR[IP].

Table 6-9. Register Settings after a Decrementer Exception

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if
no exception conditions were present.

SRR1 0 Loaded with equivalent bits from the MSR
1–4 Cleared
5–9 Loaded with equivalent bits from the MSR
10–15 Cleared
16–31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, reserved bits in the MSR may not be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
SE 0
BE 0

IP —
IR 0
DR 0
RI 0

LE Set to value of ILE

Chapter 6. Exceptions

Exceptions

6.1.2.9 System Call Exception (0x00C00)

A system call exception occurs when a System Call (sc) instruction is executed. The
effective address of the instruction following the sc instruction is placed into SRR0. MSR
bits are saved in SRR1, as shown in Table 6-10. Then a system call exception is generated.

The system call exception causes the next instruction to be fetched from offset 0x00C00
from the physical base address indicated by the new setting of MSR[IP]. As with most other
exceptions, this exception is context-synchronizing. Refer to Section 5.2.2.3.1, “Context
Synchronization,” regarding actions performed by a context-synchronizing operation.

When a system call exception is taken, instruction execution resumes at offset 0x00C00
from the physical base address indicated by MSR[IP].

6.1.2.10 Trace Exception (0x00D00)

A trace exception occurs if MSR[SE] = 1 and any instruction except rfi is successfully
completed or if MSR[BE] = 1 and a branch is completed. Notice that the trace exception
does not occur after an instruction that causes an exception. The monitor/debugger software
must change the vectors of other possible exception addresses to single-step these
instructions. If this is unacceptable, other debug features can be used. See Chapter 44,
“System Development and Debugging,” for more information. Table 6-11 shows register
settings for trace exceptions.

Table 6-10. Register Settings after a System Call Exception

Register Setting Description

SRR0 Set to the effective address of the instruction following the System Call instruction

SRR1 0 Loaded with equivalent bits from the MSR
1–4 Cleared
5–9 Loaded with equivalent bits from the MSR
10–15 Cleared
16–31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, reserved bits in the MSR may not be copied to SRR1.

MSR POW 0
ILE —
EE 0
PR 0

FP 0
ME —
SE 0
BE 0

IP —
IR 0
DR 0
RI 0

LE Set to value of ILE

Table 6-11. Register Settings after a Trace Exception

Register Setting

SRR0 Set to the EA of the instruction following the executed instruction.

MPC855T User’s Manual

Exceptions

Execution resumes at offset 0x00D00 from the base address indicated by MSR[IP].

6.1.2.11 Floating-Point Assist Exception

The floating-point assist exception is not generated by the MPC855T. Attempting to
execute a floating-point causes an instruction implementation-specific software emulation
exception.

6.1.3 Implementation-Specific Exceptions

The following sections describe the MPC855T’s implementation-specific exceptions.

6.1.3.1 Software Emulation Exception (0x01000)

An software emulation exception occurs as a result of one of the following conditions:

• When executing any unimplemented instruction, including all illegal and
unimplemented optional and floating-point instructions.

• When executing a mtspr or mfspr that specifies an on-core unimplemented register,
regardless of SPR[0].

• When executing a mtspr or mfspr that specifies an off-core unimplemented register
and SPR[0] = 0 or MSR[PR] = 0 (no program exception condition).

In addition, the following registers are set:

SRR1 1–40
10–150
Others Loaded from MSR[16-31]. SRR1[30] is cleared only by loading a zero from MSR[RI].

MSR IP No change
ME No change
LE Copied from the ILE setting of the interrupted process
Others 0

Table 6-12. Register Settings after a Software Emulation Exception

Register Setting

SRR0 Set to the EA of the instruction that caused the exception.

SRR1 1–40
10–150
OthersLoaded from MSR[16-31]. SRR1[30] is cleared only by loading a zero from MSR[RI].

MSR IP No change
MENo change
LECopied from the ILE setting of the interrupted process
Others0

Table 6-11. Register Settings after a Trace Exception

Register Setting

Chapter 6. Exceptions

Exceptions

Execution resumes at offset 0x01000 from the base address indicated by MSR[IP].

6.1.3.2 Instruction TLB Miss Exception (0x01100)

This type of exception occurs if MSR[IR] = 1 and an attempt is made to fetch an instruction
from a page whose effective page number cannot be translated by TLB. The following
registers are set:

Some instruction TLB registers are set to the values described in Chapter 8, “Memory
Management Unit.” Execution resumes at offset 0x01100 from the base address indicated
by MSR[IP].

6.1.3.3 Data TLB Miss Exception (0x01200)

This type of exception occurs when MSR[DR] = 1 and an attempt is made to access a page
whose effective page number cannot be translated by TLB. The following registers are set:

Some instruction TLB registers are set to the values described in Chapter 8, “Memory
Management Unit.” Execution resumes at offset 0x01200 from the base address indicated
by MSR[IP].

Table 6-13. Register Settings after an Instruction TLB Miss Exception

Register Setting

SRR0 Set to the EA of the instruction that caused the exception.

SRR1 0–30
4 1
10 1
11–150
OthersLoaded from MSR[16-31]. SRR1[30] is cleared only by loading a zero from MSR[RI].

MSR IP No change
MENo change
LECopied from the ILE setting of the interrupted process
Others0

Table 6-14. Register Settings after a Data TLB Miss Exception

Register Setting

SRR0 Set to the EA of the instruction that caused the exception.

SRR1 1–40
10–150
OthersLoaded from MSR[16-31]. SRR1[30] is cleared only by loading a zero from MSR[RI].

MSR IP No change
MENo change
LECopied from the ILE setting of the interrupted process
Others0

MPC855T User’s Manual

Exceptions

6.1.3.4 Instruction TLB Error Exception (0x01300)
This type of exception occurs as a result of one of the following conditions if MSR[IR] = 1:

• The EA cannot be translated. Either the segment or page valid bit of this page is
cleared in the translation table. Note that although the MPC855T does not
implement segment registers as they are defined by the OEA, the concept of segment
is retained as the memory space accessible to the level-one table descriptors.

• The fetch access violates memory protection.
• The fetch access is to guarded memory.

The following registers are set:

Some instruction TLB registers are set to a value described in Chapter 8, “Memory
Management Unit.” Execution resumes at offset 0x01300 from the base address indicated
by MSR[IP].

6.1.3.5 Data TLB Error Exception (0x014000)

This type of exception occurs as a result of one of the following conditions:

• No EA of a load, store, icbi, dcbz, dcbst, dcbf or dcbi instruction can be translated
(either the segment or page valid bit of this page is cleared in the translation table).

• The access violates memory protection.

• An attempt was made to write to a page with a cleared change bit.

Table 6-15. Register Settings after an Instruction TLB Error Exception

Register Setting

SRR0 Set to the EA of the instruction that caused the exception.

SRR1 Note that only one of bits 1, 3, and 4 will be set.
1 1 if the translation of an attempted access is not in the translation tables. Otherwise 0
2 0
3 1 if the fetch access was to guarded memory when MSR[IR] = 1. Otherwise 0
4 1 if the access is not permitted by the protection mechanism; otherwise 0.
11–150
OthersLoaded from MSR[16-31]. SRR1[30] is cleared only by loading a zero from MSR[RI].

MSR IP No change
MENo change
LECopied from the ILE setting of the interrupted process
Others0

Chapter 6. Exceptions

Exceptions

The following registers are set:

Some instruction TLB registers are set to the values described in Chapter 8, “Memory
Management Unit.” Execution resumes at offset 0x01400 from the base address indicated
by MSR[IP].

6.1.3.6 Debug Exceptions (0x01C00–0x01F00)

A debug exception occurs in response to one of the following conditions:

• When there is an internal breakpoint match (for more details, see Section 44.2,
“Watchpoints and Breakpoints Support”).

• When a peripheral breakpoint request is presented to the exception mechanism.

• When the development port request is presented to the exception mechanism.

The following registers are set:

Table 6-16. Register Settings after a Data TLB Error Exception

Register Setting

SRR0 Set to the EA of the instruction that caused the exception.

SRR1 1–40
10–150
OtherLoaded from MSR[16-31]. SRR1[30] is cleared only by loading a zero from MSR[RI].

MSR IP No change
MENo change
LECopied from the ILE setting of the interrupted process
Others0

DSISR 0 0
1 Set if the translation of an attempted access is not found in the translation tables. Otherwise, cleared
2–30
4 Set if the memory access is not permitted by the protection mechanism; otherwise cleared
5 0
6 1 for a store operation; 0 for a load operation.
7–310

DAR Set to the EA of the data access that caused the exception.

Table 6-17. Register Settings after a Debug Exception

Register Setting

SRR0 For I-breakpoints, set to the EA of the instruction that caused the exception. For L-breakpoint, set to the EA
of the instruction after the one that caused the exception. For development port maskable request or a
peripheral breakpoint, set to the EA of the instruction that the processor would have executed next if no
exception conditions were present. If the development port request is asserted at reset, the value of SRR0
is undefined.

SRR1 1–40
10–150
OthersLoaded from MSR[16-31]. SRR1[30] is cleared only by loading a zero from MSR[RI].
If the development port request is asserted at reset, the value of SRR1 is undefined.

MPC855T User’s Manual

Exceptions

Execution resumes from the following offsets from the base indicated by the MSR[IP]:

• 0x01D00–For an instruction breakpoint match

• 0x01C00–For a data breakpoint match

• 0x01E00–For a development port maskable request or a peripheral breakpoint

• 0x01F00–For a development port nonmaskable request

6.1.4 Implementing the Precise Exception Model

Because instructions execute in parallel they may execute out of order. To ensure that
out-of-order execution does not affect data integrity, hardware ensures a precise exception
model. As instructions are dispatched in-order to the execution units, they are assigned
sequential positions in the six-entry completion queue, a FIFO buffer maintains program
order. The completion queue is shown in Figure 3-2.

When an exception condition is encountered, previous instructions in the completion queue
are allowed to complete and be retired from the completion queue. If one of these
instructions generates another exception, that exception is handled first. Subsequent
instructions, and any results associated with them, are flushed from the processor before
instruction processing resumes at the appropriate exception vector. Before control passes
to the exception handler, machine state is saved in SRR0 and SRR1.

After an exception handler executes, the machine state of the interrupted process is
restored, typically by executing the rfi instruction, which writes bits from SRR1 to the
MSR, SRR0 contains the instruction address at which fetching should resume. To correctly
restore the architectural state, the CQ must record the value of the destination before the
instruction is executed. The destination of a store instruction, however, is in memory and it
is not practical from a performance standpoint to always read memory before writing it.
Therefore, stores issue immediately to store buffers but do not update memory until all
previous instructions have finished executing without exception or until the store
instruction reaches CQ0.

MSR IP No change
MENo change
LECopied from the ILE setting of the interrupted process
Others0

BAR For L-bus breakpoint conditions. Set to the EA of the data access as computed by the instruction that caused
the exception.

DSISR For L-bus breakpoint conditions. Do not change.

DAR For L-bus breakpoint conditions. Do not change.

Table 6-17. Register Settings after a Debug Exception

Register Setting

Chapter 6. Exceptions

Exceptions

The completion queue can hold six instructions, but no more than four integer instructions.
The other two instructions can be condition code or branch instructions. Long latency
instructions may cause the completion queue to fill, stalling dispatch until the long latency
instruction vacates the completion queue. The following instructions may cause the
completion queue to fill:

• Integer divide instructions

• Instructions that affect or use resources external to the core (load/store instructions,
and especially load/store string multiple/instructions)

6.1.5 Recoverability after an Exception

The processor cannot always recover from system reset and machine check interrupts,
either because the conditions that cause the interrupt are catastrophic or because they
caused the save/restore information in SRR0 and SRR1to be overwritten.

All other exceptions should be restartable. Registers such as SRR0 and SRR1 (and for some
exceptions the data address register (DAR) and DSI status register (DSISR)) that may be
affected by subsequent exceptions should be saved early in the routine to avoid being
overwritten. Likewise, the saved values should be restored to those registers at the end of
the handler routine in such a way that protects them from an exception before the
instruction returns control to the interrupted process. Interrupts should also be masked in
these areas by clearing (disabling) MSR[ME] for system reset and machine check
interrupts and MSR[EE] for external interrupt, decrementer and two
implementation-specific exceptions—debug port unmaskable interrupt and breakpoint
interrupt in nonmaskable mode.

The recoverable exception bit (MSR[RI]) is defined to notify the exception handler code
whether it is in a restartable state. The MSR[RI] shadow bit in SRR1 indicates if the
exception is restartable. This bit does not need to be checked on exception types that are
restartable by convention, except those previously mentioned. When an exception occurs,
MSR[RI] is copied to the equivalent bit in SRR1 and cleared. When an rfi instruction is
executed, MSR[RI] is copied from SRR1 or software can change the bit by using it the
mtmsr instruction. The MSR[RI] bit is intended to be set by the exception handler after
saving the machine state, in SRR0 and SRR1 (and DAR and DSISR if needed) and cleared
by the exception handler before retrieving the machine state.

In critical code sections where MSR[EE] is cleared but SRR0 and SRR1 are not busy,
MSR[RI] should remain set. In such cases, if an exception occurs, the process is restartable.

MPC855T User’s Manual

Exceptions

Table 6-18 lists SPRs that facilitate manipulation of MSR[RI] and MSR[EE]. Writing to
these locations performs the specified operation. Attempting to read these locations is
treated as an unimplemented instruction and causes a software emulation exception.

6.1.6 Exception Latency

Figure 6-1 describes significant events during exception processing.

Table 6-18. Additional SPRs that Affect MSR Bits

Name SPR MSR[EE] MSR[RI] Used For

EIE 80 1 1 External interrupt enable:
End of handler’s prologue, enable nested external interrupts;
End of critical code segment in which external interrupts were disabled

EID 81 0 1 External interrupt disable, but other exception are recoverable:
End of handler’s prologue, keep external nested interrupts disabled;
Start of critical code segment in which external interrupts are disabled

NRI 82 0 0 Nonrecoverable interrupt:
Start of handler’s epilogue

Chapter 6. Exceptions

Exceptions

Figure 6-1. Exception Latency

Table 6-19. Exception Latency

Time Point Fetch Issue Instruction Complete Kill Pipeline

A Faulting instruction issue

B Instruction complete and all
previous instructions complete

7

4

3

10 111 2 3 4 5 6 7 80

Fetch (in IQ)

In dispatch entry (IQ0)

Execute

5

9

•••

Complete (In CQ)

6
5
4
3

IH2
IH1

IH4
IH3
IH2
IH1

IH4
IH3
IH2
IH1

7
6
5
4

2
1 3

3
2

Instruction Queue

Completion Queue

In retirement entry (CQ0)

2

1

6

IH1

IH2

IH3

IH4

12

IH4
IH3
IH2
IH1

16 1713 14 15 18

IH4
IH3
IH2
IH1

IH4
IH3
IH2
IH1

IH5
IH4
IH3
IH2

IH6
IH5
IH4
IH3

IH1
IH2
IH1

IH7
IH6
IH5
IH4

IH8
IH7
IH6
IH5

IH3
IH2

IH4
IH3

A B C D

IH5

IH6

E

Stage

MPC855T User’s Manual

Exceptions

A At time point A the excepting instruction dispatches and begins executing. Previously
dispatched instructions are proceeding through the pipeline.

B The excepting instruction has executed and reached CQ0; previous instructions have
finished execution without generating exceptions. The exception is recognized and
between B and D (between 3 and 10 cycles) the effects of any instructions after the one
that generated the interrupt are cancelled and the instructions are flushed. If the
instruction had not generated an exception, it would have been retired.

C The core fetches the first instructions of the exception handler if the exception handler
is external. It is 5 cycles if it is in the instruction cache and no-show mode is on.

D All state has been restored. During the interval between D and E, the machine is saving
context information in the SRR0 and SRR1 registers, disabling exceptions, placing the
machine in privileged mode, and fetching instructions of the exception handler. The
interval between D and E requires at least one clock. The time between C and E depends
on the memory system and the time it takes to fetch the first instruction of the exception
handler. For full completion queue restore time, it is no less than two clocks.

E The MSR and instruction pointer of the executing process have been saved and control
has been transferred to the exception handler routine. Exception handler instructions
that have been fetched can be dispatched.

6.1.7 Partially Completed Instructions

Partially completed instructions can be reexecuted after the exception is handled. This
precise exception model can simplify exception processing because software does not have
to save the machine’s internal states, unwind the pipelines, or cleanly terminate the faulting
instruction stream and reverse the process to resume execution of the faulting stream.

C Start fetch handler Kill pipeline

D (at least 3
clocks after B)

E First instruction of handler
dispatched

Table 6-20. Before and After Exceptions

Exception Type Instruction Type Before/After Contents of SRR0

Hard reset (caused by HRESET or SRESET) Any NA Undefined

System reset Any Before Next instruction to execute

Machine check Any Before Faulting instruction

TLB miss/error 1 Any Before Faulting fetch or load/store

Other noninstruction-related exceptions Any Before Next instruction to execute

Table 6-19. Exception Latency (continued)

Time Point Fetch Issue Instruction Complete Kill Pipeline

Chapter 6. Exceptions

Exceptions

Alignment Load/store Before Faulting instruction

Privileged instruction Any privileged instruction Before Faulting instruction

Trap tw, twi Before Faulting instruction

System call sc After Next instruction to execute

Trace Any After Next instruction to execute

Debug I- breakpoint 1 Any Before Faulting instruction

Debug L- breakpoint 1 Load/store After Faulting instruction + 4

Software emulation 1 NA Before Faulting instruction

Floating-point unavailable Floating-point Before Faulting instruction

1 Implementation-specific exceptions not defined by the PowerPC architecture

Table 6-20. Before and After Exceptions (continued)

Exception Type Instruction Type Before/After Contents of SRR0

MPC855T User’s Manual

Exceptions

Chapter 7. Instruction and Data Caches

Chapter 7
Instruction and Data Caches
The MPC855T contains separate 4-Kbyte, two-way set associative instruction and data
caches to allow rapid core access to instructions and data. This chapter describes the
organization of the on-chip instruction and data caches, cache control, various cache
operations, and the interaction between the caches, the load/store unit (LSU), the
instruction sequencer, and the system interface unit (SIU).

The MPC855T cache implementation has the following characteristics:

• There are two separate 4-Kbyte instruction and data caches (Harvard architecture).
• Both instruction and data caches are two-way set associative.

• The caches implement a least-recently-used (LRU) replacement algorithm within
each set.

• The cache directories are physically addressed. The physical (real) address tag is
stored in the cache directory.

• Both the instruction and data caches have 16-byte cache blocks. A cache block is the
block of memory that a coherency state describes, also referred to as a cache line.

• Two state bits for each data cache block allow encoding for three states:
— Modified-valid (sometimes called ‘modified’)
— Unmodified-valid (sometimes called ‘exclusive’)
— Invalid

• A single state bit for each instruction cache block allows encoding for two possible
states:
— Valid
— Invalid

• Both caches can be disabled, invalidated, or locked by issuing commands to their
respective cache control registers, special-purpose registers (SPRs) specific to the
MPC855T. See Section 7.3, “Cache Control Registers,” for more information.

• Individual cache blocks can be locked so that frequently accessed instructions
and/or data are guaranteed to be resident in the respective cache.

MPC855T User’s Manual

Instruction Cache Organization

On a cache miss, the MPC855T’s cache blocks are filled in 16-byte bursts. The burst fill is
performed as a critical-word-first operation; the critical word is simultaneously written to
the cache and forwarded to the requesting unit, thus minimizing stalls due to cache fill
latency. Both caches provide storage for cache tags and perform cache block replacement
(LRU) function.

Both caches are tightly coupled to the MPC855T’s system interface unit (SIU) to allow
efficient access to the system memory controller and other bus masters. The SIU receives
requests for bus operations from the instruction and data caches, and executes the
operations per the external bus protocol.

The data cache provides buffers for load and store bus operations. The data cache supplies
data to the GPRs by means of a 32-bit interface to the load/store unit. The LSU is directly
coupled to the data cache to allow efficient movement of data to and from the
general-purpose registers. The load/store unit provides all logic required to calculate
effective addresses, handles data alignment to and from the data cache, and provides
sequencing for load and store string and multiple operations. Write operations to the data
cache can be performed on a byte, half-word, or word basis.

The instruction cache provides a 32-bit interface to the instruction sequencer. The
instruction sequencer uses the instruction cache as much as possible in order to sustain the
high throughput provided by the four-entry instruction queue.

7.1 Instruction Cache Organization
The MPC855T instruction cache is organized as 128 sets of two blocks, as shown in
Figure 7-1. Each block consists of 16 bytes, a single state bit, a lock bit, and an address tag.

Chapter 7. Instruction and Data Caches

Instruction Cache Organization

Figure 7-1. Instruction Cache Organization

Each instruction cache block contains four contiguous words from memory that are loaded
from a four-word boundary; that is, bits A[28–31] of the logical (effective) addresses are
zero. As a result, cache blocks are aligned with page boundaries. Also, address bits
A[21–27] provide the index to select a set, and bits A[28–29] select a word within a block.
The tags consist of the high-order physical address bits PA[0–20]. Address translation
occurs in parallel with set selection (from A[21–27]).

COMP

way0

28 292721200

Word select

Bidirectional multiplexer 2 -> 1

hit0

HIT

Instruction effective address

. .

. .

. .

. .

set0
set1

set127
set126

COMP

tag0 w0 w1 w2 w3

V
al

id
 b

it
Lo

ck
 b

it

tag1 w0 w1 w2 w3

tag127 w0 w1 w2 w3
tag126 w0 w1 w2 w3

. .
 .

. .
 .

. .
 .

. .
 .

L
R
U

A
r
r
a
y

. .

. .

. .

. .

hit1

To block buffer/
From burst buffer

2

w2 tag0 w0 w1 w2 w3

way1

tag1 w0 w1 w2 w3

tag127 w0 w1 w2 w3
tag126 w0 w1 w2 w3

. .
 .

. .
 .

. .
 .

. .
 .

V
al

id
 b

it
Lo

ck
 b

it

w2

MMU

7

21

21

128 128

21

128

MPC855T User’s Manual

Instruction Cache Organization

The instruction cache implements a single state bit for each cache block that indicates
whether the cache block is valid or invalid. The MPC855T does not support snooping of the
instruction cache. All memory is considered to have memory-coherency-not-required
attributes. Therefore, software must maintain instruction cache coherency. The MPC855T
supports a fast instruction cache invalidate capability as described in Section 7.3.1.2.5,
“Instruction Cache Invalidate All Command.”

The instruction cache also implements a lock bit for each cache block that allows
instructions to be loaded into the instruction cache and locked—providing fast and
deterministic execution time for critical code segments. The MPC855T supports commands
for locking and unlocking individual cache blocks and for unlocking all the cache blocks at
once.

Chapter 7. Instruction and Data Caches

Data Cache Organization

7.2 Data Cache Organization
The data cache is organized as 128 sets of two blocks as shown in Figure 7-2. Each block
consists of 16 bytes, two state bits, a lock bit, and an address tag.

Figure 7-2. Data Cache Organization

COMP

way0

28 312721200

Byte select

Bidirectional multiplexer 2 -> 1

hit0

HIT

Data effective address

. .

. .

. .

. .

set0
set1

set127
set126

COMP

tag0 w0 w1 w2 w3

V
al

id
 b

it
Lo

ck
 b

it

tag1 w0 w1 w2 w3

tag127 w0 w1 w2 w3
tag126 w0 w1 w2 w3

. .
 .

. .
 .

. .
 .

. .
 .

L
R
U

A
r
r
a
y

. .

. .

. .

. .

hit1

To/from block buffer
To/from burst buffer

4

w2 tag0 w0 w1 w2 w3

way1

tag1 w0 w1 w2 w3

tag127 w0 w1 w2 w3
tag126 w0 w1 w2 w3

. .
 .

. .
 .

. .
 .

. .
 .

V
al

id
 b

it
Lo

ck
 b

it

w2

MMU

7

21

21

128 128

21

128

D
ir

ty
 b

it

D
ir

ty
 b

it

MPC855T User’s Manual

Cache Control Registers

Each cache block contains four contiguous words from memory that are loaded from a
four-word boundary; that is, bits A[28–31] of the logical (effective) addresses are zero. As
a result, cache blocks are aligned with page boundaries. Note that address bits A[21–27]
provide the index to select a cache set. Bits A[28–31] select a byte within a block. The tags
consist of the high-order physical address bits PA[0–20]. Address translation occurs in
parallel with set selection (from A[21–27]).

The two state bits implement a three-state (modified-valid/unmodified-valid/invalid)
protocol. The MPC855T does not provide support for snooping external bus activity. All
coherency between the internal caches and external agents (memory or I/O devices) must
be controlled by software.

The data cache also implements a lock bit for each cache block that allows data to be loaded
into the data cache and locked. The MPC855T supports commands for locking and
unlocking individual cache blocks and for unlocking all the cache blocks at once.

7.3 Cache Control Registers
The MPC855T’s caches are controlled by programming commands using the cache control
registers and by issuing dedicated PowerPC cache control instructions. This section
describes control of the instruction and data caches by the cache control registers.
Section 7.4, “PowerPC Cache Control Instructions,” describes the PowerPC cache control
instructions.

7.3.1 Instruction Cache Control Registers

The MPC855T implements three special purpose registers (SPRs) to control the instruction
cache—the instruction cache control and status register (IC_CST), the instruction cache
address register (IC_ADR), and the instruction cache data port register (IC_DAT). The
instruction cache can be disabled, invalidated, or locked by issuing the appropriate
commands to the instruction cache control registers (IC_CST, IC_ADR, and IC_DAT). In
addition, the instruction cache control registers can be used to read the contents and tags of
specific instruction cache blocks.

The mtspr and mfspr instructions are used to access the cache control registers, but they
can be accessed only by supervisor-level programs (that is, when MSR[PR] = 0). Any
attempt to access these SPRs with a user-level program (MSR[PR] = 1) results in a
supervisor-level program exception.

The IC_CST register, shown in Figure 7-3, has an SPR encoding of 560.

Chapter 7. Instruction and Data Caches

Cache Control Registers

Table 7-1. describes the bits of the IC_CST register.

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIELD IEN — CMD —
CCER

1
CCER

2
—

RESET 0 — — — 0 0 —

R/W R — R/W — R R —

BIT 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FIELD —

RESET —

R/W —

SPR 560

Figure 7-3. Instruction Cache Control and Status Register (IC_CST)

Table 7-1. Instruction Cache Control and Status Register—IC_CST

Bits Name Description

0 IEN Instruction cache enable status.
0 The instruction cache is disabled
1 The instruction cache is enabled
Note that this is a read-only bit. Any attempt to write to it is ignored.

1–3 — Reserved

4–6 CMD Instruction cache command
000Reserved
001Cache enable
010Cache disable
011Load & lock cache block
100Unlock cache block
101Unlock all
110Invalidate all
111Reserved
Note that reading these bits always returns 0b000

7–9 — Reserved

10 CCER1 Instruction cache error type 1—bus error during an IC_CST load & load cache block command
0 No error detected
1 Error detected
Note that this is a read-only, sticky bit, set only by the MPC855T when an error is detected.
Reading this bit clears it.

11 CCER2 Instruction cache error type 2—no unlocked way available for an IC_CST load & lock cache
block command
0 No error detected
1 Error detected
Note that this is a read-only, sticky bit, set only by the MPC855T when an error is detected.
Reading this bit clears it.

12–31 — Reserved

MPC855T User’s Manual

Cache Control Registers

The IC_ADR register, shown in Figure 7-4, has an SPR encoding of 561.

Table 7-2 describes the bits of the IC_ADR register.

The IC_DAT register, shown in Figure 7-5, has an SPR encoding of 562.

Table 7-3 describes the bits of the IC_DAT register.

7.3.1.1 Reading Data and Tags in the Instruction Cache

The MPC855T supports reading the data, tags, and the state and lock bits stored in the
instruction cache. The instruction cache read command, issued by reading the IC_DAT
register, uses the IC_ADR register to qualify what is to be read. Table 7-4. describes the
fields of the IC_ADR register during an instruction cache read command.

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FIELD ADR

RESET —

R/W R/W

SPR 561

Figure 7-4. Instruction Cache Address Register (IC_ADR)

Table 7-2. Instruction Cache Address Register—IC_ADR

Bits Name Description

0–31 ADR Instruction cache command address. When programming the IC_CST[CMD] load & lock cache
block and unlock cache block commands, IC_ADR contains the physical address in external
memory of the desired cache block element. When reading the data, tags, and status contained
within the instruction cache, IC_ADR is used to qualify what is to be read according to Table 7-6 See
Section 7.3.1.1, “Reading Data and Tags in the Instruction Cache,” for more information.

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FIELD DAT

RESET —

R/W R/W

SPR 562

Figure 7-5. Instruction Cache Data Port Register (IC_DAT)

Table 7-3. Instruction Cache Data Port Register—IC_DAT

Bits Name Description

0–31 DAT Instruction cache command data. The data received when reading information from the
instruction cache. See Section 7.3.1.1, “Reading Data and Tags in the Instruction Cache,” for
more information.

Chapter 7. Instruction and Data Caches

Cache Control Registers

To read the data or tags stored in the instruction cache, do the following:

1. Write the address of the data or tag to be read to the IC_ADR according to the format
shown in Table 7-6
Note that it is also possible to read this register for debugging purposes.

2. Read the IC_DAT register.

For data array (IC_ADR[18] = 1) read commands, the word selected by IC_ADR[28–29]
is placed in the target general-purpose register. For tag array (IC_ADR[18] = 0) read
commands, the tag and state information is placed in the target general-purpose register.
Table 7-5. provides the format of the IC_DAT register for a tag read.

7.3.1.2 IC_CST Commands

All IC_CST commands, except the load & lock cache block command, are executed
immediately after writing to the IC_CST register and do not generate any errors. Therefore,
when executing these commands there is no need to check the error type bits in the IC_CST
register. All commands should be followed by an isync instruction, if the instruction cache
command is required to affect all instruction fetches that come after it in the program order.
In addition, correct operation of the instruction cache relies on software following the
procedures described in Section 7.5.5, “Updating Code and Memory Region Attributes.”

Note that when the instruction cache is executing a command, it stops handling CPU
requests, which can result in machine stalls.

7.3.1.2.1 Instruction Cache Enable/Disable Commands

The instruction cache enable command (IC_CST[CMD] = 0b001) is used to enable the
instruction cache; the instruction cache disable command (IC_CST[CMD] = 0b010) is used
to disable the instruction cache. Neither of these commands has any error cases. The current
state of the instruction cache is available by reading the instruction cache enable status bit
(IC_CST[IEN]).

Table 7-4. IC_ADR Fields for Cache Read Commands

0–17 18 19 20 21–27 28–29 30–31

Reserved 0 Tag
1 Data

0 Way 0
1 Way 1

Reserved Set select
(0–127)

Word select
(used only for

data array)

Reserved

Table 7-5. IC_DAT Format for a Tag Read (IC_ADR[18] = 0)

0–20 21 22 23 24 25–31

Tag value Reserved 0 Invalid
1 Valid

0 Unlocked
1 Locked

LRU bit of this set Reserved

MPC855T User’s Manual

Cache Control Registers

When disabled, the MPC855T ignores the instruction cache valid bit and operates as if all
accesses have caching-inhibited access attributes (that is, all instruction fetches are
propagated to the bus as single-beat transactions). Disabling the instruction cache does not
affect the instruction address translation logic; MSR[IR] controls instruction address
translation.

At hard reset, the instruction cache is disabled.

7.3.1.2.2 Instruction Cache Load & Lock Cache Block Command

The instruction cache load & lock cache block command (IC_CST[CMD] = 0b011) is used
to lock critical code segments in the instruction cache. Locked cache blocks are not
replaced during misses and are not affected by invalidate commands. Correct operation of
locked instruction cache blocks relies on software following the procedures described in
Section 7.5.5, “Updating Code and Memory Region Attributes.”

To load & lock one or more cache blocks:

1. Read the IC_CST error type bits to clear them.
2. Write the address of the cache block to be locked to the IC_ADR register.
3. Write the load & lock cache block command (IC_CST[CMD] = 0b011) to the

IC_CST register.
4. Execute an isync instruction.
5. Repeat steps 2 through 4 to load & lock another cache block.
6. Read the IC_CST error type bits to determine if the sequence completed without

errors.

After the load & lock cache block command is written to the IC_CST register, the cache
checks if the block containing the byte addressed by IC_ADR[ADR] is in the cache (hit).
If it is in the cache, the block is locked. If the block is not in the cache, a normal miss
sequence is initiated (see Section 7.5.2, “Instruction Cache Miss,” for more information).
After the addressed block is placed into the cache, the block is locked.

The user must check the IC_CST error type bits to determine if the load & lock cache block
operation completed without error. The load & lock cache block command generates two
possible errors:

• Type 1—a bus error occurred in one of the fetch cycles

• Type 2—there is no available way to lock (It is the responsibility of the user to make
sure that there is at least one unlocked way in the appropriate set.)

The error type bits in the IC_CST register are sticky, thus allowing the user to perform a
series of load & lock cache block commands before checking the termination status. These
bits are set by the MPC855T and are cleared by software.

Note that the MPC855T considers all zero-wait-state devices on the internal bus as
caching-inhibited. For this reason, software should not perform load & lock cache block

Chapter 7. Instruction and Data Caches

Cache Control Registers

operations from these devices on the internal bus.

7.3.1.2.3 Instruction Cache Unlock Cache Block Command

The unlock cache block command (IC_CST[CMD] = 0b100) is used to unlock previously
locked cache blocks. To unlock a cache block:

1. Write the address of the cache block to be unlocked to the IC_ADR register.

2. Write the unlock cache block command (IC_CST[CMD] = 0b100) to the IC_CST
register.

If the block is found in the cache (hit), it is unlocked and thereafter operates as a regular
valid cache block. If the block is not found in the cache (miss), no operation is performed.
There are no error cases for the unlock block command.

The instruction cache performs the unlock cache block command in one clock cycle.

7.3.1.2.4 Instruction Cache Unlock All Command

The unlock all command (IC_CST[CMD] = 0b101) is used to unlock the entire instruction
cache with a single command.

When the unlock all command is performed, if a cache block is locked, it is unlocked and
thereafter operates as a regular valid cache block. If a block is not locked or if it is marked
invalid, no operation is performed. There are no error cases for the unlock all command

The instruction cache performs the unlock all command in one clock cycle.

7.3.1.2.5 Instruction Cache Invalidate All Command

The instruction cache invalidate all command (IC_CST[CMD] = 0b110) causes all
unlocked, valid blocks in the instruction cache to be marked invalid. As a result of the
invalidate all command, the LRU bits of all cache blocks point to either the unlocked way
or to way 0 if both ways are unlocked. There are no error cases for the invalidate all
command.

The instruction cache performs the invalidate all command in one clock cycle.

7.3.2 Data Cache Control Registers

The MPC855T implements three special purpose registers (SPRs) to control the data
cache—the data cache control and status register (DC_CST), the data cache address
register (DC_ADR), and the data cache data port register (DC_DAT). The data cache can
be disabled, invalidated, locked, or flushed by issuing the appropriate commands to the data
cache control registers (DC_CST, DC_ADR, and DC_DAT). Also, the data cache control
registers can be used to read the contents and tags of specific data cache blocks.

DC_CST[DFWT] can be used to force the data cache into write-through mode.
DC_CST[LES] controls true-little endian byte-ordering of the MPC855T. See

MPC855T User’s Manual

Cache Control Registers

Appendix A, “Byte Ordering,” for more information.

The mtspr and mfspr instructions are used to access the cache control registers, but they
can be accessed only by supervisor-level programs (that is, when MSR[PR] = 0). Any
attempt to access these SPRs with a user-level program (MSR[PR] = 1) results in a
supervisor-level program exception.

The DC_CST register, shown in Figure 7-6, has an SPR encoding of 568.

Table 7-6 describes the bits of the DC_CST register.

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIELD DEN DFWT LES — CMD —
CCER

1
CCER

2
—

RESET 0 0 0 — — — 0 0 —

R/W R R R — R/W — R R —

BIT 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FIELD —

RESET —

R/W —

SPR 568

Figure 7-6. Data Cache Control and Status Register (DC_CST)

Table 7-6. Data Cache Control and Status Register—DC_CST

Bits Name Description

0 DEN Data cache enable status
0 The data cache is disabled
1 The data cache is enabled
Note that this is a read-only bit. Any attempt to write to it is ignored. This bit is programmed by
issuing the appropriate command in DC_CST[CMD].

1 DFWT Data cache forced write-through
0 The write-through behavior of the data cache is determined by the write-through memory/cache

access attribute (the W bit) in the MMU.
1 Writes to the data cache are forced to write through to memory.
Note that this is a read-only bit. Any attempt to write to it is ignored. This bit is programmed by
issuing the appropriate command in DC_CST[CMD].

2 LES Little-endian swap
0 Used for big-endian (BE) and Modified little-endian (MOD-LE) modes. No modifications to the

address or byte lanes are performed.
1 Used for true little-endian (TLE) mode. A 2-bit munge is performed on the physical address

before accessing the internal U-bus. Also, for accesses originating from the PowerPC core,
the SIU unmunges the address and swaps the bytes of data within each word at the external
bus/internal U-bus boundary.

See Appendix A, “Byte Ordering,” for more information on MPC855T byte ordering. Note that this
is a read-only bit. Any attempt to write to it is ignored. This bit is programmed by issuing the
appropriate command in DC_CST[CMD].

3 Reserved

Chapter 7. Instruction and Data Caches

Cache Control Registers

The DC_ADR register, shown in Figure 7-7., has an SPR encoding of 569.

4–7 CMD Data cache command
0000 Reserved
0001 Set forced write-through bit
0010 Cache enable
0011 Clear forced write-through bit
0100 Cache disable
0101 Set true little-endian swap bit
0110 Load & lock cache block
0111 Clear little-endian swap bit
1000 Unlock cache block
1001 Reserved
1010 Unlock all
1011 Reserved
1100 Invalidate all
1101 Reserved
1110 Flush cache block
1111 Reserved
Note that reading these bits always returns 0b0000

8–9 Reserved

10 CCER1 Data cache error type 1—copyback error during dcbf or dcbst instruction execution or during
DC_CST flush cache block command. A machine check exception is generated when this bit is
set.
0 No error detected
1 Error detected
Note that this is a read-only, sticky bit, set only by the MPC855T when an error is detected.
Reading this bit clears it.

11 CCER2 Data cache error type 2. This bit indicates one of two possible errors—either a bus error during
DC_CST load & load cache block or flush cache block command or there is no unlocked way
available for a DC_CST load & lock cache block or flush cache block command.
0 No error detected
1 Error detected
Note that this is a read-only, sticky bit, set only by the MPC855T when an error is detected.
Reading this bit clears it.

12–31 — Reserved

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FIELD ADR

RESET —

R/W R/W

SPR 569

Figure 7-7. Data Cache Address Register (DC_ADR)

Table 7-6. Data Cache Control and Status Register—DC_CST (continued)

Bits Name Description

MPC855T User’s Manual

Cache Control Registers

Table 7-7 describes the bits of the DC_ADR register.

The DC_DAT register, shown in Figure 7-8, has an SPR encoding of 570.

Table 7-8 describes the bits of the DC_DAT register.

7.3.2.1 Reading Data Cache Tags and Copyback Buffer

The MPC855T supports reading the tags, the state bits and the lock bits stored in the data
cache as well as the last copyback address, and data words in the copyback buffer. The data
cache read command, issued by reading DC_DAT, uses the DC_ADR register to qualify
what is to be read. Table 7-9. describes the fields of the DC_ADR register during a data
cache read command.

Table 7-7. Data Cache Address Register—DC_ADR

Bits Name Description

0–31 ADR Data cache command address. When programming the DC_CST load & lock cache block, unlock
cache block, and flush cache block commands, DC_ADR contains the physical address of the
desired cache block element in external memory. When reading the data, tags, and status
contained within the data cache, DC_ADR is used to qualify what is to be read according to
Table 7-7. See Section 7.3.2.1, “Reading Data Cache Tags and Copyback Buffer,” for more
information.

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FIELD DAT

RESET —

R/W R/W

SPR 570

Figure 7-8. Data Cache Data Port Register (DC_DAT)

Table 7-8. Data Cache Data Port Register—DC_DAT

Bits Name Description

0–31 DAT Data cache command data. The data received when reading information from the data cache. See
Section 7.3.2.1, “Reading Data Cache Tags and Copyback Buffer,” for more information.

Table 7-9. DC_ADR Fields for Cache Read Commands

0–17 18 19 20 21–27 28–31

Reserved 0 Tags 0 Way 0
1 Way 1

Reserved Set select
(0–127)

Reserved

1 Copyback
buffer

Reserved Copyback buffer
address/

data-word select

Chapter 7. Instruction and Data Caches

Cache Control Registers

To read the copyback buffer data or the tags stored in the data cache, do the following:

1. Write the address of the copyback buffer or tag to be read to the DC_ADR according
to the format shown in Table 7-9..
Note that it is also possible to read this register for debugging purposes.

2. Read the DC_DAT register. Note that writing to the DC_DAT register is illegal. A
write to DC_DAT results in an undefined data cache state.

For tag array (DC_ADR[18] = 0) read commands, the tag and state information is placed
in the target general-purpose register. Table 7-10. provides the format of the DC_DAT
register for a tag read.

The last copyback address or data buffer can be read by using the copyback buffer read
command (DC_ADR[18] = 1). The copyback buffer select field (DC_ADR[21–27]), shown
in Table 7-11, determines which word of the cache block in the copyback buffer is read.

7.3.2.2 DC_CST Commands
All DC_CST commands, except the load & lock cache block and flush cache block
commands, are executed immediately after writing to the DC_CST register and do not
generate any errors. Therefore, there is no need to check the error type bits in the DC_CST
register except when executing the load & lock cache block and flush cache block
commands.

Note that when the data cache is executing a command, it stops handling CPU requests,
which can result in machine stalls.

7.3.2.2.1 Data Cache Enable/Disable Commands
The data cache enable command (DC_CST[CMD] = 0b0010) is used to enable the data
cache; the data cache disable command (DC_CST[CMD] = 0b0100) is used to disable the
data cache. Neither of these commands has any error cases. The current state of the data

Table 7-10. DC_DAT Format for a Tag Read (DC_ADR[18] = 0)

0–20 21 22 23 24 25 26–31

Tag value Reserved 0 Invalid
1 Valid

0 Unlocked
1 Locked

LRU bit of this
set

0 Unmodified
1 Modified

Reserved

Table 7-11. Copyback Buffer Select Field (DC_ADR[21–27]) Encoding

DC_ADR[21–27] Buffer Selected

0x00 Copyback buffer data word 0

0x01 Copyback buffer data word 1

0x02 Copyback buffer data word 2

0x03 Copyback buffer data word 3

0x04 Copyback address

MPC855T User’s Manual

Cache Control Registers

cache is available by reading the data cache enable status bit (DC_CST[DEN]).

When disabled, the MPC855T ignores the data cache state bits and operates as if all
accesses have caching-inhibited access attributes (that is, all accesses are propagated to the
bus as single-beat transactions). Disabling the data cache does not affect the data address
translation logic; MSR[DR] controls data address translation.

Note that the data cache is disabled at hard reset. Also, the data cache is automatically
disabled when a type 1 data cache error (see Table 7-6 for DC_CST[CCER1] conditions)
generates a machine check exception.

7.3.2.2.2 Data Cache Load & Lock Cache Block Command

The data cache load & lock cache block command (DC_CST[CMD] = 0b0110) is used to
lock critical data in the data cache. Locked cache blocks are not replaced during misses and
are not affected by invalidate commands.

To load & lock one or more cache blocks:

1. Read the DC_CST error type bits to clear them.

2. Write the address of the cache block to be locked to the DC_ADR register.

3. Write the load & lock cache block command (DC_CST[CMD] = 0b0110) to the
DC_CST register.

4. Repeat steps 2 and 3 to load & lock another cache block.

5. Read DC_CST[CCER2] to determine if the sequence completed without errors.

After the load & lock cache block command is written to the DC_CST register, the cache
checks if the block containing the byte addressed by DC_ADR[ADR] is in the cache (hit).
If it is in the cache, the block is locked and the command terminates with no exception. If
the block is not in the cache, a normal miss sequence is initiated (see Section 7.6, “Data
Cache Operation,” for more information). After the addressed block is placed into the
cache, the block is locked.

The user must check DC_CST[CCER2] to determine if the load & lock cache block
operation completed without error. The error type bits in the DC_CST register are sticky,
thus allowing the user to perform a series of load & lock commands before checking the
termination status. These bits are set by the MPC855T and are cleared by software.

Note that the MPC855T considers all zero-wait-state devices on the internal bus as
caching-inhibited. For this reason, software should not perform load & lock operations
from these devices on the internal bus.

7.3.2.2.3 Data Cache Unlock Cache Block Command

The unlock cache block command (DC_CST[CMD] = 0b1000) is used to unlock
previously locked cache blocks. To unlock a cache block:

1. Write the address of the cache block to be unlocked to the DC_ADR register.

Chapter 7. Instruction and Data Caches

Cache Control Registers

2. Write the unlock cache block command (DC_CST[CMD] = 0b1000) to the
DC_CST register.

If the block is found in the cache (hit), it is unlocked and thereafter operates as a regular
valid cache block. If the block is not found in the cache (miss), no operation is performed.
There are no error cases for the unlock block command.

The data cache performs the unlock cache block command in one clock cycle.

7.3.2.2.4 Data Cache Unlock All Command
The data cache unlock all command (DC_CST[CMD] = 0b1010) is used to unlock the
entire data cache with a single command. When the unlock all command is performed, if a
cache block is locked, it is unlocked and thereafter operates as a regular valid cache block.
If a block is not locked or if it is marked invalid, no operation is performed. There are no
error cases for the unlock all command.
The data cache performs the unlock all command in one clock cycle.

7.3.2.2.5 Data Cache Invalidate All Command
The data cache invalidate all command (DC_CST[CMD] = 0b1100) causes all unlocked,
valid blocks in the data cache to be marked invalid, regardless of whether the data is
modified. Therefore, this command may effectively destroy modified data. To invalidate the
entire data cache the invalidate all command should be preceded by an unlock all command.
Note that the data cache is not automatically invalidated at hard reset.

As a result of the invalidate all command, the LRU bits of all cache blocks point to either
the unlocked way or to way 0 if both ways are unlocked. There are no error cases for the
invalidate all command.

The data cache performs the invalidate all command in one clock cycle.

7.3.2.2.6 Data Cache Flush Cache Block Command
The data cache flush cache block command (DC_CST[CMD] = 0b1110) is used to write
the contents of an unlocked, modified-valid cache block to memory and subsequently
invalidate that cache block. If the cache block is unmodified-valid, the cache block is
invalidated without writing the contents to memory. If the cache block is locked or if it is
marked invalid, no operation is performed.

If a bus error occurs while executing the DC_CST flush cache block command,
DC_CST[CCER1] is set and a machine check exception is generated. The data of the cache
block flagged by the bus error is contained in the copyback buffer; it will have already been
flushed from the data cache array. See Section 7.3.2.1, “Reading Data Cache Tags and
Copyback Buffer,” for more information.

The PowerPC cache control instructions dcbst and dcbf can also be used to flush the data
cache. Note that the PowerPC cache control instructions operate on effective addresses that
are translated while the DC_CST flush cache block command operates on a physically
addressed block contained within the data cache. When there is a need to restrict the
flushing to a specific memory area or to maintain architectural compliance, it is

MPC855T User’s Manual

PowerPC Cache Control Instructions

recommended to use the PowerPC cache control instructions; when there is a need to flush
the entire data cache and there is no concern for architectural compliance, using the
DC_CST flush cache block command is more efficient.

7.4 PowerPC Cache Control Instructions
The PowerPC architecture defines instructions for controlling both the instruction and data
caches. The cache control instructions, icbi, dcbt, dcbtst, dcbz, dcbst, dcbf, and dcbi, are
intended for the management of the local caches. In the following descriptions, the
memory/cache access attributes refer to the write-through/write-back,
caching-inhibited/caching-allowed, guarded/not guarded status of the addressed page.

Note that the MPC855T does not broadcast cache control instructions nor does it snoop
such broadcasts.

A TLB miss exception is generated if the effective address of one of these instructions
cannot be translated and data address relocation is enabled. A TLB error exception is
generated if these instructions encounter a TLB protection violation.

7.4.1 Instruction Cache Block Invalidate (icbi)

The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. This instruction is treated as a store with respect to
address translation and memory protection. If the address hits an unlocked block in the
instruction cache, the cache block is placed in the invalid state. If the address misses in the
instruction cache or if the block is locked, no action is taken. The function of this instruction
is independent of the memory/cache access attributes.

This command is not privileged and has no associated error cases. The instruction cache
performs the icbi instruction in one clock cycle. To accurately calculate the latency of this
instruction, bus latency should be taken into consideration.

7.4.2 Data Cache Block Touch (dcbt) and
 Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst)
instructions provide potential system performance improvement through the use of
software-initiated prefetch hints. The MPC855T treats these instructions identically (that
is, a dcbtst instruction behaves exactly the same as a dcbt instruction on the MPC855T).

The MPC855T loads the data into the cache when the effective address hits in the TLB, is
permitted load access from the addressed page, and is directed at a caching-allowed page.
Otherwise, the MPC855T treats these instructions as no-ops. The data brought into the
cache as a result of this instruction is validated in the same manner that a load instruction
would be (that is, it is marked as unmodified-valid). Note that the successful execution of

Chapter 7. Instruction and Data Caches

PowerPC Cache Control Instructions

the dcbt (or dcbtst) instruction affects the state of the TLB and cache LRU bits.

7.4.3 Data Cache Block Zero (dcbz)

The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. The dcbz instruction is treated as a store to the
addressed byte with respect to address translation and protection.

If the block containing the byte addressed by the EA is in the data cache, all bytes are
cleared, and the tag is marked as modified-valid. If the block containing the byte addressed
by the EA is not in the data cache and the corresponding page is caching-allowed, the block
is established in the data cache without fetching the block from main memory, and all bytes
of the block are cleared, and the tag is marked as modified-valid.

The dcbz instruction executes regardless of whether the cache block is locked, but if the
cache is disabled, an alignment exception is generated. If the page containing the byte
addressed by the EA is caching-inhibited or write-through, then the system alignment
exception handler is invoked.

7.4.4 Data Cache Block Store (dcbst)

The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. This instruction is treated as a load with respect to
address translation and memory protection.

If the address hits in the cache and the cache block is in the unmodified-valid state, no
action is taken. If the address hits in the cache and the cache block is in the modified-valid
state, the modified block is written back to memory and the cache block is placed in the
unmodified-valid state.

If a bus error occurs while executing the dcbst instruction, DC_CST[CCER1] is set and a
machine check exception is generated. The data of the cache block flagged by the bus error
is retrieved from the copyback buffer, not from the data cache. See Section 7.3.2.1,
“Reading Data Cache Tags and Copyback Buffer,” for more information.

The function of this instruction is independent of the memory/cache access attributes. The
dcbst instruction executes regardless of whether the cache is disabled or the cache block is
locked.

7.4.5 Data Cache Block Flush (dcbf)

The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. This instruction is treated as a load with respect to
address translation and memory protection.

If the address hits in the cache, and the block is in the modified-valid state, the modified

MPC855T User’s Manual

Instruction Cache Operations

block is written back to memory and the cache block is placed in the invalid state. If the
address hits in the cache, and the cache block is in the unmodified-valid state, the cache
block is placed in the invalid state. If the address misses in the cache, no action is taken.

If a bus error occurs while executing the dcbf instruction, DC_CST[CCER1] is set and a
machine check exception is generated. The data of the cache block flagged by the bus error
is retrieved from the copyback buffer, not from the data cache. See Section 7.3.2.1,
“Reading Data Cache Tags and Copyback Buffer,” for more information.

The function of this instruction is independent of the memory/cache access attributes. The
dcbf instruction executes regardless of whether the cache is disabled or the cache block is
locked.

7.4.6 Data Cache Block Invalidate (dcbi)

The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. This instruction is treated as a store with respect to
address translation and memory protection.

If the address hits in the cache, the cache block is placed in the invalid state, regardless of
whether the data is modified. If the address misses in the cache, no action is taken. Because
this instruction may effectively destroy modified data, it is privileged (that is, dcbi is
available only to programs at the supervisor privilege level, MSR[PR] = 0).

The function of this instruction is independent of the memory/cache access attributes. The
dcbi instruction executes regardless of whether the cache is disabled or the cache block is
locked.

7.5 Instruction Cache Operations
When the instruction MMU is enabled (MSR[IR] = 1), the instruction cache operates as
defined by the memory/cache access attributes. When the instruction MMU is disabled
(MSR[IR] = 0), the instruction cache operates as defined by the default instruction memory
access attributes. The default state of the caching-inhibited/caching-allowed attribute is
determined by MI_CTR[CIDEF], and the entire memory space defaults to the guarded
attribute. See Chapter 8, “Memory Management Unit,” for more information.

An instruction cache access begins with an instruction fetch request from the instruction
sequencer in the PowerPC core. As shown in Figure 7-1., bits 21–27 of the instruction
address provide the index to select a set (0–127) within the instruction cache array. The tags
from each way of the set are compared against bits 0–20 of the instruction address. If a
match is found and the matched entry is valid, then it is a cache hit. If no tag matches or the
matched tag is not valid, it is a cache miss.

Chapter 7. Instruction and Data Caches

Instruction Cache Operations

The data path for the instruction cache and its surrounding logic are shown in Figure 7-9.

Figure 7-9. Instruction Cache Data Path

The 4-word burst buffer holds the last cache block received from the internal bus (the last
miss); the 4-word block buffer holds the last block retrieved from the instruction cache (the
last hit). Note that if one of these buffers contains the requested instruction, it is also
considered a cache hit. To minimize power consumption, the MPC855T can detect that one
of the buffers contains the requested instruction and service the instruction request from the
buffers without activating the instruction cache array.

The MPC855T instruction cache includes the following operational features:

• Instruction fetch latency is reduced by sending the requested instruction address to
the instruction cache and internal bus simultaneously. A cache hit aborts the internal
bus transaction before the MPC855T can initiate an external fetch.

• The instruction cache supports stream hits (allows fetching from the burst buffer or
directly from the internal data bus, before the instruction cache array is filled)

4-Word

To Instruction

Internal Data Bus

Set

Address [21–27]

4-Word

Address [28–29]

Instruction Cache
ArrayDecoder

128

32

Burst
Buffer

128

128

128

Stream
Hit

Mux
2->1

Word
Select
Mux
4->1

128

Data
Bypass

Mux
2->1

32

32

Sequencer

Cache
Block
Buffer

MPC855T User’s Manual

Instruction Cache Operations

• The instruction cache supports hits under misses (allows servicing hits while a
previous miss is being fetched from the external bus)

• A fetch request from the instruction sequencer has priority over burst buffer writes
to the cache array (the burst buffer holds the last missed cache block), thus
increasing the overall performance

• Efficiently uses the pipeblock of the internal data bus by initiating a new burst cycle
(if miss is detected) while bringing the tail of the previous missed block

• Performance for caching-inhibited regions is enhanced by fetching a full 4-word
block into the burst buffer. Instructions in the burst buffer are only used once before
being refetched

7.5.1 Instruction Cache Hit

In the case of a cache hit, the cache block is transferred to the cache block buffer and
forwarded to the stream hit multiplexer and word select multiplexer. As shown in
Figure 7-2, bits 28–29 of the instruction address are used to select one word of the cache
block which is transferred to the instruction sequencer in the core.

7.5.2 Instruction Cache Miss
On an instruction cache miss, the address of the missed instruction is driven on the internal
bus with a 4-word burst transfer read request. The transfer begins with the word requested
by the instruction sequencer (critical-word first), followed by the remaining words (if any)
of the cache block, then by any remaining words at the beginning of the block
(wrap-around).

On a cache miss, the critical word is simultaneously written to the burst buffer and
forwarded to the instruction sequencer, thus minimizing stalls due to cache fill latency. As
subsequent words are received from the internal bus, they are also written into the burst
buffer and delivered to the instruction sequencer either directly from the internal bus or
from the burst buffer (a stream hit). A cache block in the array is then selected to receive
the cache block being gathered in the burst buffer. The selection algorithm gives first
priority to invalid blocks. If all blocks in the set are marked invalid, the block in way 0 is
selected. If none of the blocks in the selected set are invalid, then the least recently used
block is selected for replacement. Locked cache blocks are never replaced.

The instruction cache is not blocked to internal accesses while the fetch (caused by a cache
miss) completes. This functionality is sometimes referred to as ‘hits under misses,’ because
the cache can service a hit while a cache miss fill is waiting to complete. If no bus errors
are encountered during the 4-word cache block fetch, the burst buffer is marked valid and
written to the cache array, provided the cache array is not busy servicing a hit.

If a bus error is encountered while fetching the requested instruction (the critical word),
then a machine check exception is generated. If a bus error occurs while fetching
subsequent words in the cache block, then the burst buffer is marked invalid and the cache

Chapter 7. Instruction and Data Caches

Instruction Cache Operations

block is not written to the cache array.

7.5.3 Instruction Fetching on a Predicted Path

The core implements branch prediction to allow branches to issue as early as possible. This
mechanism allows instruction prefetching to continue while an unresolved branch is being
computed and the condition is being evaluated. Instructions fetched after unresolved
branches are said to be fetched on a predicted path. These instructions may be discarded
later if it turns out that the machine has followed the wrong path. To minimize power
consumption, the MPC855T instruction cache does not initiate a miss sequence in most
cases when the instruction is inside a predicted path. The MPC855T instruction cache
evaluates fetch requests to see if they are inside a predicted path. If a hit is detected, the
requested instruction is delivered to the core. However, if it is a cache miss, the miss
sequence is not initiated in most cases until the core finishes the branch evaluation.

7.5.4 Fetching Instructions from Caching-Inhibited Regions

The caching-inhibited/caching-allowed attributes of a memory region are programmed in
the memory management unit (MMU). To improve performance when fetching instructions
from caching-inhibited regions, the MPC855T loads the burst buffer with a full 4-word
block. Instructions that are stored in the burst buffer and originate from a cache-inhibited
region, can be sent to the instruction sequencer, at most, once before being refetched.

If an instruction fetch from a caching-inhibited region results in a cache hit, the instruction
is delivered to the instruction sequencer in the core from the cache and not from memory.
However, it is considered a programming error if an instruction fetch from a
caching-inhibited region results in a cache hit. Software must ensure that instructions from
a caching-inhibited region have not been previously loaded into the cache, or, if so, those
blocks have been flushed from the cache. See Section 7.5.5, “Updating Code and Memory
Region Attributes,” for more information.

It is also considered a programming error to perform load & lock cache block operations
from zero wait state devices that are located on the internal bus. The MPC855T considers
these devices as caching-inhibited memory regions. If a load & lock cache block operation
is performed from such a device, the instruction is not guaranteed to be fetched from the
instruction cache; in most cases, the instruction is fetched from the device, regardless of
whether it is in the instruction cache.

7.5.5 Updating Code and Memory Region Attributes

The instruction cache does not perform snooping, so if a processor modifies a memory
location that may be contained in the instruction cache, software must ensure that such
memory updates are visible to the instruction fetching mechanism. Also, whenever the
memory/cache attributes of any memory region are changed, it is critical that the cache
contents reflect the new attributes. Therefore, when updating code or changing memory

MPC855T User’s Manual

Data Cache Operation

region attributes (in the MMU) the user must perform the following steps:

1. Update code/change memory region attributes
2. Execute a sync instruction to ensure the update/change operation finished
3. Unlock all locked cache blocks containing code that was updated
4. Invalidate all cache blocks containing code that was updated
5. Execute an isync instruction

7.6 Data Cache Operation
When the data MMU is enabled (MSR[DR] = 1), the data cache operates as defined by the
memory/cache access attributes. When the data MMU is disabled (MSR[DR] = 0), the data
cache operates as defined by the default data memory access attributes. The default state of
the write-through/write-back attribute is determined by MD_CTR[WTDEF]; the
caching-inhibited/caching-allowed attribute is determined by MD_CTR[CIDEF]; and the
entire memory space defaults to the guarded attribute. See Chapter 8, “Memory
Management Unit,” for more information.

A data cache access begins with a load or store request from the load/store unit (LSU) in
the core. The data cache has a 32-bit data path to and from the load/store unit, allowing for
a 4-byte transfer per cycle. As shown in Figure 7-2., bits 21–27 of the data address provide
the index to select a set (0–127) within the data cache array. The tags from both ways of the
set are compared against bits 0–20 of the data address. If a match is found and the matched
entry is valid, then it is a cache hit. If neither tag matches or the matched tag is not valid, it
is a cache miss.

The data cache operates in both write-through and write-back modes as programmed by the
memory/cache access attributes. These modes affect store hit and store miss behavior of the
data cache. Load hits and load misses behave the same regardless of the
write-through/write-back mode. If two logical blocks map to the same physical block, it is
considered a programming error for them to specify different cache write policies.

Each data cache block contains two state bits that implement a three-state
(modified-valid/unmodified-valid/invalid) protocol. The MPC855T does not support
snooping of the data cache. All memory is considered to have memory coherency not
required attributes. Therefore, software must maintain data cache coherency. The
MPC855T does not provide support for snooping external bus activity. All coherency
between the internal caches and external agents (memory or I/O devices) must be controlled
by software. In addition, there is no mechanism provided for DMA or other internal masters
to access the data cache directly.

The MPC855T data cache includes the following operational features:

• Single-cycle cache access on hit and one clock latency added for miss

• The data cache supports hits under load misses

• 1-word store buffer

Chapter 7. Instruction and Data Caches

Data Cache Operation

• Store misses bypass the data cache (no-allocate store miss) in write-through mode

• 4-word copyback buffer holds replaced modified cache blocks until they can be
written to memory

• Cache operation is blocked until the cache block is written to the cache array for
store misses in write-back mode,

• The data cache supports the sync instruction through a cache pipe clean indication
to the core.

7.6.1 Data Cache Load Hit

In the case of a data cache load hit, the requested word is transferred to the load/store unit.
The LRU state of the set is updated, but the state bits remain unchanged.The access time
for a data cache load hit is one clock cycle (that is, zero wait states).

7.6.2 Data Cache Read Miss

In the case of a data cache load miss, a block in the cache array is selected to receive the
data from memory. The selection algorithm gives first priority to invalid blocks. If both
blocks in the set are marked invalid, the block in way 0 is selected. If neither of the two
blocks in the selected set are invalid, then the least recently used block is selected for
replacement. If the replacement block is marked modified-valid, then it is temporarily
stored in a copyback buffer to be written to memory later. Locked cache blocks are never
replaced.

After a cache block has been selected, the word-aligned physical address of the requested
data is sent to the SIU with a 4-word burst transfer read request. The SIU arbitrates for the
bus and initiates the burst read. The transfer begins with the aligned word containing the
requested data (critical word first), followed by the remaining words of the cache block (if
any), then by any remaining words at the beginning of the block (wrap-around).

The critical word is simultaneously written to the burst buffer and forwarded to the
load/store unit, thus minimizing stalls due to cache fill latency. The data cache is not
blocked to internal accesses while the load (caused by a cache miss) completes. This
functionality is sometimes referred to as ‘hits under misses,’ because the cache can service
a hit while a cache miss fill is waiting to complete. If no bus errors are encountered during
the 4-word cache block load, the burst buffer is written to the cache array (provided the
cache array is not busy servicing a hit) and the cache block is marked unmodified-valid.

If a bus error is encountered while loading the requested data (the critical word), then a
machine check exception is generated. If a bus error occurs while loading subsequent words
in the cache block, then the cache block is marked invalid.

After the cache block with the requested data has been loaded from memory, the
modified-valid cache block in the copyback buffer is sent to the SIU to be written to

MPC855T User’s Manual

Data Cache Operation

memory. If a bus error is encountered during the copyback, a machine check exception is
generated (the copyback error is an imprecise exception). The address and data in the
copyback buffer can be read as specified in Section 7.3.2.1, “Reading Data Cache Tags and
Copyback Buffer.”

7.6.3 Write-Through Mode

In write-through mode, store operations always update memory. The write-through mode
is used when external memory and internal cache images must always agree. Write-through
mode provides a lower worst case exception latency at the expense of average performance
(for example, if it does not have to perform flush accesses).

7.6.3.1 Data Cache Store Hit in Write-Through Mode

In the case of a data cache store hit in write-through mode, the data is written into both the
cache block and to memory. The LRU state of the set is updated, but the state bits remain
unchanged. If a bus error is encountered during the write operation to memory, the cache
block is still updated, but a machine check exception is generated.

7.6.3.2 Data Cache Store Miss in Write-Through Mode

In the case of a store miss in write-through mode, the data is only written to memory, not
to the data cache. This is sometimes referred to as a‘no-allocate’ store miss because the data
cache does not allocate a cache block in the cache array for the missed store operation. The
state and LRU bits remain unchanged. If a bus error is encountered during the write
operation to memory, a machine check exception is generated.

7.6.4 Write-Back Mode
In write-back mode, store operations do not necessarily update external memory. Data is
only copied to external memory when a copyback operation is required (or the cache is
deliberately flushed). For this reason the write-back mode is the preferred mode of
operation when it is necessary to minimize external bus utilization and as a side effect,
reduce operational power consumption.

7.6.4.1 Data Cache Store Hit in Write-Back Mode

In the case of a data cache store hit in write-back mode, the cache operation depends on the
state bits of the cache block. If the store hit is to a modified-valid cache block, then data is
stored in the cache block and the block stays marked modified-valid. If the store hit is to a
unmodified-valid cache block, then data is stored in the cache block and the block is marked
modified-valid. In either case, the LRU state of the set is updated to reflect the hit.

7.6.4.2 Data Cache Store Miss in Write-Back Mode

In the case of a data cache store miss in write-back mode, the data cache must establish the
block in the cache array before modifying that block. Therefore, a block in the cache array
is selected to receive the data from memory and from the load/store unit. The selection

Chapter 7. Instruction and Data Caches

Data Cache Operation

algorithm gives first priority to invalid blocks. If both blocks in the set are marked invalid,
the block in way 0 is selected. If neither of the two blocks in the selected set are invalid,
then the least recently used block is selected for replacement. If the replacement block is
marked modified-valid, then it is temporarily stored in the copyback buffer to be written to
memory later. Locked cache blocks are never replaced.

After a cache block has been selected, the word-aligned physical address of the store data
is sent to the SIU with a 4-word burst transfer read request. The SIU arbitrates for the bus
and initiates a burst read. The transfer begins with the aligned word containing the
requested data (critical word first), followed by the remaining words of the cache block (if
any), then by any remaining words at the beginning of the block (wrap-around). As the
critical word is received from the internal bus, it is merged in the burst buffer with the store
data from the load/store unit. If no bus errors are encountered during the burst buffer fill
operation, the cache block is written into the cache array and marked modified-valid. The
data cache does not support further requests until the entire block is written to the cache
array. If the machine has stalled waiting for the store to complete, execution is allowed to
resume when the cache block is written into the cache array.

If a bus error is encountered while loading the target data cache block, even on a word not
accessed by the load/store unit, then the cache block is not modified, and a machine check
exception is generated.

After the cache block with the requested data has been loaded from memory, the cache
block in the copyback buffer is sent to the SIU to be written to memory. The data cache can
support further requests, as long as they hit in the cache, while performing the copyback to
memory. If a bus error is encountered during the copyback, a machine check exception is
generated (the copyback error is an imprecise exception). The address and data in the
copyback buffer can be read as specified in Section 7.3.2.1, “Reading Data Cache Tags and
Copyback Buffer.”

7.6.5 Data Accesses to Caching-Inhibited Memory Regions

For load misses to caching-inhibited memory regions, the data is read from memory but not
placed in the cache and the cache status is not affected.

For store misses to caching-inhibited memory regions, the data is written to memory but
not placed in the cache and the cache status is not affected.

It is considered a programming error if a load, store, or dcbz targeting a caching-inhibited
memory region results in a cache hit. The PowerPC architecture allows the result of such
programming errors to be boundedly undefined. Software must ensure that data from a
caching-inhibited regions have not been previously loaded into the data cache, or, if they
have, that those blocks have been flushed from the cache. Whenever the memory/cache
attributes of any memory region are changed (for example, from caching-allowed to
caching-inhibited), it is critical that the cache contents reflect the new attributes. Therefore,

MPC855T User’s Manual

Data Cache Operation

when changing memory region attributes (in the MMU) the user must perform the
procedures described in Section 7.5.5, “Updating Code and Memory Region Attributes.”.

7.6.6 Atomic Memory References

The PowerPC architecture defines the Load Word and Reserve Indexed (lwarx) and the
Store Word Conditional Indexed (stwcx.) instructions to provide an atomic update function
for a single, aligned word of memory. These instructions can be used to develop a rich set
of multiprocessor synchronization primitives. For detailed information on these
instructions, refer to Section 5.2.4.6, “Memory Synchronization Instructions—UISA,” in
this book and Chapter 8, “Instruction Set,” in The Programming Environments Manual.

The lwarx instruction performs a load word from memory operation and creates a
reservation for the 16-byte section of memory that contains the accessed word. The
reservation granularity is 16 bytes. The lwarx instruction makes a nonspecific reservation
with respect to the executing processor and a specific reservation with respect to other
masters. This means that any subsequent stwcx. executed by the same processor, regardless
of address, will cancel the reservation. Also, any bus write operation from another
processor to an address that matches the reservation address will cancel the reservation.

The stwcx. instruction does not check the reservation for a matching address. The stwcx.
instruction is only required to determine whether a reservation exists. The stwcx.
instruction performs a store word operation only if the reservation exists. If the reservation
has been cancelled for any reason, then the stwcx. instruction fails and clears the CR0[EQ]
bit in the condition register. The architectural intent is to follow the lwarx/stwcx.
instruction pair with a conditional branch which checks to see whether the stwcx.
instruction failed.

Note that atomic memory references constructed using lwarx/stwcx. instructions depend
on the presence of a coherent memory system for correct operation. These instructions
should not be expected to provide atomic access to noncoherent memory. Since the
MPC855T does not snoop external bus activity, provision is made to cancel a reservation
inside the MPC855T by using the CR and KR input signals. The state of the reservation is
always presented onto the RSV output signal. This can be used by external agents to
determine when an internal condition has caused a change in the reservation state. See
Section 13.4.9, “Memory Reservation,” for more information. Internal to the MPC855T,
the data cache has snoop logic to monitor the internal bus for communication processor
module (CPM) accesses of the address associated with the last lwarx instruction.

If a memory region is marked caching-allowed, the MPC855T assumes that it is the single
master in the system to that region. If a caching-allowed lwarx or stwcx. access misses in
the data cache, the transaction on the internal and external buses do not have a reservation.
If the memory region is marked caching-inhibited or the cache is locked, and the access
misses, then the lwarx instruction appears on the bus as a single-beat load with the
reservation.

Chapter 7. Instruction and Data Caches

Cache Initialization after Reset

lwarx and stwcx. accesses to write-through memory regions do not generate DSI
exceptions. The MPC855T’s data cache treats all stwcx. operations as write-through
independent of the memory/cache access attributes. When the write-through operation
completes successfully on the external bus, then the data cache entry is updated (assuming
it hits), and CR0[EQ] is modified to reflect the success of the operation. If the reservation
is not intact, the stwcx. cancels the external bus transaction, and the cache block is not
altered.

7.7 Cache Initialization after Reset
At power-on and hard reset, both caches are disabled. Although disabled, the cache state is
preserved to enable the user to investigate the exact state of the cache prior to the event that
caused the reset. To ensure proper operation after reset, initialize the instruction cache by
performing the following:

1. Write the unlock all command (IC_CST[CMD] = 0b101) to the IC_CST register

2. Write the invalidate all command (IC_CST[CMD] = 0b110) to the IC_CST register

3. Write the cache enable command (IC_CST[CMD] = 0b001) to the IC_CST register

Similarly, to ensure proper operation after reset, initialize the data cache by performing the
following:

1. Write the unlock all command (DC_CST[CMD] = 0b1010) to the DC_CST register

2. Write the invalidate all command (DC_CST[CMD] = 0b1100) to the DC_CST
register

3. Write the cache enable command (DC_CST[CMD] = 0b0010) to the DC_CST
register

After the caches are initialized, all the cache blocks are invalidated, and the LRU bits point
to way 0 of each set.

7.8 Debug Support
The MPC855T can be debugged either in debug mode or by a software monitor debugger.
In both cases the core of the MPC855T asserts the internal freeze signal. See Chapter 44,
“System Development and Debugging,” for a detailed description of the MPC855T debug
support.

7.8.1 Instruction and Data Cache Operation in Debug Mode

The development system interface of the MPC855T uses the development port, which is a
dedicated serial port. The development port is a relatively inexpensive interface that allows
a development system to operate in a lower frequency than the core’s frequency and
controls system activity when the core is in debug mode. See Section 44.3, “Development

MPC855T User’s Manual

Debug Support

System Interface,” for more information.

When the MPC855T is in debug mode, all instructions are fetched from the development
port, regardless of the address generated by the MPC855T core. Therefore, the instruction
cache is bypassed when the MPC855T is in debug mode. In addition, the data cache is
frozen in debug mode. Loads and stores in debug mode always target system memory,
regardless of whether the accessed data is resident in the data cache. The only way to access
the contents of the instruction or data cache in debug mode is by using the IC_DAT or
DC_DAT registers.

7.8.2 Instruction and Data Cache Operation with a Software
 Monitor Debugger

With debug mode disabled, a software monitor debugger can use the development support
registers to assert the internal freeze signal during run-time. See Section 44.4, “Software
Monitor Debugger Support,” for more information.

When the internal freeze signal is asserted during run-time, the instruction cache treats all
misses as if they were from cache-inhibited regions. Misses are loaded only into the burst
buffer; hits are loaded from the cache array and the LRU bits are updated. If the debug
routine is not in the instruction cache, it is loaded from memory like any other miss and the
cache state remains the same as before the freeze signal was asserted.

For performance reasons, it may be preferable to run the debug routine from the cache. To
load the debug routine into the instruction cache before entering debug mode, perform the
following procedure:

1. Save both ways of the sets that are needed for the debug routine by reading the tag,
the LRU, valid, and lock bit states

2. Unlock the locked ways in the selected sets

3. Use the load & lock cache block command to load the debug routine into the
instruction cache and lock the cache blocks containing the debug routine.

4. Run the debug routine, all accesses to it will result in hits.

To restore the state of the instruction cache after the debug routine is finished, perform the
following procedure:

1. Unlock any ways in any sets that are used by the debug routine
2. Invalidate any ways in any sets that are used by the debug routine
3. Use the load & lock cache block command to restore the old sets in the cache array
4. Unlock any ways of the original sets that were not previously locked
5. To restore the old state of the LRU bits make sure that the last access (load & lock

cache block or unlock cache block command) is performed on the most-recently
used way (not the LRU way).

Chapter 7. Instruction and Data Caches

Debug Support

When the internal freeze signal is asserted during run-time, the data cache treats all load
misses as if they were from cache-inhibited regions. That is, the data is loaded from
memory and the cache LRU and state bits are unchanged. Load hits are serviced from the
cache array but the cache LRU and state bits are unchanged.

When the internal freeze signal is asserted, store hits and misses are treated as
write-through accesses, but the LRU bits in the data cache array are not updated. For the
dcbz instruction, data is written both into data cache and memory, but the LRU bits in the
data cache array are not updated. For the dcbst/dcbf/dcbi instructions, the data cache and
memory are updated according to the PowerPC architecture, but the LRU bits in the data
cache array are not updated.

MPC855T User’s Manual

Debug Support

Chapter 8. Memory Management Unit

Chapter 8
Memory Management Unit
The MPC855T implements a virtual memory management scheme that provides cache
control, memory access protections, and effective-to-physical (real) address translation.
The MMU largely complies with the PowerPC operating environment architecture (OEA)
with respect to architecturally defined memory management features that are appropriate
for this implementation. It does not support some PowerPC MMU features more
appropriate for a personal computer that is expected to run many applications
simultaneously, and in some cases provides greater flexibility than is defined by the
PowerPC architecture, especially with respect to page sizes. Available protection
granularity is 4-, 16-, 512-Kbyte, or 8-Mbyte pages or 1-Kbyte subpages (for 4-Kbyte
pages only). The MPC855T has separate instruction and data MMUs. The prefix Mx_
indicates a reference to both the instruction and data (MI_ and MD_) versions of the
register. The MMU supports two protection modes—default mode with extended encoding
and domain manager mode, which provides programmable overrides to page protection
settings.

8.1 Features
The following is a list of the MMU’s important features:

• Multiple page sizes—4-, 16-, 512-Kbyte, or 8-Mbyte pages (optional 1-Kbyte
subpage protection granularity for 4-Kbyte pages) with the following page
attributes:

— Changed bit support through the DTLB error exception on a write attempt to a
unmodified page (data MMU only)

— Write-through attribute for data accesses

— Cache-inhibit attribute for data and instruction accesses

— Default write-through and cache-inhibited attributes can be programmed for
when translation is disabled

— Guarded attribute for memory-mapped I/O and other nonspeculative regions

• Instruction and data address translation can be disabled separately

• MPC855T-specific special-purpose registers (SPRs) accessible with the PowerPC
mfspr/mtspr instructions

MPC855T User’s Manual

PowerPC Architecture Compliance

• Supports up to 16 virtual address spaces

• Supports 16 access protection groups (group protection overrides page protection)

• Separate -entry, fully-associative data translation lookaside buffer (DTLB) and
instruction TLB (ITLB) with the following features:

— Implementation-specific exceptions—ITLB and DTLB miss exceptions, ITLB
and DTLB error exceptions

— Supports PowerPC tlbie and tlbia instructions. The tlbsync instruction, which is
optional to PowerPC architecture implementations, is not supported and is
treated as a no-op

— Software tablewalk updates supported by DTLB and ITLB miss exceptions and
SPRs

— Each entry can be programmed to match user or supervisor accesses or both

— entries in each TLB can optionally be locked to ensure fast translation for
selected regions

• High performance

— 1 clock (zero wait state) access for a data cache hit and for an instruction cache
hit when the access is from the same page as the previous access

— 1 clock penalty for other TLB hit instruction accesses

• Low power consumption

8.2 PowerPC Architecture Compliance
The MPC855T core complies largely with the MMU as it is defined by the OEA, with the
following differences:

• The MPC855T does not implement the following PowerPC features:

— Block-address translation

— The optional direct-store functionality

— The memory coherency attribute

• The MPC855T supports the following additional features not defined by the
PowerPC architecture:

— Variable page sizes. The OEA defines 4-Kbyte pages only

— Programmable defaults for write-through and cache-inhibited memory attributes
when translation is disabled.

— Additional registers and exceptions for handling table walks in software.

Note that although the MPC855T does not define segment registers as they are defined by
the OEA, the concept of segment is retained as the memory space accessible to the
level-one table descriptors.

Chapter 8. Memory Management Unit

Address Translation

8.3 Address Translation
The core generates 32-bit effective addresses (EA) for memory accesses. Setting MSR[IR]
and MSR[DR] enables the effective-to-real translation for instruction fetching and data
accesses, respectively. Section 8.3.1, “Translation Disabled,” describes behavior when
translation is disabled. Section 8.3.2, “Translation Enabled,” describes behavior when
translation is enabled.

8.3.1 Translation Disabled

Because the IMMU and DMMU are separate, translation can be disabled or enabled
independently for data and instruction accesses by clearing MSR[DR] and MSR[IR],
respectively. When translation is disabled, the effective address is also the physical address.

Because the page translation mechanism is not used, the protection attributes that are part
of the page table structure cannot be used, so defaults are used. The default for whether
accesses are cache-inhibited are programmed through Mx_CTR[CIDEF]. Data accesses
can be either write-through (memory writes go both to the cache and to external memory)
or write back (memory writes directly affect the cache only and memory is updated
indirectly, such as when a modified data in the cache is cast-out by newer data at a different
address that maps to the same cache block). The default is configured by
MD_CTR[WTDEF].

Also, when translation is disabled (real mode), the entire memory space is treated as
guarded by default. The implications of this are:

1. Speculative load/store accesses are stalled until they are no longer speculative.

2. Speculative instruction fetches outside of the current real-mode page are stalled
until they are no longer speculative. The size of real-mode page is determined by
MI_CTR[PPM]. If MI_CTR[PPM] = 0, the real-mode page size is 4 Kbytes; if
MI_CTR[PPM] = 1, the real-mode page size is 1 Kbyte.

This behavior can result in significant performance degradation.

8.3.2 Translation Enabled

Translations are generated on a per-page basis and are stored in tables in memory. Along
with the translation, each table entry holds attributes for that page, for example, whether a
location is cacheable.

Recently used translations are kept in translation lookaside buffers (TLBs) in hardware. In
the MPC855T, software handles the table lookup and TLB reload with little hardware
assistance. This offers a flexible translation table structure choice, because many systems
would not benefit from a full-featured hardware translation mechanism.

MPC855T User’s Manual

Address Translation

A TLB hit in multiple entries is avoided when a TLB is being reloaded. When TLB logic
detects that a new effective page number (EPN) overlaps one in the TLB (when taking into
account pages sizes, subpage validity flags, user/supervisor state, address pace ID (ASID),
and the SH values of the TLB entries), the new EPN is written and the old one is invalidated.

The MMU supports a multiple virtual address space model. Each translation is associated
with an ASID, which must equal the address space ID (CASID) for a translation to be valid.

Figure 8-1 shows the flow for a read access or instruction fetch.

Figure 8-1. Read/Instruction Fetch Flow Diagram

Figure 8-2 shows the flow for a load/store access, assuming translation is enabled. Because
data transfers have less locality than instruction fetches, the DMMU does not implement a
fast TLB mechanism. The DTLB is accessed for each transfer simultaneously with the data
cache tag read, hence there is no time penalty.

Data/Instruction Fetch

Same page
(Fast TLB Hit)

?

TLB
Hit
?

TLB reload (read page
description from external

 memory to TLB)

Use current page description

Yes

No

Yes

No

32-bit EA is generated

Compare address
with TLB
Entries

Is page
valid

?

Yes

No
TLB error exception

Access permitted
by page protection

?

Yes

No

Use page description from TLB

(1 clock penalty)

(20–23 clock penalty
@ one wait-state
external memory)

Chapter 8. Memory Management Unit

Address Translation

Figure 8-2. Flow of Load/Store Access

8.3.3 TLB Operation

Each TLB contains pointers to pages in physical memory where data is indexed by the EPN.
TLBs entries can have different page sizes. The entry page size determines which EA bits
are compared and how many of its lsbs pass untranslated as physical address bits.

For a 4-Kbyte page, four subpage validity flags are supported, allowing any combination of
1-Kbyte subpages to be mapped. For any other page size, all of these flags should have the
same value. Programming non-4-Kbyte pages with different valid bits is a programming
error. Subpage validity flags can be manipulated to implement 1–4 Kbyte pages or any other
combination of 1-Kbyte subpages. However, all subpages of an effective page frame must
map to the same physical page. During translation, the EA, the privilege level (MSR[PR]),
and CASID are provided to the TLB, as shown in Figure 8-3. In the TLB, the EA and
CASID are compared with each entry’s EPN and ASID. The CASID is compared only
when the matching entry is programmed as unshared. See Table 8-12 and Table 8-13.

Data/Instruction Fetch

TLB
Hit
?

TLB reload (read page
description from external

 memory to TLB)

Yes

No

32-bit EA is generated

Compare address
with TLB
entries

Is page
valid

?

Yes

No
TLB error exception

Access permitted
by page protection

?

Yes

No

Use page description from TLB

(0 clock penalty)

(20–23 clock penalty
@ one wait-state
external memory)

MPC855T User’s Manual

Using Access Protection Groups

Figure 8-3. Effective-to-Physical Address Translation for 4-Kbyte Pages Block
Diagram

A TLB hit occurs if the incoming EA matches the EPN and M_CASID[CASID] matches
the ASID field in a valid TLB entry, and if the subpage validity flag is set for the subpage
that the incoming EA points to. If a hit is detected, the contents of the physical page number
are concatenated with the appropriate number of lsbs from the EA to form the physical
address sent to the cache and memory system.

8.4 Using Access Protection Groups
Access control is assigned on a page-by-page basis; additional control is provided on a
protection group basis. Each TLB entry holds an access protection group (APG) number.
When a match is detected, the value of the matched entry’s APG is used to index a field in
the access protection register (MI_AP or MD_AP) that defines access control for the
translation. Each Mx_AP contains 16 fields. The field content is used according to the group
protection mode.

To be consistent with the PowerPC OEA, the APG value should match the four msbs of the
effective page number. To override protection using APG, use it on blocks of addresses
which are defined by the 4 msbs of the effective page number. If APG is not to be used for
a particular block, set the GP for that block to ‘client’ in the Mx_AP register. To ignore it
globally, set all of the Mx_AP fields to 01. In default mode, each field holds the Kp and Ks
bits for the corresponding segment defined by the level-one table descriptor. In domain

20-Bit

Translation
Enabled

Page Byte

Physical Page Number Byte

Protection
Lookup Table

Exception
Logic

Translation
Enabled

No Access

Page Protection

Free Access

Protection
Group Number

Implementation-
Specific TLB
Miss Exceptions
to Core

Implementation-
Specific

Error Exceptions
to Core

MSR[PR] M_CASID[CASID] 32-Bit EA

20-Bit 12-Bit

32-Bit Logical
Address

20-Bit

32-Bit Physical Address

32-Entry Fully Associative TLB

Chapter 8. Memory Management Unit

Protection Resolution Modes

manager mode, each field holds override information over the page protection setting—no
override, no access override, and free access override.

8.5 Protection Resolution Modes
The MMUs can be programmed in three different modes that have different methods of
defining the protection resolution of the address space. These are as follows:

• Mode 1—Protection resolution to 4-Kbyte minimum page size. This is the simplest
mode with the most efficient memory size (that is, MMU tables are smaller). Use
this mode if 1-Kbyte protection resolution is not required.

In this mode, program the following:

— MD_CTR[TWAM] = 1

— Mx_CTR[PPM] = 0

— Bits 20–27 of the level-two descriptor take on the meaning described in the right
side of Table 8-4.

• Mode 2—Protection resolution to 1-Kbyte minimum subpage size, where all
4-Kbyte logical address pages map to the same 4-Kbyte physical page, but the four
1-Kbyte subpages may have different protection attributes.

In this mode, program the following:

— MD_CTR[TWAM]=1

— Mx_CTR[PPM]=1

For 4-Kbyte pages, program the four PP pairs (bits 20–27) to the subpage protection
attributes for the 1-Kbyte subpages.

For pages larger than 4 Kbytes, the four PP pairs (bits 20–27) must all be
programmed to the same protection attributes, which are applied to the full page.

This mode is just as efficient in memory size as mode 1, but has the memory
protection resolution of mode 3.

• Mode 3—Protection resolution to 1-Kbyte minimum subpage size, with no
restriction on subpage mapping. In this mode, program:

— MD_CTR[TWAM] = 0

— Mx_CTR[PPM] = 0

— Mx_CTR[PPCS] = 0

For pages larger than 4-Kbyte, program subpage validity flags (bits 24-27) of the
level-two descriptor (and thus Mx_RPN) to 0b1111.

MPC855T User’s Manual

Memory Attributes

For 4-Kbyte pages, there are four separate entries with different encodings of
subpage validity flags (bits 24–27) of the level-two descriptor (and thus Mx_RPN)
allowable for each entry.

For 4-Kbyte pages, the subpage validity flags (bits 24–27) of the level-two
descriptor (and thus Mx_RPN) can be different for each of the four separate entries.

In this mode, the MMU page tables defined for the software tablewalk resolve to a
single level-two descriptor entry for a 1-Kbyte page. This is done by allowing
manipulation of the subpage validity flags of a 4-Kbyte page. For example:

— To define a 4-Kbyte page with uniform protection, create four level-two
descriptors for the 4-Kbyte page, each with subpage validity flags set to 0b1111.
All other fields of the level-two descriptors must also be the same for each of
these entries.

— To define four different 1-Kbyte pages, create four level-two descriptors, but set
the subpage validity flags such that: entry one = 0b1000, entry two = 0b0100,
entry three = 0b0010, entry four = 0b0001. All other fields of the level-two
descriptor can be set differently for each of these entries.

— To define two different 2-Kbyte pages, create four level-two descriptors, but set
the subpage validity flags in pairs such that: entry one = 0b1100, entry two =
0b1100, entry three = 0b0011, entry four = 0b0011. The other fields of the
‘paired’ level-two descriptors must be the same for each of the pairs.

Other combinations are also possible.

This mode is the most complex and the most inefficient in memory size (that is,
MMU tables are approximately four times larger). However, it allows the most
detailed resolution of protection with full functionality.

IMMUs and DMMUs can use different modes; the IMMU could use mode 1 and the
DMMU could use mode 2, or vice versa. However, if mode 3 is desired, both MMUs must
be in mode 3.

8.6 Memory Attributes
Memory attributes defined by the PowerPC architecture are implemented as follows:

• Reference and change bit updates—The MPC855T does not generate an exception
for an R (reference) bit update. In fact, there is no entry for an R bit in the TLB.

The change bit (C) is bit 23 in the level-two descriptor, described in Table 8-4.
Software updates C (changed) bits, but hardware treats the C bit (negated) as a
write-protect attribute. Therefore, attempting to write to a page marked unmodified
invalidates that entry and causes an implementation-specific DTLB error exception.
If change bits are not needed, set the C bit to one by default in the PTEs.

Chapter 8. Memory Management Unit

Translation Table Structure

• Memory control attributes—The MPC855T supports cache inhibit (CI),
writethrough (WT), and guarded (G) attributes, defined in the PowerPC Virtual
Environment Architecture (VEA). The memory coherence (M) attribute is not
supported; to ensure memory coherency, configure the page as cache-inhibited.
Chapter 7, “Instruction and Data Caches,” describes the effects of CI and WT
attributes in the MPC855T.

The G attribute is used to map I/O devices that are sensitive to speculative
(out-of-order) accesses. An attempted speculative access to a page marked guarded
(G = 1) stalls until either the access is nonspeculative or is canceled by the core.
Attempting to fetch from guarded memory causes an implementation-specific
instruction TLB error interrupt.

8.7 Translation Table Structure
The MMU hardware supports a two-level software tablewalk. Other table structures are not
precluded. Figure 8-4 shows the two-level translation table when MD_CTR[TWAM] = 1
(4-Kbyte resolution of protection).

MPC855T User’s Manual

Translation Table Structure

Figure 8-4. Two-Level Translation Table (MD_CTR[TWAM] = 1)

Level-1 Table Base Level-1 Index 00

Level-1 Index

0 19 20 319 10

Level-2 Index Page Offset

0 19

Level-1 Table Pointer (M_TWB)

Level-1 Descriptor 0

Level-1 Descriptor 1

Level-1 Descriptor N

Level-1 Descriptor 1023

Level-2 Table Base Level-2 Index

20-Bit

10-Bit

00

10-Bit
Level-2 Descriptor 0

Level-2 Descriptor 1

Level-2 Descriptor N

Level-2 Descriptor 1023

Physical Page Address Page Offset

20-Bit

20-Bit

20 for 4 Kbyte
18 for 16 Kbyte

13 for 512 Kbyte
9 for 8 Mbyte

12 for 4 Kbyte
14 for 16 Kbyte
19 for 512 Kbyt
23 for 8 Mbyte

20-Bit

10-Bit

10-Bit

Effective Address

Physical Address

Level-1 Table

Level-2 Table

Chapter 8. Memory Management Unit

Translation Table Structure

When MD_CTR[TWAM] = 1, the tablewalk begins at the level-one base address in
M_TWB. EA[0–9] indicates the level-one page descriptor. As shown in Table 8-1, an
8-Mbyte page requires two identical entries in the level-one table, one for bit 9 = 0 and one
for bit 9 = 1.

The page size and the level-two base address are read from the level-one descriptor. If the
page size is 512 Kbytes or 8Mbytes, the level-two base address is used directly as the
address of the level-two descriptor. If the page size is less than 512 Kbytes, the address of
the level-two descriptor is determined by indexing the level-two base address by
EA[10–19]. For 16 Kbyte pages, this requires that multiple identical level-two descriptors
be provided. This is summarized in Table 8-1.

Figure 8-5 shows the two-level translation table when MD_CTR[TWAM] = 0 (1 Kbyte
resolution of protection).

Table 8-1. Identical Entries Required in Level-One/Level-Two Tables

Page Size
Identical Entries Required in Level-One Table Identical Entries Required in Level-Two Table

MD_CTR[TWAM] = 0 MD_CTR[TWAM] = 1 MD_CTR[TWAM] = 0 MD_CTR[TWAM] = 1

1 Kbyte 1 — 1 —

4 Kbyte 1 1 4 1

16 Kbyte 1 1 16 4

512 Kbyte 1 1 1 1

8 Mbyte 8 2 1 1

MPC855T User’s Manual

Translation Table Structure

Figure 8-5. Two-Level Translation Table (MD_CTR[TWAM] = 0)

During address translation, the msbs of the missed effective address are replaced by the
physical page address bits from the level-two page descriptor; the page size determines the
number of replaced bits as shown in Table 8-2. The remaining physical address bits come
directly from the effective address. When MD_CTR[TWAM] = 0, the tablewalk begins at
the level-one base address placed in M_TWB. The level-one table is indexed by EA[0–11]
to get the level-one page descriptor. As shown in Table 8-1, 8-Mbyte pages must have eight
identical entries in the level-one table for EA[9–11].

20 for 1 Kbyte
20 for 4 Kbyte

18 for 16 Kbyte
13 for 512 Kbyte

9 for 8 Mbyte

Level-1 Table Base Level-1 Index 00

Level-1 Index

0 21 3111

Level-2 Index Page Offset

0

Level-1 Table Pointer (M_TWB)

Level-1 Descriptor 0

Level-1 Descriptor 1

Level-1 Descriptor N

Level-1 Descriptor 4095

Level-2 Table Base Level-2 Index

18-Bit

12-Bit

00

10-Bit
Level-2 Descriptor 0

Level-2 Descriptor 1

Level-2 Descriptor N

Level-2 Descriptor 1023

Physical Page Address Page Offset

18-Bit

20-Bit

12 for 1 Kbyte
12 for 4 Kbyte
14 for 16 Kbyte
19 for 512 Kbyt

20-Bit

10-Bit

221217

23 for 8 Mbyte

12-Bit

Effective Address

Physical Address

Level-1 Table

Level-2 Table

Chapter 8. Memory Management Unit

Translation Table Structure

The page size and the level-two base address are read from the level-one descriptor. If the
page size is 512 Kbytes or 8Mbytes, the level-two base address is used directly as the
address of the level-two descriptor. If the page size is less than 512 Kbytes, the address of
the level-two descriptor is determined by indexing the level-two base address by
EA[12–21]. For 4Kbyte or 16 Kbyte pages, this requires that multiple identical level-two
descriptors be provided. This is summarized in Table 8-1.

The number of replaced bits depends on the page size, as shown in Table 8-2. The
remaining physical address bits are taken directly from the effective address.

8.7.1 Level-One Descriptor

Table 8-3 describes the level-one descriptor format supported by the hardware to minimize
the software tablewalk routine.

Table 8-2. Number of Replaced EA Bits per Page Size

Page Size Number of Replaced EA Bits

1 Kbyte 20

4 Kbyte 20

16 Kbyte 18

512 Kbyte 13

8 Mbyte 9

Table 8-3. Level-One Segment Descriptor Format

Bits Name Description

0–19 L2BA Level-2 table base address. Bits 18–19 should be 0b00 unless MD_CTR[TWAM] = 1.

20–22 — Reserved

23–26 APG Access protection group

27 G Guarded memory attribute for entry
0 Nonguarded memory
1 Guarded memory

28–29 PS Page size level one. Used with the level-two (L2) descriptor’s small-page-size (SPS) field; see
Section 8.7.3, “Page Size.”
00 Small (4 Kbyte or 16 Kbyte)
01 512 Kbyte
10 Reserved
11 8 Mbyte

30 WT Writethrough attribute for entry
0 Copyback cache policy region (default)
1 Writethrough cache policy region

31 V Level-one segment valid bit
0 Segment is not valid
1 Segment is valid

MPC855T User’s Manual

Translation Table Structure

8.7.2 Level-Two Descriptor

Table 8-4 describes the level-two descriptor format supported by hardware. (Section 8.5,
“Protection Resolution Modes,” describes the protection modes.)

Table 8-4. Level-Two (Page) Descriptor Format

Bits Name Mode 2 Mode 1 or Mode 3

0–19 RPN Physical (real) page number

20–21 PP Protection
for 1st
subpage

For Instruction Pages
Supervisor User

00 No access No access
01 Executable No access
1x Executable Executable

For Data Pages
Supervisor User

00 No access No access
01 R/W No access
10 R/W R/O
11 R/W R/W

For Instruction Pages
Supervisor User

Extended encoding:
00 No access No access
01 Executable No access
1x Reserved
Basic encoding:
00 Executable No access
01 Executable Executable
1x Executable Executable

For Data Pages
Supervisor User

Extended encoding:
00 No access No access
01 R/O No access
1x Reserved
Basic encoding:
00 R/W No access
01 R/W R/O
10 R/W R/W
11 R/O R/O

22 PP 1

1 For pages larger than 4 Kbytes in mode 2, PP in bits [22–23,24–25,26–27] must equal the PP in bits [20–21].

2nd
subpage

0 Bits 20–21 contain Basic encoding
1 Bits 20–21 contain extended encoding

23 C—Change bit for entry. Set to 1 by default if change tracking
functionality is not desired.
0 Unchanged region (write-protected)
1 Changed region, write allowed

24–25 3rd
subpage

MD_CTR[PPCS] = 0.
For 1-Kbyte pages in
mode 3, program to the
appropriate subpage
validity. For mode 1,
program to 0b1111.

MD_CTR[PPCS] = 1 (mode 1
only)
1000 Hit (supervisor accesses

only)
0100 Hit (user accesses only)
1100 Hit for both

26–27 4th
subpage

28 SPS Small page size. Used with the level-one (L1) descriptor’s page-size (PS) field; see Section 8.7.3, “Page
Size.”
0 4 Kbyte
1 16 Kbyte or larger (512 Kbyte or 8 Mbyte)

29 SH Shared page
0 Entry matches only if a TLB entry’s ASID field matches the value in M_CASID.
1 ASID comparison is disabled for the entry.

30 CI Cache-inhibit attribute for the entry.
0 Caching is allowed.
1 Caching is inhibited.

31 V Page valid bit

Chapter 8. Memory Management Unit

Programming Model

8.7.3 Page Size

The page size is determined by a combination of two fields: the page-size (PS) field in the
level-one descriptor and the small-page-size (SPS) field in the level-two descriptor.
Table 8-5 shows how the two fields select the page size.

8.8 Programming Model
All MMU programming model registers are supervisor-level SPRs that are accessed by
using mtspr and mfspr. Attempting to access these SPRs in user mode causes a program
exception. The tlbie and tlbia instructions can be used to invalidate TLBs. MMU registers
should be accessed when both MSR[IR] = 0 and MSR[DR] = 0. No similar restriction exists
for tlbie and tlbia.

Table 8-6 lists the MPC855T-specific MMU registers and indicates the sections that
describe them. These SPRs should be accessed when both instruction and data address
translation is disabled.

Table 8-5. Page Size Selection

Level 1 [PS] Level 2 [SPS] Page Size

00 0 4 Kbyte

00 1 16 Kbyte

01 0 reserved

01 1 512 Kbyte

10 x reserved

11 0

11 1 8 Mbyte

Table 8-6. MPC855T-Specific MMU SPRs

Register Name SPR Section

Control Registers

MI_CTR IMMU control register 784 8.8.1

MD_CTR DMMU control register 792 8.8.2

TLB Source Registers

MI_EPN IMMU effective number register 787 8.8.3

MD_EPN DMMU effective number register 795

MI_TWC IMMU tablewalk control register 789 8.8.4

MD_TWC DMMU tablewalk control register 797 8.8.5

MI_RPN IMMU real (physical) page number port 790 8.8.6

MD_RPN DMMU real (physical) page number register 798 8.8.7

MPC855T User’s Manual

Programming Model

8.8.1 IMMU Control Register (MI_CTR)

The IMMU control register (MI_CTR), shown in Figure 8-6, controls IMMU operation.

Tablewalk Assist Registers

M_TWB MMU tablewalk base register 796 8.8.8

Protection Registers

M_CASID CASID register 793 8.8.9

MI_AP IMMU access protection register 786 8.8.10

MD_AP DMMU access protection register 794

Scratch Register

M_TW MMU tablewalk special register 799 8.8.11

Debug Registers

MI_CAM IMMU CAM entry read register 816 8.8.12.1

MI_RAM0 IMMU RAM entry read register 0 817 8.8.12.2

MI_RAM1 IMMU RAM entry read register 1 818 8.8.12.3

MD_CAM DMMU CAM entry read register 824 8.8.12.4

MD_RAM0 DMMU RAM entry read register 0 825 8.8.12.5

MD_RAM1 DMMU RAM entry read register 1 826 8.8.13

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field GPM PPM CIDEF — RSV4I — PPCS —

Reset 0

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — ITLB_INDX —

Reset 0

R/W R/W

SPR 784

Figure 8-6. IMMU Control Register (MI_CTR)

Table 8-6. MPC855T-Specific MMU SPRs (continued)

Register Name SPR Section

Chapter 8. Memory Management Unit

Programming Model

Table 8-7 describes MI_CTR fields.

8.8.2 DMMU Control Register (MD_CTR)

The DMMU control register (MD_CTR), shown in Figure 8-7, controls DMMU operation.

Table 8-7. MI_CTR Field Descriptions

Bits Name Description

0 GPM Group protection mode
0 Default mode
1 Domain manager mode

1 PPM Page protection mode. Valid regardless of whether translation is enabled. If translation is
enabled, PPM determines how Mx_RPN is interpreted. See Table 8-12 and Table 8-13.
0 Page resolution of protection
1 1-Kbyte resolution of protection for 4-Kbyte pages

2 CIDEF Default value for instruction cache-inhibit attribute when the IMMU is disabled (MSR[IR] = 0)
0 Caching is allowed.
1 Caching is inhibited.

3 — Reserved. Ignored on write. Returns 0 on read.

4 RSV4I Reserve four ITLB entries. See Section 8.10.2, “Locking TLB Entries.”
0 ITLB_INDX decremented modulo 32
1 ITLB_INDX decremented modulo 28

5 — Reserved. Ignored on write. Returns 0 on read.

6 PPCS Privilege/user state compare mode
0 Ignore user/supervisor state during address compare
1 Account for user/supervisor state according to MI_RPN[24–27]

7–18 — Reserved. Ignored on write. Returns 0 on read.

19–23 ITLB_INDX ITLB index. Points to the ITLB entry to be loaded. Decremented every ITLB update

24–31 — Reserved. Ignored on write. Returns 0 on read.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field GPM PPM CIDEF WTDEF RSVD TWAM PPCS —

Reset 0000_0 1 0 0_0000_0000

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — DTLB_INDX —

Reset 0x0000

R/W R/W

SPR 792

Figure 8-7. DMMU Control Register (MD_CTR)

MPC855T User’s Manual

Programming Model

Table 8-8 describes MD_CTR fields.

8.8.3 IMMU/DMMU Effective Page Number Register
(Mx_EPN)

The effective page number registers (MI_EPN and MD_EPN), shown in Figure 8-8,
contain the EA to be loaded into a TLB entry.

Table 8-8. MD_CTR Field Descriptions

Bits Name Description

0 GPM Group protection mode
0 Default mode
1 Domain manager mode

1 PPM Page protection mode
0 Page resolution of protection
1 1-Kbyte resolution of protection for 4-Kbyte pages

2 CIDEF CI default when the DMMU is disabled (MSR[DR] = 0)
0 Caching is allowed.
1 Caching is inhibited.

3 WTDEF WT default when the DMMU is disabled (MSR[DR] = 0)

4 RSV4D four Reserve two DTLB entries. See Section 8.10.2, “Locking TLB Entries.”
0 DTLB_INDX decremented modulo 32
1 DTLB_INDX decremented modulo 28

5 TWAM Tablewalk assist mode
0 1-Kbyte subpage hardware assist
1 4-Kbyte page hardware assist (default)

6 PPCS Privilege/user state compare mode
0 Ignore user/supervisor state during address compare
1 Account for user/supervisor state according to MD_RPN[24–27]

7–18 — Reserved. Ignored on write. Returns 0 on read

19–23 DTLB_INDX DTLB index. Points to DTLB entry to be loaded. Decremented every DTLB update.

24–31 — Reserved. Ignored on write. Returns 0 on read

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EPN

Reset 0000_0000_0000_0000

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field EPN — EV — ASID

Reset — 0 0 0 0

R/W R/W R R/W R R/W

SPR 787 (MI_EPN); 795 (MD_EPN)

Figure 8-8. IMMU/DMMU Effective Page Number Register (Mx_EPN)

Chapter 8. Memory Management Unit

Programming Model

Table 8-9 describes Mx_EPN fields.

8.8.4 IMMU Tablewalk Control Register (MI_TWC)

The IMMU tablewalk control register (MI_TWC), shown in Figure 8-9, contains the access
protection group and page size of the entry to be loaded into the TLB.

Table 8-10 describes MI_TWC fields.

Table 8-9. Mx_EPN Field Descriptions

Bits Name Description

0–19 EPN Effective page number for TLB entry. Default value is the EA of the last ITLB/DTLB miss

20–21 — Reserved. Ignored on write. Undefined on read

22 EV TLB entry valid bit.
0 TLB entry is invalid
1 TLB entry is valid. EV is set to 1 on each ITLB/DTLB miss.

23–27 — Reserved. Ignored on write. Returns 0 on read

28–31 ASID Address space ID of the ITLB/DTLB entry to be compared with M_CASID[CASID]. Loaded with
M_CASID on a TLB miss.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0000_0000_0000_0000

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — APG G PS — V

Reset 0 — — — 0 —

R/W R/W R/W R/W R/W R/W R/W

SPR 789

Figure 8-9. IMMU Tablewalk Control Register (MI_TWC)

Table 8-10. MI_TWC Field Descriptions

Bits Name Description

0–22 — Reserved. Ignored on write. Returns 0 on read.

23–26 APG Access protection group. Up to 16 protection groups supported. Default for ITLB miss is 0

27 G Guarded memory attribute for entry
0 Nonguarded memory (default for ITLB miss)
1 Guarded memory

MPC855T User’s Manual

Programming Model

8.8.5 DMMU Tablewalk Control Register (MD_TWC)

The DMMU tablewalk control register (MD_TWC), shown in Figure 8-10, contains the
level-two pointer and access protection group of an entry to be loaded into the TLB.

Table 8-11 describes MD_TWC fields.

28–29 PS Page size level-one
00 Small (4 or 16 Kbyte. See MI_RPN[SPS]) Default for ITLB miss
01 512 Kbyte
10 Reserved
11 8 Mbyte

30 — Reserved. Ignored on write. Returns 0 on read.

31 V Entry valid bit
0 Entry is not valid
1 Entry is valid. Default value on ITLB miss.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field L2TB

Reset —

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field L2TB — APG G PS WT V

Reset —

R/W R/W

SPR 797

Figure 8-10. DMMU Tablewalk Control Register (MD_TWC)

Table 8-11. MD_TWC Field Descriptions

Bits
Name Description

Write Read Write Read

0–19 L2TB L2TB Tablewalk level-two table base value

Table 8-10. MI_TWC Field Descriptions (continued)

Bits Name Description

Chapter 8. Memory Management Unit

Programming Model

8.8.6 IMMU Real Page Number Register (MI_RPN)

The IMMU real page number register (MI_RPN), shown in Figure 8-11, contains the
physical address and the memory attributes of an entry to be loaded into a TLB. MI_RPN
should be written after MI_EPN and MI_TWC are written.

20–22 — L2INDX Ignore Level-two table index. Returns
MD_EPN[10–19] when
MD_CTR[TWAM] = 1

Returns MD_EPN[12–21] when
MD_CTR[TWAM] = 0

23–26 APG Access protection group. Up to 16 protection groups are
supported. Set to 0000 on a DTLB miss.

27 G Guarded memory attribute of the entry:
0 Nonguarded memory. Cleared on DTLB miss.
1 Guarded memory

28–29 PS Level-one page size. (Cleared on a DTLB miss.)
00 Small (4 Kbyte or 16 Kbyte. See MD_RPN)
01 512 Kbyte
10 Reserved
11 8 Mbyte

30 WT — Writethrough attribute for page entry:
0 Copyback data cache policy. Cleared on DTLB miss.
1 Writethrough data cache policy

Returns 0 on read.

31 V — 0 Entry is not valid
1 Entry is valid. (set on a DTLB miss)

Returns 0 on read.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field RPN

Reset —

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field RPN PP SPS SH CI V

Reset —

R/W R/W

SPR 790

Figure 8-11. IMMU Real Page Number Register (MI_RPN)

Table 8-11. MD_TWC Field Descriptions (continued) (continued)

Bits
Name Description

Write Read Write Read

MPC855T User’s Manual

Programming Model

Table 8-12 describes MI_RPN fields. (Section 8.5, “Protection Resolution Modes,”
describes the protection modes.)

8.8.7 DMMU Real Page Number Register (MD_RPN)

The DMMU real page number register (MD_RPN), shown in Figure 8-12, contains the
physical address and the memory attributes of an entry to be loaded into a TLB. This
register should be written after the MD_EPN and MD_TWC registers.

Table 8-12. MI_RPN Field Descriptions

Bits Name Mode 2 Mode 1 or Mode 3

0–19 RPN Real (physical) page number

20–21 PP Protection attributes for
subpages 1–4.

Supervisor User
00 No access No access
01 Executable No access
1x Executable Executable

Extended Encoding:
Supervisor User

00 No access No access
01 Executable No access
1x Reserved Reserved

Basic Encoding:
Supervisor User

00 Executable No access
01 Executable Executable
1x Executable Executable

22 PP 1

1 For pages larger than 4 Kbytes in mode 2, PP in bits [22–23,24–25,26–27] must equal the PP in bits [20–21].

0 Bits 20–21 contain Basic encoding
1 Bits 20–21 contain extended encoding

23 Reserved

24–25 MD_CTR[PPCS] = 0
For 1 Kbyte pages in mode 3, set to
the appropriate subpage validity.
Otherwise, set to 0b1111.

MD_CTR[PPCS] = 1
1000 Hit only for supervisor

accesses
0100 Hit only for user accesses
1100 Hit for both

26–27

28 SPS Small page size. Used with the level-one (L1) descriptor’s page-size (PS) field; see Section 8.7.3, “Page
Size.”
0 4 Kbyte
1 16 Kbyte or larger (512 Kbyte or 8 Mbyte)

29 SH Shared page:
0 This entry matches only if ASID field in the TLB entry matches the value M_CASID.
1 ASID comparison is disabled for the entry.

30 CI Cache-inhibit attribute for the entry.
0 Caching is allowed.
1 Caching is inhibited.

31 V Entry valid indication.

Chapter 8. Memory Management Unit

Programming Model

Table 8-13 describes MD_RPN fields. (Section 8.5, “Protection Resolution Modes,”
describes the protection modes.)

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field RPN

Reset —

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field RPN PP SPS SH CI V

Reset —

R/W R/W

SPR 798

Figure 8-12. DMMU Real Page Number Register (MD_RPN)

Table 8-13. MD_RPN Field Descriptions

Bits Name Mode 2 Mode 1 or Mode 3

0–19 RPN Real (physical) page number

20–21 PP Protection attributes for
subpages 1–4.

Supervisor User
00 No access No access
01 R/W No access
10 R/W R/O
11 R/W R/W

Extended Encoding:
Supervisor User

00 No access No access
01 R/O No access
1x Reserved

Basic Encoding:
Supervisor User

00 R/W No access
01 R/W R/O
10 R/W R/W
11 R/O R/O

22 PP 1 0 Bits 20–21 contain Basic encoding
1 Bits 20–21 contain extended encoding

23 Change bit for DTLB entry. Set to 1 by default if change tracking
functionality is not desired.
0 Unchanged region. Write access causes an IMMU exception.

Software should take an appropriate action before setting this bit.
1 Changed region. Write access is allowed to this page.

24–25 MD_CTR[PPCS] = 0
For 1 Kbyte pages in mode 3, set
to the appropriate subpage
validity. Otherwise, set to 0b1111.

MD_CTR[PPCS] = 1
1000 Hit only for supervisor

accesses
0100 Hit only for user accesses
1100 Hit for both

26–27

28 SPS Small page size. Used with the level-one (L1) descriptor’s page-size (PS) field; see Section 8.7.3,
“Page Size.”
0 4 Kbyte
1 16 Kbyte or larger (512 Kbyte or 8 Mbyte)

29 SH Shared page
0 This entry matches only if the ASID field in the DTLB entry matches the M_CASID value.
1 ASID comparison is disabled for the entry.

MPC855T User’s Manual

Programming Model

8.8.8 MMU Tablewalk Base Register (M_TWB)

The MMU tablewalk base register (M_TWB), shown in Figure 8-13, contains a pointer to
the level-one table to be used in hardware-assisted tablewalk mode.

Table 8-14 describes M_TWB fields.

8.8.9 MMU Current Address Space ID Register (M_CASID)

The MMU current address space ID register (M_CASID), shown in Figure 8-14, is used to
compare the current EA with the ASID field in the TLB entry when searching for a match.

30 CI Cache-inhibit attribute for the entry.
0 Caching is allowed.
1 Caching is inhibited.

31 V Entry valid indication.

1 For pages larger than 4 Kbytes in mode 2, PP in bits [22–23,24–25,26–27] must equal the PP in bits [20–21].

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field L1TB L1TB L1INDX —

Reset — 00

R/W R/W

SPR 796

Figure 8-13. MMU Tablewalk Base Register (M_TWB)

Table 8-14. M_TWB Field Descriptions

Bits Name Description

0–19 L1TB Tablewalk level-one base value

20–29 L1INDX Level-one table index. Ignored on write. Returns MD_EPN[0–9] on read when MD_CTR[TWAM] =
1. Returns MD_EPN[2–11] on read when MD_CTR[TWAM] = 0

30–31 — Reserved. Ignored on write. Returns 0 on read.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — CASID

Reset —

R/W R/W

SPR 793

Figure 8-14. MMU Current Address Space ID Register (M_CASID)

Table 8-13. MD_RPN Field Descriptions (continued)

Bits Name Mode 2 Mode 1 or Mode 3

Chapter 8. Memory Management Unit

Programming Model

Table 8-15 describes M_CASID fields.

8.8.10 MMU Access Protection Registers (MI_AP/MD_AP)

The IMMU access protection register (MI_AP, SPR 786) contains the settings for the
access protection groups for the IMMU. The DMMU access protection register (MD_AP,
SPR 794) is identical. Both registers are shown in Figure 8-15.

MI_AP/MD_AP fields are described in Table 8-16.

8.8.11 MMU Tablewalk Special Register (M_TW)

The MMU tablewalk special register (M_TW), shown in Figure 8-16, is a scratch register
used by tablewalk exception handlers.

Table 8-15. M_CASID Field Descriptions

Bits Name Description

0–27 — Reserved. Ignored on write. Returns 0 on read

28–31 CASID Current address space ID. Compared with ASID field of a TLB entry to qualify a match

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field GP0 GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10 GP11 GP12 GP13 GP14 GP15

Reset —

R/W R/W

SPR 786 (MI_AP); 794 (MD_AP)

Figure 8-15. MMU Access Protection Registers (MI_AP/MD_AP)

Table 8-16. MI_AP/MD_AP Field Descriptions

Bits Name Domain Manager Mode (Mx_CTR[GPM] = 1) Default Mode (Mx_CTR[GPM] = 0)

0–1 GPx GP
00 No access
01 Client–access permission defined by page

protection bits
10 Reserved
11 Manager–free access

GP = Ks/Kp as defined by PowerPC architecture
00 All accesses are treated as supervisor
01 Access permission defined by page protection

bits
10 User and supervisor interpretation is swapped
11 All accesses are treated as user

2–3

…

30–31

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reset —

R/W R/W

SPR 799

Figure 8-16. MMU Tablewalk Special Register (M_TW)

MPC855T User’s Manual

Programming Model

8.8.12 MMU Debug Registers

The MMU CAM and RAM entries can be read through MX_CAM, MX_RAM0, and
MX_RAM1. Attempting to write to MX_CAM using an mtspr instruction loads the CAM
and RAM values of the entry indexed by DTLB_INDX to MX_CAM, MX_RAM0, and
MX_RAM1. Any register can be the source for mtspr since its value is not used. The values
of MX_CAM, MX_RAM0, and MX_RAM1 can be read using mfspr; mtspr[MX_RAM0]
and mtspr[MX_RAM1] are considered no-ops.

8.8.12.1 IMMU CAM Entry Read Register (MI_CAM)

Figure 8-17 shows the MMU instruction CAM entry read register (MI_CAM). When the
content-addressable memory of the MI_CAM register is read, it contains the effective
address and page sizes of an entry indexed by MI_CTR[ITLB_INDX]. MI_CAM is
updated only by writing to it.

Table 8-17 describes the MI_CAM fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EPN

Reset —

R/W R

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field EPN PS ASID SH SPV

Reset —

R/W R/W

SPR 816

Figure 8-17. IMMU CAM Entry Read Register (MI_CAM)

Table 8-17. MI_CAM Field Descriptions

Bits Name Function

0–19 EPN Effective page number

20–22 PS Page size. (Values not shown are reserved)
000 4 Kbyte
001 16 Kbyte
011 512 Kbyte
111 8 Mbyte

23–26 ASID Address space ID of the DTLB entry to be compared with M_CASID[CASID]

27 SH Shared page
0 This entry matches only if the ASID field in the DTLB entry matches the value in M_CASID.
1 ASID comparison is disabled for the entry

Chapter 8. Memory Management Unit

Programming Model

8.8.12.2 IMMU RAM Entry Read Register 0 (MI_RAM0)

The IMMU RAM entry read register 0 (MI_RAM0), shown in Figure 8-18, contains the
physical page number and page attributes of an entry indexed by MI_CTR[ITLB_INDX].
This register is updated only when MI_CAM is updated.

Table 8-18 describes MI_RAM0 fields.

28 SPV Subpage validity (subpage 0)
0 Subpage 0 (Address[20–21] = 00) is not valid
1 Subpage 0 (Address[20–21] = 00) is valid

29 0 Subpage 1 (Address[20–21] = 01) is not valid
1 Subpage 1 (Address[20–21] = 01) is valid

30 0 Subpage 2 (Address[20–21] = 10) is not valid
1 Subpage 2 (Address[20–21] = 10) is valid

31 0 Subpage 3 (Address[20–21] = 11) is not valid
1 Subpage 3 (Address[20–21] = 11) is valid

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field RPN

Reset —

R/W R

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field RPN PS_B CI APG SFP

Reset —

R/W R

SPR 817

Figure 8-18. IMMU RAM Entry Read Register 0 (MI_RAM0)

Table 8-18. MI_RAM0 Field Descriptions

Bits Name Description

0–19 RPN Real (physical) page number

20–22 PS_B Page size. (Values not shown are reserved)
000 4 Kbyte
001 16 Kbyte
011 512 Kbyte
111 8 Mbyte

23 CI Cache-inhibit attribute for the entry.
0 Caching is allowed.
1 Caching is inhibited.

24–27 APG Access protection group. Up to 16 protection groups supported (uses one’s complement format)

Table 8-17. MI_CAM Field Descriptions (continued)

Bits Name Function

MPC855T User’s Manual

Programming Model

8.8.12.3 IMMU RAM Entry Read Register 1 (MI_RAM1)

The IMMU RAM entry read register 1 (MI_RAM1), shown in Figure 8-19, contains the
protection mode information of the entry indexed by MI_CTR[ITLB_INDX]. This register
is updated only when MI_CAM is written to.

Table 8-19 describes MI_RAM1 fields.

28 SFP Supervisor (supervisor) fetch permission
0 Subpage 0 (Address[20–21] = 00) Supervisor fetch is not permitted
1 Subpage 0 (Address[20–21] = 00) Supervisor fetch is permitted

29 0 Subpage 1 (Address[20–21] = 01) Supervisor fetch is not permitted
1 Subpage 1 (Address[20–21] = 01) Supervisor fetch is permitted

30 0 Subpage 2 (Address[20–21] = 10) Supervisor fetch is not permitted
1 Subpage 2 (Address[20–21] = 10) Supervisor fetch is permitted

31 0 Subpage 3 (Address[20–21] = 11) Supervisor fetch is not permitted
1 Subpage 3 (Address[20–21] = 11) Supervisor fetch is permitted

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0

R/W R

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — UFP PV G

Reset 0 — — —

R/W R

SPR 818

Figure 8-19. IMMU RAM Entry Read Register 1 (MI_RAM1)

Table 8-19. MI_RAM1 Field Descriptions

Bits Name Description

0–25 — Reserved

Table 8-18. MI_RAM0 Field Descriptions (continued)

Bits Name Description

Chapter 8. Memory Management Unit

Programming Model

8.8.12.4 DMMU CAM Entry Read Register (MD_CAM)

When the DMMU CAM entry read register (MD_CAM), shown in Figure 8-20, is read, it
contains the effective address and page sizes of an entry indexed by
MD_CTR[DTLB_INDX]. This register is updated when a value is written to it.

Table 8-20 describes MD_CAM fields.

26 UFP User fetch permission
0 Subpage 0 (Address[20–21] = 00) User fetch is not permitted
1 Subpage 0 (Address[20–21] = 00) User fetch is permitted

27 0 Subpage 1 (Address[20–21] = 01) User fetch is not permitted
1 Subpage 1 (Address[20–21] = 01) User fetch is permitted

28 0 Subpage 2 (Address[20–21] = 10) User fetch is not permitted
1 Subpage 2 (Address[20–21] = 10) User fetch is permitted

29 0 Subpage 3 (Address[20–21] = 11) User fetch is not permitted
1 Subpage 3 (Address[20–21] = 11) User fetch is permitted

30 PV Page validity
0 Page is not valid
1 Page is valid

31 G Guarded memory attribute for entry
0 Nonguarded memory
1 Guarded memory

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EPN

Reset —

R/W R(/W)

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field EPN SPVF PS SH ASID

Reset —

R/W R(/W)

SPR 824

Figure 8-20. DMMU CAM Entry Read Register (MD_CAM)

Table 8-20. MD_CAM Field Descriptions

Bits Name Description

0–19 EPN Effective page number

Table 8-19. MI_RAM1 Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Programming Model

8.8.12.5 DMMU RAM Entry Read Register 0 (MD_RAM0)

The DMMU RAM entry read register 0 (MD_RAM0), shown in Figure 8-21, contains the
physical page number and page attributes of an entry indexed by MD_CTR[DTLB_INDX].
This register is updated when any value is written to MD_CAM.

20 SPVF Subpage validity flags
0 Subpage 0 (address[20–21] = 00) is not valid
1 Subpage 0 (address[20–21] = 00) is valid

21 0 Subpage 1 (address[20–21] = 01) is not valid
1 Subpage 1 (address[20–21] = 01) is valid

22 0 Subpage 2 (address[20–21] = 10) is not valid
1 Subpage 2 (address[20–21] = 10) is valid

23 0 Subpage 3 (address[20–21] = 11) is not valid
1 Subpage 3 (address[20–21] = 11) is valid

24–26 PS Page size. (Values not shown are reserved)
000 4 Kbyte
001 16 Kbyte
011 512 Kbyte
111 8 Mbyte

27 SH Shared page
0 This entry matches only if the ASID field in the DTLB entry matches the value in M_CASID
1 ASID comparison is disabled for the entry

28–31 ASID Address space ID of the DTLB entry to be compared with M_CASID[CASID]

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field RPN

Reset —

R/W R

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field RPN PS APGI G WT CI —

Reset —

R/W R/W

SPR 825

Figure 8-21. DMMU RAM Entry Read Register 0 (MD_RAM0)

Table 8-20. MD_CAM Field Descriptions (continued)

Bits Name Description

Chapter 8. Memory Management Unit

Programming Model

Table 8-21 describes MD_RAM0 fields.

8.8.13 DMMU RAM Entry Read Register 1 (MD_RAM1)

The DMMU RAM entry read register 1 (MD_RAM1), shown in Figure 8-22, contains the
protection mode information of the entry indexed by MD_CTR[DTLB_INDX]. This
register is updated only when a value is written to MD_CAM.

Table 8-21. MD_RAM0 Field Descriptions

Bits Name Description

0–19 RPN Real (physical) page number

20–22 PS Page size. (Values not shown are reserved)
000 4 Kbyte
001 16 Kbyte
011 512 Kbyte
111 8 Mbyte

23–26 APGI Access protection group inverted. Access protection group number in one’s complement format

27 G Guarded memory attribute for the entry
0 Nonguarded memory
1 Guarded memory

28 WT Writethrough attribute for the entry
0 Copyback data cache policy page entry
1 Writethrough data cache policy page entry

29 CI Cache-inhibit attribute for the entry.
0 Caching is allowed.
1 Caching is inhibited.

30–31 — Reserved

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0

R/W R

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — C EVF SA SAT URP0 UWP0 URP1 UWP1 URP2 UWP2 URP3 UWP3

Reset 0 — — — — — — — — — — — —

R/W R

SPR 826

Figure 8-22. DMMU RAM Entry Read Register 1 (MD_RAM1)

MPC855T User’s Manual

Programming Model

Table 8-22 describes MD_RAM1 fields.
Table 8-22. MD_RAM1 Field Descriptions

Bits Name Description

0–16 — Reserved

17 C Change bit for DTLB entry
0 Unchanged region. Write access to this page results in the implementation-specific IMMU exception

invocation. Software should take an appropriate action before setting this bit to 1.
1 Changed region. Write access is allowed to this page.

18 EVF Entry valid flag
0 Entry is invalid
1 Entry is valid

19 SA Supervisor access
0 Subpage 0 (address[20–21] = 00) Supervisor access is not permitted
1 Subpage 0 (address[20–21] = 00) Supervisor access is permitted

20 0 Subpage 1 (address[20–21] = 01) Supervisor access is not permitted
1 Subpage 1 (address[20–21] = 01) Supervisor access is permitted

21 0 Subpage 2 (address[20–21] = 10) Supervisor access is not permitted
1 Subpage 2 (address[20–21] = 10) Supervisor access is permitted

22 0 Subpage 3 (address[20–21] = 11) Supervisor access is not permitted
1 Subpage 3 (address[20–21] = 11) Supervisor access is permitted

23 SAT Supervisor access type
0 Supervisor access type is read only
1 Supervisor access type is read/write

24 URP0 User read permission page zero
0 Subpage 0 (address[20–21] = 00) User read access is not permitted
1 Subpage 0 (address[20–21] = 00) User read access is permitted

25 UWP0 User write permission page zero
0 Subpage 0 (address[20–21] = 00) User write access is not permitted
1 Subpage 0 (address[20–21] = 00) User write access is permitted

26 URP1 0 Subpage 1 (address[20–21] = 01) User read access is not permitted
1 Subpage 1 (address[20–21] = 01) User read access is permitted

27 UWP1 0 Subpage 1 (address[20–21] = 01) User write access is not permitted
1 Subpage 1 (address[20–21] = 01) User write access is permitted

28 URP2 0 Subpage 2 (address[20–21] = 10) User read access is not permitted
1 Subpage 2 (address[20–21] = 10) User read access is permitted

29 UWP2 0 Subpage 2 (address[20–21] = 10) User write access is not permitted
1 Subpage 2 (address[20–21] = 10) User write access is permitted

30 URP3 0 Subpage 3 (address[20–21] = 11) User read access is not permitted
1 Subpage 3 (address[20–21] = 11) User read access is permitted

31 UWP3 0 Subpage 3 (address[20–21] = 11) User write access is not permitted
1 Subpage 3 (address[20–21] = 11) User write access is permitted

Chapter 8. Memory Management Unit

Memory Management Unit Exceptions

8.9 Memory Management Unit Exceptions
Table 8-23 describes MPC855T-specific MMU exceptions.

8.10 TLB Manipulation
The TLBs can be updated in several ways. The TLB reloading process is primarily
performed in software with some hardware assistance. The TLB replacement counter can
be configured to select only from the first entries in each TLB. TLBs can be invalidated by
using the tlbie and tlbia instructions.

8.10.1 TLB Reload

The TLB reload (tablewalk) function is performed in the software with some hardware
assistance. It consists of the following actions:

• Automatic storage of the missed data or instruction EA and default attributes in
MI_EPN or MD_EPN. This value is loaded into the selected entry on a write to
MI_RPN or MD_RPN.

• Automatic updating of the replacement location counter to point to the entry to be
replaced. This value is placed in the index field in MI_CTR and MD_CTR.

• As Figure 8-4 and Figure 8-5 show, the level-one pointer is generated when an
mfspr[M_TWB] is performed by concatenating the level-one table base with the
level-one index.

Table 8-23. MPC855T-Specific MMU Exceptions

Exception Cause

ITLB miss MSR[IR] = 1 and an attempt is made to fetch an instruction from a page whose EPN cannot be translated
by the ITLB. Tablewalk software is responsible for loading information for the missed page from the
translation table. See Section 8.10.1.1, “Translation Reload Examples,” and Section 6.1.3.2, “Instruction
TLB Miss Exception (0x01100).”

DTLB miss MSR[DR] = 1 and an attempt is made to access a page whose EPN cannot be translated by the DTLB.
Tablewalk software is responsible for loading translation information for the missed page from the
translation table. See Section 8.10.1.1, “Translation Reload Examples,” and Section 6.1.3.3, “Data TLB
Miss Exception (0x01200).”

ITLB error The EA cannot be translated and the level-one segment or page valid bit is zero in the translation table,
the fetch access violates memory protection, or the fetch access is to guarded memory and MSR[IR] = 1.
The exact exception cause is found in SRR1. Table 6-15 describes bit assignments. If needed, it is
software’s responsibility to invoke the ISI exception handler.

DTLB error MSR[DR] = 1 and the EA of a load, store, icbi, dcbz, dcbst, dcbf, or dcbi cannot be translated and either
the level-one segment or page valid bit are zero in the translation table, the access violates memory
protection, or an attempt is made to write to a page with a negated change bit.
The DSISR explains invocation of the DTLB error exception handler. Table 6-16 describes bit
assignments. If needed, it is software’s responsibility to invoke the DSI exception handler.

MPC855T User’s Manual

TLB Manipulation

• The level-two pointer is generated when an mfspr[MD_TWC] is performed by
concatenating the level-two table base (extracted from the level-one table) with the
level-two index.

• The TLB entry is written by loading the tablewalk level-two entry value to Mx_RPN.

• A scratch register, M_TW, is provided in addition to the architecture-defined
SPRG0–SPRG3, so miss code need not corrupt existing GPRs.

8.10.1.1 Translation Reload Examples

The following examples reload a TLB entry using a two-level tree page table structure. In
both examples, M_TWB holds the base pointer to the first-level table and data and
instruction address translation are turned off. Figure 8-23 performs a DTLB reload.

Figure 8-23. DTLB Reload Code Example

dtlb_swtw mtspr M_TW, R1 # Save R1

mfspr R1, M_TWB # Load R1 with level-1 pointer

lwz R1, (R1) # Load level-1 page entry

mtspr MD_TWC,R1 # Save level-2 base pointer and level-1 attributes

mfspr R1, MD_TWC # Load R1 with level-2 pointer while taking page

size into account

lwz R1, (R1) # Load level-2 page entry

mtspr MD_RPN, R1 # Write TLB entry

mfspr R1, M_TW # Restore R1

rfi

Chapter 8. Memory Management Unit

TLB Manipulation

Figure 8-24 performs an ITLB reload

Figure 8-24. ITLB Reload Code Example

8.10.2 Locking TLB Entries
Four entries in each TLB can be made unavailable to the replacement algorithm; thus by
configuring the TLB replacement counters, the user can lock translation entries into them.

As shown in Figure 8-25, setting MI_CTR[RSV4I] or MD_CTR[RSV4D], configures the
TLB replacement counter to select only from the first 28 entries in each TLB. Those fields
also affect the tlbia instruction as described later. Replacement counters are cleared after a
tlbia instruction executes. ITLB_INDX decrements after an ITLB reload; DTLB_INDX
decrements after a DTLB reload.

Figure 8-25. Configuring the TLB Replacement Counter

itlb_swtw mtspr M_TW, R1 # Save R1

mfspr R1, SRR0 # Load R1 with instruction miss EA (the same data

may be taken from MI_EPN)

mtspr MD_EPN, R1 # Save instruction miss EA in MD_EPN

mfspr R1, M_TWB # Load R1 with level-1 pointer

lwz R1, (R1) # Load level-1 page entry

mtspr MI_TWC,R1 # Save level-1 attributes

mtspr MD_TWC,R1 # Save level-2 base pointer

mfspr R1, MD_TWC # Load R1 with level-2 pointer while taking page

size into account

lwz R1, (R1) # Load level-2 page entry

mtspr MI_RPN, R1 # Write TLB entry

mfspr R1, M_TW # Restore R1

rfi

0
1
2
•
•
•
26
27
28
29
30
31

DTLB

RSV4D = 1

RSV4D = 0

0
1
2
•
•
•
26
27
28
29
30
31

ITLB

RSV4I = 1

RSV4I = 0

MPC855T User’s Manual

TLB Manipulation

8.10.3 Loading Locked TLB Entries

The process of loading a single reserved entry in the TLB is as follows:

1. Disable the TLB by clearing MSR[IR] or MSR[DR] as needed.

2. Clear MI_CTR[RSV4I] (MD_CTR[RSV4D]).

3. Invalidate the EA of the reserved page by using tlbia or tlbie.

4. Set MI_CTR[ITLB_INDX] (MD_CTR[DTLB_INDX]) to the appropriate value
(between 27 and 31).

5. Load Mx_EPN with the effective page number, the ASID of the reserved page, and
set EV.

6. Run software tablewalk code to load the appropriate entry into the translation
lookaside buffer. See Section 8.10.1.1, “Translation Reload Examples.”

7. Repeat steps 4–6 to load other TLB entries.

8. Set MI_CTR[RSV4I] (MD_CTR[RSV4D]).

8.10.4 TLB Invalidation

Executing tlbie invalidates TLB entries that hit, including reserved entries. Note that
EA[0–21] is used in the comparison because segment registers as defined by the PowerPC
architecture are not implemented. Although for entries with pages larger than 4 Kbytes,
some lower bits of the effective page number are ignored. The ASID value in the entry is
ignored for the purpose of matching an invalidate address, thus multiple entries can be
invalidated if they have the same effective address and different ASID values.

Executing tlbia invalidates all entries in both TLBs, however if MI_CTR[RSVI] or
MD_CTR[RSVD] is set, the reserved entries are not invalidated. Software can explicitly
invalidate one or more of these entries by setting MD_CTR[DTLB_INDX] or
MI_CTR[ITLB_INDX], negating MD_EPN[EV] or MI_EPN[EV], and writing to the
appropriate MD_RPN or MI_RPN. The TLBs are not invalidated automatically on reset,
but are disabled. However, they must be invalidated under program control during
initialization.

Chapter 9. Instruction Execution Timing

Chapter 9
Instruction Execution Timing
This chapter describes the timing of instructions that execute in the core. Examples show
stalls and bubbles due to serialization, latency, and blockage.

9.1 Instruction Execution Timing Examples
The following sections provide timings for the following scenarios:

• Data cache load

• Writeback arbitration

• Private writeback bus load

• Fastest external load (data cache miss)

• Full completion queue (CQ)

• Branch instruction handling

• Branch prediction

All examples assume an instruction cache hit.

9.1.1 Data Cache Load with a Data Dependency

Figure 9-1 shows a data cache load with zero wait states. The sub instruction depends on
the value loaded to r12,which causes a bubble in the instruction stream. The example in
Section 9.1.3, “Private Writeback Bus Load,” has no such dependency.

lwz r12,64 (SP)
sub r3,r12,3
addic r4,r14,1
mulli r5,r3,3
addi r4,3(r0)

MPC855T User’s Manual

Instruction Execution Timing Examples

Figure 9-1. Data Cache Load Timing

9.1.2 Writeback Arbitration

In Figure 9-2, the addic instruction is dependent on the mulli result. Because the
single-cycle instruction sub has priority on the writeback bus over the mulli, the mulli
writeback is delayed one clock and causes a bubble in the execute stream.

mulli r12,r4,3
sub r3,r15,3
addic 4,r12,1

Figure 9-2. Writeback Arbitration Timing—Example 1

In this example, the addic instruction is dependent on sub rather than on mulli. Although
the writeback of the mulli is delayed two clocks, there is no bubble in the execution stream.

mulli r12,r4,3
sub r3,r15,3
addic r4,r3,1

Figure 9-3. Writeback Arbitration Timing—Example 2

lwz sub mulli addiaddicFetch

Decode

Read + Execute

Writeback

L Address Drive

L Data

Load Write Back

lwz sub

Bubble

addic

lwz sub

sub

addic

ld

ld

ld

Gclk1

addic

mulli sub addicFetch

Decode

Read + Execute

Writeback

mulli sub

Bubble

addic

mulli sub, mulli

mulli

addic

sub

gclk1

addic

mulli sub addicFetch

Decode

Read + Execute

Writeback

mulli sub addic

mulli sub, mulli

mulli

addic

sub

GCLK1

addic

Chapter 9. Instruction Execution Timing

Instruction Execution Timing Examples

9.1.3 Private Writeback Bus Load

In Figure 9-4, lwz and xor write back in the same clock since they use the writeback bus in
two different ticks (a tick = 1/4 of a processor clock).

lwz r12,64 (SP)
sub r5,r5,3
cror 4,14,1
and r3,r4.r5
xor r4,r3,r5
ori r6,r12.r3

Figure 9-4. Private Writeback Bus Load Timing

9.1.4 Fastest External Load (Data Cache Miss)

Figure 9-5 shows a sub instruction dependent on the value read by the load. It causes three
bubbles in the execution stream. Assuming SCCR[EBDF] = 00, the external clock
(CLKOUT) is shifted 90° from the internal clock (GCLK1).

lwz r12,64 (SP)
sub r3,r12,3
addic r4,r14,1

ori

xorload

lwz sub and xorcror ori

sub

andcror oriload sub

lwz

lwz

lwz

lwz

sub

lwz

cror and

and

xor

xor

ori

GCLK1

E Data

Fetch

Decode

Read + Execute

Writeback

L Address Drive

L Data

Cache Address

Load Writeback

E Address

cror

lwz

MPC855T User’s Manual

Instruction Execution Timing Examples

Figure 9-5. External Load Timing

9.1.5 A Full Completion Queue

Figure 9-6 shows stalls due to a full CQ. Here, the CQ is full from executing sub, addic,
and and. It takes one more bubble from the load writeback to allow further issue while the
CQ retires sub, addic, and and.

lwz r12,64 (SP)
sub r5,r5,3
addic r4,r14,1
and r3,r4.r5
xor r4,r3,r5
ori r7,r8,1

Figure 9-6. Full Completion Queue Timing

sub

lwz

lwz sub addic

sub

sublwz Bubble

lwz

lwz

lwz

lwz

lwz

lwz

GCLK1

E Data

Fetch

Decode

Read + Execute

Writeback

L Address Drive

L Data

Cache Address

Load Writeback

E Address

Bubble Bubble Bubble

xor

xorlwz

lwz sub and xoraddic ori

sub

andaddic xorlwz sub

lwz

lwz

lwz

lwz

lwz

sub

lwz

addic

addic

and

and

Bubble

GCLK1

E Data

Fetch

Decode

Read + Execute

Writeback

L Address Drive

L Data

Cache Address

Load Writeback

E Address

Bubble

Chapter 9. Instruction Execution Timing

Instruction Execution Timing Examples

9.1.6 Branch Instruction Handling

In Figure 9-7 the lwz instruction accesses internal memory with one wait state. The IQ and
parallel operation of the BPU allows the two bubbles caused by the bl issue and execution
to overlap the two bubbles caused by the load. Issuing bl causes a bubble because it does
no work.

lwz r12,64 (SP)
sub r3,r12,3
addic r4,r14,1
bl func
...
func:
mulli r5,r3,3
addi r4,3(r0)

Figure 9-7. Branch Folding Timing

9.1.7 Branch Prediction

In this example, the blt instruction is dependent on the cmpi instruction. Nevertheless, the
BPU predicts the correct path and allows an overlap of its bubbles with those of lwz. When
cmpi writes back, the BPU reevaluates the decision. If the prediction is correct, no more
action is taken and execution continues. Instructions on the predicted path cannot be
dispatched before the condition is resolved.

while:
mulli r3,r12,r4
addi r4,3(r0)
...
lwz r12,64 (r2)
cmpi 0,r12,3
addic r6,r5,1
blt cr0,while
...

addiclwz

lwz sub bl Bubbleaddic mulli

sub

subBubble mullilwz Bubble

lwz

lwz

bl

lwz

bl

sub

addic

addic

mulli

Fetch

Decode

Read + Execute

Writeback

L Address Drive

L Data

Load Writeback

Branch Decode

Branch Execute

addi

GCLK1

MPC855T User’s Manual

Instruction Timing List

Figure 9-8. Branch Prediction Timing

9.2 Instruction Timing List
Table 9-1 summarizes instruction execution timings in terms of latency and blockage of the
appropriate execution unit. A serializing instruction blocks all execution units.

Table 9-1. Instruction Execution Timing

Instructions Latency Blockage Unit Serializing

Branch: b, ba, bl, bla, bc, bca, bcl, bcla, bclr, bclrl,
bcctr, bcctl

Taken 2 2 BPU No

Not taken 1 1

System call: sc, rfi Serialize + 2 — Yes

CR logical: crand, crxor, cror, crnand, crnor, crandc,
creqv, crorc, mcrf

1 1 BPU No

Integer trap: twi, tw Taken
serialize + 3

Serialize + 3 IU After

Not taken 1 1 No

Move to: mtspr, mtcrf, mtmsr, mcrxr except mtspr to LR
and CTR and to SPRs external to the core.

Serialize + 1 All Yes

Move to LR, CTR: mtspr 1 1 BPU No

Move to SPRs external to core: mtspr, mttb, mttbu. See
Section 9.2.3, “Accessing Off-Core SPRs.”

Serialize + 1 1 Serialize + 1 LSU Yes

Move from SPRs external to core: mfspr, mftb, mftbu Load latency 1 LSU No

Move from SPRs internal to core: mfspr 2 1 — See list 3

Move from: mfcr, mfmsr Serialize + 1 — See list 4

Integer arithmetic: addi, add, addis, subf, addic, subfic,
addic., addc, adde, subfc, subfe, addme, addze,
subfme, subfze, neg

1 IU No

addiclwz

lwz cmpi blt Bubbleaddic mulli

cmpi

cmpiBubble mullilwz Bubble

lwz

lwz

blt

lwz

blt

cmp

addic

addic

mulli

Fetch

Decode

Read + Execute

Writeback

L Address Drive

L Data

Load Writeback

Branch Decode

Branch Execute

addi

Branch Final
Decision

blt

GCLK1

Chapter 9. Instruction Execution Timing

Instruction Timing List

Integer divide: divw, divwu Min 2
Max 11 5

Min 2
Max 11 6

IU No

Integer multiply: mul, mullw, mulhw, mulhwu 2 1-2 7 IU No

Integer compare: cmpi, cmp, cmpli, cmpl 1 IU No

Integer logical: andi., andis., ori, oris, xori, xoris, and,
or, xor, nand, nor, eqv, andc, orc, extsb, extsh, cntlzw

1 IU No

Integer rotate and shift: rlwinm, rlwnm, rlwimi, slw,srw,
srawi, sraw

1 IU No

Integer load: lbz, lbzu, lbzx, lbzux, lhz, lhzu, lhzx, lhzux,
lha, lhau, lhax, lhaux, lwz, lwzu, lwzx, lwzux, lhbrx,
lwbrx.

2 8 1 LSU No

Integer store: stb, stbu, stbx, stbux, sth, sthu, sthx,
sthux, stw, stwu, stwbrx, stwx, stwux, sthbrx

11 1 LSU No

Integer load/store multiple: lmw, smw Serialize + 1 + no. of registers LSU Yes

Synchronize: sync Serialize + 1 LSU Yes

Memory synchronization: lwarx, stwcx. Serialize + 2 LSU Yes

Move CR from XER: mcrxr Serialize + 1 LSU Yes

Move to/from SPR (Debug, DAR, DSISR): mtspr, mfspr Serialize + 1 LSU Yes

String instructions: lswi, lswx, stswi, stswx. See
Section 9.2.2, “String Instruction Latency.”

Serialize + 1 + no. of words
accessed

LSU Yes

Memory control instructions: isync Serialize BPU Yes

Order memory access: eieio 1 LSU Next load/store
is synchronized
with ones before

Cache control: icbi 1 LSU,
I-cache

No

1 Although a store (as well as mtspr for SPRs external to the core) issued to the LSU buffer frees the core pipeline,
the next load or store is not performed on the bus until it is free.

2 See Table 4-5.
3 Refer to Chapter 4, “MPC8xx Core Register Set.”
4 See Section 4.1.1.1.1, “Condition Register (CR),” and Section 4.1.2.3.1, “Machine State Register (MSR).”
5

Table 9-1. Instruction Execution Timing (continued)

Instructions Latency Blockage Unit Serializing

Where

DivisionLatency
NoOver f low 3⇒ 34 divisorLength–

4
--

 +

Over f low 2⇒
--=

Overflow x
0

 or MaxNegativeNumber

1–
--

 =

MPC855T User’s Manual

Instruction Timing List

9.2.1 Load/Store Instruction Timing

Table 9-2. summarizes load/store instruction timings. This table assumes zero wait-state
memory references on a parked bus and pipelined external memory accesses.

9.2.2 String Instruction Latency

String accesses require separate aligned bus accesses. Figure 9-9 shows the maximum
number of bus cycles needed for string accesses where the beginning and end are unaligned.

9.2.3 Accessing Off-Core SPRs

The LSU handles mtspr and mfspr accesses to off-core SPRs by using a special cycle on
the internal bus. See Section 4.1.3.1, “Accessing SPRs.” If the access ends in a bus error, a
software emulation exception is taken. All write operations to off-core SPRs (mtspr) are
previously synchronized. In other words, the instruction is not taken until all prior
instructions terminate.

6 Division blockage = division latency.
7 Blockage of the multiply instruction is dependent on the next instruction.If the next instruction is a divide, the blockage

is 2 clocks; otherwise, the blockage is 1 clock.
8 Assumes nonspeculative aligned access, on-chip memory, and available bus. See Section 3.6.3.4, “Nonspeculative

Load Instructions,” Section 3.6.3.5, “Unaligned Accesses,” and Section 9.2.1, “Load/Store Instruction Timing.”

Table 9-2. Load/Store Instructions Timing

Instruction Type
Latency Cleared from LSU

Data Cache External Memory Data Cache External Memory

Integer single target register load (aligned) 2 cycles 5 cycles 2 cycles 5 cycles

Integer single target register store (aligned) 1 cycle 1 cycle 2 cycles 5 cycles

Load/store multiple 1 + N 1

1 N denotes the number of registers transferred.

1 + N

Figure 9-9. Bus Latency for String Instructions

0x00 00 01 02 03

0x04 04 05 06 07 2 bus cycles

0x08 08 09 0A 0B
Word transfers
3 bus cycles

0x0C 0C 0D 0E 0F

0x10 10 11 12 13

0x14 14 15 16 17 2 bus cycles

0x18 18 19 1A 1B

3 N N 1+
3

 + + 3 N N 1+

3

 + +

Chapter 9. Instruction Execution Timing

Instruction Timing List

MPC855T User’s Manual

Instruction Timing List

Part III. Configuration and Reset

Part III
Configuration and Reset

Audience
Part III is intended for system designers and programmers who need to understand the
operation of the MPC855T at start up. It assumes an understanding of the programming
model described in the previous chapters and a high level understanding of the MPC855T.

Contents
Part III describes start-up behavior of the MPC855T. It contains the following chapters:

• Chapter 10, “System Interface Unit,” describes the SIU, which controls system
start-up, initialization and operation, protection, as well as the external system bus.

• Chapter 11, “Reset,” describes the behavior of the MPC855T at reset and start-up.

Suggested Reading
Supporting documentation such as technical specifications, reference materials, and
detailed applications notes can be accessed through the world-wide web at
http://www.motorola.com

Conventions
This chapter uses the following notational conventions:

Bold entries in figures and tables showing registers and parameter
RAM should be initialized by the user.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

Bold

MPC855T User’s Manual

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

REG[FIELD] Abbreviations or acronyms for registers or buffer descriptors are
shown in uppercase text. Specific bits, fields, or numerical ranges
appear in brackets. For example, MSR[LE] refers to the little-endian
mode enable bit in the machine state register.

x In certain contexts, such as in a signal encoding or a bit field,
indicates a don’t care.

n Indicates an undefined numerical value

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document. Note that the
meanings for some acronyms (such as SDR1 and DSISR) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

BIST Built-in self test

CRC Cyclic redundancy check

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DEC Decrementer register

DMA Direct memory access

DRAM Dynamic random access memory

DTLB Data translation lookaside buffer

EA Effective address

GPR General-purpose register

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

LSB Least-significant byte

lsb Least-significant bit

LSU Load/store unit

MMU Memory management unit

MSB Most-significant byte

Part III. Configuration and Reset

msb Most-significant bit

MSR Machine state register

PCI Peripheral component interconnect

RISC Reduced instruction set computing

RTOS Real-time operating system

Rx Receive

SPR Special-purpose register

SWT Software watchdog timer

TB Time base register

TLB Translation lookaside buffer

Tx Transmit

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

MPC855T User’s Manual

Chapter 10. System Interface Unit

Chapter 10
System Interface Unit
The system interface unit (SIU) controls system startup, initialization and operation,
protection, as well as the external system bus. The system configuration and protection
function controls the overall system and provides various monitors and timers, including
the bus monitor, software watchdog timer, periodic interrupt timer (PIT), decrementer,
timebase, and real-time clock. The clock synthesizer generates the clock signals for other
modules and external devices that the SIU interfaces with. The SIU supports various
low-power modes that supply different ranges of power consumption, functionality, and
wake-up time. The clock scheme supports low-power modes for applications that use baud
rate generators and/or serial ports in standby mode. The main system clock can be changed
dynamically; the baud rate generators and serial ports work with a fixed frequency. For
more information, see Chapter 14, “Clocks and Power Control.”

The external bus interface handles the transfer of information between internal buses and
the memory or peripherals in the external address space. The MPC855T is designed to
allow external bus devices to request and obtain system bus mastership. Chapter 12,
“External Signals,” describes bus operation. The memory controller module provides a
glueless interface to many types of memory devices and peripherals; it supports a maximum
of eight memory banks, each with its own device and timing attributes. Memory control
services are provided to both internal and external masters. The MPC855T supports circuit
board test strategies through user-accessible test logic that is fully compliant with the IEEE
1149.1 standard described in Chapter 45, “IEEE 1149.1 Test Access Port.”

The PCMCIA host adapter module provides all control logic for a PCMCIA interface. This
interface complies fully with the PCMCIA standard, Release 2.1+ (PC Card -16). It can
support PCMCIA socket with a maximum of eight memory or I/O windows.

10.1 Features
The following is a list of the SIU’s main features:

• System configuration and protection
• System interrupt configuration
• System reset monitoring and generation
• Clock synthesizer

MPC855T User’s Manual

System Configuration and Protection

• Power management
• Real-time clock
• Decrementer
• Time base
• Periodic interrupt timer (PIT)
• External bus interface control
• Eight memory banks supported by the memory controller
• Debug support
• PCMCIA host adapter module supports slot with eight memory or I/O windows
• IEEE 1149.1 test access port

10.2 System Configuration and Protection
The MPC855T incorporates many system functions that normally must be provided in
external circuits. The following features provide maximum system safeguards against
hardware and/or software faults:

• System configuration—Allows control of parity checking, show cycle operation,
and part and mask number constants.

• Bus monitor—Monitors the TA response time for bus accesses initiated by internal
masters. TEA is asserted if the TA response limit is exceeded. The bus monitor
measures time between TS and any termination of the bus cycle, including TA, TEA,
and RETRY.

• Software watchdog timer (SWT)—Asserts a reset or nonmaskable interrupt (NMI)
that is selected by the system protection control register (SYPCR) if software fails
to service this timer after a certain period. After system reset, the timer, if enabled,
selects a maximum time-out period and asserts SRESET or NMI (system reset
interrupt) if the time-out is reached. This timer can be disabled or its time-out period
can be changed in SYPCR. Once SYPCR is written, it cannot be written again until
a system reset.

• Periodic interrupt timer (PIT)—Generates periodic interrupts for use with a
real-time operating system (RTOS) or the application software. The PIT is clocked
by the PITRTCLK clock, thus providing a period from 122 µs to 8 seconds assuming
a 32.768-KHz crystal. The PIT can be disabled if it is not needed.

• Timebase counter—Provides a timebase reference for the operating system or
application software. This 64-bit timebase counter is defined by the PowerPC
architecture and has two independent reference registers that generate a maskable
interrupt when the programmed value in one of the registers is reached. The
associated bit in the timebase status and control register (TBSCR) is set for the
reference register that generated the interrupt. The timebase is clocked by the
TMBCLK clock.

Chapter 10. System Interface Unit

Multiplexing SIU Pins

• Decrementer—Provides a decrementer register/interrupt clocked at the timebase
frequency. This 32-bit decrementing counter is defined to be clocked by TMBCLK.
When it is driven by a 4-MHz oscillator the period for the decrementer is 4,295
seconds (approximately 71.6 minutes).

• Real-time clock (RTC)—Provides time-of-day information to the operating system
or application software. It is composed of a 45-bit counter and an alarm register. A
maskable interrupt is generated when the counter reaches the value programmed in
the alarm register. The RTC is clocked by PITRTCLK.

• Freeze support—The SIU determines whether the software watchdog timer, PIT,
timebase, decrementer, and real-time clock should continue to run in freeze mode.

Figure 10-1 is a block diagram of the system configuration and protection logic.

Figure 10-1. System Configuration and Protection Logic

10.3 Multiplexing SIU Pins
Due to the limited number of pins available in the MPC855T package, some of the
functionalities share pins. Table 10-1 shows how functionality is controlled on each pin.

Module

Bus
Monitor

Periodic Interrupt
Timer

Software
Watchdog Timer

Decrementer

Timebase Counter

Real-Time
Clock

Clock

Interrupt

Interrupt

Interrupt

Interrupt

Interrupt or
System Reset

Configuration

TEA

MPC855T User’s Manual

Programming the SIU

10.4 Programming the SIU
The following sections describe registers used for programming the SIU.

10.4.1 Internal Memory Map Register (IMMR)

The internal memory map register (IMMR) is an SPR that identifies specific devices and
the internal memory map base address. Using mfspr, software can read IMMR to

Table 10-1. Multiplexing Control

 Name Pin Configuration Control

TSIZ0/REG Dynamically active if the transaction addresses a slave controlled by the PCMCIA
interface.

BDIP/GPL_B5
RSV/IRQ2
KR/RETRY/IRQ4/SPKROUT
DP[0–3]/IRQ[3–6]
FRZ/IRQ6

Programmed in SIUMCR.

CS6/CE1_B
CS7/CE2_B

Address matching and bank valid bits. When a transfer matches either memory
controller bank 6 or any PCMCIA bank mapped to slot B, CS6/CE1_B is asserted.
When a transfer matches either memory controller bank 7 or any PCMCIA bank
mapped to slot B, CS7/CE2_B is asserted.

WE0/BS_AB0/IORD
WE1/BS_AB1/IOWR
WE2/BS_AB2/PCOE
WE3/BS_AB3/PCWE

Dynamically active depending on the machine (GPCM, UPMB, or PCMCIA
interface) assigned to control the required slave.

GPL_A0/GPL_B0 Dynamically active depending on the machine (UPMA or UPMB) assigned to
control the required slave.

OE/GPL_A1/GPL_B1 Dynamically active depending on the machine (GPCM, UPMA, or UPMB) assigned
to control the required slave.

GPL_A[2–3]/GPL_B[2–3]/CS[2–3] GPL_A[2–3]/GPL_B[2–3]: Dynamically active depending on the machine (UPMA
or UPMB) assigned to control the required slave.
GPL_A[2–3]/CS[2–3]: Programmed in the SIUMCR.

ALE_B/DSCK/AT1
IP_B[0–1]/IWP[0–1]/VFLS[0–1]
IP_B2/IOIS16_B/AT2
IP_B3/IWP2/VF2
IP_B4/LWP0/VF0
IP_B5/LWP1/VF1
IP_B6/DSDI/AT0
IP_B7/PTR/AT3
TDI/DSDI
TCK/DSCK
TDO/DSDO

Programmed in the SIUMCR and hard reset configuration. See Section 11.3.1.1,
“Hard Reset Configuration Word.”

OP2/MODCK1/STS
OP3/MODCK2/DSDO

At power-on reset, this functions as MODCK[1–2]. Otherwise, programmed in the
SIUMCR and hard reset configuration.

Chapter 10. System Interface Unit

Programming the SIU

determine the location and availability of any on-chip system resource. ISB can be written
by mtspr, but PARTNUM and MASKNUM are mask programmed and cannot be changed.

Table 10-2 describes IMMR fields.

For the latest documentation on part/revision numbers and microcode REV_NUMs, see the
website at www.motorola.com.

10.4.2 SIU Module Configuration Register (SIUMCR)

The SIU module configuration register (SIUMCR) contains bits that configure the
following features in the SIU:

• External bus arbitration

• External master support

• Debug and test port configuration

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field ISB

Reset Set by reset configuration

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field PARTNUM MASKNUM

Reset Value depends on the part revision Value depends on the mask revision

R/W R R

SPR 638

Figure 10-2. Internal Memory Map Register (IMMR)

Table 10-2. MMR Field Descriptions

Bits Name Description

0–15 ISB Internal space base. Defines the base address of the internal memory space. At reset, ISB can
be configured to one of four addresses and changed to any value by the software. The number
of programmable ISB bits and the resolution of the location of internal space depends on the
implementation’s internal memory space. In the MPC855T, all 16 bits can be programmed.
Chapter 2, “Memory Map,” describes the internal memory map. Section 11.3.1.1, “Hard Reset
Configuration Word,” describes available and default initial values.

16–23 PARTNUM Part number (read-only). Mask programmed with a code corresponding to the part number of the
MPC855T. Intended to help factory test and user code that is sensitive to part refinements.
PARTNUM would change if a new module is added or if the size of the memory module is revised.
However, it would not change if the part is revised to fix a bug in an existing module. The
MPC855T’s part number can be found at www.motorola.com, on itsproduct summary page.

24–31 MASKNUM Mask number. (read-only) Mask programmed with a code corresponding to the mask number of
the MPC855T. Intended to help factory test and user code that is sensitive to part refinements.
The MPC855T’s mask number can be found at www.motorola.com, on itsproduct summary page

MPC855T User’s Manual

Programming the SIU

• System interface pin configuration

• Parity support

This register is affected by HRESET but is not affected by SRESET. Table 10-3 describes
SIUMCR fields.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EARB EARP — DSHW DBGC DBPC — FRC DLK

Reset n 000_0001_0 n n 000

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x000

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field OPAR PNCS DPC MPRE MLRC AEME SEME GB5E B2DD B3DD —

Reset 0000_0000_0000_0000

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x002

Figure 10-3. SIU Module Configuration Register (SIUMCR)

Table 10-3. SIUMCR Field Descriptions

Bits Name Description

0 EARB External arbitration. For more information, see Section 13.4.6, “Arbitration Phase.” The default value
depends on the reset configuration; see Section 11.3.1.1, “Hard Reset Configuration Word.”
0 Internal arbitration is performed.
1 External arbitration is assumed.

1–3 EARP External arbitration request priority. Defines the priority of the external master’s arbitration request
relative to requests by internal modules. Valid when EARB is cleared. 000 = lowest priority and 111
= highest (however, the internal UPM-based refresh cycles always have a higher priority and will
preempt any external master if the internal arbiter is used). See Figure 13-21 and Table 19-1.

4–7 — Reserved, should be cleared.

8 DSHW Data show cycles. Selects the show cycle mode to be applied to data cycles. Data show cycles do
not include CPU interaction with the data cache; they only include CPU interactions with peripherals
on the internal U-bus (that is, CPM and SIU). (Instruction show cycles are programmed in ICTRL see
the Hardware Specifications for more information.) This bit is locked by the DLK bit.
0 Disable show cycles for all internal data cycles.
1 Show address and data of all internal data cycles.

9–10 DBGC Debug pin configuration. The default is set by the hard reset configuration word. See Section 11.3.1.1,
“Hard Reset Configuration Word” for the description of these bits.

11–12 DBPC Debug port pins configuration. Determines the active pins for the development port. The default is set
by the hard reset configuration word. See Section 11.3.1.1, “Hard Reset Configuration Word” for the
description of these bits.

13 — Reserved, should be cleared.

14 FRC FRZ pin configuration. Configures the functionality of FRZ/IRQ6.
0 FRZ/IRQ6 functions as FRZ.
1 FRZ/IRQ6 functions as IRQ6.

Chapter 10. System Interface Unit

Programming the SIU

10.4.3 System Protection Control Register (SYPCR)

The system protection control register (SYPCR) controls the system monitors and bus
monitor timing. It can be read at any time, but can be written only once after system reset.
This register is affected by HRESET but is not affected by SRESET.

15 DLK Debug register lock. If DLK is set, bits 8–15 are locked and writes to those bits are no longer
performed. These bits can be written once the internal FRZ signal is asserted, regardless of the state
of DLK. Cleared at reset.

16 OPAR Odd parity. Used to program odd or even parity. Also used to generate parity errors for testing
purposes by writing the memory with OPAR = 1 and reading the memory with OPAR = 0.

17 PNCS Parity enable for nonmemory controller regions. Enables parity generation/checking for memory
regions not controlled by the memory controller.

18 DPC Data parity pins configuration. Configures the functionality of DP[0–3]/IRQ[3–6].
0 DP[0–3]/IRQ[3–6] functions as IRQ[3–6].
1 DP[0–3]/IRQ[3–6] functions as DP[0–3].

20–21 MLRC Multi-level reservation control. Configures the functionality of KR/RETRY/IRQ4/SPKROUT.
00 KR/RETRY/IRQ4/SPKROUT functions as IRQ4.
01 KR/RETRY/IRQ4/SPKROUT is three-stated.
10 KR/RETRY/IRQ4/SPKROUT functions as KR/RETRY.
11 KR/RETRY/IRQ4/SPKROUT functions as SPKROUT.

22 AEME Asynchronous external master enable. Configures how the memory controller refers to external
asynchronous masters initiating a transaction. If AEME = 1, the memory controller interprets any
assertion of AS as an external asynchronous master initiating a transaction. If it is reset, the memory
controller ignores the value of AS.

23 SEME Synchronous external master enable. Configures how the memory controller refers to synchronous
external masters initiating a transaction. If SEME = 1, the memory controller interprets any assertion
of TS not driven by the MPC855T as a synchronous external master initiating a transaction. If SEME
= 0, the memory controller ignores TS unless it is external bus master.

24 BSC Configures how memory controller and PCMCIA interface byte selects and strobes are configured.
0 BS_A[0–3] are driven just on their dedicated pins.

WE0/BS_B0/IORD is driven on its dedicated pin.
WE1/BS_B1/IOWR is driven on its dedicated pin.
WE2/BS_B2/PCOE is driven on its dedicated pin.
WE3/BS_B3/PCWE is driven on its dedicated pin.

1 Assertion of either BS_A0, WE0, BS_B0 or IORD is driven on BS_A0 and WE0/BS_B0/IORD.
Assertion of either BS_A1, WE1, BS_B1 or IOWR is driven on BS_A1 and WE1/BS_B1/IOWR.
Assertion of either BS_A2, WE2, BS_B2 or PCOE is driven on BS_A2 and WE2/BS_B2/PCOE.
Assertion of either BS_A3, WE3, BS_B3 or PCWE is driven on BS_A3 and WE3/BS_B3/PCWE.

25 GB5E GPL_B5 enable
0 The BDIP functionality is active.
1 The GPL_B5 of the memory controller functionality is active

26 B2DD Bank 2 double drive. If this bit is set, CS2 is reflected on GPL_x2.

27 B3DD Bank 3 double drive. If this bit is set, CS3 is reflected on GPL_x3.

28–31 — Reserved, should be cleared.

Table 10-3. SIUMCR Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Programming the SIU

Table 10-4 describes SYPCR fields.

10.4.4 Transfer Error Status Register (TESR)

The transfer error status register (TESR) has a bit for each transfer error exception source.
Set bits indicate what type of transfer error exception that occurred since bits were last

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field SWTC

Reset 1111_1111_1111_1111

R/W R/W

SPR (IMMR & 0xFFFF0000) + 0x004

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BMT BME — SWF SWE SWRI SWP

Reset 1111_1111 0 000 0 1 1 1

R/W R/W

SPR (IMMR & 0xFFFF0000) + 0x006

Figure 10-4. System Protection Control Register (SYPCR)

Table 10-4. SYPCR Field Descriptions

Bits Name Description

0–15 SWTC Software watchdog timer count. Count value for the software watchdog timer.

16–23 BMT Bus monitor timing. Defines the timeout period, in 8 system clock resolution, for the bus monitor.
maximum timeout is 2,040 clocks.

24 BME Bus monitor enable. Controls bus monitor operation during internal-to-external bus cycles.
0 Disable the bus monitor.
1 Enable the bus monitor.
Note: If the bus monitor is disabled, transfer error conditions do not cause TEA to be asserted.

25–27 — Reserved, should be cleared.

28 SWF Software watchdog freeze
0 The software watchdog timer continues counting even if FRZ is asserted.
1 The software watchdog timer stops counting when FRZ is asserted.

29 SWE Software watchdog enable.
To disable the software watchdog timer, it should be cleared by the software after a system reset.
0 Software watchdog timer disabled.
1 Software watchdog timer enabled. (default)

30 SWRI Software watchdog reset/interrupt select.
0 The software watchdog timer causes an NMI (system reset interrupt) to the core.
1 The software watchdog timer causes an HRESET. (default)

31 SWP Software watchdog prescale.
0 The software watchdog timer is not prescaled.
1 The software watchdog timer is prescaled by a factor of 2,048. (default)

Chapter 10. System Interface Unit

Programming the SIU

cleared. Bits are cleared by reset or by writing ones to them. Canceled speculative accesses
that do not cause an interrupt may set these bits. TESR has two identical sets of fields, one
for instruction transfers and one for data transfers.This register is affected by HRESET and
SRESET.

Table 10-5 describes TESR fields.

10.4.5 Register Lock Mechanism
If the MPC855T sets PLPRCR[LPM] = 11 before entering power-down mode, then the
registers of the SIU maintained by KAPWR are automatically protected. However, to

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset xxxx_xxxx_xxxx_xxxx

R/W R/W

SPR (IMMR & 0xFFFF0000) + 0x020

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — IEXT ITMT IPB0 IPB1 IPB2 IPB3 — DEXT DTMT DPB0 DPB1 DPB2 DPB3

Reset 0000_0000_0000_0000

R/W R/W

SPR (IMMR & 0xFFFF0000) + 0x022

Figure 10-5. Transfer Error Status Register (TESR)

Table 10-5. TESR Field Descriptions

Bits Name Description

0–17 — Reserved, should be cleared.

18 IEXT Instruction external transfer error acknowledge. Set if the cycle is terminated by an externally
generated TEA when an instruction fetch is initiated.

19 ITMT Instruction transfer monitor timeout. Set if the cycle is terminated by a bus monitor timeout when an
instruction fetch is initiated.

20–23 IPB[0–3] Instruction parity error on bytes 0–3. Each byte lane has four parity error status bits; one is set for
the byte that had a parity error when an instruction was fetched. Parity check for memory not
controlled by the memory controller is enabled by SIUMCR[PNCS], see Table 10-3.

24–25 — Reserved, should be cleared.

26 DEXT Data external transfer error acknowledge. Set if the cycle is terminated by an externally generated
TEA signal when a data load or store is requested by an internal master.

27 DTMT Data transfer monitor timeout. Set if the cycle is terminated by a bus monitor timeout when a data
load or store is requested by an internal master.

28–31 DPB[0–3] Data parity error on bytes 0–3. Each byte lane has four parity error status bits; one is set for the
byte that had a parity error when an internal master requested a data load. Parity checking for
memory not controlled by the memory controller is enabled by SIUMCR[PNCS], see Table 10-3.

MPC855T User’s Manual

Programming the SIU

provide protection of the SIU registers maintained by KAPWR against uncontrolled
shutdown, a register locking mechanism is included. These registers can be write-protected
in a set of associated key registers. The MPC855T key registers are shown in Table 10-6.

Each register in the keep-alive power region has a key register that can be in an open or
locked state. At power-on reset, all key registers are open, except for the real-time clock key
registers. Each key register has an associated address in the internal memory map, as shown
in Table 10-6. A write of 0x55CC_AA33 to a key register unlocks its associated SIU
register; any other access (including reads or writes of any other value) to a key register
locks its associated SIU register. For example, writing a 0x55CC_AA33 to the RTCK key
register allows the RTC register to be written. The key registers are write-only; a read of the
key register does not return the last value written.

When a register is locked, an attempt to write to it will result in a machine check exception,
and will not change the value in the register. One exception to this is the timebase register
(TBU and TBL), locked with TBK. A write to the timebase register when it is locked results
in a software emulation exception.

Table 10-6. Key Registers

Offset Name Size

System Integration Timers Keys

0x300 TBSCRK—Timebase status and control register key 32 bits

0x304 TBREFAK—Timebase reference register A key 32 bits

0x308 TBREFBK—Timebase reference register B key 32 bits

0x30C TBK—Timebase/decrementer register key 32 bits

0x310–31F Reserved 16 bytes

0x320 RTCSCK—Real-time clock status and control register key 32 bits

0x324 RTCK—Real-time clock register key 32 bits

0x328 RTSECK—Real-time alarm seconds key 32 bits

0x32C RTCALK—Real-time alarm register key 32 bits

0x330–33F Reserved 16 bytes

0x340 PISCRK—Periodic interrupt status and control register key 32 bits

0x344 PITCK—Periodic interrupt count register key 32 bits

0x348–37F Reserved 56 bytes

Clocks and Reset Keys

0x380 SCCRK—System clock control key 32 bits

0x384 PLPRCRK—PLL, low power and reset control register key 32 bits

0x388 RSRK—Reset status register key 32 bits

0x38C–7FF Reserved 1140 bytes

Chapter 10. System Interface Unit

System Configuration

Reads are allowed at all times to any of the SIU registers, regardless of whether they are
locked or unlocked.

Figure 10-6. Register Lock Mechanism

For more information on key registers, see Section 14.5.7.3, “Register Lock Mechanism:
Protecting SIU Registers in Power-Down Mode.”

10.5 System Configuration
The SIU module configuration register (SIUMCR) is used for configuring external bus
arbitration logic, external master support, and pin multiplexing. See Section 10.4.2, “SIU
Module Configuration Register (SIUMCR).”

10.5.1 Interrupt Structure

The SIU receives interrupts from internal sources, like the PIT, real-time clock,
communications processor module (CPM), and the external IRQ pins. Figure 10-7 shows
the MPC855T interrupt structure.

Open Locked

Power-on reset

Write 0x55CC_AA33 to the key register

Write any other value to the key register

MPC855T User’s Manual

System Configuration

Figure 10-7. MPC855T Interrupt Structure

If programmed to generate interrupts, the software watchdog timer generates a
nonmaskable system reset interrupt (NMI) to the core. Asserting the external IRQ0 pin
generates an NMI as well. Note that the core takes the system reset interrupt vector when
an NMI is asserted and jumps to the external interrupt vector when any other interrupt is
asserted by the interrupt controller. Each external IRQ pin is assigned a priority level. Each
SIU internal interrupt source, generated by the CPM’s interrupt controller (CPIC), can be
assigned by the software to one of eight additional internal interrupt priority levels,
described in Chapter 34, “CPM Interrupt Controller.”

Section 10.5.3.1, “Nonmaskable Interrupts—IRQ0 and SWT,” describes how IRQ0
operates differently from other IRQ signals, and how the operation is configurable through
SIU registers.

Selector Decrementer

Periodic
Interrupt Timer

Real-Time
Clock

CPM

Software
Watchdog Timer

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 0

NMI
Generator

MPC8xx
CORE

External

Decrementer

Debug

NMIEdge
Detector

Timebase

PCMCIA

Debug

IRQ[0:7]

Interrupt
Controller

SIU

IRQ0

Interrupt

Chapter 10. System Interface Unit

System Configuration

10.5.2 Priority of Interrupt Sources

There are eight external IRQ pins (IRQ0 is essentially nonmaskable, although in a limited
sense it can be masked as shown in Table 10-8) and eight interrupt levels. Asserting IRQ0
causes an NMI. The other 15 interrupt sources assert a single interrupt request to the core
(the external interrupt). Table 10-7 shows interrupt priorities.

10.5.3 SIU Interrupt Processing

Figure 10-8 shows the general flow of SIU interrupt processing.

Table 10-7. Priority of SIU Interrupt Sources

Number Priority Level Interrupt Source
Interrupt Code
(SIVEC[INTC])

0 Highest IRQ0 0000_0000

1 Internal Level 0 0000_0100

2 IRQ1 0000_1000

3 Internal Level 1 0000_1100

4 IRQ2 0001_0000

5 Internal Level 2 0001_0100

6 IRQ3 0001_1000

7 Internal Level 3 0001_1100

8 IRQ4 0010_0000

9 Internal Level 4 0010_0100

10 IRQ5 0010_1000

11 Internal Level 5 0010_1100

12 IRQ6 0011_0000

13 Internal Level 6 0011_0100

14 IRQ7 0011_1000

15 Lowest Internal Level 7 0011_1100

16-31 Reserved —

MPC855T User’s Manual

System Configuration

Figure 10-8. SIU Interrupt Processing

10.5.3.1 Nonmaskable Interrupts—IRQ0 and SWT

Figure 10-9 is a logical representation of IRQ0.

Figure 10-9. IRQ0 Logical Representation

Table 10-8 describes the differences between IRQ0 and other IRQ interrupts.

Table 10-8. IRQ0 Versus IRQx Operation

Functionality IRQ0 IRQx

Exception Vector 0x100 0x500

Core input NMI External interrupt

SIMASK Not used, except for enabling SIVEC Used for masking

SIVEC Not normally used. If used, SIMASK[IRQ0] must
be set.

Supplies the interrupt code so the core knows
the interrupt source.

Start

SIU interrupt occurs

Set bit in SIPEND

Assert external interrupt End

Bit set in SIMASK Bit not set in SIMASK

to core

MUX

Level

Edge
FF

Q

Q
R

MUX

Level

Edge

SIEL[ED0]SIEL[ED0]

NMI

SIPEND[IRQ0]

IRQ0

SIPEND[IRQ0] = 1

Chapter 10. System Interface Unit

System Configuration

SWT (software watchdog timer) interrupts behave similarly in that they jump to the system
reset vector (0x100). However, they are not affected by any interrupt controller registers.

Although NMI causes a jump to the system reset vector, no other reset action is taken. For
information on recoverability of NMI, see Section 6.1.5, “Recoverability after an
Exception.”

10.5.4 Programming the SIU Interrupt Controller

The SIU’s interrupt controller includes the SIU interrupt pending register (SIPEND), SIU
interrupt mask register (SIMASK), SIU interrupt edge/level register (SIEL), and SIU
interrupt vector register (SIVEC) registers. These are described in the following sections.

10.5.4.1 SIU Interrupt Pending Register (SIPEND)

SIU interrupt pending register (SIPEND) bits, shown in Figure 10-10, correspond to
interrupt requests. This register is affected by HRESET and SRESET.

Table 10-9 describes SIPEND fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field IRQ0 LVL0 IRQ1 LVL1 IRQ2 LVL2 IRQ3 LVL3 IRQ4 LVL4 IRQ5 LVL5 IRQ6 LVL6 IRQ7 LVL7

Reset 0000_0000_0000_0000

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x010

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Reset xxxx_xxxx_xxxx_xxxx

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x012

Figure 10-10. SIU Interrupt Pending Register (SIPEND)

Table 10-9. SIPEND Field Descriptions

Bits Name Description

0, 2, 4,
6, 8, 10,
12, 14

IRQn Interrupt request 0–7. Indicate whether an edge-triggered interrupt is pending.
0 The appropriate interrupt is not pending.
1 The appropriate interrupt is pending.

1, 3, 5,
7, 9, 11,
13, 15

LVLn Level 0–7. When set, these bits indicate a pending level interrupt of corresponding value.
0 The appropriate interrupt is not pending.
1 The appropriate interrupt is pending.

16–31 — Reserved, should be cleared.

MPC855T User’s Manual

System Configuration

The LVL[0–7] bits are associated with internal exceptions, and when set indicate that an
interrupt service is requested if they are not masked by the corresponding SIMASK bit.
These bits reflect the status of the internal requesting device and are cleared when the
appropriate actions are software-initiated in the device. Writing to LVLn bits has no effect.

The IRQ[0–7] bits are associated with the IRQ[0–7] signals, and their function depends on
the sensitivity defined for them in SIEL; see Section 10.5.4.3, “SIU Interrupt Edge/Level
Register (SIEL).”

• When an IRQ pin is defined as a level interrupt (SIEL[EDn] = 0), the corresponding
IRQ bit behaves like an LVL bit.

• If an IRQ pin is defined as an edge interrupt (SIEL[EDn] = 1), the corresponding bit
being set indicates that a falling edge was detected on the line and are reset by
writing ones to them.

Note that IRQ0 can be masked in only a very limited sense. If SIEL[ED0] = 1,
edge-sensitive, and SIPEND[IRQ0] is not cleared in the interrupt service routine, further
assertions of IRQ0 are masked.

10.5.4.2 SIU Interrupt Mask Register (SIMASK)

Bits in SIMASK correspond to the interrupt request bits in SIPEND. Setting SIMASK bits
enable the generation of interrupt requests to the core. SIMASK is updated by the software,
which must determine which interrupt sources are enabled at a given time. This register is
affected by HRESET and SRESET.

.
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field IRM0 LVM0 IRM1 LVM1 IRM2 LVM2 IRM3 LVM3 IRM4 LVM4 IRM5 LVM5 IRM6 LVM6 IRM7 LVM7

Reset 0000_0000_0000_0000

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x014

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Reset xxxx_xxxx_xxxx_xxxx

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x016

Figure 10-11. SIU Interrupt Mask Register (SIMASK)

Chapter 10. System Interface Unit

System Configuration

Table 10-10 describes SIMASK fields.

The following procedure prevents possible interrupt errors when modifying mask registers,
such as SIMASK:

1. Clear MSR[EE]. (Disable external interrupts to the core.)

2. Modify the mask register.

3. Set MSR[EE]. (Enable external interrupts to the core.)

This mask modification procedure ensures that an already pending interrupt is not masked
before being serviced.

10.5.4.3 SIU Interrupt Edge/Level Register (SIEL)

Bits in SIEL, shown in Figure 10-12, define interrupts as edge- or level-triggered and
enable/disable their use as wake-up signals in low-power mode. This register is affected by
HRESET but is not affected by SRESET.

Table 10-10. SIMASK Field Descriptions

Bits Name Description

0 IRM0 Interrupt request mask 0. Enables/disables updating SIVEC[INTC]. IRQ0 generates an NMI
regardless of this bit.

1, 3, 5,
7, 9, 11,
13, 15

LVMn Level mask 0–7. When set, these bits enable an internal interrupt request to be generated.
0 Disable generation of an interrupt request bit in SIPEND.
1 Enable generation of an interrupt request bit in SIPEND.

2, 4, 6,
8, 10,
12, 14

IRMn Interrupt request mask 1–7. When set, these bits enable an IRQ interrupt request to be generated.
0 Disable generation of an interrupt request bit in SIPEND.
1 Enable generation of an interrupt request bit in SIPEND.

16–31 — Reserved, should be cleared.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field ED0 WM0 ED1 WM1 ED2 WM2 ED3 WM3 ED4 WM4 ED5 WM5 ED6 WM6 ED7 WM7

Reset 0000_0000_0000_0000

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x018

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Reset xxxx_xxxx_xxxx_xxxx

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x01A

Figure 10-12. SIU Interrupt Edge/Level Register (SIEL)

MPC855T User’s Manual

System Configuration

Table 10-11 describes SIEL fields.

10.5.4.4 SIU Interrupt Vector Register (SIVEC)

The SIU interrupt vector register (SIVEC) is shown in Figure 10-13. This register is
affected by HRESET and SRESET.

Table 10-12 describes SIVEC fields.

SIVEC[INTC] represents the unmasked interrupt source of the highest priority level. When
SIVEC is read as a byte, a branch table can be used in which each entry contains one
instruction (branch). The interrupt code is the interrupt number times 4, which allows
indexing into the table. When read as a half word, each entry can contain a full routine of
up to 256 instructions; see Figure 10-14 and Table 10-7.

Table 10-11. SIEL Field Descriptions

Bits Name Description

0, 2, 4, 6,
8, 10, 12,
14

EDn Edge detect 0–7.
0 A low logical level in the IRQ signal indicates an interrupt request.
1 A falling edge in the corresponding IRQ signal indicates interrupt request.

1, 3, 5, 7,
9, 11, 13,
15

WMn Wake-up mask 0–7
0 Not allowed to exit from low-power mode.
1 Low-level detection in IRQn allows the MPC855T to exit or wake up from low-power mode.

16–31 — Reserved, should be cleared.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field INTC —

Reset xx11_11xx_xxxx_xxxx

R/W R

Addr (IMMR & 0xFFFF0000) + 0x01C

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Reset xxxx_xxxx_xxxx_xxxx

R/W R

Addr (IMMR & 0xFFFF0000) + 0x01E

Figure 10-13. SIU Interrupt Vector Register (SIVEC)

Table 10-12. SIVEC Field Descriptions

Bits Name Description

0–7 INTC Interrupt code. Indicates the highest priority pending interrupt; equals the interrupt number times 4, as
shown in Table 10-7.

8–31 — Reserved, should be cleared.

Chapter 10. System Interface Unit

The Bus Monitor

Figure 10-14. Interrupt Table Handling Example

The interrupt to be serviced can be determined by reading SIVEC[INTC]. For example, if
IRQ3, level 3, and IRQ6 interrupts occur simultaneously and IRQ3 is masked, INTC =
0b0001_1100 (0x1C), indicating that the level 3 interrupt should be handled.

Note that SIVEC[INTC] contains the encoding for a level-7 interrupt (see Table 10-7) by
default, even when no interrupts are pending. Thus, polling SIVEC when all interrupts are
masked returns the level-7 vector. Therefore, the level-7 interrupt vector may indicate a
spurious interrupt in the following cases:

• Polling SIVEC returns a level 7 interrupt, but nothing is programmed to interrupt at
level 7.

• Polling SIVEC returns a level 7 interrupt, but SIPEND[LV7] is not set (assuming
something is programmed to interrupt at level 7).

10.6 The Bus Monitor
Control of the bus monitor is provided in the SYPCR. The bus monitor ensures that each
bus cycle initiated by the MPC855T terminates within a reasonable time. The MPC855T’s
bus monitor does not monitor accesses initiated by external masters. At the start of the
transfer start signal (TS), the monitor begins counting and stops when transfer acknowledge
(TA), retry (RETRY) or transfer error (TEA) is asserted. For burst cycles, this action is also

Intr: • • •

Save State
R3 <– @ SIVEC
R4 <– Base of Branch Table

• • •

lbz
add
mtspr
bctr

Rx, R3 (0)
Rx, Rx, R4
CTR, Rx

Load as Byte

b Routine1Base

Intr: • • •

Save State
R3 <– @ SIVEC
R4 <– Base of Branch Table

• • •

lhz
add
mtspr
bctr

Rx, R3 (0)
Rx, Rx, R4
CTR, Rx

Load as half word

1st Instruction of Routine1

1st Instruction of Routine2

1st Instruction of Routine3

1st Instruction of Routine4

•

•

Base

Base + 400

Base + 800

Base + C00

Base + 1000

Base + n

b Routine2Base + 4

b Routine3Base + 8

b Routine4Base + C

•Base + 10

•Base + n

•

•

•

•

•

•

MPC855T User’s Manual

Software Watchdog Timer

performed between subsequent TA assertions for each data beat. If the monitor times out,
the bus monitor terminates the cycle by internally asserting TEA. The programmability of
the timeout allows for a variation in system peripheral response time. The timing
mechanism is clocked by the system clock divided by eight. The maximum value is 2,040
system clocks. The bus monitor is always active when FRZ is asserted or when a debug
mode request is pending, regardless of the state of the SYPCR[BME] bit.

Note that if the bus monitor is disabled, transfer errors do not cause TEA to be asserted.

10.7 Software Watchdog Timer
The SIU provides the software watchdog timer (SWT) option that prevents system lockup
when software gets trapped in loops without a controlled exit. The software watchdog timer
is enabled after HRESET to automatically generate a HRESET if it times out. If the
software watchdog timer is unneeded, clear SYPCR[SWE] to disable it. If it is used, the
software watchdog timer requires a special service sequence to be executed periodically;
otherwise, the watchdog timer times out and issues a reset or an NMI, which is programmed
by SYPCR[SWRI]. Once SYPCR is written by the software, SYPCR[SWE] cannot be
changed. See Section 10.4.3, “System Protection Control Register (SYPCR).” To service
the software watchdog timer, follow these steps:

1. Write 0x556C to the software service register. (SWSR)

2. Write 0xAA39 to the SWSR.

This sequence clears the watchdog timer and the timing process repeats. If a value other
than 0x556C or 0xAA39 is used, the entire sequence must start over. Although the writes
must occur in the correct order before a timeout occurs, any number of instructions may be
executed between the writes. This allows interrupts and exceptions to occur between the
two writes when necessary. See Figure 10-15.

Figure 10-15. Software Watchdog Timer Service State Diagram

The decrementer begins counting when it is loaded with a value from the SWTC field. This
value is then loaded into a 16-bit down-counter clocked by the system clock. When
necessary, an additional divide by 2,048 prescaler is used. After the timer reaches 0x0, a
software watchdog expiration request is issued to the reset or NMI control logic. At reset,

State 0
Waiting for 0x556C

State 1
Waiting for 0xAA39

Reset

Not 0xAA39/Don’t reload

0xAA39/Reload

0x556C/Don’t reload

Not 0x556C/Don’t reload

Chapter 10. System Interface Unit

Software Watchdog Timer

the value in SWTC is set to the maximum value and is loaded into the software watchdog
down-counter, starting the process.

Although most software disciplines permit or encourage the watchdog concept, some
systems require a selection of timeout periods. For this reason, the software watchdog timer
provides a selectable range for the timeout period. Figure 10-16 shows the method for
handling this need. When a new value is loaded into SWTC, the software watchdog timer
is not updated until the servicing sequence is written to SWSR. If the SWE bit is loaded
with a zero, the modulus counter will not count.

Figure 10-16. Software Watchdog Timer Block Diagram

10.7.1 Software Service Register (SWSR)

The software service register (SWSR) is the location that the software watchdog timer
servicing sequence writes to. To prevent a SWT timeout, a write of 0x556C followed by
0xAA39 should be written to this register. The SWSR can be written at any time, but returns
all zeros when read. This register is affected by HRESET and SRESET.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field SEQ

Reset 0000_0000_0000_0000

R/W W

Addr (IMMR & 0xFFFF0000) + 0x00E

Figure 10-17. Software Service Register (SWSR)

Clock
Disable

Timeout

Core
Clock

Reload

16-Bit

MUX

SWP

SWE

SWSR

Divide
by 2,048

Service
Logic

FRZ

Down-counter

Rollover = 0

SWTC

HRESET
or NMI

MPC855T User’s Manual

The Decrementer

Table 10-13 describes SWSR fields.

10.8 The Decrementer
A PowerPC-defined 32-bit decrementing counter supports the decrementer interrupt. In the
MPC855T, the decrementer is clocked by TMBCLK, so TBSCR[TBE] must be set for the
decrementer to start. The timebase and decrementer counters are driven by TMBCLK:

The state of the decrementer is not affected by HRESET and SRESET, so it should be
initialized by software. Note, however, that it is disabled and reset by PORESET. It
continues counting while HRESET and SRESET are asserted and it is implemented with
the following requirements in mind.

• The decrementer is unaffected when read.

• When DEC[0] changes from 0 to 1, an interrupt request is signaled. If a previous
decrementer interrupt request was made, only one interrupt is reported.

• Explicitly changing DEC[0] from 0 to 1 in software signals an interrupt request.

A decrementer interrupt is also sent to the power-down wake-up logic, so the core can
waken from power-down mode. A decrementer exception causes a pending interrupt
request in the core, which is cleared automatically when the decrementer interrupt is taken,
Table 10-14 shows some decrementer periods available, assuming a 4-MHz oscillator.

10.8.1 Decrementer Register (DEC)

The decrementer register (DEC) is an SPR as defined in the PowerPC architecture. It can
be read or written to by mfspr or mtspr. DEC is powered by KAPWR and continues

Table 10-13. SWSR Field Descriptions

Bits Name Description

0–15 SEQ Sequence. This field is the pattern that is used to control the state of the software watchdog timer.

Table 10-14. Decrementer Timeout Values

Count Value Timeout Count Value Timeout

0 1 µs 999999 1.0 s

9 10. µs 9999999 10.0 s

99 100. µs 99999999 100.0 s

999 1.0 ms 999999999 1,000 s

9999 10.0 ms FFFFFFFF (hex) 4,295 s

Tdec

322
Ftmbclk()-----------------------------=

Chapter 10. System Interface Unit

The Timebase

counting when KAPWR is applied. Control of the decrementer is provided in the TBSCR.
The decrementer and timebase use TMBCLK. Note that DEC is a keyed register. It must be
unlocked in TBK before it can be written.

Table 10-15 describes the DEC register.

10.9 The Timebase
The timebase is a 64-bit free-running binary counter as defined in the PowerPC
architecture. For the MPC855T, the timebase is clocked by TMBCLK. The timebase period
is as follows:

The timebase is unaffected by HRESET and SRESET and should be initialized by software.
Note, however, that it is disabled and reset by PORESET. The entire timebase cannot be
accessed with a single instruction; mttb and mftb access the lower half of the timebase and
mttbu and mftbu access the upper half. A maskable interrupt is generated when the
timebase count reaches a value programmed in one of the reference registers, TBREFA and
TBREFB; two status bits indicate which one caused the interrupt.

10.9.1 Timebase Register (TBU and TBL)

The timebase register (TB) holds a 64-bit integer that is incremented periodically. It is
implemented in two parts, time base upper and time base lower (TBU and TBL). There is
no automatic initialization of TB, therefore, system software must perform this
initialization. The contents of TB can be written by mtspr and read by mftb or mftbu
instruction. Figure 10-19 shows TBU. Note that the TBU and TBL are keyed registers.
They must be unlocked in TBK before they can be written.

Bit 0 1 2 3 4 5 6 7 8 9 … 30 31

Field DEC

Reset —

R/W R/W

SPR 22

Figure 10-18. Decrementer Register (DEC)

Table 10-15. DEC Field Descriptions

Bits Name Description

0–31 DEC Decrementer. These bits are used by a down counter to cause decrementer interrupts. Reading DEC
always returns the current count value from the down counter.

TTB
264

Ftmbclk
-----------------------=

MPC855T User’s Manual

The Timebase

Table 10-16 describes TBU fields.

Figure 10-20 shows TBL.

Table 10-17 describes TBL fields.

10.9.2Timebase Reference Registers (TBREFA and
TBREFB)

TBREFA and TBREFB are associated with TBL. When the contents of TBL matches a
reference register, a reference event is signaled in TBSCR[REFA] or TBSCR[REFB].
These events can generate interrupts, if enabled. Note that TBREFA and TBREFB are
keyed registers. They must be unlocked in TBREFAK and TBREFBK before they can be
written.

Bit 0 1 2 3 4 5 6 7 8 9 … 30 31

Field TBU

Reset —

R/W R/W

SPR 269 (Read)/285 (Write)

Figure 10-19. Timebase Upper Register (TBU)

Table 10-16. TBU Field Descriptions

Bits Name Description

0–31 TBU Timebase upper. The value in this field is used as an upper part of the timebase counter.

Bit 0 1 2 3 4 5 6 7 8 9 … 30 31

Field TBL

Reset —

R/W R/W

SPR 268 (Read)/284 (Write)

Figure 10-20. Timebase Lower Register (TBL)

Table 10-17. TBL Field Descriptions

Bits Name Description

0–31 TBL Timebase lower. The value in this field is used as the lower part of the timebase register.

Chapter 10. System Interface Unit

The Timebase

These registers are affected by HRESET but are not affected by SRESET. Table 10-18
describes TBREFA/TBREFB fields.

10.9.3 Timebase Status and Control Register (TBSCR)

The timebase status and control register (TBSCR) controls the timebase count enable and
interrupt generation. It is also is used for reporting the interrupt sources, and it can be read
at any time. Status bits are cleared by writing ones; writing zeros has no effect. Note that
TBSCR is a keyed register. It must be unlocked in TBSCRK before it can be written.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field TBREFA/TBREFB

Reset —

R/W R/W

Addr TBREFA (IMMR & 0xFFFF0000) + 0x204/TBREFB (IMMR & 0xFFFF0000) + 0x208

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field TBREFA/TBREFB

Reset —

R/W R/W

Addr TBREFA (IMMR & 0xFFFF0000) + 0x206/TBREFB (IMMR & 0xFFFF0000) + 0x20A

Figure 10-21. Timebase Reference Registers (TBREFA and TBREFB)

Table 10-18. TBREFA/TBREFB Field Descriptions

Bits Name Description

0–31 TBREFA Timebase reference A. Represents the 32-bit reference value for TBL.

0–31 TBREFB Timebase reference B. Represents the 32-bit reference value for TBL

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field TBIRQ REFA REFB — REFAE REFBE TBF TBE

Reset 0000_0000_0000_0000

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x200

Figure 10-22. Timebase Status and Control Register (TBSCR)

MPC855T User’s Manual

The Real-Time Clock

This register is affected by HRESET but is not affected by SRESET. Table 10-19 describes
TBSCR fields.

10.10The Real-Time Clock
The real-time clock is a 45-bit counter, clocked by PITRTCLK, to provide time-of-day to
the operating system and application software. The counter is not affected by HRESET,
SRESET, or PORESET and operates in all low-power modes. It must be initialized by
software. The real-time clock can be programmed to generate a maskable interrupt when
the time value matches the value programmed in the associated alarm register. It can also
be programmed to generate an interrupt once each second. A control and status register is
used to selectively enable or disable functions and report the interrupt source. The real-time
clock registers (RTCSC, RTC, RTSEC, and RTCAL) can be protected (locked) from
accidental writes after PORESET through the use of key registers (RTCSCK, RTCK,
RTSECK, and RTCALK), which are described in Section 10.4.5, “Register Lock
Mechanism.” To unlock a register, write the key word 0x55CC_AA33 to the key registers.

Note that the real-time clock will count in seconds only if PITRTCLK is supplied by a
32.768 KHz or 38.4 KHz source.

Table 10-19. TBSCR Field Descriptions

Bits Name Description

0–7 TBIRQ Timebase interrupt request. Determines interrupt priority level of the timebase. To specify a certain
level, the appropriate bit should be set.

8 REFA Reference interrupt status. If set, indicates that a match was detected between the corresponding
reference register (TBREFA for REFA and TBREFB for REFB) and the TBL. REFA and REFB are
cleared by writing ones.9 REFB

10–11 — Reserved, should be cleared.

12 REFAE Reference interrupt enable. If asserted, the timebase generates an interrupt on assertion of REFA or
REFB. Otherwise, the interrupt is disabled.

13 REFBE

14 TBF Timebase freeze enable
0 The timebase and decrementer are unaffected.
1 The FRZ signal stops the timebase and decrementer.

15 TBE Timebase enable
0 Disables timebase and decrementer operation.
1 Enables timebase and decrementer operation.

Chapter 10. System Interface Unit

The Real-Time Clock

Figure 10-23. Real-Time Clock Block Diagram

10.10.1Real-Time Clock Status and Control Register
 (RTCSC)

The real-time clock status and control register (RTCSC) is used to enable the different
real-time clock functions and for reporting interrupt sources. Status bits are cleared by
writing ones; writing zeros has no effect. Note that RTCSC is a keyed register; it must be
unlocked in RTCSCK before it can be written.

This register is affected by HRESET and SRESET. Table 10-20 describes RTCSC fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field RTCIRQ SEC ALR — 38K SIE ALE RTF RTE

Reset 0000_0000 0 0 0 — 0 0 0 —

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x220

Figure 10-24. Real-Time Clock Status and Control Register (RTCSC)

Table 10-20. RTCSC Field Descriptions

Bits Name Description

0–7 RTCIRQ Real-time clock interrupt request. These bits control the real-time clock’s internal interrupt priority
level.

8 SEC Once-per-second interrupt. Set every second; should be cleared by software.

9 ALR Alarm interrupt. Status bit set when the value of the real-time clock equals the value in RTCAL.

10 — Reserved, should be cleared.

11 38K Real-time clock source select. Software must set 38K for the proper timing of a second.
0 Assumes that PITRTCLK is driven by a 32.768-KHz crystal
1 Assumes that PITRTCLK is driven by a 38.4-KHz crystal.

12 SIE Seconds interrupt enable. If set, the real-time clock generates an interrupt when SEC is set.

Clock
Disable 32-Bit Counter

32-Bit Register

Alarm
Interrupt

PITRTCLK
Clock

Divide
by 8,192

Divide
by 9,600

MUX

38K

SEC
InterruptRTSEC

FRZ

=

MPC855T User’s Manual

The Real-Time Clock

10.10.2Real-Time Clock Register (RTC)

The 32-bit real-time clock register (RTC) contains the current value of the real-time clock.
The maximum value is approximately 136 years. Note that RTC is a keyed register. It must
be unlocked in RTCK before it can be written.

This register is not affected by HRESET but is affected by SRESET. Table 10-21 describes
the RTC.

10.10.3Real-Time Clock Alarm Register (RTCAL)

The real-time clock alarm register (RTCAL) is an alarm reference register. When RTC
increments to the value stored in this register, an alarm interrupt is generated. Note that
RTCAL is a keyed register. It must be unlocked in RTCALK before it can be written.

13 ALE Alarm interrupt enable. If set, the real-time clock generates an interrupt when ALR is set.

14 RTF Real-time clock freeze enable
0 The real-time clock is unaffected by the FRZ signal.
1 The FRZ signal stops the real-time clock.

15 RTE Real-time clock enable. If set, real-time clock timers are enabled.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field RTC

Reset —

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x224

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field RTC

Reset —

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x226

Figure 10-25. Real-Time Clock Register (RTC)

Table 10-21. RTC Field Description

Bits Name Description

0–31 RTC Real-time clock. Represents time measured in seconds. Each unit represents one second.

Table 10-20. RTCSC Field Descriptions (continued)

Bits Name Description

Chapter 10. System Interface Unit

The Real-Time Clock

This register is not affected by HRESET or SRESET. Table 10-22 describes RTCAL fields.

10.10.4Real-Time Clock Alarm Seconds Register (RTSEC)

RTSEC, shown in Figure 10-27, is a down-counter that decrements once per PITRTCLK
tick. Note that RTSEC is a keyed register. It must be unlocked in RTSECK before it can be
written.

This register is not affected by HRESET but is affected by SRESET. Table 10-23 describes
RTSEC fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field ALARM

Reset —

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x22C

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field ALARM

Reset —

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x22E

Figure 10-26. Real-Time Clock Alarm Register (RTCAL)

Table 10-22. RTCAL Field Descriptions

Bits Name Description

0–31 ALARM Alarm reference counter. Indicates that an alarm interrupt will be generated this field matches
corresponding RTC bits. The alarm has a 1-second resolution.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field COUNTER —

Reset —

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x228

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Reset —

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x22A

Figure 10-27. Real-Time Clock Alarm Seconds Register (RTSEC)

MPC855T User’s Manual

Periodic Interrupt Timer (PIT)

Under normal conditions (RTCSC[38K] = 0), PITRTCLK is assumed to be 8192 Hz (4.192
MHz/512 or 32.768 KHz/4). When RTSEC counts down to zero, RTC is incremented.
Thus, RTC contains the time in seconds and RTSEC functions as a divider. For a 38.4-KHz
crystal (instead of 32.768 KHz), RTCSC[38K] should be set to make RTSEC reset every
9600 ticks instead of 8192.

10.11Periodic Interrupt Timer (PIT)
The PIT, shown in Figure 10-28, consists of a 16-bit counter clocked by a PITRTCLK clock
supplied by the clock module. The PIT is not affected by HRESET and RESET; however,
it is disabled and reset by PORESET. It decrements to zero when loaded with a value from
the PIT count register (PITC) and after the timer reaches zero, PS is set and an interrupt is
generated if PIE is a 1. At the next input clock edge, the PITC value is loaded into the
counter and the process repeats. When a new value is loaded into PITC, the PIT is updated,
the divider is reset, and the counter starts counting. If the PS bit is set, an interrupt is
generated at the interrupt controller that remains pending until PS is cleared. If PS is set
again, before being cleared, the interrupt remains pending until PS is cleared. Any write to
PITC stops the current countdown and the count resumes with a new value in the PITC. If
the PTE bit is not set, the PIT is unable to count and retains the old count value. Reading
the PIT does not affect it.

Figure 10-28. Periodic Interrupt Timer Block Diagram

The time-out period is calculated as follows:

Solving this equation using a 32.768-KHz external clock gives:

Table 10-23. RTSEC Field Descriptions

Bits Name Description

0–13 COUNTER Counter bits (fraction of a second). Bit 13 is always the lsb of the count. It either resets at 8192
or at 9600, as programmed.

14–31 — Reserved; should be cleared.

Clock
Disable

PIT
Interrupt

PITRTCLK
Clock

16-Bit
Modulus Counter

PTE PITC

PS

PIE

FRZ

Chapter 10. System Interface Unit

Periodic Interrupt Timer (PIT)

This gives a range from 122 µs (PITC = 0x0000) to 8 seconds (PITC = 0xFFFF).

10.11.1Periodic Interrupt Status and Control Register
 (PISCR)

The periodic interrupt status and control register (PISCR), shown in Figure 10-29, contains
the interrupt request level and status bits. It also controls the 16 bits to be loaded in a
modulus counter. Note that PISCR is a keyed register. It must be unlocked in PISCRK
before it can be written.

This register is affected by HRESET but is not affected by SRESET. Table 10-24 describes
PISCR fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field PIRQ PS — PIE PITF PTE

Reset 0000_0000_0000_0000

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x240

Figure 10-29. Periodic Interrupt Status and Control Register (PISCR)

Table 10-24. PISCR Field Descriptions

Bits Name Description

0–7 PIRQ Periodic interrupt request level. Configures internal interrupt levels for periodic interrupts. Figure 10-7
shows interrupt request levels.

8 PS Periodic interrupt status. Can be cleared by writing a 1 to it (zero has no effect).
0 The PIT is unaffected.
1 The PIT has issued an interrupt.

9–12 — Reserved, should be cleared.

13 PIE Periodic interrupt enable
0 Disables the PS bit.
1 Enables the PS bit to generate an interrupt.

PITperiod
PITC 1+
Fpitrtclk

PITC 1+
ExternalClock

1ooro128
--

 4÷
--==

PITperiod
PITC 1+

8192
-------------------------=

MPC855T User’s Manual

Periodic Interrupt Timer (PIT)

10.11.2PIT Count Register (PITC)

PITC, shown in Figure 10-30, contains a 16-bit value to be loaded into the periodic
interrupt down counter. Note that PITC is a keyed register. It must be unlocked in PITCK
before it can be written.

This register is not affected by HRESET or SRESET. Table 10-25 describes PITC fields.

10.11.3PIT Register (PITR)

The PIT register (PITR) is a read-only register that shows the current value in the periodic
interrupt down counter. Writes to PITR do not affect it; reads do not affect the counter.

14 PITF PIT freeze enable
0 The PIT is unaffected by the FRZ signal.
1 The FRZ signal stops the PIT.

15 PTE Periodic timer enable
0 The PIT is disabled.
1 The PIT is enabled.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field PITC

Reset —

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x244

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Reset 0000_0000_0000_0000

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x246

Figure 10-30. PIT Count Register (PITC)

Table 10-25. PITC Field Descriptions

Bits Name Description

0–15 PITC PIT count. Contains the count for the periodic timer. Setting this field to 0xFFFF selects the maximum
count period.

16–31 — Reserved, should be cleared.

Table 10-24. PISCR Field Descriptions (continued)

Bits Name Description

Chapter 10. System Interface Unit

General SIU Timers Operation

Table 10-26 describes PITR fields.

10.12General SIU Timers Operation
The following sections provide detailed information on the operation of the SIU timers.

10.12.1Freeze Operation

The external FRZ signal is asserted as a result of entry into debug mode, or as a result of
actions performed by a software monitor debugger as described in Section 44.4.1, “Freeze
Indication.” When the FRZ signal is asserted, the clocks to the software watchdog, PIT,
real-time clock, timebase counter, and decrementer can be disabled. This is controlled by
the associated bits in the control register of each timer. If they are programmed to stop
counting when FRZ is asserted, the counters maintain their values until FRZ is negated. The
bus monitor, however, will be enabled regardless of this signal’s state.

10.12.2Low-Power Stop Operation

When the MPC8xx core is set in a low-power mode (doze, sleep, deep sleep), the software
watchdog timer is frozen. It remains frozen and maintains its count value until the core exits
this mode and continues to execute instructions. The PIT, decrementer, and timebase are not
affected by low-power modes and continue to run at their respective frequencies. These
timers can generate an interrupt to bring the MPC855T out of the low-power modes.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field PIT

Reset —

R/W R

Addr (IMMR & 0xFFFF0000) + 0x248

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Reset -

R/W R

Addr (IMMR & 0xFFFF0000) + 0x24A

Figure 10-31. PIT Register (PITR)

Table 10-26. PITR Field Descriptions

Bits Name Description

0–15 PIT Periodic interrupt timing count. Holds the current count remaining for the periodic timer. Writes do not
affect PIT.

16–31 — Reserved, should be cleared.

MPC855T User’s Manual

General SIU Timers Operation

Chapter 11. Reset

Chapter 11
Reset
The reset block has reset control logic that determines the cause of reset, synchronizes it if
necessary, and resets the appropriate logic modules. The memory controller, system
protection logic, interrupt controller, and parallel I/O signals are initialized only on hard
reset. Soft reset initializes the internal logic while maintaining the system configuration.
The system configuration includes the SIU pin configuration, the parallel I/O configuration,
and the memory controller configuration. Table 11-1 shows the reset responses of the
MPC855T.

11.1 Types of Reset
The MPC855T has several sources of input to the reset logic:

• Power-on reset
• External hard reset
• Internal hard reset

— Loss of lock
— Software watchdog reset
— Checkstop reset

Table 11-1. MPC855T Reset Responses

Reset Source

Reset Effect

Reset Logic
and PLL

States Reset

System
Configuration 1

Reset

1Includes SIU pin configuration, the parallel I/O configuration and the memory controller configuration

Clock
Module
Reset

HRESET
Driven

Debug
Port

Config

Other Internal
Logic 2 Config

Reset

2Includes all other CPM and core logic not explicitly noted elsewhere in the table

SRESET
Driven

Power-on reset Yes Yes Yes Yes Yes Yes Yes

External hard reset,
loss-of-lock, software
watchdog, checkstop,
debug port hard reset

No

JTAG reset, external
soft reset, debug port
soft reset

No No No

MPC855T User’s Manual

Types of Reset

— Debug port hard reset
• JTAG reset
• External soft reset
• Internal soft reset

— Debug port soft reset

All of these reset sources are fed into the reset controller and, depending on the source of
the reset, different actions are taken. The reset status register reflects the last source to cause
a reset.

11.1.1 Power-On Reset

Power-on reset of the MPC855T is accomplished through the PORESET input signal. The
PORESET signal must be externally asserted following initial power-up, or when the
keep-alive power (KAPWR) voltage falls below the minimum required for proper system
operation in systems providing a power-down mode. When PORESET is asserted the
MODCK bits are sampled to configure SCCR[RTDIV] and SCCR[RTSEL]. The
phase-locked loop multiplication factor is configured for default operation in the PLPRCR
register. When PORESET is negated, the MODCK values are sampled and internally
latched. To ensure proper operation, PORESET should be asserted for a minimum of 3 µs.
After sampling the assertion of PORESET, the MPC855T enters the power-on reset state
and stays there until both of the following events occur:

• The internal PLL enters the lock state and the system clock is active.
• PORESET is negated.

After the negation of PORESET or PLL lock, the core enters the state of internal initiated
HRESET and continues driving both HRESET and SRESET for 512 clock cycles. After
512 cycles elapse, the MPC855T’s configuration is sampled from the data signals and the
core stops internally asserting both HRESET and SRESET. To ensure prompt negation,
external pull-up resistors should be provided to drive HRESET and SRESET high. After
HRESET and SRESET are internally negated, a 16-cycle period passes before the presence
of an external (hard/soft) reset will be sampled. See Section 11.3.1, “Hard Reset,” for more
information.

11.1.2 External Hard Reset

The hard reset (HRESET) signal is a bidirectional, active low, open-collector I/O signal.
The MPC855T can only sample an external assertion of HRESET if it occurs while the
MPC855T is not internally asserting HRESET. While HRESET is asserted, SRESET is also
asserted.

Chapter 11. Reset

Types of Reset

11.1.3 Internal Hard Reset

When the core initiates a hard reset it asserts the HRESET and SRESET signals for 512
cycles. After 512 clock cycles the data signals are sampled, initial configuration is
established, and the core stops driving the HRESET and SRESET signals. Following the
negation of HRESET and SRESET a 16-cycle period passes before an external hard or soft
reset will be sampled. Note that external pull-up resistors should be provided to drive
HRESET and SRESET high. See Section 11.3.1, “Hard Reset,” for more information.

The causes of internal hard reset are as follows:

• PLL loss of lock

• Software watchdog reset

• Checkstop reset

• Debug port hard reset

The following sections describe the events that can initiate an internal assertion of HRESET
and SRESET.

11.1.3.1 PLL Loss of Lock

If the PLL experiences a loss of lock erroneous external bus operation may occur.
Erroneous operation can also occur if devices with a PLL use the core CLKOUT signal as
a driver. If PLPRCR[LOLRE] = 1 and a PLL loss-of-lock event occurs, an internal hard
reset sequence is generated. See Section 14.6.2, “PLL, Low-Power, and Reset Control
Register (PLPRCR).”

NOTE
The PLL loss of lock detection does not have a specification for
the detection threshold. Therefore it should used solely as a
debug tool and not in production systems. Characterization of
the threshold value over temperature and operating voltages
has shown that the threshold can be triggered when clock out
to clock in phase differences is 1.8 ns or more.

11.1.3.2 Software Watchdog Reset

When the core watchdog counter decrements to zero, a software watchdog reset is asserted
generating an internal hard reset sequence. Note that this is the default response; that is, an
NMI to the core can be issued instead of a hard reset, and the timer can be disabled. See
Section 10.7, “Software Watchdog Timer.”

MPC855T User’s Manual

Types of Reset

11.1.3.3 Checkstop Reset

If the core enters a checkstop state and PLPRCR[CSR] = 1, the checkstop reset is asserted
generating an internal hard reset sequence. See Section 14.6.2, “PLL, Low-Power, and
Reset Control Register (PLPRCR).”

11.1.4 Debug Port Hard or Soft Reset

When the development port receives a hard or soft reset request from a development tool,
an internal hard or soft reset sequence is generated. The development tool must reconfigure
the debug port following a reset event. See Section 44.3.2.1.2, “Development Serial Data
In (DSDI).”

11.1.5 JTAG Reset

When the JTAG logic asserts the JTAG reset signal, an internal soft reset sequence is
generated.

11.1.6 Power-On and Hard Reset Sequence

Figure 11-1 shows the reset sequence following a power-on or internal or external hard
reset event.

Figure 11-1. Power-On and Hard Reset Sequence

Power-On
Reset

Internally

Wait

Initiated
HRESET

Power On

Internal or External
HRESET Asserted

• Sample MODCK pins and initialize clocks
• HRESET and SRESET are asserted

• HRESET and SRESET assert
• The time counter is set to 512

• Sample configuration from data pins
• Negate HRESET and SRESET
• Wait for 16 clocks

• Test for HRESET or SRESET

Start Normal Operation

PORESET is Negated and PLL Lock

Timer Expires (After 512 Clocks)

16 Clocks Expire

External HRESET
Asserted

(From system reset interrupt exception vector)

Chapter 11. Reset

Reset Status Register (RSR)

11.1.7 External Soft Reset

When an external SRESET is asserted, the core starts driving the SRESET signal. After 512
clock cycles the debug port configuration is sampled from the DSDI and DSCK signals and
the core stops driving the SRESET signal. Once the core negates SRESET 16 clock cycles
must elapse before the external soft reset signal is again sampled.

The soft reset (SRESET) signal is also a bidirectional, active low, open-collector I/O signal.
The MPC855T can detect an external assertion of SRESET only if it occurs while the
MPC855T is not internally asserting HRESET or SRESET.

11.1.8 Internal Soft Reset

The JTAG and debug ports can initiate an internal soft reset, resulting in the assertion of the
SRESET signal. After 512 cycles, the core negates SRESET and the debug port
configuration is sampled from the DSDI and DSCK signals. Once the core negates
SRESET, 16 clock cycles must elapse before the external soft reset signal is sampled.

11.1.9 Soft Reset Sequence

Figure 11-2 shows the reset sequence following an internal or external soft reset event.

Figure 11-2. Soft Reset Sequence

11.2 Reset Status Register (RSR)
The 32-bit reset status register (RSR) is powered by the keep alive power supply. It is
memory-mapped into the MPC855T system interface unit register map and receives its
default reset values at power-on reset. This register is also effected by HRESET and
SRESET.

Internal or external
SRESET asserted

• DSDI is sampled to determine
clocked or self-clocked mode

• Sample debug port configuration from DSDI and DSCK pins
• Negate SRESET
• Wait for 16 clocks

Start normal execution

Internal initiated
SRESET

• SRESET assert
• The time counter is set to 512

Debug
Mode

Wait

16 clocks expire
& DSCK low

16 clocks expire
& DSCK high

Timer expires (after 512 clocks)

(From system reset interrupt exception vector)

Test for
HRESET or

SRESET

External SRESET still asserted

(From system reset interrupt exception vector)

MPC855T User’s Manual

Reset Status Register (RSR)

The RSR bits are described in Table 11-2 Note that the bits in this register (except those that
are reserved) are cleared by writing ones; writing zeros has no effect.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EHRS ESRS LLRS SWRS CSRS DBHRS DBSRS JTRS —

Reset 1100_0000_0000_0000

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

reset 0000_0000_0000_0000

r/w R/W

Figure 11-3. Reset Status Register (RSR)

Table 11-2. Reset Status Register Bit Settings

Bits Name Description

0 EHRS External hard reset status. Set by a power-on reset. When an external hard reset event is detected,
EHRS is set and remains set until software clears it.
0 No external hard reset event occurred.
1 An external hard reset event occurred.

1 ESRS External soft reset status. Set by a power-on reset. When an external soft reset event is detected,
ESRS is set and remains set until software clears it.
0 No external soft reset event occurred.
1 An external soft reset event occurred.

2 LLRS Loss-of-lock reset status. Cleared by a power-on reset. When a loss-of-lock event (enabled by
PLPRCR[LOLRE]) is detected, LLRS is set and remains set until software clears it.
LLRS is affected only by an unintentional loss of lock due to a hardware-related issue. A
software-initiated loss of lock, such as changing PLPRCR[MF] or entering deep-sleep or
power-down mode, does not affect LLRS.
0 No enabled loss-of-lock reset event occurred.
1 An enabled loss-of-lock reset event occurred.

3 SWRS Software watchdog reset status. Cleared by a power-on reset. When a software watchdog expire
event occurs, SWRS is set and remains set until software clears it.
0 No software watchdog reset event occurred.
1 A software watchdog reset event occurred.

4 CSRS Check stop reset Status. Cleared by a power-on reset. When the core enters the checkstop state
and the checkstop reset is enabled by PLPRCR[CSR], CSRS is set and remains set until software
clears it.
0 No enabled checkstop reset event occurred.
1 An enabled checkstop reset event occurred.

5 DBHRS Debug port hard reset status. Cleared by a power-on reset. When the debug port hard reset
request is set, DBHRS is set and remains set until software clears it.
0 No debug port hard reset request occurred.
1 A debug port hard reset request occurred.

Chapter 11. Reset

MPC855T Reset Configuration

11.3 MPC855T Reset Configuration
When a hard reset event occurs, the MPC855T reconfigures both its internal hardware and
the development port. A soft reset is used to reconfigure the development port without
changing the MPC855T’s internal machine state. The following sections describe the
configuration of the MPC855T using hard and soft reset events.

11.3.1 Hard Reset

When a hard reset event occurs, the MPC855T determines its initial mode of operation by
sampling the values present on the data bus (D[0–31]) or from an internal default constant
(D[0–31] = 0x00000000). If the RSTCONF signal is asserted at sampling time, the
configuration is sampled from the data bus. If the RSTCONF signal is negated the internal
default value is selected. While HRESET and RSTCONF are asserted, the MPC855T
weakly pulls the data bus low, and the desired configuration is selected by driving the
appropriate bits high as shown in Figure 11-4.

Figure 11-4 shows a typical data bus configuration input circuit.

6 DBSRS Debug port soft reset status. Cleared by a power-on reset. When the debug port soft reset request
is set, DBSRS is set and remains set until software clears it.
0 No debug port soft reset request occurred.
1 A debug port soft reset request occurred.

7 JTRS JTAG reset status. Cleared by a power-on reset. When the JTAG reset request is set, this bit is set
and remains set until software clears it.
0 No JTAG reset event occurred.
1 A JTAG reset event occurred.

8–31 — Reserved and should be cleared.

Table 11-2. Reset Status Register Bit Settings (continued)

Bits Name Description

MPC855T User’s Manual

MPC855T Reset Configuration

Figure 11-4. Data Bus Configuration Input Circuit

The configuration of the MPC855T following the assertion of PORESET is shown in
Figure 11-5 through Figure 11-7 While the PORESET input signal is being asserted, the
core assumes the default reset configuration (0x0000_0000). When PORESET is negated
or the CLKOUT signal begins oscillation, the hardware configuration is sampled from the
data bus every nine clock cycles on the rising edge of CLKOUT. The setup time required
for the data bus is 15 cycles and the maximum rise time of HRESET should be less than six
clock cycles. Refer to Section 11.3.2, “Soft Reset,” for more information.

Figure 11-5 shows a reset operation with a short PORESET signal assertion. Note that the
configuration of the MPC855T is determined from the signal levels driven on the D[0–31]
signals following the assertion of RSTCONF and the negation of HRESET.

MUX

DX (Data Line)

Configuration
Word

HRESET

RSTCONF

MPC860

NOTE: The value of the internal pulldown resistor is not specified or guaranteed.

MPC855T

Chapter 11. Reset

MPC855T Reset Configuration

Figure 11-5. Reset Configuration Sampling for Short PORESET Assertion

Figure 11-6 shows a reset operation with a long PORESET signal assertion.

Figure 11-6. Reset Configuration Sampling for Long PORESET Assertion

Figure 11-7 shows the configuration data sampling timing relative to HRESET and
CLKOUT.

CLKOUT

PORESET

INTPORESET

HRESET

D[0:31]

TSUP

Default

RSTCONF

RSTCONF Controlled

CLKOUT

PORESET

INTPORESET

HRESET

D[0:31]

TSUP

Default

RSTCONF

RSTCONF Controlled

MPC855T User’s Manual

MPC855T Reset Configuration

Figure 11-7. Reset Configuration Sampling Timing Requirements

11.3.1.1 Hard Reset Configuration Word

The hard reset configuration word is sampled from the data bus. These bits determine the
default values of the corresponding bits in the SIUMCR, IMMR, and MSR.

Table 11-3 describes hard reset configuration word fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field EARB IIP BBE BDIS BPS — ISB DBGC DBPC EBDF CLES

Default 0000_0000_0000_0000

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Default 0000_0000_0000_0000

NOTE: The default value is due to the internal pull-down resistor on the data bus.

Figure 11-8. Hard Reset Configuration Word

Table 11-3. Hard Reset Configuration Word Field Descriptions

Bits Name Description

0 EARB External arbitration. If this bit is set, external arbitration is assumed. If it is cleared, internal arbitration is
performed. See Section 10.4.2, “SIU Module Configuration Register (SIUMCR).”

1 IIP Initial interrupt prefix. Defines the initial value of the MSR[IP] which defines the interrupt table location.
If IIP is cleared (default), the MSR[IP] initial value is one; if it is set, the MSR[IP] initial value is zero. See
Section 4.1.2.3.1, “Machine State Register (MSR).”

2 BBE Boot Burst Enable
0 The boot device does not support bursting.
1 The boot device does support bursting.

CLKOUT

HRESET

RSTCONF

Data

1 2 3 4 5 6 7 80 9 10 11 12 14 15 16 1713

Reset Configuration Word

Maximum Time of Reset Recognition

Maximum Setup Time of Reset Recognition

Sample Data
Configuration

Sample Data
Configuration

Sample Data
Configuration

Chapter 11. Reset

MPC855T Reset Configuration

3 BDIS Boot disable. If BDIS is set, memory bank 0 is invalid; that is, BR0[V] is cleared. (See Section 15.4.1,
“Base Registers (BRx).”)
0 The memory controller is activated after reset so that it matches all addresses.
1 The memory controller is cleared after reset but is not activated.

4–5 BPS Boot port size. Defines the port size of the boot device as shown in the following chart.
00 32-bit port size.
01 8-bit port size.
10 16-bit port size.
11 Reserved.

6 — Reserved for future use and should be allowed to float.

7–8 ISB Initial internal space base select. Defines the initial value of the IMMR bits 0-15 and determines the base
address of the internal memory space.
00 0x00000000.
01 0x00F00000.
10 0xFF000000.
11 0xFFF00000.

9–10 DBGC Debug pin configuration. Selects the signal function of the following pins:

Pin DBGC = 00 DBGC = 01 DBGC = 10 DBGC = 11

IP_B[0–1]/IWP[0–1]/VFLS[0–1] IP_B[0–1] IWP[0–1] Reserved VFLS[0–1]

IP_B3/IWP2/VF2 IP_B3 IWP2 VF2

IP_B4/LWP0/VF0 IP_B4 LWP0 VF0

IP_B5/LWP1/VF1 IP_B5 LWP1 VF1

OP2/MODCK1/STS OP2 STS STS

ALE_B/DSCK/AT1 ALE_B AT1 AT1

IP_B2/IOIS16_B/AT2 IP_B2 AT2 AT2

IP_B6/DSDI/AT0 IP_B6 AT0 AT0

IP_B7/PTR/AT3 IP_B7 AT3 AT3

OP3/MODCK2/DSDO OP3 OP3 OP3

11–
12

DBPC Debug port pins configuration. Selects the signal function for the following development port pins:

Pin DBPC = 00 DBPC = 01 DBPC = 10 DBPC = 11

ALE_B/DSCK/AT1 Defined by DBGC.
Note that if DBPC = 11, DBPC
overrides DBGC.

Reserved DSCK

IP_B6/DSDI/AT0 DSDI

OP3/MODCK2/DSDO DSDO

IP_B7/PTR/AT3 PTR

TCK/DSCK DSCK TCK TCK

TDI/DSDI DSDI TDI TDI

TDO/DSDO DSDO TDO TDO

Table 11-3. Hard Reset Configuration Word Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

TRST and Power Mode Considerations

11.3.2 Soft Reset

When a soft reset event occurs, the MPC855T reconfigures the development port. See
Section 44.3.1.2, “Entering Debug Mode,” and Section 44.3.2.3.3, “Selection of
Development Port Clock Mode.”

11.4 TRST and Power Mode Considerations
Note the following when connecting the TRST (test reset) signal:

• If both low power mode and the TAP are never used, connect TRST to ground.

• If low power mode (or the TAP) is used, connect TRST to PORESET.

• If power down mode (the lowest power mode, where VDDH is disabled) is used,
connect TRST to PORESET through a diode (anode to TRST, cathode to
PORESET).

See also Section 45.6, “Recommended TAP Configuration.”

13–
14

EBDF External bus division factor. Defines the frequency division factor between GCLK1/GCLK2 and
GCLK1_50/GCLK2_50. CLKOUT is similar to GCLK2_50. GCLK2_50 and GCLK1_50 are used by the
system interface unit and memory controller to interface with the external system. Refer to Chapter 14,
“Clocks and Power Control” for additional information.
00 Full speed bus
01 Half speed bus
10 Reserved
11 Reserved

15 CLES Core Little Endian Swap. Defines core access operation following reset.
0 Big Endian
1 Little Endian

Table 11-3. Hard Reset Configuration Word Field Descriptions (continued)

Bits Name Description

Part IV. Hardware Interface

Part IV
Hardware Interface

Intended Audience
Part IV is intended for system designers who need to understand how each MPC855T
signal works and how those signals interact.

Contents
Part IV describes external signals, clocking, memory control, and power management of
the MPC855T. It contains the following chapters:

• Chapter 12, “External Signals,” provides a detailed description of the external
signals that comprise the MPC855T external interface.

• Chapter 13, “External Bus Interface,” describes interactions among signals
described in the previous chapter, including numerous examples and timing
diagrams.

• Chapter 14, “Clocks and Power Control,” describes on-chip and external devices,
including the phase-locked loop circuitry and frequency dividers that generate
programmable clock timing for baud-rate generators, timers, and a variety of
low-power mode options.

• Chapter 15, “Memory Controller,” describes the memory controller, which
controlling a maximum of eight memory banks shared between a general-purpose
chip-select machine (GPCM) and a pair of user-programmable machines (UPMs).

• Chapter 16, “PCMCIA Interface,” describes the PCMCIA host adapter module,
which provides all control logic for a PCMCIA socket interface and requires only
additional external analog power switching logic and buffering.

MPC855T User’s Manual

Suggested Reading
This section lists additional reading that provides background for the information in this
manual.

MPC8xx Documentation

Supporting documentation for the MPC855T can be accessed through the world-wide web
at http://www.motorola.com. This documentation includes technical specifications,
reference materials, and detailed applications notes.

Conventions
This document uses the following notational conventions:

Bold entries in figures and tables showing registers and parameter
RAM should be initialized by the user.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

REG[FIELD] Abbreviations or acronyms for registers or buffer descriptors are
shown in uppercase text. Specific bits, fields, or numerical ranges
appear in brackets. For example, MSR[LE] refers to the little-endian
mode enable bit in the machine state register.

x In certain contexts, such as in a signal encoding or a bit field,
indicates a don’t care.

n Indicates an undefined numerical value

¬ NOT logical operator

& AND logical operator

| OR logical operator

Bold

Part IV. Hardware Interface

Acronyms and Abbreviations
Table ii contains acronyms and abbreviations used in this document. Note that the
meanings for some acronyms (such as SDR1 and DSISR) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table ii. Acronyms and Abbreviated Terms

Term Meaning

BD Buffer descriptor

BIST Built-in self test

BRI Basic rate interface

BUID Bus unit ID

CAM Content-addressable memory

CPM Communications processor module

CRC Cyclic redundancy check

DMA Direct memory access

DPLL Digital phase-locked loop

DRAM Dynamic random access memory

DSISR Register used for determining the source of a DSI exception

EA Effective address

EEST Enhanced Ethernet serial transceiver

GCI General circuit interface

GPCM General-purpose chip-select machine

HDLC High-level data link control

I2C Inter-integrated circuit

IDL Inter-chip digital link

IEEE Institute of Electrical and Electronics Engineers

IrDA Infrared Data Association

ISDN Integrated services digital network

JTAG Joint Test Action Group

LIFO Last-in-first-out

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

LSU Load/store unit

MAC Multiply accumulate

MMU Memory management unit

MPC855T User’s Manual

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NMSI Nonmultiplexed serial interface

OSI Open systems interconnection

PCI Peripheral component interconnect

PCMCIA Personal Computer Memory Card International Association

PRI Primary rate interface

Rx Receive

SCC Serial communications controller

SCP Serial control port

SDLC Synchronous data link control

SDMA Serial DMA

SI Serial interface

SIU System interface unit

SMC Serial management controller

SNA Systems network architecture.

SPI Serial peripheral interface

SPR Special-purpose register

SRAM Static random access memory

TDM Time-division multiplexed

TLB Translation lookaside buffer

TSA Time-slot assigner

Tx Transmit

UART Universal asynchronous receiver/transmitter

UISA User instruction set architecture

UPM User-programmable machine

USART Universal synchronous/asynchronous receiver/transmitter

Table ii. Acronyms and Abbreviated Terms (continued)

Term Meaning

Chapter 12. External Signals 12-1

Chapter 12
External Signals
This chapter contains descriptions of the MPC855T input and output signals, showing
multiplexing, pin assignments, and reset values.

Figure 12-1 shows the signals grouped by function.

MPC855T User’s Manual MOTOROLA

Figure 12-1. MPC855T External Signals

VDDSYN/VSSSYN/VSSSYN1/

RxD1/PA15
TxD1/PA14

PA13
PA12
PA11
PA10

L1TxDA/PA9
L1RxDA/PA8

TIN1/L1RCLKA/BRGO1/CLK1/PA7
TOUT1/CLK2/PA6

TIN2/L1TCLKA/BRGO2/CLK3/PA5
TOUT2/CLK4/PA4

TIN3/BRGO3/CLK5/PA3
TOUT3/CLK6/PA2

TIN4/BRGO4/CLK7/PA1
TOUT4/CLK8/PA0

REJECT1/SPISEL/PB31
SPICLK/PB30/RSTRT2

SPIMOSI/PB29
BRGO4/SPIMISO /PB28

BRGO1/I2CSDA/PB27
BRGO2/I2CSCL/PB26

SMTxD1/PB25
SMRxD1/PB24

SMSYN1/SDACK1/PB23
SMSYN2/SDACK2/PB22
PHSEL[1]/SMTxD2/PB21

PHSEL[0]/SMRxD2/L1CLKOA/PB20
L1ST1/RTS1/PB19

L1ST2/PB18
PHREQ[1]/L1ST3/PB17

PHREQ[0}/L1ST4/L1RQA/PB16
Txclav/BRGO3/PB15

RSTRT1/PB14
Rxclav/L1ST1/RTS1/DREQ0/PC15

L1ST2V/DREQ1/PC14
L1ST3/PC13

L1ST4/L1RQa/PC12
CTS1/PC11

TGATE1/CD1/PC10
PC9

TGATE2/PC8
SDACK2/L1TSYNCB/PC7

PC6
SDACK1/L1TSYNCA/PC5

L1RSYNCA/PC4
UTPB[0]/ MII-RXD3/L1TSYNCA/PD15
UTPB[1]/ MII-RXD2/L1RSYNCA/PD14
UTPB[2]/ MII-RXD1/L1TSYNCB/PD13

UTPB[3]/ MII-MDC/PD12
RXENB/ MII-TX-ERR/PD11

TXENB/ MII-RXD0/PD10
UTPCLK/MII-TXD0/PD9

MII-RXCLK/PD8
UTPB[4]/ MII-RX-ERR/PD7

UTPB[5]/ MII-RXDV/PD6
UTPB[6]/ MII-TXD3/REJECT2/PD5
UTPB[7]/ MII-TXD2/REJECT3/PD4

SOC/MII-TXD1/REJECT4/PD3
TMS

DSDI/TDI
DSCK/TCK

TRST
DSDO/TDO

AS

MPC855T

32
1
1
1
1
1
1
1
1
1
1
1
1

32
4
1
1
1
1
2
1
6
1
1
1
1
1
1
4
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
5
1
1
2
1
1
1
1
1
2
2
1
1
1
1

129
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

A[0–31]
TSIZ0/REG
TSIZ1
R/W
BURST
BDIP/GPL_B5
TS
TA
TEA
BI
IRQ2/RSV
IRQ4/KR/RETRY/SPKROUT
CR/IRQ3
D[0–31]
DP[0–3]/IRQ[3–6]
BR
BG
BB
FRZ/IRQ6
IRQ[0–1]
IRQ7
CS[0–5]
CS6/CE1_B
CS7/CE2_B
WE0/BS_B0/IORD
WE1/BS_B1/IOWR
WE2/BS_B2/PCOE
WE3/BS_B3/PCWE
BS_A[0–3]
GPL_A0/GPL_B0
OE/GPL_A1/GPL_B1
GPL_A[2–3]/GPL_B[2–3]/CS[2:3]
UPWAITA/GPL_A4
UPWAITB/GPL_B4
GPL_A5
PORESET
RSTCONF
HRESET
SRESET
XTAL
EXTAL
XFC
CLKOUT
EXTCLK
TEXP
ALE_A
CE1_A
CE2_A
WAIT_A
IP_A[0–1]
IP_A2/IOIS16_A
IP_A[3–7]
ALE_B/DSCK/AT1
WAIT_B
IP_B[0–1]/WP[0–1]/VFLS[0–1]
IP_B2/IOIS16_B/AT2
IP_B3/WP2/VF2
IP_B4/LWP0/VF0
IP_B5/LWP1/VF1
IP_B6/DSDI/AT0
IP_B7/PTR/AT3
OP[0]/OP[1]
OP2/MODCK1/STS
OP3/MODCK2/DSDO
BADDR30/REG
BADDR[28–29]

T

VDDH/VDDL/VSS/KAPWR

Chapter 12. External Signals 12-3

Figure 12-2. Signals and Pin Numbers (Part 1)

VDDSYN/VSSSYN/VSSSYN1/VDDH/VDDL/VSS/KAPWR
RxD1/PA15
TxD1/PA14

PA13
PA12
PA11
PA10

L1TxDA/PA9
L1RxDA/PA8

TIN1/L1RCLKA/BRGO1/CLK1/PA7
TOUT1/CLK2/PA6

TIN2/L1TCLKA/BRGO2/CLK3/PA5
TOUT2/CLK4/PA4

TIN3/BRGO3/CLK5/PA3
TOUT3/CLK6/PA2

TIN4/BRGO4/CLK7/PA1
TOUT4/CLK8/PA0

REJECT1/SPISEL/PB31
SPICLK/PB30/RSTRT2

SPIMOSI/PB29
BRGO4/SPIMISO/PB28

BRGO1/I2CSDA/PB27
BRGO2/I2CSCL/PB26

SMTxD1/PB25
SMRxD1/PB24

SMSYN1/SDACK1/PB23
SMSYN2/SDACK2/PB22

PHSEL[1]/SMTxD2/PB21

TMS
DSDI/TDI

DSCK/TCK
TRST

DSDO/TDO
AS

MPC855T

129
1–C18
1–D17
1–E17
1–F17
1–G16
1–J17
1–K18
1–L17
1–M19
1–M17
1–N18
1–P19
1–P17
1–R18
1–T19
1–U19
1–C17
1–C19
1–E16
1–D19
1–E19
1–F19
1–J16
1–J18
1–K17
1–L19
1–K16
1–L16
1–N19
1–N17
1–P18
1–N16
1–R17
1–U18
1–D16
1–D18
1–E18
1–F18
1–J19
1–K19
1–L18
1–M18
1–M16
1–R19
1–T18
1–T17
1–U17
1–V19
1–V18
1–R16
1–T16
1–W18
1–V17
1–W17
1–T15
1–V16
1–U15
1–U16
1–W16
1–G18
1–H17
1–H16
1–G19
1–G17
1–L3

T1–VDDSYN
U1–VSSSYN
V1–VSSSYN1
F4–VDDH
F16
P4
P16
T14
A8–VDDL
H19
M1
W8
R1–KAPWR

PHSEL[0]/SMRxD2/L1CLKOA/PB20
L1ST1/RTS1/PB19

L1ST2/PB18
PHREQ[1]/L1ST3/PB17

PHREQ[0}/L1ST4/L1RQA/PB16
Txclav/BRGO3/PB15

RSTRT1/PB14
Rxclav/L1ST1/RTS1/DREQ0/PC15

L1ST2V/DREQ1/PC14
L1ST3/PC13

L1ST4/L1RQa/PC12
CTS1/PC11

TGATE1/CD1/PC10
PC9

TGATE2/PC8
SDACK2/L1TSYNCB/PC7

PC6
SDACK1/L1TSYNCA/PC5

L1RSYNCA/PC4
UTPB[0]/ MII-RXD3/L1TSYNCA/PD15
UTPB[1]/ MII-RXD2/L1RSYNCA/PD14
UTPB[2]/ MII-RXD1/L1TSYNCB/PD13

UTPB[3]/ MII-MDC/PD12
RXENB/ MII-TX-ERR/PD11

TXENB/ MII-RXD0/PD10
UTPCLK/MII-TXD0/PD9

MII-RXCLK/PD8
UTPB[4]/ MII-RX-ERR/PD7

UTPB[5]/ MII-RXDV/PD6
UTPB[6]/ MII-TXD3/REJECT2/PD5
UTPB[7]/ MII-TXD2/REJECT3/PD4

SOC/MII-TXD1/REJECT4/PD3

MPC855T User’s Manual MOTOROLA

Figure 12-3. Signals and Pin Numbers (Part 2)

D0–W14
D1–W12
D2–W11
D3–W10
D4–W13

D5–W9
D6–W7
D7–W6

D8–U13
D9–T11

D10–V11
D11–U11
D12–T13
D13–V13
D14–V10
D15–T10
D16–U10
D17–T12
D18–V9
D19–U9
D20–V8
D21–U8
D22–T9

D23–U12
D24–V7
D25–T8
D26–U7

D27–V12
D28–V6

D29–W5
D30–U6
D31–T7

32
B9–1
C9–1
B2–1
F1–1
D2–1
F3–1
C2–1
D1–1
E3–1
H3–1
K1–1
F2–1

32
V3, V5, W4, V4–4

G4–1
E2–1
E1–1
G3–1

V14, U14–2
W15–1

C3, A2, D4, E4, A4, B4–6
D5–1
C4–1
C7–1
A6–1
B6–1
A5–1

D8, C8, A7, B8–4
D7–1
C6–1

B5, C5–2
C1–1
B1–1
D3–1
R2–1
P3–1
N4–1
P2–1
P1–1
N1–1
T2–1

W3–1
N2–1
N3–1
K2–1
B3–1
A3–1
R3–1

T5, T4–2
U3–1

W2, U4, U5, T6, T3–5
J1–1
R4–1

H2, J3–2
J2–1

G1–1
G2–1
J4–1
K3–1
H1–1

L4, L2–2
L1–1

M4–1
K4–1

M3, M2–2

A[0–31]
TSIZ0/REG
TSIZ1
R/W
BURST
BDIP/GPL_B5
TS
TA
TEA
BI
IRQ2/RSV
IRQ4/KR/RETRY/SPKROUT
CR/IRQ3
D[0–31]
DP[0–3]/IRQ[3–6]
BR
BG
BB
FRZ/IRQ6
IRQ[0–1]
IRQ7
CS[0–5]
CS6/CE1_B
CS7/CE2_B
WE0/BS_B0/IORD
WE1/BS_B1/IOWR
WE2/BS_B2/PCOE
WE3/BS_B3/PCWE
BS_A[0–3]
GPL_A0/GPL_B0
OE/GPL_A1/GPL_B1
GPL_A[2–3]/GPL_B[2–3]/CS[2–3]
UPWAITA/GPL_A4
UPWAITB/GPL_B4
GPL_A5
PORESET
RSTCONF
HRESET
SRESET
XTAL
EXTAL
XFC
CLKOUT
EXTCLK
TEXP
ALE_A
CE1_A
CE2_A
WAIT_A
IP_A[0–1]
IP_A2/IOIS16_A

ALE_B/DSCK/AT1
WAIT_B
IP_B[0–1]/WP[0–1]/VFLS[0–1]
IP_B2/IOIS16_B/AT2
IP_B3/WP2/VF2
IP_B4/LWP0/VF0
IP_B5/LWP1/VF1
IP_B6/DSDI/AT0
IP_B7/PTR/AT3

OP2/MODCK1/STS
OP3/MODCK2/DSDO
BADDR30/REG
BADDR[28–29]

MPC855T

A0–B19
A1–B18
A2–A18
A3–C16
A4–B17
A5–A17
A6–B16
A7–A16
A8–D15
A9–C15

A10–B15
A11–A15
A12–C14
A13–B14
A14–A14
A15–D12
A16–C13
A17–B13
A18–D9

A19–D11
A20–C12
A21–B12
A22–B10
A23–B11
A24–C11
A25–D10
A26–C10
A27–A13
A28–A10
A29–A12
A30–A11

A31–A9

W2–IP_A3
U4–IP_A4
U5–IP_A5
T6–IP_A6
T3–IP_A7

L4-–OP0
L2–OP1

B7-1MII_CRS

H4-1MII_COL

MII_MDIO

MII_TX_EN

H18-1

V15-1

Chapter 12. External Signals 12-5

System Bus Signals

12.1 System Bus Signals
The MPC855T system bus consists of all signals that interface with the external bus. Many
of these signals perform different functions, depending on how the user assigns them. The
input and output signals in Table 12-1 are identified by their abbreviation.

Table 12-1. Signal Descriptions

Name
Hard
Reset

Number Type Description

A[0–31] Hi-Z See Figure Bidirectional
Three-state

Address Bus—Provides the address for the current bus
cycle. A0 is the msb. The bus is output when an internal
master starts a transaction on the external bus. The bus
is input when an external master starts a transaction on
the bus.

TSIZ0
REG

Hi-Z B9 Bidirectional
Three-state

Transfer Size 0—When accessing a slave in the
external bus, used (together with TSIZ1) by the bus
master to indicate the number of operand bytes waiting
to be transferred in the current bus cycle. TSIZ0 is an
input when an external master starts a bus transaction.
Register—When an internal master initiates an access
to a slave controlled by the PCMCIA interface, REG is
output to indicate which space in the PCMCIA card is
accessed.

TSIZ1 Hi-Z C9 Bidirectional
Three-state

Transfer Size 1—Used (with TSIZ0) by the bus master
to indicate the number of operand bytes waiting to be
transferred in the current bus cycle. The MPC855T
drives TSIZ1 when it is bus master. TSIZ1 is input when
an external master starts a bus transaction.

RD/WR Hi-Z B2 Bidirectional
Three-state

Read/Write—Driven by a bus master to indicate the
direction of the data transfer. A logic one indicates a
read from a slave device and a logic zero indicates a
write to a slave device.
The MPC855T drives this signal when it is bus master.
Input when an external master initiates a transaction on
the bus.

BURST Hi-Z F1 Bidirectional
Three-state

Burst Transaction—Driven by the bus master to indicate
that the current initiated transfer is a burst. The
MPC855T drives this signal when it is bus master. This
signal is input when an external master initiates a
transaction on the bus.

BDIP
GPL_B5

See
Table 12-2

D2 Output Burst Data in Progress—When accessing a slave
device in the external bus, the master on the bus
asserts this signal to indicate that the data beat in front
of the current one is the one requested by the master.
BDIP is negated before the expected last data beat of
the burst transfer.
General-Purpose Line B5—Used by the memory
controller when UPMB takes control of the slave
access.

MPC855T User’s Manual MOTOROLA

System Bus Signals

TS Hi-Z F3 Bidirectional
Active
Pull-up

Transfer Start—Asserted by a bus master to indicate the
start of a bus cycle that transfers data to or from a slave
device.
Driven by the master only when it has gained the
ownership of the bus. Every master should negate this
signal before the bus relinquish. TS requires the use of
an external pull-up resistor.
The MPC855T samples TS when it is not the external
bus master to allow the memory controller/PCMCIA
interface to control the accessed slave device. It
indicates that an external synchronous master initiated
a transaction.

TA Hi-Z C2 Bidirectional
Active
Pull-up

Transfer Acknowledge—Indicates that the slave device
addressed in the current transaction accepted data sent
by the master (write) or has driven the data bus with
valid data (read). This is an output when the PCMCIA
interface or memory controller controls the transaction.
The only exception occurs when the memory controller
controls the slave access by means of the GPCM and
the corresponding option register is instructed to wait for
an external assertion of TA. Every slave device should
negate TA after a transaction ends and immediately
three-state it to avoid bus contention if a new transfer is
initiated addressing other slave devices. TA requires the
use of an external pull-up resistor.

TEA Hi-Z D1 Open-drain Transfer Error Acknowledge—Indicates that a bus error
occurred in the current transaction. The MPC855T
asserts TEA when the bus monitor does not detect a
bus cycle termination within a reasonable amount of
time. Asserting TEA terminates the bus cycle, thus
ignoring the state of TA. TEA requires the use of an
external pull-up resistor.

BI Hi-Z E3 Bidirectional
Active
Pull-up

Burst Inhibit—Indicates that the slave device addressed
in the current burst transaction cannot support burst
transfers. It acts as an output when the PCMCIA
interface or the memory controller takes control of the
transaction. BI requires the use of an external pull-up
resistor.

RSV
IRQ2

See
Table 12-2

H3 Bidirectional
Three-state

Reservation—The MPC855T outputs this three-state
signal in conjunction with the address bus to indicate
that the core initiated a transfer as a result of a stwcx.
or lwarx.
Interrupt Request 2—One of eight external inputs that
can request (by means of the internal interrupt
controller) a service routine from the core.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

Chapter 12. External Signals 12-7

System Bus Signals

KR/RETRY
IRQ4
SPKROUT

See
Table 12-2

K1 Bidirectional
Three-state

Kill Reservation—Input used as a part of the memory
reservation protocol, when the MPC855T initiated a
transaction as the result of a stwcx. instruction.
Retry—Input used by a slave device to indicate it cannot
accept the transaction. The MPC855T must relinquish
mastership and reinitiate the transaction after winning in
the bus arbitration.
Interrupt Request 4. One of eight external inputs that
can request (by means of the internal interrupt
controller) a service routine from the core. Note that the
interrupt request signal that is sent to the interrupt
controller is the logical AND of this line (if defined as
IRQ4) and DP1/IRQ4 (if defined as IRQ4).
SPKROUT—Digital audio wave form output to be driven
to the system speaker.

CR
IRQ3

Hi-Z F2 Input Cancel Reservation—Input used as a part of the
storage reservation protocol.
Interrupt Request 3—One of eight external inputs that
can request (by means of the internal interrupt
controller) a service routine from the core. Note that the
interrupt request signal sent to the interrupt controller is
the logical AND of CR/IRQ3 (if defined as IRQ3) and
DP0/IRQ3 if defined as IRQ3.

D[0–31] Hi-Z1 See Figure Bidirectional
Three-state

Data Bus—Bidirectional three-state bus, provides the
general-purpose data path between the MPC855T and
all other devices. The 32-bit data path can be
dynamically sized to support 8-, 16-, or 32-bit transfers.
D0 is the msb of the data bus.

DP0
IRQ3

Hi-Z V3 Bidirectional
Three-state

Data Parity 0—Provides parity generation and checking
for D[0–7] for transfers to a slave device initiated by the
MPC855T. The parity function can be defined
independently for each one of the addressed memory
banks (if controlled by the memory controller) and for
the rest of the slaves sitting on the external bus. Parity
generation and checking is not supported for external
masters.
Interrupt Request 3—One of eight external inputs that
can request (by means of the internal interrupt
controller) a service routine from the core. Note that the
interrupt request signal sent to the interrupt controller is
the logical AND of DP0/IRQ3 (if defined as IRQ3) and
CR/IRQ3 (if defined as IRQ3).

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

MPC855T User’s Manual MOTOROLA

System Bus Signals

DP1
IRQ4

Hi-Z V5 Bidirectional
Three-state

Data Parity 1—Provides parity generation and checking
for D[8–15] for transfers to a slave device initiated by the
MPC855T. The parity function can be defined
independently for each one of the addressed memory
banks (if controlled by the memory controller) and for
the rest of the slaves on the external bus. Parity
generation and checking is not supported for external
masters.
Interrupt Request 4—One of eight external inputs that
can request (by means of the internal interrupt
controller) a service routine from the core. Note that the
interrupt request signal sent to the interrupt controller is
the logical AND of this line (if defined as IRQ4) and
KR/IRQ4/SPKROUT (if defined as IRQ4).

DP2
IRQ5

Hi-Z W4 Bidirectional
Three-state

Data Parity 2—Provides parity generation and checking
for D[16–23] for transfers to a slave device initiated by
the MPC855T. The parity function can be defined
independently for each one of the addressed memory
banks (if controlled by the memory controller) and for
the rest of the slaves on the external bus. Parity
generation and checking is not supported for external
masters.
Interrupt Request 5—One of eight external inputs that
can request (by means of the internal interrupt
controller) a service routine from the core.

DP3
IRQ6

Hi-Z V4 Bidirectional
Three-state

Data Parity 3—Provides parity generation and checking
for D[16–23] for transfers to a slave device initiated by
the MPC855T. The parity function can be defined
independently for each one of the addressed memory
banks (if controlled by the memory controller) and for
the rest of the slaves on the external bus. Parity
generation and checking is not supported for external
masters.
Interrupt Request 6—One of eight external inputs that
can request (by means of the internal interrupt
controller) a service routine from the core. Note that the
interrupt request signal sent to the interrupt controller is
the logical AND of this line (if defined as IRQ6) and the
FRZ/IRQ6 (if defined as IRQ6).

BR Hi-Z G4 Bidirectional Bus Request—Asserted low when a possible master is
requesting ownership of the bus. When the MPC855T is
configured to work with the internal arbiter, this signal is
configured as an input. When the MPC855T is
configured to work with an external arbiter, this signal is
configured as an output.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

Chapter 12. External Signals 12-9

System Bus Signals

BG Hi-Z E2 Bidirectional Bus Grant—Asserted low when the arbiter of the
external bus grants the bus to a specific device. When
the MPC855T is configured to work with the internal
arbiter, BG is configured as an output and asserted
every time the external master asserts BR and its
priority request is higher than any internal sources
requiring a bus transfer. However, when the MPC855T
is configured to work with an external arbiter, BG is an
input.

BB Hi-Z E1 Bidirectional
Active
Pull-up

Bus Busy—Asserted low by a master to show that it
owns the bus. The MPC855T asserts BB after the
arbiter grants it bus ownership and BB is negated.

FRZ
IRQ6

See
Table 12-2

G3 Bidirectional Freeze—Output asserted to indicate that the core is in
debug mode.
Interrupt Request 6—One of eight external inputs that
can request (by means of the internal interrupt
controller) a service routine from the core. Note that the
interrupt request signal sent to the interrupt controller is
the logical AND of FRZ/IRQ6 (if defined as IRQ6) and
DP3/IRQ6 (if defined as IRQ6).

IRQ0 Hi-Z V14 Input Interrupt Request 0—One of eight external inputs that
can request (by means of the internal interrupt
controller) a service routine from the core.

IRQ1 Hi-Z U14 Input Interrupt Request 1—One of eight external inputs that
can request (by means of the internal interrupt
controller) a service routine from the core.

IRQ7 Hi-Z W15 Input Interrupt Request 7—One of eight external inputs that
can request (by means of the internal interrupt
controller) a service routine from the core.

CS[0–5] High C3, A2, D4,
E4, A4, B4

Output Chip Select—These outputs enable peripheral or
memory devices at programmed addresses if they are
appropriately defined. CS0 can be configured to be the
global chip-select for the boot device.

CS6
CE1_B

High D5 Output Chip Select 6—This output enables a peripheral or
memory device at a programmed address if defined
appropriately in the BR6 and OR6 in the memory
controller.
Card Enable 1 Slot B—This output enables even byte
transfers when accesses to the PCMCIA Slot B are
handled under the control of the PCMCIA interface.

CS7
CE2_B

High C4 Output Chip Select 7—This output enables a peripheral or
memory device at a programmed address if defined
appropriately in the BR7 and OR7 in the memory
controller.
Card Enable 2 Slot B—This output enables odd byte
transfers when accesses to the PCMCIA Slot B are
handled under the control of the PCMCIA interface.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

MPC855T User’s Manual MOTOROLA

System Bus Signals

WE0
BS_B0
IORD

High C7 Output Write Enable 0—Output asserted when a write access
to an external slave controlled by the GPCM is initiated
by the MPC855T. WE0 is asserted if D[0–7] contains
valid data to be stored by the slave device.
Byte Select 0 on UPMB—Output asserted under control
of the UPMB, as programmed by the user. In a read or
write transfer, the line is only asserted if D[0–7] contains
valid data.
IO Device Read—Output asserted when the MPC855T
starts a read access to a region controlled by the
PCMCIA interface. Asserted only for accesses to a PC
card I/O space.

WE1
BS_B1
IOWR

High A6 Output Write Enable 1—Output asserted when the MPC855T
initiates a write access to an external slave controlled by
the GPCM. WE1 is asserted if D[8–15] contains valid
data to be stored by the slave device.
Byte Select 1 on UPMB—Output asserted under control
of the UPMB, as programmed by the user. In a read or
write transfer, the line is only asserted if D[8–15]
contains valid data.
I/O Device Write—This output is asserted when the
MPC855T initiates a write access to a region controlled
by the PCMCIA interface. IOWR is asserted only if the
access is to a PC card I/O space.

WE2
BS_B2
PCOE

High B6 Output Write Enable 2—Output asserted when the MPC855T
starts a write access to an external slave controlled by
the GPCM. WE2 is asserted if D[16–23] contains valid
data to be stored by the slave device.
Byte Select 2 on UPMB—Output asserted under control
of the UPMB, as programmed by the user. In a read or
write transfer, BS_B2 is asserted only D[16–23]
contains valid data.
PCMCIA Output Enable—Output asserted when the
MPC855T initiates a read access to a memory region
under the control of the PCMCIA interface.

WE3
BS_B3
PCWE

High A5 Output Write Enable 3—Output asserted when the MPC855T
initiates a write access to an external slave controlled by
the GPCM. WE3 is asserted if D[24–31] contains valid
data to be stored by the slave device.
Byte Select 3 on UPMB—Output asserted under control
of the UPMB, as programmed by the user. In a read or
write transfer, BS_B3 is asserted only if D[24–31]
contains valid data.
PCMCIA Write Enable—Output asserted when the
MPC855T initiates a write access to a memory region
under control of the PCMCIA interface.

BS_A[0–3] High D8, C8, A7,
B8

Output Byte Select 0 to 3 on UPMA—Outputs asserted under
requirement of the UPMA, as programmed by the user.
For read or writes, asserted only if their corresponding
data lanes contain valid data:

BS_A0 for D[0–7], BS_A1 for D[8–15],
BS_A2 for D[16–23], BS_A3 for D[24–31]

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

Chapter 12. External Signals 12-11

System Bus Signals

GPL_A0
GPL_B0

High D7 Output General-Purpose Line 0 on UPMA—This output reflects
the value specified in the UPMA when an external
transfer to a slave is controlled by the UPMA.
General-Purpose Line 0 on UPMB—This output reflects
the value specified in the UPMB when an external
transfer to a slave is controlled by the UPMB.

OE
GPL_A1
GPL_B1

High C6 Output Output Enable—Output asserted when the MPC855T
initiates a read access to an external slave controlled by
the GPCM.
General-Purpose Line 1on UPMA—This output reflects
the value specified in the UPMA when an external
transfer to a slave is controlled by UPMA.
General-Purpose Line 1 on UPMB—This output reflects
the value specified in the UPMB when an external
transfer to a slave is controlled by UPMB.

GPL_A[2–3]
GPL_B[2–3]
CS[2–3]

High B5, C5 Output General-Purpose Line 2 and 3 on UPMA—These
outputs reflect the value specified in the UPMA when an
external transfer to a slave is controlled by UPMA.
General-Purpose Line 2 and 3 on UPMB—These
outputs reflect the value specified in the UPMB when an
external transfer to a slave is controlled by UPMB.
Chip Select 2 and 3—These outputs enable peripheral
or memory devices at programmed addresses if they
are appropriately defined. The double drive capability
for CS2 and CS3 is independently defined for each
signal in the SIUMCR.

UPWAITA
GPL_A4

Hi-Z C1 Bidirectional User Programmable Machine Wait A—This input is
sampled as defined by the user when an access to an
external slave is controlled by the UPMA.
General-Purpose Line 4 on UPMA—This output reflects
the value specified in the UPMA when an external
transfer to a slave is controlled by UPMA.

UPWAITB
GPL_B4

Hi-Z B1 Bidirectional User Programmable Machine Wait B—This input is
sampled as defined by the user when an access to an
external slave is controlled by the UPMB.
General-Purpose Line 4 on UPMB—This output reflects
the value specified in the UPMB when an external
transfer to a slave is controlled by UPMB.

GPL_A5 High D3 Output General-Purpose Line 5 on UPMA—This output reflects
the value specified in the UPMA when an external
transfer to a slave is controlled by UPMA. This signal
can also be controlled by the UPMB.

PORESET Hi-Z R2 Input Power on Reset—When asserted, this input causes the
MPC855T to enter the power-on reset state.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

MPC855T User’s Manual MOTOROLA

System Bus Signals

RSTCONF Hi-Z P3 Input Reset Configuration—The MPC855T samples this input
while HRESET is asserted. If RSTCONF is asserted,
the configuration mode is sampled in the form of the
hard reset configuration word driven on the data bus.
When RSTCONF is negated, the MPC855T uses the
default configuration mode. Note that the initial base
address of internal registers is determined in this
sequence.

HRESET Low N4 Open-drain Hard Reset—Asserting this open drain signal puts the
MPC855T in hard reset state.

SRESET Low P2 Open-drain Soft Reset—Asserting this open drain line puts the
MPC855T in soft reset state.

XTAL Analog
Driving

P1 Analog
Output

This output is one of the connections to an external
crystal for the internal oscillator circuitry.

EXTAL Hi-Z N1 Analog
Input (3.3V

only)

This line is one of the connections to an external crystal
for the internal oscillator circuitry.

XFC Analog
Driving

T2 Analog
Input

External Filter Capacitance—This input is the
connection pin for an external capacitor filter for the PLL
circuitry.

CLKOUT Note 2 W3 Output Clock Out—This output is the clock system frequency.

EXTCLK Hi-Z N2 Input (3.3V
only)

External Clock—This input is the external input clock
from an external source.

TEXP High N3 Output Timer Expired—This output reflects the status of
PLPRCR[TEXPS].

ALE_A Low K2 Output Address Latch Enable A—This output line is asserted
when MPC855T initiates an access to a region under
the control of the PCMCIA interface to socket A.

CE1_A High B3 Output Card Enable 1 Slot A—This output signal enables even
byte transfers when accesses to PCMCIA Slot A are
handled under the control of the PCMCIA interface.

CE2_A High A3 Output Card Enable 2 Slot A—This output signal enables odd
byte transfers when accesses to PCMCIA Slot A are
handled under the control of the PCMCIA interface.

WAIT_A Hi-Z R3 Input Wait Slot A—This input signal, if asserted low, causes a
delay in the completion of a transaction on the PCMCIA
controlled Slot A.

WAIT_B Hi-Z R4 Input Wait Slot B—This input, if asserted low, causes a delay
in the completion of a transaction on the PCMCIA
controlled Slot B.

IP_A(0) Hi-Z T5 Input Input Port A 0—This input signals is monitored by the
MPC855T and its value is reflected in the PIPR and
PSCR of the PCMCIA interface.

IP_A(1) Hi-Z T4 Input Input Port A 1—This input signals is monitored by the
MPC855T and its value is reflected in the PIPR and
PSCR of the PCMCIA interface.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

Chapter 12. External Signals 12-13

System Bus Signals

IP_A2

IOIS16_A

Hi-Z U3 Input Input Port A 2—This input signal is monitored by the
MPC855T and its value and changes are reported in the
PIPR and PSCR of the PCMCIA interface.

I/O Device A is 16 Bits Ports Size—This input signal is
monitored by the MPC855T when a transaction under
the control of the PCMCIA interface is initiated to an I/O
region in socket A of the PCMCIA space.

IP_A(3) Hi-Z W2 Input Input Port A 3—This input signals is monitored by the
MPC855T and its value is reflected in the PIPR and
PSCR of the PCMCIA interface.

IP_A(4) Hi-Z U4 Input Input Port A 4—This input signals is monitored by the
MPC855T and its value is reflected in the PIPR and
PSCR of the PCMCIA interface.

IP_A(5) Hi-Z U5 Input Input Port A 5—This input signals is monitored by the
MPC855T and its value is reflected in the PIPR and
PSCR of the PCMCIA interface

IP_A(6) Hi-Z T6 Input Input Port A 6—This input signals is monitored by the
MPC855T and its value is reflected in the PIPR and
PSCR of the PCMCIA interface.

IP_A(7) Hi-Z T3 Input Input Port A 7—This input signals is monitored by the
MPC855T and its value is reflected in the PIPR and
PSCR of the PCMCIA interface.

ALE_B
DSCK/AT1

See
Table 12-2

J1 Bidirectional
Three-state

Address Latch Enable B—This output is asserted when
the MPC855T initiates an access to a region under the
control of the PCMCIA socket B interface.
Development Serial Clock—This input is the clock for
the debug port interface.
Address Type 1—The MPC855T drives this bidirectional
three-state line when it initiates a transaction on the
external bus. When the transaction is initiated by the
core, it indicates if the transfer is for user or supervisor
state. This signal is not used for transactions initiated by
external masters.

IP_B[0–1]
IWP[0–1]
VFLS[0–1]

See
Table 12-2

H2, J3 Bidirectional Input Port B 0–1—The MPC855T senses these inputs;
their values and changes are reported in the PIPR and
PSCR of the PCMCIA interface.
Instruction Watchpoint 0-1—These outputs report the
detection of an instruction watchpoint in the program
flow executed by the core.
Visible History Buffer Flushes Status—The MPC855T
outputs VFLS[0–1] when program instruction flow
tracking is required. They report the number of
instructions flushed from the history buffer in the core.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

MPC855T User’s Manual MOTOROLA

System Bus Signals

IP_B2
IOIS16_B
AT2

Hi-Z J2 Bidirectional
Three-state

Input Port B 2—The MPC855T senses this input; its
value and changes are reported in the PIPR and PSCR
of the PCMCIA interface.
I/O Device B is 16 Bits Port Size—The MPC855T
monitors this input when a PCMCIA interface
transaction is initiated to an I/O region in socket B in the
PCMCIA space.
Address Type 2—The MPC855T drives this bidirectional
three-state signal when it initiates a transaction on the
external bus. If the core initiates the transaction, it
indicates if the transfer is instruction or data. This signal
is not used for transactions initiated by external
masters.

IP_B3
IWP2
VF2

See
Table 12-2

G1 Bidirectional Input Port B 3—The MPC855T monitors this input; its
value and changes are reported in the PIPR and PSCR
of the PCMCIA interface.
Instruction Watchpoint 2—This output reports the
detection of an instruction watchpoint in the program
flow executed by the core.
Visible Instruction Queue Flush Status—The MPC855T
outputs VF2 with VF0/VF1 when instruction flow
tracking is required. VFn reports the number of
instructions flushed from the instruction queue in the
core.

IP_B4
LWP0
VF0

Hi-Z G2 Bidirectional Input Port B 4—The MPC855T monitors this input; its
value and changes are reported in the PIPR and PSCR
of the PCMCIA interface.
Load/Store Watchpoint 0—This output reports the
detection of a data watchpoint in the program flow
executed by the core.
Visible Instruction Queue Flushes Status—The
MPC855T outputs VF0 with VF1/VF2 when instruction
flow tracking is required. VFn reports the number of
instructions flushed from the instruction queue in the
core.

IP_B5
LWP1
VF1

Hi-Z J4 Bidirectional Input Port B 5—The MPC855T monitors this input; its
value and changes are reported in the PIPR and PSCR
of the PCMCIA interface.
Load/Store Watchpoint 1—This output reports the
detection of a data watchpoint in the program flow
executed by the core.
Visible Instruction Queue Flushes Status—The
MPC855T outputs VF1 with VF0 and VF2 when
instruction flow tracking is required. VFn reports the
number of instructions flushed from the instruction
queue in the core.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

Chapter 12. External Signals 12-15

System Bus Signals

IP_B6
DSDI
AT0

Hi-Z K3 Bidirectional
Three-state

Input Port B 6—The MPC855T senses this input and its
value and changes are reported in the PIPR and PSCR
of the PCMCIA interface. See Chapter 16, “PCMCIA
Interface.”
Development Serial Data Input—Data input for the
debug port interface. See Chapter 44, “System
Development and Debugging.”
Address Type 0—The MPC855T drives this bidirectional
three-state line when it initiates a transaction on the
external bus. If high (1), the transaction is the CPM. If
low (0), the transaction initiator is the CPU. This signal is
not used for transactions initiated by external masters.

IP_B7
PTR
AT3

Hi-Z H1 Bidirectional
Three-state

Input Port B 7—The MPC855T monitors this input; its
value and changes are reported in the PIPR and PSCR
of the PCMCIA interface.
Program Trace—To allow program flow tracking, the
MPC855T asserts this output to indicate an instruction
fetch is taking place.
Address Type 3—The MPC855T drives the bidirectional
three-state signal when it starts a transaction on the
external bus. When the core initiates a transfer, AT3
indicates whether it is a reservation for a data transfer or
a program trace indication for an instruction fetch. This
signal is not used for transactions initiated by external
masters.

OP0 Low L4 Output Output Port 0—This output signals is generated by the
MPC855T as a result of a write to the PGCRA register
in the PCMCIA interface.

OP1 Low L2 Output Output Port 1—The MPC855T generates these outputs
as a result of a write to the PGCRA register in the
PCMCIA interface.

OP2
MODCK1
STS

Hi-Z L1 Bidirectional Output Port 2—This output is generated by the
MPC855T as a result of a write to the PGCRB register
in the PCMCIA interface.
Mode Clock 1—Input sampled when PORESET is
negated to configure PLL/clock mode.
Special Transfer Start—The MPC855T drives this
output to indicate the start of an external bus transfer or
of an internal transaction in show-cycle mode.

OP3
MODCK2
DSDO

Hi-Z M4 Bidirectional Output Port 3—This output is generated by the
MPC855T as a result of a write to the PGCRB register
in the PCMCIA interface.
Mode Clock 2—This input is sampled at the PORESET
negation to configure the PLL/clock mode of operation.
Development Serial Data Output—Output data from the
debug port interface.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

MPC855T User’s Manual MOTOROLA

System Bus Signals

BADDR30
REG

Hi-Z K4 Output Burst Address 30—This output duplicates the value of
A30 when the following is true:
• An internal master in the MPC855T initiates a

transaction on the external bus.
• An asynchronous external master initiates a

transaction.
• A synchronous external master initiates a single beat

transaction.
The memory controller uses BADDR30 to increment the
address lines that connect to memory devices when a
synchronous external master or an internal master
initiates a burst transfer.
Register—When an internal master initiates an access
to a slave under control of the PCMCIA interface, this
signal duplicates the value of TSIZ0/REG. When an
external master initiates an access, REG is output by
the PCMCIA interface (if it must handle the transfer) to
indicate the space in the PCMCIA card being accessed.

BADDR[28–29] Hi-Z M3
M2

Output Burst Address—Outputs that duplicate A[28–29] values
when one of the following occurs:
• An internal master in the MPC855T initiates a

transaction on the external bus.
• An asynchronous external master initiates a

transaction.
• A synchronous external master initiates a single beat

transaction.
The memory controller uses these signals to increment
the address lines that connect to memory devices when
a synchronous external or internal master starts a burst
transfer.

AS Hi-Z L3 Input Address Strobe—Input driven by an external
asynchronous master to indicate a valid address on
A[0–31]. The MPC855T memory controller
synchronizes AS and controls the memory device
addressed under its control.

PA[15]
RXD1

Hi-Z C18 Bidirectional General-Purpose I/O Port A Bit 15—Bit 15 of the
general-purpose I/O port A.
RXD1—Receive data input for SCC1.

PA[14]
TXD1
TXD4

Hi-Z D17 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port A Bit 14—Bit 14 of the
general-purpose I/O port A.
TXD1—Transmit data output for SCC1.
TXD4—Transmit data output for SCC4.

PA[13] Hi-Z E17 Bidirectional General-Purpose I/O Port A Bit 13—Bit 13 of the
general-purpose I/O port A.

PA[12] Hi-Z F17 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port A Bit 12—Bit 12 of the
general-purpose I/O port A.

PA[11] Hi-Z G16 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port A Bit 11—Bit 11 of the
general-purpose I/O port A.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

Chapter 12. External Signals 12-17

System Bus Signals

PA[10]
TXD3

Hi-Z J17 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port A Bit 10—Bit 10 of the
general-purpose I/O port A.
TXD3—Transmit data output for SCC3.

PA[9]
L1TXDA
RXD4

Hi-Z K18 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port A Bit 11—Bit 9 of the
general-purpose I/O port A.
L1TXDA—Transmit data output for the serial interface
TDMa.
RXD4—Receive data input for SCC4.

PA[8]
L1RXDA
TXD4

Hi-Z L17 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port A Bit 8—Bit 8 of the
general-purpose I/O port A.
L1RXDA—Receive data input for the serial interface
TDMa.
TXD4—Transmit data output for SCC4.

PA[7]
CLK1
TIN1
L1RCLKA
BRGO1

Hi-Z M19 Bidirectional General-Purpose I/O Port A Bit 7—Bit 7 of the
general-purpose I/O port A.
CLK1—One of eight clock inputs that can be used to
clock SCCs and SMCs.
TIN1—Timer 1 external clock.
L1RCLKA—Receive clock for the serial interface TDMa.
BRGO1—Output clock of BRG1.

PA[6]
CLK2
TOUT1

Hi-Z M17 Bidirectional General-Purpose I/O Port A Bit 6—Bit 6 of the
general-purpose I/O port A.
CLK2—One of eight clock inputs that can be used to
clock SCCs and SMCs. CLK2 can also be used as a
clock source for the BRGs.
TOUT1—Timer 1 output.

PA[5]
CLK3
TIN2
L1TCLKA
BRGO2

Hi-Z N18 Bidirectional General-Purpose I/O Port A Bit 5—Bit 5 of the
general-purpose I/O port A.
CLK3—One of eight clock inputs that can be used to
clock SCCs and SMCs.
TIN2—Timer 2 external clock input.
L1TCLKA—Transmit clock for the serial interface TDMa.
BRGO2—Output clock of BRG2.

PA[4]
CLK4
TOUT2

Hi-Z P19 Bidirectional General-Purpose I/O Port A Bit 4—Bit 4 of the
general-purpose I/O port A.
CLK4—One of eight clock inputs that can be used to
clock SCCs and SMCs.
TOUT2—Timer 2 output.

PA[3]
CLK5
TIN3
BRGO3

Hi-Z P17 Bidirectional General-Purpose I/O Port A Bit 3—Bit 3 of the
general-purpose I/O port A.
CLK5—One of eight clock inputs that can be used to
clock SCCs and SMCs.
TIN3—Timer 3 external clock input.
BRGO3—Output clock of BRG3.

PA[2]
CLK6
TOUT3

Hi-Z R18 Bidirectional General-Purpose I/O Port A Bit 2—Bit 2 of the
general-purpose I/O port A.
CLK6—One of eight clock inputs that can be used to
clock the SCCs and SMCs. CLK6 can also be used as a
clock source for the BRGs.
TOUT3—Timer 3 output.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

MPC855T User’s Manual MOTOROLA

System Bus Signals

PA[1]
CLK7
TIN4
BRGO4

Hi-Z T19 Bidirectional General-Purpose I/O Port A Bit 1—Bit 1 of the
general-purpose I/O port A.
CLK7—One of eight clock inputs that can be used to
clock SCCs and SMCs.
TIN4—Timer 4 external clock input.
BRGO4—BRG4 output clock.

PA[0]
CLK8
TOUT4

Hi-Z U19 Bidirectional General-Purpose I/O Port A Bit 0—Bit 0 of the
general-purpose I/O port A.
CLK8—One of eight clock inputs that can be used to
clock SCCs and SMCs.
TOUT4—Timer 4 output.

PB[31]
SPISEL
REJECT1

Hi-Z C17 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 31—Bit 31 of the
general-purpose I/O port B.
SPISEL—SPI slave select input.
REJECT1—SCC1 CAM interface reject pin.

PB[30]
SPICLK
RSTRT2

Hi-Z C19 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 30—Bit 30 of the
general-purpose I/O port B.
SPICLK—SPI output clock when it is configured as a
master or SPI input clock when it is configured as a
slave.
RSTRT2—SCC2 serial CAM interface output signal that
marks the start of a frame.

PB[29]
SPIMOSI

Hi-Z E16 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 29—Bit 29 of the
general-purpose I/O port B.
SPIMOSI—SPI output data when it is configured as a
master or SPI input data when it is configured as a
slave.

PB[28]
SPIMISO
BRGO4

Hi-Z D19 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 28—Bit 29 of the
general-purpose I/O port B.
SPIMISO—SPI input data when the MPC855T is a
master; SPI output data when it is a slave.
BRGO4—BRG4 output clock.

PB[27]
I2CSDA
BRGO1

Hi-Z E19 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 27—Bit 27 of the
general-purpose I/O port B.
I2CSDA—I2C serial data pin. Bidirectional; should be
configured as an open-drain output.
BRGO1—BRG1 output clock.

PB[26]
I2CSCL
BRGO2

Hi-Z F19 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 26—Bit 26 of the
general-purpose I/O port B.
I2CSCL—I2C serial clock pin. Bidirectional; should be
configured as an open-drain output.
BRGO2—BRG2 output clock.

PB[25]
SMTXD1

Hi-Z J16 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 25—Bit 25 of the
general-purpose I/O port B.
SMTXD1—SMC1 transmit data output.

PB[24]
SMRXD1

Hi-Z J18 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 24—Bit 24 of the
general-purpose I/O port B.
SMRXD1—SMC1 receive data input.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

Chapter 12. External Signals 12-19

System Bus Signals

PB[23]
SMSYN1
SDACK1

Hi-Z K17 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 23—Bit 23 of the
general-purpose I/O port B.
SMSYN1—SMC1 external sync input.
SDACK1—SDMA acknowledge 1 output that is used as
a peripheral interface signal for IDMA emulation, or as a
CAM interface signal for Ethernet.

PB[22]
SMSYN2
SDACK2

Hi-Z L19 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 22—Bit 22 of the
general-purpose I/O port B.
SMSYN2—SMC2 external sync input.
SDACK2—SDMA acknowledge 2 output that is used as
a peripheral interface signal for IDMA emulation, or as a
CAM interface signal for Ethernet.

PB[21]
SMTXD2
PHSEL[1]

Hi-Z K16 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 21—Bit 21 of the
general-purpose I/O port B.
SMTXD2—SMC2 transmit data output.
PHSEL[1]—Least significant bit of PHY select bus.

PB[20]
SMRXD2
L1CLKOA
PHSEL[0]

Hi-Z L16 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 20—Bit 20 of the
general-purpose I/O port B.
SMRXD2—SMC2 receive data input.
L1CLKOA—Clock output from the serial interface
TDMa.
PHSEL[0]—Most significant bit of PHY select bus.

PB[19]
RTS1
L1ST1

Hi-Z N19 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 19—Bit 19 of the
general-purpose I/O port B.
RTS1—Request to send modem line for SCC1.
L1ST1—One of four output strobes that can be
generated by the serial interface.

PB[18]
L1ST2

Hi-Z N17 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 18—Bit 18 of the
general-purpose I/O port B.
L1ST2—One of four output strobes that can be
generated by the serial interface.

PB[17]
L1ST3
PHREQ[1]

Hi-Z P18 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 17—Bit 17 of the
general-purpose I/O port B.
L1ST3—One of four output strobes that can be
generated by the serial interface.
PHREQ[1]—Least significant bit of PHY request bus.

PB[16]
L1RQa
L1ST4
PHREQ[0]

Hi-Z N16 Bidirectional
(Optional:

Open-drain)

General-Purpose I/O Port B Bit 16—Bit 16 of the
general-purpose I/O port B.
L1RQa—D-channel request signal for serial interface
TDMa.
L1ST4—One of four output strobes that can be
generated by the serial interface.
PHREQ[0]—Most significant bit of PHY request bus.

PB[15]
BRGO3
Txclav

Hi-Z R17 Bidirectional General-Purpose I/O Port B Bit 15—Bit 15 of the
general-purpose I/O port B.
BRGO3—BRG3 output clock.
Txclav—Transmit cell available input signal.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

MPC855T User’s Manual MOTOROLA

System Bus Signals

PB[14]
RSTRT1

Hi-Z U18 Bidirectional General-Purpose I/O Port B Bit 14—Bit 14 of the
general-purpose I/O port B.
RSTRT1—SCC1 serial CAM interface outputs that
marks the start of a frame.

PC[15]
DREQ0
RTS1
L1ST1
Rxclav

Hi-Z D16 Bidirectional General-Purpose I/O Port C Bit 15—Bit 15 of the
general-purpose I/O port C.
DREQ0—IDMA channel 1 request input.
RTS1—Request to send modem line for SCC1.
L1ST1—One of four output strobes that can be
generated by the serial interface.
Rxclav—Receive cell available input signal

PC[14]
DREQ1
L1ST2

Hi-Z D18 Bidirectional General-Purpose I/O Port C Bit 14—Bit 14 of the
general-purpose I/O port C.
DREQ1—IDMA channel 2 request input.
L1ST2—One of four output strobes that can be
generated by the serial interface.

PC[13]
L1ST3

Hi-Z E18 Bidirectional General-Purpose I/O Port C Bit 13—Bit 13 of the
general-purpose I/O port C.
L1ST3—One of four output strobes that can be
generated by the serial interface.

PC[12]
L1RQa
L1ST4

Hi-Z F18 Bidirectional General-Purpose I/O Port C Bit 12—Bit 12 of the
general-purpose I/O port C.
L1RQa—D-channel request signal for serial interface
TDMa.
L1ST4—One of four output strobes that can be
generated by the serial interface.

PC[11]
CTS1

Hi-Z J19 Bidirectional General-Purpose I/O Port C Bit 11—Bit 11 of the
general-purpose I/O port C.
CTS1—Clear to send modem line for SCC1.

PC[10]
CD1
TGATE1

Hi-Z K19 Bidirectional General-Purpose I/O Port C Bit 10—Bit 10 of the
general-purpose I/O port C.
CD1—Carrier detect modem line for SCC1.
TGATE1—Timer 1/timer 2 gate signal.

PC[9] Hi-Z L18 Bidirectional General-Purpose I/O Port C Bit 9—Bit 9 of the
general-purpose I/O port C.

PC[8]
TGATE2

Hi-Z M18 Bidirectional General-Purpose I/O Port C Bit 8—Bit 8 of the
general-purpose I/O port C.
TGATE2—Timer 3/timer 4 gate signal.

PC[7]
SDACK2

Hi-Z M16 Bidirectional General-Purpose I/O Port C Bit 7—Bit 7 of the
general-purpose I/O port C.
SDACK2—SDMA acknowledge 2 output that is used as
a peripheral interface signal for IDMA emulation or as a
CAM interface signal for Ethernet.

PC[6] Hi-Z R19 Bidirectional General-Purpose I/O Port C Bit 6—Bit 6 of the
general-purpose I/O port C.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

Chapter 12. External Signals 12-21

System Bus Signals

PC[5]
L1TSYNCA
SDACK1

Hi-Z T18 Bidirectional General-Purpose I/O Port C Bit 5—Bit 5 of the
general-purpose I/O port C.
L1TSYNCA—Transmit sync input for serial interface
TDMa.
SDACK1—SDMA acknowledge 1output that is used as
a peripheral interface signal for IDMA emulation or as a
CAM interface signal for Ethernet.

PC[4]
L1RSYNCA

Hi-Z T17 Bidirectional General-Purpose I/O Port C Bit 4—Bit 4 of the
general-purpose I/O port C.
L1RSYNCA—Receive sync input for serial interface
TDMa.

PD[15]
L1TSYNCA
UTPB[0]
MII-RXD3

Hi-Z U17 Bidirectional General-Purpose I/O Port D Bit 15—Bit 15 of the
general-purpose I/O port D.
L1TSYNCA—Input transmit data sync signal to the
TDM channel A.
MII-RXD3—Message independent interface receive
data 3.
UTPB[0]—UTOPIA bus bit 0 input/output signal.

PD[14]
L1RSYNCA
UTPB[1]
MII-RXD2

Hi-Z V19 Bidirectional General-Purpose I/O Port D Bit 14—Bit 14 of the
general-purpose I/O port D.
L1RSYNCA—Input receive data sync signal to the TDM
channel A.
MII-RXD2—Message independent interface receive
data 2.
UTPB[1]—UTOPIA bus bit 1 input/output signal.

PD[13]
L1TSYNCB
UTPB[2]
MII-RXD1

Hi-Z V18 Bidirectional General-Purpose I/O Port D Bit 13—Bit 13 of the
general-purpose I/O port D.
L1TSYNCB—Input transmit data sync signal to the
TDM channel B.
MII-RXD1—Message independent interface receive
data 1.
UTPB[2]—UTOPIA bus bit 2 input/output signal.

PD[12]
UTPB[3]
MII-MDC

Hi-Z R16 Bidirectional General-Purpose I/O Port D Bit 12—Bit 12 of the
general-purpose I/O port D..
MII-MDC—Message independent interface
management data clock.
UTPB[3]—UTOPIA bus bit 3 input/output signal.

PD[11]
RXENB
MII-TX-ERR

Hi-Z T16 Bidirectional General-Purpose I/O Port D Bit 11—Bit 11 of the
general-purpose I/O port D.
RXENB—Receive enable output signal.
MII-TX-ERR—Media independent interface transmit
error

PD[10]
TXENB
MII-RXD0

Hi-Z W18 Bidirectional General-Purpose I/O Port D Bit 10—Bit 10 of the
general-purpose I/O port D.
TXENB—Transmit enable output signal.
MII-RXD0—Media independent interface receive data 0

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

MPC855T User’s Manual MOTOROLA

System Bus Signals

PD[9]
UTPCLK
MII-TXD0

Hi-Z V17 Bidirectional General-Purpose I/O Port D Bit 9—Bit 9 of the
general-purpose I/O port D.
UTPCLK—UTOPIA Clock input/output signal. The
direction of this I/O pin in non muxed UTOPIA mode is
defined by UTOPIA mode register. As an input or output
the frequency of the UTOPIA clock can be up to 50Mhz
and in the following range: SYSCLK > UTPCLK >
SYSCLK/10
MII-TXD0—Media independent interface transmit data 0

PD[8]
MII-RXCLK

Hi-Z W17 Bidirectional General-Purpose I/O Port D Bit 8—Bit 8 of the
general-purpose I/O port D.
MII-RXCLK—Media independent interface receive clock

PD[7]
UTPB[4]
MII-RX-ERR

Hi-Z T15 Bidirectional General-Purpose I/O Port D Bit 7—Bit 7 of the
general-purpose I/O port D.
UTPB[4]—UTOPIA bus bit 4 input/output signal.
MII-RX-ERR—Message independent interface receive
error.

PD[6]
UTPB[5]
MII-RXDV

Hi-Z V16 Bidirectional General-Purpose I/O Port D Bit 6—Bit 6 of the
general-purpose I/O port D.
UTPB[5]—UTOPIA bus bit 5 input/output signal.
MII-RXDV—Message independent interface receive
data valid.

PD[5]
REJECT2
UTPB[6]
MII-TXD3

Hi-Z U15 Bidirectional General-Purpose I/O Port D Bit 5—Bit 5 of the
general-purpose I/O port D.
REJECT2—This input to SCC2 allows a CAM to reject
the current Ethernet frame after it determines the frame
address did not match.
UTPB[6]—UTOPIA bus bit 6 input/output signal.
MII-TXD3—Message independent interface transmit
data 3.

PD[4]
REJECT3
UTPB[7]
MII-TXD2

Hi-Z U16 Bidirectional General-Purpose I/O Port D Bit 4—Bit 4 of the
general-purpose I/O port D.
REJECT3—This input to SCC3 allows a CAM to reject
the current Ethernet frame after it determines the frame
address did not match.
UTPB[7]—UTOPIA bus bit 7 input/output signal. (most
significant bit of UTPB)
MII-TXD2—Message independent interface transmit
data 2.

PD[3]
REJECT4
SOC
MII-TXD1

Hi-Z W16 Bidirectional General-purpose I/O Port D Bit 3—Bit 3 of the
general-purpose I/O port D.
REJECT4—This input to SCC4 allows a CAM to reject
the current Ethernet frame after it determines the frame
address did not match.
SOC—Start of cell input/output signal.
MII-TXD1—Message independent interface transmit
data 1.

TCK
DSCK

Hi-Z H16 Input Provides clock to scan chain logic or for the
development port logic.

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

Chapter 12. External Signals 12-23

System Bus Signals

NOTE:

The reset behavior of a subset of multiple-function pins depends on which signal function
is active. The SIUMCR programming determines which signal functions of this pin subset
are activated at reset; see Section 10.4.2, “SIU Module Configuration Register (SIUMCR).”
Some (but not all) of the SIUMCR default values are determined by the user-controlled
hardware reset configuration word; see Section 11.3.1.1, “Hard Reset Configuration Word.”
When HRESET (or PORESET) is asserted, these pins immediately begin functioning as the
signals selected in the SIUMCR. The behavior of these signals is shown in Table 12-2.

TMS Pulled up G18 Input Controls the scan chain test mode operations.

TDI
DSDI

Pulled up H17 Input Input serial data for either the scan chain logic or the
development port and determines the operating mode
of the development port at reset.

TDO
DSDO

Low G17 Output Output serial data for either the scan chain logic or for
the development port.

TRST Pulled up3 G19 Input Test reset for the JTAG scan chain logic.

MII_CRS Hi-Z B7 Input MII carrier receive sense

MII_MDIO Hi-Z H18 Bidirectional MII management data

MII_TXEN Low V15 Output MII transmit enable

MII_COL Hi-Z H4 Input MII collision

Power Supply See Figure Power VDDL—Power supply of the internal logic.
VDDH—Power supply of the I/O buffers and certain
parts of the clock control.
VDDSYN—Power supply of the PLL circuitry.
KAPWR—Power supply of the internal OSCM, RTC,
PIT, DEC, and TB.
VSS—Ground for circuits, except for the PLL circuitry.
VSSSYN, VSSSYN1—Ground for the PLL circuitry.

1 Pulled Low if RSTCONF pulled down
2 High until SPLL locked, then oscillating
3 See Section 11.4, “TRST and Power Mode Considerations,” and Section 45.6, “Recommended TAP

Configuration.”

Table 12-1. Signal Descriptions (continued)

Name
Hard
Reset

Number Type Description

MPC855T User’s Manual MOTOROLA

Active Pull-Up Buffers

12.2 Active Pull-Up Buffers
Active pull-up buffers are a special variety of bidirectional three-state buffer with the
following properties:

• When enabled as an output and driving low, they behave as a normal output driver
(that is, the pin is constantly driven low).

• When enabled as an output and driving high, drive high until an internal detection
circuit determines that the output has reached the logic high threshold and then stop
driving (that is, the pin switches to high-impedance).

• When disabled as an output or functioning as an input, it is not driven.

Due to the behavior of the buffer when being driven high, a pull-up resistor is required
externally to function as a ‘bus keep’ for these shared signals in periods when no drivers
are active and to keep the buffer from oscillating when the buffer is driving high, because

Table 12-2. Configuration-Dependent Signal Behavior during Reset

Signal Function Determined at Reset by…
Pin Signal Behavior

SRESET HRESET (or PORESET)

Previous
programming of
SIUMCR

SIUMCR default values only BDIP/GPL_B5 BDIP: high impedance
GPL_B5: high1

1 After a hard reset, this signal function is actually inactive until the user selects the function by programming the
SIUMCR.

RSV/IRQ2 IRQ2: high impedance
RSV: high1

CR/IRQ3 IRQ3: high impedance
CR: high1

KR/RETRY/IRQ4/SPKROUT IRQ4: high impedance
KR/RETRY: high impedance1

SPKROUT: low1

FRZ/IRQ6 FRZ: low
IRQ6: high impedance1

SIUMCR default values as
driven by the hard reset
configuration word

ALE_B/DSCK/AT1 ALE_B: low
DSCK/AT1: high impedance

IP_B[0–1]/IWP[0–1]/VFLS[0–1
]

IP_B[0–1]: high impedance.
IWP[0–1]: high
VFLS[0–1]: low

IP_B3/IWP2/VF2 IP_B3: high impedance
IWP2: high
VF2: low

IP_B4/LWP0/VF0 IP_B4: high impedance
LWP0: high
VF0: low

IP_B5/LWP1/VF1 IP_B5: high impedance
LWP1: high;
VF1: low

Chapter 12. External Signals 12-25

Active Pull-Up Buffers

if the voltage ever dips below the logic high threshold while the buffer is enabled as an
output, the buffer will reactivate. Further, external logic must not attempt to drive these
signals low while active pull-up buffers are enabled as outputs, because the buffers will
reactivate and drive high, resulting in a buffer fight and possible damage to the MPC855T,
to the system, or to both.

Figure 12-4 compares three-state buffers and active pull-up buffers graphically in general
terms. It makes no implication as to which edges trigger which events for any particular
signal.

Figure 12-4. Three-State Buffers and Active Pull-Up Buffers

Table 12-3 summarizes when active pull-up drivers are enabled as outputs.

Table 12-3. Active Pull-Up Resistors Enabled as Outputs

Signal Description

TS, BB When the MPC855T is the external bus master throughout the entire bus cycle.

BI When the MPC855T’s memory controller responds to the access on the external bus, throughout the entire
bus cycle.

TA When the MPC855T’s memory controller responds to the access on the external bus, then:
• •For chip selects controlled by a GPCM set for external TA, the MPC860’s TA buffer is not enabled as an

output.
• •For chip-selects controlled by the GPCM set to terminate in n wait-states, TA is enabled as an output

on cycle (n-1) and driven high, then is driven low on cycle n, terminating the bus transaction. External
logic can drive TA at any point before this, thus terminating the cycle early. [For example, assume the
GPCM is programmed to drive TA after 15 cycles. If external logic drives TA before 14 clocks have
elapsed then the TA is accepted by the MPC860 as a cycle termination.]

• •For UPM-controlled chip selects, the TA buffer is enabled as an output throughout the entire bus cycle.

Three-state

buffer

1 2

3

1 Drive high on one edge
2 Switch to Hi-Z on later edge
 3 Pull-up resistor maintains
 logic high state

1 2

3

1 Drive high on one edge
2 Switch to Hi-Z when

Active
pull-up
buffer

5

4

 threshold voltage
 (Voh+margin) is reached
3 Pull-up resistor maintains
 logic high state
4 Disable buffer as output
5 Pull-up resistor maintains
 logic high state; other
 driver can drive signal

Note: Events 1 and 4 can be in quick succession.

MPC855T User’s Manual MOTOROLA

Internal Pull-Up and Pull-Down Resistors

The purpose of active pull-up buffers is to allow access to zero wait-state logic that drives
a shared signal on the clock cycle immediately following a cycle in which the signal is
driven by the MPC855T. In other words, it eliminates the need for a bus turn-around cycle.

12.3 Internal Pull-Up and Pull-Down Resistors
The TMS and TRST pins have internal pull-up resistors. MPC855T devices from Rev 0 to
Rev A.3 (masks xE64C and xF84C) have an internal pull-up resistor on TCK/DSCK but no
internal pull-up resistor on TDI/DSDI. This was corrected on Rev B and later; on these
chips, the internal pull-up resistor was removed from TCK/DSCK and an internal pull-up
resistor was added to TDI/DSDI.

If RSTCONF is pulled down, during hardware reset (initiated by HRESET or PORESET),
the data bus D[0–31] is pulled down with internal pull-down resistors. These internal
pull-down resistors are to provide a logic-zero default for these pins when programming the
hard reset configuration word (See Section 11.3.1.1, “Hard Reset Configuration Word.”).
These internal pull-down resistors are disconnected after HRESET is negated.

No other pins have internal pull-ups or pull-downs.

Resistance values for internal pull-up and pull-down resistors are not specified because
their values may vary due to process variations and shrinks in die size, and they are not
tested. Typical values are on the order of 5 kΩ but can vary by approximately a factor of 2.

12.4 Recommended Basic Pin Connections
The following sections provided recommended pin connections.

12.4.1 Reset Configuration

Some external pin configuration is determined at reset by the hard reset configuration word.
Thus, some decisions as to system configuration (for example, location of BDM pins)
should be made before required application of pull-up and pull-down resistors can be
determined.

RSTCONF should be grounded if the hard reset configuration word is used to configure the
MPC855T or should be connected to VCC if the default configuration is used.

Pull-up resistors may not be used on D[0–31] to set the hard reset configuration word, as
the values of the internal pull-down resistors are not specified or guaranteed. To change a
data bus signal from its default logic low state during reset, actively drive that signal high.

MODCK[1–2] must be used to determine the default clocking mode for the MPC855T.
After power-on reset, the MODCK[1–2] pins change function and become outputs. Thus,
if these alternate functions are also desired, then the MODCK[1–2] configuration should be
set with three-state drivers that turn off after PORESET is negated; however, if

Chapter 12. External Signals 12-27

Recommended Basic Pin Connections

MODCK[1–2] pins’ alternate output functions are not used in the system, they can be
configured with pull-up and pull-down resistors.

12.4.1.1 Bus Control Signals and Interrupts

Signals with open-drain buffers and active pull-up buffers (HRESET, SRESET, TEA, TS,
TA, BI, and BB) must have external pull-up resistors.

Some other input signals do not absolutely require a pull-up resistor, as they may be
actively driven by external logic. However, if they are not used externally, or if the external
logic connected to them is not always actively driving, they may need external pull-up
resistors to hold them negated. These signals include the following:

• PORESET

• AS

• CR/IRQ3

• KR/RETRY/IRQ4/SPKROUT (if configured as KR/RETRY or IRQ4)

• Any IRQx (if configured as IRQx)

• BR (if the MPC860’s internal bus arbiter is used)

• BG (if an external bus arbiter is used)

12.4.2 JTAG and Debug Ports

Recommendations on configuration of the JTAG pins (including TMS, TRST, TDI, TDO,
and TCK) are made in Section 45.6, “Recommended TAP Configuration.” See also
Section 11.4, “TRST and Power Mode Considerations.”

TCK/DSCK or ALE_B/DSCK/AT1 (depending on the configuration of the DSCK
function) should be connected to ground through a pull-down resistor to disable debug
mode as a default. When required, an external debug-mode controller can actively drive this
signal high to put the MPC860 into debug mode.

The two signals TCK/DSCK and TDI/DSDI have special requirements to keep them from
oscillating when unused (see Section 12.3, “Internal Pull-Up and Pull-Down Resistors”).
Table 12-4 shows the external connection requirements depending on the silicon revision
of the MPC860.

Table 12-4. TCK/DSCK and TDI/DSDI Connection Based on MPC860 Revision

Signal Revision A.3 and Earlier Revision B and Later

TCK/
DSCK

Should be pulled down to ground; the pull-down
resistor must be strong (for example, 1 kΩ) to
overcome the internal pull-up resistor.

Should be pulled down to ground. A strong
pull-down resistor (for example, 1 kΩ) is
recommended.

TDI/
DSDI

Should be pulled up to VCC. Internal pull-up is provided (no external resistor
required).

MPC855T User’s Manual MOTOROLA

Signal States during Reset

To allow the application of any version of MPC860, perform the revision A requirements.

12.4.3 Unused Inputs

In general, pull-up resistors should be used on any unused inputs to keep them from
oscillating. For example, if PCMCIA is not used, the PCMCIA input pins (WAIT_A,
WAIT_B, IP_A[0–8], IP_B[0–8]) should have external pull-up resistors. However, unused
pins of port A, B, C, or D can be configured as outputs, and, if they are configured as outputs
they do not require external terminations.

12.4.4 Unused Outputs

Unused outputs can be left unterminated.

12.5 Signal States during Reset
During a reset, the signals of the MPC855T behave as shown in Table 12-5.

Table 12-5. General Signal Behavior during Reset

Reset Signal Signal Behavior

HRESET or PORESET Bus signals are high-impedance.

Port I/O signals are configured as inputs and are therefore high-impedance.

Memory controller signals are driven to their inactive state. Refresh stops.

(For the behavior of specific signals during a hard reset, see Section 12.1, “System Bus
Signals.”)

SRESET The current bus cycle aborts. Bus signals revert to their inactive state. (For example, BR or
BG negate, and address and data signals become high-impedance.)

Memory controller aborts the current access, and signals drive to their inactive state (high).
Refresh continues.

Port I/O signals are not re-configured (maintain previous programming).

SIU pin configuration maintains previous programming; see Table 12-2.

Chapter 13. External Bus Interface

Chapter 13
External Bus Interface
The MPC855T bus is a synchronous, burstable bus that can support multiple masters.
Signals driven on this bus are required to make the setup and hold time relative to the bus
clock’s rising edge. The MPC855T architecture supports byte, half-word, and word
operands allowing access to 8-, 16-, and 32-bit data ports through the use of synchronous
cycles controlled by the size outputs (TSIZ0, TSIZ1). Access to 16- and 8-bit ports is done
for slaves controlled by the memory controller.

13.1 Features
The MPC855T bus interface features are listed as follows:

• 32-bit address bus with transfer size indication

• 32-bit data bus

• Dynamic bus sizing to 32-, 16-, or 8-bit ports accessed through the memory
controller

• TTL-compatible interface

• Bus arbitration supported optionally by internal or external logic

• Bus arbitration logic on-chip supports an external master with programmable
priority

• Compatible with PowerPC architecture

• Easy to interface to slave devices

• Bus is synchronous (all signals are referenced to rising edge of bus clock)

• Contains support for data parity

13.2 Bus Transfer Overview
The bus transfers information between the MPC855T and external memory or a peripheral
device. External devices can accept or provide 8, 16, and 32 bits in parallel and must follow
the handshake protocol described in this section. The maximum number of bits accepted or
provided during a bus transfer is defined as port width.

MPC855T User’s Manual

Bus Interface Signal Descriptions

The MPC855T’s address bus specifies the address for the transfer and its data bus transfers
the data. Control signals indicate the beginning of the cycle and the type of cycle, as well
as the address space and size of the transfer. The selected device controls cycle length with
signal(s) used to terminate the cycle. A strobe signal for the address bus indicates the
validity of the address and gives data timing information. The MPC855T bus is
synchronous, therefore, the bus and control input signals must be timed to setup and hold
times relative to the rising edge of the clock. At minimum, single-beat bus cycles can be
completed in two clock cycles.

Furthermore, for all inputs, the MPC855T latches the input’s level during a sample window,
shown in Figure 13-1, around the rising clock edge. To ensure that an input signal is
recognized on a specific rising clock edge, that input must be stable during the sample
window. If an input changes during the window, the level recognized by the MPC855T is
unpredictable; however, the MPC855T always resolves the latched level to either a logical
high or low before using it. For deterministic operation, all input signals must obey the
protocols described in this chapter in addition to meeting input setup and hold times.

Figure 13-1. Input Sample Window

TSIZ0 and TSIZ1 indicate the number of bytes remaining to be transferred during an
operand cycle (consisting of one or more bus cycles) and are driven with the address type
signals at the beginning of a bus cycle. These signals are valid at the rising edge of the clock
in which the transfer start signal (TS) is asserted.

13.3 Bus Interface Signal Descriptions
Figure 13-3 shows the bus signals for the MPC855T.

Sample
Window

Input Setup Time

Input Hold Time

Clock

Signal

Chapter 13. External Bus Interface

Bus Interface Signal Descriptions

Figure 13-2. MPC855T Bus Signals

Table 13-1 describes each signal; detailed descriptions can be found in subsequent sections.
Table 13-1. MPC855T Signal Overview

Signal Pins I/O 1 Description

Address and Transfer Attributes

A[–31]
Address Bus

O Driven by the MPC855T when it owns the external bus. Specifies the physical
address of the bus transaction. Can change during a transaction when controlled
by the memory controller.

I Sampled by the MPC855T when an external device initiates a transaction and the
memory controller was configured to handle external master accesses.

RD/WR
Read/Write

1 O Driven by the MPC855T along with the address when it owns the external bus.
Driven high indicates that a read access is in progress. Driven low indicates that a
write access is in progress.

I Sampled by the MPC855T when an external device initiates a transaction and the
memory controller was configured to handle external master accesses.

BB1

BR1

DP[0–3]

1 BG

BI

TS

TA

TEA

KR/RETRY

CR

R/W

BURST
TSIZ[0–1]

AT[0–3]

PTR

1

1

1

1

32

32

4

1

1

1

1

2

4

1

1

1

RSV

1

STS

BDIP

D[0–31]

Address
and
Transfer
Attributes

Transfer
Start

Reservation
Protocol

Data

Arbitration

Transfer
Cycle
Termination

A[0–31]

M
P

C
85

5T

MPC855T User’s Manual

Bus Interface Signal Descriptions

BURST
Burst Transfer

1 O Driven by the MPC855T along with the address when it owns the external bus.
Driven low indicates that a burst transfer is in progress. Driven high indicates that
the current transfer is not a burst.

I Sampled by the MPC855T when an external device initiates a transaction and the
memory controller was configured to handle external master accesses.

TSIZ[0–1]
Transfer Size

2 O Driven by the MPC855T along with the address when it owns the external bus.
Specifies the data transfer size for the transaction.

I Sampled by the MPC855T when an external device initiates a transaction and the
memory controller was configured to handle external master accesses.

AT[0–3]
Address Type

4 O Driven by the MPC855T along with the address when it owns the external bus.
Indicates additional information about the address on the current transaction.

RSV
Reservation
Transfer

1 O Driven by the MPC855T along with the address when it owns the external bus.
Indicates additional information about the address on the current transaction.

PTR
Program
Trace

1 O Driven by the MPC855T along with the address when it owns the external bus.
Indicates additional information about the address on the current transaction.

BDIP
Burst Data in
Progress

1 O Driven by the MPC855T when it owns the external bus as part of the burst protocol.
Asserted indicates that the second beat in front of the current one is requested by
the master. Negated before the burst transfer ends to abort the burst data phase.

Transfer Start

TS
Transfer Start

1 O Driven by the MPC855T when it owns the external bus. Indicates the start of a
transaction on the external bus.

I Sampled by the MPC855T when an external device initiates a transaction and the
memory controller was configured to handle external master accesses.

STS
Special
Transfer Start

1 O Driven by the MPC855T when it owns the external bus. Indicates the start of a
transaction on the external bus or signals the beginning of an internal transaction
in show cycle mode.

Reservation Protocol

KR/RETRY
Kill
Reservation/R
etry

1 I If the core initiates a bus cycle by executing a stwcx. to a nonlocal bus on which
the memory reservation is lost, the nonlocal bus uses this signal to back-off the
cycle. See Section 13.4.9, “Memory Reservation.”
For regular transactions, the slave device drives this signal to indicate that the
MPC855T must relinquish the bus and retry the cycle.

Table 13-1. MPC855T Signal Overview (continued)

Signal Pins I/O 1 Description

Chapter 13. External Bus Interface

Bus Interface Signal Descriptions

Data

D[0–31]
Data Bus

32 The data bus has the following byte lane assignments:
Data Byte Byte Lane
D[0–7]0
D[8–15]1
D[16–23]2
D[24–31]3

O Driven by the MPC855T when it is external bus master and it initiated a write
transaction to a slave device. For single-beat transactions, the byte lanes not
selected for the transfer by the A[30–31] and TSIZ[0–1] will not supply valid data.

I Driven by the slave in a read transaction. For single-beat transactions, the byte
lanes not selected for the transfer by the A[30–31] and TSIZ[0–1] will not be
sampled by the MPC855T

DP[0–3]
Parity Bus

4 Each parity line corresponds to each one of the data bus lanes:
Data Bus ByteParity Line
D[0–7]DP0
D[8–15]DP1
D[16–23]DP2
D[24–31]DP3

O Driven by the MPC855T when it is external bus master and it initiated a write
transaction to a slave device. Each line has the parity value (even or odd) of its
corresponding data bus byte. For single-beat transfers, byte lanes not selected by
A[30–31] and TSIZ[0–1] will not have a valid parity line.

I Driven by the slave in a read transaction. Each parity line is sampled by the
MPC855T and checked (if enabled) against the expected value parity value (even
or odd) of its corresponding data bus byte. For single-beat transfers, byte lanes not
selected by A[30–31] and TSIZ[0–1] are not sampled by the MPC855T and its parity
lines will not be checked.

Transfer Cycle Termination

TA
Transfer
Acknowledge

1 I Driven by the slave device to which the current transaction is addressed. Indicates
that the slave received the data on the write cycle or returned data on the read
cycle. If the transaction is a burst, TA should be asserted for each beat.

O Driven by the MPC855T when the slave device is controlled by the on-chip memory
controller or PCMCIA interface.

TEA
Transfer Error
Acknowledge

1 I Driven by the slave device to which the current transaction is addressed. Indicates
that an error condition occurred during the bus cycle.

O Driven by the MPC855T when the internal bus monitor detects a bus error.

BI
Burst Inhibit

1 I Driven by the slave device to which the current transaction was addressed.
Indicates that the current slave does not support burst mode.

O Driven by the MPC855T when the on-chip memory controller controls the slave.

Table 13-1. MPC855T Signal Overview (continued)

Signal Pins I/O 1 Description

MPC855T User’s Manual

Bus Operations

13.4 Bus Operations
This section provides a functional description of the system bus, the signals that control it,
and the bus cycles provided for data transfers. It also describes error conditions, bus
arbitration, and the reset operation. The MPC855T generates a system clock output
(CLKOUT), which directly sets the bus interface operation frequency. Internally, the
MPC855T uses a phase-lock loop (PLL) circuit to generate a master clock for all core
circuitry (including the bus interface), which is phase-locked to CLKOUT.

MPC855T bus interface signals are specified with respect to the rising edge of the external
CLKOUT and are guaranteed to be sampled as inputs or changed as outputs with respect to
that edge. Because the same clock edge is used for driving or sampling bus signals, clock
skew may occur between various modules in a system due to routing or the use of multiple
clock lines. The system must handle any clock skew problems that could occur as a result
of layout, lead length, and physical routing.

Arbitration

BR
Bus Request

1 I Asserting BR when the internal arbiter is enabled indicates an external master is
requesting the bus.

O The MPC855T drives BR when the internal arbiter is disabled.

BG
Bus Grant

1 O When the internal arbiter is enabled, the MPC855T asserts BG to indicate that an
external master may assume bus mastership and begin a bus transaction. The
device requesting bus mastership should qualify BG to ensure it is the bus owner:
Qualified BG = BG & ~ BB

I When the internal arbiter is disabled, BG is sampled and properly qualified by the
MPC855T when an external bus transaction is to be executed by the chip.

BB
Bus Busy

1 O When the internal arbiter is enabled, the MPC855T asserts BB to indicate it is bus
master. When the internal arbiter is disabled, the MPC855T asserts BB after the
external arbiter granted mastership to the chip and it is ready to start the transfer.

I When the internal arbiter is enabled, the MPC855T samples this signal to get
indication of when the external master ended its bus tenure (BB negated).
When the internal arbiter is disabled, the BB is sampled, to properly qualify the BG
line, when an external bus transaction is to be executed by the chip.

1 O= Output from the MPC855T; I= Input to the MPC855T

Table 13-1. MPC855T Signal Overview (continued)

Signal Pins I/O 1 Description

Chapter 13. External Bus Interface

Bus Operations

13.4.1 Basic Transfer Protocol

The basic transfer protocol defines the sequence of actions required for a complete
MPC855T bus transaction. Figure 13-3 shows a simplification of the basic transfer
protocol.

• Arbitration—A device requests bus access

• Address phase—The address and the transfer attributes are generated.

• Data phase—Any data to be transferred is transferred. The data phase may transfer
a single beat of data (4 bytes or less) for nonburst operations, a 4-beat data burst (4
× 4 bytes), an 8-beat data burst (8 × 2 bytes), or a 16-beat data burst (16 × 1 bytes).

• Termination—The transfer completes successfully or it was aborted.

13.4.2 Single-Beat Transfer

During the data transfer, the master writes data to the slave or reads data from the slave. On
a write cycle, the master drives the data as soon as it can, but not before the cycle after the
address transfer phase. The master must consider the one dead clock cycle switching
between drivers to avoid electrical contention. The master can stop driving the data bus as
soon as it samples TA asserted on the rising edge of CLKOUT. On a read cycle the master
accepts the data bus contents as valid at the rising edge of CLKOUT in which TA is sampled
asserted.

13.4.2.1 Single-Beat Read Flow

The basic read cycle begins with a bus arbitration, followed by the address transfer, then the
data transfer. The following flow and timing diagrams show the handshakes applicable to
the fixed transaction protocol.

Figure 13-3. Basic Transfer Protocol

Arbitration Address transfer Data transfer Termination

MPC855T User’s Manual

Bus Operations

Figure 13-4. Basic Flow Diagram of a Single-Beat Read Cycle

MASTER

Bus Request (BR)

Receives Bus Grant (BG) from arbiter

Asserts Bus Busy (BB) if no other master is driving
Asserts Transfer Start (TS)

Drives address and attributes

Receives Address

Returns data

Asserts Transfer Acknowledge (TA)

Receives data

SLAVE

Chapter 13. External Bus Interface

Bus Operations

Figure 13-5. Basic Timing: Single-Beat Read Cycle, Zero Wait States

CLKOUT

BR

BG

BB

R/W

TSIZ[0–1], AT[0–3]

BURST

TS

Data

TA

Assert BB, drive address and assert TS

Receive BG and BB negated

Data is Valid

A[–31]

MPC855T User’s Manual

Bus Operations

Figure 13-6. Basic Timing: Single-Beat Read Cycle, One Wait State

13.4.2.2 Single-Beat Write Flow

The basic write cycle begins with a bus arbitration, followed by the address transfer, then
the data transfer. The following flow and timing diagrams show the handshakes as
applicable to the fixed transaction protocol.

CLKOUT

BR

BG

BB

R/W

TSIZ[0–1], AT[0–3]

BURST

TS

Data

TA

Assert BB, drive address and assert TS

Receive BG and BB negated

Data is Valid
Wait State

A[–31]

Chapter 13. External Bus Interface

Bus Operations

Figure 13-7. Basic Flow of a Single-Beat Write Cycle

MASTER

Bus Request (BR)

Receives Bus Grant (BG) from arbiter

Asserts Bus Busy (BB) if no other master is driving
Asserts Transfer Start (TS)

Drives address and attributes

Asserts Transfer Acknowledge (TA)

Interrupts data driving

SLAVE

Drives data

MPC855T User’s Manual

Bus Operations

Figure 13-8. Basic Timing: Single-Beat Write Cycle, Zero Wait States

CLKOUT

BR

BG

BB

R/W

TSIZ[0–1], AT[0–3]

BURST

TS

Data

TA

Assert BB, drive address and assert TS

Receive BG and BB negated

Data is sampled

A[–31]

Chapter 13. External Bus Interface

Bus Operations

Figure 13-9. Basic Timing: Single-Beat Write Cycle, One Wait State

The general case of single-beat transfers assumes that external memory has a 32-bit port
size. The MPC855T provides an effective mechanism for interfacing with 16- and 8-bit port
size memories by allowing transfers to these devices when they are controlled by the
internal memory controller.

CLKOUT

BR

BG

BB

R/W

TSIZ[0–1], AT[0–3]

BURST

TS

Data

TA

Assert BB, drive address and assert TS

Receive BG and BB negated

Data is Sampled
Wait State

A[–31]

MPC855T User’s Manual

Bus Operations

Figure 13-10. Basic Timing: Single-Beat, 32-Bit Data Write Cycle, 16-Bit Port Size

13.4.3 Burst Transfers

The MPC855T or other synchronous external bus devices use burst transfers to access
16-byte operands. A burst accesses a 16-byte block aligned to a 16-byte memory boundary
by supplying a starting address that points to one of the words and requiring the memory
device to sequentially drive/sample each word on the data bus. The selected slave device
must internally increment A28 and A29 (and A30 in the case of a 16-bit port size slave
device) of the supplied address for each transfer, causing the address to wrap around at the
end of the four-word block. For slaves controlled by the memory controller, the MPC855T
increments the address on A[28–31] and/or BADDR[28–30].

Address and transfer attributes supplied by the master bus remain stable during the
transfers; the selected device terminates each transfer by asserting TA after each word
transferred on the data bus. The MPC855T also supports burst-inhibited transfers for slave

CLKOUT

BR

BG

BB

R/W

TSIZ[0–1]

BURST

TS

Data

TA

STS

PS 10

ABCDEFGH EFGHEFGH

00 10

A A + 2A[–31]

Chapter 13. External Bus Interface

Bus Operations

devices that do not support bursting. For this type of cycle, the selected slave device
supplies/samples the address of the first word of the burst and asserts the burst-inhibit signal
(BI) with TA for the first transfer of the burst access. The MPC855T responds by
terminating the burst and accessing the rest of the 16-byte block, using three read/write
cycles (each one for a word) for a 32-bit port-width slave, seven read/write cycles for a
16-bit port-width slave, or fifteen read/write cycles for a 8-bit port-width slave.

The general case of burst transfers assumes that external memory has a 32-bit port size. The
MPC855T provides an effective mechanism for interfacing with 16-bit port size memories
and 8-bit port size memories allowing burst transfers to these devices when they are
controlled by the internal memory controller. In this case, the MPC855T attempts to initiate
a burst transfer as in the normal case. If, in a cycle before the TA is asserted for the first
beat, the memory controller responds that the port size is 16-/8-bits and that the burst is
accepted, the MPC855T completes a 8-/16-beat burst. Each data beat effectively transfers
only 2/1 bytes. Note that this 8-/16-beat burst is considered an atomic transaction, so the
MPC855T will not allow other unrelated master accesses or bus arbitration between
transfers.

13.4.4 Burst Operations

The MPC855T burst mechanism uses additional signals to the basic protocol: BURST
indicates that the cycle is a burst cycle, burst data in progress (BDIP) indicates the duration
of the burst data, and burst inhibit (BI) indicates whether the slave supports bursts. Along
with asserting TS, the master drives the address, address attributes, and BURST signals to
indicate that a burst transfer is being initiated. Slaves that support bursting negate BI. If the
slave cannot burst, it asserts BI. During the data phase of a burst write cycle the master
drives the data. The master also asserts BDIP if it intends to drive the data beat after the
current one.

When the slave has received the data, it asserts TA to indicate to the master that it is ready
for the next transfer. The master again drives the next data and asserts or negates BDIP. If
the master does not intend to drive another data beat, it negates BDIP to indicate to the slave
that the next data beat is the last one in the burst write.

Bursts performed by MPC855T internal masters are always 16 bytes. The MPC855T
memory controller responds only to fixed-length bursts (also typically programmed to be
16 bytes). Therefore, devices in an MPC855T system should attempt only 16-byte burst
transfers except for external masters with a dedicated chip select, such as an external
MPC603 that bursts to a chip select programmed for a 32-byte burst.

During the data phase of a burst read cycle, the master receives data from the addressed
slave. If the master needs more than one data, it asserts BDIP. When the master receives the
next-to-last data, it negates BDIP. Thus, the slave stops driving new data after receiving the
negation of BDIP at the rising clock edge.

MPC855T User’s Manual

Bus Operations

In the case of 32-bit port size, the burst includes 4 beats. When the port size is 16 bits and
controlled by the internal memory controller, the burst includes 8 beats. When the port size
is 8 bits and controlled by the internal memory controller, the burst includes 16 beats. The
MPC855T bus supports critical data first access for fixed-size burst. The order of
wraparound wraps back to the critical data. For example, assuming data 2 is critical:

• Case burst of four:

data 2 → data 3 → data 0 → data 1

• Case burst of eight:

data 2 → data 3 → data 4 →......... → data 7 → data 0 → data 1

The following flow and timing diagrams show the handshakes for burst transactions.

Chapter 13. External Bus Interface

Bus Operations

Figure 13-11. Basic Flow of a Burst-Read Cycle

BDIP asserted
?

MASTER

Bus Request (BR)

Receives Bus Grant (BG) from arbiter

Asserts Bus Busy (BB) if no other master is driving
Asserts Transfer Start (TS)

Drives address and attributes

Asserts Transfer Acknowledge (TA)

Receives data

SLAVE

Asserts Burst Data in Progress (BDIP)

Drives BURST asserted

Receives address

Returns data

Asserts Transfer Acknowledge (TA)
Returns data

BDIP asserted
?

Receives data

Asserts Transfer Acknowledge (TA)
Returns data

BDIP asserted
?

Receives Data

Asserts Transfer Acknowledge (TA)
Returns data

BDIP asserted
?

Negates Burst Data in Progress (BDIP)

Yes

Receives data

Don’t drive
data

Don’t drive
data

Don’t drive
data

Don’t drive
data

Yes

Yes

Yes

No

No

No

No

MPC855T User’s Manual

Bus Operations

Figure 13-12. Burst-Read Cycle: 32-Bit Port Size, Zero Wait State

Expects Another Data

Last Beat

CLKOUT

BR

BG

BB

R/W

TSIZ[0–1]

BURST

TS

Data

TA

Data is

BDIP

PS 00
Valid

Data is
Valid

Data is
Valid

Data is
Valid

00

A[–31], AT[0–3]

Chapter 13. External Bus Interface

Bus Operations

Figure 13-13. Burst-Read Cycle: 32-Bit Port Size, One Wait State

Expects Another Data

Last Beat

CLKOUT

BR

BG

BB

R/W

TSIZ[0–1]

BURST

TS

Data

TA

Data is

BDIP

PS 00
Valid

Data is
Valid

Data is
Valid

Data is
Valid

00

Wait State

A[–31], AT[0–3]

MPC855T User’s Manual

Bus Operations

Figure 13-14. Burst-Read Cycle: 32-Bit Port Size, Wait States between Beats

Expects Another Data

Last Beat

CLKOUT

BR

BG

BB

R/W

TSIZ[0–1]

BURST

TS

Data

TA

Data is

BDIP

PS 00
Valid

Data is
Valid

Data is
Valid

Data is
Valid

00

Wait State

A[–31], AT[0–3]

Chapter 13. External Bus Interface

Bus Operations

Figure 13-15. Burst-Read Cycle: 16-Bit Port Size, One Wait State between Beats

CLKOUT

BR

BG

BB

R/W

TSIZ[0–1]

BURST

TS

Data

TA

PS

BDIP

00

10

A[–31], AT[0–3]

MPC855T User’s Manual

Bus Operations

Figure 13-16. Basic Flow of a Burst Write Cycle

BDIP asserted
?

MASTER

Bus Request (BR)

Receives Bus Grant (BG) from arbiter

Asserts Bus Busy (BB) if no other master is driving
Asserts Transfer Start (TS)

Drives address and attributes

Asserts Transfer Acknowledge (TA)

Drives data

SLAVE

Asserts burst data in progress (BDIP)

Drives BURST asserted

Receives address

Negates Burst Data in Progress (BDIP)

Stops driving data

Don’t sample
next data

Don’t sample
next data

Yes

No

Drives data

BDIP asserted
?

Asserts Transfer Acknowledge (TA)

Drives data

Don’t sample
next data

Yes

No

BDIP asserted
?

Asserts Transfer Acknowledge (TA)

Drives data

Don’t sample
next data

Yes

No

BDIP asserted
?

Asserts Transfer Acknowledge (TA)

Yes

No

Chapter 13. External Bus Interface

Bus Operations

Figure 13-17. Burst-Write Cycle: 32-Bit Port Size, Zero Wait States

Figure 13-18 shows an attempted burst read to a slave device that does not support bursting.
The slave acknowledges the first transfer and also asserts the burst-inhibit signal (BI). The
MPC855T responds by terminating the burst and accessing the rest of the 16-byte block,
using three single-beat read cycles.

Will drive another data

Last beat

CLKOUT

BR

BG

BB

R/W

TSIZ[0–1]

BURST

TS

Data

TA

Data is

BDIP

sampled
Data is

sampled
Data is

sampled
Data is

sampled

00

A[–31], AT[0–3]

MPC855T User’s Manual

Bus Operations

Figure 13-18. Burst-Inhibit Cycle: 32-Bit Port Size

13.4.5 Alignment and Data Packing on Transfers

The MPC855T external bus supports only natural address alignment:

• Byte access can have any address alignment

• Half-word access must have A[31] = 0b0

• Word access must have A[30–31] = 0b00

• For burst accesses A[30–31] = 0b00

CLKOUT

BR

BG

BB

A[28–29]

A[30–31]

R/W

TSIZ[0–1]

TS

BDIP

Data

BURST

TA

BI

n n+1 Mod 4 n+2 Mod 4 n+3 Mod 4

00

A[–27]

Chapter 13. External Bus Interface

Bus Operations

Misaligned accesses performed by the core are broken into multiple bus accesses with
natural alignment. Misaligned accesses performed by external masters are not supported.

The MPC855T transfers operands through its 32-bit data port. If the transfer is controlled
by the internal memory controller, the MPC855T can support 8- and 16-bit data port sizes.
The bus requires that the portion of the data bus used for a transfer to or from a particular
port size be fixed. A 32-bit port must reside on D[0–31], a 16-bit port must reside on
D[0–15], and an 8-bit port must reside on D[0–7]. The MPC855T always tries to transfer
the maximum amount of data on all bus cycles; for a word operation, it always assumes that
the port is 32 bits wide when beginning the cycle. Figure 13-19, Figure 13-20, Table 13-2,
and Table 13-3 use the following conventions:

• OP0 is the MSB of a word operand; OP3 is the LSB.

• The two bytes of a half-word operand are OP0 (most-significant) and OP1 or OP2
(most-significant) and OP3, depending on the address of the access.

• The single byte of a byte-length operand is OP0, OP1, OP2, or OP3, depending on
the address of the access.

Figure 13-19. Internal Operand Representation

Figure 13-20 shows the device connections on the data bus.

OP0 OP1 OP2 OP3 Word

OP0 OP1

OP2 OP3

OP0

OP1

OP2

OP3

Half Word

Byte

0 31

MPC855T User’s Manual

Bus Operations

Figure 13-20. Interface to Different Port Size Devices

Table 13-2 lists the bytes required on the data bus for read cycles.

Table 13-3 lists data transfer patterns for write cycles when the MPC855T initiates
accesses.

Table 13-2. Data Bus Requirements for Read Cycles

Transfer
Size

TSIZ[0–1]
Address 32-Bit Port 1

1 — denotes a byte not required during that read cycle.

16-Bit Port1 8-Bit Port

A30 A31 D[0–7] D[8–15] D[16–D3] D[24–31] D[0–7] D[8–15] D[0–7]

Byte 0 1 0 0 OP0 — — — OP0 — OP0

0 1 — OP1 — — — OP1 OP1

1 0 — — OP2 — OP2 — OP2

1 1 — — — OP3 — OP3 OP3

Half-Word 1 0 0 0 OP0 OP1 — — OP0 OP1 OP0

1 0 — — OP2 OP3 OP2 OP3 OP2

Word 0 0 0 0 OP0 OP1 OP2 OP3 OP0 OP1 OP0

OP0 OP1

OP2 OP3
16-Bit Port Size

OP0 OP1 OP2 OP3 Interface Output
0 31

D[0–7] D[8–15] D[16–23] D[24–31]

OP0 OP1 OP2 OP3 32-Bit Port Size

OP0

OP1
8-Bit Port Size

OP2

OP3

Register

Chapter 13. External Bus Interface

Bus Operations

13.4.6 Arbitration Phase

The external bus design provides for a single bus master at any one time, either the
MPC855T or an external device. The arbitration of external bus devices contending for bus
mastership may be handled either by an external central bus arbiter or by the internal
on-chip arbiter. In the latter case, the system is optimized for one external bus master
besides the MPC855T. The arbitration configuration (external or internal) is set at system
reset. See Section 15.8, “External Master Support.”

Each bus master must have bus request (BR), bus grant (BG), and bus busy (BB) signals. A
device needing the bus asserts BR, and then waits for the arbiter to assert BG. The new
master must look at BB to ensure that no other master is driving the bus before it can assert
BB to assume bus mastership. (Note that the internal arbiter may take away the BG if an
internal master of higher priority requests the bus and the new master does not assert BB
within one clock after BG.)

If the arbiter removes the bus grant from a device that wants another transfer, the device
must rearbitrate for bus mastership. The MPC855T, however, guarantees data coherency
for accesses to small ports and for decomposed bursts. This means that the MPC855T does
not release the bus before atomic transactions complete. For example, a halfword transfer
to a byte port is broken into two byte transfers; the MPC855T does not deassert BB until
the second transfer completes, unless an error occurs. Figure 13-21 shows basic bus
arbitration protocol. Section 10.4.2, “SIU Module Configuration Register (SIUMCR),”
describes how prioritization can be configured.

Table 13-3. Data Bus Contents for Write Cycles

Transfer
Size

TSIZ[0–1]
Address External Data Bus Pattern 1

1 — denotes a byte not required during that read cycle.

A30 A31 D[0–7] D[8–15] D[16–D3] D[24–31]

Byte 0 1 0 0 OP0 — — —

0 1 OP1 OP1 — —

1 0 OP2 — OP2 —

1 1 OP3 OP3 — OP3

Half-Word 1 0 0 0 OP0 OP1 — —

1 0 OP2 OP3 OP2 OP3

Word 0 0 0 0 OP0 OP1 OP2 OP3

MPC855T User’s Manual

Bus Operations

13.4.6.1 Bus Request (BR)

The potential bus master asserts BR to request bus mastership. BR should be negated as
soon as the bus is granted, the bus is not busy, and the new master can drive the bus. If
requests are pending, the master can assert BR as long as needed. When configured for
external arbitration, the MPC855T drives BR when it requires bus mastership. When the
internal on-chip arbiter is used, BR is an input to the internal arbiter and should be driven
by the external bus master.

13.4.6.2 Bus Grant (BG)

The arbiter asserts BG to indicate that the bus is granted to the requesting device. BG can
be negated after BR is negated or it can remain asserted to park the current master on the
bus. The internal arbiter may take away the BG if the new master does not assert BB within
one clock.

When the internal on-chip arbiter is used, BG is an output from the internal arbiter to the
external bus master. When configured for external central arbitration, BG is an input to the
MPC855T from the external arbiter.

13.4.6.3 Bus Busy (BB)

BB indicates that the current master is using the bus. New masters should not begin a
transfer until BB is deasserted. The bus master should not relinquish or negate BB until it

Requesting Device Arbiter

Request the bus

Assert BR Grant bus

Assert BG

Request the bus

1. Wait for BB to be negated

2. Assert BB to become next master

3. Negate BR Terminate arbitration

Negate BG (or keep it asserted to park
bus master)

Operate as bus master

Perform data transfer

Release bus mastership

Negate BB

Figure 13-21. Basic Bus Arbitration Protocol

Chapter 13. External Bus Interface

Bus Operations

completes its transfer. To avoid contention on BB, masters should three-state BB when it
gets a logical 1 value. This situation implies an external pull-up resistor is needed to ensure
that a master that acquires the bus can recognize the negation of BB, regardless of how
many cycles have passed since the previous master relinquished the bus. See Figure 13-22.

Figure 13-22. Bus Busy (BB) and Transfer Start (TS) Connection Example

Figure 13-23 shows an example bus arbitration between two contending masters.

Master

Slave 2

TS

BB

External Bus

MPC855T

MPC855T User’s Manual

Bus Operations

Figure 13-23. Bus Arbitration Timing Diagram

The MPC855T can be configured at system reset to use the internal bus arbiter. In this case,
the MPC855T is parked on the bus. Section 10.4.2, “SIU Module Configuration Register
(SIUMCR),” describes prioritization of external devices relative to the internal MPC855T
bus masters. If the external device requests the bus and the MPC855T does not require it,
or the external device has higher priority than the current internal bus master, the MPC855T
grants the bus to the external device. Figure 13-24 shows the internal finite state machine
that implements the arbiter protocol.

CLKOUT

BR0

BG0

BR1

BG1

BB

ADDR/ATTR

TS

TA

Master 0
negates

BB
and

‘turns off’

Master 1
‘turns on’

and
drives
signals

Master 0
‘turns on’

and
drives
signals

Chapter 13. External Bus Interface

Bus Operations

Figure 13-24. Internal Bus Arbitration State Machine

13.4.6.4 External Bus Parking

During external arbitration, the MPC855T supports bus parking. If the MPC855T detects
that an external arbiter has asserted BG to it and BB is negated, the MPC855T starts a
transfer without asserting BR.

13.4.7 Address Transfer Phase-Related Signals

The following sections describe the address transfer phase-related signals.

13.4.7.1 Transfer Start (TS)

The transfer start signal (TS) indicates the beginning of a transaction on the bus addressing
a slave device. A device should assert TS only after the arbitration protocol has granted
mastership. TS is asserted only for the first cycle of the transaction and is negated in the
successive clock cycles until the end of the transaction. To avoid contention, the master
should three-state this signal when it relinquishes the bus. This situation indicates that an

needs the bus

External owner

BG = 0
BB = three-state

Idle

BG = 1
BB = three-state

BB =
1,

BR =
1

BR = 1 BR =
0

BG = 1
BB = three-state

BG = 1
BB = 0

no longer
needs the bus

BB = 1

BB = 0

External master
release bus

Internal master
with higher priority than the

external device requires
the bus

still
needs the bus

BR = 0

External device which
has higher priority than the
current internal bus master

requests the bus

External master
requests bus

MPC855T

MPC855T

MPC855T

MPC8T

BB = 0

855T own-

855T own-

MPC855T User’s Manual

Bus Operations

external pull-up resistor should be connected to TS to avoid having a slave recognize this
signal as asserted when no master drives it; see Figure 13-22.

13.4.7.2 Address Bus

The 32-bit address bus, A[0–31], is byte addressable, so each address can address one or
more bytes. A[0] is the msb. The address and its attributes are driven on the bus with TS;
they remain valid until the bus master receives a transfer acknowledge from the slave. To
distinguish an individual byte, the slave device must observe the TSIZ signals.

13.4.7.3 Transfer Attributes

The transfer attributes signal group consists of RD/WR, BURST, TSIZ[0–1], AT[0–3],
STS, and BDIP. These signals (with the exception of the BDIP) are available at the same
time as the address bus.

13.4.7.3.1 Read/Write (RD/WR)

RD/WR high indicates a read access and low indicates a write access. Driven at the
beginning of a bus cycle, RD/WR is valid at the rising edge of the clock in which TS is
asserted. RD/WR changes levels only when a write cycle is preceded by a read cycle or vice
versa. It may remain low for consecutive write cycles.

13.4.7.3.2 Burst Indicator (BURST)

BURST is driven by the bus master at the beginning of the bus cycle (along with the
address) to indicate that the transfer is a burst transfer.

13.4.7.3.3 Transfer Size (TSIZ)

TSIZ[0–1] indicates the size of the requested data transfer. The TSIZ signals may be used
with BURST and A[30–31] to determine which data byte lanes are used in the transfer. For
nonburst transfers, TSIZ[0–1] specifies the number of bytes starting from the byte location
addressed by A[30–31]. In burst transfers, the value of TSIZ[0–1] is always 00.

Table 13-4. BURST/TSIZ Encoding

BURST TSIZ[0–1] Transfer Size

1 01 Byte

1 10 Half word

1 11 x

1 00 Word

0 00 Burst (16 bytes)

Chapter 13. External Bus Interface

Bus Operations

13.4.7.3.4 Address Types (AT)

The address type signals (AT[0–3]), PTR and RSV, are outputs that indicate one of 16
address types to which the address applies. These types are designated as either a
normal/alternate master cycle, user/supervisor (problem/privilege), and instruction/data
types. The address type signals are valid at the rising edge of the clock in which the special
transfer start (STS) signal is asserted.

Address type signals reflect the current status of the master originating the access, not
necessarily the status in which the original access to this location has occurred. An example
of this situation is when a modified data cache block is copied back after the privilege level
of the processor has been changed since the last access to the same cache block. A
functional usage of the address type signal RSV is for the reservation protocol described in
Section 13.4.9, “Memory Reservation.” Table 13-5 provides the space definition encoded
by the STS, TS, AT[0–3], PTR, and RSV.

Table 13-5. Address Types Definition

STS TS
Core/
CPM
(AT0)

User/
Supervisor

(AT1)

Instruction/
Data (AT2)

Reservation/
Program

Trace (AT3)

Program
Trace
(PTR)

Reservation
(RSV)

Address Space Definitions

1 x x x x x 1 1 No transfer or not the first
transaction of a transfer

0 x x x x x x x Start of a transaction

x 0 0 0 0 0 0 1 Core-initiated, normal
instruction, program trace,
supervisor mode

1 1 1 Core-initiated, normal
instruction, supervisor mode

1 0 1 0 Core-initiated, reservation
data, supervisor mode

1 1 1 Core-initiated, normal data,
supervisor mode

1 0 0 0 1 Core-initiated, normal
instruction, program trace,
user mode

1 1 1 Core-initiated, normal
instruction, user mode

1 0 1 0 Core-initiated, reservation
data, user mode

1 1 1 Core-initiated, normal data,
user mode

1 AT1 AT2 AT3 1 1 DMA-initiated, normal,
AT[1–3] user-programmable
(see IDMA and DMA function
code registers)

MPC855T User’s Manual

Bus Operations

Show cycles are accesses to the core’s internal bus devices. These accesses are made visible
externally for emulation and debugging. A show cycle can have one address phase and one
data phase (or just an address phase for the instruction show cycles). The cycle can be a
write or a read access. The address of the show cycle is valid on the bus for one clock and
the data of the show cycle is valid on the bus for one clock. The data phase does not require
a transfer acknowledge to terminate the bus-show cycle. In a burst-show cycle only the first
data beat is shown externally.

When AT3 = 0 for an access from the core, it indicates either program trace (for an
instruction cycle) or reservation (for a data cycle). These indications can also be monitored
on two separate signals (PTR and RSV), if desired.

• PTR is low when the following is true:
— AT0 = 0 (Core access)
— AT2 = 0 (Instruction)

x 1 0 0 0 0 0 1 Core-initiated, show cycle
address instruction, program
trace,
supervisor mode

1 1 1 Core-initiated, show cycle
address instruction,
supervisor mode

1 0 1 0 Core-initiated, reservation
show cycle data, supervisor
mode

1 1 1 Core-initiated, show cycle
data, supervisor mode

1 0 0 0 1 Core-initiated, show cycle
address instruction, program
trace,
user mode

1 1 1 Core-initiated, show cycle
address instruction, user
mode

1 0 1 0 Core-initiated, reservation
show cycle data, user mode

1 1 1 Core-initiated, show cycle
data, user mode

1 AT1 AT2 AT3 1 1 DMA-initiated, normal,
AT[1–3] user-programmable
(see IDMA and DMA function
code registers)

Table 13-5. Address Types Definition (continued)

STS TS
Core/
CPM
(AT0)

User/
Supervisor

(AT1)

Instruction/
Data (AT2)

Reservation/
Program

Trace (AT3)

Program
Trace
(PTR)

Reservation
(RSV)

Address Space Definitions

Chapter 13. External Bus Interface

Bus Operations

— AT3 = 0 (Program Trace)
• RSV is low when the following is true:

— AT0 = 0 (Core access)
— AT2 = 1 (Data)
— AT3 = 0 (Reservation)

13.4.7.3.5 Burst Data in Progress (BDIP)

The master asserts BDIP to indicate to the slave that another data beat follows the current
data beat.

13.4.8 Termination Signals

The following sections discuss the termination signals supported by the MPC855T.

13.4.8.1 Transfer Acknowledge (TA)

TA indicates normal completion of the bus transfer. The slave asserts TA with every data
beat returned or accepted during a burst cycle.

13.4.8.2 Burst Inhibit (BI)

The slave asserts BI to indicate to the master that it cannot burst. If this signal is asserted,
the master must transfer in multiple cycles and increment the address for the slave to
complete the burst transfer.

13.4.8.3 Transfer Error Acknowledge (TEA)

Terminates the bus cycle under a bus error condition for which the current cycle is aborted.
TEA overrides other cycle termination signals, such as TA.

Note that for burst transactions, TEA should be asserted externally only on the first or last
beats. Assertion of TEA on an intermediate beat may result in erratic operation, including
lockup of the MPC855T requiring hard reset.

13.4.8.4 Termination Signals Protocol

The transfer protocol was defined to avoid electrical contention on lines that can be driven
by various sources. To do that, a slave should not drive signals associated with the data
transfer until the address phase is completed and it recognizes the address as its own. The
slave should disconnect from signals immediately after it has acknowledged the cycle and
no later than the termination of the next address phase cycle. This indicates that termination
signals should be connected to power through a pull-up resistor to prevent a master from

MPC855T User’s Manual

Bus Operations

sampling undefined values in any of these signals when no real slave is addressed. See
Figure 13-25 and Figure 13-26.

Figure 13-25. Termination Signals Protocol Basic Connection

Figure 13-26. Termination Signals Protocol Timing Diagram

Slave 1

Slave 2

External Bus

Termination Signals
(TA, TEA, BI)

MPC855T

CLKOUT

R/W

TSIZ[0–1]

TS

Data

TA, BI, TEA

Slave 1
negates

acknowledge
signals

and

Slave 2
allowed to

drive
acknowledge

signals

Slave 1
allowed to

drive
acknowledge

signals

Slave 2
negates

acknowledge
signals

and
‘turns off’‘turns off’

Slave 1 Slave 2A[–31]

Chapter 13. External Bus Interface

Bus Operations

13.4.9 Memory Reservation

The MPC855T memory reservation protocol supports multilevel bus structures. For each
local bus, reservations are handled by the local reservation logic. The protocol tries to
optimize reservation cancellation such that an MPC8xx core processor is notified of
memory reservation loss on a remote bus only when it has issued a STWCX cycle to that
address. That is, the reservation loss indication comes as part of the STWCX cycle, which
avoids the need for fast memory reservation loss indication signals between each remote
bus and each MPC8xx master. The memory reservation protocol assumes the following:

• Each processor has no more than one reservation flag.

• lwarx sets the reservation flag.

• lwarx by the same processor clears the reservation flag related to a previous lwarx
instruction and again sets the reservation flag.

• stwcx. by the same processor clears the reservation flag.

• Store by the same processor does not clear the reservation flag.

• Some other processor (or other mechanism) store to the same address as an existing
reservation clears the reservation flag.

• If memory reservation is lost, it is guaranteed that stwcx. will not modify the
memory.

13.4.9.1 Cancel Reservation (CR)

CR is a point-to-point signal. To use it, reservation logic must remember specifically which
bus master requested reservation for which address. If another master writes to the reserved
address, the reservation logic asserts CR only to the master that holds the associated
reservation, thus clearing its flag.

The advantage of CR is that it preempts the stwcx. instruction if reservation is lost, thus
eliminating unnecessary traffic on the external bus.

Figure 13-27 shows the reservation protocol for a single-level (local) bus. It assumes that
an external logic on the bus handles the following:

• Snoops accesses to all local bus slaves.

• Holds one reservation for each local master capable of memory reservations.

• Sets the reservation when that master issues a load and reserve request.

• Clears the reservation when another master issues a store to the reservation address.

MPC855T User’s Manual

Bus Operations

Figure 13-27. Reservation On Local Bus

The MPC855T samples CR at the rising edge of CLKOUT. When CR is asserted, the
reservation flag is reset. The external bus interface samples the logical value of the
reservation flag before externally starting a bus cycle initiated by a stwcx. instruction in the
core. If the reservation flag is set, the external bus interface begins the bus cycle and if it is
reset, no bus cycle is initiated externally and this situation is reported to the core.

13.4.9.2 Kill Reservation (KR)

KR is a bused signal. In order to use it, the reservation logic must only remember that one
of the bus masters has a reservation for a particular address. If another bus master writes to
the address with an instruction other than stwcx., the reservation logic remembers that the
reservation for that address was lost. When the master with the reservation subsequently
attempts an stwcx. instruction to that address, the reservation logic responds to that external
bus cycle with KR.

Note that for burst transactions, KR should be asserted externally only on the first or last
beats. Assertion of KR on an intermediate beat may result in erratic operation, including
lockup of the MPC855T requiring hard reset.

Figure 13-28 shows the reservation protocol for a multi-level (local) bus. The system
describes a situation in which the reserved location is in the remote bus.

Other

External Bus

External Bus
Interface

Iwarx
S

R

Q

CLKOUT

Reservation
Logic

AT[0–3], RSV, R/W, TS

A[0–31]

CRCR

Enable
External
stwcx.
Access

MPC855T

Bus
Master

Chapter 13. External Bus Interface

Bus Operations

Figure 13-28. Reservation on Multilevel Bus Hierarchy

In this case, the buses’ interface block implements a reservation flag for the local bus
master. The reservation flag is set by the buses’ interface when a load with the local bus
master issues a reservation whose address is on the remote bus. The flag is reset when an
alternative master on the remote bus accesses the same location in a write cycle. If the
MPC855T begins a memory cycle to the previously reserved address (located in the remote
bus) as a result of a stwcx., the following two cases can occur:

• If the reservation flag is set, the local bus interface acknowledges the cycle in a
normal way.

• If the reservation flag is reset, the local bus interface should assert KR. However, the
local bus interface should either not perform the remote bus write access or abort it
if the remote bus supports aborted cycles. The failure of stwcx. is reported to the
core.

13.4.10Bus Exception Control Cycles

The MPC855T bus architecture requires assertion of the TA from an external device to
signal that the bus cycle is complete. TA is not asserted in the following cases:

• The external device does not respond

• Various other application-dependent errors occur

External circuitry or the internal MPC855T bus monitor can provide TEA when no device
responds by asserting TA within an appropriate period of time after the MPC855T initiates
the bus cycle. This allows the cycle to terminate and the processor to enter exception
processing for the error condition (each one of the internal masters causes an internal
interrupt under this situation).

External Bus (Local Bus)

External Bus
Interface

Master in the Remote
Bus Write to the

AT[0–3], RSV,

KR
S

R

Q

Reserved Location

Buses’
Interface

R/W, TS

Remote Bus

MPC855T

A[0–31]

MPC855T User’s Manual

Bus Operations

To properly control termination of a bus cycle for a bus error, TEA must be asserted at the
same time or before TA is asserted. Once TEA is sampled as asserted, it should be negated
before the next rising edge to avoid influencing the next initiated bus cycle. TEA is an
open-drain pin that allows the wire-OR of different sources of error generation.

13.4.10.1RETRY

When an external device asserts RETRY during a bus cycle, the MPC855T enters a
sequence in which it terminates the current transaction, relinquishes bus ownership, and
retries the cycle using the same address, address attributes, and data (in the case of a write
cycle). Figure 13-29 shows that when the internal arbiter is enabled, the MPC855T negates
BB and asserts BG in the clock cycle after RETRY is detected to allow any external master
to gain bus ownership. Normal arbitration resumes in the next clock cycle. If the external
master does not use the bus, the MPC855T initiates a new transfer with the same address
and attributes as before. In Figure 13-30 the same situation is shown where the MPC855T
is working with an external arbiter. In this case, in the clock cycle after RETRY is detected
asserted, BR and BB are negated together. Normal arbitration resumes one clock cycle later.

Chapter 13. External Bus Interface

Bus Operations

Figure 13-29. Retry Transfer Timing–Internal Arbiter

CLKOUT

BR

BG (Output)

BB

R/W

TSIZ[0–1]

BURST

TS

Data

TA

RETRY

Allow external master
to gain the bus

A AA[–31]

MPC855T User’s Manual

Bus Operations

Figure 13-30. Retry Transfer Timing–External Arbiter

When the MPC855T initiates a burst access, the bus interface only recognizes the RETRY
assertion as a retry termination if it detects it before the slave device acknowledges the first
data beat. Note that for burst transactions, RETRY should be asserted externally only on the
first or last beats. Assertion of RETRY on an intermediate beat may result in erratic
operation, including lockup of the MPC855T requiring hard reset.

CLKOUT

BR (Output)

BG

BB

R/W

TSIZ[0–1]

BURST

TS

Data

TA

RETRY

Allow external master
to gain the bus

A AA[–31]

Chapter 13. External Bus Interface

Bus Operations

Figure 13-31. Retry on Burst Cycle

If a burst access is acknowledged on its first beat with a normal TA, but with BI asserted,
the following single-beat transfers initiated by the MPC855T to complete the 16 byte
transfers process the RETRY signal assertion as a TEA. If the MPC855T initiates non-burst
access to a small port size device, the transfer size of the access is bigger than the slave port
size, and the first transfer of this access is terminated normally by the assertion of TA, then
subsequent single-beat transfers initiated by the MPC855T to complete the access process
the RETRY assertion as a TEA.

CLKOUT

BR

BG (Output)

BB

R/W

TSIZ[0–1]

BURST

TS

Data

TA

BI

Allow external master
to gain the bus

A A

RETRY

If asserted will cause transfer error

A[–31]

MPC855T User’s Manual

Bus Operations

Table 13-6 summarizes how the MPC855T recognizes the termination signals provided by
the slave device that is addressed by the initiated transfer.

Table 13-6. Termination Signals Protocol

TEA TA RETRY/KR Action

0 x x Transfer error termination

1 0 x Normal transfer termination

1 1 0 Retry transfer termination/kill reservation

Chapter 14. Clocks and Power Control

Chapter 14
Clocks and Power Control
The MPC855T clock system provides many different clocking options for all on-chip and
external devices. For its clock sources, the MPC855T contains phase-locked loop and
crystal oscillator support circuitry. The phase-locked loop circuitry can be used to provide
a high-frequency system clock from a low-frequency external source. Also, to enable
flexible power control, the MPC855T provides frequency dividers and a variety of
low-power mode options.

The MPC855T allows a system to optimize power utilization by providing performance
on-demand. This is implemented through a variety of programmable power-saving modes
with automatic wake-up features.

Figure 14-1 illustrates internal clock source and distribution that includes the system
phase-locked loop (SPLL), clock dividers, drivers, and crystal oscillator.

14.1 Features
The main features of the MPC855T clocks and power control system are as follows:

• Contains system PLL (SPLL)

• Supports crystal oscillator circuits

• Clock dividers are provided for low-power modes and internal clocks

• Contains five major power-saving modes

— Normal (high and low)

— Doze (high and low)

— Sleep

— Deep sleep

— Power down

MPC855T User’s Manual

The Clock Module

Figure 14-1. Clock Source and Distribution

14.2 The Clock Module
The clock module consists of two external reference sources and a programmable
phase-locked loop, arranged as shown in Figure 14-2.

SPLL
2:1

MUX

Low-Power
Dividers

Clock
Drivers

2:1 MUX
(÷4 OR ÷16)

2:1
MUX

2:1
MUX

÷4

÷512
Main Clock
Oscillator
(OSCM)

RTC/PIT
Clock

and Driver

Time Base and

Driver

CLKOUT
Driver

SCCR[RTDIV]

MODCK[1:2] XFC VDDSYN

EXTCLK

gclk/
gclk2

gclk1c/
gclk2c

gclk1_50/
gclk2_50

brgclk

syncclk

CLKOUT

tmbclk

pitrtclk

SCCR[RTSEL]

XTAL

EXTAL

vcoout

oscclk
gclk2

SCCR
[TBS]

tbclk

Note that only CLKOUT is an actual external output; all other outputs are internal signals.

Decrementer

Chapter 14. Clocks and Power Control

The Clock Module

Figure 14-2. Clock Module Components

14.2.1 External Reference Clocks

The MPC855T has two input clock sources, provided at the EXTCLK pin or at the EXTAL
and XTAL pins. These two clock sources can select to drive three internal clock signals,
referred to as OSCCLK, PITRTCLK, and TMBCLK. OSCCLK provides the input clock to
the phase-locked loop. PITRTCLK and TMBCLK provide dedicated clocks for special
system timer circuitry, which includes the periodic interrupt timer (PIT), real-time clock
(RTC), timebase (TB), and decrementer (DEC) in the SIU. These separate clock sources for
the PIT, RTC, TB, and DEC are provided to enable these modules to continue to count at a
fixed, user-defined rate regardless of system frequency.

The clock sources for OSCCLK, PITRTCLK, and TMBCLK are selected at reset. The
sources for PITRTCLK and TMBCLK can also be selected in software by manipulation of
SCCR; see Section 14.6.1, “System Clock and Reset Control Register (SCCR).” For more
information, see Section 14.2.2.1, “SPLL Reset Configuration”, Section 14.3.2, “The PIT
and RTC Clock (PITRTCLK)”, and Section 14.3.3, “The Time Base and Decrementer
Clock (TMBCLK).”

It is possible to use both clock sources in a system, with each providing reference for
different functions. If either reference source is not used, then its input should be grounded.

It is not recommended to select the crystal oscillator circuit as OSCCLK while also driving
a high-frequency clock source on EXTCLK. This is because noise from the EXTCLK clock
source will couple into the crystal oscillator circuit, and will in many cases not allow the
system phase-locked loop (SPLL) to lock. The converse, however, is allowable; EXTCLK
can be selected as OSCCLK, while the crystal oscillator circuit supplies a separate
low-frequency reference.

EXTAL XTAL

OSCM

XFC VDDSYN

Crystal

SPLL

OSC

CLKOUT
EXTCLK

VSSSYN

XFC

VDD

XFC 0.1 µF

VSSSYN1

MPC855T User’s Manual

The Clock Module

A typical configuration uses a canned oscillator (4 MHz or 50 MHz) with the EXTCLK
input selected as OSCCLK, and a 32.768 kHz or 38.4 kHz crystal at EXTAL and XTAL to
provide PITRTCLK.

14.2.1.1 Off-Chip Oscillator Input (EXTCLK)

The external clock input EXTCLK is generated from an external source, which is typically
a canned oscillator. The acceptable frequency range of this input source is defined by:

1. The maximum operating frequency of the MPC855T

2. The default SPLL multiplying factor (defined in Section 14.2.2.1, “SPLL Reset
Configuration”)

3. The minimum operating frequency of the SPLL, which is 15 MHz

14.2.1.2 Crystal Oscillator Support (EXTAL and XTAL)

The MPC855T provides support for crystal oscillator circuits with the oscillator module
(OSCM). The OSCM has two different modes, supporting two different ranges of
frequencies: 30–50 kHz (referred to as 32 kHz mode) or 3-5 MHz (referred to as 4 MHz
mode). The mode of OSCM is selected simultaneously with SPLL configuration; refer to
Section 14.2.2.1, “SPLL Reset Configuration.

The clock source of OSCM can be provided by a crystal circuit or an external oscillator. If
an external oscillator is used, it should be connected to EXTAL, and XTAL should be left
unconnected. If a crystal circuit is used, it should be connected between EXTAL and
XTAL. The crystal circuit is composed of an on-chip inverting amplifier, an external
parallel resonant crystal, two capacitors, and two resistors, as shown in Figure 14-3.
EXTAL is the amplifier input for the crystal circuit; XTAL is the amplifier output.

Example values for the passive components of the crystal circuits are provided in
Figure 14-3. However, because this is a sensitive analog circuit, these values cannot be
guaranteed. These components may have to be tuned due to design-specific parasitic
capacitance variation due, for example, to layout and board composition. Careful
consideration must be given to component placement and layout, keeping components as
near as possible to the chip and keeping all trace lengths to a minimum. It should be noted
that the sensitivity of crystal circuits to external component values is so great that even
probing the circuit will change its behavior to the point that it may fail to resonate. In
practice, experimentation will be required to find an acceptable range of component values,
with the final design value being selected in the middle of this range.

Lastly, it should also be noted that future changes in the device technology (shrinks) may
change the characteristics of the input and output impedance of the on-chip amplifier.
Motorola reserves the right to perform these changes, and designers should be prepared to
modify their crystal circuits appropriately should these changes cause their crystal circuit
designs to fail. This risk should be taken into account when the design is performed; if

Chapter 14. Clocks and Power Control

The Clock Module

potential manufacturing downtime due to redesign of crystal circuits is unacceptable, a
canned oscillator circuit should be used instead.

Figure 14-3. Crystal Circuit Examples

14.2.2 System PLL

The programmable phase-locked loop, called the system phase-locked loop (SPLL) in the
MPC855T, generates the overall system operating frequency in integer multiples of the
input clock frequency. The SPLL reference clock (OSCCLK) can be generated from either
of the external clock sources described in Section 14.2.1, “External Reference Clocks.”

The main purpose of the SPLL is to generate a stable reference frequency by multiplying
the frequency and eliminating the clock skew. The SPLL allows the processor to operate at
a high internal clock frequency using a low frequency clock input, providing two
advantages. First, lower frequency clock input reduces the overall electromagnetic
interference generated by the system. Second, the programmability of the oscillator enables
the system to operate at a variety of frequencies with only a single external clock source.
The MPC855T SPLL block diagram is shown in Figure 14-4.

XTALEXTAL

A5 A4

OSCM

Crystal

C1 R2
R1

C2

32 kHz: R1=20MΩ, R2=330kΩ, C1=20pF, C2=20pF

4 MHz: R1=10MΩ, R2=1kΩ, C1=47 pF, C2=56 pF

MPC855T User’s Manual

The Clock Module

Figure 14-4. SPLL Block Diagram

The OSCCLK signal goes to the phase comparator that controls the direction in which the
charge pump drives the voltage across the external filter capacitor (XFC). Direction is based
on whether the feedback signal phase lags or leads the reference signal. The output of the
charge pump drives a voltage-controlled oscillator (VCO). The VCO output frequency
(VCOOUT) is divided down and fed back to the phase comparator to be compared with the
reference frequency (OSCCLK signal). The multiplication factor is programmable in the
PLPRCR[MF] between 1 and 4,096.

The minimum VCOOUT operating frequency of the SPLL is 15 MHz. This condition must
be maintained both by the reset configuration settings of the SPLL and at the final operating
frequency of the SPLL.

The OSCCLK can be supplied by either a crystal or an external clock oscillator. Crystals
are typically much cheaper than clock oscillators; however, a clock oscillator has significant
design advantages over a crystal circuit in that clock oscillators are easier to work with,
resulting in faster design, debugging and production.

Furthermore, it should be noted that low-frequency crystals should not be used for the
source of OSCCLK if high-frequency SPLL operation is desired. This is because the
default startup multiplication factor of the SPLL requires a loop filter capacitor (XFC)
which is incompatible with the capacitor value required at the final operating frequency. For
example, if a 50 MHz final value was desired and a 32.768 kHz crystal was used, the XFC
range allowable by the default SPLL multiplication factor of 513 is 0.27 µF < XFC < 0.47
µF, whereas the final SPLL multiplication factor of 1526 would require an XFC range of
0.79 µF < XFC < 1.40 µF.

14.2.2.1 SPLL Reset Configuration

While PORESET is asserted, the reset configuration of the SPLL is sampled on the
MODCK[1-2] pins. The SPLL immediately begins to use the multiplication factor
PLPRCR[MF] value and external clock source for OSCCLK determined by the sampled
MODCK[1-2] pin and attempts to achieve lock; therefore, the MODCK[1-2] signals should

Phase
Comparator

Charge
Pump VCOOUT

Up

Down VCO

XFC

VDDSYN / VSSSYN

Multiplication Factor
MF[0:11]

Clock
Delay

OSCCLK

Feedback

Chapter 14. Clocks and Power Control

The Clock Module

be maintained steadily throughout PORESET assertion. The MF field is set as shown in
Table 14-1. After PORESET is deasserted, the MODCK[1-2] values are internally latched,
and the signals applied to MODCK[1-2] can then be changed.

Note that under no condition should the voltage on MODCK1 and MODCK2 exceed the
power supply voltage VDDH applied to the part.

At power-on reset, before the PLL achieves lock, no internal or external clocks are
generated by the MPC855T, which may cause higher than normal static current during the
short period of stabilization.

NOTE
Upon assertion of HRESET, CLKOUT frequency is not
guaranteed.

14.2.2.2 SPLL Output Characteristics and Stability

The minimum frequency at which the SPLL is guaranteed to operate is 15 MHz; therefore,
the MPC855T must be configured so that at all times (both after initial system reset and at
the final operating frequency) the minimum frequency of CLKOUT is 15 MHz. The
maximum frequency at which the SPLL is guaranteed to operate is the maximum rated
frequency of the part (for example, 50 MHz for a 50-MHz part).

The multiplication factor is the most important parameter in defining the SPLL stability.
There are three factors related to the multiplication factor that define SPLL stability:

• Phase skew—The time difference between the rising edges of EXTCLK and
CLKOUT for a capacitive load on the CLKOUT pin over the entire process,
temperature ranges, and voltage ranges. For input frequencies greater than 15 MHz
and (MF+1) ≤ 2, this skew is ±0.9 ns. Otherwise, this skew is not guaranteed.
However, for (MF+1) < 10 and input frequencies greater than 10 MHz, the skew is
±2.3 ns.

• Phase jitter—A variation in the skew that occurs between the rising edges of
EXCLK and CLKOUT for a specific temperature, voltage, input frequency, MF, and
capacitive load on the CLKOUT pin. These variations are a result of the PLL locking
mechanism. For input frequencies greater than 15 MHz and (MF+1) ≤ 2, this jitter

Table 14-1. Power-On Reset SPLL Configuration

MODCK [1–2] Default MF+1 at Power-On Reset SPLL Options Selected

00 513 OSCCLK (SPLL input) is OSCMfreq
[referred to as 32 kHz mode]

01 5 OSCCLK (SPLL input) is OSCMfreq
[referred to as 4 MHz mode]

10 1 OSCCLK (SPLL input) is EXTCLKfreq

11 5 OSCCLK (SPLL input) is EXTCLKfreq

MPC855T User’s Manual

The Clock Module

is less than ±0.6ns. Otherwise, this jitter is not guaranteed. However, for
(MF+1) < 10 and input frequencies greater than 10 MHz, this jitter is less than ±2ns.

• Frequency jitter—The frequency variation of CLKOUT. For small multiplication
factors, that is, (MF+1)<10, this jitter is smaller than 0.5%. For mid-range
multiplication factors (10<(MF+1)<500), this jitter is between 0.5% and ~2%. For
large multiplication factors ((MF+1)>500), the frequency jitter is 2–3%. The
maximum input frequency jitter on EXTAL is 0.5%. If the rate of change of the
frequency of EXTAL is slow (that is, it does not jump between the minimum and
maximum values in one cycle), the maximum jitter can be 2%.

14.2.2.3 System Phase-Locked Loop Pins (VDDSYN, VSSSYN,
VSSSYN1, XFC)

The internal frequency of the MPC855T and the output of the CLKOUT pin depend on the
quality of the input clock source and the PLPRCR[MF]. The SPLL contains the following
dedicated pins that are isolated from common power and ground.

• VDDSYN—The power supply pin for the analog SPLL circuitry. For requirements
concerning this power supply, refer to Section 14.4.3, “Clock Synthesizer Power
(VDDSYN, VSSSYN, VSSYN1).

• VSSSYN and VSSSYN1—Ground reference pins for the analog SPLL circuitry. For
requirements concerning this ground reference, refer to Section 14.4.3, “Clock
Synthesizer Power (VDDSYN, VSSSYN, VSSYN1).

• XFC—The external filter capacitor pin that connects to the off-chip capacitor for the
SPLL filter. One terminal of the capacitor is connected to XFC while the other
terminal is connected to the VDDSYN pin.

— For proper SPLL operation, the XFC capacitor must be low leakage, with a
minimum parallel parasitic resistance value of 30MΩ.

— The value of the XFC capacitor is based on the value of the MF field in the
PLPRCR. XFC should be selected so that it satisfies both the range of values
required by the MF determined at reset and by the MF value programmed as the
final operating value.

— Note that the these ranges are not strict cutoffs; they merely represent ranges
where the best jitter performance will be achieved. If there is no overlap between
two ranges of operation, choose the minimum or maximum value of the

Table 14-2. XFC Capacitor Values Based on PLPRCR[MF]

MF Range Minimum Capacitance Recommended Capacitance Maximum Capacitance Unit

1 ≤ (MF+1) ≤ 4 XFC = [(MF+1) x 580] - 100 XFC = [(MF+1) x 680] - 120 XFC = [(MF+1) x 780] - 140 pF

(MF+1) > 4 XFC = (MF+1) x 830 XFC = (MF+1) X 1100 XFC = (MF+1) x 1470 pF

Chapter 14. Clocks and Power Control

Clock Signals

recommended XFC range for the normal operating frequency of the system,
whichever is nearest the range for the other frequency.

14.2.2.4 Disabling the SPLL

For special purposes, such as testing, it is possible to disable the SPLL. The SPLL is
disabled if VDDSYN is grounded. In this case, VCOOUT will be equal to OSCCLK/2.

Note that because the skew elimination provided by the SPLL is also disabled, this mode
of operation invalidates the timing of the MPC855T. Thus, this mode must not be used as
a normal operating mode; its only valid use is for low-frequency testing of board integrity
during production.

14.3 Clock Signals
The MPC855T uses the following clocks, summarized in Table 14-3. These clocks are
described in the following three sections, grouped by their different sources.

.

14.3.1 Clocks Derived from the SPLL Output
The MPC855T uses the following 9 internal clock signals, which are derived from the
SPLL output clock (VCOOUT):

• General system clocks—GCLK1C, GCLK2C, GCLK1, GCLK2

• Memory controller and external bus clocks—GCLK1_50, GCLK2_50

Table 14-3. Functionality Summary of the Clocks

Clock Description

GCLK1C/GCLK2C Basic clocks supplied to the core, the data and instruction caches, and MMUs.

GCLK1/GCLK2 Basic clocks supplied to the SIU, clock module, CP, and most other features in the CPM

GCLK1_50/GCLK2_50 Optionally divided versions of GCLK1/GCLK2, which are used to clock the GPCM and UPM in
the memory controller and to provide the CLKOUT output for the external bus.

BRGCLK Clocks the four baud rate generators and the memory controller refresh timer. This allows the
serial ports to operate at a fixed frequency and the memory refresh to continue at a uniform rate
even when the rest of the MPC855T is operating at a reduced frequency (for example, when in
normal low or doze low modes)

SYNCCLK Used by the serial synchronization circuitry in the serial ports of the CPM, and includes the SI,
SCC and SMCs. SYNCCLK performs the function of synchronizing externally generated clocks
before they are used internally. SYNCCLK allows the SI, SCC, and SMCs to continue operating
at a fixed frequency, even when the rest of the MPC855T is operating at a reduced frequency.

CLKOUT Clock out is an external clock signal used to drive other devices, and thus provide the ability to
operate synchronously with those devices. Equivalent to the internal GCLK2_50 signal.

TMBCLK Clocks the time base and decrementer

PITRTCLK Clocks the periodic interrupt timer and the real time clock

MPC855T User’s Manual

Clock Signals

• Baud rate generator clock—BRGCLK

• Synchronization clocks—SYNCCLK, SYNCCLKS

The MPC855T also provides the GCLK2_50 signal externally on the CLKOUT pin.

The SPLL output VCOOUT is sent to frequency dividers that generate the GCLKx,
GCLKxC, GCLKx_50, SYNCCLK, and BRGCLK which are sent to the rest of the
modules of the MPC855T. The division factor for each divider is programmed in the SCCR.
The organization of the low-power dividers is shown in Figure 14-5.

Figure 14-5. Clock Dividers

14.3.1.1 The Internal General System Clocks (GCLK1C, GCLK2C,
GCLK1, GCLK2)

The GCLKxC and GCLKx signals are referred to here collectively as GCLKx. The
difference between the GCLKxC and GCLKx signals are as follows:

• The GCLKxC clocks are supplied to the core, data and instruction caches, and
memory management unit. They are not active when the MPC855T is in doze, sleep,
or deep-sleep modes.

• The GCLKx clocks are supplied to the SIU, clock module, memory controller, and
most of the other blocks in the CPM. They are not active when the MPC855T is in
sleep or deep-sleep modes.

GCLKx can be dynamically switched between two different frequencies determined by
dividers programmed in SCCR[DFNH] and SCCR[DFNL], as shown in Figure 14-6.

DFSYNC

DFBRG

UPM and
SIU

Timer
Module,

Core,
and CPM

DFNH

DFNL EBDF

2:1
MUX

CLKOUT

CPM

BRGCLK

SYNCCLK

GCLK1C

GCLK2C

Low-Power
Mode

Phase
GCLK2

GCLK1

GCLK1_50

GCLK2_50
Phase

Sleep
Mode

VCOOUT

CPM and
UPM

(Refresh
Timers)

Chapter 14. Clocks and Power Control

Clock Signals

Figure 14-6. Low-power dividers for GCLKx

The high frequency is generated by using the DFNH field in the SCCR and it is used in
normal high and doze high mode. The low frequency is generated using the DFNL field in
the SCCR and it is used in normal low and doze low mode. The DFNH and DFNL dividers
are cleared by HRESET, and therefore GCLKx defaults to VCOOUT.

The frequency for the GCLKx system clock is:

When GCLKx is divided, its duty-cycle is modified. One phase remains the same while the
other stretches out. GCLKx no longer has a 50% duty cycle when the division factor is
greater than 1, as shown in Figure 14-7.

Figure 14-7. Divided System Clocks (GCLKx) Timing Diagram

14.3.1.2 Memory Controller and External Bus Clocks (GCLK1_50,
GCLK2_50, CLKOUT)

The MPC8 provides the capability to run the external bus and memory controller at a lower
frequency than the internal modules. This capability is provided by the external bus
frequency dividers. The external bus clocks GCLK1_50 and GCLK2_50 are derived from
GCLK1 and GCLK2, as determined by the SCCR[EBDF]. SCCR[EBDF] is cleared by

DFNH Divider

DFNL Divider

2:1
MUX

VCOOUT

GCLK1

Low-Power
Mode

DFNH

DFNL

GCLKxfreq

VCOOUTfreq

2
DFNH()or 2

DFNL 1+()
--=

GCLK1 Divided by 1

GCLK2 Divided by 1

GCLK1 Divided by 2

GCLK2 Divided by 2

GCLK1 Divided by 4

GCLK2 Divided by 4

MPC855T User’s Manual

Clock Signals

HRESET, and thus GCLK1_50 and GCLK2_50 default to GCLK1 and GCLK2. The
timing relationship between GCLKx and GCLKx_50 is shown in Figure 14-8.

Figure 14-8. Memory Controller and External Bus Clocks Timing Diagram for
EBDF=0 and EBDF=1

If SCCR[EBDF]=0, the duty cycle of both GCLK1_50 and GCLK2_50 is 50%. However,
if SCCR[EBDF]=1, the duty cycle of GCLK2_50 is 50%, but the duty cycle of GCLK1_50
is 37.5%, as shown in Figure 14-8.

The low-power frequency dividers described in Section 14.3.1.1, “The Internal General
System Clocks (GCLK1C, GCLK2C, GCLK1, GCLK2)” also effect the frequency and
duty cycle of GCLK1_50, GCLK2_50, and CLKOUT. For an example of this, see
Figure 14-9.

GCLK1

GCLK2

GCLK1_50

GCLK2_50

CLKOUT

GCLK1_50

GCLK2_50

(EBDF=00)

(EBDF=00)

(EBDF=01)

(EBDF=01)

CLKOUT
(EBDF=00)

(EBDF=01)

Chapter 14. Clocks and Power Control

Clock Signals

Figure 14-9. Memory Controller and External Bus Clocks Timing Diagram for
(CSRC=0 and DFNH=1) or (CSRC=1 and DFNL=0)

The frequency of GCLK1_50 and GCLK2_50 are affected both by the SCCR[DFNH] and
SCCR[DFNL] dividers and by the SCCR[EBDF] divider. Thus, the frequency for
GCLKx_50 and CLKOUT is as follows:

CLKOUT is the only externally visible clock, and is equivalent to the internal signal
GCLK2_50. CLKOUT can drive at full-strength, half-strength, or it can be disabled. The
strength of the drive is controlled in the system clock and reset control register. Disabling
or decreasing the strength of CLKOUT reduces power consumption, noise, and
electromagnetic interference on the printed circuit board. While the SPLL is acquiring lock,
the CLKOUT signal does not oscillate and remains in a low state.

GCLK1

GCLK2

GCLK1_50

GCLK2_50

CLKOUT

GCLK1_50

GCLK2_50

(EBDF=00)

(EBDF=00)

(EBDF=01)

(EBDF=01)

CLKOUT
(EBDF=00)

(EBDF=01)

GCLKx_50freq

VCOOUTfreq

2
DFNH()or 2

DFNL 1+()
--

1
EBDF 1+
---------------------------×=

MPC855T User’s Manual

Clock Signals

14.3.1.3 CLKOUT Special Considerations: 1:2:1 Mode

To enable synchronization of a system to the EXTCLK signal while still allowing the
internal circuits of the MPC855T to operate at an increased frequency, it is necessary to
maintain synchronization of the EXTCLK and CLKOUT signal. Specifically, this operation
entails:

• input clock source EXTCLK

• internal clock of 2xEXTCLK, provided by multiplying EXTCLK by 2 in the SPLL
(by programming PLPRCR[MF]=1)

• external bus clock CLKOUT with frequency equivalent to EXTCLK, provided by
dividing GCLK2 by 2 (by programming SCCR[EBDF]=01)

This is also known as 1:2:1 mode. In this mode, in order to allow multiple devices clocked
by the same EXTCLK source to maintain synchronization on the external bus, EXTCLK
and CLKOUT must be in phase. This operation cannot be guaranteed on MPC855Ts prior
to revision . On MPC855Ts of revision or later, this operation can be guaranteed, but it
requires that SCCR[EBDF] be written first, followed by the write to PLPRCR[MF].

14.3.1.4 The Baud Rate Generator Clock (BRGCLK)

The baud rate generator clock (BRGCLK) is used by the four baud rate generators of the
communication processor module and by the memory controller refresh counter. The baud
rate generator clock is controlled independently in order to allow the baud rate generators
and memory refresh rate to continue operating at a fixed frequency, even when the rest of
the MPC855T is operating at a reduced frequency.

BRGCLK defaults to VCOOUT, but can be reduced in frequency by a frequency divider.
This frequency divider is controlled by SCCR[DFBRG].

Figure 14-10. BRGCLK Divider

The baud rate generator clock frequency is as follows:

14.3.1.5 The Synchronization Clock (SYNCCLK, SYNCCLKS)

The synchronization clock signals (SYNCCLK and SYNCCLKS, referred to collectively
as SYNCCLK) are used by the signal synchronization circuitry in the serial ports of the

DFBRG

CPM and
UPM

(Refresh
BRGCLK

VCOOUT

Timer)

BRGCLKfreq

VCOOUTfreq

2
2 DFBRG×()

---=

Chapter 14. Clocks and Power Control

Clock Signals

communication processor module. The signal synchronization circuitry is used to sample
and synchronize asynchronous external signals provided to these ports. SYNCCLK allows
the serial interface, serial communication controller, and serial management controllers to
continue operating at a fixed frequency, even when the rest of the MPC855T is operating at
a reduced frequency.

SYNCCLK defaults to VCOOUT, but can be reduced in frequency by a frequency divider.
This frequency divider is controlled by SCCR[DFSYNC].

Figure 14-11. SYNCCLK Divider

The synchronization clock frequency is as follows:

Limitations on SYNCCLK include the following:

• SYNCCLK must always have a frequency at least as high as GCLKx.

• SYNCCLK must and be at least two times the maximum serial clock rate used by
the serial ports in the system.

• If the time-slot assigner (TSA) is used, SYNCCLK must be at least 2.5 times the
maximum serial clock rate of the TSA.

14.3.2 The PIT and RTC Clock (PITRTCLK)

The PIT and RTC clock is generated either from EXTCLK or the crystal oscillator circuit
(OSCM). This input source can be divided by either 4 or 512. The PITRTCLK source and
divide factor are selected by SCCR[RTSEL] and SCCR[RTDIV].

When used by the real-time clock (RTC), the PITRTCLK source is first divided as
determined by RTDIV, and then divided in the RTC circuits by either 8192 or 9600.
Therefore, in order for the RTC to count in seconds, the clock source must satisfy:

(EXTCLK or OSCM) / [(4 or 512) x (8192 or 9600)] = 1

The RTC will operate with other frequencies, but it will not count in units of seconds.

If there were only one clock source for the system, this requirement would limit the set of
desirable frequencies at which to operate the MPC855T. However, the MPC855T provides
two independent clock sources, EXTCLK and OSCM. To allow for maximum flexibility in
system frequency selection independent of real-time clock operation, it is recommended

DFSYNC CPM
SYNCCLK

VCOOUT

SYNCCLKfreq

VCOOUTfreq

2
2 DFSYNC×()

---=

MPC855T User’s Manual

Power Distribution

that a 32.768 kHz or 38.4 kHz crystal with the OSCM be used for the PITRTCLK source
if the RTC is to be used.

The MODCK[1-2] state at PORESET deassertion determines the input clock source and
prescaler value for PITRTCLK. These values can be changed after reset by manipulating
the associated bits in the SCCR.

14.3.3 The Time Base and Decrementer Clock (TMBCLK)

The time base and decrementer clock is generated either from the input frequency of the
SPLL (OSCCLK) or the general system clock GCLK2. The SCCR[TBS] bit is used to
select between these two sources.

The MODCK[1-2] state at PORESET deassertion, the SCCR[TBS], and the SPLL
multiplication factor determine the input clock source and prescaler value for TMBCLK.

14.4 Power Distribution
The various modules of the MPC855T are connected to four distinct power rails. These
power rails have different requirements, as explained in the following sections. The
organization of the power rails is shown in Figure 14-12.

Table 14-4. PITRTCLK Configuration at PORESET

MODCK [1:2]
PITRTCLK Prescaler

SCCR[RTDIV]
PITRTCLK Input Source

SCCR[RTSEL]

00 4 OSCM (crystal oscillator)

01 512 OSCM (crystal oscillator)

10 512 EXTCLK

11 512 EXTCLK

Table 14-5. TMBCLK Configuration

SCCR[TBS]
MODCK[1-2] at

PORESET
MF + 1 Clock Source TMBCLK Prescaler

1 XX X GCLK2 16

0 0X X OSCCLK 4

0 1X 1, 2 OSCCLK 16

0 1X > 2 OSCCLK 4

Chapter 14. Clocks and Power Control

Power Distribution

Figure 14-12. MPC855T Power Rails

A complete tabulation of modules and power supplies is given in Table 14-6.

14.4.1 I/O Buffer Power (VDDH)

The I/O buffers, logic, and clock control are fed by a 3.3V power supply.

VDDH must in all cases be greater than or equal to VDDL.

Table 14-6. MPC855T Modules vs. Power Rails

Block VDDH VDDL VDDSYN KAPWR

I/O Pad X

CLKOUT X

Digital SPLL X

Clock Control X X

Internal Logic X

Clock Drivers X

Analog SPLL X

OSCM X

SCCR, PLPRCR, and RSR X

RTC, PIT, TB, and DEC X

OSCM, PIT,
RTC, TB,

DEC, SCCR,
PLPRCR,
and RSR

Clock Control
and Digital SPLL

Analog
SPLL

TEXP

KAPWR

VDDH

Internal Logic
and

Clock Drivers

I/O Pad

VDDL VDDSYN

MPC855T

MPC855T User’s Manual

Power Control (Low-Power Modes)

14.4.2 Internal Logic Power (VDDL)

The internal logic can be fed by the same 3.3V source which powers VDDH. VDDL is
identified as a separate power supply only to facilitate power measurements.

14.4.3 Clock Synthesizer Power (VDDSYN, VSSSYN,
 VSSYN1)

To improve stability, the power supply pins for the SPLL are uniquely identified in order to
allow special filtration to be provided for them.

A well-regulated voltage should be applied to VDDSYN via a low impedance path to the
VDDH/VDDL power rail. The allowable noise on the VDDSYN power plane is 20 mV
peak up to a bandwidth of 100 MHz. This typically requires isolation of the VDDSYN
power plane from the VDDH/VDDL power plane. An example implementation of this is a
split power plane, with the VDDSYN plane implemented as an island in the VDDH/VDDL
power plane, connected to the VDDH/VDDL power plane with an inductor and to the
ground plane with bypass capacitors. An inductor value of 8.2 mH and bypass capacitor
values of 0.1 µF and 10 µF provide a two-pole filter with a cutoff frequency of 500 Hz. Note
that this example noise filter implementation is taken from a Motorola MPC860 ADS board
and may need to be modified for a user’s particular system design, board and power supply
to meet the VDDSYN noise requirement.

VSSSYN and VSSSYN1 must have a low impedance path to the ground plane. If sufficient
isolation is provided for VDDSYN (as described above), no additional isolation for
VSSSYN and VSSSYN1 is required.

14.4.4 Keep-Alive Power (KAPWR)

The OSCM, timebase, decrementer, periodic interrupt timer, real-time clock, SCCR,
PLPRCR, and RSR are all connected to the keep-alive power (KAPWR) rail. This power
rail architecture allows the system to remove the power at the VDDH/VDDL/VDDSYN
pins during power-down mode.

14.5 Power Control (Low-Power Modes)
To optimize power consumption, the MPC855T provides low-power modes that can be
used to dynamically activate and deactivate certain internal modules, such that only the
needed modules are operating at any given time. In addition to normal high mode (i.e. fully
activated), the MPC855T supports normal low, doze high, doze low, sleep, deep-sleep, and
power-down modes.

Chapter 14. Clocks and Power Control

Power Control (Low-Power Modes)

In addition to these power-saving modes, it should be noted that the architecture of the CPM
inherently supports optimum power consumption. When the CPM is idle, it uses its own
power-saving mechanism to shut down automatically.

Low-power modes are controlled in the PLPRCR[LPM] and PLPRCR[CSRC]. Events can
cause automatic changes from one low-power mode to another. These events include
software-initiation (through the MSR[POW]), CPM activity, internal interrupt sources,
external interrupt sources, and resets. These events are enabled in the SCCR[PRQEN].

The characteristics of each low-power mode are summarized in Table 14-7. Table 14-7 also
provides equations for approximate power consumption equations for each of these modes.

Table 14-7. MPC855T Low-Power Modes

Operation
Mode

SPLL
GCLKx

Frequency
Wake-Up
Method

Return Time from
Wake-Up Event to

Normal High

Typical
MPC855T Power

Consumption
at 50 MHz

Functionality

Normal high
LPM=00

Active VCOOUT
÷2DFNH

— — 20 mW + 1/2DFNH W Full

Normal low
LPM=00

Active VCOOUT
÷2DFNL+1

Software-Ini
tiation, or
Internal or
External
Interrupt

Asynchronous
exceptions:
3-4 VCOOUT
Clocks

Synchronous
exceptions
3-4 GCLK2 Clocks

20 mW + 1/2(DFNL+1) W

Doze high
LPM=01

Active VCOOUT
÷2DFNH

Internal or
External
Interrupt

20 mW + 0.4/2DFNH W Enabled: SIU
timers, CPM, and
memory controller

Disabled: core,
MMU, caches

Doze low
LPM=01

Active VCOOUT
÷2DFNL+1

Internal or
External
Interrupt

20 mW + 0.4/2(DFNL+1)W

≅

≅

≅

≅

MPC855T User’s Manual

Power Control (Low-Power Modes)

A state diagram describing transitions between the various low-power modes is shown in
Figure 14-13.

Sleep
LPM=10

Active Inactive Interrupt
from RTC,
PIT, DEC,
TB, IRQx

3-4 VCOOUT
Clocks

<10 mW Enabled: RTC,
periodic interrupt
timer, timebase,
and decrementer

Deep-sleep
LPM=11
TEXPS=1

Inactive Inactive Interrupt
from RTC,
PIT, DEC,
TB, IRQx

<500 OSCM Clocks
16ms-32 kHz

TBD

Power-down
LPM=11
TEXPS=0

Inactive Inactive Interrupt
from RTC,
PIT, DEC,
TB followed
by external
hard reset

<500 OSCM clocks
+ power supply
wake-up
(PwSp_Wake+ 16
ms at 32 kHz)

32 kHz ~35µA,
KAPWR = 2.7V (if applied
directly), 3.0V (if going
through a diode to KAPWR
pin, recommended)
Temperature = 50˚ C

Table 14-7. MPC855T Low-Power Modes (continued)

Operation
Mode

SPLL
GCLKx

Frequency
Wake-Up
Method

Return Time from
Wake-Up Event to

Normal High

Typical
MPC855T Power

Consumption
at 50 MHz

Functionality

Chapter 14. Clocks and Power Control

Power Control (Low-Power Modes)

Figure 14-13. MPC855T Low-Power Mode Flowchart

Normal

High Mode

LPM=00,

[(CSRC=0) |

Normal Low

LPM=00, CSRC=1

Doze Low

LPM=01, CSRC=1

 Doze High

LPM=01, CSRC=0

Sleep Mode

LPM=10

Deep-Sleep Mode

LPM=11

Power-Down Mode

CPM_ACT | MSRPOW | Interrupt | (¬ CSRC)

¬ CPM_ACT & (¬ MSRPOW) &

CPM Interrupt & SCCR[PRQEN]

¬ CPM_ACT & CSRCCPM_ACT

Software-Initiated

1

Software-Initiated

1

Software-Initiated

1

Software-Initiated

1

Software-Initiated

1

(IRQ

x

 Asserted) | RTC/PIT/TB/DEC
Interrupt

Wake-Up: 500 OSCCLK
Clocks

Wake-Up: 3-4 GCLK

x

Clocks

1 Software is active only in normal high/low modes.

Software-Initiated

1

(RTC/PIT/TB/DEC Interrupt

HRESET

Wake-Up: 3-4 VCOOUT
Clocks

TEXPS=1

Software-init

2

: LPM=11 and TEXPS=0

2 Software initiation of power-down mode requires that the TEXP output be used by external logic to gate main power (VDDH, VDDL,

 by HRESET Asserted)

Software-Initiated

1

Followed

or [CPM_ACT & (CSRC=1)]

or

(CSRC=1) & Interrupt]

(HRESET Asserted Only)

Legend:
CPM_ACT = (CPM Activity) & (SC-
CR[CRQEN] = 1)

or Power FailPower Failure

IRQ

x

 | RTC/PIT/TB/DEC
Interrupt

and VDDSYN).

(Interrupt Cleared) & CSRC

MPC855T User’s Manual

Power Control (Low-Power Modes)

14.5.1 Normal High Mode

Normal high mode is the default mode of the MPC855T. In this mode, the GCLKx
frequency is determined by SCCR[DFNH], and all modules of the MPC855T are enabled.
For more information about SCCR[DFNH], refer to Section 14.3.1.1, “The Internal
General System Clocks (GCLK1C, GCLK2C, GCLK1, GCLK2).

Normal high mode is selected if PLPRCR[CSRC]=0 and PLPRCR[LPM]=00, or if an
enabled event has caused an exit from another low-power mode.

14.5.2 Normal Low Mode

Normal low mode takes advantages of the low-power dividers for GCLKx to enable full
functionality of the MPC855T, but at a lower frequency so that power consumption is
reduced. The low-power dividers allow the system to reduce and restore the operating
frequencies of different sections of the MPC855T without losing the SPLL lock. This mode
is sometimes referred to as slow-go or low gear mode.

Normal low mode is selected if PLPRCR[CSRC]=1 and PLPRCR[LPM]=00. In normal
low mode, the GCLKx frequency is determined by SCCR[DFNL]. For more information
about SCCR[DFNL], see Section 14.3.1.1, “The Internal General System Clocks
(GCLK1C, GCLK2C, GCLK1, GCLK2).” Note also that PLPRCR[TMIST] should be
cleared before entering normal low mode; for more information, see Section 14.5.8,
“TMIST: Facilitating Nesting of SIU Timer Interrupts.”

Normal low mode can be entered at any time, and the frequency of operation of normal low
mode can be changed dynamically. This is controlled by PLPRCR[CSRC] and
SCCR[DFNL]. Changes to these bits take effect immediately.

The following events cause the MPC855T to leave normal low mode and enter normal high
mode:

• A pending interrupt from the

interrupt controller occurs. This option is maskable
with SCCR[PRQEN]. These interrupts include all internal and external interrupt
sources, if enabled.

• Software-initiation, by writing MSR[POW] = 0. This option is maskable with
SCCR[PRQEN].

• The communications processor (CP) has a service request from a peripheral (SCC,
SMC, etc.). This option is maskable with SCCR[CRQEN].

14.5.3 Doze High Mode

When software initiates the doze high mode, software processing on the core suspends. The
GCLKxC clocks to the core, MMUs, and caches are disabled. However, the CPM and SIU
continue to function as normal.

Chapter 14. Clocks and Power Control

Power Control (Low-Power Modes)

Doze high mode is selected if PLPRCR[CSRC]=0, MSR[POW]=1, and
PLPRCR[LPM]=01. In doze high mode, the GCLKx frequency is determined by
SCCR[DFNH]. For more information about SCCR[DFNH], see Section 14.3.1.1, “The
Internal General System Clocks (GCLK1C, GCLK2C, GCLK1, GCLK2).” Note also that
PLPRCR[TMIST] should be cleared before entering doze high mode; for more
information, see Section 14.5.8, “TMIST: Facilitating Nesting of SIU Timer Interrupts.”

The MPC855T leaves doze high mode and enter normal high mode when a pending
interrupt from the

interrupt controller occurs. These interrupts include all internal and
external interrupt sources, if enabled. This action requires that SCCR[PRQEN] be set;
otherwise, the MPC855Twill not wake up. When the MPC855T enters normal high mode,
PLPRCR[LPM] is cleared.

Upon resumption of processing in normal high or low mode, the MPC855T jumps to the
external interrupt vector to process the interrupt source. When the core returns from the
exception handler via

rfi

, it resumes processing from the instruction following that which
initiated entry into doze mode.The one exception to this is the decrementer, a wake-up
interrupt from the decrementer never causes a jump to the interrupt handler; instead
processing always resumes from the instruction following that which initiated entry into
low-power mode.

14.5.4 Doze Low Mode

Doze low mode is similar to Doze high mode, except that additionally the system clock
frequency has been reduced. In doze low mode, the GCLKx frequency is determined by
SCCR[DFNL]. For more information about SCCR[DFNL], see Section 14.3.1.1, “The
Internal General System Clocks (GCLK1C, GCLK2C, GCLK1, GCLK2).”

Doze low mode is selected if PLPRCR[CSRC]=1, MSR[POW]=1, and
PLPRCR[LPM]=01. Note also that PLPRCR[TMIST] should be cleared before entering
doze low mode; for more information, see Section 14.5.8, “TMIST: Facilitating Nesting of
SIU Timer Interrupts.”

The MPC855T has the option to temporarily leave doze low mode and enter doze high
mode when CPM activity occurs. This option is enabled in SCCR[CRQEN]. When the CP
finishes servicing the peripheral request, the MPC855T automatically reenters doze low
mode.

The MPC855T leaves doze low mode and enter normal high mode when a pending interrupt
from the interrupt controller occurs. These interrupts include all internal and external
interrupt sources, if enabled. This action requires that SCCR[PRQEN] be set; otherwise,
the MPC855T will not wake up. When the MPC855Tenters normal high or normal low
mode, PLPRCR[LPM] is cleared.

When the MPC855T leaves doze low mode, it enters normal high mode if SCCR[PRQEN]
is set; otherwise it enters normal low mode.

MPC855T User’s Manual

Power Control (Low-Power Modes)

Upon resumption of processing in normal high or low mode, the MPC855T jumps to the
external interrupt vector to process the interrupt source. When the core returns from the
exception handler via

rfi

, it resumes processing from the instruction following that which
initiated entry into doze mode. The one exception to this is the decrementer, a wake-up
interrupt from the decrementer never causes a jump to the interrupt handler; instead
processing always resumes from the instruction following that which initiated entry into
low-power mode.

14.5.5 Sleep Mode

In sleep mode, the only internal modules that are activated are the SIU timers, including the
real-time clock (RTC), periodic interrupt timer (PIT), timebase (TB), and decrementer
(DEC).

Sleep mode is selected if PLPRCR[LPM]=10. Only PITRTCLK and TMBCLK are active
in sleep mode. Clocks to all other modules are disabled. Note that because the SIU memory
controller is not activated in this mode, memory refresh does not occur. Note also that
PLPRCR[TMIST] should be cleared before entering sleep mode; for more information, see
Section 14.5.8, “TMIST: Facilitating Nesting of SIU Timer Interrupts.”

The following events cause the MPC855T to leave sleep mode and enter normal high mode:

• An external IRQx input is asserted for which wake-up capabilities are enabled.
Wake-up capabilities for IRQx interrupts are enabled in the associated SIEL[WMx]
bits.

• A time-out event of the RTC, PIT, TB, or DEC occurs.

When the MPC855T leaves sleep mode, it enters normal high or normal low mode,
depending on the state of PLPRCR[CSRC] and SCCR[PRQEN]. When the MPC855T
enters normal high mode, PLPRCR[LPM] is cleared.

Upon resumption of processing in normal high or low mode, the MPC855T jumps to the
external interrupt vector to process the interrupt source if that interrupt is enabled in
SIMASK and MSR[EE]. When the core returns from the exception handler via

rfi

, it
resumes processing from the instruction following that which initiated entry into sleep
mode. The one exception to this is the decrementer, a wake-up interrupt from the
decrementer never causes a jump to the interrupt handler; instead processing always
resumes from the instruction following that which initiated entry into low-power mode.

 14.5.6 Deep-Sleep Mode

Deep-sleep mode is similar to sleep mode, except that the SPLL is also disabled and,
therefore, the wake-up time from this mode is longer. Wake-up time from deep-sleep mode
is a maximum of 500 OSCCLK clocks (if OSCCLK is sourced by OSCM) or a maximum
of 1000 clocks (if OSCCLK is sourced by EXTCLK).

Chapter 14. Clocks and Power Control

Power Control (Low-Power Modes)

Deep-sleep mode is selected if PLPRCR[LPM]=11 and PLPRCR[TEXPS]=1. Note also
that PLPRCR[TMIST] should be cleared before entering deep-sleep mode; for more
information, see Section 14.5.8, “TMIST: Facilitating Nesting of SIU Timer Interrupts.”

Note that the RTC, PIT, TB, and DEC operate in deep-sleep mode only if their timing
reference is OSCM. In all other aspects, the behavior of deep-sleep mode is identical to that
of sleep mode.

14.5.7 Power-Down Mode

Power-down mode describes the condition where a power source is applied to KAPWR, but
the power source for VDDH, VDDL, and VDDSYN has been shut down. The behavior in
this mode is similar to deep-sleep mode, in that the SPLL is shut down and only the
real-time clock (RTC), periodic interrupt timer (PIT), timebase (TB), and decrementer
(DEC) are active. The RTC, PIT, TB, and DEC operate in power-down mode only if their
timing reference is OSCM.

In normal operation, KAPWR should be greater than or equal to approximately
(VDDH - 0.4) V. In power-down mode, KAPWR should be greater than or equal to 2.0 V.

If power-down mode is used, connect KAPWR to both VDDH and the back-up battery
through diodes. To prevent battery current from being drawn when VDDH is active, the
back-up battery voltage should be greater than 2.4 V but less than (VDDH - 0.4) V. If,
however, power-down mode is not used, tie KAPWR directly to VDDH.

Exiting from power-down mode requires a full hardware reset. Note that if it is required that
the PIT, TB, DEC, and SPLL registers and settings not change during power-down mode
and the subsequent reset, then PORESET should be pulled high throughout power-down
mode and HRESET should be used for the reset during wake-up. Otherwise, PORESET can
be used for this reset source. After initial power-up, PORESET assertion does not affect the
RTC registers.

To maintain stability of the crystal oscillator, switchover between the main power supply
and KAPWR supply should be done smoothly. The maximum power supply rise time seen
at the KAPWR pin should be less than 1.7 V/ms for a 32-kHz input frequency. This can be
done by connecting a capacitor from KAPWR to ground.

Power-down mode can be used for:

• A software-initiated controlled shutdown, with optional automatic wakeup,

• Maintaining integrity of the real-time clock (RTC) during a power failure.

MPC855T User’s Manual

Power Control (Low-Power Modes)

14.5.7.1 Software Initiation of Power-Down Mode, with Automatic
 Wake-up

Power-down mode can be initiated in software if the external TEXP signal is used to control
the power supply for VDDH, VDDL, and VDDSYN. If software clears TEXPS, the TEXP
signal deasserts. This signal deassertion can be used externally to shut down the VDDH,
VDDL, and VDDSYN power supplies. In performing this operation, TEXP should be
deasserted by setting PLPRCR[LPM]=11 and clearing PLPRCR[TEXPS] (by writing 1).

The TEXP signal can also be used to enable automatic or externally-initiated wakeup from
power-down mode. When the RTC, PIT, TB, or DEC generate an event, or when HRESET
is asserted externally, PLPRCR[TEXPS] is set and the TEXP pin is asserted. TEXP can be
externally connected to a switch that turns on the power supply to the chip, as shown in
Figure 14-14. The MPC855T should then go through a normal hard reset sequence. When
performing this hard reset sequence, it is important to allow enough time for the oscillator
to warm up and the SPLL to lock.

In this configuration, the following pins must be connected as listed below, in order to keep
them from being unintentionally sampled as asserted and causing an unintended exit from
power-down mode.

• EXTCLK and RSTCONF must be connected through a pull-down resistor (10K
Ohms) to ground.

• HRESET and SRESET must be connected through a pull-up resistor (100K Ohms)
to VDD.

• PORESET must be connected through a pull-up resistor (47K Ohms) to KAPWR.

• KAPWR must be connected to both the main power supply, and the keep-alive
power supply through diodes.

This scheme is shown in Figure 14-14.

Chapter 14. Clocks and Power Control

Power Control (Low-Power Modes)

Figure 14-14. Software-Initiated Power-Down Configuration

Switches for VDDH, VDDL, and VDDSYN are shown separately; however, if they are
supplied from the same source, there would actually be only a single switch. When
PLPRCR[TEXPS] is cleared, TEXP is deasserted and the power is shut down.
PLPRCR[TEXPS] is asserted by the MPC855T when the real-time clock or timebase time
value matches the value programmed in its associated alarm register or when the periodic
interrupt timer or decrementer decrements their value to zero, or when the HRESET signal
is externally asserted.

14.5.7.2 Maintaining the Real-Time Clock (RTC) During Shutdown or
 Power Failure

The power-down configuration can be used simply to maintain integrity of the real-time
clock (RTC) if a power shutdown or power failure should occur. The backup KAPWR
source is used to maintain the RTC. In this configuration, no provision is made for
automatic wake-up from power-down mode. Instead, it is assumed that the appropriate reset
sequence will be initiated when the power supply to VDDH, VDDL, and VDDSYN is
reapplied.

Main Power

Back-up

VDDSYN

3.3V

VDDH

VDDL

KAPWR

Supply

Switch

Logic

TEXP

2.4 to 2.9V

SW1

SW2

Power
Supply

SW3
MPC855T

PORESET

HRESET

SRESET

MPC855T User’s Manual

Power Control (Low-Power Modes)

Some power monitoring circuits drive a reset signal when the power supply voltage falls
below a specified threshold, in order to assure that erratic behavior does not occur in a
low-voltage situation. This functionality can be used with the MPC855T,while still
maintaining integrity of the RTC.

The reset signal from the power monitor circuit should be connected to the PORESET
signal of the MPC855T. If power dips below the threshold, PORESET is driven to the
MPC855T, which resets all of the modules of the MPC855T except the RTC. If power fails
entirely, PORESET remains asserted, but the RTC continues to operate if a backup power
supply (battery) is connected to KAPWR.

In this configuration, HRESET and SRESET should be pulled up to VDDH, not to
KAPWR. This is because assertion of PORESET causes the MPC855T to assert HRESET
and SRESET. Pulling these signals up to KAPWR causes current to drain unnecessarily. If
HRESET and SRESET are pulled up to VDDH and VDDH is not powered, then no current
drain will result from the HRESET and SRESET assertion. PORESET should be pulled up
to KAPWR. EXTCLK and RSTCONF should both be pulled down to ground.

14.5.7.3 Register Lock Mechanism: Protecting SIU Registers in
 Power-Down Mode

If the MPC855T sets PLPRCR[LPM]=11 before entering power-down mode, then the
registers of the SIU maintained by KAPWR are automatically protected. However, to
provide protection of the SIU registers maintained by KAPWR against uncontrolled
shutdown, a register locking mechanism is included. These registers can be write-protected
in a set of associated key registers. For more information on the register lock mechanism,
see Section 10.4.5, “Register Lock Mechanism.”

14.5.8 TMIST: Facilitating Nesting of SIU Timer Interrupts

It is often desirable, within an interrupt service routine, to clear the source of the interrupt
at the beginning of the routine, in order to facilitate nesting of interrupts. However, if
normal low mode is enabled, clearing an interrupt source can cause transition into normal
low mode, which may not be desired. In order to resolve these conflicting interests,
PLPRCR[TMIST] is provided. A timeout in the RTC, PIT, TB, or DEC will cause the
PLPRCR[TMIST] to be set. While PLPRCR[TMIST] is set, entry into low-power mode is
disabled. Thus, the SIU timer interrupt source can be cleared immediately in the interrupt
service routine, while still allowing entry into low-power mode to be enabled at a later,
user-defined time (when software clears PLPRCR[TMIST]). Note, however, this requires
that PLPRCR[TMIST] must be cleared before entry into any low-power mode other than
normal high mode.

Chapter 14. Clocks and Power Control

Clock and Power Control Registers

14.6 Clock and Power Control Registers

The following sections describe the clock and power control registers.

14.6.1 System Clock and Reset Control Register (SCCR)

The SPLL has a 32-bit control register that is powered by keep-alive power. The system
clock and reset control register (SCCR), shown in Figure 14-15, is memory-mapped into
the MPC855T SIU’s register map.

This register is affected by HRESET but is not affected by SRESET. Table 14-8 describes
SCCR fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — COM — TBS RTDIV RTSEL CRQEN PRQEN — EBDF —

HRESET — # 0 # # # 0 0 0 † 0

POR 0 0 0 0 * * 0 0 0 † 0

R/W R/W

Addr (IMMR&0XFFFF0000) + 280

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — DFSYNC DFBRG DFNL DFNH — —

HRESET 0

POR 0

R/W R/W

Addr (IMMR&0XFFFF0000) + 282

Note: HRESET is hard reset and POR is power-on reset.
The field is undefined
— The field is unaffected.
* RTDIV depends on the combination of MODCK1 and MODCK2. RTSEL depends on MODCK1. See Table 14-4 for

more information.
† This field is set according to the default of the hard reset configuration word.

Figure 14-15. System Clock and Reset Control Register (SCCR)

MPC855T User’s Manual

Clock and Power Control Registers

Table 14-8. SCCR Field Descriptions

Bits Name Description

0 — Reserved, should be cleared.

1–2 COM Clock output module. This field controls the output buffer strength of the CLKOUT pin. When both
bits are set, the CLKOUT pin is held in the high state. These bits can be dynamically changed without
generating spikes on the CLKOUT pin. If the CLKOUT pin is not connected to external circuits, clock
output should be disabled to minimize noise and power dissipation. The COM field is cleared by hard
reset.
00 Clock output enabled full-strength buffer.
01 Clock output enabled half-strength output buffer.
10 Reserved.
11 Clock output disabled.

 3–5 — Reserved, should be cleared.

6 TBS Timebase source. Determines the clock source that drives the timebase and decrementer.
0 Timebase frequency source is the OSCCLK divided by 4 or 16.
1 Timebase frequency source is GCLK2 divided by 16.

7 RTDIV Real-time clock divide. Determines if the clock, the crystal oscillator or main clock oscillator, to the
real-time clock and periodic interrupt timer is divided by 4 or 512. At power-on reset this bit is cleared
if the MODCK1 and MODCK2 signals are low.
0 The clock is divided by 4.
1 The clock is divided by 512.

8 RTSEL Real-time clock select. Selects the crystal oscillator or main clock oscillator as the input source to
PITRTCLK. At power-on reset, it reflects the value of MODCK1.
0 OSCM (crystal oscillator) is selected.
1 EXTCLK is selected.

9 CRQEN CPM request enable. Cleared by power-on or hard reset. In low-power modes, specifies if the
general system clock returns to high frequency while the CP is active.
0 The system remains in low frequency even if the communication processor module is active.
1 The system switches to high frequency when the communication processor module is active.

10 PRQEN Power management request enable. In low-power modes, specifies whether the general system
clock returns to a high frequency when a pending interrupt from the interrupt controller or
MSR[POW] is clear (normal mode). Cleared by power-on or hard reset.
0 The system remains in low frequency even if there is a pending interrupt from the interrupt
controller or MSR[POW] = 0 (normal mode).
1 The system switches to high frequency when there is a pending interrupt from the Interrupt
controller or MSR[POW] = 0.

11–12 — Reserved, should be cleared.

13–14 EBDF External bus division factor. This field defines the frequency division factor between GCLKx and
GCLKx_50. CLKOUT is similar to GCLK2_50. The GCLKx_50 is used by the bus interface and
memory controller to interface with an external system. This field is initialized during hard reset using
the hard reset configuration word in Section 11.3.1.1, “Hard Reset Configuration Word.”
00 CLKOUT is GCLK2 divided by 1.
01 CLKOUT is GCLK2 divided by 2.
1x Reserved.

15–16 — Reserved, should be cleared.

Chapter 14. Clocks and Power Control

Clock and Power Control Registers

 14.6.2 PLL, Low-Power, and Reset Control Register (PLPRCR)

The 32-bit system PLL, low-power, and reset control register (PLPRCR), shown in
Figure 14-16, is powered by a keep-alive power supply and is used to control the system
frequency and low-power mode operation.

17–18 DFSYNC Division factor for the SYNCCLK. This field sets the VCOOUT frequency division factor for the
SYNCCLK signal. Changing the value of this field does not result in a loss-of-lock condition. This
field is cleared by a power-on or hard reset.
00 Divide by 1 (normal operation).
01 Divide by 4.
10 Divide by 16.
11 Divide by 64.

19–20 DFBRG Division factor of the BRGCLK. This field sets the VCOOUT frequency division factor for the
BRGCLK signal. Changing the value of this field does not result in a loss-of-lock condition. This field
is cleared by a power-on or hard reset.
00 Divide by 1 (normal operation).
01 Divide by 4.
10 Divide by 16.
11 Divide by 64.

21–23 DFNL Division factor low frequency. Sets the VCOOUT frequency division factor for general system clocks
to be used in low-power mode. In low-power mode, the MPC855T

automatically switches to the
DFNL frequency. To select the DFNL frequency, load this field with the divide value and set the
CSRC bit. A loss-of-lock condition will not occur when changing the value of this field. This field is
cleared by a power-on or hard reset.
000 Divide by 2.
001 Divide by 4.
010 Divide by 8.
011 Divide by 16.
100 Divide by 32.
101 Divide by 64.
110 Reserved.
111 Divide by 256.

24–26 DFNH Division factor high frequency. Sets the VCOOUT frequency division factor for general system clocks
to be used in normal mode. In normal mode, the MPC855T automatically switches to the DFNH
frequency. To select the DFNH frequency, load this field with the divide value and clear CSRC. A
loss-of-lock condition does not occur when this field is changed. This field is cleared by a power-on
or hard reset.
000 Divide by 1.
001 Divide by 2.
010 Divide by 4.
011 Divide by 8.
100 Divide by 16.
101 Divide by 32.
110 Divide by 64.
111 Reserved.

27–31 — Reserved, should be cleared.

Table 14-8. SCCR Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Clock and Power Control Registers

This register is affected by HRESET and SRESET. Table 14-9 describes PLPRCR bits.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field MF —

HRESET — 0

POR * 0

R/W R/W

Addr (IMMR&0xFFFF0000) + 284

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field SPLSS TEXPS — TMIST — CSRC LPM CSR LOLRE FIOPD —

HRESET — 1 0 0 0 0 0 — — — 0

POR 0 1 0 0 0 0 0 0 0 0 0

R/W R/W

Addr (IMMR&0xFFFF0000) + 286

NOTE: HRESET is hard reset and POR is power-on reset.

*

 Depends on the combination of MODCK1and MODCK2. See Table 14-4 for more information.

Figure 14-16. PLL, Low-Power, and Reset Control Register (PLPRCR)

Table 14-9. PLPRCR Field Descriptions

Bits Name Description

0–11 MF Multiplication factor. Determines the factor by which the OSCCLK input is multiplied to produce
VCOOUT. This field controls the value of the divider in the SPLL feedback loop. Programmable
between 1and 4096, where 0x000 corresponds to 1 and 0xFFF corresponds to 4096.
The MF field can be read and written at any time but do not change MF value unless core is fully
serialized ICTRL[ISCT_SER]=000. Changing the MF field causes the SPLL to lose its lock. All clocks
are disabled until the SPLL reaches lock condition.

12–15 — Reserved, should be cleared.

16 SPLSS System PLL lock status sticky. Cleared by power-on reset. Not affected by hard reset. An out-of-lock
indication sets the SPLSS bit and it remains set until the software clears it. At power-on reset, the
state of the SPLSS bit is zero. Write a 1 to clear this bit (writing a zero has no effect).
SPLSS is affected only by an unintentional loss of lock due to a hardware-related issue. A
software-initiated loss of lock, such as changing PLPRCR[MF] or entering deep-sleep or power-down
mode, does not affect SPLSS.
0 SPLL remains locked.
1 SPLL has gone out of lock at least once since the bit was cleared.

17 TEXPS Timer expired status. Internal status bit set when the periodic timer expires, the real-time clock alarm
sets, the timebase clock alarm sets, the decrementer interrupt occurs, or the system resets.
This bit is cleared by writing a 1; writing a zero has no effect.
When in power-down mode (LPM=11), the TEXPS bit also controls the TEXP external signal as
shown below. See Section 14.5.7.1, “Software Initiation of Power-Down Mode, with Automatic
 Wake-up.”
0 TEXP is negated.
1 TEXP is asserted.

18 — Reserved, should be cleared.

Chapter 14. Clocks and Power Control

Clock and Power Control Registers

Table 14-10 describes PLPRCR[CSR] and DER[CHSTPE] bit combinations.

19 TMIST Timers interrupt status. Cleared at reset. Set when a real-time clock, periodic interrupt timer,
timebase, or decrementer interrupt occurs. This bit is cleared by writing a 1; writing a zero has no
effect. Entry into low-power mode is disabled when TMIST is set.
0 No timer interrupt was detected.
1 A timer interrupt was detected.

20 — Reserved, should be cleared.

21 CSRC Clock source. Specifies whether DFNH or DFNL generates the general system clock. Cleared by hard
reset.
0 The general system clock is generated by the DFNH field.
1 The general system clock is generated by the DFNL field.

22–23 LPM Low-power modes. This bit, in conjunction with TEXPS and CSRC, specifies the operating mode of
the core. There are seven possible modes. In the normal modes, the user can write a non-zero value
to this field. In the other modes, only a reset or asynchronous interrupt can clear this field.
00 Normal high/normal low mode.
01 Doze high/doze low mode.
10 Sleep mode.
11 Deep-sleep/power-down mode.

24 CSR Checkstop reset enable. Enables an automatic reset when the processor enters checkstop mode. If
the processor enters debug mode at reset, then reset is not generated automatically; refer to
Table 14-10. See Section 44.5.2.2, “Debug Enable Register (DER).”

25 LOLRE Loss-of-lock reset enable. Enables hard reset generation when PLPRCR[SPLSS] is set.
0 A hard reset is not generated when a loss-of-lock is indicated.
1 A hard reset is generated when a loss-of-lock is indicated.

26 FIOPD Force I/O pull down. Indicates when the address and data external pins are driven by an internal
pull-down device in sleep and deep-sleep mode.
0 No pull-down on the address and data bus.
1 Address and data bus is driven low in sleep and deep-sleep mode.

27–31 — Reserved, should be cleared.

Table 14-10. PLPRCR[CSR] and DER[CHSTPE] Bit Combinations

PLPRCR[CSR] DER[CHSTPE] Checkstop Mode Result

0 0 No —

0 0 Yes —

0 1 No —

0 1 Yes Enter debug mode

1 0 No —

1 0 Yes Automatic reset

1 1 No —

1 1 Yes Enter debug mode

Table 14-9. PLPRCR Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Clock and Power Control Registers

Chapter 15. Memory Controller

Chapter 15
Memory Controller

The memory controller is responsible for controlling a maximum of eight memory banks
shared between a general-purpose chip-select machine (GPCM) and a pair of sophisticated
user-programmable machines (UPMs). It supports a glueless interface to SRAM, EPROM,
flash EPROM, regular DRAM devices, self-refresh DRAMs, extended data output DRAM
devices, synchronous DRAMs, and other peripherals. This flexible memory controller
allows the implementation of memory systems with very specific timing requirements.

The GPCM provides interfacing for simpler, lower-performance memory resources and
memory-mapped devices. The GPCM has inherently lower performance because it does
not support bursting. For this reason, GPCM-controlled banks are used primarily for
boot-loading and access to nonburstable memory-mapped peripherals.

The UPM provides both more features and, because it supports bursting, higher
performance. Therefore it is typically used to interface with higher-performance run-time
memory such as DRAM and bursting SRAM.

The UPM supports address multiplexing of the external bus, periodic timers, and
generation of programmable control signals for row address and column address strobes to
allow for a glueless interface to DRAM devices. The periodic timers allow refresh cycles
to be initiated while the address MUXing provides row and column addresses.

Different timing patterns can be generated for the control signals that govern a memory
device. These patterns define how the external control signals behave in read-access,
write-access, burst read-access, or burst write-access requests. Periodic timers are also
available to periodically generate user-defined refresh cycles.

15.1 Features

The following is a list of the memory controller’s main features:

• Eight memory banks

— 32-bit address decode with mask

— Variable block sizes (32 Kbytes to 4 Gbytes)

— Byte parity generation/checking

— Write-protection capability

MPC855T User’s Manual

Features

— Address types protection for memory bank accesses by internal masters

— Control signal generation machine selection on a per-bank basis

— Support for external master access to memory banks

— Synchronous and asynchronous external masters support

• General-purpose chip-select machine (GPCM)

— Compatible with SRAM, EPROM, FEPROM, and peripherals

— Global (boot) chip-select available at system reset

— Boot chip-select support for 8-, 16-, and 32-bit devices

— Minimum two clock accesses to external device

— Four byte write enable signals (WE)

— Output enable signal (OE)

• Two user-programmable machines

— Programmable-array-based machine controls external signal timing with a
granularity of one quarter of an external bus clock period

— User-specified control-signal patterns run when an internal or external
synchronous master requests a single-beat or burst read or write access.

— User-specified control-signal patterns run when an external asynchronous master
requests a single-beat read or write access.

— UPM periodic timer runs a user-specified control signal pattern to support
refresh

— User-specified control-signal patterns can be initiated by software

— Each UPM can be defined to support DRAM devices with depths of 64, 128, 256,
and 512 Kbytes, and 1, 2, 4, 8, 16, 32, 64, 128, and 256 Mbytes

— Each UPM provides programmable timing for the following signals:

– Four byte-select lines

– Six external general-purpose lines

— Supports 8-, 16-, and 32-bit DRAM port sizes

— Glueless interface to one bank of DRAM (only external buffers are required for
additional SIMM banks)

— Page mode support for successive transfers within a burst for all on-chip and
external synchronous devices

— Internal address multiplexing for all on-chip bus masters supporting 64-, 128-,
256-, and 512-Kbyte, and 1-, 2-, 4-, 8-, 16-, 32-, 64-, 128-, 256-Mbyte page
banks

— Glueless interface to EDO, self refresh, and synchronous DRAM devices

Chapter 15. Memory Controller

Features

Figure 15-1 is a block diagram of the memory controller.

 Figure 15-1. Memory Controller Block Diagram

Address

Address [0–16], AT[0–2]

Latch
Multiplexer

and
Incrementer

Option Register (OR)

Write-Protect
Logic

Machine Mode Register
(MxMR)

Memory Periodic
Timer

Memory Disable
Timer

Memory Command Register (MCR)

Memory Status Register (MSTAT)

Memory Address Register (MAR)

Option Register (OR)

UPM
Arbiter

Memory Data Register (MDR)

Base Register (BR) Base Register (BR)

UPMA
or

UPMB

GPCM
Wait State
Counter

Memory Periodic Timer Prescale
Register (MPTPR)

Parity
Logic

DP[0–3]

DP[0–31]

CS[0–7]

BS_x[0–3]

GPLx[0–5]

TA

DLT3 (Internal)

UPWAITx

NA and AMX Fields

WE[0–3]

OE

in RAM Word

CS[0–7]
WP

RD/WR

SCY[0–3]

Expired

Load

Attributes

BURST, R/W

UPM Access Request

UPM Access Acknowledge

WP Error
Turn-On Disable Timer

UPM Access Request (Command)

UPM Command Done

Parity Error

Enable

TA

BADDR[28–30]

MPC855T User’s Manual

Basic Architecture

15.2 Basic Architecture

The memory controller consists of three basic machines:

• General-purpose chip-select machine (GPCM)
• User-programmable machine A (UPMA)
• User-programmable machine B (UPMB)

Each bank can be assigned to any one of these machines via the BR

x

[MS] bits as shown in
Figure 15-2. Address decode is performed by the comparison of (A[0–16] bit-wise and
OR

x

[AM]) with BR

x

[BA]. If an address match occurs in multiple banks, the lowest
numbered bank has priority. When a memory address matches BR

x

[BA], the corresponding
machine takes ownership of the external signals that control access until the cycle ends.

Figure 15-2. Memory Controller Machine Selection

The GPCM provides a glueless interface to EPROM, SRAM, flash EPROM, and other
peripherals. GPCM signals are available on CS[0–7]. CS0 lets the CPU access the boot
EPROM from reset. Each chip-select allows up to 30 wait states.

Some features are common to all eight memory banks:

• The block size of each memory bank can vary between 32 Kbytes and 256 Mbytes
for a full 4 Gbytes of the address space.

• Parity can be generated and checked for any memory bank. The memory controller
has four parity signals (DP[0–3]), one for each data byte lane on the system bus. The
parity on the bus is checked only if the memory bank accessed in the current
transaction has parity enabled. Parity checking/generation can be enabled for a

UPMA

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

BR0[MS]

BR1[MS]

BR2[MS]

BR3[MS]

BR4[MS]

BR5[MS]

BR6[MS]

BR7[MS]

UPMB

GPCM

Chapter 15. Memory Controller

Basic Architecture

specific memory bank in the base register. The type of parity is defined in the system
interface unit module configuration register (SIUMCR), which is explained in
Section 10.4.2, “SIU Module Configuration Register (SIUMCR).”

• Each memory bank can be selected for read-only or read/write operation.

• For system protection, access to a memory bank can be restricted to accesses with
certain address type codes (AT[0–2]). For additional flexibility, address-type
comparisons provide a mask option.

The memory controller functionality minimizes the need for glue logic in MPC855T-based
systems. In Figure 15-3, CS0 is used with the 16-bit boot EPROM with BR0[MS]
defaulting to select the GPCM. CS1 is used as the RAS signal for 32-bit DRAM with
BR1[MS] configured to select UPMA. The BS_A signals are used as CAS signals on the
DRAM.

Figure 15-3. Simple System Configuration

The UPMs provide a flexible interface to many types of memory devices. Each UPM can
control the address multiplexing necessary to access DRAM devices, the timing of the BS
signals, and the timing of the GPL signals. Each memory bank can be assigned to either
UPM.

Each UPM is a programmable RAM-based machine. The UPM toggles the memory
controller external signals as programmed in RAM when an internal or external master
initiates an external single-beat or burst read/write access. The UPM also controls address
multiplexing, address increment, and transfer acknowledge assertion for each memory
access. The UPM specifies a set of signal patterns for a user-specified number of clock
cycles. The UPM RAM pattern run by the memory controller is selected according to the

Address

CE

OE

WE

Data

EPROM

RAS

CAS[0–3]

W

Data

Parity[0–3]

DRAM

CS1

R/W

Data

WE[0–1]

GPL1/OE

CS0

Address

Address

DP[0–3]

BS_A[0–3]UPMA

GPCM

MPC855T

MPC855T User’s Manual

Chip-Select Programming Common to the GPCM and UPM

type of external access transacted. At every clock cycle, the logical value of the external
signals specified in the RAM array is output on the corresponding UPM pins. See
Figure 15-4.

Figure 15-4. Basic Memory Controller Operation

15.3 Chip-Select Programming Common to the GPCM
and UPM

The GPCM and the UPMs use the memory controller registers as specified in Table 15-1.
See Section 15.4, “Register Descriptions,” for specific register information.

Table 15-1. Memory Controller Register Usage

Register Used by the GPCM Used by a UPM

Base register bank 0–7 register (BR

x

)

√ √

Option register bank 0–7 register (OR

x

)

√ √

Memory status register (MSTAT)

√ √

Memory command register (MCR) √

Machine A mode register (MAMR) √

Machine B mode register (MBMR) √

Memory data register (MDR) √

Memory address register (MAR) √

Memory periodic timer prescaler register (MPTPR) √

Address
Comparator
Bank Select

UPMB GPCM

MS
Field

Signals
Timing

Generator

Signals
Timing

Generator

MUX

Internal/External Memory Access Request Select

Address (A),
Address
Type (AT)

External Signals

UPMA

Chapter 15. Memory Controller

Chip-Select Programming Common to the GPCM and UPM

15.3.1 Address Space Programming

Each bank has an option register (ORx) and a base register (BRx), which contains a V bit
that indicates that the information for the chip-select is valid.

Each base register defines the starting address of its memory bank and each option register
defines the attributes for its memory bank. Option registers also define the initial address
multiplexing for a memory cycle controlled by a UPM. Each time an internal or external
bus cycle access is requested, the address and its corresponding address type are compared
to each bank. If one bank matches, its attributes defined in BRx and ORx are used to control
the memory access. If multiple matches occur, the lowest numbered matched bank handles
the access.

15.3.2 Register Programming Order

For UPM-controlled chip selects, UPM registers should be programmed before ORx and
BRx. For all chip selects, ORx should be programmed before BRx except when
programming the boot chip select (CS0) after hardware reset, in which case, BR0 should
be programmed before OR0.

15.3.3 Memory Bank Write Protection

Attempting to write to an address range marked restricted in BRx[WP] causes a
write-protect violation for which MSTAT[WPER] is set.

15.3.4 Address Type Protection

BRx[AT] and ORx[ATM] can be used to implement address-type protection in a manner
similar to the address space programming. Note that when external masters access memory
controller-managed slaves on the bus, the internal AT[0–2] signals to the memory controller
are forced to 0b100.

15.3.5 8-, 16-, and 32-Bit Port Size Configuration

The port size is specified by BRx[PS]. Eight-bit ports must be connected to D[0–7], 16-bit
ports must be connected to D[0–15]. For ports smaller than 32-bits, dynamic bus sizing is
performed for all internal masters, such that only external bus accesses result, such as those
defined in Table 15-2.

MPC855T User’s Manual

Chip-Select Programming Common to the GPCM and UPM

15.3.6 Parity Configuration

If BRx[PARE] is set, parity is generated and checked (for internal masters only) on a
per-byte basis using DP[0–3] for the bank. As described in Section 10.4.2, “SIU Module
Configuration Register (SIUMCR),” SIUMCR[OPAR] determines the type of parity. Any
parity error causes an internal transfer error indication to be asserted and the associated
MSTAT[PER] and the corresponding TESR[DPB] or TESR[IPB] to be set, as described in
Section 10.4.4, “Transfer Error Status Register (TESR).”

15.3.7 Memory Bank Protection Status

The memory controller status register (MSTAT) reports write-protect violations and parity
errors for all eight banks. This protection provided through BRx[WP], is intended for
detection of erroneous accesses made by DMA from peripherals. More sophisticated
protection is provided for accesses from the core by the MMU, as described in Chapter 8,
“Memory Management Unit.”

15.3.8 UPM-Specific Registers

The machine x mode registers (MxMR) define most of the global features for UPMs. The
memory command and memory data registers (MCR and MDR) are used to initialize the
UPM’s RAM array. MCR[MAD] is the index into the 64-word RAM array for the MDR.

The memory address register (MAR) specifies the address to be driven on the external bus
when a UPM pattern is software-initiated by issuing a RUN command in the MCR.

The memory periodic timer prescaler register (MPTPR) defines the divisor of the external
bus clock used as the memory periodic timer input.

15.3.9 GPCM-Specific Registers

There are no GPCM-specific registers. All GPCM characteristics are defined in the
subfields of individual BRx and ORx registers.

Table 15-2. Access Granularities for Predefined Port Sizes

Predefined Port
Size

Bytes Half Words
Words (on Word

Boundaries)
Odd Even Odd Even

8-bit √ √ — — —

16-bit √ √ — √ (on D[0–15]) —

32-bit √ √ √ √ √

Chapter 15. Memory Controller

Register Descriptions

15.4 Register Descriptions
The following sections describe the registers used by the memory controller.

15.4.1 Base Registers (BRx)

The base registers (BR0–BR7) contain the base address and address types that the memory
controller uses to compare the value on the address bus with the current address accessed.
It also includes a memory attribute and selects the machine for memory operation handling.
Figure 15-5 shows the BRx register.

After reset, BR0 has different default values than other BRx registers until the first write to
OR0.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field BA

Reset xxxx_xxxx_xxxx_xxxx

R/W R/W

Addr (IMMR & FFFF0000) + 0x100 (BR0), 0x0x108 (BR1), 0x110, (BR2), 0x118 (BR3), 0x120 (BR4), 0x128
(BR5), 0x130 (BR6), 0x138 (BR7)

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BA AT PS PARE WP MS — V

Reset xxxx_xxxx_xx00_0000

R/W R/W

Addr (IMMR & FFFF0000) + 0x102 (BR0), 0x10A (BR1), 0x112, (BR2), 0x11A (BR3), 0x122 (BR4), 0x12A
(BR5), 0x132 (BR6), 0x13A (BR7)

Figure 15-5. Base Registers (BRx)

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field BA

Reset xxxx_xxxx_xxxx_xxxx 1

R/W R/W

Addr (IMMR & FFFF0000) + 0x100

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field BA AT PS PARE WP MS — V

Reset x xxx * 0 0 00 00_000 **

R/W R/W

Addr (IMMR & FFFF0000) + 0x102

* The reset value of PS depends on the boot port size (BPS) field of the hard reset configuration word.
** The reset value of V depends on the boot disable (BDIS) field of the hard reset configuration word.

Figure 15-6. BR0 Reset Defaults

MPC855T User’s Manual

Register Descriptions

These registers are affected by HRESET but are not affected by SRESET. Table 15-3
describes BRx fields.

15.4.2 Option Registers (ORx)

The option registers (OR0–OR7), shown in Figure 15-7, contain the address and address
type mask bit for address bus comparison. It also includes all GPCM parameters.

1 Becasue at reset the base address value of BR0 is unknown, to ensure proper operation, program BR0 before OR0.

Table 15-3. BRx Field Descriptions

Bits Name Description

0–16 BA Base address. Compared to A[0–16]to determine if a memory bank controlled by the memory controller
is being accessed by an internal or external bus master. Used in conjunction with ORx[AM].

17–19 AT Address type. Can be used to limit accesses to the memory bank to a certain address space type,
AT[0–2]. Note that for internal bus masters, AT[0–2] are sampled from the bus. For external bus
masters, AT[0–2] are not sampled on the external bus and instead default to 0b100. Used in
conjunction with the ORx[ATM].

20–21 PS Port size. Specifies the port size of the memory region. After system reset, the value of BR0[PS]
depends on BPS in the hard reset configuration word, described in Section 11.3.1.1.
00 32-bit port size.
01 8-bit port size.
10 16-bit port size.
11 Reserved.

22 PARE Parity enable. Used to enable parity checking on this bank.
0 Parity checking is disabled.
1 Parity checking is enabled.

23 WP Write-protect. Can be used to restrict write accesses within the address range of a BR.
0 Both read and write accesses are allowed.
1 Only read accesses are allowed. The memory controller does not assert CSx and TA on write cycles

to this memory bank. Attempting to write to the memory bank causes MSTAT[WPER] to be set. The
write access is not terminated by the memory controller; however, it is terminated by a TEA assertion
from the bus monitor if the bus monitor is enabled.

24–25 MS Machine select. Selects the machine for handling memory operations.
00 GPCM.
01 Reserved.
10 UPMA.
11 UPMB.

26–30 — Reserved, should be cleared.

31 V Valid. Indicates that the contents of the BRx and ORx are valid. The reset value of BR0[V] depends on
BDIS in the hard reset configuration word, described in Section 11.3.1.1.
0 This bank is invalid. An attempt to access this region can cause a bus monitor timeout.
1 This bank is valid. The CS signal does not assert until V is set.

Chapter 15. Memory Controller

Register Descriptions

At reset, OR0 has specific default values and is read-only, as shown in Figure 15-8. After
reset, OR0 becomes R/W.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field AM

Reset xxxx_xxxx_xxxx_xxxx

R/W R/W

Addr (IMMR & FFFF0000) + 0x104 (OR0), 0x10C (OR1), 0x114 (OR2), 0x11C (OR3), 0x124 (OR4), 0x12C
(OR5), 0x134 (OR6), 0x13C (OR7)

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field AM ATM CSNT/SAM ACS/G5LA,G5LS BIH SCY SETA TRLX EHTR —

Reset xxxx_xxxx_xxxx_xxx0

R/W R/W

Addr (IMMR & FFFF0000) + 0x106

Figure 15-7. Option Registers (ORx)

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field AM

Reset 0000_0000_0000_0000

R/W R

Addr (IMMR & FFFF0000) + 0x104 (OR0)

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field AM ATM CSNT/SAM ACS/G5LA,G5LS BIH SCY SETA TRLX EHTR —

Reset 0 000 1 11 1 1111 0 1 0 0

R/W R

Addr (IMMR & FFFF0000) + 0x106

Figure 15-8. OR0 Reset Defaults

MPC855T User’s Manual

Register Descriptions

These registers are affected by HRESET but are not affected by SRESET. Figure 15-4
describes ORx fields.

Table 15-4. ORx Field Descriptions

Bits Name Description

0–16 AM Address mask. This read/write field independently masks bits A[0–16] on the address bus so external
devices of different size address ranges can be used. AM bits can be set or cleared in any order,
allowing a resource to reside in more than one area of the address map.
0 The corresponding address bit is masked.
1 The corresponding address bit is used in address pin comparison.

17–19 ATM Address type mask. Masks certain bits in address type, AT[0–2], allowing more than one address
space type to be assigned to a chip-select. Any set bit causes the corresponding address type code
bits to be used as part of the address comparison. Any cleared bit masks the corresponding address
type code bit. If address-type protection is not desired, then ATM should be cleared.

20 CSNT CSNT (chip-select negation time). Used for the GPCM with ACS and TRLX to control negation of CSx
and WEx during an external memory write access. Provides extended address/data hold time for
slower memories and peripherals. This will not be applicable when SETA = 1. See Table 15-11.

SAM Start address multiplex. Used for a UPM to determine the address output on the first cycle of an
external memory access. Should be set only if address multiplexing is to be performed internally.
0 Address pins are not multiplexed internally.
1 Address pins reflect the address requested by the internal master multiplexed according to the

setting of MAMR[AMA] (UPMA) or MBMR[AMB] (UPMB).

21–22 ACS ACS (address to chip-select setup). Lets the GPCM control CSx assertion relative to address lines
valid.
00 CS is output at the same time as the address lines.
01 Reserved.
10 CS is output a quarter of a clock after the address lines.
11 CS is output half a clock after the address lines.

G5LA,
G5LS

G5LA and G5LS (general-purpose line 5 A/line 5 start) are used for the UPM to determine how the
internal controls and timing generator signal outputs GPL5 when a UPM handles a memory access.
G5LA (valid only for UPMB):
0 Output the internal GPL5 signal on GPL_B5.
1 Output the internal GPL5 signal on GPL_A5.

G5LS (valid for UPMA or UPMB)
0 GPL5 is driven low on the falling edge of GCLK1_50 in the first clock cycle of a memory access.
1 GPL5 is driven high on the falling edge of GCLK1_50 in the first clock cycle of a memory access.

23 BIH Burst inhibit. Determines whether this memory bank supports burst accesses. If the machine selected
to handle this access is the GPCM, BIH must be set.
0 BI is negated. The bank supports burst accesses.
1 BI is asserted. The bank does not support burst accesses.

24–27 SCY Select cycle length (GPCM only). Binary representation of the number of wait states inserted in the
cycle when the GPCM handles an external memory access (0000 = 0 clock cycle, 0001 = 1 clock
cycle, …, 1111 = 15 clock cycle). Total cycle length is also affected by TRLX. See Table 15-11 for the
total number of cycles. If external TA response is selected (SETA = 1), SCY is not used.

28 SETA Select external transfer acknowledge (GPCM only).
0 Internal or external transfer acknowledge can acknowledge this access, whichever comes first.
1 The memory controller does not generate TA for this bank; instead the peripheral must generate it

on the external TA signal.

Chapter 15. Memory Controller

Register Descriptions

15.4.3 Memory Status Register (MSTAT)

The memory status register (MSTAT) reports parity and write-protect errors encountered
during an external bus access initiated by the memory controller. Writing ones to specific
bits clears them; writing zeros has no effect.

This register is affected by HRESET but is not affected by SRESET. Table 15-5 describes
MSTAT fields.

15.4.4 Machine A Mode Register/Machine B Mode Registers
 (MxMR)

The machine x mode register (MAMR and MBMR) contain the configuration for UPMA
and UPMB, respectively. See Figure 15-1.

29 TRLX Timing relaxed (GPCM only)
0 Timing is not relaxed.
1 In addition to the timing parameters programmed in other ORx fields, timing is further relaxed. See

the effect of TRLX in Table 15-11. TRLX also doubles the wait-states programmed in SCY.

30 EHTR Extended hold time on read. (GPCM only)
0 Timing is defined by the memory controller.
1 After a read from the current bank, an additional clock cycle is inserted before the memory

controller responds to a write or read to another bank.

31 — Reserved, should be cleared.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field PER0 PER1 PER2 PER3 PER4 PER5 PER6 PER7 WPER —

Reset 0000_0000_0000_0000

R/W R/W

Addr (IMMR & FFFF0000) + 0x178

Figure 15-9. Memory Status Register (MSTAT)

Table 15-5. MSTAT Field Descriptions

Bits Name Description

0–7 PERx Parity error bank 0–7. Set when a parity error is detected during a read cycle to this bank initiated
by the memory controller.

8 WPER Write-protection error. Set when a write-protect error occurs on a write cycle to a write-protected
bank defined by BRx[WP].

9–15 — Reserved, should be cleared.

Table 15-4. ORx Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Register Descriptions

This register is affected by HRESET but is not affected by SRESET. Table 15-6 describes
bits for MAMR/MBMR.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field PTx PTxE AMx — DSx —

Reset xxxx_xxxx_0000_0000

R/W R/W

Addr (IMMR & FFFF0000) + 0x170

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field G0CLx GPLx4DIS RLFx WLFx TLFx

Reset 000 1 0000 0000 0000

R/W R/W

Addr (IMMR & FFFF0000) + 0x172

Figure 15-10. Machine A Mode Register/Machine B Mode Register (MxMR)

Table 15-6. MxMR Field Descriptions

Bits Name Description

0–7 PTx Periodic timer x period. Affects periodic timer x and determines the timer period service rate
according to the following equation, which determines value for UPMx to refresh memory:

NCS is an integer between 1 and 8 that represents the number of enabled chip selects that are
serviced by this UPM. SCCR[DFBRG] is defined in Section 14.6.1, “System Clock and Reset
Control Register (SCCR).” For example, for DRAM to maintain data integrity, an access or refresh
must occur every 15.6 µs. Given a 25-MHz system clock with the required service rate of 15.6µs,
a periodic timer prescaler = 32, and DFBRG = 0, PTx = (25 x 15.6) / (22x0 x 32x 1) = 12.

8 PTxE Periodic timer x enable. Allows the periodic timer x to request service.
0 Periodic timer x is disabled.
1 Periodic timer x is enabled.

9–11 AMx Address multiplex size x. When internal address multiplexing is used, this field specifies how the
address on the external bus is multiplexed, when enabled (see Table 15-18). The SAM bit
enables address multiplexing in the first clock cycle. The AMx field of the RAM array entry enables
address multiplexing in subsequent clock cycles. (see Table 15-19).

12 — Reserved, should be cleared.

PTx
System Clock (MHz) Service Duration (µs)×

2
2 SCCR DFBRG[]×

Prescaler (PTP)× NCS×
---=

Chapter 15. Memory Controller

Register Descriptions

15.4.5 Memory Command Register (MCR)

The memory command register (MCR) is used during UPM initialization to read and write
the contents of the UPM RAM. It also allows commands to be issued that stimulate UPM
routine execution. This capability lets the CPU perform special memory operations in
addition to standard read/write and periodic timer service operations. An example of this is
software execution of a special UPM pattern to initialize SDRAM.

13–14 DSx Disable timer period. Guarantees a minimum time between accesses to the same memory bank
if it is controlled by the UPMx. This function can be used to guarantee a minimum RAS precharge
time. The TODT bit in the RAM array turns on the disable timer and, when expired, the UPMx
allows the machine access to issue a memory pattern to the same region. An access attempted
before the timer expires (as signalled by TS assertion) has wait states inserted before the UPM
pattern runs. Accesses to other chip-selects serviced by this UPM are unaffected by this timer.
The maximum disable period is four clock cycles. If more than 4 cycles are required, they must
be added explicitly in the UPM RAM words.
00 1-cycle disable period
01 2-cycle disable period
10 3-cycle disable period
11 4-cycle disable period

15 — Reserved, should be cleared.

16–18 G0CLx[0–2] General line 0 control x. Selects the address line output to the internal GPL0 signal in the special
case where the functionality is enabled in the G0L and G0H bits of the UPM RAM word.
000 = A12
001 = A11
010 = A10
011 = A9

100 = A8
101 = A7
110 = A6
111 = A5

19 GPLx4DIS GPLx4 output line disable. Determines whether UPWAITx/GPL_x4 behaves as the GPL4 output
controlled the UPM RAM word, or an input signal used to dynamically insert wait states into UPM
patterns.
0 = UPWAITx/GPL_x4 is defined as GPL_x4.
1 = UPWAITX/GPL_x4 is defined as UPWAITx.

20–23 RLFx Read loop field x. Specifies (in binary) the number of times a loop defined in the UPMx RAM word
is executed for a burst read or single-beat read cycle. (0001 = 1 time, 0010 = 2 times, …, 1111 =
15 times; note that 0000 = 16 times.)

24–27 WLFx Write loop field x. Specifies the number of times a loop defined in the UPMx RAM word is
executed for a burst- or single-beat write cycle. (0001 = 1 time, 0010 = 2 times, …, 1111 = 15
times; note that 0000 = 16 times.)

28–31 TLFx Timer loop field x. Specifies the number of times a loop defined in the UPMx RAM word is
executed for a periodic timer service. (0001 = 1 time, 0010 = 2 times, …, 1111 = 15 times; note
that 0000 = 16 times.)

Table 15-6. MxMR Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Register Descriptions

This register is affected by HRESET but is not affected by SRESET. Table 15-7 describes
MCR fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field OP — UM —

Reset xx00_0000_x000_0000

R/W R/W

Addr (IMMR & FFFF0000) + 0x168

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field MB — MCLF — MAD

Reset xxx0_xxxx_00xx_xxxx

R/W R/W

Addr (IMMR & FFFF0000) + 0x16A

Figure 15-11. Memory Command Register (MCR)

Table 15-7. MCR Field Descriptions

Bits Name Description

0–1 OP Command opcode. Defines the operation to be executed by the UPM specified in the UM field.
00 WRITE writes the contents of the MDR into the RAM location indexed by MCR[MAD].
01 READ reads the contents of the RAM location indexed by MCR[MAD] and stores it in the MDR.
10 RUN executes the pattern in the RAM array beginning with the RAM word indexed by MCR[MAD]

on the memory bank specified in MCR[MB]. The AMX bits of the UPM RAM word in this
software-initiated pattern must all be set to 0b11. Thus, the address for this pattern is the value
written to MAR. The data bus is not driven.

11 Reserved.

2–7 — Reserved, should be cleared.

8 UM User machine. Selects the UPM for this command.
0 UPMA
1 UPMB

9–15 — Reserved, should be cleared.

16–18 MB Memory bank. Indicates the appropriate CSx pin when a run command is executed (000 corresponds
to CS0, 001 corresponds to CS1, …, 111 corresponds to CS7)

19 — Reserved, should be cleared.

20–23 MCLF Memory command loop field. Specifies how many times a loop is executed for a RUN command. (0001
= the loop executes once, 0010 = the loop executes twice, …, 1111 = the loop executes 15 times. Note
that 0000 = the loop executes 16 times.)

24–25 — Reserved, should be cleared.

26–31 MAD Memory array index. Specifies an index to one of 64 RAM words in the RAM array.

Chapter 15. Memory Controller

Register Descriptions

15.4.6 Memory Data Register (MDR)

The memory data register (MDR) contains data written to or read from the RAM array for
UPM READ or WRITE commands. MDR must be set up before issuing a WRITE command to
the MCR.

This register is not affected by HRESET or SRESET. Table 15-8 describes MDR.

15.4.7 Memory Address Register (MAR)

The memory address register contains an address to be driven on the external bus in the case
of a RUN command issued to the MCR.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field MD

Reset xxxx_xxxx_xxxx_xxxx

R/W R/W

Address (IMMR & FFFF0000) + 0x17C

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field MD

Reset xxxx_xxxx_xxxx_xxxx

R/W R/W

Address (IMMR & FFFF0000) + 0x17E

Figure 15-12. Memory Data Register (MDR)

Table 15-8. MDR Field Descriptions

Bits Name Description

0–31 MD Memory data. Contains the RAM array word.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field MA

Reset xxxx_xxxx_xxxx_xxxx

R/w R/W

Address (IMMR & FFFF0000) + 0x164

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field MA

Reset xxxx_xxxx_xxxx_xxxx

R/W R/W

Address (IMMR & FFFF0000) + 0x166

Figure 15-13. Memory Address Register (MAR)

MPC855T User’s Manual

General-Purpose Chip-Select Machine (GPCM)

This register is not affected by HRESET or SRESET. Table 15-9 describes MAR fields.

15.4.8 Memory Periodic Timer Prescaler Register (MPTPR)

The memory periodic timer prescaler register (MPTPR) defines the divisor of the external
bus clock used as the memory periodic timer input clock. See Section 14.3, “Clock
Signals.”

This register is affected by HRESET but is not affected by SRESET. Table 15-10 describes
MPTPR fields.

15.5 General-Purpose Chip-Select Machine (GPCM)
The GPCM allows a glueless and flexible interface between the MPC855T, SRAM,
EPROM, FEPROM, ROM devices, and external peripherals. The GPCM contains three
basic configuration register groups—BRx, ORx, and MSTAT.

The GPCM provides a CS signal for memory bank activation, WE signals for write cycles
for each byte written to memory, and OE signals for read cycles. Figure 15-15 shows a
simple connection between an SRAM device and the MPC855T.

Table 15-9. MAR Field Description

Bits Name Description

0–31 MA Contains a 32-bit address to be output on the address bus if AMX = 0b11. See Section 15.6.4.1, “RAM
Words.”

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field PTP —

Reset 0000_001x 0000_0000

R/W R/W

Addr (IMMR & FFFF0000) + 0x17A

Figure 15-14. Memory Periodic Timer Prescaler Register (MPTPR)

Table 15-10. MPTPR Field Descriptions

Bits Name Description

0–7 PTP Periodic timers prescaler. Contains the division factor defined below.
001x xxxxDivide by 2.
0001 xxxxDivide by 4.
0000 1xxxDivide by 8.
0000 01xxDivide by 16.
0000 001xDivide by 32.
0000 0001Divide by 64.
All other values are reserved.

8–15 — Reserved, should be cleared.

Chapter 15. Memory Controller

General-Purpose Chip-Select Machine (GPCM)

Figure 15-15. GPCM-to-SRAM Configuration

15.5.1 Timing Configuration

If BRx[MS] selects the GPCM, the attributes for the memory cycle are taken from ORx.
These attributes include the CSNT, ACS[0–1], SCY[0–3], TRLX, EHTR, and SETA fields.
See Table 15-11 for signal behavior and system response.

Table 15-11. GPCM Strobe Signal Behavior

Configuration Signal Behavior

ORx
[TRLX]

Access
SCCR
[EBDF]

ORx
[CSNT]

ORx
[ACS]

Address
to CS

Asserted

Address
to OE

Asserted

Address
to WE

Asserted

Data to
WE

Asserted

CS
Negated

to
Address/

Data
Invalid

WE
Negated

to
Address/

Data
Invalid

Total
Cycles

0 Read x x 00 0 3/4*Clk x x 1/4* Clk x 2+SCY 1

10 1/4*Clk

11 1/2*Clk

Write 0 00 0 x 1/4*Clk

10 1/4*Clk 3/4*Clk -1/4*Clk

11 1/2*Clk

00 1 00 0 1/2*Clk

10 1/4*Clk 1/2*Clk

11 1/2*Clk

01 00 0 1/4*Clk 3/8*Clk

10 1/4*Clk 3/8*Clk

11 1/2*Clk

CE

WE[0–3]

OE

Address

Data

32-Bit Wide SRAM

D[0–31]

A[15–29]

GPL_x1/OE

WE[0–3]

CSx

128K

MPC855T

MPC855T User’s Manual

General-Purpose Chip-Select Machine (GPCM)

15.5.1.1 Chip-Select Assertion Timing

The banks selected by the GPCM support an option to output CS at different timings with
respect to the external address bus. Depending on the value of the ACS field (plus an
additional cycle if TRLX = 1), CS can be output as follows

• Simultaneous with the external address

• One quarter of a clock cycle later

• One half of a clock cycle later

Figure 15-16 shows a basic connection between the MPC855T and an external peripheral
device. Here, CS (the strobe output for the memory access) is connected directly to CE of
the memory device and R/W is connected to the respective R/W in the peripheral device.

1 Read x x 00 0 3/4*Clk x x 1/4*Clk x 2+2*SCY

10 1+1/4*Clk 1+3/4*Clk 3+2*SCY

11 1+1/2*Clk

Write 0 00 0 x 3/4*Clk -1/4*Clk 1/4*Clk 2+2*SCY

10 1+1/4*Clk 1+3/4*Clk 3/4*Clk 3+2*SCY

11 1+1/2*Clk

00 1 00 0 3/4*Clk -1/4*Clk 1+1/2*Clk

10 1+1/4*Clk 1+3/4*Clk 3/4*Clk 1+1/2*Clk 4+2*SCY

11 1+1/2*Clk

01 00 0 3/4*Clk -1/4*Clk 1/4*Clk 1+3/8*Clk 3+2*SCY

10 1+1/4*Clk 1+3/4*Clk 3/4*Clk 1+3/8*Clk 4+2*SCY

11 1+1/2*Clk

1 SCY is the number of wait cycles from the option register.

Table 15-11. GPCM Strobe Signal Behavior (continued)

Configuration Signal Behavior

ORx
[TRLX]

Access
SCCR
[EBDF]

ORx
[CSNT]

ORx
[ACS]

Address
to CS

Asserted

Address
to OE

Asserted

Address
to WE

Asserted

Data to
WE

Asserted

CS
Negated

to
Address/

Data
Invalid

WE
Negated

to
Address/

Data
Invalid

Total
Cycles

Chapter 15. Memory Controller

General-Purpose Chip-Select Machine (GPCM)

Figure 15-16. GPCM Peripheral Device Interface

Figure 15-17 shows CS as defined by the setup time required between the address lines and
CE. The user can configure ORx[ACS] to specify CS to meet this requirement.

Figure 15-17. GPCM Peripheral Device Basic Timing (ACS = 1x and TRLX = 0)

15.5.1.2 Chip-Select and Write Enable Deassertion Timing

Figure 15-18 shows a basic connection between the MPC855T and a static memory device.
Here, CS is connected directly to CE of the memory device. The WE signals are connected
to the respective W signal in the memory device where each WE corresponds to a different
data byte.

Address

CE

R/W

Data

Peripheral

Data

R/W

CS

Address

 MPC855T

Clock

Address

TS

TA

CS

R/W

Data

ACS = 11
ACS = 10

MPC855T User’s Manual

General-Purpose Chip-Select Machine (GPCM)

Figure 15-18. GPCM Memory Device Interface

As Figure 15-20 shows, the timing for CS is the same as for the address lines. The strobes
for the transaction are supplied by OE or WE, depending on the transaction direction (read
or write). ORx[CSNT] controls the timing for the appropriate strobe negation in write
cycles. When this attribute is asserted, the strobe is negated one quarter of a clock before
the normal case. For example, when ACS = 00 and CSNT = 1, WE is negated one quarter
of a clock earlier, as shown in Figure 15-19. When ACS ≠ 00 and CSNT = 1, WE and CS
are negated one quarter of a clock earlier, as shown in Figure 15-20.

Figure 15-19. GPCM Memory Device Basic Timing (ACS = 00, CSNT = 1, TRLX = 0)

Address

CE

OE

W

Data

MEMORY

Data

WE

OE

CS

Address

MPC855T

Clock

Address

TS

TA

CS

WE

OE

Data

CSNT = 1

Chapter 15. Memory Controller

General-Purpose Chip-Select Machine (GPCM)

Figure 15-20. GPCM Memory Device Basic Timing (ACS ≠ 00, CSNT = 1, TRLX = 0)

15.5.1.3 Relaxed Timing

ORx[TRLX] is provided for memory systems that require more relaxed timing between
signals. When TRLX = 1 and ACS ≠ 00, an additional cycle between the address and
strobes is inserted by the MPC855T memory controller. See Figure 15-21 and
Figure 15-22.

Clock

Address

TS

TA

CS

WE

Data

CSNT = 1

ACS = 11
ACS = 10

MPC855T User’s Manual

General-Purpose Chip-Select Machine (GPCM)

Figure 15-21. GPCM Relaxed Timing Read (ACS = 1x, SCY = 1, CSNT = 0, and
TRLX = 1)

Figure 15-22. GPCM Relaxed-Timing Write (ACS = 1x, SCY = 0, CSNT = 0, TRLX = 1)

Clock

Address

TS

TA

CS

R/W

WE

OE

Data

ACS = 10
ACS = 11

Clock

Address

TS

TA

CS

R/W

WE

OE

Data

ACS = 10
ACS = 11

Chapter 15. Memory Controller

General-Purpose Chip-Select Machine (GPCM)

When TRLX and CSNT are set in a write-memory access, the strobe line, WE is negated
one clock earlier than in the normal case. If ACS ≠ 0, CS is also negated one clock earlier,
as shown in Figure 15-23 and Figure 15-24. When a bank is selected to operate with
external transfer acknowledge (SETA and TRLX = 1), the memory controller does not
support external devices that provide TA to complete the transfer with zero wait states. The
minimum access duration in this case is 3 clock cycles.

Figure 15-23. GPCM Relaxed-Timing Write (ACS = 1x, SCY = 0, CSNT = 1, TRLX =1)

Clock

Address

TS

TA

CS

R/W

WE

OE

Data

ACS = 10
ACS = 11

MPC855T User’s Manual

General-Purpose Chip-Select Machine (GPCM)

Figure 15-24. GPCM Relaxed-Timing Write (ACS = 00, SCY = 0, CSNT = 1, TRLX =1)

15.5.1.4 Output Enable (OE) Timing

The timing of the OE is affected only by TRLX. It always asserts and negates on the rising
edge of the external bus clock. OE always asserts on the rising clock edge after CS is
asserted, and therefore its assertion can be delayed (along with the assertion of CS) by
programming TRLX = 1. OE deasserts on the rising clock edge coinciding with or
immediately following CS deassertion.

15.5.1.5 Programmable Wait State Configuration

The GPCM supports internal TA generation. It allows fast accesses to external memory
through an internal bus master or a maximum 17-clock access by programming ORx[SCY].
The internal TA generation mode is enabled if ORx[SETA] is cleared. If TA is asserted
externally at least two clock cycles before the wait state counter has expired, the current
memory cycle is terminated. When TRLX is set, the number of wait states inserted by the
memory controller is defined by 2 x SCY or a maximum of 30 wait states.

15.5.1.6 Extended Hold Time on Read Accesses

Slow memory devices that take a long time to turn off their data bus drivers on read accesses
should set ORx[EHTR]. Any MPC855T access to the external bus following a read access
to the slower memory bank is delayed by one clock cycle, unless it is a read access to the
same bank. See Figure 15-25 through Figure 15-28 for details.

Clock

Address

TS

TA

CS

R/W

WE

OE

Data

Chapter 15. Memory Controller

General-Purpose Chip-Select Machine (GPCM)

Figure 15-25. GPCM Read Followed by Write (EHTR = 0)

Clock

Address

TS

TA

CSx

CSy

R/W

OE

Data

Hold Time

MPC855T User’s Manual

General-Purpose Chip-Select Machine (GPCM)

Figure 15-26. GPCM Read Followed by Write (EHTR = 1)

Clock

Address

TS

TA

CSx

CSy

R/W

OE

Data

Hold Time Long hold time allowed

Chapter 15. Memory Controller

General-Purpose Chip-Select Machine (GPCM)

Figure 15-27. GPCM Read Followed by Read from Different Banks (EHTR = 1)

Clock

Address

TS

TA

CSx

CSy

R/W

OE

Data

Hold Time Long hold time allowed

MPC855T User’s Manual

General-Purpose Chip-Select Machine (GPCM)

Figure 15-28. GPCM Read Followed by Read from Same Bank (EHTR = 1)

15.5.2 Boot Chip-Select Operation

Boot chip-select operation allows address decoding for a boot ROM before system
initialization occurs. The CS0 signal is the boot chip-select output and its operation differs
from the other external chip-select outputs on system reset. When the MPC855T internal
core begins accessing memory at system reset, CS0 is asserted for every address, unless an
internal register is accessed.

The boot chip-select provides a programmable port size during system reset by using the
BPS field of the hard reset configuration word described in Section 11.3.1.1. Setting these
appropriately allows a boot ROM to be located anywhere in the address space. The boot
chip-select does not provide write protection and responds to all address types. CS0
operates this way until the first write to OR0 and it can be used as any other chip-select
register once the preferred address range is loaded into BR0. After the first write to OR0,
the boot chip-select can only be restarted on hardware reset. The initial values of the boot
bank in the memory controller are described in Table 15-12.

Clock

Address

TS

TA

CSx

CSy

R/W

OE

Data

Hold Time

Chapter 15. Memory Controller

General-Purpose Chip-Select Machine (GPCM)

15.5.3 External Asynchronous Master Support

Figure 15-29 shows the basic interface between an asynchronous external master and the
GPCM to allow connection to static RAM.

Figure 15-29. Asynchronous External Master Configuration for GPCM-Handled
Memory Devices

Figure 15-30 shows the timing for TRLX = 0 when an external asynchronous master
accesses SRAM. TA, WE, and OE remain asserted until the external master negates AS, at
which point they deassert asynchronously.

Table 15-12. Boot Bank Field Values after Reset

Register Field Name Value

BR0 PS From hard reset configuration word

PARE 0

WP 0

MS 00

V From hard reset configuration word

OR0 AM All zeros

ATM 000

CSNT 1

ACS 11

SCY 1111

SETA 0

TRLX 1

EHTR 0

Address

CE

OE

MEMORY

OE

CS

Address

AS

TA

DataData

TA AS Address Data

WWE

ASYNCHRONOUS EXTERNAL MASTER

MPC855T

MPC855T User’s Manual

General-Purpose Chip-Select Machine (GPCM)

Figure 15-30. Asynchronous External Master, GPCM-Handled Memory Access
Timing (TRLX = 0)

When an external asynchronous master performs accesses a memory device via the GPCM
in the memory controller, ORx[CSNT] has no effect.

For a comprehensive discussion of external master interfacing, see Section 15.8, “External
Master Support.”

15.5.4 Special Case: Bursting with External Transfer
 Acknowledge:

The memory controller supports bursting to and from an external slave that supplies its own
TA termination signal in the following special case:

The GPCM is the subsystem of the memory controller that supports provision of chip-select
signals (CSx) for slaves that provide their TA signal external to the MPC855T (ORx[SETA]
= 1). However, the GPCM keeps its chip-select asserted only until the first TA is sampled.

The GPCM cannot be used to burst to an external device the requires that the chip-select
signal remain asserted throughout a burst transaction. However, if the device requires only
that the chip-select be asserted up to the first data beat of the burst, it is possible to burst to
this device. The user can program ORx[SETA] = 1 and ORx[BIH] = 0 to enable this
operation. This is the only case in which it is valid to program ORx[BIH] = 0 for a
chip-select controlled by the GPCM.

Clock

Address

AS

TA

CS

WE

OE

Data

Chapter 15. Memory Controller

User-Programmable Machines (UPMs)

During a burst cycle, the user sees the chip-select assertion follow the same pattern as for a
single-beat cycle. However, BI remains negated, and the burst continues for the following
data beats after the negation of chip-select following TA for the first data beat.

Note also the following:

• Address incrementing is not provided in this mode. Addresses driven by the
MPC855T remain the same throughout the cycle.

• The external slave must provide TA for all beats of the burst.

15.6 User-Programmable Machines (UPMs)
The two user-programmable machines (UPMs) are flexible interfaces that connect to a wide
range of memory devices. At the heart of each UPM is an internal-memory RAM array that
specifies the logical value driven on the external memory controller pins for a given clock
cycle. Each word in the RAM array provides bits that allow a memory access to be
controlled with a resolution of one quarter of the external bus clock period on the
byte-select and chip-select lines. Figure 15-31 shows the basic operation of each UPM. The
following events initiate a UPM cycle:

• Any internal or external master requests an external memory access to an address
space mapped to a chip-select serviced by the UPM

• A UPM periodic timer expires and requests a transaction, such as a DRAM refresh
• A transfer error or reset generates an exception request
• The MCR receives a RUN command from the CPU

Figure 15-31. User-Programmable Machine Block Diagram

MCR RUN command

UPM Periodic
Timer Request Array

Index
Generator

Internal/External
Memory Access Request

Exception Request

Index

Signals
Timing

Generator

Internal
Signals
Latch

Wait
Request

Logic

RAM Array

UPWAIT

WAEN Bit

Internal Controls

GPLx, BS_x, CSx

Increment
Index

(LAST = 0)Hold

(issued in software)

MPC855T User’s Manual

User-Programmable Machines (UPMs)

The RAM array contains 64 32-bit RAM words. The signal timing generator loads the
RAM word from the RAM array to drive the general-purpose lines, byte-selects, and
chip-selects. If the UPM reads a RAM word with WAEN set, the external UPWAIT signal
is sampled and synchronized by the memory controller and the current request is frozen (if
and while UPWAIT remains asserted).

15.6.1 Requests
An internal or external master’s request for a memory access initiates one of the following
patterns:

• Read single-beat pattern (RSS)

• Read burst cycle pattern (RBS)

• Write single-beat pattern (WSS)

• Write burst cycle pattern (WBS)

These patterns are described in Section 15.6.1.1, “Internal/External Memory Access
Requests.”

A UPM periodic timer request pattern initiates a periodic timer pattern (PTS), as described
in Section 15.6.1.2, “UPM Periodic Timer Requests.”

An exception (reset or machine check triggered by the assertion of TEA) occurring while
another UPM pattern is running initiates an exception condition pattern (EXS).

A special pattern in the RAM array is associated with each of these cycle types.
Figure 15-32 shows the start addresses of these patterns in the UPM RAM, according to
cycle type. MCR-initiated RUN commands, however, can initiate patterns starting at any of
the 64 UPM RAM words.

Figure 15-32. RAM Array Indexing

Write Single-Beat Request

Read Burst Request

Read Single-Beat Request

Write Burst Request

RAM Array

Periodic Timer Request

Exception Condition Request

RSS

RBS

WSS

WBS

PTS

EXS

64 RAM
Words

Array Index
Generator

0x00

0x08

0x20

0x18

0x30

0x3C

Chapter 15. Memory Controller

User-Programmable Machines (UPMs)

15.6.1.1 Internal/External Memory Access Requests

When an internal master requests a new access to external memory, the address and type of
transfer are compared to each valid bank defined in BRx. The value in BRx[MS] selects the
UPM to handle the memory access. The user must ensure that the UPM is appropriately
initialized before a request.

External memory access requests are single-beat and burst reads and writes. A single-beat
transfer transfers one operand consisting of a single byte, half word, or word. A burst
transfer transfers four words. A single-beat cycle starts with one transfer start and ends with
one transfer acknowledge. For 32-bit accesses, the burst cycle starts with one transfer start
but ends after four transfer acknowledges. A 16-bit bus requires 8 transfer acknowledges;
an 8-bit bus requires 16.

15.6.1.2 UPM Periodic Timer Requests

Each UPM contains a periodic timer that can be programmed to generate periodic service
requests of a particular pattern in the RAM array. Figure 15-33 shows the hardware
associated with memory periodic timer request generation. In general, the periodic timer is
used for refresh cycle operation. MxMR[PTx] defines the period for the timers associated
with UPMx. If MxMR[PTxE] is set, the periodic timer of UPMx requests a transaction
when the timer period expires.

Figure 15-33. Memory Periodic Timer Request Block Diagram

15.6.1.3 Software Requests—MCR RUN Command

Software can start a request to the UPM by issuing a RUN command to the MCR. Some
memory devices have their own signal handshaking protocol to put them into special
modes, such as self-refresh mode. Other memory devices must be issued special commands
on their control signals, such as for SDRAM initialization.

For these special cycles, the user creates a special RAM pattern that can be stored in any
unused areas in the UPM RAM. Then the MCR RUN command is used to run the cycle. The
UPM runs the pattern beginning at the specified RAM location until it encounters a RAM
word with its LAST bit set.

Memory
Periodic
Timer

Periodic
Timer A
(PTA)

Periodic
Timer B
(PTB)

BRG
Prescaler and

(In SCCR) Prescaler
(In MPTPR)

System Clock UPMA Periodic
Timer Request

UPMB Periodic
Timer Request

External Bus
Clock
Divider

MPC855T User’s Manual

User-Programmable Machines (UPMs)

15.6.1.4 Exception Requests

When the MPC855T under UPM control initiates an access to a memory device, the
external device may assert TEA, SRESET, or HRESET. The UPM provides a mechanism
by which memory control signals can meet the timing requirements of the device without
losing data. The mechanism is the exception pattern which defines how the UPM deasserts
its signals in a controlled manner.

15.6.2 Programming the UPM
The UPM is a microsequencer that requires microinstructions or RAM words to generate
signal timings for different memory cycles. Program the UPMs in the following steps:

1. Write patterns into the RAM array.

2. Program MPTPR.

3. Program the machine mode register (MAMR and MBMR).

4. Set up BRx and ORx.

15.6.3 Control Signal Generation Timing

Fields in the RAM word specify the value of the various external signals at each clock edge.
The signal timing generator causes external signals to behave according to the timing
specified in the current RAM word. Figure 15-34 and Figure 15-35 show the clock schemes
of the UPMs in the memory controller. The clock phases shown reflect timing windows
during which generated signals can change state. Figure 15-34 shows the clock scheme
selected when the SCCR[EBDF] = 00; CLKOUT is the same as system clock.

Figure 15-34. UPM Clock Scheme One (Division Factor = 1)

In Figure 15-35, if SCCR[EBDF] = 01, CLKOUT equals the system clock divided by 2. In
this scheme GCLK1_50 does not have a 50% duty cycle.

System Clock

CLKOUT

GCLK1_50

GCLK2_50

Clock Phase 1 2 3 4 1 2 3 4

RAM Word RAM Word

Chapter 15. Memory Controller

User-Programmable Machines (UPMs)

Figure 15-35. UPM Clock Scheme Two (Division Factor = 2)

The state of the external signals may change (if specified in the RAM array) at any edge of
GCLK1_50 and GCLK2_50, plus a propagation delay, specified in the MPC855T
Hardware Specifications. Note however that only the CS signal corresponding to the
currently accessed bank will be manipulated by the UPM pattern when it runs. The BS
signal assertion and negation timing is also specified for each cycle in the RAM word, but
which of the four BS signals will be manipulated by the being run depends on the port size
of the specified bank, the external address accessed, and the value of TSIZn. The GPL lines
toggle as programmed for any access that initiates a particular pattern, but resolution of
control is slightly more limited.

The examples in Figure 15-36 and Figure 15-37 show how to control the timing of CS,
GPL1, and GPL2. UPM RAM words determine the values of the CST[1–4], G1T3, G1T4,
G2T3, and G2T4 bits, which specify the timing of chip-selects, byte-selects, and GPL
signals based on the edges of GCLK1_50 or GCLK2_50. The clock phases shown refer to
the timing windows when the signals controlled by these bits in the RAM word are driven.

System Clock

CLKOUT

GCLK1_50

GCLK2_50

Clock Phase 1 2 3 4 1 2 3 4

RAM Word RAM Word

MPC855T User’s Manual

User-Programmable Machines (UPMs)

Figure 15-36. UPM Signals Timing Example One (Division Factor = 1, EBDF = 00)

Figure 15-37. UPM Signals Timing Example Two (Division Factor = 2, EBDF = 01)

CLKOUT

GCLK1_50

GCLK2_50

GPL2

Clock Phase 1 2 3 4 1 2 3 4

CS

GPL1

CST3

G1T4

CST2

G1T3G1T4 G1T4 G1T3

G1T4G2T3G2T4 G2T4 G2T3

Internal

CST4 CST1 CST3 CST4 CST1 CST2

System Clock

RAM Word RAM Word

CLKOUT

GCLK1_50

GCLK2_50

GPL2

Clock Phase 1 2 3 4 1 2 3

CS

GPL1

CST3

G1T4

CST1CST4 CST2 CST2CST4CST3 CST1

G1T3G1T4 G1T4 G1T3

G1T4G2T3G2T4 G2T4 G2T3

System Clock

RAM Word RAM Word

4

Chapter 15. Memory Controller

User-Programmable Machines (UPMs)

15.6.4 The RAM Array

The RAM array for each UPM is 64 locations deep and 32 bits wide, as shown in
Figure 15-38. The signals at the bottom of Figure 15-38 are UPM outputs. The selected CS
is for the bank that matches the current address. The selected BS is for the byte lanes read
or written by the access.

Figure 15-38. RAM Array and Signal Generation

Each UPM request (except software requests issued via RUN commands in MCR) has a
special address that specifies the beginning of the associated pattern in the UPM RAM
array. Table 15-13 shows start addresses of the UPM RAM words for each request type.
(See also Figure 15-32.)

15.6.4.1 RAM Words

The RAM word, shown in Figure 15-39, is a 32-bit microinstruction stored in one of 64
locations in the RAM array. It specifies timing for external signals controlled by the UPM.

Table 15-13. UPM Start Address Locations

Request to Be Serviced UPM Start Address

Read single beat cycle (RSS) 0x00

Read burst cycle (RBS) 0x08

Write single beat cycle (WSS) 0x18

Write burst cycle (WBS) 0x20

Periodic timer request (PTS) 0x30

Exception (EXS) 0x3C

RAM Array

Signals Timing Generator

CS Signal
Selector

BS Signal
Selector

GPL0 GPL1 GPL2 GPL3 GPL4 GPL5CS[0–7] BS[0–3]

GCLK1_50

GCLK2_50

Selected Bank TSIZ, PS, A[30–31]

BSCS

64 RAM
Words Deep

32-Bits Wide

MPC855T User’s Manual

User-Programmable Machines (UPMs)

Table 15-14 describes RAM word fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field CST4 CST1 CST2 CST3 BST4 BST1 BST2 BST3 G0L G0H G1T4 G1T3 G2T4 G2T3

Reset —

R/W R/W

Addr MCR[MAD] indirect addressing of 1 of 64 entries

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field G3T4 G3T3 G4T4/
DLT3

G4T3/
WAEN

G5T4 G5T3 — LOOP EXEN AMX NA UTA TODT LAST

Reset —

R/W R/W

Addr (All 32 bits of the RAM word are addressed as shown in the address row above.)

Figure 15-39. The RAM Word

Table 15-14. RAM Word Bit Settings

Bit Name Description

0 CST4 Chip-select timing 4. Defines the state of CS during clock phase 1.
0 Asserted at the falling edge of GCLK2_50.
1 Negated at the falling edge of GCLK2_50.

1 CST1 Chip-select timing 1. Defines the state of CS during clock phase 2.
0 Asserted at the rising edge of GCLK1_50.
1 Negated at the rising edge of GCLK1_50.

2 CST2 Chip-select timing 2. Defines the state of CS during clock phase 3.
0 Asserted at the rising edge of GCLK2_50.
1 Negated at the rising edge of GCLK2_50.

3 CST3 Chip-select timing3. Defines the state of CS during clock phase 4.
0 Asserted at the falling edge of GCLK1_50.
1 Negated at the falling edge of GCLK1_50.

4 BST4 Byte-select timing 4. Defines the state of BS during clock phase 1.
0 Asserted at the falling edge of GCLK2_50.
1 Negated at the falling edge of GCLK2_50.
The final value of the BS lines depends on the values of BRx[PS], the TSIZ lines, and A[30–31] for the
access. See Section 15.6.4.3, “Byte-Select Signals (BSTx).”

5 BST1 Byte-select timing 1. Defines the state of BS during clock phase 2.
0 Asserted at the rising edge of GCLK1_50.
1 Negated at the rising edge of GCLK1_50.
The final value of the BS lines depends on the values of BRx[PS], the TSIZ lines, and A[30–31] for the
access. See Section 15.6.4.3, “Byte-Select Signals (BSTx).”

6 BST2 Byte-select timing 2. Defines the state of BS during clock phase 3.
0 Asserted at the rising edge of GCLK2_50.
1 Negated at the rising edge of GCLK2_50
The final value of the BS lines depends on the values of BRx[PS], the TSIZ lines, and A[30–31] for the
access. See Section 15.6.4.3, “Byte-Select Signals (BSTx).”

Chapter 15. Memory Controller

User-Programmable Machines (UPMs)

7 BST3 Byte-select timing 3. Defines the state of BS during clock phase 4.
0 Asserted at the falling edge of GCLK1_50.
1 Negated at the falling edge of GCLK1_50.
The final value of the BS lines depends on the values of BRx[PS], the TSIZ lines, and A[30–31] for the
access. See Section 15.6.4.3, “Byte-Select Signals (BSTx).”

8–9 G0L General-purpose line 0 lower. Defines the state of GPL0 during phases 1–3.
10 Asserted at the falling edge of GCLK2_50.
11 Negated at the falling edge of GCLK2_50.
00 Driven at the falling edge of GCLK2_50 with an address signal as defined in MxMR[G0CLx].

10–11 G0H General-purpose line 0 higher. Defines the state of GPL0 during phase 4.
10 Asserted at the falling edge of GCLK1_50.
11 Negated at the falling edge of GCLK1_50.
00 Driven at the falling edge of GCLK1_50 with an address signal as defined in MxMR[G0CLx].

12 G1T4 General-purpose line 1 timing 4. Defines the state of GPL1 during phase 1–3.
0 Asserted at the falling edge of GCLK2_50.
1 Negated at the falling edge of GCLK2_50.

13 G1T3 General-purpose line 1 timing 3. Defines the state of GPL1 during phase 4.
0 Asserted at the falling edge of GCLK1_50.
1 Negated at the falling edge of GCLK1_50.

14 G2T4 General-purpose line 2 timing 4. Defines the state of GPL2 during phase 1–3.
0 Asserted at the falling edge of GCLK2_50.
1 Negated at the falling edge of GCLK2_50.

15 G2T3 General-purpose line 2 timing 3. Defines the state of GPL2 during phase 4.
0 Asserted at the falling edge of GCLK1_50.
1 Negated at the falling edge of GCLK1_50.

16 G3T4 General-purpose line 3 timing 4. Defines the state of GPL3 during phase 1–3.
0 Asserted at the falling edge of GCLK2_50.
1 Negated at the falling edge of GCLK2_50.

17 G3T3 General-purpose line 3 timing 3. Defines the state of GPL3 during phase 4.
0 Asserted at the falling edge of GCLK1_50.
1 Negated at the falling edge of GCLK1_50.

18 G4T4/
DLT3

General-purpose line 4 timing 4/delay time 3. The function is determined by MxMR[GPLx4DIS].

G4T4 If MxMR defines UPWAITx/GPL_x4 as an output (GPL_x4), this bit functions as G4T4:
0 The value of GPL4 at the falling edge of GCLK2_50 will be 0.
1 The value of GPL4 at the falling edge of GCLK2_50 will be 1.

DLT3 If MxMR[GPLx4DIS] = 1, UPWAITx is chosen and this bit functions as DLT3.
0 The data bus should be sampled at the rising edge of GCLK2_50 for a read in this cycle.
1 The data bus should be sampled at the falling edge of GCLK2_50 for a read in this cycle.

Table 15-14. RAM Word Bit Settings (continued)

Bit Name Description

MPC855T User’s Manual

User-Programmable Machines (UPMs)

19 G4T3/W
AEN

General-purpose line 4 timing 3/wait enable. Function depends on the value of MxMR[GPLx4DIS].

G4T3 If MxMR[GPLx4DIS] = 0, G4T3 is selected.
0 The value of GPL4 at the falling edge of GCLK1_50 will be 0.
1 The value of GPL4 at the falling edge of GCLK1_50 will be 1.

WAEN If MxMR[GPLx4DIS] = 1, WAEN is selected.
0 The UPWAITx function is disabled.
1 The logical value of the UPM-controlled external signals are frozen when UPWAITx is asserted.

UPWAITx is sampled on the falling edge of GCLK2_50. See Figure 15-45. for more information.

20 G5T4 General-purpose line 5 timing 4. Defines the state of GPL5 during phase 1–3.
0 The value of GPL5 at the falling edge of GCLK2_50 will be 0.
1 The value of GPL5 at the falling edge of GCLK2_50 will be 1.

21 G5T3 General-purpose line 5 timing 3. Defines the state of GPL5 during phase 4.
0 The value of GPL5 at the falling edge of GCLK1_50 will be 0.
1 The value of GPL5 at the falling edge of GCLK1_50 will be 1.

22–23 — Reserved, should be cleared.

24 LOOP Loop. The first RAM word in the RAM array where LOOP is 1 is recognized as the loop start word. The
next RAM word where LOOP is 1 is the loop end word. RAM words between the start and end are
defined as the loop. The number of times the UPM executes this loop is defined in the corresponding
loop field of the MxMR.
0 The current RAM word is not the loop start word or loop end word.
1 The current RAM word is the start or end of a loop.
See Section 15.6.4.5, “Loop Control (LOOP).”

25 EXEN Exception enable. If an external device asserts TEA or RESET, EXEN allows branching to an
exception pattern at the exception start address (EXS) at a fixed address in the RAM array.
0 The UPM continues executing the remaining RAM words.
1 The current RAM word allows a branch to the exception pattern after the current cycle if an

exception condition is detected. The exception condition can be an external device asserting TEA,
HRESET, or SRESET.

26–27 AMX Address multiplexing. Determines the source of A[0–31] at the falling edge of GCLK1_50.
00 A[0–31] is the non-multiplexed address. For example, column address.
01 Reserved.
10 A[0–31] is the address requested by the internal master multiplexed according to MxMR[AMx]. For

example, row address.
11 A[0–31] is the contents of MAR. Used for example, during SDRAM mode initialization.

28 NA Next address. Determines when the address is incremented during a burst access.
0 The address increment function is disabled
1 The address is incremented in the next cycle. In conjunction with the BRx[PS], the increment value

of A[28–31] and/or BADDR[28–30] at the falling edge of GCLK1_50 is as follows
If the accessed bank has a 32-bit port size, the value is incremented by 4.
If the accessed bank has a 16-bit port size, the value is incremented by 2.
If the accessed bank has an 8-bit port size, the value is incremented by 1.

Note: The value of NA is relevant only when the UPM serves a burst-read or burst-write request. NA
is reserved under other patterns.

Table 15-14. RAM Word Bit Settings (continued)

Bit Name Description

Chapter 15. Memory Controller

User-Programmable Machines (UPMs)

15.6.4.2 Chip-Select Signals (CSTx)

If BRx[MS] of the accessed bank selects a UPM on the currently requested cycle the UPM
manipulates the CS signal for that bank with timing as specified in the UPM RAM word.
The selected UPM affects only assertion and negation of the appropriate CSx signal. The
state of the selected CSx signal of the corresponding bank depends on the value of each
CSTn bit.

Figure 15-40 and the timing diagrams in Figure 15-36 and Figure 15-37 shows how UPMs
control CS signals.

Figure 15-40. CSx Signal Selection

29 UTA UPM transfer acknowledge. Controls the state of TA sampled by the external bus interface in the
current memory cycle. TA is output at the rising edge of GCLK2_50.
0 TA is driven low on the rising edge of GCLK2_50. The bus master samples it low in the next clock

cycle.
1 TA is driven high on the rising edge of GCLK2_50.

30 TODT Turn-on disable timer. Controls the disable timer mechanism. This bit has meaning only in RAM words
for which UTA = 0; otherwise it is a don’t care.
0 The disable timer is turned off.
1 The disable timer for the current bank is activated preventing a new access to the same bank (when

controlled by the UPMs) until the disable timer expires. For example, precharge time.

31 LAST Last. If this bit is set, it is the last RAM word in the program.
0 The UPM continues executing RAM words.
1 The service to the UPM request is done.

Table 15-14. RAM Word Bit Settings (continued)

Bit Name Description

UPMA

UPMB

GPCM

MUX

MS[0–1] in BRx
CS0

CS1

CS2

CS3

CS4

CS5

CS6

CS7

Switch

Bank Selected

MS[0–1] Machine

00 GPCM

01 –

10 UPMA

11 UPMB

MPC855T User’s Manual

User-Programmable Machines (UPMs)

15.6.4.3 Byte-Select Signals (BSTx)

BRx[MS] of the accessed memory bank selects a UPM on the currently requested cycle.
The selected UPM affects only the assertion and negation of the appropriate BS signal; its
timing as specified in the RAM word. The state of each BS[0–3] signal depends on the
value of each BSTx bit and the values of BRx[PS], TSIZn, and A[30–31] in the current
cycle.The BS signals are also controlled by the port size of the accessed bank, the transfer
size of the transaction, and the address accessed. Figure 15-41 shows how UPMs control
BS signals.

Figure 15-41. BSx Signal Selection

The uppermost byte select (BS0) indicates that D[0–7] contains valid data during a cycle.
Likewise, BS1 indicates that D[8–15] contains valid data, BS2 indicates that D[16–23]
contains valid data, and BS3 indicates that D[24–31] contains valid data during a cycle.
Table 15-15 shows how BS signals affect 32-, 16-, and 8-bit accesses. Note that for a
periodic timer request and a memory command request, the BS signals are determined only
by the port size of the bank.

Table 15-15. Enabling Byte-Selects

Transfer
Size

TSIZ
Address 32-Bit Port Size 16-Bit Port Size 8-Bit Port Size

A30 A31 BS0 BS1 BS2 BS3 BS0 BS1 BS2 BS3 BS0 BS1 BS2 BS3

Byte 0 1 0 0 X X X

0 1 0 1 X X X

0 1 1 0 X X X

0 1 1 1 X X X

Half-Word 1 0 0 0 X X X X X

1 0 1 0 X X X X X

Word 0 0 0 0 X X X X X X X

UPMA

UPMB

MUX

MS[0–1] in BRx

BS0

BS1

BS2

BS3

Bank Selected

PS[0–1] in BRx

A[30–31]

TSIZ[0–1]

Byte-Select
Logic

Chapter 15. Memory Controller

User-Programmable Machines (UPMs)

15.6.4.4 General-Purpose Signals (GxTx, G0x)

The general-purpose signals (GPL[1–5]) have two bits in the RAM word that define the
logical value of the signal to be changed at the falling edge of GCLK1_50 or GCLK2_50.
GPL0 has two 2-bit fields that perform this function plus an additional function explained
below. GPL5 and GPL0 offer the following enhancements beyond the other GPLx signals:

• GPL5 can be controlled during phase 4 of the first clock cycle according to the value
of G5LS, as shown in Figure 15-42. This allows it to assert earlier (simultaneous
with TS, for an internal master), which can speed up the memory interface,
particularly when GPL5 is used as a control signal for external address multiplexers.

Figure 15-42. Early GPL5 Control

• GPL0 can be controlled by an address line specified in MxMR[G0CLx]. To use this
feature, set G0H and G0L in the RAM word. For example, for a SIMM with multiple
banks, this address line can be used to switch between banks.

The state of GPL_x5 logic depends on the defined in Table 15-16. In the first clock cycle
of the slave access, GPL_x5 reflects the value of ORx[G5LS]; in subsequent cycles, its state
is determined by G5T4 and G5T3 in the RAM word. If the UPMB controls slave access,
ORx[G5LA] can be used to select the active GPL_x5 signal. G5LS applies only to memory
requests and not to RAM words executed by the RUN command, exception, or memory
periodic timer requests.

CLKOUT/

GCLK1_50

GPL5

Clock Phase 1 2 34

TS

RAM Word 1

4

GCLK2_50

Value Controlled by G5T4 and G5T3 on UPM

Value
Controlled
by G5LS

1 2 3

RAM Word 2

4

MPC855T User’s Manual

User-Programmable Machines (UPMs)

15.6.4.5 Loop Control (LOOP)

The LOOP bit in the RAM word (bit 24) specifies the beginning and end of a set of UPM
RAM words that are to be repeated. The first time LOOP = 1, the memory controller
recognizes it as a loop start word and loads the memory loop counter with the
corresponding contents of the loop field shown in Table 15-17. The next RAM word for

Table 15-16. GPL_X5 Signal Behavior

 Controlling Machine ORx RAM Word

GPL_X5 Behavior at the Controlling Clock Edge
Memory
Access

Slave Access
Clock Cycle

G5LA G5LS G5T4 G5T3

GPCM x N/A N/A x x GPL_A5 and GPL_B5 do not change their value.

UPMA First x 0 x x GPL_A5 is driven low at the falling edge of GCLK1_50.

1 GPL_A5 is driven high at the falling edge of GCLK1_50.

Second, third... x x 0 x GPL_A5 is driven low at the falling edge of GCLK2_50 in
the current UPM cycle.

1 x GPL_A5 is driven high at the falling edge of GCLK2_50 in
the current UPM cycle.

x 0 GPL_A5 is driven low at the falling edge of GCLK1_50 in
the current UPM cycle.

x 1 GPL_A5 is driven high at the falling edge of GCLK1_50 in
the current UPM cycle.

UPMB First 0 0 x x GPL_B5 is driven low at the falling edge of GCLK1_50.

1 GPL_B5 is driven high at the falling edge of GCLK1_50.

1 0 x x GPL_A5 is driven low at the falling edge of GCLK1_50.

1 GPL_A5 is driven high at the falling edge of GCLK1_50.

Second, third... 0 x 0 x GPL_B5 is driven low at the falling edge of GCLK2_50 in
the current UPM cycle.

1 x GPL_B5 is driven high at the falling edge of GCLK2_50 in
the current UPM cycle.

x 0 GPL_B5 is driven low at the falling edge of GCLK1_50 in
the current UPM cycle.

x 1 GPL_B5 is driven high at the falling edge of GCLK1_50 in
the current UPM cycle.

1 x 0 x GPL_A5 is driven low at the falling edge of GCLK2_50 in
the current UPM cycle.

1 x GPL_A5 is driven high at the falling edge of GCLK2_50 in
the current UPM cycle.

x 0 GPL_A5 is driven low at the falling edge of GCLK1_50 in
the current UPM cycle.

x 1 GPL_A5 is driven high at the falling edge of GCLK1_50 in
the current UPM cycle.

Chapter 15. Memory Controller

User-Programmable Machines (UPMs)

which LOOP = 1 is recognized as a loop end word. When it is reached, the loop counter is
decremented by one.

Continued loop execution depends on the loop counter. If the counter is not zero, the next
RAM word executed is the loop start word. Otherwise, the next RAM word executed is the
one after the loop end word. Loops can be executed sequentially but cannot be nested.

15.6.4.6 Exception Pattern Entry (EXEN)

When the MPC855T under UPM control begins accessing a memory device, the external
device may assert TEA, SRESET, or HRESET. An exception occurs when one of these
signals is asserted by an external device and the MPC855T begins closing the memory
cycle transfer. When one of these exceptions is recognized and EXEN in the RAM word is
set, the UPM branches to the special exception start address (EXS) and begins operating as
the pattern defined there specifies. See Table 15-15. The user should provide an exception
pattern to deassert signals controlled by the UPM in a controlled fashion. For DRAM
control, a handler should negate RAS and CAS to prevent data corruption. If EXEN = 0,
exceptions are deferred and execution continues. After the UPM branches to the exception
start address, it continues reading until the LAST bit is set in the RAM word.

15.6.4.7 Address Multiplexing (AMX)

To support many devices with multiplexed address signals, the upper address signals can
be driven on the lower address lines. MxMR[AMA] and MxMR[AMB] control which
upper address signals are on which lower address signals.

Note that this feature of internally multiplexing address signals should only be used in a
system where the MPC855T is the only external bus master. If other devices can be bus
masters, address multiplexing must be done in external logic. One of the UPM’s output
signals can be used to control this external multiplexing logic; GPL5 has been specifically
enhanced for this. See the description of GPL5 in Section 15.6.4.4, “General-Purpose
Signals (GxTx, G0x).”

ORx[SAM] and the AMX field of the RAM words determine when the multiplexing occurs.
ORx[SAM] controls address multiplexing for the first clock cycle. The AMX field in the
RAM word determines the multiplexing for subsequent clock cycles. As an address is

Table 15-17. MxMR Loop Field Usage

Request Serviced Loop Field

Read single-beat cycle RLFx

Read burst cycle RLFx

Write single-beat cycle WLFx

Write burst cycle WLFx

Periodic timer expired TLFx

MPC855T User’s Manual

User-Programmable Machines (UPMs)

driven off of the falling edge of GCLK1–50, the address in a particular clock cycle is
actually controlled by the previous RAM word, as shown in Figure 15-43.

The AMX field can be used to output the contents of MAR on the address signals.
Figure 15-43 shows address multiplex timing.

Figure 15-43. Address Multiplex Timing

Table 15-18 shows how MxMR[AMx] settings affect address multiplexing.
Table 15-18. Address Multiplexing

AMx
External Bus
Address Pin

A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31

000 Signal Driven
on External
Pin when
Address
Multiplexing is
Enabled

— — A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23

001 — A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22

010 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21

011 — A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

100 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

101 — A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18

CLKOUT/

GCLK1_50

A[0–31]

TS

RAM Word 2RAM Word 1

GCLK2_50

Address Controlled by AMx of previous RAM wordAddress Controlled by SAM

Chapter 15. Memory Controller

User-Programmable Machines (UPMs)

Table 15-19 shows how AMx can be defined to interface with a range of DRAM modules.
Table 15-19. AMA/AMB Definition for DRAM Interface

Data Bus
Width

 Memory Size
DRAM Address Pin Number

MPC855T Address
Pin Connection

AMx
Row Column

8 bits 64 Kbyte 8 8 A24–A31 000

128 Kbyte 9 A23–A31

256 Kbyte 10 A22–A31

512 Kbyte 11 A21–A31

1 Mbyte 12 A20–A31

2 Mbyte 13 A19–A31

4 Mbyte 14 A18–A31

256 Kbyte 9 9 A23–A31 001

512 Kbyte 10 A22–A31

1 Mbyte 11 A21–A31

2 Mbyte 12 A20–A31

4 Mbyte 13 A19–A31

8 Mbyte 14 A18–A31

16 Mbyte 15 A17–A31

MPC855T User’s Manual

User-Programmable Machines (UPMs)

8 bits 1 Mbyte 10 10 A22–A31 010

2 Mbyte 11 A21–A31

4 Mbyte 12 A20–A31

8 Mbyte 13 A19–A31

16 Mbyte 14 A18–A31

32 Mbyte 15 A17–A31

64 Mbyte 16 A16–A31

4 Mbyte 11 11 A21–A31 011

8 Mbyte 12 A20–A31

16 Mbyte 13 A19–A31

32 Mbyte 14 A18–A31

64 Mbyte 15 A17–A31

16 Mbyte 12 12 A20–A31 100

32 Mbyte 13 A19–A31

64 Mbyte 14 A18–A31

128 Mbyte 15 A17–A31

256 Mbyte 16 A16–A31

64 Mbyte 13 13 A19–A31 101

128 Mbyte 14 A18–A31

256 Mbyte 15 A17–A31

Table 15-19. AMA/AMB Definition for DRAM Interface (continued)

Data Bus
Width

 Memory Size
DRAM Address Pin Number

MPC855T Address
Pin Connection

AMx
Row Column

Chapter 15. Memory Controller

User-Programmable Machines (UPMs)

16 bits 128 Kbyte 8 8 A23–A30 000

256 Kbyte 9 A22–A30

512 Kbyte 10 A21–A30

1 Mbyte 11 A20–A30

2 Mbyte 12 A19–A30

4 Mbyte 13 A18–A30

512 Kbyte 9 9 A22–A30 001

1 Mbyte 10 A21–A30

2 Mbyte 11 A20–A30

4 Mbyte 12 A19–A30

8 Mbyte 13 A18–A30

16 Mbyte 14 A17–A30

2 Mbyte 10 10 A21–A30 010

4 Mbyte 11 A20–A30

8 Mbyte 12 A19–A30

16 Mbyte 13 A18–A30

32 Mbyte 14 A17–A30

64 Mbyte 15 A16–A30

8 Mbyte 11 11 A20–A30 011

16 Mbyte 12 A19–A30

32 Mbyte 13 A18–A30

64 Mbyte 14 A17–A30

32 Mbyte 12 12 A19–A30 100

64 Mbyte 13 A18–A30

128 Mbyte 14 A17–A30

256 Mbyte 15 A16–A30

128 Mbyte 13 13 A18–A30 101

256 Mbyte 13 A17–A30

Table 15-19. AMA/AMB Definition for DRAM Interface (continued)

Data Bus
Width

 Memory Size
DRAM Address Pin Number

MPC855T Address
Pin Connection

AMx
Row Column

MPC855T User’s Manual

User-Programmable Machines (UPMs)

15.6.4.8 Transfer Acknowledge and Data Sample Control (UTA, DLT3)
During a memory access, the UTA bit of the RAM word controls the state of TA driven by
the UPM. TA is driven on the rising edge of GCLK2_50. Therefore, because TA is also
sampled on the rising edge of GCLK2_50, programming UTA to assert in the RAM word
causes the bus master to sample TA as asserted in the next cycle.
When a read access is handled by the UPM and the UTA bit is 0, the value of the DLT3 bit
in the same RAM word indicates when the data input is sampled by the internal bus master,
assuming that MxMR[GPLx4DIS] = 1.

• If G4T4/DLT3 functions as DLT3 and DLT3 = 1 in the RAM word, data is latched
on the falling edge of GCLK2_50 instead of the rising edge, which is normal. This
feature lets the user speed up the memory interface by latching data 1/2 clock early,

32 bits 256 Kbyte 8 8 A22–A29 000

512 Kbyte 9 A21–A29

1 Mbyte 10 A20–A29

2 Mbyte 11 A19–A29

4 Mbyte 12 A18–A29

1 Mbyte 9 9 A21–A29 001

2 Mbyte 10 A20–A29

4 Mbyte 11 A19–A29

8 Mbyte 12 A18–A29

16 Mbyte 13 A17–A29

4 Mbyte 10 10 A20–A29 010

8 Mbyte 11 A19–A29

16 Mbyte 12 A18–A29

32 Mbyte 13 A17–A29

64 Mbyte 14 A16–A29

16 Mbyte 11 11 A19–A29 011

32 Mbyte 12 A18–A29

64 Mbyte 13 A17–A29

64 Mbyte 12 12 A18–A29 100

128 Mbyte 13 A17–A29

256 Mbyte 14 A16–A29

256 Mbyte 13 13 A17–A29 101

Table 15-19. AMA/AMB Definition for DRAM Interface (continued)

Data Bus
Width

 Memory Size
DRAM Address Pin Number

MPC855T Address
Pin Connection

AMx
Row Column

Chapter 15. Memory Controller

User-Programmable Machines (UPMs)

which can be useful during burst reads. This feature should be used only in systems
without external synchronous bus devices.

• If G4T4/DLT3 functions as G4T4, data is latched on the rising edge of the external
bus clock, as is normal in MPC855T bus operation.

Figure 15-44 shows data sampling that is controlled by the UPM.

Figure 15-44. UPM Read Access Data Sampling

15.6.4.9 Disable Timer Mechanism (TODT)

The disable timer associated with each UPM allows a minimum time to be guaranteed
between two successive accesses to the same memory bank. This feature is critical when
DRAM requires a RAS precharge time. The TODT bit in the RAM word turns the timer on
to prevent another UPM access to the same bank until the timer expires.The disable timer
period is determined in MxMR[DSx]. The disable timer does not affect memory accesses
to different banks.

TODT is usually set in the RAM word in which LAST = 1. However, it can be set in a
previous RAM word, if, for example, one pattern requires n clocks of RAS precharge
enforced outside of itself, while another pattern requires only n - 1.

15.6.4.10The Last Word (LAST)

When the LAST bit is read in a RAM word, the current UPM pattern terminates and the
highest priority pending UPM request (if any) is serviced immediately in the external
memory transactions. If the disable timer is activated and the next access is top the same
bank, the execution of the next UPM pattern is held off for the number of clock cycles
specified in MxMR[DSx].

15.6.4.11The Wait Mechanism (WAEN)

The WAEN bit can be used to enable the UPM wait mechanism in selected UPM RAM
words. The wait mechanism works differently for synchronous and asynchronous masters.

To Internal
Data Bus

Data Bus

GCLK2_50DLT3 and GPLx4DIS

Latch Multiplexer

Latch

MPC855T User’s Manual

User-Programmable Machines (UPMs)

15.6.4.11.1Internal and External Synchronous Masters

If the UPM reads a RAM word with the WAEN bit set, the external UPWAIT signal is
sampled and synchronized by the memory controller and the current request is frozen (if
and while UPWAIT remains asserted). If the WAEN bit is set and UPWAIT was sampled
high on the previous falling edge of GCLK2_50, the logical value of the external signals
are frozen to the value defined at the next falling GCLK2_50 edge as programmed in the
RAM word until UPWAIT is negated. This allows wait states to be inserted as required by
an external device through an external signal.

Figure 15-45 shows how the WAEN bit in the word read by the UPM and the UPWAIT
signal are used to hold the UPM in a particular state until UPWAIT is negated. As the
example in Figure 15-45 shows, the CSx and GPL1 states (C12 and F) and the WAEN value
(CC) are frozen until UPWAIT is recognized as deasserted.

Figure 15-45. Wait Mechanism Timing for Internal and External Synchronous
Masters

15.6.4.11.2External Asynchronous Masters

For an external asynchronous master, AS is the external signal that activates the wait
mechanism. The UPM enters a wait state if AS was sampled asserted on the previous falling
edge of GLCK2_50 and WAEN = 1 in the current RAM word. In this wait state, external
signals are frozen after the falling edge of GCLK2_50, as programmed in the RAM word
in which WAEN is set. This is demonstrated in the example in Figure 15-46 in which the
CSx and GPL1 states (C12 and F) and the WAEN value (CC) are frozen until AS is

GCLK2_50

CSx

GPL1

TA

WAEN

UPWAIT

C14C13C11C10C9C8C7C6C5C4C3C2C1

GCLK1_50

CLKOUT

GEDCBA

RAM
Word N

RAM
Word N + 1

RAM
Word N + 2 WAIT WAIT RAM

Word N+3

C12

F

AA BB CC DD

Chapter 15. Memory Controller

Handling Devices with Slow or Variable Access Times

recognized as deasserted. The TA signal driven by the UPM also remains in its programmed
state until AS is negated. This allows TA to be used as an asynchronous handshake signal
by programming UTA = 0 in the same RAM word in which WAEN = 1. If this is done, TA
can be used to signal that AS should deassert (similar to DTACK in the 68000 bus).

The wait state is exited when AS is negated, at which point all external signals controlled
by the UPM are driven high asynchronously from the AS deassertion. External signals are
driven in this state until the LAST bit is set in a RAM word. The TODT bit is relevant only
in words read by the UPM after AS is negated.

For a comprehensive discussion of external bus interfacing, see Section 15.8, “External
Master Support.”

Figure 15-46. Wait Mechanism Timing for an External Asynchronous Master

15.7 Handling Devices with Slow or Variable Access
 Times

The memory controller provides two ways to interface with slave devices that are very slow
(access time is greater than the maximum allowed by the user programming model) or
cannot guarantee a predefined access time (for example some FIFO, hierarchical bus
interface, or dual-port memory devices).

GCLK2_50

CSx

GPL1

TA

WAEN

AS

C11C10C9C8C7C6C5C4C3C2C1

GCLK1_50

CLKOUT

EDCBA

RAM
Word N

RAM
Word N + 1

RAM
Word N + 2 WAIT WAIT RAM

Word N+3

AA BB CC DD

C12

F

MPC855T User’s Manual

External Master Support

These mechanisms are as follows:

• The wait mechanism—Used only in accesses controlled by the UPM.
MAMR[GPLA4DIS] and MBMR[GPLB4DIS] enable this mechanism.

• The external TA mechanism is used only in accesses controlled by the GPCM.
ORx[SETA] specifies whether TA is generated internally or externally.

The following sections describe how the two mechanisms work.

15.7.1 Hierarchical Bus Interface Example
Assume that the CPU initiates a local-bus read cycle that addresses main memory
connected to the system bus. The hierarchical bus interface accepts local bus requests and
generates a read cycle on the system bus. The programmer cannot predict when valid data
can be latched by the CPU because a DMA device may be occupying the system bus.

• The wait solution (UPM)—The external module asserts UPWAIT to the memory
controller to indicate that data is not ready. The memory controller synchronized this
signal because the wait signal is asynchronous. As a result of the wait signal being
asserted, the UPM enters a freeze mode at the falling edge of CLKOUT upon
encountering the WAEN bit being set in the UPM word. The UPM stays in that state
until UPWAIT is negated. After UPWAIT is negated, the UPM continues executing
from the next entry to the end of the pattern (LAST bit is set).

• The external TA solution (GPCM)—The bus interface module asserts TA to the
memory controller when it can sample data.

15.7.2 Slow Devices Example
Assume the CPU initiates a read cycle from a device whose access time exceeds the
maximum allowed by the user programming model.

• The wait solution (UPM)—The CPU generates a read access from the slow device.
The device in turn asserts the wait signal as long as the data is not ready. The CPU
samples data only after the wait signal is negated.

• The external TA solution (GPCM)—The CPU generates a read access from the slow
device, which must generate the synchronous TA when it is ready.

15.8 External Master Support
The memory controller supports internal and external bus masters. Accesses from the core
or the CPM are considered internal; accesses from an external bus master are external.
External bus master support is available only if enabled in the SIU module configuration
register (SIUMCR), described in Section 10.4.2. There are two types of external bus
masters:

• Synchronous bus masters synchronize with CLKOUT and may or may not use the
MPC855T memory controller to access a slave.

Chapter 15. Memory Controller

External Master Support

• Asynchronous bus masters use an address strobe signal (AS) that handshakes with
the MPC855T memory controller to access a slave device or bypass the memory
controller to perform the slave access.

15.8.1 Synchronous External Masters

Synchronous masters initiate a transfer by asserting TS. A[0–31], RD/WR, BURST, and
TSIZ must be stable before the rising edge of CLKOUT after TS is asserted and until the
last TA is negated. Because the external master operates synchronously with the MPC855T,
meeting setup and hold times for all inputs associated with the rising edge of CLKOUT is
critical. To support synchronous mode using the memory controller, SIUMCR[SEME]
must be set. When TS is asserted, the memory controller compares the address with each
of its valid banks. If a match is found, control signals to the slave are generated and TA is
supplied to the external master. If SEME = 0, the memory controller is bypassed and the
external synchronous master must provide control signals to the slave. See Figure 15-47.

15.8.2 Asynchronous External Masters

Asynchronous masters initiate transfers by driving the address bus and asserting AS.
A[0–31], RD/WR, and TSIZ must have a proper setup time before AS is asserted. To
support asynchronous mode, SIUMCR[AEME] must be set. The memory controller
synchronizes AS assertion to its internal clock and generates control signals to the slave
device. When AS is synchronized, the memory controller compares the address with each
of its defined valid banks; if a match is found, control signals to the slave are generated and
TA is supplied to the external master. All control signals to the memory device and TA are
negated with the negation of AS. If AEME = 0, the memory controller is bypassed and the
external asynchronous master must provide control signals to the slave. In this mode, the
MPC855T’s AS signal cannot be used as an input. See Figure 15-48.

15.8.3 Special Case: Address Type Signals for External
 Masters

The AT signals are not sampled on the external bus for external master accesses. When
external masters access slaves on the bus, the internal AT[0–2] signals reaching the memory
controller are forced to ‘100’. The user should ensure this access matches the BRx[AT]. It
is masked by ORx[ATM].

15.8.4 UPM Features Supporting External Masters

The following sections provide information on the UPM features that support external
masters.

MPC855T User’s Manual

External Master Support

15.8.4.1 Address Incrementing for External Synchronous Bursting
 Masters

BADDR[28–30] should be used to generate addresses to memory devices for burst
accesses. They duplicate the value of A[28–30] when an internal master initiates an external
bus transaction. When an external master initiates an external bus transaction, they reflect
the value of A[28–30] on the first clock cycle of the memory access; these signals are
latched by the memory controller and on subsequent clock cycles, BADDR[28–30]
increments as programmed in the UPM.

15.8.4.2 Handshake Mechanism for Asynchronous External Masters

A wait mechanism in the UPM supports handshaking for external asynchronous masters.
This is provided with an AS input signal and the WAEN bit in the UPM RAM words. See
Section 15.6.4.11, “The Wait Mechanism (WAEN).”

15.8.4.3 Special Signal for External Address Multiplexer Control

If external masters exist in the system with the MPC855T, address multiplexing (for
DRAM for example) must be implemented in external logic. To control this external
multiplexer, special features have been added to GPL5. See Section 15.6.4.4,
“General-Purpose Signals (GxTx, G0x).”

15.8.5 External Master Examples

The following sections provide external master examples.

15.8.5.1 External Masters and the GPCM

The following figures show examples of external masters’ interaction with the GPCM. Note
that synchronous and external masters behave differently. Synchronous external masters
behave like internal masters, except for an extra clock cycle at the beginning of the access
required for address decode. Asynchronous external masters behave as described in
Section 15.5.3, “External Asynchronous Master Support.”

Chapter 15. Memory Controller

External Master Support

Figure 15-47. Synchronous External Master Access

CLKOUT

A[28–31]

R/W

BURST

TSIZ

TS

TA

CS

WE

OE

Data

Address
Match and
Compare

Memory
Device
Access

A[0–27]

MPC855T User’s Manual

External Master Support

Figure 15-48. Asynchronous External Master Access

15.8.5.2 External Masters and the UPM

Figure 15-49 shows a synchronous interconnection in which an external master and the
MPC855T can share access to a DRAM bank. Notice that CS1, UPMA, and GPL_A5 were
chosen to help control DRAM bank accesses. To perform burst accesses initiated by the
external master or MPC855T using this configuration, BADDR[28–30] connects to the
multiplexer controlled by GPL_A5. Figure 15-50 shows the timing behavior ofGPL_A5,
BADDR, and other control signals when an external master initiates a burst read access.
The state of GPL_A5 in the first clock cycle of the memory device access is determined by
the value of the corresponding ORx[G5LS]. In this example, the accessed critical word is
addressed at BADDR[28–29] = 10, which then increments and wraps around to the word
before the critical word (01) for subsequent beats of this burst access.

CLKOUT

A[28–31]

R/W

TSIZ

AS

TA

CS

WE

OE

Data

Address
Match and
Compare

Memory
Device
Access

A[0–27]

Chapter 15. Memory Controller

External Master Support

Figure 15-49. Synchronous External Master Interconnect Example

External

DRAM

Multiplexer

Master

A[0–31]

BADDR[28–30]

D[0–31]

R/W

TS

BURST

TA
TSIZ[0–1]

BI

BR

BG

BB

CS1

BS[0–3]

GPL_A5

Bank

MPC8655T

MPC855T User’s Manual

External Master Support

cst4Bit 0000000000
cst1Bit 1000000000
cst2Bit 2000000001
cst3Bit 3000000001
bst4Bit 4110101010
bst1Bit 5100000000
bst2Bit 6101010101
bst3Bit 7101010101
g0l0Bit 8
 • •
 • •
 • •
g5t4Bit 20011111111
g5t3Bit 21011111111
–Bit 22
–Bit 23
loopBit 24000000000
exenBit 25001010100
amx0Bit 2600000000X
amx1Bit 2700000000X
naBit 2800101010X
utaBit 29101010101

CLKOUT

GCLK1

BURST

TS

R/W

D[0–31]

TA

CS1 (RAS)

BS[0–3] (CAS[0–3])

GPL5

L/4 + 1 Mod 4 L/4 + 2 Mod 4 L/4 + 3 Mod 4L/4

A[0–31]

A[28–29]

Chapter 15. Memory Controller

External Master Support

Figure 15-50. Synchronous External Master: Burst Read Access to Page Mode
DRAM

Figure 15-51 shows an asynchronous interconnection in which an external master and the
MPC855T can share access to a DRAM bank. Notice that CS1, UPMA, and GPL_A5 were
chosen to control DRAM bank accesses. Figure 15-52 shows the timing behavior of
GPL_A5 and other control signals when an external master to a DRAM bank initiates a
single-beat read. The state of GPL_A5 in the first clock cycle of the memory device access
is determined by the value of the corresponding ORx[G5LS].

Figure 15-51. Asynchronous External Master Interconnect Example

External

DRAM

Multiplexer

Master

D[0–31]

R/W

AS

TA

TSIZ[0–1]

BR

BG

BB

CS1

BS[0–3]

GPL_A5

External
Arbiter

Arbitration Signals

A[0–31]

MPC855T

MPC855T User’s Manual

External Master Support

Figure 15-52. Asynchronous External Master Timing Example

cst4Bit 000000
cst1Bit 100000
cst2Bit 200001
cst3Bit 300001
bst4Bit 411000
bst1Bit 510000
bst2Bit 610001
bst3Bit 710001
 • •
 • •
 • •
g4t4Bit 18
g4t3/WAENBit 1901110
g5t4Bit 2001110
g5t3Bit 2101111
–Bit 22
–Bit 23
loopBit 2400000
exenBit 2500000
amx0Bit 2600000
amx1Bit 2700000
naBit 2800000
utaBit 2910001

CLKOUT/GCLK2_50

GCLK1_50

AS

R/W

D[0–31]

TA

CS1 (RAS)

BS[0–3] (CAS[0–3])

GPL_A5

A[–31]

Chapter 15. Memory Controller

Memory System Interface Examples

15.9 Memory System Interface Examples
The following examples show how to connect and set up the UPM RAM array for two types
of DRAM—page mode DRAM and page mode extended data-out DRAM. The values used
in these examples apply to any UPM. UPMA is used in the page mode example and UPMB
is used in the extended data out example.

15.9.1 Page-Mode DRAM Interface Example

Figure 15-53 shows configuration for a 1-Mbyte, 32-bit wide memory system using four
256 Kbyte x 8-bit DRAMs. Also shown is the physical connection between UPMA and the
page mode DRAM. CS1 is connected to all RAS and is controlled by the base register.
BS_A[0–3] are mapped one-to-one to each of the four DRAMs and are controlled by the
UPM RAM word. The refresh rate is calculated based on a 25-MHz baud rate generator
clock and the DRAM that requires a 512-cycle refresh every 8 ms.

Figure 15-53. Page-Mode DRAM Interface Connection

Follow these steps to configure a system for page mode DRAM:

1. Determine the system architecture, which includes the MPC855T and the memory
system as shown in the example in Figure 15-53.

2. Use the blank work sheet in Figure 15-70 to draw the timing diagrams for all the
memory cycles. The timing diagrams in Figure 15-54 through Figure 15-62 can be
used as a reference. Alternately, use the UPM860 or MCU unit applications for this.
These applications are available at http:/www.motorola.com.

RAS

CAS

W

A[0–8]

MCM84256
256K x 8

D[0–31]

A[21–29]

R/W

CS1

BS_A[0–3]

RAS

CAS

W

A[0–8]

MCM84256
256K x 8

BS_A2

RAS

CAS

W

A[0–8]

MCM84256
256K x 8

RAS

CAS

W

A[0–8]

MCM84256
256K x 8

BS_A0 BS_A1

BS_A3

D[0–7]

D[0–7] D[0–7]

D[0–7]

8-Bit

8-Bit 8-Bit

8-Bit

D[16–23] D[24–31]

D[0–7] D[8–15]

MPC855T

MPC855T User’s Manual

Memory System Interface Examples

3. Translate the timing diagrams into RAM words for each type of memory access.
The bottom half of the figures represent the RAM array contents that handle each
of the possible cycles and each column represents a different word in the
RAM array. A blank cell in the figures indicates a don’t care bit, which is typically
programmed to logic 1 to conserve power.

4. Define the UPM parameters that control the memory system in the following
sequence. For additional details, see Table 15-20.

— Program the RAM array using MCR and MDR. The RAM word must be written
into the MDR before a WRITE command is issued to the MCR. Repeat this step
for all RAM word entries.

— Initialize the option and base registers of the specific bank according to the
address mapping of the DRAM device chosen.

— Use ORx[MS] to select the machine to control the cycles. Notice that ORx[SAM]
determines address multiplexing for the first clock cycle and subsequent cycles
are controlled by the UPM RAM words. Also notice that the AMX field in the
UPM RAM word controls address multiplexing for the next clock cycle rather
than the current one.

— Program MAMR to select the number of columns and refresh timer parameters.
Table 15-20. UPMA Register Settings

Register Field Value Comments

BR1 MS 10 Selects UPMA

PS 00 Selects 32-bit bus width

WP 0 Allows read and write accesses

MPTPR PTP 0010_0000 Prescaler divided by two

MAMR PTA 0000_1100 15.6 µs at a 25-MHz clock

PTAE 1 Enables periodic timer A

AMA 001 Selects nine column address pins

DSA 01 Selects two disable timer clock cycles

GPLA4DIS 0 Disables the UPWAITA signal

RLFA 0011 Selects three loop iterations for read

WLFA 0011 Selects three loop iterations for write

OR1 SAM 1 Selects column address on first cycle

BIH 0 Supports burst accesses

Chapter 15. Memory Controller

Memory System Interface Examples

Figure 15-54. Single-Beat Read Access to Page-Mode DRAM

cst4Bit 0000
cst1Bit 1000
cst2Bit 2001
cst3Bit 3001
bst4Bit 4110
bst1Bit 5100
bst2Bit 6101
bst3Bit 7101
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 12
g1t3Bit 13
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 24000
exenBit 25000
amx0Bit 2600x
amx1Bit 2700x
naBit 2800x
utaBit 29101

CLKOUT/GCLK2_50

GCLK1_50

TS

R/W

D[0–31]

TA

CS1 (RAS)

BS_A[0–3] (CAS[0–3])

ColumnRowA[0–31]

MPC855T User’s Manual

Memory System Interface Examples

Figure 15-55. Single-Beat Write Access to Page Mode DRAM

cst4Bit 0000
cst1Bit 1000
cst2Bit 2001
cst3Bit 3001
bst4Bit 4110
bst1Bit 5100
bst2Bit 6101
bst3Bit 7101
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 12
g1t3Bit 13
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 24000
exenBit 25000
amx0Bit 2600x
amx1Bit 2700x
naBit 2800x
utaBit 29101

CLKOUT/GCLK2_50

GCLK1_50

TS

R/W

D[0–31]

TA

CS1 (RAS)

BS_A[0–3] (CAS[0–3])

ColumnRowA[0–31]

Chapter 15. Memory Controller

Memory System Interface Examples

Figure 15-56. Burst Read Access to Page-Mode DRAM (No LOOP)

cst4Bit 0000000000
cst1Bit 1000000000
cst2Bit 2000000001
cst3Bit 3000000001
bst4Bit 4110101010
bst1Bit 5100000000
bst2Bit 6101010101
bst3Bit 7101010101
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 12
g1t3Bit 13
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 24000000000
exenBit 25001010100
amx0Bit 2600000000x
amx1Bit 2700000000x
naBit 2800101010x
utaBit 29101010101

CLKOUT/GCLK2_50

GCLK1_50

TS

R/W

D[0–31]

TA

CS1 (RAS)

BS_A[0–3] (CAS[0–3])

Column 1Row Column 2 Column 3 Column 4A[0–31]

MPC855T User’s Manual

Memory System Interface Examples

Figure 15-57. Burst Read Access to Page-Mode DRAM (LOOP)

cst4Bit 000000
cst1Bit 100000
cst2Bit 200001
cst3Bit 300001
bst4Bit 411010
bst1Bit 510000
bst2Bit 610101
bst3Bit 710101
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 12
g1t3Bit 13
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 2401100
exenBit 2500100
amx0Bit 260000x
amx1Bit 270000x
naBit 280010x
utaBit 2910101
todtBit 3000001

CLKOUT/GCLK2_50

GCLK1_50

TS

R/W

D[0–31]

TA

CS1 (RAS)

BS_A[0–3] (CAS[0–3])

Column 1Row Column 2 Column 3 Column 4A[0–31]

Chapter 15. Memory Controller

Memory System Interface Examples

Figure 15-58. Burst Write Access to Page-Mode DRAM (No LOOP)

cst4Bit 0000000000
cst1Bit 1000000000
cst2Bit 2000000001
cst3Bit 3000000001
bst4Bit 4110101010
bst1Bit 5100000000
bst2Bit 6101010101
bst3Bit 7101010101
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 12
g1t3Bit 13
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 24000000000
exenBit 25001010100
amx0Bit 2600000000x
amx1Bit 2700000000x
naBit 2800101010x
utaBit 29101010101

CLKOUT/GCLK2_50

GCLK1_50

TS

R/W

D[0–31]

TA

CS1 (RAS)

BS_A[0–3] (CAS[0–3])

Column 1Row Column 2 Column 3 Column 4A[0–31]

MPC855T User’s Manual

Memory System Interface Examples

Figure 15-59. Burst Write Access to Page-Mode DRAM (LOOP)

cst4Bit 000000
cst1Bit 100000
cst2Bit 200001
cst3Bit 300001
bst4Bit 411010
bst1Bit 510000
bst2Bit 610101
bst3Bit 710101
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 12
g1t3Bit 13
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 2401100
exenBit 2500100
amx0Bit 260000x
amx1Bit 270000x
naBit 280010x
utaBit 2910101
todtBit 3000001

CLKOUT/GCLK2_50

GCLK1_50

TS

R/W

D[0–31]

TA

CS1 (RAS)

BS_A[0–3] (CAS[0–3])

Column 1Row Column 2 Column 3 Column 4A[0–31]

Chapter 15. Memory Controller

Memory System Interface Examples

Figure 15-60. Refresh Cycle (CAS before RAS) to Page-Mode DRAM

cst4Bit 0100
cst1Bit 1100
cst2Bit 2101
cst3Bit 3101
bst4Bit 4100
bst1Bit 5000
bst2Bit 6001
bst3Bit 7001
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 12
g1t3Bit 13
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 24000
exenBit 25000
amx0Bit 2600x
amx1Bit 2700x
naBit 2800x
utaBit 29111

CLKOUT/GCLK2_50

GCLK1_50

TA

CS1 (RAS)

BS_A[0–3] (CAS[0–3])

MPC855T User’s Manual

Memory System Interface Examples

Figure 15-61. Exception Cycle

Page read accesses can be improved significantly by setting MAMR[GPLA4DIS] and
ignoring GPL_A4. The processor samples the data bus at the falling edge of GCLK2_50
when TA is asserted. Figure 15-62 shows how to use this feature to change the burst read
access to page mode DRAM (no loop). During the four consecutive data beats, TA is
asserted to ensure a data transfer on every data clock. The figure also shows how the burst
read access shown in Figure 15-56 of can be reduced from 9 to 6 cycles (for 32-bit port
size). Cycles can be reduced by using faster DRAM or a slower system clock that meets the

cst4Bit 01
cst1Bit 11
cst2Bit 21
cst3Bit 31
bst4Bit 41
bst1Bit 51
bst2Bit 61
bst3Bit 71
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 12
g1t3Bit 13
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 240
exenBit 250
amx0Bit 260
amx1Bit 270
naBit 280
utaBit 291

CLKOUT/GCLK2_50

GCLK1_50

TA

CS1 (RAS)

BS_A[0–3] (CAS[0–3])

Chapter 15. Memory Controller

Memory System Interface Examples

DRAM access time. For a 16-bit port size memory, the reduction is from 17 to 10 cycles
and when an 8-bit port size memory is connected, the reduction is from 33 to 18 cycles.

MPC855T User’s Manual

Memory System Interface Examples

Figure 15-62. Optimized DRAM Burst Read Access

cst4Bit 0000001
cst1Bit 1000001
cst2Bit 2000001
cst3Bit 3000001
bst4Bit 4111111
bst1Bit 5100001
bst2Bit 6100001
bst3Bit 7100001
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 12
g1t3Bit 13
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18111111
g4t3Bit 19000000
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 24000000
exenBit 25000000
amx0Bit 2600001x
amx1Bit 2700000x
naBit 2801110x
utaBit 29101001

CLKOUT/GCLK2_50

GCLK1_50

TS

R/W

D[0–31]

TA

CS1 (RAS)

BS_A[0–3] (CAS[0–3])

Row Col 1 Col 2 Col 3 Col 4

D1 D2 D3 D4

A[0–31]

Chapter 15. Memory Controller

Memory System Interface Examples

15.9.2 Page Mode Extended Data-Out Interface Example

Figure 15-63 shows the configuration for a 1-Mbyte, 32-bit wide memory system using two
256K x 16-bit page mode EDO DRAMs. Also shown is the physical connection between
UPMB and the EDO DRAMs. The CS2 signal controlled by BRx is connected to both RAS
signals. The BS_B[0–1] signals map to D[0–15] and BS_B[2–3] map to D[16–31]. For this
connection, GPL_B1 is connected to the memory device OE pins. The refresh rate
calculation is based on a 25-MHz baud rate generator clock and the DRAM that requires a
512-cycle refresh every 8 ms.

This system has no external masters, and thus the MPC855T is configured to perform
address multiplexing internally.

Figure 15-63. EDO DRAM Interface Connection

Follow these steps to configure a system for EDO DRAM:

1. Determine the system architecture, which includes the MPC855T and the memory
system as shown in the example in Figure 15-64.

2. Use the blank work sheet in Figure 15-70 for timing diagrams. The timing
diagrams in Figure 15-64 through Figure 15-69 can be used as a reference.

3. Translate the timing diagrams into RAM words for each memory access type. The
bottom half of the figures show the RAM array contents that handle each of the
possible cycles; each column represents a different word in the RAM array. A blank
cell indicates a don’t care bit (typically programmed to logic 1 to conserve power).

4. Define the UPMB (or UPMA) parameters that control the memory system in the
following sequence. For additional details, see Table 15-20.

RAS

CASL

CASH

WE

MT4C16270
256K x 16

GPL_B1

R/W

CS2

BS_B[0–3]

RAS

CASL

CASH

WE

MT4C16270
256K x 16

BS_B0 BS_B2

D[0–15] D[0–15]

D[0–15] D[16–31]

OE

A[0–8]A[0–8]

OE

A[21–29]

D[0–31]

BS_B1 BS_B3

2-Bit2-Bit

8-Bit8-Bit

MPC855T

MPC855T User’s Manual

Memory System Interface Examples

— Program the RAM array using MCR and MDR. The RAM word must be written
into the MDR before a WRITE command is issued to the MCR. Repeat this step
for all RAM word entries.

— Initialize ORx and BRx for the required DRAM device address mapping.

— ORx[MS] selects the machine to control clock cycles. Note that ORx[SAM]
controls address multiplexing for the first cycle; subsequent cycles are controlled
by UPM RAM words. Also note that the AMX field in the UPM RAM word
controls address multiplexing for the next clock cycle and not the current one.

— Program MBMR to select the number of columns and refresh timer parameters.

Table 15-21. UPMB Register Settings

Register Field Value Comments

BR2 MS 10 Selects UPMB

PS 00 Selects 32-bit bus width

WP 0 Allows read and write accesses

MPTPR PTP 0000_0010 Prescaler divided by 32

MBMR PTB 0000_1100 15.6 µs at a 25-MHz clock

PTBE 1 Enables periodic timer B

AMB 001 Selects nine column address pins

DSB 01 Selects two disable timer clock cycles

GPLB4DIS 0 Disables the UPWAITB signal

RLFB 0011 Selects three loop iterations for read

WLFB 0011 Selects three loop iterations for write

OR2 SAM 1 Selects column address on first cycle

BIH 0 Supports burst accesses

Chapter 15. Memory Controller

Memory System Interface Examples

Figure 15-64. EDO DRAM Single-Beat Read Access

cst4Bit 000000
cst1Bit 100000
cst2Bit 200001
cst3Bit 300001
bst4Bit 411000
bst1Bit 510000
bst2Bit 610001
bst3Bit 710001
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 1200000
g1t3Bit 1300001
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 2400000
exenBit 2500000
amx0Bit 260000x
amx1Bit 270000x
naBit 280000x
utaBit 2911101

CLKOUT/GCLK2_50

GCLK1_50

R/W

D[0–31]

TA

CS2 (RAS)

BS_B[0–3] (CAS[0–3])

GPL_B1 (OE)

Row Column A[–31]

MPC855T User’s Manual

Memory System Interface Examples

Figure 15-65. EDO DRAM Single-Beat Write Access

cst4Bit 00001
cst1Bit 10001
cst2Bit 20011
cst3Bit 30011
bst4Bit 41100
bst1Bit 51000
bst2Bit 61000
bst3Bit 71001
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 121111
g1t3Bit 131111
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 240000
exenBit 250000
amx0Bit 26000x
amx1Bit 27000x
naBit 28000x
utaBit 291101

CLKOUT/GCLK2_50

GCLK1_50

R/W

D[0–31]

TA

CS2 (RAS)

BS_B[0–3] (CAS[0–3])

GPL_B1 (OE)

Row Column A[55T–

Chapter 15. Memory Controller

Memory System Interface Examples

Figure 15-66. EDO DRAM Burst Read Access

cst4Bit 000000000000
cst1Bit 100000000000
cst2Bit 200000000001
cst3Bit 300000000001
bst4Bit 411011010101
bst1Bit 510011010101
bst2Bit 610010101011
bst3Bit 710010101011
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 1200000000000
g1t3Bit 1300000000001
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 2400000000000
exenBit 2500010101000
amx0Bit 260000000000x
amx1Bit 270000000000x
naBit 280010010100x
utaBit 2911101010101
todtBit 3000000000001

CLKOUT/GCLK2_50

GCLK1_50

R/W

D[0–31]

TA

CS2 (RAS)

BS_B[0–3] (CAS[0–3])

GPL_B1 (OE)

Row Column 2 Column 3 Column 4Column 1A[–31]

MPC855T User’s Manual

Memory System Interface Examples

Figure 15-67. EDO DRAM Burst Write Access

cst4Bit 00000000000
cst1Bit 10000000000
cst2Bit 20000000001
cst3Bit 30000000001
bst4Bit 41100000101
bst1Bit 51000010101
bst2Bit 61001010101
bst3Bit 71001010101
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 121111111111
g1t3Bit 131111111111
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 240000000000
exenBit 250001010100
amx0Bit 26000000000x
amx1Bit 27000000000x
naBit 28000101010x
utaBit 291011010101

CLKOUT/GCLK2_50

GCLK1_50

R/W

D[0–31]

TA

CS2 (RAS)

BS_B[0–3] (CAS[0–3])

GPL_B1 (OE)

Row Column 1 Column 3 Column 4Column 2A[–31]

Chapter 15. Memory Controller

Memory System Interface Examples

Figure 15-68. EDO DRAM Refresh Cycle (CAS before RAS)

cst4Bit 010001
cst1Bit 110001
cst2Bit 200001
cst3Bit 300001
bst4Bit 400111
bst1Bit 501111
bst2Bit 601111
bst3Bit 701111
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 1211111
g1t3Bit 1311111
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 2400000
exenBit 2500000
amx0Bit 260000x
amx1Bit 270000x
naBit 280000x
utaBit 2911111

CLKOUT/GCLK2_50

GCLK1_50

TA

CS2 (RAS)

BS_B[0–3] (CAS[0–3])

GPL_B1 (OE)

MPC855T User’s Manual

Memory System Interface Examples

Figure 15-69. EDO DRAM Exception Cycle

cst4Bit 01
cst1Bit 11
cst2Bit 21
cst3Bit 31
bst4Bit 41
bst1Bit 51
bst2Bit 61
bst3Bit 71
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 121
g1t3Bit 131
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 240
exenBit 250
amx0Bit 26x
amx1Bit 27x
naBit 28x
utaBit 291

CLKOUT/GCLK2_50

GCLK1_50

TA

CS2 (RAS)

BS_B[0–3] (CAS[0–3])

GPL_B1 (OE)

Chapter 15. Memory Controller

Memory System Interface Examples

Figure 15-70. Blank Work Sheet for a UPM

cst4Bit 0
cst1Bit 1
cst2Bit 2
cst3Bit 3
bst4Bit 4
bst1Bit 5
bst2Bit 6
bst3Bit 7
g0l0Bit 8
g0l1Bit 9
g0h0Bit 10
g0h1Bit 11
g1t4Bit 12
g1t3Bit 13
g2t4Bit 14
g2t3Bit 15
g3t4Bit 16
g3t3Bit 17
g4t4Bit 18
g4t3Bit 19
g5t4Bit 20
g5t3Bit 21
–Bit 22
–Bit 23
loopBit 24
exenBit 25
amx0Bit 26
amx1Bit 27
naBit 28
utaBit 29
todtBit 30

CLKOUT/GCLK2_50

GCLK1_50

R/W

D[0–31]

TA

CSx (RAS)

BS_x[0–3] (CAS[0–3])

GPL_x1 (OE)

A[0–31]

MPC855T User’s Manual

Memory System Interface Examples

Chapter 16. PCMCIA Interface

Chapter 16
PCMCIA Interface
The PCMCIA host adapter module provides all control logic for a PCMCIA socket
interface, and requires only additional external analog power switching logic and buffering.
Additional external buffers allow the PCMCIA host adapter module to support up to two
PCMCIA sockets. The PCMCIA interface supports the following:

• Host adapter interface fully compliant with the PCMCIA standard, release 2.1+ (PC
Card -16).

• Up to two PCMCIA sockets, requiring only external buffering and analog switching
logic

• Eight memory or I/O windows that can be assigned to either socket

16.1 System Configuration
In this system configuration, the sockets and system bus must be electrically isolated using
external buffers and bus transceivers. These buffers also provide voltage conversion
required from the 3.3- to 5-V cards. These components should be powered by the card
power supply. The PCMCIA host adapter provides the control signals for demultiplexing
the signals shared among the sockets. Figure 16-1 shows a system configuration consisting
of two PCMCIA sockets.

16.2 PCMCIA Module Signal Definitions
PCMCIA signals shared among all sockets consist of the address and data buses, socket
control signals, and synchronous socket status signals. A[6–31] and D[0–15] are the
address and data signals of the system bus. Figure 16-1 shows the PCMCIA host adapter
module’s external signals.

MPC855T User’s Manual

PCMCIA Module Signal Definitions

Figure 16-1. System with Two PCMCIA Sockets

1
2

8

8

Data_A[8–15]

2

2

1

1

2

26
1

3 V

2x2

2x3

2

2

2

2x4

1

5 V 12 V

(IORD), (IOWR)

VPP2_A

VPP1_A

VCC_A

Data_A[0–7]

1

1

1

8

8

1

1

1

1

2

26

1

2

6

2

1

1

A B Socket

PCMCIA
Host

Adapter
Module

CE1_A

CE2_A

WE/PGM_A

OE_A
(IORD_A), (IOWR_A)

Address_A[0–25]

REG_A

VCC_A

Chip VDD

IRQ

CSi

D[8–15]

D[0–7]

RD/WR
CE1_A/B

CE2_A/B

WE/PGM

OE

RESET_A/B

POE_A/B

A[6–31]

REG

ALE_A/B

WAIT_A/B, IOIS16_A/B

RDY/BSY_x, BVD1_x, BVD2_x

SPKROUT

Transceiver

Buffer with OE

Buffer with OE

Transparent
Latch with OE

CD1_x, CD2_x, VS1_x, VS2_x

Power-On Indication

MAX 780A
or Equivalent

VCC_B

Transparent latch
for voltage conversion

Chapter 16. PCMCIA Interface

PCMCIA Module Signal Definitions

16.2.1 PCMCIA Cycle Control Signals

Table 16-1 describes PCMCIA cycle control signals.
Table 16-1. PCMCIA Cycle Control Signals

Signal Description

A[6–31] Address bus. Output. A[6–31] should be buffered to generate the socket signals A[25–0]. These address bus
output lines allow direct addressing of 64 Mbytes of memory on each PCMCIA card. A6 is the msb.

REG Attribute memory select. Output. When REG is asserted during a PCMCIA access, card access is limited to
attribute memory when a memory access occurs (WE or OE are asserted) and to I/O ports when an I/O
access occurs (IORD or IOWR are asserted). If REG is asserted, accesses to common memory or DMA
devices are blocked. When no PCMCIA access is performed, this signal is TSIZ0.

CE1_x,
CE2_x

Card enable. Output. When a PCMCIA access is performed, CE1 enables even bytes; CE2 enables odd
bytes, as shown below.

Port Size Access Size MPC855T:A31 (Slot: A0) CE2 CE1

8 bits 16-bit (even only) 0 1 0

8-bit odd 1 1 0

8-bit even 0 1 0

16 bits 16-bit (even only) 0 0 0

8-bit odd 1 0 1

8-bit even 0 1 0

No access X 1 1

D[0–15] Data bus. Bidirectional. D[0–15] constitute the bidirectional data bus. The msb is D0 and the lsb is D15.

WAIT_x Extend bus cycle. Input. Asserted by the PC card to delay completion of the pending memory or I/O cycle.

RD/WR External transceiver direction. Output. Asserted during MPC855T read cycles and negated during write
cycles. Used in the PCMCIA interface to control the direction of the data bus transceivers.

IORD_x I/O read. Output. During PCMCIA accesses, this signal is asserted together with REG_x and is used to read
data from the PC card I/O space. IORD_x is valid only when the REG_x and at least one of the CE1_x and
CE2_x signals is also asserted.

IOWR_x I/O write. Output. Asserted with REG_x during PCMCIA accesses used to latch data into the PC card I/O
space. Valid only when REGx and either or both CE1_x and CE2_x signals are also asserted.

OE_x Output enable. Output. During PCMCIA accesses, OE_x is used to drive memory read data from a PC card
in a PCMCIA socket.

WE_x Write enable/program. Output. During PCMCIA accesses, WE_x is used to latch memory write data to the
PC card in a PCMCIA socket. Can also be used as the programming strobe for PC cards using programmable
memory technologies.

MPC855T User’s Manual

PCMCIA Module Signal Definitions

16.2.2 PCMCIA Input Port Signals

The following signals are used by a PCMCIA slot to indicate card status. The MPC855T
provides synchronization, transition detection, optional interrupt generation, and the means
for the software to read the signal state. This function is not necessarily specific to
PCMCIA; a system can use these signals as a general-purpose input port with edge
detection and interrupt capability. These signals appear on pins IP_A[0–7] and IP_B[0–7].
All these signals are symmetrical except IP_x7, which have extended edge detection
capability and IP_x2, which serve as an IOIS16_x cycle-control signals for PCMCIA
cycles.

ALE_x Address latch enable. Output strobes that control the external latches of the address and REG signals for the
appropriate PC card being accessed. ALE_A is asserted when socket A is accessed and ALE_B is asserted
when socket B is accessed. Note that latches are used when power consumption is an issue. They keep the
PCMCIA signals from toggling unnecessarily when the PCMCIA cards are not being accessed. If power
consumption is not an issue, buffers can be used instead of ALE_x signals.

IOIS16_x I/O port is 16 bits. Input. Applies only when the card and its socket are programmed for I/O interface operation.
Must be asserted by the card when the address on the bus corresponds to an address on the PC card and
the I/O port being addressed supports 16-bit accesses. If the I/O region in which the address resides is
programmed as 8 bits wide, IOIS16_x is ignored.

Table 16-2. PCMCIA Input Port Signals

Signal Description

VS1_x, VS2_x Voltage sense. Input. Used as VS1 and VS2 and generated by PC cards. They notify the socket of the card
VCC requirement. These signals are connected to IP_x[0–1].

WP Write protect. Input. When the card and socket are programmed for memory interface operation, this signal
is used as WP. It reflects the state of the write-protect switch on the PC card. The PC card must assert WP
when the card switch is enabled. It must be negated when the switch is disabled. For a PC card that is
writable without a switch, WP must be connected to ground. If the PC card is permanently write-protected,
WP must be connected to VCC. These signals are connected to IP_x2 pins.

CD1_x,
CD2_x

Card detect. Input. Provide proper detection of card insertion. They must be connected to ground internally
on the PC card, thus, these signals are forced low when a card is placed in the socket. These signals must
be pulled up to system VCC to allow card detection to function while the card socket is powered down. These
signals are connected IP_x4 and IP_x3, respectively.

BVD1_x,
BVD2_x

Battery voltage detect. Input. When the card and its socket are programmed for memory interface operation,
these signals are used as BVD1_x and BVD2_x and are generated by PC cards with on-board batteries to
report the battery condition. Both BVD1_x and BVD2_x must be held asserted when the battery is in good
condition. Negating BVD2_x while keeping BVD1_x asserted indicates the battery is in a warning condition
and should be replaced, although data integrity on the card is still assured. Negating BVD1_x indicates that
the battery is no longer serviceable and data is lost, regardless of the state of BVD2_x. These signals are
connected to IP_x6 and IP_x5, respectively.

STSCHG_x Status change. Input. When the card and its socket are programmed for I/O interface operation, BVD1_x is
used as STSCHG_x and is generated by I/O PC cards. STSCHG_x must be held negated when the “signal
on change” bit and “changed” bit in the card status register on the PC card are either or both zero.
STSCHG_x must be asserted when both bits = 1.

Table 16-1. PCMCIA Cycle Control Signals (continued)

Signal Description

Chapter 16. PCMCIA Interface

PCMCIA Module Signal Definitions

16.2.3 PCMCIA Output Port Signals (OP[0–4])

A PCMCIA slot can use the signals in Table 16-3 to control the RESET input and output
enable of the buffers to the card. The MPC855T gives software a way to control the output
signal state. This function is not necessarily specific to the PCMCIA interface; a system can
use these signals as a general-purpose output port.

16.2.4 Other PCMCIA Signals

The PCMCIA socket uses the signals in Table 16-4, although their function is not
necessarily specific to PCMCIA.

SPKR_x Speaker. input. When the card and socket are programmed for I/O interface operation, BVD2_x is used as
digital audio (SPKR_x) and is generated by I/O PC cards. SPKR_x must be used to provide the socket’s
single amplitude (digital) audio wave form to the system. The SPKR_x signal of all sockets are XORed and
routed through the speaker out signal (SPKROUT).

RDY/ BSY_x,
IREQ_x

Ready/busy or interrupt request. Input. When the card and its socket are programmed for memory interface
operation, this signal is used as RDY/BSY_x and must be asserted by a PC card to indicate that the PC
card is busy processing a previous write command. When the card and its socket are programmed for I/O
interface operation, this signal is used as IREQ_x and must be asserted by a PC card to indicate that a
device on the PC card requires service by host software. Must be held negated when no interrupt is
requested. These signals are connected to IP_x7.

Table 16-3. PCMCIA Output Port Signals

Signal Description

RESET_x Card reset. Output. Provided to clear the card’s configuration option register, thus placing the card in its
default (memory-only interface) state and beginning an additional card initialization. RESET_A is connected
to OP0 and RESET_B is connected to OP3.

POE_x PCMCIA buffers output enable. An output port line reflecting the value of PGCRx[CxOE]. Used to
three-state address and strobe lines addressing each slot. POE_A connects to OP1; POE_B connects to
OP2.

Table 16-4. Other PCMCIA Signals

Signal Description

IRQ Power is on. Input. The card power supply circuitry can use two of the IRQ signals as general-purpose
interrupt requests to notify the MPC855T when the card’s power supply reaches the full required voltage.

SPKROUT Speaker out. Output. Provides a digital audio wave form to be driven to the system’s speaker. It is
generated as a logic exclusive OR of the SPKR_A and SPKR_B input signals.
Note: General purpose timer 1 can be used to drive SPKROUT. When enabled, timer 1 is exclusive ORed
with the resulting exclusive OR of the SPKR_A and SPKR_B input signals to generate SPKROUT. See
Section 17.2.2.6, “Timer 1 and SPKROUT.”

Table 16-2. PCMCIA Input Port Signals (continued)

Signal Description

MPC855T User’s Manual

Operation Description

16.3 Operation Description
This section describes the operation of memory and I/O cards, interrupt detection and
handling, power control, and reset.

16.3.1 Memory-Only Cards

Table 16-5 lists worst-case conditions of host programming memory cards and assumes
WAIT is not used. If it is, the minimum strobe time is at least 35 ns + 1 system clock.

16.3.2 I/O Cards

Table 16-6 lists worst-case conditions of host programming I/O cards.

Table 16-5. Host Programming for Memory Cards

Memory Access
Time 1

1 Because the minimum hold time is one clock, the real access time is access time + one clock.

600 ns 200 ns 150 ns 100 ns

STP 2

2 Worst-case setup time (STP). The worst-case setup time is address to strobe.

LNG 3

3 Length (LNG) is the minimum strobe time.

HLD 4

4 Worst-case hold time (HLD). The worst-case hold time is data disable from OE.

STP LNG HLD STP LNG HLD STP LNG HLD

Clock Cycle 100 300 150 30 120 90 20 80 75 15 60 50

20 ns (50 MHz) 6 24 8 2 8 5 2 6 4 1 4 3

30 ns (33.3 MHz) 4 16 5 2 5 3 1 4 3 1 3 2

40 ns (25 MHz) 3 12 4 1 4 3 1 3 2 1 2 2

62 ns (16 MHz) 2 8 3 1 2 2 1 2 2 1 1 1

83 ns (12 MHz) 2 6 2 1 2 2 1 1 1 1 1 1

Table 16-6. Host Programming For I/O Cards

Frequency
STP 1

1 Setup time worst-case is for a write. In these cases, setup=data_set_up_before_iord +1 clock.

LNG HLD

60 165 30

20 ns (50 MHz) 4 8 2

30 ns (33.3 MHz) 3 6 1

40 ns (25 MHz) 3 4 1

62 ns (16 MHz) 2 3 1

83 ns (12 MHz) 2 2 1

Chapter 16. PCMCIA Interface

Operation Description

16.3.3 Interrupts

The PCMCIA interface input pins register (PIPR) reports any changes on inputs from the
PCMCIA card to the host (BVD, CD, RDY, VS). The contents of the PCMCIA interface
status changed register (PSCR) are logically ANDed with the PCMCIA interface enable
register (PER) to generate a PCMCIA interface interrupt. The interrupt level is user
programmable and the PCMCIA interface can generate an additional interrupt for
RDY/IRQ that can trigger on level (low or high) or edge (fall or rise) of the input signal.

16.3.4 Power Control

The user can perform a write cycle using one of the memory controller chip-select pins.
This data includes the controls to the analog switch such as the MAXIM MAX780.
However, no auto-power control is supported.

16.3.5 Reset and Three-State Control

The user can reset the PCMCIA cards or disable the output of the external latches by
writing to PGCRx[CxRESET] and PGCRx[CxOE], respectively.

16.3.6 DMA

The MPC855T DMA module with the CPM microcode provides two independent DMA
(IDMA) channels. See Section 19.3, “IDMA Emulation.” The PCMCIA module can be
programmed to generate control for an I/O device implemented as a PCMCIA card to
respond to DMA transfer. Any window can be programmed as a DMA window through
PORx[PRS]. When configured appropriately, the PCMCIA controller supplies the required
signals to the socket. Note that DMA to and from the PCMCIA interface is handled through
dual-access DMA transfers.

DMA requests can be supplied through SPKR_x, IOIS16_x, or INPACK. To support DMA,
INPACK should be connected to DREQ0 for slot A or to DREQ1 for slot B. The source for
a DMA request is programmed through PGCRx[CxDREQ]. If the internal DMA request is
disabled, the DMA request is assumed to be DREQ0/DREQ1 and port C should assign
PC15/14 as DREQ0/DREQ1. If the request is enabled, port C should not be programmed
to be DREQ0/DREQ1.

MPC855T User’s Manual

Programming Model

Figure 16-2. Internal DMA Request Logic

16.4 Programming Model
This section describes the PCMCIA interface programming model. Generally, all registers
are memory-mapped within the internal control register area. The registers in Table 16-7
control the PCMCIA interface.

Table 16-7. PCMCIA Registers

Name Description

PIPR PCMCIA interface input pins register

PSCR PCMCIA interface status changed register

PER PCMCIA interface enable register

PGCRA PCMCIA interface general control register a

PGCRB PCMCIA interface general control register b

PBR[0–7] PCMCIA base registers 0–7 (per window)

POR[0–7] PCMCIA option registers 0–7 (per window)

Multiplexer Port C Logic

Internal DMA Request

PortC DREQ0/DREQ1

DREQ0/DREQ1CxDREQ0SPKR_xIOIS16_x

CxDREQ1

Chapter 16. PCMCIA Interface

Programming Model

16.4.1 PCMCIA Interface Input Pins Register (PIPR)

Status of inputs from the PCMCIA card to the host (BVD, CD, RDY, VS) is reported to the
PIPR, shown in Figure 16-3. PIPR is a read-only register; write operations are ignored.

This register is affected by HRESET and SRESET. Table 16-8 describes PIPR fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field CAVS1 CAVS2 CAWP CACD2 CACD1 CABVD2 CABVD1 CARDY —

Reset Undefined

R/W R

Addr (IMMR & 0xFFFF0000) + 0x0F0

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field CBVS1 CBVS2 CBWP CBCD2 CBCD1 CBBVD2 CBBVD1 CBRDY —

Reset Undefined

R/W R

Addr (IMMR & 0xFFFF0000) + 0x0F2

Figure 16-3. PCMCIA Interface Input Pins Register (PIPR)

Table 16-8. PIPR Field Descriptions

Bits Name Description

0 CAVS1 Voltage sense 1 for card A

1 CAVS2 Voltage sense 2 for card A

2 CAWP Write protect for card A

3 CACD2 Card detect 2 for card A

4 CACD1 Card detect 1 for card A

5 CABVD2 Battery voltage/SPKR_A input for card A

6 CABVD1 Battery voltage/STSCHG_A input for card A

7 CARDY RDY/IRQ of card A pin

8–15 — Reserved, should be cleared.

16 CBVS1 Voltage sense 1 for card B

17 CBVS2 Voltage sense 2 for card B

18 CBWP Write protect for card B

19 CBCD2 Card detect 2 for card B

20 CBCD1 Card detect 1 for card B

21 CBBVD2 Battery voltage/SPKR_B input for card B

22 CBBVD1 Battery voltage/STSCHG_B input for card B

MPC855T User’s Manual

Programming Model

16.4.2 PCMCIA Interface Status Changed Register (PSCR)

The contents of PSCR, shown in Figure 16-4, are logically ANDed with the PER to
generate a PCMCIA interface interrupt. Writing zeros has no effect; writing ones clears the
corresponding interrupt state. This register is not affected by HRESET or SRESET.

Table 16-9 describes PSCR fields.

23 CBRDY RDY/IRQ of card B pin

24–31 — Reserved, should be cleared.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12–15

Field CAVS1_

C
CAVS2_

C
CAWP_

C
CACD2_

C
CACD1_

C
CABVD2_

C
CABVD1_

C
— CARDY_L CARDY_

H
CARDY_

R
CARDY_F —

Reset Undefined

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x0E8

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28–31

Field CBVS1_

C
CBVS2_

C
CBWP_

C
CBCD2_

C
CBCD1_

C
CBBVD2_

C
CBBVD1_

C
— CBRDY_L CBRDY_

H
CBRDY_

R
CBRDY_F —

Reset Undefined

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x0EA

Figure 16-4. PCMCIA Interface Status Changed Register (PSCR)

Table 16-9. PSCR Field Descriptions

Bits Name Description

0 CAVS1_C Voltage sense 1 for card A changed

1 CAVS2_C Voltage sense 2 for card A changed

2 CAWP_C Write protect for card A changed

3 CACD2_C Card detect 2 for card A changed

4 CACD1_C Card detect 1 for card A changed

5 CABVD2_C Battery voltage/SPKR_A input for card A changed

6 CABVD1_C Battery voltage/STSCHG_A input for card A changed

7 — Reserved, should be cleared.

8 CARDY_L RDY/IRQ of card A pin is low. Device and socket interrupt.

9 CARDY_H RDY/IRQ of card A pin is high. Device and socket interrupt.

10 CARDY_R RDY/IRQ of card A pin rising edge detected. Device and socket interrupt.

Table 16-8. PIPR Field Descriptions (continued)

Bits Name Description

Chapter 16. PCMCIA Interface

Programming Model

16.4.3 PCMCIA Interface Enable Register (PER)

Setting a bit in the PER, shown in Figure 16-5, enables the corresponding interrupt.

11 CARDY_F RDY/IRQ of card A pin falling edge detected. Device and socket interrupt.

12–15 — Reserved, should be cleared.

16 CBVS1_C Voltage sense 1 for card B changed

17 CBVS2_C Voltage sense 2 for card B changed

18 CBWP_C Write Protect for card B changed

19 CBCD2_C Card detect 2 for card B changed

20 CBCD1_C Card detect 1 for card B changed

21 CBBVD2_C Battery voltage/SPKR_B input for card B changed

22 CBBVD1_C Battery voltage/STSCHG_B input for card B changed

23 — Reserved, should be cleared.

24 CBRDY_L RDY/IRQ of card B pin is low. Device and socket interrupt.

25 CBRDY_H RDY/IRQ of card B pin is high. Device and socket interrupt.

26 CBRDY_R RDY/IRQ of card B pin rising edge detected. Device and socket interrupt.

27 CBRDY_F RDY/IRQ of card B pin falling edge detected. Device and socket interrupt.

28–31 — Reserved, should be cleared.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12-15

Field CA_EV
S1

CA_EV
S2

CA_EW
P

CA_EC
D2

CA_EC
D1

CA_EBV
D2

CA_EBV
D1

— CA_ERDY
_L

CA_ERDY_

H
CA_ERDY_

R
CA_ERDY

_F
—

Rese
t

0000_0000_0000_0000

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x0F8

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28-31

Field CB_EV
S1

CB_EV
S2

CB_EW
P

CB_EC
D2

CB_EC
D1

CB_EBV
D2

CB_EBV
D1

— CB_ERDY
_L

CB_ERDY_

H
CB_ERDY_

R
CB_ERDY

_F
—

Rese
t

0000_0000_0000_0000

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x0FA

Figure 16-5. PCMCIA Interface Enable Register (PER)

Table 16-9. PSCR Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Programming Model

This register is affected by HRESET and SRESET. Table 16-10 describes PER fields.
Table 16-10. PER Field Descriptions

Bits Name Description

0 CA_EVS1 Enable for voltage sense 1 for card A changed. Setting this bit enables the interrupt on any
signal change.

1 CA_EVS2 Enable for voltage sense 2 for card A changed. Setting this bit enables the interrupt on any
signal change.

2 CA_EWP Enable for write protect for card A changed. Setting this bit enables the interrupt on any signal
change.

3 CA_ECD2 Enable for card detect 2 for card A changed. Setting this bit enables the interrupt on any signal
change.

4 CA_ECD1 Enable for card detect 1 for card A changed. Setting this bit enables the interrupt on any signal
change.

5 CA_EBVD2 Enable for battery voltage/SPKR_A input for card A changed. Setting this bit enables the
interrupt on any signal change.

6 CA_EBVD1 Enable for battery voltage/STSCHG_A input for card A changed.

7 — Reserved, should be 0.

8 CA_ERDY_L Enable for RDY/IRQ of card A pin is low

9 CA_ERDY_H Enable for RDY/IRQ card A pin is high

10 CA_ERDY_R Enable for RDY/IRQ card A pin rising edge detected

11 CA_ERDY_F Enable for RDY/IRQ card A pin falling edge detected

12–15 — Reserved, should be 0.

16 CB_EVS1 Enable for voltage sense 1 for card B changed. Setting this bit enables the interrupt on any
signal change.

17 CB_EVS2 Enable for voltage sense 2 for card B changed. Setting this bit enables the interrupt on any
signal change.

18 CB_EWP Enable for write protect for card B changed. Setting this bit enables the interrupt on any signal
change.

19 CB_ECD2 Enable for card detect 2 for card B changed. Setting this bit enables the interrupt on any signal
change.

20 CB_ECD1 Enable for card detect 1 for card B changed. Setting this bit enables the interrupt on any signal
change.

21 CB_EBVD2 Enable for battery voltage/SPKR_B input for card B changed. Setting this bit enables the
interrupt on any signal change.

22 CB_EBVD1 Enable for battery voltage/STSCHG_B input for card B changed

23 — Reserved, should be 0.

24 CB_ERDY_L Enable for RDY/IRQ of card B pin is low

25 CB_ERDY_H Enable for RDY/IRQ card B pin is high

26 CB_ERDY_R Enable for RDY/IRQ card B pin rising edge detected

Chapter 16. PCMCIA Interface

Programming Model

16.4.4 PCMCIA Interface General Control Register (PGCRx)

PGCRA or PGCRB, shown in Figure 16-6, are used to reset the PCMCIA cards, disable the
output of the external latches, and specify the source used for a DMA request.

This register is affected by HRESET but is not affected by SRESET. Table 16-11 describes
PGCRx fields.

27 CB_ERDY_F Enable for RDY/IRQ card B pin falling edge detected

28–31 — Reserved, should be 0.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field CxIREQLVL CxSCHLVL

Reset 0000_0000_0000_0000

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x0E0 (PGCRA); 0x0E4 (PGCRB)

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field CxDREQ — CxOE CxRESET —

Reset 0000_0000_0000_0000

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x0E2 (PGCRA); 0x0E6 (PGCRB)

Figure 16-6. PCMCIA Interface General Control Register (PGCRx)

Table 16-11. PGCRx Field Descriptions

Bits Name Description

0–7 CxIREQLVL Card x IREQ_x interrupt level. Only one bit of this field should be set at any time.

8–15 CxSCHLVL Card x STSCHG_x interrupt level. Only one CASCHLVLx bit should be set at any time.

16–17 CxDREQ Card x DREQ. Defines internal DMA request for the on-chip DMA controller (CADREQ controls
DMA channel 0. CBDREQ controls DMA channel 1).
0x Disable internal DMA request from slot x.
10 Enable IOIS16_x as internal DMA request for slot x.
11 Enable SPKR_x as internal DMA request for slot x.

18–23 — Reserved, should be cleared.

24 CxOE Card x output enable. CAOE is reflected on OP1 and CBOE is reflected on OP2 used to
three-state the external buffers when the card’s power is activated.

25 CxRESET Card x reset. CARESET is reflected on OP0 used to reset card A. CBRESET is reflected on
OP3 used to reset card B.

26–31 — Reserved, should be cleared.

Table 16-10. PER Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Programming Model

16.4.5 PCMCIA Base Registers 0–7 (PBR0–PBR7)

Setting a bit in the PBR, shown in Figure 16-5, enables the corresponding interrupt.

This register is not affected by HRESET or SRESET. Table 16-12 describes the PBR.

16.4.6 PCMCIA Option Register 0–7 (POR0–POR7)

The POR, shown in Figure 16-8, as the manipulation of timing, provides the address mask
for the bank size, and defines the region, slot, write protection, and validation.

Bit 0 1 2 3 4 5 … 31

Field PBA

Reset —

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x080 (PBR0); 0x088 (PBR1); 0x090 (PBR2); 0x098 (PBR3); 0x0A0 (PBR4); 0x0A8
(PBR5); 0x0B0 (PBR6); 0x0B8 (PBR7)

Figure 16-7. PCMCIA Base Register (PBR)

Table 16-12. PBR Field Descriptions

Bits Name Description

0–31 PBA PCMCIA base address. Compared to the address on the address bus to determine if a PCMCIA window
is being accessed by an internal bus master. PBA is used in conjunction with POR[BSIZE].

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field BSIZE — PSHT

Reset Undefined

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x084 (POR0); 0x08C (POR1); 0x094 (POR2); 0x09C (POR3); 0x0A4 (POR4);
0x0AC (POR5); 0x0B4 (POR6); 0x0BC (POR7)

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field PSST PSL PPS PRS PSLOT WP PV

Reset Undefined

R/W R/W

Addr (IMMR & 0xFFFF0000) + 0x086 (POR0); 0x08E (POR1); 0x096 (POR2); 0x09E (POR3); 0x0A6 (POR4);
0x0AE (POR5); 0x0B6 (POR6); 0x0BE (POR7)

Figure 16-8. PCMCIA Option Register 0–7 (POR0–POR7)

Chapter 16. PCMCIA Interface

Programming Model

This register is not affected by HRESET or SRESET. Table 16-13 describes POR fields.
Table 16-13. POR Field Descriptions

Bits Name Description

0–4 BSIZE PCMCIA bank size. Determines the address mask field of each POR and provides masking for any of
the corresponding bits in the associated PBR. The bank size is calculated as banksize = 2BSIZE, where
BSIZE represents the gray code shown below:

00000 1 byte
00001 2 bytes
00011 4 bytes
00010 8 bytes
00110 16 bytes
00111 32 bytes
00101 64 bytes
00100 128 bytes
01100 256 bytes

01101 512 bytes
01111 1 Kbyte
01110 2 Kbytes
01010 4 Kbytes
01011 8 Kbytes
01001 16 Kbytes
01000 32 Kbytes
11000 64 Kbytes
11001 128 Kbytes

11011 256 Kbytes
11010 512 Kbytes
11110 1 Mbyte
11111 2 Mbytes
11101 4 Mbytes
11100 8 Mbytes
10100 16 Mbytes
10101 32 Mbytes
10111 64 Mbytes

0–4 BSIZE (cont.) BSIZE determines not only the bank size, but also how the address is compared with PBRB[PBA]. If
virtual field, MASK, is defined as shown below:
BSIZE MASK
00000 1111 1111 1111 1111 1111 1111 1111 1111
00001 1111 1111 1111 1111 1111 1111 1111 1110
00011 1111 1111 1111 1111 1111 1111 1111 1100
00010 1111 1111 1111 1111 1111 1111 1111 1000
00110 1111 1111 1111 1111 1111 1111 1111 0000
00111 1111 1111 1111 1111 1111 1111 1110 0000
00101 1111 1111 1111 1111 1111 1111 1100 0000
00100 1111 1111 1111 1111 1111 1111 1000 0000
01100 1111 1111 1111 1111 1111 1111 0000 0000
01101 1111 1111 1111 1111 1111 1110 0000 0000
01111 1111 1111 1111 1111 1111 1100 0000 0000
01110 1111 1111 1111 1111 1111 1000 0000 0000
01010 1111 1111 1111 1111 1111 0000 0000 0000
01011 1111 1111 1111 1111 1110 0000 0000 0000
01001 1111 1111 1111 1111 1100 0000 0000 0000
01000 1111 1111 1111 1111 1000 0000 0000 0000
11000 1111 1111 1111 1111 0000 0000 0000 0000
11001 1111 1111 1111 1110 0000 0000 0000 0000
11011 1111 1111 1111 1100 0000 0000 0000 0000
11010 1111 1111 1111 1000 0000 0000 0000 0000
11110 1111 1111 1111 0000 0000 0000 0000 0000
11111 1111 1111 1110 0000 0000 0000 0000 0000
11101 1111 1111 1100 0000 0000 0000 0000 0000
11100 1111 1111 1000 0000 0000 0000 0000 0000
10100 1111 1111 0000 0000 0000 0000 0000 0000
10101 1111 1110 0000 0000 0000 0000 0000 0000
10111 1111 1100 0000 0000 0000 0000 0000 0000
Addr & MASK = PBA & MASK for a valid PCMCIA access; otherwise, it is not a valid PCMCIA access

5–11 — Reserved, should be cleared.

MPC855T User’s Manual

Programming Model

12–15 PSHT PCMCIA strobe hold time (strobe negation to address negation). Specifies when IOWR_xx or WE_x
are negated during a PCMCIA write or when IORD_x or OE_x are negated during a PCMCIA read.
Used to meet address/data hold time requirements for slow memories and peripherals.
0000 Strobe negation to address change 0 clock
0001 Strobe negation to address change 1 clock
...
1111 Strobe negation to address change 15 clock

16–19 PSST PCMCIA strobe set up time (address to strobe assertion). Specifies when IOWR_x or WE_x are
asserted during a PCMCIA write access or when IORD_x or OE_x are asserted during a PCMCIA read
access handled by the PCMCIA interface. This helps meet address/setup time requirements for slow
memories and peripherals.
0000 Reserved
0001 Address to strobe assertion 1 clock cycle
0010 Address to strobe assertion 2 clock cycles
...
1111 Address to strobe assertion 15 clock cycles

20–24 PSL PCMCIA strobe length. Determines the number of cycles the strobe is asserted during a PCMCIA
access for this window and, thus, it is the main parameter for determining cycle length. The cycle may
be lengthened by asserting WAIT.
00001 Strobe asserted 1 clock cycles
00010 Strobe asserted 2 clock cycles
...
11111 Strobe asserted 31 clock cycles
00000 Strobe asserted 32 clock cycles

25 PPS PCMCIA port size. Specifies the port size of this PCMCIA window.
0 8 bits port size
1 16 bits port size

26–28 PRS PCMCIA region select.
000 Common memory space
001 Reserved
010 Attribute memory space
011 I/O space
100 DMA (normal DMA transfer)
101 DMA last transaction
11x Reserved
Note: The DMA encoding generates a normal DMA transfer unless signaled as last by the on-chip DMA
controller. In this case TC(OE) or TC (WE) is asserted.The DMA last transaction encoding generates
a DMA transfer with TC(OE) or TC (WE) asserted, regardless of any internal indication.

29 PSLOT PCMCIA slot identifier.
0 This window defined for slot A.
1 This window defined for slot B.

30 WP Write-protect enable.
0 Not write protected.
1 Write protected. Attempting to write to this window causes a machine check interrupt.

31 PV PCMCIA valid. Indicates whether the contents of the OBR and POR pair are valid.
0 This bank is invalid.
1 This bank is valid.

Table 16-13. POR Field Descriptions (continued)

Bits Name Description

Chapter 16. PCMCIA Interface

PCMCIA Controller Timing Examples

16.5 PCMCIA Controller Timing Examples

Figure 16-9. PCMCIA Single-Beat Read Cycle PRS = 0 PSST = 1 PSL = 3 PSHT = 1

CLKOUT

BR

BG

BB

A[6–31]

RD/WR

REG

BURST

TS

ALE

PCOE

CE1/CE2

WAIT

Data

TA

PSL PSHTPSST

MPC855T User’s Manual

PCMCIA Controller Timing Examples

Figure 16-10. PCMCIA Single-Beat Read Cycle PRS = 0 PSST = 2 PSL = 4 PSHT = 1

CLKOUT

BR

BG

BB

A[6–31]

RD/WR

REG

BURST

TS

ALE

PCOE

WAIT

CE1/CE2

Data

TA

PSL PSHTPSST

Chapter 16. PCMCIA Interface

PCMCIA Controller Timing Examples

Figure 16-11. PCMCIA Single-Beat Read Cycle PRS = 0 PSST = 1 PSL = 3 PSHT = 0

CLKOUT

BR

BG

BB

A[6–31]

RD/WR

REG

BURST

TS

ALE

PCOE

CE1/CE2

TA

Data

WAIT

PSL
PSHT

PSST

MPC855T User’s Manual

PCMCIA Controller Timing Examples

Figure 16-12. PCMCIA Single-Beat Write Cycle PRS = 2 PSST = 1 PSL = 3 PSHT = 1

CLKOUT

BR

BG

BB

A[6–31]

RD/WR

REG

BURST

TS

ALE

PCWE

CE1/CE2

WAIT

Data

TA

PSL PSHTPSST

Chapter 16. PCMCIA Interface

PCMCIA Controller Timing Examples

Figure 16-13. PCMCIA Single-Beat Write Cycle PRS = 3 PSST = 1 PSL = 4 PSHT = 3

CLKOUT

BR

BG

BB

A[6–31]

RD/WR

REG

BURST

TS

ALE

IOWR

CE1/CE2

WAIT

Data

TA

IO16

PSL PSHTPSST

MPC855T User’s Manual

PCMCIA Controller Timing Examples

Figure 16-14. PCMCIA Single-Beat Write with Wait PRS = 3 PSST = 1 PSL = 3
PSHT = 0

CLKOUT

BR

BG

BB

A[6–31]

RD/WR

REG

BURST

TS

ALE

IOWR

CE1/CE2

WAIT

Data

TA

PSLPSST
PSHT

Wait Delay

Chapter 16. PCMCIA Interface

PCMCIA Controller Timing Examples

Figure 16-15. PCMCIA Single-Beat Read with Wait PRS = 3 PSST = 1 PSL = 3
PSHT =1

CLKOUT

BR

BG

BB

A[6–31]

RD/WR

REG

BURST

TS

ALE

IORD

CE1/CE2

WAIT

Data

TA

PSLPSST PSHTWait Delay

MPC855T User’s Manual

PCMCIA Controller Timing Examples

Figure 16-16. PCMCIA I/O Read PPS = 1 PRS = 3 PSST = 1 PSL = 2 PSHT = 0

CLKOUT

BR

BG

BB

A[6–31]

RD/WR

REG

BURST

TS

ALE

IOWR

CE2

IO16

TA

Data

PSL
PSHT

PSST

CE1

Chapter 16. PCMCIA Interface

PCMCIA Controller Timing Examples

Figure 16-17. PCMCIA I/O Read PPS = 1 PRS = 3 PSST = 1 PSL = 2 PSHT = 0

PSST PSST

CLKOUT

BR

BG

BB

A[6–31]

RD/WR

REG

BURST

TS

ALE

IOWR

CE1

Data

TA

IO16

PSL
PSHT

CE2

PSL
PSHT

MPC855T User’s Manual

PCMCIA Controller Timing Examples

Figure 16-18. PCMCIA DMA Read Cycle PRS = 4 PSST = 1 PSL = 3 PSHT = 0

Data

PSST PSST

CLKOUT

BR

BG

BB

A[6–31]

RD/WR

REG

BURST

TS

ALE

IORD

CE1/CE2

SIZE

TA

PSL
PSHT

PSL
PSHT

PCOE

AT = 0xF AT = 0xF

SIZE = Word SIZE = Half

Part V. Communications Processor Module

Part V
Communications Processor Module

Intended Audience
Part V is intended for system designers who need to implement various communications
protocols on the MPC855T. It assumes a basic understanding of the PowerPC exception
model, the MPC855T interrupt structure, as well as a working knowledge of the
communications protocols to be used. A complete discussion of these protocols is beyond
the scope of this book.

Contents
Part V describes behavior of the MPC855T communications processor module (CPM) and
the RISC communications processor (CP) that it contains (note that this is separate from
the embedded MPC8xx processor). It contains the following chapters:

• Chapter 17, “Communications Processor Module and CPM Timers,” provides a
brief overview of the MPC855T CPM and a detailed discussion of the clocking
mechanisms supported.

• Chapter 18, “Communications Processor,” describes the RISC communications
processor (CP), which handles the low-level communications tasks, freeing the core
for higher-level tasks.

• Chapter 19, “SDMA Channels and IDMA Emulation,” describes the two physical
serial DMA (SDMA) channels on the MPC855T with which the CP implements
virtual SDMA channels.

• Chapter 20, “Serial Interface,” describes the serial interface (SI) in which the
physical interface to all SCCs and SMCs is implemented.

• Chapter 21, “Serial Communications Controller,” describes the serial
communications controllers (SCC), which can be configured independently to
implement different protocols for bridging functions, routers, and gateways, and to
interface with a wide variety of standard WANs, LANs, and proprietary networks.

MPC855T User’s Manual

• Chapter 22, “SCC UART Mode,” describes the MPC855T implementation of
universal asynchronous receiver transmitter (UART) protocol, used for sending
low-speed data between devices.

• Chapter 23, “SCC HDLC Mode,” describes the MPC855T implementation of
HDLC protocol.

• Chapter 24, “SCC AppleTalk Mode,” describes the MPC855T implementation of
AppleTalk, a set of protocols developed by Apple Computer, Inc. to provide a LAN
service between Macintosh computers and printers.

• Chapter 25, “SCC Asynchronous HDLC Mode and IrDA,” describes the
asynchronous HDLC and IrDA use of HDLC framing techniques with UART-type
characters.

• Chapter 26, “SCC BISYNC Mode,” describes the MPC855T implementation of
byte-oriented BISYNC protocol developed by IBM for use in networking products.

• Chapter 27, “SCC Ethernet Mode,” describes the MPC855T implementation of
Ethernet protocol.

• Chapter 28, “SCC Transparent Mode,” describes the MPC855T implementation of
transparent mode (also called totally transparent mode), which provides a clear
channel on which the SCC can send or receive serial data without bit-level
manipulation.

• Chapter 29, “Serial Management Controllers (SMCs),” describes two serial
management controllers, full-duplex ports that can be configured independently to
support one of three protocols—UART, transparent, or general-circuit interface
(GCI).

• Chapter 30, “Serial Peripheral Interface (SPI),” describes the serial peripheral
interface, which allows the MPC855T to exchange data between other MPC855T
chips, the MC68360, the MC68302, the M68HC11 and M68HC05 microcontroller
families, and peripheral devices such as EEPROMs, real-time clocks, A/D
converters, and ISDN devices.

• Chapter 31, “I2C Controller,” describes the MPC855T implementation of the
inter-integrated circuit (I2C®) controller, which allows data to be exchanged with
other I2C devices, such as microcontrollers, EEPROMs, real-time clock devices, and
A/D converters.

• Chapter 32, “Parallel Interface Port (PIP),” describes the parallel interface port
which allows data to be sent to and from the MPC855T over 8 or 16 parallel data
lines with two handshake control signals.

• Chapter 33, “Parallel I/O Ports,” describes the four general-purpose I/O ports—A,
B, C, and D. Each signal in the I/O ports can be configured as a general-purpose I/O
signal or as a signal dedicated to supporting communications devices, such as SMCs
and SCCs.

Part V. Communications Processor Module

• Chapter 34, “CPM Interrupt Controller,” describes how the CPM interrupt controller
(CPIC) accepts and prioritizes the internal and external interrupt requests from the
CPM blocks and passes them to the system interface unit (SIU). The CPIC also
provides a vector during the core interrupt acknowledge cycle.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual.

MPC8xx Documentation

Supporting documentation for the MPC855T can be accessed through the world-wide web
at http://www.motorola.com. This documentation includes technical specifications,
reference materials, and detailed application notes.

Conventions
This document uses the following notational conventions:

Bold entries in figures and tables showing registers and parameter
RAM should be initialized by the user.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

REG[FIELD] Abbreviations or acronyms for registers or buffer descriptors are
shown in uppercase text. Specific bits, fields, or numerical ranges
appear in brackets. For example, MSR[LE] refers to the little-endian
mode enable bit in the machine state register.

x In certain contexts, such as in a signal encoding or a bit field,
indicates a don’t care.

n Indicates an undefined numerical value

¬ NOT logical operator

& AND logical operator

| OR logical operator

Bold

MPC855T User’s Manual

Acronyms and Abbreviations
Table i contains acronyms and abbreviations used in this document. Note that the meanings
for some acronyms (such as SDR1 and DSISR) are historical, and the words for which an
acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

ATM Asynchronous transfer mode

BD Buffer descriptor

BIST Built-in self test

CEPT Conference des administrations Europeanes des Postes et Telecommunications (European
Conference of Postal and Telecommunications Administrations).

C/I Condition/indication channel used in the GCI protocol

CP Communications processor

CPM Communications processor module

DMA Direct memory access

DPLL Digital phase-locked loop

DRAM Dynamic random access memory

DSISR Register used for determining the source of a DSI exception

EA Effective address

EEST Enhanced Ethernet serial transceiver

EPROM Erasable programmable read-only memory

GCI General circuit interface

GPCM General-purpose chip-select machine

GUI Graphical user interface

HDLC High-level data link control

I2C Inter-integrated circuit

IDL Inter-chip digital link

IEEE Institute of Electrical and Electronics Engineers

IrDA Infrared Data Association

ISDN Integrated services digital network

JTAG Joint Test Action Group

LIFO Last-in-first-out

LRU Least recently used

LSB Least-significant byte

Part V. Communications Processor Module

lsb Least-significant bit

MAC Multiply accumulate

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

NMSI Nonmultiplexed serial interface

OSI Open systems interconnection

PCI Peripheral component interconnect

PPM Pulse-position modulation

RTOS Real-time operating system

Rx Receive

SCC Serial communications controller

SCP Serial control port

SDLC Synchronous Data Link Control

SDMA Serial DMA

SI Serial interface

SIU System interface unit

SMC Serial management controller

SNA Systems network architecture

SPI Serial peripheral interface

SRAM Static random access memory

TDM Time-division multiplexed

TE Terminal endpoint of an ISDN connection

TLB Translation lookaside buffer

TSA Time-slot assigner

Tx Transmit

UART Universal asynchronous receiver/transmitter

UPM User-programmable machine

USART Universal synchronous/asynchronous receiver/transmitter

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

MPC855T User’s Manual

Chapter 17. Communications Processor Module and CPM Timers

Chapter 17
Communications Processor Module and
CPM Timers
The communications processor module (CPM) provides a flexible and integrated approach
to communications-intensive environments. To reduce system frequency and save power,
the CPM has its own independent RISC communications processor (CP) that is optimized
for serial communications. The CP services several integrated communications channels,
performing low-level protocol processing and controlling DMA.

The CPM supports multiple communications channels and protocols, and it has flexible
firmware programmability. The CPM frees the core of many computational tasks in the
following ways:

• By reducing the interrupt rate. The core is interrupted only upon frame reception or
transmission, instead of on a per-character basis.

• By implementing some of the OSI layer-2 processing, which provides more core
bandwidth for higher layer processing.

• By supporting multibuffer memory data structures that are convenient for software
handling.

The MPC855T CPM is similar to the one in the MPC860 and both are derived from the
CPM in the MC68360 QUICC; see the MC68360 Quad Integrated Communications
Controller (QUICC) User’s Manual.

MPC855T User’s Manual

Features

17.1 Features
Figure 17-1 shows a block diagram of the CPM.

Figure 17-1. CPM Block Diagram

The following lists the CPM’s main features:

• Communications processor (CP)

— Dual-port RAM
— Internal ROM
— DMA control for all communications channels
— Two independent DMA channels for memory-to-memory transfers or interfacing

external peripherals
— RISC timer tables

• A full-duplex serial communications controller (SCC1) that supports the following:

— UART protocol (asynchronous or synchronous)
— HDLC protocol
— AppleTalk protocol
— Asynchronous HDLC protocol

4 Baud Rate Generators

SCC1

U-Bus

SCC3 SCC4 SMC1 SMC2 SPI I2C

Interrupt Controller

4 Timers

Parallel I/O Ports

Bus Interface SDMA

Dual-Port
RAM

Communications Processor

ROM

Internal Bus

Peripheral Bus

Serial Interface and Time-Slot Assigner

Chapter 17. Communications Processor Module and CPM Timers

Features

— BISYNC protocol
— Transparent protocol
— Infrared protocol (IrDA)
— IEEE802.3/Ethernet protocol

• Two full-duplex serial management controllers (SMCs)

— UART protocol
— Transparent protocol
— GCI protocol for monitor and C/I channels

• Serial peripheral interface (SPI) support for master or slave modes

• Inter-integrated circuit (I2C) bus controller

• A serial interface (SI) with a time-slot assigner (TSA) that supports multiplexing of
data from SCCs and SMCs onto time-division multiplexed (TDM) interface

• Four independent baud rate generators (BRGs)

• Four general-purpose 16-bit timers or two 32-bit timers

• CPM interrupt controller (CPIC)

• General-purpose I/O ports

Figure 17-2 shows a possible MPC855T configuration for a multiprotocol application that
supports various communications links and protocols.

MPC855T User’s Manual

CPM General-Purpose Timers

\

Figure 17-2. MPC855TApplication Design Example

17.2 CPM General-Purpose Timers
The CPM has four identical 16-bit general-purpose timers that can be cascaded into two
32-bit timers. Note that the CPM general-purpose timers are separate and distinct from the
RISC timer tables described in Section 18.7, “The RISC Timer Table.” Each timer consists
of the following:

• Timer mode register (TMR)
• Timer capture register (TCR)
• Timer counter (TCN)
• Timer reference register (TRR)
• Timer event register (TER)
• Timer global configuration register (TGCR).

Figure is a block diagram of the CPM timers.

EEST
MC68160

T1/E1
Xceiver

Embedded
MPC8xx

Core

SCC1

32-Bit RISC

TDMa

Time-Slot
Assigner

PCMCIASMC2

SPI I2C

RJ-45

D-15

MCM2814

RS-232D-9

Debug

Terminal

Serial
EPROM

PCI Bus

SMC1

Address
and Data
Buffers

8-Bit Boot
EPROM

CA91C860
QSPAN-860

Flash
PCMCIA

Card

DRAM SIMM
16- or 32-Bit

(Parity Optional)
T1/E1 Line

AUI

TP

Passive

Communications
Processor

MPC8

Chapter 17. Communications Processor Module and CPM Timers

CPM General-Purpose Timers

Figure 17-3. CPM Timer Block Diagram

17.2.1 Features

The following list summarizes the main features of the CPM timers:

• Maximum period of 10.7 seconds (at 25 MHz)

• 40-ns resolution (at 25 MHz)

• Programmable sources for the clock input

• Input capture capability

• Output compare with programmable mode for the output pin

• Timers are cascadeable to form 32-bit timers

• Free run and restart modes

• Functionally compatible with MC68360 timers

• Timer 1 is used with the PCMCIA speaker input to generate alerts on SPKROUT.

Timer
Clock

Generator

Capture
Detection

Event Register

Mode Register
Mode BitsPrescaler

Timer Counter (TCN)

Capture Register (TCR)

Reference Register (TRR)

Divider Clock

TER1

TMR1

TCN1

TRR1

TCR1

General

TIN1

TOUT1

Timer1
Timer2

Timer3
Timer4

Global Configuration Register

TGATE1

TGATE2

TGCR

TIN2

TIN3
TIN4

TOUT2
TOUT3

TOUT4

System Clock

C
P

M
 L

oc
al

 B
us

MPC855T User’s Manual

CPM General-Purpose Timers

17.2.2 CPM Timer Operation

The following subsections describe the timer operation. The timer mode registers (TMRx)
and the timer global configuration register (TGCR) mentioned in this section are described
in Section 17.2.3, “CPM Timer Register Set.”

17.2.2.1 Timer Clock Source
The clock input to the prescaler can be selected from three sources:

• The general system clock

• The general system clock divided by 16

• An external source on the corresponding TINx pin

The general system clock (GCLK2) is generated in the clock synthesizer. To save power,
the general system clock can be divided before it leaves the clock synthesizer (slow-go
mode). Regardless of the resulting general system clock frequency, either that frequency or
that frequency divided by 16 can be chosen as the input to the prescaler of each timer. Also,
an external clock source can be supplied on the TINx signal. If two 16-bit timers are
cascaded internally into a 32-bit timer, one timer uses the clock generated by the output of
another timer.

The clock input source is selected by TMRx[ICLK]. The prescaler is programmed in
TMRx[PS] and divides the clock input by values between 1 and 256; the prescaler output
is used as an input to the 16-bit counter. The best resolution of the timer is one clock cycle
(40 ns at 25 MHz). The maximum period is 268,435,456 cycles, which is 10.7 seconds at
25 MHz.

17.2.2.2 Timer Reference Count

TMRx[FRR] (the free-run/restart bit) can be configured so that when a reference is reached
the count either continues or begins again. When the reference value is reached, the
corresponding TERx event bit is set and an interrupt is issued if TMRx[ORI] = 1. Also when
the reference value is reached, the timers can output a signal on their timer output pins
(TOUT[1–4]). The output signal can be programmed to be an active-low pulse or a toggle
of the current output as selected by TMRx[OM] (the output mode bit).

17.2.2.3 Timer Capture

Each timer’s 16-bit capture register, TCRx, is used to latch the value of the counter when a
defined transition of TINx is sensed by the corresponding input capture edge detector. The
type of transition triggering the capture is selected by TMRx[CE]. When a capture or
reference event occurs, the corresponding TERx event bit is set and a maskable interrupt
request is issued to the CPIC.

Chapter 17. Communications Processor Module and CPM Timers

CPM General-Purpose Timers

17.2.2.4 Timer Gating

Timers can be gated or restarted by one of two external gate signals—TGATE1for timer 1
and/or 2, TGATE2 for timer 3 and/or 4. Normal gate mode enables the count on a falling
edge of TGATEx and disables the count on the rising edge of TGATEx. This allows the
timer to count conditionally, depending on the state of TGATEx.

Restart gate mode is like normal gate mode, but also resets the counter on the falling edge
of TGATEx. The restart gate mode can be used for pulse interval measurement and bus
monitoring:

• Pulse measurement—The restart gate mode can measure a low pulse on TGATEx.
The rising edge of TGATEx completes the measurement. If TGATEx is externally
connected to TINx, it causes the timer to capture the count value and generate a
rising-edge interrupt.

• Bus monitoring—The restart gate mode can detect a signal that is abnormally stuck
low. The bus signal should be connected to TGATEx. The timer count is reset on the
falling edge of the bus signal and if the bus signal does not go high again within the
number of user-defined clocks, an interrupt can be generated.

The gate function is enabled in the TMR; the gate operating mode is selected in the TGCR.

Note that TGATEx is internally synchronized to the system clock. However, if TGATEx
meets the asynchronous input setup time, the counter begins counting after one system
clock when the input clock source (TMRx[ICLK]) is internal.

17.2.2.5 Cascaded Mode

Timer 1 can be internally cascaded to timer 2 and timer 3 can be internally cascaded to timer
4 to form 32-bit timers. The TGCR is used to put the timers into cascaded mode, as shown
in Figure 17-4.

Figure 17-4. Timer Cascaded Mode Block Diagram

If TGCR[CASx] is set, the two corresponding timers function as a 32-bit timer with a 32-bit
TRR, TCR, and TCN. In this case, the mode registers TMR1 and TMR3 are ignored and
TMR2 and TMR4 are used to define the mode. Similarly, the capture is controlled by TIN2

Timer 1 Timer 2

Timer 3 Timer 4

Capture

Capture

Clock

Clock

TRR, TCR, TCN connected to D[16–31] TRR, TCR, TCN connected to D[0–15]

TRR, TCR, TCN connected to D[0–15] TRR, TCR, TCN connected to D[16–31]

MPC855T User’s Manual

CPM General-Purpose Timers

or TIN4, and interrupts are generated by TER2 or TER4. In cascaded mode, the cascaded
TRR, TCR, and TCN should always be accessed with 32-bit bus cycles.

17.2.2.6 Timer 1 and SPKROUT

Timer 1 can be used to drive audio alerts through the PCMCIA SPKROUT signal. Enabling
timer 1 results in SPKROUT being driven with timer 1's frequency. Timer 1 is exclusive
ORed with the 4 SPKR_B input signals to generate SPKROUT.

To prevent timer 1 from affecting SPKROUT, either use the timer in a pulse mode or do not
enable it.

17.2.3 CPM Timer Register Set

The following subsections discuss the CPM timer register set.

17.2.3.1 Timer Global Configuration Register (TGCR)

The timer global configuration register (TGCR) contains configuration parameters used by
all four timers. It allows simultaneous starting and stopping of any number of timers as long
as one bus cycle is used to access TGCR.

This register is affected by HRESET and SRESET. Table 17-1 describes the TGCR fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field CAS4 FRZ4 STP4 RST4 GM2 FRZ3 STP3 RST3 CAS2 FRZ2 STP2 RST2 GM1 FRZ1 STP1 RST1

Reset 0

R/W R/W

Addr 0x980

Figure 17-5. Timer Global Configuration Register (TGCR)

Table 17-1. TGCR Field Descriptions

Bits Name Description

0 CAS4 Cascade timers.
0 Normal operation.
1 Timers 3 and 4 are cascaded to form a 32-bit timer.

1, 5,
9, 13

FRZx Freeze timer x.
0 The corresponding timer ignores the FRZ state.
1 Stops the corresponding timer if the MPC855T enters FRZ state. FRZ state is entered in debug mode

as defined in Chapter 44, “System Development and Debugging.”

2, 6,
10,
14

STPx Stop timer x.
0 Normal operation.
1 Stop the timer. This bit stops all clocks to the timer, except the U-bus interface clock allowing the timer

registers to be read or written. The clocks to the timer remain inactive until this bit is cleared or a
hardware reset occurs.

Chapter 17. Communications Processor Module and CPM Timers

CPM General-Purpose Timers

17.2.4 Timer Mode Registers (TMR1–TMR4)

The timer mode registers (TMR1–TMR4), shown in Figure 17-6, are identical. Before
modifying TMRx, reset the timer by clearing TGCR[RSTx].

These registers are affected by HRESET and SRESET. Table 17-2 describes the TMR
fields.

3, 7,
11,
15

RSTx Reset timer x.
The associated TMRx and TRRx registers should be initialized before enabling the timer with RSTx.
0 Reset the corresponding timer. Upon clearing this bit, all associated timer registers are reset.
1 Enable the corresponding timer if STP is cleared.

4 GM2 Gate mode for TGATE2. Valid only if TMR3[GE] or TMR4[GE] is set.
0 Restart gate mode. A falling edge of TGATE2 enables and restarts the count and a rising edge of

TGATE2 disables the count.
1 Normal gate mode. This mode is the same as 0, except the falling edge of TGATE2 does not restart

the count value in the TCN.

8 CAS2 Cascade timers.
0 Normal operation.
1 Timers 1 and 2 are cascaded to form a 32-bit timer.

12 GM1 Gate mode for TGATE1. Valid only if TMR1[GE] or TMR2[GE] is set.
0 Restart gate mode. A falling TGATE1 enables and restarts the count and a rising edge of TGATE1

disables the count.
1 Normal gate mode. This mode is the same as 0, except the falling edge of TGATE1 does not restart

the count value in the TCN.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field PS CE OM ORI FRR ICLK GE

Reset 0

R/W R/W

Addr 0x990 (TMR1), 0x992 (TMR2), 0x9A0 (TMR3), 0x9A2 (TMR4)

Figure 17-6. Timer Mode Registers (TMR1–TMR4)

Table 17-2. TMR1–TMR4 Field Descriptions

Bits Name Description

0–7 PS Prescaler value. The prescaler is programmed to divide the clock input by a value between 1 and 256.
A 0x00 value divides the clock by 1; 0xFF divides it by 256.

8–9 CE Capture edge and enable Interrupt.
00 Disable interrupt on capture event; capture function is disabled.
01 Capture on rising TINx edge only and enable interrupt on capture event.
10 Capture on falling TINx edge only and enable interrupt on capture event.
11 Capture on any TINx edge and enable interrupt on capture event.

Table 17-1. TGCR Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

CPM General-Purpose Timers

17.2.4.1 Timer Reference Registers (TRR1–TRR4)

Each timer reference register (TRR1–TRR4), shown in Figure 17-7, contains the timeout’s
reference value. The reference value is not reached until TCNx increments to equal the
timeout reference value. These registers are affected by HRESET and SRESET.

Figure 17-7. Timer Reference Registers (TRR1–TRR4)

17.2.4.2 Timer Capture Registers (TCR1–TCR4)

Each timer capture register (TCR1–TCR4), shown in Figure 17-8, is used to latch the value
of the counter according to TMRx[CE].These registers are affected by HRESET and
SRESET.

10 OM Output mode.
0 Active-low pulse on TOUTx for one timer input clock cycle as defined by ICLK. Thus, TOUTx may

be low for one general system clock period, one general system clock/16 period, or one TINx clock
cycle period. Changes to TOUTx occur on the falling edge of the system clock.

1 Toggle TOUTx. Changes to TOUTx occur on the falling edge of the system clock.

11 ORI Output reference interrupt enable.
0 Disable interrupt for reference that is reached. Does not affect an interrupt on the capture function.
1 Enable interrupt when the reference value is reached.

12 FRR Free run/restart.
0 Free run. The timer count continues to increment after the reference value is reached.
1 Restart. The timer count is reset immediately after the reference value is reached.

13–14 ICLK Input clock source for the timer.
00 Internally cascaded input.

For TMR1, the timer 1 input is the output of timer 2.
For TMR3, the timer 3 input is the output of timer 4.
For TMR2 and TMR4, this selection means no input clock is provided to the timer.

01 Internal general system clock.
10 Internal general system clock divided by 16.
11 Corresponding TINx signal (falling edge).

15 GE Gate enable.
0 TGATEx is ignored.
1 TGATEx is used to control the timer—TGATE1 for timer 1 and 2, TGATE2 for timer 3 and 4.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field Timeout reference value

Reset 0xFFFF

R/W R/W

Addr 0x994 (TRR1), 0x996 (TRR2), 0x9A4 (TRR3), 0x9A6 (TRR4)

Table 17-2. TMR1–TMR4 Field Descriptions (continued)

Bits Name Description

Chapter 17. Communications Processor Module and CPM Timers

CPM General-Purpose Timers

17.2.4.3 Timer Counter Registers (TCN1–TCN4)

Each timer counter register (TCN1–TCN4), shown in Figure 17-9, is an up-counter. A read
cycle to TCN1–TCN4 yields the current value of the timer, but does not affect the counting
operation. A write cycle to TCN1–TCN4 sets the register to the written value, thus causing
its corresponding prescaler, TMRx[PS], to be reset.

Note that the counter registers may not be updated correctly if a write is made while the
timer is not running. Use TRRx to define the preferred count value.These registers are
affected by HRESET and SRESET.

17.2.4.4 Timer Event Registers (TER1–TER4)

Each timer event register (TER1–TER4), shown in Figure 17-10, reports events recognized
by the timers. When an output reference event is recognized, the timer sets TERx[REF]
regardless of the corresponding TMRx[ORI]. The capture event is set only if it is enabled
in TMRx[CE].

Writing ones clears event bits; writing zeros has no effect. Both event bits must be cleared
before the timer negates the interrupt to the CPIC. These registers are affected by HRESET
and SRESET.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field Latched counter value

Reset 0

R/W R/W

Addr 0x998 (TCR1), 0x99A (TCR2), 0x9A8 (TCR3), 0x9AA (TCR4)

Figure 17-8. Timer Capture Registers (TCR1–TCR4)

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field Up counter

Reset 0

R/W R/W

Addr 0x99C (TCN1), 0x99E (TCN2), 0x9AC (TCN3), 0x9AE (TCN4)

Figure 17-9. Timer Counter Registers (TCN1–TCN4)

MPC855T User’s Manual

CPM General-Purpose Timers

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — REF CAP

Reset 0

R/W R/W

Addr 0x9B0 (TER1), 0x9B2 (TER2), 0x9B4 (TER3), 0x9B6 (TER4)

Figure 17-10. Timer Event Registers (TER1–TER4)

Chapter 17. Communications Processor Module and CPM Timers

CPM General-Purpose Timers

Table 17-3 describes the TER fields.

17.2.5 Timer Initialization Examples

The following two initialization sequences program timer 2 to generate an interrupt every
10 µs. The first sequence uses timer 2 alone, while the second example uses timers 1 and 2
in cascaded mode. Assuming a 25-MHz general system clock, an interrupt should be
generated every 250 system clocks.

1. Set TGCR = 0x0000 to reset timer 2.

2. Set TMR2 = 0x001A to set the prescaler to divide by 1 and the clock source to the
general system clock. This value also enables an interrupt when the timer reaches
the reference count and immediately clears (restarts) the TCN for the next interrupt.

3. Set TCN2 = 0x0000 to clear the timer 2 counter (default).

4. Set TRR2 = 0x00FA to initialize the timer 2 reference value to 250.

5. Write TER2 = 0xFFFF to clear TER2 of any previous events.

6. Set CIMR = 0x0004_0000 to enable timer 2 interrupts in the CPIC and initialize
the CICR.

7. Set TGCR = 0x0010 to enable timer 2 to begin counting.

To implement the same function with a 32-bit timer using timers 1 and 2, follow these steps:

1. Set TGCR = 0x0080. Cascade timers 1 and 2 and put them in reset state.

2. Set TMR2 = 0x001A to set the prescaler to divide by 1 and the clock source to the
general system clock. This value also enables an interrupt when the timer reaches
the reference count and immediately clears the TCN for the next interrupt.

3. Set TMR1 = 0x0000. Enable timer 1 to use the timer 2 output as its input
(TMR1[ICLK] = 0b00).

4. Set TCN1 = 0x0000 and TCN2 = 0x0000. Initialize the count of the combined
timers 1 and 2 to zero (TMR1 default) by using one 32-bit data move to TCN1.

5. Set TRR1 = 0x0000 and TRR2 = 0x00FA. Initialize the reference value of the
combined timers 1 and 2 to 250 by using one 32-bit data move to TRR1.

6. Write TER2 = 0xFFFF to clear TER2 of any previous events.

Table 17-3. TER Field Descriptions

Bits Name Description

0–13 — Reserved, should be cleared.

14 REF Output reference event. When set, indicates the counter reached the value in the TRR. TMR[ORI] is
used to enable the interrupt request caused by this event.

15 CAP Capture event. Indicates that the counter value has been latched into the TCR. TMR[CE] enables
generation of this event.

MPC855T User’s Manual

CPM General-Purpose Timers

7. Set CIMR = 0x0004_0000 to enable timer 2 interrupts in the CPIC and initialize
the CICR.

8. Set TGCR = 0x0091 to enable timers 1 and 2 to begin counting in cascaded mode.

Chapter 18. Communications Processor

Chapter 18
Communications Processor
Transacting with the communications peripherals on a separate bus from the MPC8xx core,
the CPM’s 32-bit communications processor (CP) handles the low-level communications
tasks, freeing the core for higher-level tasks. The CP implements the chosen protocols using
the serial controllers and parallel interface port and manages the data transfer through the
serial DMA (SDMA) channels between the I/O channels and memory. It also manages
IDMA (independent DMA) channels and contains an internal timer used to implement
additional software timers.

The CP’s architecture and instruction set are optimized for data communications and
processing required by many wire-line and wireless communications standards.

18.1 Features
The following lists the CP’s main features:

• Performs lower-layer protocol processing for communication channels

• Protocol-processing microcode routines located in internal ROM

• Optional Motorola-supplied microcode packages run from dual-port RAM (The
microcode packages allow the addition of protocols and other enhancements.)

• Supports general-purpose DMA using two IDMA channels

• Supports DMA bursting for memory-to-memory IDMA

• Performs DMA of serial data to external memory

• RISC timer table supports a maximum of 16 software timers

Figure 18-1 is a block diagram of the CP.

MPC855T User’s Manual

Communicating with the Core

Figure 18-1. Communications Processor (CP) Block Diagram

18.2 Communicating with the Core
The CP communicates with the core in the following ways:

• By exchanging parameters using the dual-port RAM.

• By executing special commands that are issued by the core through the CP
command register (CPCR).

• By generating interrupts using the CPM interrupt controller (CPIC).

• By letting the core read the CPM status/event registers at any time.

18.3 Communicating with the Peripherals
The CP uses the peripheral bus to communicate with the peripherals. The serial
communications controller (SCC1) has a separate receive and transmit FIFO. The SCC1
receive and transmit FIFOs are 32 bytes each; . The serial management controllers (SMCs),
serial peripheral interface (SPI), and I2C are all double-buffered, creating effective FIFO
sizes of two characters.The parallel interface port (PIP) is a single register interface.

Table 18-1 shows the order in which the CP handles requests from peripherals from highest
to lowest priority.

Table 18-1. Peripheral Prioritization

Priority Request

1 Reset in the CPCR or SRESET

2 SDMA bus error

Register
File

RAM

ROM

Sequencer

Scheduler

Service Requests

Development
Support

Decoder
Multiplier/

Accumulator

Cyclic
Redundancy

Check

Arithmetic
Logic Unit

Peripheral
InterfaceDMA•

•
•

Dual-Port
RAM

Peripheral
Bus

INSTRUCTION STORAGE PROCESSING UNITS

Chapter 18. Communications Processor

CP Microcode Revision Number

18.4 CP Microcode Revision Number
In addition to the microcode routines located in internal ROM, the CP can execute
protocol-enhancing microcode packages from dual-port RAM. The CP writes a part
revision number stored in ROM to a dual-port RAM location called REV_NUM that
resides in the miscellaneous parameter RAM. REV_NUM determines which version of
Motorola-supplied microcode package to use; see Table 18-2.

3 Commands issued to the CPCR

4 IDMA emulation: DREQ0 (default—option 1) 1

5 IDMA emulation: DREQ1 (default—option 1)1

6 SCC1 Rx

7 SCC1 Tx

8 IDMA emulation: DREQ0 (option 2)1

9 IDMA emulation: DREQ1 (option 2)1

10 SMC1 Rx

11 SMC1 Tx

12 SMC2 Rx

13 SMC2 Tx

14 SPI Rx

15 SPI Tx

16 I2C Rx

17 I2C Tx

18 PIP

19 RISC timer table

20 IDMA emulation: DREQ0 (option 3)1

21 IDMA emulation: DREQ1 (option 3)1

1 See the RCCR[DRQP] description in Section 18.5.1, “RISC Controller
Configuration Register (RCCR).”

Table 18-2. CP Microcode Revision Number

Offset 1 Name Width Description

0x00 REV_NUM Half-word Microcode revision number

0x02 — Half-word Reserved

Table 18-1. Peripheral Prioritization (continued)

Priority Request

MPC855T User’s Manual

CP Register Set and CP Commands

For the latest documentation on part/revision numbers and microcode REV_NUMs, see the
website at http://www.motorola.com.

18.5 CP Register Set and CP Commands
The following sections describe the communications processor registers and commands.

18.5.1 RISC Controller Configuration Register (RCCR)

The RISC controller configuration register (RCCR), shown in Figure 18-2, tells the CP to
run microcode from ROM or dual-port RAM and controls the CP’s internal timer. It also
sets the IDMA request modes and priority.

This register is affected by HRESET but is not affected by SRESET. Table 18-3 describes
the RCCR fields.

0x04 — Word Reserved

0x08 — Word Reserved

1 Offset from the base of the miscellaneous parameter area (at offset 0x1CB0 of the dual-port RAM).

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field TIME — TIMEP DR1M DR0M DRQP EIE SCD ERAM

Reset 0000_0000_0000_0000

R/W R/W

Addr 0x9C4

Figure 18-2. RISC Controller Configuration Register (RCCR)

Table 18-3. RCCR Field Descriptions

Bits Name Description

0 TIME Timer enable. Controls whether the CP’s internal timer sends a tick to the CP based on the value
programmed in the timer period (TIMEP).
0 Stop RISC timer table scanning.
1 Start RISC timer table scanning.

1 — Reserved. Should be cleared.

2–7 TIMEP Timer period. Controls the period of the CP’s internal timer tick. The RISC timer table are scanned
on each timer tick. The input to the timer tick generator is the system clock divided by 1,024. The
formula is: timer tick period = (TIMEP + 1) × 1,024 system clocks. Thus, a value of 0 stored in this
field creates a timer tick every 1 × (1,024) = 1,024 system clocks; a value of 63 causes a tick every
64 × (1,024) = 65,536 system clocks.

8 DR1M IDMA request 1 mode. Controls the IDMA request 1 (DREQ1) sensitivity mode. See Section 19.3.7,
“IDMA Interface Signals—DREQ and SDACK.”
0 DREQ1 is edge-sensitive.
1 DREQ1 is level-sensitive.

Table 18-2. CP Microcode Revision Number (continued)

Chapter 18. Communications Processor

CP Register Set and CP Commands

18.5.2 RISC Microcode Development Support Control
 Register (RMDS)

The RISC microcode development support control register (RMDS), shown in Figure 18-3,
determines which regions of the dual-port RAM can contain executable microcode. RMDS
is used with RCCR[ERAM] to determine the valid address space for executable microcode.
Section 18.6.1, “System RAM and Microcode Packages,” describes the partitioning of the
dual-port system RAM.

9 DR0M IDMA request 0 mode. Controls the IDMA request 0 (DREQ0) sensitivity mode. See Section 19.3.7,
“IDMA Interface Signals—DREQ and SDACK.”
0 DREQ0 is edge-sensitive.
1 DREQ0 is level-sensitive.

10–11 DRQP IDMA emulation request priority. Controls the priority of the external request signals that relate to the
serial channels. See Section 18.3, “Communicating with the Peripherals.”
00 IDMA requests have priority over the SCC.
01 IDMA requests have priority immediately following the SCC (option 2).
10 IDMA requests have the lowest priority (option 3).
11 Reserved.

12 EIE External interrupt enable. Configure as instructed in the download process of a Motorola-supplied
RAM microcode package.
0 DREQ0 cannot interrupt the CP.
1 DREQ0 will interrupt the CP.

13 SCD Scheduler configuration. Configure as instructed in the download process of a Motorola-supplied
RAM microcode package.
0 Normal operation.
1 Alternate configuration of the scheduler.

14–15 ERAM Enable RAM microcode Configure as instructed in the download process of a Motorola-supplied
microcode package. See Section 18.6.1, “System RAM and Microcode Packages.”
00 Disable microcode program execution in the dual-port system RAM.
01 Microcode executes from the first 512 bytes and a 256-byte extension of dual-port system RAM.
10 Microcode executes from the first 1 Kbyte and a 256-byte extension of dual-port system RAM.
11 Microcode executes from the first 2 Kbytes and a 512-byte extension of dual-port system RAM.

Bit 0 1 2 3 4 5 6 7

Field ERAM4K —

Reset 0000_0000_0000_0000

R/W R/W

Addr 0x9C7

Figure 18-3. RISC Microcode Development Support Control Register (RMDS)

Table 18-3. RCCR Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

CP Register Set and CP Commands

RMDS fields are described in Table 18-4.

18.5.3 CP Command Register (CPCR)

The MPC8xx core can issue commands to control communications via the CP command
register (CPCR), shown in Figure 18-4. The CP commands handle special cases, such as
initializing or stopping a channel, and are protocol-dependent.

When the core issues a command it sets CPCR[FLG]. When the command completes, the
CP clears FLG to signal the core for the next command. The core must wait for FLG to be
cleared before issuing another CP command. The core can, however, issue the CP reset
command (CPCR = 0x8001) at any time, regardless of FLG.

Note that the CPCR has a different bit format for ATM operations; see Section 38.3, “ATM
Commands.

This register is affected by HRESET and SRESET. Table 18-5 describes CPCR fields.

Table 18-4. RMDS Field Descriptions

Bits Name Description

0 ERAM4K Enable RAM microcode (at offset 4K)
0 Microcode may be executed only from the first 2 Kbytes of the dual-port RAM.
1 Microcode is also executed from the 2 Kbytes of the second half of the dual-port RAM with a

512-byte extension.

1–7 — Reserved, should be cleared.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field RST — OPCODE CH_NUM — FLG

Reset 0

R/W R/W

Addr 0x9C0

Figure 18-4. CP Command Register (CPCR)

Table 18-5. CPCR Field Descriptions

Bits Name Description

0 RST CP reset command. Set by the core and cleared by the CP. Executing this command clears RST
and FLG within two general system clocks. The CPM reset routine takes approximately 60 clocks,
but CPM initialization can start immediately after this command is issued. Use RST to reset the
registers and parameters for all the channels (SCC, SMCs, SPI, I2C) as well as the CPM and RISC
timer table. RST does not, however, affect the serial interface or parallel I/O registers.
0 No reset issued.
1 Reset issued.

1–3 — Reserved. Should be cleared.

4–7 OPCODE Operation code for the core-issued CP commands. See Table 18-6.

Chapter 18. Communications Processor

CP Register Set and CP Commands

18.5.4 CP Commands

A given CP command opcode may have different meanings, or may not apply, depending
on which channel (sub-block) the command targets.

Table 18-6 describes the CP commands.

8–11 CH_NUM Channel number. Defines the specific sub-block on which the command is to operate. Some
sub-blocks share channel number encodings if their commands are mutually exclusive.
0000 SCC1
0001 I2C/IDMA1
001x Reserved
0100 Reserved
0101 SPI/IDMA2/RISC timers
011x Reserved
1000 Reserved
1001 SMC1
101x Reserved
1100 Reserved
1101 SMC2
111x Reserved

12–14 Reserved. Should be cleared.

15 FLG Command semaphore flag. Set by the core and cleared by the CP.
0 CP is ready for a new command.
1 CP is currently processing a command—cleared when the command is done or after reset.

Table 18-6. CP Commands

Command Description

INIT TX AND RX
PARAMS

Initialize transmit and receive parameters. Initializes the CP’s temporary Tx and Rx parameters in the
parameter RAM to the user-defined reset values—often required when switching protocols.

INIT RX PARAMS Initialize receive parameters. Initializes the CP’s temporary Rx parameters in the parameter RAM to
the user-defined reset values—often required when switching protocols.

INIT TX PARAMS Initialize transmit parameters. Initializes the CP’s temporary Tx parameters in the parameter RAM to
the user-defined reset values—often required when switching protocols.

ENTER HUNT
MODE

Causes the receiver to stop and wait for a new frame—exact operation depends on the protocol used.

STOP TX Stop transmission. Stops the transmitting channel as soon as the Tx FIFO has been emptied. It
should only be used when transmission needs to be stopped as quickly as possible. Transmission
continues when RESTART TX is issued.

GRACEFUL
STOP TX

Graceful stop transmission. Stops the transmitting channel after the whole current frame has been
sent. Transmission continues when RESTART TX is issued and the ready bit is set in the next TxBD.

RESTART TX Restart transmission. After STOP TX or GRACEFUL STOP TX, RESTART TX starts the transmitter, which
begins polling the R bit of the current BD.

Table 18-5. CPCR Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Dual-Port RAM

18.5.4.1 CP Command Examples

To completely reset the CPM, write 0x8001 to the CPCR. After the FLG bit has cleared,
set-up of the CPM can continue. To execute ENTER HUNT MODE on SCC1, for example,
write 0x0301 to the CPCR. While the command is executing, the CPCR returns a 0x0301
value; after executing, it returns 0x0300.

18.5.4.2 CP Command Execution Latency

The worst-case command execution latency for the CP is 500 clocks, while the typical
command execution latency is about 40 clocks.

18.6 Dual-Port RAM
The CPM has 8 Kbytes of static RAM configured as dual-port memory, shown in
Figure 18-5.

NOTE
The entire dual-port RAM should be cleared as the first step in
system initialization. This step should be followed by issuing a
CPM reset using the CPCR. Only after these two steps should
the dual-port RAM be programmed for specific CPM
functions.

CLOSE RX BD Closes the current RxBD in mid-reception; reception continues using the next available BD. Use
CLOSE RX BD to access the data buffer without waiting for the SCC to finish filling it.

INIT IDMA Initialize IDMA transfers. Initializes the IDMA internal CP state to the user-defined reset value.

STOP IDMA Stop IDMA transfers. The CP terminates current IDMA transfers.

SET TIMER Used to activate, deactivate, or reconfigure the 16 timers of the RISC timer table.

SET GROUP
ADDRESS

Sets a hash table bit for the Ethernet logical group address recognition function.

GCI ABORT
REQUEST

GCI receiver sends an abort request.

GCI TIMEOUT Performs the GCI timeout function.

RESET BCS Used in BISYNC mode to reset the block check sequence calculation.

ATM
Commands

See Section 38.3, “ATM Commands.”

U Undefined. Reserved for use by Motorola-supplied RAM microcode packages.

Table 18-6. CP Commands (continued)

Command Description

Chapter 18. Communications Processor

Dual-Port RAM

Figure 18-5. Dual-Port RAM Block Diagram

The dual-port RAM consists of 7 Kbytes of system RAM (see Section 18.6.1, “System
RAM and Microcode Packages”) and 1 Kbyte of parameter RAM (see Section 18.6.3,
“Parameter RAM”) and is used for the following:

• Storing parameters associated with the SCC, SMCs, SPI, I2C, and IDMAs (in
parameter RAM only)

• Storing the BDs (in any unused dual-port RAM area)

• Storing buffers (in any unused dual-port RAM area or external memory)

• Storing Motorola-supplied microcode for the CP (in system RAM only)

• Scratch pad area for user software (in any unused dual-port RAM area)

The dual-port RAM can be accessed either by the CP or by one of two internal U-bus
masters—the MPC8xx core or an SDMA channel. The core and the SDMA channels access
the dual-port RAM in two clocks, while the CP takes only one clock. For simultaneous
accesses with at least one write operation, the CP is delayed by one clock.

When the core or SDMA channel access the dual-port RAM, the data and address are
passed through the U-bus. The CP can fetch data from the entire dual-port RAM and
microcode instructions from portions of the system RAM.

Address
Selectors

Data
Selectors

U-Bus Addr

CP Microcode Instr Addr

CP Data Addr

U-Bus Addr

CP Data Addr

CP Microcode Instr

U-Bus Data

CP Data

Shaded area is system RAM. Note that in this figure, the area is not contiguous memory. For an accurate
representation of the physical implementation, see Figure 18-6.

Address
Selectors

Data
Selectors

1,024 Bytes
BD/Buffers/Microcode

1,024 Bytes
BD/Buffers/Microcode

512 Bytes
BD/Buffers/Microcode

1,024 Bytes
BD/Buffers/Microcode

512 Bytes
BD/Buffers/Microcode

2,048 Bytes
BD/Buffers

1,024 Bytes
Parameter RAM

Dual-Port

1,024 Bytes
BD/Buffers/Microcode

MPC855T User’s Manual

Dual-Port RAM

The controller and sub-block parameters of the parameter RAM and the optional microcode
packages in system RAM use fixed addresses. The buffer descriptors, buffers, and scratch
pad area, however, can be located in any unused dual-port RAM area. See Figure 18-6.

Figure 18-6. Dual-Port RAM Memory Map

18.6.1 System RAM and Microcode Packages

When optional Motorola-supplied RAM microcode packages are activated, certain portions
of the 7-Kbyte system RAM are no longer available. (The 1-Kbyte parameter RAM is not
affected.) Depending on the memory requirements of the microcode package, some or all
of the shaded areas of Figure 18-6 become locked. Reads to locked areas return all ones.
The unshaded 2-Kbyte(non-contiguous) area of system RAM is always available to the
user.

The enable-RAM-microcode field of the RISC configuration register, RCCR[ERAM],
selects the three possible configurations for microcode area sizes—first 512-byte block,
first two 512-byte blocks, or first four 512-byte blocks. When just the first and/or second

0 Kbyte
ERAM = 11 ERAM = 10 ERAM = 01 BD/Data/Microcode IMMR + 0x2000

1 Kbyte
BD/Data/Microcode IMMR + 0x2200

BD/Data/Microcode
IMMR + 0x2400

2 Kbyte

BD/Data

IMMR + 0x2800

3 Kbyte

ERAM = 11 BD/Data/Microcode IMMR + 0x2E00
ERAM = 01, 10 4 Kbyte IMMR + 0x2F00

ERAM4K = 1

BD/Data/Microcode

IMMR + 0x3000

5 Kbyte

6 Kbyte
BD/Data IMMR + 0x3800

ERAM4K = 1
7 Kbyte

BD/Data/Microcode IMMR + 0x3A00

Parameter RAM Parameters for the
Peripheral
Controllers

IMMR + 0x3C00

8 Kbyte

RCCR[ERAM] governs memory allocation for microcode in dark-shaded areas.

RMDS[ERAM4K] governs memory allocation for microcode in light-shaded areas.

Chapter 18. Communications Processor

Dual-Port RAM

512-byte blocks are used for microcode, an additional 256-byte extension of system RAM
is also locked. When all four 512-byte blocks are used for microcode, an additional
512-byte extension of system RAM is locked. See the darker-shaded areas of Figure 18-6.

In addition to RCCR[ERAM], RMDS[ERAM4K] (enable RAM microcode at offset 4K)
affects the system RAM memory configuration for microcode packages. Setting
RMDS[ERAM4K] locks a 2-Kbyte block and a 512-byte extension (the lighter-shaded
areas of Figure 18-6) for microcode execution.

18.6.2 The Buffer Descriptor (BD)

The SCC, SMCs, SPI, IDMA, PIP, and I2C use buffer descriptors (BDs) to define the
interface to buffers. BDs can be placed in any unused area of the dual-port RAM.
Table 18-7 shows the general BD structure common to these controllers.

18.6.3 Parameter RAM

The CPM maintains a section of dual-port RAM called the parameter RAM. It contains
parameters for SCC, SMC, SPI, I2C, and IDMA channel operation. Table 18-8 shows the
parameter RAM memory map.

Table 18-7. General BD Structure

BD Base Offset Field

0x00 Status and control

0x02 Data length

0x04 High-order of buffer pointer

0x06 Low-order of buffer pointer

Table 18-8. Parameter RAM Memory Map

Offset from IMMR Page Offset from DPRAM_base Controller/Peripheral

0x3C00 1 0x1C00—0x1C7F SCC1

0x1C80—0x1CAF I2C default area

0x1CB0—0x1CBF Miscellaneous

0x1CC0—0x1CFF IDMA1

0x3D00 2 0x1D00—0x1D7F Reserved

0x1D80—0x1DAF SPI default area

0x1DB0—0x1DBF RISC timer table

0x1DC0—0x1DFF IDMA2

MPC855T User’s Manual

The RISC Timer Table

The SPI and I2C parameter RAM areas can be relocated to other 32-byte aligned parameter
areas in dual-port RAM by programming their 16-bit base offsets, shown in Table 18-9.

The specific definition of each controllers’ parameter RAM is protocol dependent and is
described in the individual protocol chapters.

18.7 The RISC Timer Table
The CP can control a maximum of 16 timers separate and distinct from the four
general-purpose timers and baud-rate generators of the CPM. The RISC timer table free the
core from scanning a software timer table and are used for protocols that do not require
extreme precision. The timers are clocked from an internal timer accessible to the CP only.

Each pair of timers can be configured as a pulse width modulation (PWM) channel; a
maximum of eight channels are supportable. The output of the channel is driven on one of
the port B pins.

The following list summarizes the main features of the RISC timer table:

• Supports up to 16 timers

• Supports up to 8 PWM channels

• Three timer modes: one-shot, restart, and PWM

0x3E00 3 0x1E00—0x1E7F Reserved

0x1E80—0x1EBF SMC1

0x1EC0—0x1EFF Reserved

0x3F00 4 0x1F00—0x1F7F Reserved

0x1F80—0x1FBF SMC2/PIP

0x1FC0—0x1FF Reserved

0x1FFE—0x1FFF Reserved

Table 18-9. I2C and SPI Parameter RAM Relocation

Offset from DPRAM_base Size Controller/Peripheral

0x1C80—0x1CAB 44 bytes I2C default parameter area

0x1CAC—0x1CAD 16 bits I2C_BASE

0x1CAE—0x1CAF 16 bits I2C default parameter area

0x1D80—0x1DAB 44 bytes SPI default parameter area

0x1DAC—0x1DAD 16 bits SPI_BASE

0x1DAE—0x1DAF 16 bits SPI default parameter area

Table 18-8. Parameter RAM Memory Map (continued)

Offset from IMMR Page Offset from DPRAM_base Controller/Peripheral

Chapter 18. Communications Processor

The RISC Timer Table

• Maskable interrupt on timer expiration

• Programmable timer resolutions as low as 41 µs at 25 MHz

• Maximum timeout periods of 172 seconds at 25 MHz

• Continuously updated reference counter

RISC timer table operations are based on a “tick” in the CP internal timer that is
programmed in the RCCR; see Section 18.5.1, “RISC Controller Configuration Register
(RCCR).” The tick is a multiple of 1,024 general system clocks. The RISC timer table has
the lowest priority of all CP operations, so if it is busy with other tasks and unable to service
the timer during a tick interval, one or more of the timers might not be updated. This
behavior can be used to estimate the worst-case loading of the CP; see Section 18.7.8,
“Using the RISC Timers to Track CP Loading.” The timer table is configured using the
RCCR, the timer table parameter RAM, and the RISC controller timer event/mask registers
(RTER/RTMR), and by issuing SET TIMER to the CPCR.

18.7.1 RISC Timer Table Scan Algorithm

The CP scans the timer table once every tick of the internal CP timer. For each valid timer
in the table, the CP decrements the count and checks for a timeout. If no timeout occurs, it
moves to the next timer. If a timeout does occur, the CP sets the corresponding event bit in
RTER and then checks R_TMR to see if the timer must be restarted. If it does, the CP leaves
the timer valid bit set in the R_TMV register and resets the current count to the initial count;
otherwise, the CP clears R_TMV. Once the timer table is scanned, the CP updates
TM_CNT and stops working on the timer table until the next scan tick.

If SET TIMER is issued, the CP makes the appropriate modifications to the timer table and
parameter RAM, but does not scan the timer table until the next tick of the internal CP
timer. (Using SET TIMER properly synchronizes the timer table modifications to the
execution of the CP.)

18.7.2 The SET TIMER Command

Issued to the CP command register (CPCR), the SET TIMER command is used to enable,
disable, and configure the 16 timers in the RISC timer table. Set up the TM_CMD value in
the RISC timer table parameter RAM before writing 0x0851 to the CPCR.

18.7.3 RISC Timer Table Parameter RAM and Timer Table
 Entries

Two areas of dual-port RAM are used for the RISC timer table—RISC timer table
parameter RAM and the RISC timer table entries; see Figure 18-7.

MPC855T User’s Manual

The RISC Timer Table

Figure 18-7. RISC Timer Table RAM Usage

The RISC timer table parameter RAM holds the general timer parameters. Table 18-10
shows its memory map.

Table 18-10. RISC Timer Table Parameter RAM Memory Map

Offset 1

1 From timer base address (IMMR + 3DB0)

Name Width Description

0x00 TM_BASE Hword RISC timer table base address. The actual timers are a small block of memory in the
dual-port RAM. TM_BASE is the offset from the beginning of the dual-port RAM where
that block of memory resides. Four bytes must be reserved at the TM_BASE for each
timer used, (64 bytes if all 16 timers are used). If fewer than 16 timers are used, timers
should be allocated in ascending order to save space. For example, only 8 bytes are
required if two timers are needed and RISC timers 0 and 1 are enabled.
TM_BASE should be word-aligned.

0x02 TM_PTR Hword RISC timer table pointer. Only the CP uses this register to point to the next timer
accessed in the timer table. Do not modify this register.

0x04 R_TMR Hword RISC timer mode register. Only the CP uses this register to store the mode of the timer,
one-shot (0) or restart (1). Do not modify this register directly; it is modified indirectly via
TM_CMD and the SET TIMER command.

0x06 R_TMV Hword RISC timer valid register. Only the CP uses this register to determine whether a timer is
currently enabled. If the corresponding timer is enabled, a bit is 1. Do not modify this
register directly; it is modified indirectly via TM_CMD and the SET TIMER command.

0x08 TM_CMD Word RISC timer command register. Used as a parameter location when SET TIMER is issued.
Write this location prior to issuing SET TIMER. The bits of this register are defined in
Section 18.7.3.1, “RISC Timer Command Register (TM_CMD)

0x0C TM_CNT Word RISC timer internal count. Tick counter that the CP updates after each tick or after the
timer table is scanned. It is updated if the CP’s internal timer is enabled, regardless of
whether any of the 16 timers are enabled, and it can be used to track the number of ticks
the CP receives and responds to.

TM_BASE

16 RISC
Timer Table

Entries
(Up to 64 Bytes)

RISC
Timer Table

Parameter RAM

DPRAM_BASE + 0x1DB0

Timer Table Base Pointer

Chapter 18. Communications Processor

The RISC Timer Table

18.7.3.1 RISC Timer Command Register (TM_CMD)

Figure 18-8 shows the TM_CMD register.

Table 18-11 describes TM_CMD fields.

18.7.3.2 RISC Timer Table Entries

The 16 timers are located in the block of memory pointed to by TM_BASE; each timer
occupies 4 bytes. The first half-word holds the initial timer count taken from
TM_CMD[Timer Period] when SET TIMER is executed; the next half-word is the current
timer count that is decremented (until it reaches zero). Do not modify the table entries
directly; instead, use the SET TIMER command to reinitialize table values.

18.7.4 RISC Timer Event Register (RTER)/Mask Register
 (RTMR)

The RISC timer event register (RTER), shown in Figure 18-9, reports period timeout
events, which generate maskable interrupts. RTER bits are cleared by writing ones; writing
zeros has no effect. This register is affected by HRESET and SRESET.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field V R PWM — Timer Number

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field Timer Period

Figure 18-8. RISC Timer Command Register (TM_CMD)

Table 18-11. TM_CMD Field Descriptions

Bits Name Description

0 V Valid. When set, this bit enables the timer. It should be cleared to disable the timer.

1 R Restart. Should be set for an automatic restart or cleared for a one-shot timer operation.

2 PWM Pulse width modulation mode. Set for PWM operation; see Section 18.7.5, “PWM Mode.”

3–11 — Reserved. Should be cleared.

12–15 Timer Number A value from 0–15 signifying which timer to use—an offset into the timer table entries.

16–31 Timer Period The 16-bit timeout count of the timer. The minimum value is 1 and is programmed by writing
0x0000 to the timer period. The maximum value is 65,536 and is programmed by writing
0xFFFF.

MPC855T User’s Manual

The RISC Timer Table

The RISC timer mask register (RTMR), also shown in Figure 18-9, is used to enable
interrupts generated in the RTER. If an individual timer’s RTMR bit is set, the timer’s
RTER interrupt is enabled. If an RTMR bit is cleared, the corresponding interrupt in the
RTER is masked. This register is affected by HRESET and SRESET.

The RISC timer table bit in the CPM interrupt mask register, CIMR[RTT], described in
Section 34.5.3, “CPM Interrupt Mask Register,” acts as a global RISC timer interrupt mask.
Clearing CIMR[RTT] masks all RISC timer interrupts, regardless of RTMR.

18.7.5 PWM Mode

Designated pairs of timers can be used to generate PWM waveforms through port B. A
maximum of eight channels are supported.

The first timer (even numbered) determines the duty cycle of the waveform:

• Program TM_CMD[Timer Period] to be the high period of the waveform.

• Set TM_CMD[V, PWM].

The second timer (odd numbered) determines the overall period:

• Program TM_CMD[Timer Period] to be the period of the whole waveform.

• Set TM_CMD[V, R] and clear TM_CMD[PWM].

Table 18-12 shows the port B pin assignments for PWM mode. The respective port B pins
should be configured as general-purpose outputs; see Section 33.3, “Port B.”

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field TMR1
5

TMR1
4

TMR1
3

TMR1
2

TMR1
1

TMR1
0

TMR
9

TMR
8

TMR
7

TMR
6

TMR
5

TMR
4

TMR
3

TMR
2

TMR
1

TMR
0

Reset 0000_0000_0000_0000

R/W R/W

Addr 0x9D6 (RTER); 0x9DA (RTMR)

Figure 18-9. RISC Timer Event Register (RTER)/Mask Register (RTMR)

Table 18-12. PWM Channel Pin Assignments

Timer Pairs Port B Pin

Timer 0, 1 Port B[23]

Timer 2, 3 Port B[22]

Timer 4, 5 Port B[21]

Timer 6, 7 Port B[20]

Timer 8, 9 Port B[19]

Timer 10, 11 Port B[18]

Chapter 18. Communications Processor

The RISC Timer Table

18.7.6 RISC Timer Initialization

Follow these steps to initialize the RISC timers:

1. Program RCCR[TIMEP] to the preferred internal timer tick interval, which
determines the scan interval for the entire timer table. The timer enable bit,
RCCR[TIME], is normally set at this time; however, it can be set later if all RISC
timers must be synchronized.

2. Determine the maximum number of timers to be located in the timer table.
Configure TM_BASE to point to a location in the dual-port RAM with 4 × N bytes
available, where N is the number of timers used. If N is less than 16, use timer 0
through timer N–1 to save space.

3. Clear TM_CNT to show how many ticks have elapsed since the CP internal timer
was enabled (optional).

4. Clear the RTER, if it is not already cleared. Writing 0xFFFF clears this register.

5. Configure the RTMR to enable the timers that need to generate interrupts. A one
enables interrupts.

6. Set CIMR[RTT] to generate interrupts to the system. The CPIC may require
initialization not mentioned here; see Chapter 34, “CPM Interrupt Controller.”

7. Configure TM_CMD. At this point, determine whether a timer is to be enabled or
disabled, one-shot or restart, and what its timeout period should be. If the timer is
being disabled, all parameters besides the timer number are ignored.

8. Issue SET TIMER by writing 0x0851 to the CPCR.

9. Repeat the steps 7 and 8 for each timer to be enabled or disabled.

As an example, the following sequence demonstrates how RISC timer 0 is initialized to
generate an interrupt approximately every second using a 25-MHz general system clock:

1. Write RCCR[TIMEP] with 0b111111 to generate the slowest timer. This value
generates a table scan tick every 65,536 clocks, which is every 2.6 ms at 25 MHz.

2. Configure TM_BASE to point to a location in the dual-port RAM with 4 bytes
available. Assuming that the beginning of dual-port RAM is available, write
0x0000 to TM_BASE.

3. Write 0x0000 to TM_CNT to see how many ticks have elapsed since the CP
internal timer was enabled (optional).

4. Write 0xFFFF to the RTER to clear any previous events.

Timer 12, 13 Port B[17]

Timer 14, 15 Port B[16]

Table 18-12. PWM Channel Pin Assignments (continued)

Timer Pairs Port B Pin

MPC855T User’s Manual

The RISC Timer Table

5. Write 0x0001 to the RTMR to enable RISC timer 0 to generate an interrupt.

6. Write 0x0002_0000 to the CPM interrupt mask register so the RISC timers will
generate a system interrupt. Initialize the CPM interrupt configuration register.

7. Write 0xC000_0EE6 to TM_CMD. This enables RISC timer 0 to timeout after
3,814 (decimal) ticks. The timer automatically restarts after it times out.

8. Write 0x0851 to the CPCR to issue SET TIMER.

9. Set RCCR[TIME] to start RISC timer table scanning.

18.7.7 RISC Timer Interrupt Handling

The following sequence shows what normally occurs within an interrupt handler for the
RISC timer table:

1. Once an interrupt occurs, read the RTER to see which timers have caused interrupts.
The RISC timer event bits are usually cleared at this time.

2. Issue any additional SET TIMER commands now or later, as preferred. Nothing
needs to be done if the timer is automatically being restarted for repetitive
interrupts.

3. Clear CISR[RTT].

4. Execute the rfi instruction.

18.7.8 Using the RISC Timers to Track CP Loading

The RISC timers can be used to track CP loading. The following sequence is a method for
using the 16 RISC timers to determine if the CP ever exceeds the 96% utilization level
during a scan tick interval. Removing the timers adds a 4% margin to the CP’s utilization
level, but an aggressive user can use this technique to push the CP performance to its limit.
Incorporate the following steps to the standard initialization sequence:

1. Program RCCR[TIMEP] to 0b001111 for a table scan tick of 16 × (1,024) = 16,384.

2. Disable RISC timer table interrupts, if preferred.

3. Using SET TIMER, initialize all 16 RISC timers to have a timer period of 0xFFFF,
which corresponds to 65,536.

4. Program one of the four general-purpose timers to increment once every tick. The
general-purpose timer should be free-running and have a timeout of 65,536.

5. After a few hours of operation, compare the general-purpose timer to the current
count of RISC timer 15. If the difference between them exceeds two ticks, the CP
has, during some scan tick interval, exceeded the 96% utilization level. Note that
when comparing timer counts, the general-purpose timers are up-counters, while
RISC timers are down-counters.

Chapter 19. SDMA Channels and IDMA Emulation

Chapter 19
SDMA Channels and IDMA Emulation
The CPM controls two physical serial DMA (SDMA) channels on the MPC855T. Using
the two physical channels, the CP implements ten virtual SDMA channels, each dedicated
to a serial controller transmitter or receiver—two for the full-duplex SCC, and the
remaining eight for the SPI, I2C, and the two SMCs. The CPM also emulates two
general-purpose independent DMA (IDMA) channels for memory/memory and
peripheral/memory transfers using the two physical SDMA channels.

19.1 SDMA Channels
Data from the SCC, SMCs, SPI, and I2C can be routed to external memory (path 1) or the
internal dual-port RAM (path 2), as shown in Figure 19-1. On a path 1 access, the SDMA
channel must acquire both the U-bus and the external system bus. On a path 2 access, the
data transfer occurs only on the U-bus, independent of the external system bus unless the
SIU is configured in show-cycles mode. Thus, in normal operation, U-bus transfers occur
simultaneously with external system bus operations.

Figure 19-1. MPC855T SDMA Data Paths

SCC1 SMC1 SMC2 SPI I2C

System Bus
System
Interface

Unit
(SIU)

External
ROM

External
RAM

MPC8xx
Core

Dual-Port
RAM

Communications
Processor

(CP)
SDMA

2

1

Internal U-Bus

MPC855T User’s Manual

SDMA Channels

19.1.1 SDMA Transfers

Each SDMA channel can be programmed to output a 3-bit function code that identifies the
channel currently accessing memory. The SDMA channel can implement true little-endian,
modified little-endian, or big-endian byte ordering when accessing buffers. These features
are programmed in the receive and transmit function code registers associated with each
serial controller and within an IDMA channel’s BD; see Section 19.3.4, “IDMA Buffer
Descriptors (BD).”

If a bus error occurs when the SDMA conducts an access, the CP generates a unique
interrupt in the SDMA status register (SDSR). The interrupt service routine reads the
SDMA address register (SDAR) to determine the address that the bus error occurred on.
The individual channel that caused the bus error can be found by reading the Rx and Tx
internal data pointers from the protocol-specific parameter RAM of the serial controllers.
If an SDMA bus error occurs, all CPM activity ceases and the entire CPM must be reset in
the CPM command register (CPCR); see Section 18.5.3, “CP Command Register (CPCR).”

19.1.2 U-Bus Arbitration and the SDMA Channels

The SDMA channels, I-cache, D-cache, and SIU all contend for the U-bus as internal
masters with their relative priorities determined by an arbitration ID. The user can adjust
the SDMA bus arbitration priority, but the other internal masters have fixed arbitration IDs;
see Section 19.2.1, “SDMA Configuration Register (SDCR).” All 10 virtual SDMA
channels share the same arbitration ID, and thus have the same priority relative to the other
internal masters. See Table 19-1.

Table 19-1. U-Bus Arbitration IDs

Arbitration Level Unit

7 (highest priority) —

6 SDMA (SDCR[RAID]=0b00)

5 SDMA (SDCR[RAID]=0b01)

4 D-cache

3 I-cache

2 SDMA (SDCR[RAID]=0b10)

1 SDMA (SDCR[RAID]=0b11)

0 G2 core

Notes: DRAM refresh normally has a U-bus arbitration level of 0 (losing ties to the G2 core). However,
if four refresh periods expire without servicing, the arbitration level is promoted to 7.
An external request loses ties to an internal request or DRAM refresh request with the same arbitration
ID. For example, if SIUMCR[EARP] is 4, the external master has priority over the I-cache but not over
the D-cache.

Chapter 19. SDMA Channels and IDMA Emulation

SDMA Registers

Once an SDMA channel obtains the external system bus, it remains master for the whole
transaction—a byte, half-word, word or burst transfer—before relinquishing the bus. This
feature, in combination with the zero-clock arbitration overhead provided by the U-bus,
increases bus efficiency and lowers latency.

To minimize the latency associated with slower, character-oriented protocols, an SDMA
writes each character to memory as it arrives without waiting for the next character, and
always reads using 16-bit half-word transfers. A transfer may take multiple bus cycles if the
memory provides a less than 32-bit port size. An SDMA uses back-to-back bus cycles for
the entire transfer—4-word bursts, 32-bit reads, and 8-, 16-, or 32-bit writes—before
relinquishing the bus. For example, an SDMA channel reading a 32-bit word from a 16-bit
memory takes two consecutive bus cycles.

An SDMA steals cycles with no arbitration overhead unless an external device is bus
master. Figure 19-2 shows an SDMA stealing a cycle from an internal bus master.

Figure 19-2. SDMA U-Bus Arbitration (Cycle Steal)

19.2 SDMA Registers
All SDMA channels share one configuration register (SDCR), a status register (SDSR), a
mask register (SDMR), and a read-only, address register (SDAR). The configuration of
each serial controller also affects their dedicated SDMA channels’ behavior. The following
sub-sections describe the SDMA registers.

19.2.1 SDMA Configuration Register (SDCR)

The SDMA configuration register (SDCR) configures all 10 virtual SDMA channels. It
controls the channels’ U-bus priority level and freeze-signal (FRZ) behavior. It is always
read/write in supervisor mode, even though writing to the SDCR is not recommended
unless the CPM is disabled. This register is affected by HRESET but is not affected by
SRESET. Figure 19-3 shows the register format.

CLK

TS

TA

SDMA Internally
Requests the Bus

Other Cycle SDMA Cycle Other Cycle

MPC855T User’s Manual

SDMA Registers

Figure 19-3. SDMA Configuration Register (SDCR)

Table 19-2 describes the SDCR bit settings.

19.2.2 SDMA Status Register (SDSR)

Shared by all SDMA channels, the SDMA status register (SDSR) reports bus errors. When
the SDMA controller recognizes an event, it sets the corresponding event bit in the SDSR.
SDSR bits are cleared by writing ones; writing zeros has no effect. Figure 19-4 shows the
register format.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0000_0000_0000_0000

R/W R

Addr IMMR + 0x030

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — FRZ — FAID RAID

Reset 0000_0000_0000_0000

R/W R R/W R R/W R/W

Addr IMMR + 0x032

Table 19-2. SDCR Bit Settings

Bits Name Description

0–16 — Reserved. Should be cleared.

17 FRZ Freeze. Recognize or ignore the freeze signal. If configured to respond to the freeze signal, the SDMA
controller negates BR until freeze is negated or a reset occurs.
0 SDMA channels ignore the freeze signal.
1 SDMA channels respond to a freeze on the next bus cycle.

18–27 — Reserved. Should be cleared.

28–29 FAID FEC arbitration ID. Determines FEC arbitration priority for the U bus; 00 for typical applications.
00 Priority 6 (highest)
01 Priority 5
10 Priority 2
11 Priority 1 (lowest)

30–31 RAID RISC controller (CP) arbitration ID. Sets the SDMAs’ U-bus arbitration priority level. Should be
programmed to 0b01, priority level 5, for typical applications. (See Table 19-1 above.)
00 Priority level 6 (BR6).
01 Priority level 5 (BR5) (normal operation).
10 Priority level 2 (BR2).
11 Priority level 1 (BR1).

Chapter 19. SDMA Channels and IDMA Emulation

IDMA Emulation

This register is affected by HRESET and SRESET. Table 19-3 describes the SDSR bit
settings.

19.2.3 SDMA Mask Register (SDMR)

The read/write SDMA mask register (SDMR) has the same bit format as SDSR; see above
Figure 19-4. If a bit in the SDMR is set, the corresponding interrupt in the SDSR is enabled;
if the bit is cleared, the corresponding interrupt is masked. Reset clears SDMR. Its internal
address (IMMR offset) is 0x90C. This register is affected by HRESET and SRESET.

19.2.4 SDMA Address Register (SDAR)

The 32-bit, read-only SDMA address register (SDAR) holds the current system address
being accessed and is used to diagnose an SDMA bus error. SDAR is undefined at reset. Its
internal address (IMMR offset) is 0x904. This register is not affected by HRESET or
SRESET.

19.3 IDMA Emulation
The CPM can be configured to emulate two general-purpose independent DMA (IDMA)
channels using the two physical SDMA channels. In IDMA emulation mode, the user
specifies a memory/memory or peripheral/memory transfer as if using dedicated DMA
hardware.

IDMA uses two addressing modes—dual-address and single-address. In IDMA
dual-address transfers, data is read into internal storage, packed onto the bus, and then
written to the destination. Dual-address transfers can take several bus cycles depending on
the peripheral’s port size. In contrast, single-address (fly-by) IDMA bypasses internal
storage, transferring data directly between memory and a peripheral in a single bus cycle.
See Section 19.3.8, “IDMA Transfers—Dual-Address and Single-Address.”

Bit 0 1 2 3 4 5 6 7

Field SBER —

Reset 0000_0000

R/W R/W

Addr IMMR + 0x908

Figure 19-4. SDMA Status Register (SDSR)

Table 19-3. SDSR Field Descriptions

Bits Name Description

0 SBER SDMA channel bus error. Indicates an error caused the SDMA channel to terminate during a read or
write cycle. The SDMA bus error address can be retrieved from the SDMA address register (SDAR).

1–7 — Reserved

MPC855T User’s Manual

IDMA Emulation

The IDMA controller supports two buffer handling modes—auto-buffering, and
buffer-chaining. In buffer-chaining, an IDMA moves a connected series of BDs called a
chain without interruption. Auto-buffering allows a buffer chain to be repeatedly
transferred in a loop without user intervention. See Section 19.3.4.2, “Auto-Buffering and
Buffer-Chaining.”

Single-buffering is a special, low-latency IDMA transfer mode optimized for transferring
one buffer from a peripheral to memory. This low-overhead mode uses single-address
(fly-by) burst transfers. Note that single-buffering is available only on IDMA1. This mode
also remaps the IDMA1 channel parameter RAM. See Section 19.3.9, “Single-Buffer
Mode on IDMA1—A Special Case.”

Note that DREQ0 is the DMA request for IDMA1, and DREQ1 is the DMA request for
IDMA2.

19.3.1 IDMA Features
The following is a list of IDMA’s main features:

• Two independent, fully programmable DMA channels

• Dual-address or single-address transfers with 32-bit address and data capability

• 32-bit byte transfer counters allow for 4-Gbyte buffers

• Byte, half-word, word, or 4-word burst quantities for transfers

• 32-bit, byte-addressable buffer pointers auto-increment for memory accesses and
remain constant for peripheral accesses

• Byte-packing and unpacking algorithms use the absolute minimum number of bus
cycles required during dual-address transfers

• All bus-termination modes, such as TA, TEA, and BI, are supported

• DMA handshaking for cycle-steal and burst transfers

• Two buffer handling modes—auto-buffering and buffer-chaining

• Optimized, low-overhead single-buffer mode for peripheral-to-memory transfers on
IDMA1

• The MPC855T’s chip-select and wait-state generation logic can be used with
IDMA.

19.3.2 IDMA Parameter RAM

Both IDMA channels have a dedicated portion of dual-port RAM for channel parameters.
Table 19-4 shows the memory map. Note that in the special single-buffer mode, the IDMA1
parameter RAM map changes; see Section 19.3.9, “Single-Buffer Mode on IDMA1—A
Special Case.”

Chapter 19. SDMA Channels and IDMA Emulation

IDMA Emulation

19.3.3 IDMA Registers

Each IDMA channel has a DMA channel mode register (DCMR), an IDMA status register
(IDSR) and corresponding mask register (IDMR) that contain global channel parameters.

19.3.3.1 DMA Channel Mode Registers (DCMR)

Located in each IDMA’s parameter RAM, the DMA channel mode registers (DCMR)
configure the peripheral port size, the source and destination type of the transfer, and the
address mode (cycle mode) of the IDMA channels. Figure 19-5 shows the register format.

Table 19-4. IDMA Parameter RAM Memory Map

 Offset 1

1 IDMA1 base = IMMR + 0x3CC0
IDMA2 base = IMMR + 0x3DC0

Name Width Description

0x00 IBASE Hword IDMA BD base address. Defines the base address of the area in dual-port RAM
set aside for this channel’s BD table. It is an offset from the beginning of dual-port
RAM. Note that IBASE should be burst-aligned (divisible by 16).

0x02 DCMR Hword DMA channel mode register. See Section 19.3.3.1, “DMA Channel Mode Registers
(DCMR).”

0x04 SAPR Word Source data pointer (internal-use). Points to the next source byte to be read.The
CP initializes SAPR to the BD’s source buffer pointer and increments it
automatically if the source is memory (DCMR[S/D] = 0bx0).

0x08 DAPR Word Destination data pointer (internal-use). Points to the next destination byte to be
written. The CP initializes DAPR to the BD’s destination buffer pointer, and
increments it automatically if the destination is memory (DCMR[S/D] = 0b0x).

0x0C IBPTR Hword Current IDMA BD pointer. If the IDMA channel is idle, IBPTR points to the next valid
BD in the table. After a reset, or when the end (wrap bit) of the BD table is reached,
the CP wraps IBPTR back to IBASE.

0x0E WRITE_SP Hword Internal-use

0x10 S_BYTE_C Word Internal source byte count

0x14 D_BYTE_C Word Internal destination byte count

0x18 S_STATE Word Internal state

0x1C ITEMP 4 Words Temp data storage

0x2C SR_MEM Word Data storage for peripheral write

0x30 READ_SP Hword Internal-use

0x32 — Hword Difference between source and destination residue

0x34 — Hword Temp storage address pointer

0x36 — Hword SR_MEM byte count

0x38 D_STATE Word Reserved. Internal state used by CP

• Notes: Boldfaced items must be initialized by the user before enabling an IDMA channel. The remaining
parameters are used by the CP only.

MPC855T User’s Manual

IDMA Emulation

Table 19-5 describes DCMR fields.

19.3.3.2 IDMA Status Registers (IDSR1 and IDSR2)

The IDMA status registers (IDSR1 and IDSR2) report transfer events. When the IDMA
controller recognizes an event, it sets the corresponding event bit in the IDSR. IDSR bits
are cleared by writing ones; writing zeros has no effect. Figure 19-6 shows the register
format.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — SIZE S/D SC

Reset 0 0 0 0

R/W R R/W R/W R/W

Addr IDMAx Base + 0x02

Figure 19-5. DMA Channel Mode Register (DCMR)

Table 19-5. DCMR Field Descriptions

Bits Name Description

0–10 — Reserved. Should be cleared.

11–12 SIZE Peripheral port size. Determines the operand transfer size per DREQx assertion for
peripheral/memory transfers, but not for memory/memory transfers. (For memory/memory transfers
the size is determined only by address alignment and the amount of data remaining to be
transferred.)
00 Word length.
01 Half-word length.
10 Byte length.
11 Reserved.
Note that the memory port size is transparent to the IDMA. The SIU emulates a 32-bit port size
regardless of the actual memory port size.

13–14 S/D Source/destination. Defines the source and destination—memory or peripheral.
00 Read from memory; write to memory.
01 Read from peripheral; write to memory.
10 Read from memory; write to peripheral.
11 Reserved.
Note that for memory/memory accesses, the CP automatically increments the address and does
not use SDACKn.

15 SC Single-cycle. Selects single- or dual-cycle mode.
0 Dual-cycle (dual-address) mode.
1 Single-cycle (single-address) mode.

Chapter 19. SDMA Channels and IDMA Emulation

IDMA Emulation

This registers are affected by HRESET and SRESET. Table 19-6 describes the IDSR fields.

19.3.3.3 IDMA Mask Registers (IDMR1 and IDMR2)

The read/write IDMA mask registers (IDMR1 and IDMR2) have the same format as IDSR,
shown in Figure 19-6. If an IDMR bit is set, the corresponding interrupt is enabled in
IDSRn; if it is cleared, the corresponding interrupt is masked. Reset clears IDMR.
IDMR1’s internal address (IMMR offset) is 0x914; IDMR2’s is 0x91C. These registers are
affected by HRESET and SRESET.

19.3.4 IDMA Buffer Descriptors (BD)
An IDMA buffer descriptor contains the specific transfer information needed for its buffer.
IDMA BDs contain a status-and-control field, the function code registers, the buffer length,
and the source and destination buffer pointers. The BDs are grouped together in contiguous
dual-port RAM to form a standard BD table; see Figure 19-7.

Bit 0 1 2 3 4 5 6 7

Field — AD DONE OB

Reset 0 0 0 0

R/W R R/W R/W R/W

Addr IMMR + 0x910 (IDSR1); 0x918 (IDSR2)

Figure 19-6. IDMA Status Registers (IDSR1/IDSR2)

Table 19-6. IDSR1/IDSR2 Field Descriptions

Bits Name Description

0–4 — Reserved

5 AD Auxiliary done. Set after processing a BD that has its I bit (interrupt) set.

6 DONE Buffer chain done. Indicates IDMA transfer termination. Set after servicing a BD that has its L bit (last)
set, regardless of the I bit setting.

7 OB Out of buffers. Indicates that the IDMA channel has no valid BDs left in the BD table.

MPC855T User’s Manual

IDMA Emulation

Figure 19-7. IDMAx Channel’s BD Table

An IDMA descriptor breaks down as follows:

• The half word at (offset + 0) is the status-and-control field.

• The byte at (offset + 2) is the destination function code register (DFCR). See
Section 19.3.4.1, “Function Code Registers—SFCR and DFCR.”

• The byte at (offset + 3) is the source function code register (SFCR). See
Section 19.3.4.1, “Function Code Registers—SFCR and DFCR.”

• The word at (offset + 4) is the buffer length, containing the number of bytes for
transfer. It must be greater than zero.

• The word at (offset + 8) points to the beginning of the source buffer in internal or
external memory.

— When the source is a peripheral, this field is ignored in single-address mode. In
dual-address mode, this field contains the peripheral address.

• The word at (offset + 0xC) points to the beginning of the destination buffer in
internal or external memory.

— When the destination is a peripheral, this field is ignored in single-address mode.
In dual-address mode, this field contains the peripheral address.

Figure 19-8 shows the descriptor structure.

IDMAx BD Base
Address (IBASE)

Source Device or
Buffer 0

Source Device or
Buffer 1

Source Device or
Buffer 2

Source Device or
Buffer n

BD 0
Destination Device or

Buffer 0
BD 1

BD 2

BD n

Destination Device or
Buffer 1

Destination Device or
Buffer 2

Destination Device or
Buffer n

•
•
•

•••
•••

Chapter 19. SDMA Channels and IDMA Emulation

IDMA Emulation

Table 19-7 describes an IDMA descriptor’s status-and-control field.

Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0x00 V — W I L — CM — — — — — — — — —

0x02 DFCR SFCR

0x04 Buffer Length

0x06

0x08 Source Buffer Pointer

0x0A

0x0C Destination Buffer Pointer

0x0E

Figure 19-8. IDMA Buffer Descriptor Structure

Table 19-7. IDMA BD Status and Control Bits

Bits Name Description

0 V Valid. Ready for processing.
0 Invalid. Not ready for transfer. The user can write to this descriptor and its buffer. When

buffer-chaining, the CP clears the V bit after the buffer has been transferred.
1 Valid for transfer. The user should not write to this descriptor or its buffer once the V bit is set.
Note: When an error condition is detected, the CP clears the V bit.

1 — Reserved

2 W Wrap. Marks the end of the BD table.
0 Not the last descriptor in the BD table.
1 Last descriptor in the BD table. After this descriptor has been processed, the CP wraps the current
BD pointer (IBPTR) back to the top of the BD table (IBASE).

3 I Interrupt. Enable the maskable auxiliary-done (AD) interrupt.
0 IDSR[AD] is not flagged after this BD is processed.
1 IDSR[AD] is flagged after this BD is processed.

4 L Last. Marks the end of a buffer chain and enables the maskable DONE interrupt.
0 Not the last BD of a buffer chain.
1 Last BD of a buffer chain. When the transfer count is exhausted, IDSR[DONE] is flagged,

regardless of the I bit.

5 — Reserved

6 CM Continuous mode. Selects buffer-chaining or auto-buffering; see Section 19.3.4.2, “Auto-Buffering
and Buffer-Chaining.”
0 Normal mode (buffer-chaining). The CP clears the V bit after this descriptor is processed.
1 Continuous mode (auto-buffering). The CP does not clear the V bit after this descriptor is

processed.

7–15 — Reserved

MPC855T User’s Manual

IDMA Emulation

19.3.4.1 Function Code Registers—SFCR and DFCR

The user programs an IDMA channel’s source and destination function code registers
(SFCR and DFCR) with separate 3-bit function codes to tag the channel’s source and
destination accesses. The function code registers also determine the byte-ordering
convention. Figure 19-9 shows the register format.

Table 19-8 describes the function code register bit settings.

19.3.4.2 Auto-Buffering and Buffer-Chaining

Buffer-chaining is designed to move large amounts of noncontiguous blocks of data. Even
though each block needs a separate BD, the BDs can be chained together and serviced as a
group. Auto-buffering is used to repeatedly service a BD chain. Note that a chain can range
from one BD to the whole BD table in length.

Setting the CM bit (continuous mode) in a BD’s status-and-control field enables
auto-buffering; clearing the CM bit enables buffer-chaining (normal mode). The CM bit
must be explicitly programmed for each BD.

When auto-buffering, the descriptor’s V bit will not be cleared after CPM processing—the
BD remains valid for immediate transfer as the current BD pointer cycles through the table.
When buffer-chaining, the CPM invalidates the current BD after processing to allow the
user (the core) to safely manipulate the contents of the buffer and modify its BD. Note that
the V bit behavior is the only difference between auto-buffering and
buffer-chaining—auto-buffering can be thought of as continuous buffer-chaining. One use

Bit 0 1 2 3 4 5 6 7

Field — BO AT[1–3]

Addr DFCR is at offset 0x02. SFCR is at offset 0x03.

Figure 19-9. Function Code Registers—SFCR and DFCR

Table 19-8. SFCR and DFCR Field Descriptions

Bits Name Description

0–2 — Reserved. Should be cleared.

3–4 BO Byte ordering. Set BO to select the required byte ordering for the buffer. If BO is changed on-the-fly,
it takes effect at the beginning of the next frame (Ethernet, HDLC, and transparent) or at the
beginning of the next BD. See Appendix A, “Byte Ordering.”
00 Reserved
01 Modified little-endian.
1x Big-endian or true little-endian.

5–7 AT[1–3] Address type 1–3. Holds the function code for an IDMA channel memory access. Note AT[0] is driven
high to identify the access as a DMA type. Note that for the last IDMA cycle, the terminal count code
AT[0–3] = 0xF replaces the user-defined function code signaling the end of transfer to the peripheral.

Chapter 19. SDMA Channels and IDMA Emulation

IDMA Emulation

of auto-buffering is for continuous monitoring of an external instrument, such as an A/D
converter.

Set the L bit (last) in the status-and-control field to mark the last BD of a chain. When the
CPM completes a chain, it flags IDSR[DONE], triggering a maskable interrupt to the core.
The I bit (individual BD interrupt) behavior is independent of the L bit—the user may
disable individual BD interrupts (and/or mask them) for multi-buffer chains.

19.3.5 IDMA CP Commands
The core issues the following IDMA commands to the CP:

• INIT IDMA—The CPM resets the IDMA internal state. The current BD pointer is
reset to the top of the BD table (IBASE).

• STOP IDMA—The CP terminates current IDMA transfers. IDSR[DONE] is set, and
the current BD is closed. If the destination is memory, the IDMA internal storage
buffer is transferred before termination, regardless of the source. If the destination
is a peripheral, the internal storage buffer is flushed and the transfer terminated
without writing to the peripheral. At the next request, the next BD in the table is
processed.

See Section 18.5.3, “CP Command Register (CPCR),” for the mechanics of issuing CP
commands.

19.3.6 IDMA Channel Operation

An IDMA channel operation consists of the following events—IDMA channel
initialization, data transfer, and block termination. In the initialization phase, the core loads
the global IDMA channel information into the IDMA parameter RAM, builds the IDMA
BD table, and starts the channel. In the transfer phase, the CPM accepts a transfer request,
reads the transfer-specific information from the current BD into the IDMA parameter
RAM, programs the physical SDMA channel, and provides addressing and bus control. The
termination phase begins when the transfer byte count reaches zero (or a bus error occurs).
The CPM then interrupts the core (unless masked), and the current BD pointer moves to the
next BD in the table.

To begin a block transfer, initialize the IDMA registers, and build the IDMA BDs with
information describing the data block, device type, and other special control options. See
Section 19.3.2, “IDMA Parameter RAM,” and Section 19.3.5, “IDMA CP Commands.”

19.3.6.1 Activating an IDMA Channel

IDMA requests are generated externally via the DREQ signals. (There is no mechanism for
generating internal IDMA requests.) After initializing the IDMA parameter RAM and the
BD table, enable the DREQ signal by setting the corresponding PCSO[DREQ] of the
port C special options register; see Section 33.4.2.4, “Port C Special Options Register

MPC855T User’s Manual

IDMA Emulation

(PCSO).” Enabling the DREQ signal effectively activates the corresponding IDMA
channel. Requests for IDMA1 have priority over IDMA2.

19.3.6.2 Suspending an IDMA Channel
Disabling the corresponding DREQ signal by clearing the corresponding PCSO[DREQ]
suspends the IDMA channel transfer. A transfer in progress will be completed before the
bus is released. No further bus cycles are started while PCSO[DREQ] remains cleared.
During channel suspension, the core can access IDMA internal registers to determine the
status of the channel or to alter parameters. If PCSO[DREQ] is set again while a transfer
request is pending, the channel arbitrates for the bus and continues normal operation.

19.3.7IDMA Interface Signals—DREQ and SDACK
Each IDMA channel (IDMA1 and IDMA2) has two dedicated control signals—DMA
request (DREQ) and SDMA acknowledge (SDACK). DREQ0 and SDACK1 are dedicated
to IDMA1, while DREQ1 and SDACK2 are for IDMA2.

DREQ and SDACK are the handshake signals between the MPC855T and an external
peripheral requesting service. A peripheral requests IDMA service directly to the CPM by
asserting DREQ. When the CPM begins the transfer, it acknowledges the peripheral by
asserting SDACK. A requesting peripheral can either be the source or the destination of an
IDMA transfer. Note that SDACK is not used for memory/memory transfers.

The following subsections discuss the interface signals used for requesting
memory/memory and peripheral/memory transfers.

19.3.7.1 IDMA Requests for Memory/Memory Transfers

Because there is no internal mechanism, an externally-connected DREQ must still be used
to generate IDMA memory/memory transfer requests. This can be done using a
general-purpose I/O line or a general-purpose timer output.

To use a general-purpose I/O line, follow these steps:

1. Externally connect a general-purpose output line to DREQ.
2. Set RCCR[DRnM] (level-sensitive).
3. Drive the output low when the request generation should begin.

The IDMA controller continuously requests the bus until the current buffer chain is
completely transferred. The transfer terminates with an out-of-buffers error (IDSR[OB]).

To use a general-purpose timer output (TOUTx), follow these steps:

1. Externally connect a TOUTx to DREQ.

2. Clear RCCR[DRnM] (edge-sensitive).

3. Program the timer period to pace the IDMA requests (and thus bus utilization).

Chapter 19. SDMA Channels and IDMA Emulation

IDMA Emulation

An interrupt handler can service the IDSR[DONE] interrupt and suspend the channel;
otherwise, the transfer terminates with an out-of-buffers error (IDSR[OB]).

19.3.7.2 IDMA Requests for Peripheral/Memory Transfers

Once an IDMA channel has been activated, an external peripheral requests a transfer using
DREQ. The user programs the RISC controller (the CP) configuration register (RCCR) to
make IDMA requests either edge- or level-sensitive. The RCCR settings also determine the
priority of DREQ relative to the SCC. See Section 18.5.1, “RISC Controller Configuration
Register (RCCR).” Since DREQ0 and DREQ1 are multiplexed through PC15 and PC14
respectively, the port C pin assignment register and direction register must be configured as
well; see Section 33.4.2, “Port C Registers.”

Level-sensitive mode maximizes IDMA channel bandwidth for peripherals requiring high
transfer rates. For external peripherals that generate a pulsed transfer signal for each data
operand, edge-sensitive requests should be used.

19.3.7.2.1 Level-Sensitive Requests

Setting RCCR[DRnM] makes the corresponding IDMA channel level-sensitive to requests.
DREQ is sampled at rising edge of the clock. The peripheral requests service by asserting
DREQ and leaving it asserted as long as it needs service.

Each time the IDMA controller issues a bus cycle either to read or write the peripheral, it
asserts SDACK to acknowledge the original transfer request on DREQ. The IDMA channel
continues moving data in back-to-back DMA cycles until DREQ is negated. To ensure the
correct number of DMA transfers are performed, the peripheral must negate DREQ while
the IDMA is acknowledging the last data move, that is, while SDACK is asserted. DREQ
is sampled on the same rising edge on which TA is sampled to terminate the current cycle.

19.3.7.2.2 Edge-Sensitive Requests

Clearing RCCR[DRnM] makes the corresponding IDMA channel edge-sensitive to
requests. The edge sensitivity is further qualified to detect either any edge or falling edges
only as programmed in PCINT[EDM15] and PCINT[EDM14] for DREQ0 and DREQ1,
respectively; see Section Figure 33-15., “Port C Interrupt Control Register (PCINT).”

In edge-sensitive mode, an IDMA channel moves one data operand per request. DREQ is
sampled at each rising edge of the clock. When IDMA detects a request on DREQ, the
request is considered pending and remains pending until it is processed. Subsequent
requests on DREQ are ignored until the pending request is acknowledged.

19.3.8 IDMA Transfers—Dual-Address and Single-Address

Once an IDMA channel successfully arbitrates for the bus, it begins the transfer. An IDMA
channel has the same bus cycle timing as the other internal masters.

MPC855T User’s Manual

IDMA Emulation

The IDMA controller supports both dual- and single-address transfers. The dual-address
transfer consists of a source read and a destination write—a memory/memory or
memory/peripheral transfer. A single-address transfer, also called fly-by, consists of one
external read or write bus cycle—a memory/peripheral transfer.

19.3.8.1 Dual-Address (Dual-Cycle) Transfer

The IDMA channels can operate in a dual-address transfer mode in which data is first read
using the source pointer and placed in internal storage. The data operand is then packed
onto the bus and written to the address given by the destination pointer. The read and write
transfers can take several bus cycles each because of differences in the source and
destination operand sizes. The dual-address read and write cycles are described below.

• Dual-address source read—SAPR drives the address bus, SFCR drives the address
type, and DCMR drives the size control. Data is read from the memory or peripheral
and placed in internal storage at the end of the bus cycle. For memory reads, SAPR
is automatically incremented by 1, 2, 4, or 16, depending on the address and size
information specified by DCMR. See Section 19.3.2, “IDMA Parameter RAM,” and
Section 19.3.3.1, “DMA Channel Mode Registers (DCMR).”

• Dual-address destination write—The data in internal storage is written to the
peripheral or memory governed by the address in DAPR, the address type in DFCR,
and the size in DCMR. For memory writes, DAPR is automatically incremented by
1, 2, 4, or 16 according to DCMR. The byte count is decremented by the number of
bytes transferred. When the byte count reaches zero and the transfer reports no
errors, IDSR[DONE] is flagged, which triggers a maskable interrupt. See
Section 19.3.2, “IDMA Parameter RAM,” and Section 19.3.3, “IDMA Registers.”

Additionally, for peripheral/memory dual-address transfers, the SDACK signal asserts
during the peripheral access. For dual-address transfers, microcode performs byte-packing
using a 16-byte buffer in the dual-port RAM. Regardless of the source size, destination size,
source starting address, or destination starting address, IDMA uses the most efficient
packing algorithm possible to perform the transfer in the least number of bus cycles.

19.3.8.2 Single-Address (Single-Cycle) Transfer (Fly-By)

Each IDMA channel can be independently programmed to provide single-address, or
fly-by, transfers. The IDMA channel bypasses or flies-by internal storage since the transfer
occurs directly between a device and memory. DCMR[S/D] controls the direction of the
transfer. If DCMR[S/D] = 0b01, the IDMA controller handshakes with the peripheral for
the source data and writes to the destination memory address provided. If DCMR[S/D] =
0b10, the IDMA controller handshakes with the destination peripheral and reads from the
source memory address provided. The single-address read and write cycles are described
below.

Chapter 19. SDMA Channels and IDMA Emulation

IDMA Emulation

• Single-address memory-read/peripheral-write—The memory address in SAPR, the
address type in SFCR, and the size in DCMR provide the data and control signals to
the data bus. This bus cycle operates like a normal read bus cycle. The SAPR is
incremented by 1, 2, or 4, according to the programming of DCMR[SIZE]. The
destination device is controlled by the IDMA handshake signals DREQ and
SDACK. Asserting SDACK provides write control to the destination device.
Figure 19-10 and Figure 19-11 show the transaction timing diagrams for
asynchronous and synchronous single-address peripheral writes. See Section 19.3.7,
“IDMA Interface Signals—DREQ and SDACK,” for more on IDMA handshake
signals.

Figure 19-10. SDACK Timing Diagram: Single-Address
Peripheral Write, Externally-Generated TA

CLKOUT

Address

TS

R/W

Data

TA

SDACK

THOLD

TPHOLD

TDELAY

T3 T1 T3 T1 T3 T1 T3 T1 T3 T1 T3

TSETUP

MPC855T User’s Manual

IDMA Emulation

Figure 19-11. SDACK Timing Diagram: Single-Address
Peripheral Write, Internally-Generated TA

• Single-address memory-write/peripheral-read—The source device is controlled by
the IDMA handshake signals (DREQ and SDACK). When the source device
requests service from the IDMA channel, IDMA asserts SDACK to allow the source
device to drive data onto the data bus. The data is written to the memory address in
DAPR, the address type in DFCR, and the size in DCMR. The data bus is
three-stated for this write cycle. The DAPR is incremented by 1, 2, or 4, according
to the programming of DCMR[SIZE]. See Section 19.3.7, “IDMA Interface
Signals—DREQ and SDACK,” for more on IDMA handshake signals.

CLKOUT

Address

TS

R/W

Data

TA

SDACK

THOLD

TPHOLD

TDELAY

T3 T1 T3 T1 T3 T1 T3 T1 T3 T1 T3

TSETUP

Chapter 19. SDMA Channels and IDMA Emulation

IDMA Emulation

Figure 19-12. SDACK Timing Diagram: Single-Address
Peripheral Read, Internally-Generated TA

19.3.9 Single-Buffer Mode on IDMA1—A Special Case

For single-buffer transfers from a peripheral to memory of up to 64 bytes per request,
IDMA1 offers a reduced-latency solution using single-address bursts. The memory
destination address, the buffer length (byte count), and the channel mode register are stored
directly in the IDMA parameter RAM instead of in a formal BD. Table 19-9 shows the
single-buffer mode IDMA1 parameter RAM map.

CLKOUT

Address

TS

R/W

Data

TA

SDACK

T3 T1 T3 T1 T3 T1 T3 T1 T3 T1 T3

THOLDTDELAY

MPC855T User’s Manual

IDMA Emulation

Single-buffer mode is selected by setting RCCR[EIE], the CPM external interrupt enable
bit; see Section 18.5.1, “RISC Controller Configuration Register (RCCR).” Note that the
CPM external interrupt always refers to a special request to the CPM, not to the core.

19.3.9.1 IDMA1 Channel Mode Register (DCMR) (Single-Buffer Mode)

DCMR contains the channel’s function code and byte-order convention, previously held in
function code registers. DCMR also holds the channel start bit (enable) and burst transfer
information. Figure 19-13 shows the DCMR format.

Table 19-10 describes the DCMR bit settings for IDMA1 in single-buffer mode.

Table 19-9. Single-Buffer Mode IDMA1 Parameter RAM Map

Offset 1

1 From IDMA1 base = IMMR + 0x3CC0

Name Width Description

0x00 BAPR Word Buffer pointer. Contains the destination buffer memory address. BAPR should be
burst-aligned. It is automatically incremented by 16 bytes after each burst.

0x04 BCR Word Byte count register. Contains the buffer length in bytes. BCR is decremented by 16 after
each burst. BCR must be a multiple of 16. The IDMA channel will terminate the block
transfer when BCR reaches zero.

0x08 DCMR Word DMA channel mode register.

0x0C–0x3F — — Reserved.

Note: Parameters should not be modified while DMA is active.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field 1 — BO AT[1–3] STR — BPR

Reset 0000_0000_0000_0000

R/W R/W

Addr IDMA1 Base + 0x08

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Reset 0000_0000_0000_0000

R/W R/W

Addr IDMA1 Base + 0x0A

Figure 19-13. IDMA Channel Mode Register (DCMR) (Single-Buffer Mode)

Table 19-10. DCMR Field Descriptions (Single-Buffer Mode)

Bits Name Description

0 — Must be set.

1–2 — Reserved. Should be cleared.

Chapter 19. SDMA Channels and IDMA Emulation

IDMA Emulation

19.3.9.2 IDMA1 Status Register (IDSR1) (Single-Buffer Mode)

IDSR1 in single-buffer mode behaves the same way as defined in Section 19.3.3.2, “IDMA
Status Registers (IDSR1 and IDSR2).” The only relevant event bit, however, is DONE,
which is set when the byte count in BCR reaches zero. Figure 19-14 shows the register
format.

19.3.9.3 IDMA1 Mask Register (IDMR1) (Single-Buffer Mode)

IDMR1 in single-buffer mode behaves the same way as defined above; see
Section 19.3.3.3, “IDMA Mask Registers (IDMR1 and IDMR2).” Figure 19-14 above
shows the mask register’s format in single-buffer mode. IDMR1’s internal address (IMMR
offset) is 0x914.

19.3.9.4 Burst Timing (Single-Buffer Mode)

A typical single-address burst timing when IDMA1 is in single-buffer mode, is illustrated
in Figure 19-15. The peripheral asserts DREQ0 and waits for SDACK1 to initiate a burst
transfer to memory. The peripheral must negate DREQ0 before the last beat of the transfer;
otherwise, IDMA assumes that another DMA request is pending—DCMR[STR] will not

3–4 BO See corresponding description in Table 19-8 above.

5–7 AT[1–3] See corresponding description in Table 19-8 above.

8 STR Start. Enables the IDMA channel. Cleared automatically upon completion of the transfer request.
0 Disable IDMA channel.
1 Enable IDMA channel. Set STR after programming BAPR and BCR.

9–13 — Reserved. Should be cleared.

14–15 BPR Bursts per request. Determines how many bursts will be initiated for each request.
00 One burst per request (16 bytes).
01 Two bursts per request (32 bytes).
10 Reserved
11 Four bursts per request (64 bytes).

16–31 — Reserved. Should be cleared.

Bits 0 1 2 3 4 5 6 7

Field — DONE —

Reset 0000_0000_0000_0000

R/W R/W

Addr IMMR + 0x910

Figure 19-14. IDMA1 Status Register (IDSR1) (Single-Buffer Mode)

Table 19-10. DCMR Field Descriptions (Single-Buffer Mode) (continued)

Bits Name Description

MPC855T User’s Manual

IDMA Emulation

be cleared—and immediately initiates another transfer. If no buffer is available when this
extra transfer begins, erratic operation occurs.

Figure 19-15. Single-Address IDMA1 Burst Timing (Single-Buffer Mode)

19.3.10External Recognition of an IDMA Transfer
The following are ways to externally determine if IDMA is executing a bus cycle:

• Monitor the AT signals of the SDMA channels for the user-defined function code.
(AT0 is always high for a DMA access.)

• Monitor SDACK, which shows accesses to the peripheral. SDACK activates on
either the source or destination bus cycles, depending on DCMR[S/D]. Note that if
Ethernet is running, this method does not work since SCC in Ethernet mode also
toggle SDACK for SDMA transfers.

CLKOUT

GCLK1

A[0:31]

TS

R/W

D[0:31]

TA

CS1 (RAS)

BS[0:3] (CAS[0:3])

Column 1Row Column 2 Column 3 Column 4

BDIP

SDACK1

DREQ0

Chapter 19. SDMA Channels and IDMA Emulation

IDMA Emulation

19.3.11Interrupts During an IDMA Bus Transfer

The MPC855T supports a synchronous bus structure with provisions allowing a bus master
to detect and respond to errors during a bus cycle. An IDMA channel recognizes the same
bus interrupt sources that the core recognizes—reset and transfer error acknowledge
(TEA).

• Reset—On an external reset, an IDMA immediately aborts channel operation,
returns to the idle state, and clears the IDSR. If a bus cycle is in progress, the cycle
is terminated, the control and address/data pins are three-stated, and the bus
ownership is released. Program control passes to the handler at the system reset
interrupt vector (0x00100).

• Transfer error acknowledge (TEA)—When a fatal error occurs during an IDMA bus
cycle, TEA is used to abort the cycle and systematically terminate the channel’s
operation. The IDMA terminates the current bus cycle, flags an error in SDSR and
interrupts the core if not masked by SDMR. The IDMA waits for the CPM to reset
before starting any new bus cycles. Note that data read from the source into internal
storage is lost. Program control passes to the handler at the machine check interrupt
vector (0x00200).

The machine check and system reset interrupts are described in Chapter 6, “Exceptions.”

Note that the source or destination device under IDMA handshake control for
single-address transfers may need to monitor TEA to detect a bus exception for the current
bus cycle. TEA terminates the cycle immediately and negates SDACK, which is used to
control the transfer to or from the device.

MPC855T User’s Manual

IDMA Emulation

Chapter 20. Serial Interface

Chapter 20
Serial Interface
The physical interface to the SCC and SMCs is implemented in the serial interface (SI). The
SI allows each individual SCC and SMC to be connected externally either through a
time-division multiplexed (TDM) interface or through dedicated pins in a non-multiplexed
serial interface (NMSI).

When the SCC or SMC is configured to use the NMSI, the SI provides flexible clocking
from a bank of clocks, including external clock pins and internal baud rate generators
(BRGs). See Section 20.3, “NMSI Configuration,” and Section 20.4, “Baud Rate
Generators (BRGs).”

Connecting the SCC and SMCs to the multiplexed (TDMa) interface is accomplished
through a set of TDMa pins and a time-slot assigner (TSA). The user programs the TSA to
route data from the TDM data stream to and from the SCC and SMCs. The TSA also
provides external strobe signals (L1ST1–4), which can be used to enable external devices,
such as codecs, to insert or take data from the TDM data stream. An external framer
(providing receive and transmit data, clocks, and synchronization signals) is required to
interface to the TDM channel. Common examples of TDM channels are T1 lines in the U.S.
and Japan and CEPT (E1) lines in Europe.

If the TSA is not required for routing data to and from the SCC and SMCs, it can still be
used to generate complex waveforms on its four strobe output pins (L1ST[1–4). For
example, the user can program the TSA to implement stepper motor control signals of
variable duty cycle and period.

Figure 20-1 shows the SI block diagram.

MPC855T User’s Manual

SI Features

Figure 20-1. MPC855T SI Block Diagram

20.1 SI Features
The TSA’s main features are as follows:

• Ability to connect the TDM channel as follows:

— T1 or CEPT line

— Pulse code modulation highway (PCM)

Time-Slot

Assigner

R
 c

lo
ck

s

T
 c

lo
ck

s

R
 c

lo
ck

s

T
 c

lo
ck

s

R
 s

yn
c

T
 s

yn
c

TDM a

PinsStrobes

U-Bus

Route
SI RAM

Tx / Rx
RAM
Control

Mode

Register

TDM a

T
x/

R
x

T
x/

R
x

Command

Register
Status

Register

Clock
Route

MUX

SMC1

Pins

SMC1

Non-multiplexed Serial Interface (NMSI)

MUX

SMC2

Pins

SMC2

MUX

SCC1

Pins

SCC1

Chapter 20. Serial Interface

The Time-Slot Assigner (TSA)

— User-defined interfaces

• Independent Tx and Rx routing paths programmed in the SI RAM

• Independent Tx and Rx frame syncs

• Independent Tx and Rx clocks

• Selection of rising/falling clock edges for the frame sync and data bits

• Supports 1× and 2× input clocks (1 or 2 clocks per data bit)

• Selectable delay (0–3 bits) between frame sync and frame start

• Four programmable strobe outputs and two (1x) clock output pins

• Bit or byte resolution in routing, masking, and strobe selection

• Supports frames up to 8,192 bits long

• Internal routing and strobe selection can be programmed dynamically.

• Supports automatic echo and loopback modes for the TDM channel

The NMSI is discussed in Section 20.3, “NMSI Configuration.” Its main features are as
follows:

• Each SCC and SMC can be programmed independently to work with its own set of
non-multiplexed signals

• Each SCC can have its own set of modem control signals

• Each SMC can have its own set of four signals

• Each SCC and SMC can derive clocks externally from a bank of eight clock signals
or a bank of four baud-rate generators

20.2 The Time-Slot Assigner (TSA)
The time-slot assigner (TSA) implements both internal route selection and time-division
multiplexing (TDM) for multiplexed serial channels. The TSA supports the serial bus rate
and format for most standard TDM buses, including the T1 and CEPT highways, and pulse
code modulation (PCM) highway.

TSA programming is independent of the protocol used by the SCC or SMC. The SCC and
SMCs can be programmed for any synchronous protocol without affecting TSA
programming. The TSA simply routes programmed portions of the received data frame
from the TDM pins to the target SCC and SMCs, while the target SCC or SMC handles the
received data in the actual protocol.

In its simplest mode, the TSA identifies both Rx and Tx frames using one sync pulse and a
single clock signal provided by the user externally. This mode can be enhanced to allow
independent routing of Tx and Rx data on the TDM channel. The user defines the length of
a time slot, which need not be limited to 8 bits or even to a single contiguous position within
the frame. For more flexibility, the user can also provide separate Rx and Tx syncs as well
as independent clocks. Figure 20-2 shows example TSA configurations ranging from the
simplest to the most complex.

MPC855T User’s Manual

The Time-Slot Assigner (TSA)

TDM Tx

TDM Rx

1 TDM Clk

1 TDM Sync

Slot 3

Slot 3

SCC2

Slot n

Slot n

SMC1

SMC1SCC2

TDMTSA

Simplest TDM Example

TDM Tx

TDM Rx

1 TDM Clk

1 TDM Sync

Slot 3 Slot n

SMC1SCC2

TDMTSA

More Complex TDM Example – Unique Routing

Slot 1

SCC2

Slot 2

SMC1

TDM Tx

TDM Rx

1 TDM Clk

1 TDM Sync

SMC1SCC2

TDMTSA

Even More Complex TDM Example – Multiple Time-Slots per Channel with Varying Sizes of Tim

SCC2 SMC1 SCC2

SCC2
NOTE: The two shaded areas of SCC2 Rx are received as one high-speed data stream by the S

and stored together in the same data buffers.

TDM Tx

TDM Rx

TDM Tx Clk

TDM Tx Sync

SMC1SCC2

TDMTSA SCC2 SMC1

Most Complex TDM Example – Totally Independent Rx and Tx

SCC2

TDM Rx Clk

TDM Rx Sync

MPC855T

MPC855T

MPC855T

MPC855T

Chapter 20. Serial Interface

The Time-Slot Assigner (TSA)

Figure 20-2. Various Configurations of a TDM Channel

The TSA can support two, independent, half-duplex TDM sources, one receiving and one
transmitting, using two sync inputs and two input clocks. In addition to channel
programming, the TSA supports up to eight strobe outputs that may be asserted on a bit
basis or a byte basis. These strobes are completely independent from the channel routing
used by the SCC and SMCs. They are useful for interfacing to other devices that do not
support the multiplexed interface or for enabling/disabling three-state I/O buffers in a
multi-transmitter architecture. (Note that open-drain programming on the TXDx pins to
support a multi-transmitter architecture is programmed in the parallel I/O block.) These
strobes can also generate output waveforms for such applications as stepper motor control.

The TSA routing is programmed in a 512-byte, core-accessible SI RAM located in the
internal register section of the MPC855Tseparate from the dual-port RAM. The SI RAM
contains a total of 128 32-bit entries: the first 64 entries are for programming receive
routing, and the second 64 are for transmit routing. The entries define the number of bits or
bytes to be routed to and from the SCC or SMCs and also control external strobes.

The amount of SI RAM available for time-slot programming depends on the configuration
of the SIGMR; see Section 20.2.4.1, “SI Global Mode Register (SIGMR).” Using all 64
entries of the Rx or Tx SI RAM, TDMa can support a maximum frame length of 8,192 bits.
Enabling on-the-fly changes divides the SI RAM to allow for routing workspace. See
Section 20.2.3, “SI RAM.”

The SI supports two testing modes—echo and loopback. The echo mode provides a return
signal from the physical interface by retransmitting the signal it receives. The physical
interface echo mode differs from the individual SCC echo mode in that it operates on the
entire TDM signal rather than on an individual SCC channel. Loopback mode causes the
physical interface to receive the same signal it is sending. Checking both the entire SI and
the internal channel routes, the SI loopback mode does more than the individual SCC
loopback. Programming echo and loopback modes are programmed in SIMODE[SDMa];
see Section 20.2.4.2, “SI Mode Register (SIMODE).” Loopback mode can also be
programmed on a time-slot basis in an individual SI RAM entry; see Section 20.2.3.5,
“Programming the SI RAM.” Note that loopback operation requires that the receive and
transmit sections of the TDM use common clock and synchronization signals.

The maximum external serial clock that may be an input to the TSA is SYNCCLK/2.5. If
the SCC or SMC is operating with the NMSI, the serial clock rate may be slightly faster at
a value not to exceed SYNCCLK/2.25.

Note that a sync pulse received during TSA frame routing is ignored. However, when
programmed for a one-clock delay between the sync and start-of-frame pulses, the TSA can
accept the last bit of a frame overlapping the sync pulse of the next frame.

MPC855T User’s Manual

The Time-Slot Assigner (TSA)

20.2.1 TSA Signals

The TSA signals for TDMa are shown in Table 20-1.

Note that if the receive and transmit clocks and the synchronization signals are common,
L1TSYNCa and L1TCLKa are not needed.

20.2.2 Enabling Connections to the TSA

Each SCC and SMC can be independently enabled to connect to the TSA. The SCC is
connected to the TSA by programming the SI clock route register SICR[SCx]; see
Section 20.2.4.3, “SI Clock Route Register (SICR).” The SMCs are connected to the TSA
by setting the mode register SIMODE[SMCx]; see Section 20.2.4.2, “SI Mode Register
(SIMODE).” The general mode register SIGMR[ENa] must also be set to enable TDMa;
see Section 20.2.4.1, “SI Global Mode Register (SIGMR).” Once the connections are made,
the exact routing is determined in the SI RAM. See Figure 20-3.

Figure 20-3. Enabling Connections through the SI

20.2.3 SI RAM
The 512-byte SI RAM contains the SCC and SMC routing information for the TDM
channel. The SI RAM totals 128 32-bit entries—64 entries each for receive and transmit

Table 20-1. TSA Signals

Signal Description

L1RSYNCa/L1TSYNCa Receive/transmit synchronization signals. Input to the MPC855T.

L1RCLKa/L1TCLKa Receive/transmit clocks. Input to the MPC855T.

L1RXDa Receive data. Input to the MPC855T.

L1TXDa Transmit data. Open-drain output of the MPC855T.

SCC1

Time-Slot
Assigner

Control Logic
SI RAM ENa TDMa Pins Multiplexed

Interface

SIGMR[ENa]=1 to enable TDMa

SMC1

SMC2

SICR[SC1]=1

SICR[SMC1]=1

SIMODE[SMC2]=1

SCC1 Pins

SMC1 Pins

SMC2 Pins

Non-Multiplexed Interfac

SICR[SC1]=0

SICR[SMC1]=0

SIMODE[SMC2]=0

(clocking paths not show

Chapter 20. Serial Interface

The Time-Slot Assigner (TSA)

routing. Representing one time slot, an entry controls from 1 to 16 bits/bytes and up to four
strobe pins (all active high).

The TDM channel options with their corresponding SI RAM partitioning follow:

• A single TDM channel with static routing—SI RAM is divided into Rx and Tx parts.

• A single TDM channel with dynamic routing—Rx and Tx RAMs are halved.

Note that the SI RAM is uninitialized after power-on—the core should program them
before enabling the TDM channel.

20.2.3.1 Disabling and Reenabling the TSA

The following steps must be taken any time the TSA is disabled. These steps also apply to
changing the SI routing when the TSA is configured for static frames.

1. SCC and SMC connections to the TSA must be disabled.

2. The SI configuration can be modified.

3. SCC and SMC connections to the TSA must be reenabled.

20.2.3.2 TDMa Channel with Static Frames

In an SI configuration using one multiplexed channel with static frames, shown in
Figure 20-4, there are 64 entries in the SI RAM for Rx data/strobe routing and 64 entries
for Tx data/strobe routing.

Figure 20-4. SI RAM Partitioning Using TDMa with Static Frames

20.2.3.3 SI RAM Dynamic Changes
The routing of a TDM channel can be changed while the SCC and SMCs remain connected
to the TSA. Enabling dynamic changes divides the SI RAM into current-route and
work-space shadow areas.

Once the current-route RAM is programmed, the TDM channel can be enabled and SI
operation begun. New routing information can then be programmed into the shadow RAM.

64 Entries
Rxa

Route

64 Entries
Txa

Route

L1RCLKa
L1RSYNCa

L1TCLKa
L1TSYNCa

Framing Signals
0SI RAM Address:

(32-Bit Entries)

255
256

511

RDM = 00
One Channel (TDMa) with Independent Rx and Tx Route

MPC855T User’s Manual

The Time-Slot Assigner (TSA)

Setting the channel’s change-shadow-RAM bits, SICMR[CSRRa, CSRTa], in the SI
command register tells the SI to activate the shadow RAM (deactivating the current-route
RAM) when the next frame sync arrives. The SI signals the user by clearing
SICMR[CSRRa, CSRTa] when the swap takes effect. These steps can be repeated with the
former current-route RAM always becoming the new shadow RAM and vice versa.

When using one channel (TDMa) with dynamic changes, as in Figure 20-5, the initial
current-route RAM byte addresses are as follows.

• 0–127 RXa route

• 256–383 TXa route

The shadow RAMs are at addresses:

• 128–255 RXa route

• 384–511 TXa route

Chapter 20. Serial Interface

The Time-Slot Assigner (TSA)

Figure 20-5. SI RAM Dynamic Changes with TDMa

The entire SI RAM is always readable, but only the shadow RAM is safe to write. The SI
status register (SISTR) can be read to determine which part of the RAM is the current-route
RAM. The SI RAM pointer (SIRP) register can be used to determine which SI RAM entry
is active. In addition, by externally connecting a strobe to an interrupt signal, an individual
SI RAM entry can generate an interrupt.

32 RXa
Route

The TSA uses the first part of

Framing Signals:
L1RCLKa
L1RSYNCa

1) Initial State

the RAM, and the shadow is
32 RXa
Shadow

0 127 128 255

CSRRa=0

Program the shadow

2) Programming

RAM for the new

The SI exchanges between

Exchange

the shadow and the

Rx and Tx route and set

the second part of the RAM.
CSRxa = 0

current-route RAMs

256 383 384 511

RAM address:

CSRTa=0

CSRRa=1
CSRTa=1

CSRRa=0
CSRTa=0

32 TXa
Route

Framing Signals:
L1TCLKa
L1TSYNCa

32 TXa
Shadow

RAM Address:

CSRxa.

32 RXa
Route

Framing Signals:
L1RCLKa
L1RSYNCa

32 RXa
Shadow

0 127 128 255

256 383 384 511

RAM Address:

32 TXa
Route

Framing Signals:
L1TCLKa
L1TSYNCa

32 TXa
Shadow

RAM Address:

and resets CSRxa.

32 RXa
Route

Framing Signals:
L1RCLKa
L1RSYNCa

32 RXa
Shadow

0 127 128 255

256 383 384 511

RAM Address:

32 TXa
Route

Framing Signals:
L1TCLKa
L1TSYNCa

32 TXa
Shadow

RAM Address:

3)

MPC855T User’s Manual

The Time-Slot Assigner (TSA)

20.2.3.4 TDMa Channel with Dynamic Frames

In an SI configuration using the one TDM channel with dynamic frames, TDMa has 32
entries apiece for Tx and Rx data/strobe routing, as shown in Figure 20-6. One RAM
partition is the current-route RAM; the other is shadow RAM that can be safely
reprogrammed. After programming the shadow RAM, set the CSRa bit of the channel in
the SI command register (SICMR). When the next frame sync arrives, the SI swaps the
current-route RAM with the shadow RAM.

Figure 20-6. SI RAM Partitioning Using TDMa with Dynamic Frames

20.2.3.5 Programming the SI RAM

Each SI RAM entry determines the routing of the serial bits and the state of strobe outputs
for one time slot. Figure 20-7 shows the format of an SI RAM entry.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field LOOP SWTR SSEL4 SSEL3 SSEL2 SSEL1 — CSEL CNT BYT LST

Reset 0

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Reset 0

R/W R/W

Figure 20-7. SIRAM Entry

0SI RAM Address:
(32-Bit Entries)

127
256

383

RDM = 01
TDMa with Shadow RAM for Dynamic Route Changes

L1RCLKa
L1RSYNCa

L1TCLKa
L1TSYNCa

Framing Signals

Shadow

32 Entries
RXa

Route

32 Entries
TXa

Route

128

255
384

511

Shadow

Chapter 20. Serial Interface

The Time-Slot Assigner (TSA)

Table 20-2 describes SI RAM entry fields.

For applications needing to receive data from a Tx signal and send data on an Rx signal, set
SIRAMn[SWTR]. For example, stations A and B in Figure 20-8 use different time slots on
one TDM channel. Even though they share Rx and Tx data lines, stations A and B can
communicate using the SWTR option.

Table 20-2. SIRAM Field Descriptions

Bits Name Description

0 LOOP Loop back on this time slot.
0 Normal mode (no loopback).
1 Loopback for this time slot.

1 SWTR Switch transmit and receive. Valid only in Rx route RAM; ignored in the Tx route RAM. Affects
operation of both L1RXDa and L1TXDa. See Figure 20-8 and the accompanying text.
0 Normal operation of L1TXDa and L1RXDa.
1 Data is sent on L1RXDa and received from L1TXDa for the duration of this entry. Note that erratic

results may occur if the Tx and Rx sections of the TDM do not use a common clock source.

2–5 SSELn Strobe select 1–4. The four strobes, L1ST[1–4], can be assigned to the Rx or the Tx RAM and
asserted/negated in sync with the corresponding L1RCLKa or L1TCLKa. Using active-high logic,
each SSELn will be the value of the corresponding strobe during this time slot. Multiple strobes can
be asserted simultaneously. A strobe can be configured to remain asserted for multiple, consecutive
SI RAM entries; however, if a strobe is asserted on the last entry in the table, the strobe is negated
after the last entry finishes processing.
Note: The corresponding parallel I/O pins (either port B or C) must be configured for strobe operation;
see Chapter 33, “Parallel I/O Ports.”

6 — Reserved, should be cleared.

7–9 CSEL Channel select. Indicates which channel the time slot is routed to.
000 This time slot is not used. Tx data signal is three-stated; Rx data signal is ignored.
001 SCC1
010 Reserved. Do not use.
011 Reserved. Do not use.
100 Reserved. Do not use.
101 SMC1
110 SMC2
111 This time slot is not used. Also used in SCIT mode to indicate the D channel grant bit.

10–13 CNT Count. The number of bits/bytes (the unit is determined by BYT) that the routing and strobe select of
this entry controls. If CNT = 0b0000, 1 bit/byte is routed; if CNT = 0b1111, 16 bits/bytes are routed.

14 BYT Byte resolution.
0 Bit resolution. CNT indicates the number of bits in this entry.
1 Byte resolution. CNT indicates the number of bytes in this entry.

15 LST Last entry in a TDM channel’s Rx or Tx SI RAM. LST must be set in the last entry even if all the entries
are used.
0 Not the last entry in this TDM channel’s Rx or Tx SI RAM.
1 Last entry. After this entry, the SI waits for SYNC to start the next frame.

16–31 — Reserved

MPC855T User’s Manual

The Time-Slot Assigner (TSA)

Figure 20-8. Example Using SI RAMn[SWTR]

The SWTR option allows station B to listen to transmissions from and send data to station
A. By setting SWTR in its Rx route RAM entry, station B receives data from L1TXD and,
if the time slot’s Tx route RAM entry allows, sends data on L1RXD. To prevent sending on
L1RXD while listening to station A, clear the CSEL bits in the corresponding Tx route
RAM entries. Conversely, to prevent receiving on L1TXD while sending on L1RXD, clear
the CSEL bits in corresponding Rx SI RAM entries. Note that using the SWTR option may
cause data collisions with other stations unless an empty (quiet) time slot is used.

20.2.4 The SI Registers

The following sections describe the SI registers.

20.2.4.1 SI Global Mode Register (SIGMR)

The SI global mode register (SIGMR), shown in Figure 20-9, defines the SI RAM division
modes and enables the TDM channel.

Bit 0 1 2 3 4 5 6 7

Field — — ENa RDM

Reset 0

R/W R/W

Addr 0xAE4

Figure 20-9. SI Global Mode Register (SIGMR)

Rx

Station A

Tx Rx

Station B

Tx

L1TXD

L1RXD

Rx

Station A

Tx Tx

Station B

Rx

L1TXD

L1RXD

Tx and Rx SI RAMn[SWTR] = 1Tx and Rx SI RAMn[SWTR] = 0

Chapter 20. Serial Interface

The Time-Slot Assigner (TSA)

This register is affected by HRESET but is not affected by SRESET. Table 20-3 describes
the SIGMR fields.

Note that after setting SIGMR[ENa], data from the transmit buffers does not immediately
appear at the TDM transmit pin with the first frame because the SCC requires start-up
clocking at initialization. Expect a number of bytes of idle (typically 10–15) depending on
the size of the frame and number of time slots routed to the SCC.

20.2.4.2 SI Mode Register (SIMODE)

The SI mode register (SIMODE), shown in Figure 20-10, defines the SI operation modes
for the TDM channel and SMCs.

Table 20-3. SIGMR Field Descriptions

Bits Name Description

0–4 — Reserved, should be cleared.

5 ENa Enable TDMa.
0 TDMa is disabled. SI RAM and TDM routing are in a state of reset; all other SI functions still operate.
1 TDMa is enabled.

6–7 RDM RAM division mode. Defines the SI RAM partitioning based on whether dynamic changes are needed.
00 Static TDMa with 64 entries apiece for Rx and Tx routing.
01 Dynamic TDMa with 32 entries apiece for current-route and shadow Rx routing and 32 apiece for

current-route and shadow Tx routing.
1x Reserved.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field SMC2 SMC2CS —

Reset 0

R/W R/W

Addr 0xAE0

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field SMC1 SMC1CS SDMa RFSDa DSCa CRTa STZa CEa FEa GMa TFSDa

Reset 0

R/W R/W

Addr 0xAE2

Figure 20-10. SI Mode Register (SIMODE)

MPC855T User’s Manual

The Time-Slot Assigner (TSA)

This register is affected by HRESET and SRESET. Table 20-4 describes the SIMODE
fields.

Table 20-4. SIMODE Field Descriptions

Bits Name Description

0, 16 SMCx SMCx connection
0 NMSI mode. The clock source is determined by SMCxCS and the data comes from a dedicated

pin (SMTXD1 and SMRXD1 for SMC1 or SMTXD2 and SMRXD2 for SMC2) in NMSI mode.
1 SMCx is connected to the multiplexed SI (TDM channel).

1–3,
17–19

SMCxCS SMCx clock source (NMSI mode). SMCx can take its Tx and Rx clocks from a baud rate generator
or one of four pins from the bank of clocks. However, Tx and Rx clocks must be common when
connected to the NMSI.
000 BRG1
001 BRG2
010 BRG3
011 BRG4
100 CLK1
101 CLK2
110 CLK3
111 CLK4

20–21 SDMa SI diagnostic mode for TDMa. In modes 01,10, and 11, Rx and Tx clocks should be common.
00 Normal operation.
01 Automatic echo. The TDM transmitter automatically resends its Rx data bit-by-bit. The Rx

section operates normally, but the Tx section can only resend Rx data. L1GRa is ignored.
10 Internal loopback. TDM transmitter output is connected internally to the TDM receiver

input—L1TXDa is connected to L1RXDa. The receiver and transmitter operate normally, but
data on L1RXDa is ignored. Data appears on L1TXDa, L1RQa is asserted normally, and
L1GRa is ignored.

11 Loopback control. TDM transmitter output is connected internally to the TDM receiver
input—L1TXDa is connected to L1RXDa. Transmitter output L1TXDa and L1RQa are inactive.
Provides loopback testing of the entire TDM without affecting the external serial lines.

22–23 RFSDa Receive frame sync delay for TDMa. Indicates the delay between the Rx sync and the first bit of
the Rx frame. Even if CRTa is set, RFSDa does not control the Tx frame delay.
00 No bit delay. The first bit of the frame is received on the same clock as sync.
01 1-bit delay.
10 2-bit delay.
11 3-bit delay.
See the examples in Figure 20-11 and Figure 20-12.

24 DSCa Double speed clock for TDMa—for TDM interfaces that define the input clock to be twice as fast as
the data rate.
0 Channel clock (L1RCLKa and/or L1TCLKa) is equal to the data clock. Use for most TDM

formats.
1 Channel clock rate is twice the data rate.

25 CRTa Common receive and transmit pins for TDMa.
0 Separate pins. The receive section of the TDM uses L1RCLKa and L1RSYNCa for framing; the

transmit section uses L1TCLKa and L1TSYNCa for framing.
1 Common pins. Both the transmit and receive section use L1RCLKa as the clock pin of the

channel and L1RSYNCa as the sync pin. Useful when the transmit and receive section of a
given TDM share clock and sync signals. L1TCLKa and L1TSYNCa can be used for their
alternate functions.

Chapter 20. Serial Interface

The Time-Slot Assigner (TSA)

The following series of figures show timing examples. Figure 20-11 and Figure 20-12 show
the effects of changing the delay from frame sync to data valid.

Figure 20-11. One Clock Delay from Sync to Data (xFSD = 01)

26 STZa Set L1TXDa to zero for TDMa.
0 Normal operation.
1 L1TXDa is cleared until serial clocks are available.

 27 CEa Clock edge for TDMa.
When DSCa = 0:
0 Data is sent on the rising clock edge and received on the falling edge.
1 Data is sent on the falling edge of the clock and received on the rising edge.
When DSCa = 1:
0 Data is sent on the rising clock edge and received on the rising edge.
1 Data is sent on the falling edge of the clock and received on the falling edge.

 28 FEa Frame sync edge for TDMa. Indicates when L1RSYNCa and L1TSYNCa pulses are sampled with
the falling/rising edge of the channel clock.
0 Falling edge.
1 Rising edge.

29 GM Grant mode for TDMa.
0 GCI/SCIT mode. The GCI/SCIT D channel grant mechanism for transmission is supported

internally. The grant is signalled by one bit of the Rx frame and is marked by setting
SIRAM[CSEL] to 111 to assert an internal strobe.

1 IDL mode. A grant mechanism is supported if the corresponding SICR[GRn] are set. The grant
is a sample of the L1GRa signal while L1TSYNCa is asserted. This grant mechanism implies
the IDL access controls transmission on the D channel.

30–31 TFSDa Transmit frame sync delay for TDMa. Determines the delay between the Tx sync and the first bit of
the Tx frame. If CRTa is set, the Rx sync is used as the common sync, and the TFSDa bits refer to
this common sync.
00 No bit delay. The first bit of the frame is sent on the same clock as the sync.
01 1-bit delay.
10 2-bit delay.
11 3-bit delay.

Table 20-4. SIMODE Field Descriptions (continued)

Bits Name Description

L1CLK

Data

(CE=0)

L1SYNC
(FE=1)

Bit-0 Bit-1 Bit-2 Bit-3 Bit-4 Bit-0

One Clock Delay from Sync Latch to First Bit of Frame

Bit-5

End of Frame

MPC855T User’s Manual

The Time-Slot Assigner (TSA)

Figure 20-12. No Delay from Sync to Data (xFSD = 00)

Figure 20-13 and Figure 20-14 show example timings while varying SIMODE[CE] with a
constant frame sync delay of one bit.

Figure 20-13. Falling Edge (FE) Effect When CE = 1 and xFSD = 01

Figure 20-14. Falling Edge (FE) Effect When CE = 0 and xFSD = 01

Figure 20-15 shows SIMODE[FE] behavior with SIMODE[CE] set and no frame sync
delay.

L1CLK

Data

(CE=0)

L1SYNC
(FE=1)

Bit-0 Bit-1 Bit-2 Bit-3 Bit-4

No Delay from Sync Latch to First Bit of Frame

Bit-2Bit-1Bit-0

L1TxD

Rx Sampled Here

L1ST

L1SYNC

L1SYNC

L1CLK

(Bit-0)

(On Bit-0)
L1ST Driven from Clock High for Both FE S

xFSD=01

(FE=0)

(FE=1)

CE=1

L1TXD

Rx Sampled Here

L1ST

L1SYNC

L1SYNC

L1CLK

(Bit-0)

(On Bit-0)

L1ST is Driven from Clock Low

(FE=0)

(FE=1)

CE=0

in Both the FE Settings

xFSD=01

Chapter 20. Serial Interface

The Time-Slot Assigner (TSA)

Figure 20-15. Falling Edge (FE) Effect When CE = 1 and xFSD = 00

Figure 20-16 shows SIMODE[FE] behavior when SIMODE[CE] and SIMODE[xFSD] are
zero.

L1TXD

L1ST

L1SYNC

L1CLK

(Bit-0)

(On Bit-0)

xFSD=00

(FE=0)

CE=1

The L1ST is Driven from Sync.
Data is Driven from Clock Low.

L1TXD

L1ST

L1SYNC

(Bit-0)

(On Bit-0)

(FE=0)

L1ST is Driven from Clock High.

L1TXD

L1ST

L1SYNC

(Bit-0)

(On Bit-0)

(FE=1)

Both Data Bit-0 and L1ST are
Driven from Sync.

Rx Sampled Here

Rx Sampled Here

L1TXD

L1ST

L1SYNC

(Bit-0)

(On Bit-0)

(FE=1)

L1ST and Data Bit-0 is Driven
from Clock Low.

MPC855T User’s Manual

The Time-Slot Assigner (TSA)

Figure 20-16. Falling Edge (FE) Effect When CE = 0 and xFSD = 00

20.2.4.3 SI Clock Route Register (SICR)

The SI clock route register (SICR), shown in Figure 20-17, selects the SCC clock source
from one of four baud rate generators or an input from the bank of clock pins. The SICR
also connects the SCC to the TSA and enables the grant mechanism chosen in SIMODE.

L1TXD

L1ST

L1SYNC

L1CLK

(Bit-0)

(On Bit-0)

xFSD=00

(FE=1)

CE=0

The L1ST is Driven from Sync.
Data is Driven From Clock High.

L1TXD

L1ST

L1SYNC

(Bit-0)

(On Bit-0)

(FE=1)

L1ST is Driven from Clock Low.

L1TXD

L1ST

L1SYNC

(Bit-0)

(On Bit-0)

(FE=0)

Both the Data and L1ST from Sync
when Asserted during Clock High.

Rx Sampled Here

L1TXD

L1ST

L1SYNC

(Bit-0)

(On Bit-0)

(FE=0)

Both the Data and L1ST from the Clock
when Asserted during Clock Low.

Chapter 20. Serial Interface

The Time-Slot Assigner (TSA)

This register is affected by HRESET but is not affected by SRESET. Table 20-5 describes
the SICR fields.

20.2.4.4 SI Command Register (SICMR)

The SI command register (SICMR) is used to swap the SI RAM routing. SICMR
commands are valid only when the SI RAM is partitioned for dynamic changes; that is,
when SIGMR[RDM] = 0b01. See Section 20.2.3.3, “SI RAM Dynamic Changes.”

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0

R/W R/W

Addr 0xAEC

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — GR1 SC1 R1CS T1CS

Reset 0

R/W R/W

Addr 0xAEE

Figure 20-17. SI Clock Route Register (SICR)

Table 20-5. SICR Field Descriptions

Bits Name Description

0–23 — Reserved, should be cleared.

24 GR1 Grant support of SCC1.
0 Transmitter does not support the grant mechanism. The grant is always asserted internally.
1 Transmitter supports the grant mechanism as determined by SIMODE[GMa].

25 SC1 SCC1 connection.
0 SCC1 is not connected to the TSA. It is either connected directly to the NMSI pins or is not used.

The choice of general-purpose I/O port versus SCC1 functionality is made in the parallel I/O
control register; see Chapter 33, “Parallel I/O Ports.”

1 SCC1 is connected to the multiplexed SI. NMSI receive pins can be used for other purposes.

26–28 R1CS Receive/transmit clock source for SCC1. Ignored when SCC is connected to the TSA (SC1 = 1).
000 BRG1.
001 BRG2.
010 BRG3.
011 BRG4.
100 CLK1
101 CLK2
110 CLK3
111 CLK4

29–31 T1CS

MPC855T User’s Manual

The Time-Slot Assigner (TSA)

This register is affected by HRESET and SRESET. Table 20-6 describes the SICMR fields.

20.2.4.5 SI Status Register (SISTR)

The SI status register (SISTR) indicates which part of the SI RAM is the current-route
RAM. The value of SISTR is valid only when the corresponding SICMR bit is clear.

This register is affected by HRESET but is not affected by SRESET. Table 20-7 describes
the SISTR fields.

Bit 0 1 2 3 4 5 6 7

Field CSRRa CSRTa —

Reset 0

R/W R/W

Addr 0xAE7

Figure 20-18. SI Command Register (SICMR)

Table 20-6. SICMR Field Descriptions

Bits Name Description

0 CSRRa Change shadow RAM for TDMa receiver/transmitter. Set by the user; cleared by the SI when the swap
completes.
0 The shadow RAM is invalid. The shadow RAM can be written to program a new routing.
1 The shadow RAM is valid. The SI swaps the RAMs, taking the new routing from the shadow RAM.

1 CSRTa

2–7 — Reserved, should be cleared.

Bit 0 1 2 3 4 5 6 7

Field CRORa CROTa —

Reset 0

R/W R

Addr OxAE6

Figure 20-19. SI Status Register (SISTR)

Table 20-7. SISTR Field Descriptions

Bits Name Description

0 CRORa Address of the current route of TDMa receiver.
0 Address 0–127 when SIGMR[RDM] = 01.
1 Address 128–255 when SIGMR[RDM] = 01.

1 CROTa Address of the current route of TDMa transmitter.
0 Address 256–383 when SIGMR[RDM] = 01.
1 Address 384–511 when SIGMR[RDM] = 01.

2–7 — Reserved, should be cleared.

Chapter 20. Serial Interface

The Time-Slot Assigner (TSA)

20.2.4.6 SI RAM Pointer Register (SIRP)

The SI RAM pointer (SIRP) register, shown in Figure 20-20, indicates the RAM entry
currently being serviced. SIRP gives the real-time status location of the SI inside a TDM
frame—useful for debugging and synchronizing system activity with the TDM’s activity.
However, simply reading the status register SISTR is sufficient for most applications.

The user can determine which RAM entry in the SI RAM is in progress, but cannot
determine the status within that entry. For example, if the SIRP indicates an SI RAM entry
is active, but the entry is programmed to select four contiguous 8-bit time slots of a TDM,
it cannot be determined which of the four time slots is in progress. However, SIRP updates
the status as soon as the next SI RAM entry begins processing. The value of SIRP changes
on serial clock transitions. Before acting on the information in this register, perform two
reads to verify the same value is returned.

One of the four strobes can be connected externally to an interrupt pin to generate an
interrupt on a particular SI RAM entry to start or stop TSA execution.

The pointers in SIRP indicate the SI RAM entry word offset that is in progress.

This register is affected by HRESET and SRESET. Table 20-8 describes SIRP fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — VT2 TaPTR2 — VT1 TaPTR1

Reset 0

R/W R

Addr 0XAF0

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — VR2 RaPTR2 — VR1 RaPTR1

Reset 0

R/W R

Addr 0xAF2

Figure 20-20. SI RAM Pointer Register (SIRP)

Table 20-8. SIRP Field Descriptions

Bits Name Description

0–1, 8–9,
16–17, 24–25

— Reserved, should be cleared.

MPC855T User’s Manual

NMSI Configuration

Table 20-9 describes the pointer values as affected by SIGMR[RDM].

20.3 NMSI Configuration
The SI supports a non-multiplexed serial interface (NMSI) mode for the SCC and SMCs.
The decision of whether to connect the SCC to the NMSI is made in the SICR; the SMCs
are connected through SIMODE. The SCC or SMC can be connected to the NMSI,
regardless of the other channels connected to a TDM channel. However, NMSI pins can be
multiplexed with other functions at the parallel I/O lines. Therefore, if a combination of
TDM and NMSI channels are used, the decision of which SMC to connect and where to
connect them should be made by consulting the pinout in .”

The clocks that are provided to the SCC and SMCs are derived from four internal baud rate
generators and external CLK pins. There are two main advantages to this bank-of-clocks
approach. First, the SCC or SMC is not forced to choose its clock from a predefined pin or
baud rate generator. Second, if a group of receivers and transmitters need the same clock
rate they can share the same pin, leaving other pins available other functions and
minimizing the potential skew between multiple clock sources.

The baud rate generators also make their clocks available to external logic, regardless of
whether the BRGs are being used by the SCC or an SMC. The BRGOn pins are multiplexed
with other functions, so all BRGOn pins may not always be available.

2, 10, 18, 26 VRn, VTn Valid if set. Knowing whether an entry is valid (active) helps when the PTR value is zero.
The V bits eliminate having to read both SIRP and SISTR.

3-7, 11–15,
19–23, 27–31

RaPTRn,
TaPTRn

Transmit/receive SI RAM entry pointers. Incremented by one for each entry processed.
These 5-bit pointers’ values range from 0–31, corresponding to 32 SI RAM entries,
although the entire range may not be used. For instance, if SIRAM[LST] is set in the fifth
entry, the pointer reflects values 0–4. When the SI processes the fifth, the pointer returns
to 0. Pointer values are described in Table 20-9, and are based on SIGMR[RDM].

Table 20-9. SIRP Pointer Values

RDM Configuration

00 RaPTR1/TaPTR1 point to the first 32 entries and RaPTR2/TaPTR2 point to the second 32 entries.
RaPTRn and TaPTRn point to the active Rx and Tx entries, respectively. When the SI services entries 1–32,
RaPTR1/TaPTR1 is incremented and RaPTR2/TaPTR2 is continuously cleared. Conversely, when the SI
services entries 33–64, RaPTR1/TaPTR1 is continuously cleared and RaPTR2/TaPTR2 is incremented.

01 For the receiver, whether RaPTR1 or RaPTR2 is used depends on which portion of the SI Rx RAM is active (V-bit
set). Likewise, whether TaPTR1 or TaPTR2 is used depends on which portion of the Tx RAM is active.
 • •If VR1 = 1, RaPTR1 points to the active RXa entry. The Rx address block is 0–127; SISTR[CRORa] = 0.
 • •If VR2 = 1, RaPTR2 points to the active RXa entry. The Rx address block is 128–255; SISTR[CRORa] = 1.
 • •If VT1 = 1, TaPTR1 points to the active TXa entry. The Tx address block is 256–383; SISTR[CROTa] = 0.
 • •If VT2 = 1, TaPTR2 points to the active TXa entry. The Tx address block is 384–511; SISTR[CROTa] = 1.

1x Reserved

Table 20-8. SIRP Field Descriptions (continued)

Bits Name Description

Chapter 20. Serial Interface

NMSI Configuration

The following restrictions apply to the bank-of-clocks mapping:

• Only eight of the twelve clock sources can be connected to the SCC receiver or
transmitter.

• The SMC transmitter must have the same clock source as the receiver when
connected to the NMSI.

Once the clock source is selected, the clock is given an internal name. For the SCC, the
name is RCLK1 and TCLK1 and for the SMCs, the name is simply SMCLKx. These
internal names are used only in NMSI mode to specify the clock that is sent to the SCC or
SMC. These names do not correspond to physical pins on the MPC855T. Note the internal
RCLK1 and TCLK1 can be used as inputs to the DPLL unit, which is inside the SCC1; thus,
RCLK1 and TCLK1 are not always required to reflect the actual bit rate on the line.

The clock signals available to each SCC and SMC in NMSI mode are shown in
Figure 20-21.

Figure 20-21. Bank-of-Clocks Selection Logic for NMSI

The SCC1 in NMSI mode has its own set of modem control signals:

• TXD1

• RXD1

• TCLK1 ← BRG1–BRG4, CLK1–CLK4

• RCLK1 ← BRG1–BRG4, CLK1–CLK4

• RTS1

• CTS1

SMC1

SMC2

BRG1 BRG2 BRG3 BRG4

CLK1
CLK2

SMCLK1

SMCLK2

BRGO1
BRGO2
BRGO3
BRGO4

Bank of Clocks
Selection Logic

SCC clock source selected in SICR
SMC clock source selected in SIMODE

CLK3
CLK4

CLK5
CLK6
CLK7
CLK8

SCC1
Rx

RCLK1

SCC1
Tx

TCLK1

MPC855T User’s Manual

Baud Rate Generators (BRGs)

• CD1

The SMC1 in NMSI mode has its own set of modem control signals:

• SMTXD1

• SMRXD1

• SMCLK1 ← BRG1–BRG4, CLK1–CLK4

• SMSYN1 (used only in the totally transparent protocol)

The SMC2 in NMSI mode has its own set of modem control signals:

• SMTXD2

• SMRXD2

• SMCLK2 ← BRG1–BRG4, CLK5–CLK8

• SMSYN2 (used only in the totally transparent protocol)

Unused SCC or SMC signals can be used for other functions or configured for parallel I/O.

20.4 Baud Rate Generators (BRGs)
The CPM contains four independent, identical baud rate generators (BRG) that can be used
with the SCC and SMCs. The clocks produced by the BRGs are sent to the bank-of-clocks
selection logic, where they can be routed to the SCC and/or SMCs. In addition, the output
of a BRG can be routed to a pin to be used externally. The following is a list of baud rate
generators’ main features:

• Four independent and identical baud rate generators

• On-the-fly changes allowed

• Each baud rate generator can be routed to one or more SCC or SMCs

• A 16x divider option allows slow baud rates at high system frequencies

• Each BRG contains an autobaud support option

• Each BRG output can be routed to a pin (BRGOn)

Figure 20-22 shows a baud rate generator.

Chapter 20. Serial Interface

Baud Rate Generators (BRGs)

Figure 20-22. Baud Rate Generator (BRG) Block Diagram

The BRG clock source can be BRGCLK, CLK2, or CLK6 (selected in BRGCn[EXTC]).
The BRGCLK is generated in the MPC855T clock synthesizer specifically for the BRGs,
the SPI, and the I2C internal baud rate generator. Alternatively, the CLK2 and CLK6 pins
can be configured as clock sources. These external source options allow flexible baud rate
frequency generation, independent of the system frequency. Additionally, CLK2 and CLK6
allow a single external frequency to be the source for multiple BRGs. Note that the CLK2
and CLK6 signals are not synchronized internally before being used by the BRG.

The BRG provides a divide-by-16 option (BRGCn[DIV16]) and a 12-bit prescaler
(BRGCn[CD]) to divide the source clock frequency. The combined source-clock divide
factor can be changed on-the-fly; however, two changes should not occur within two source
clock periods.

The prescaler output is sent internally to the bank of clocks and can also be output
externally on BRGOn through either the port A or port B parallel I/O. If the BRG divides
the clock by an even value, the transitions of BRGOn always occur on the falling edge of
the source clock. If the divide factor is odd, the transitions alternate between the falling and
rising edges of the source clock. Additionally, the output of the BRG can be sent to the
autobaud control block.

20.4.1 Baud Rate Generator Configuration Registers
(BRGCn)

Each baud rate generator configuration register (BRGC), shown in Figure 20-23, is cleared
at reset. A reset disables the BRG and drives the BRGO output clock high. The BRGC can

CLK2 Pin Clock
Source
MUX

Divide by
1 or 16

Prescaler
12-Bit Counter

1 – 4,096

DIV 16 CD[0–11]

BRGOn Clock

BRGCLK

EXTC

ATB

Autobaud
ControlRXDn

To Pin and/or
Bank of Clock

BRGn

CLK6 Pin

MPC855T User’s Manual

Baud Rate Generators (BRGs)

be written at any time with no need to disable the SCC or external devices that are
connected to BRGO. Configuration changes occur at the end of the next BRG clock cycle
(no spikes occur on the BRGO output clock). BRGC can be changed on-the-fly; however,
two changes should not occur within a time equal to two source clock periods.

These registers are affected by HRESET but are not affected by SRESET. Table 20-10
describes the BRGCn fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — RST EN

Reset 0

R/W R/W

Addr 0x9F0 (BRGC1), 0x9F4 (BRGC2), 0x9F8 (BRGC3), 0x9FC (BRGC4)

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field EXTC ATB CD DIV16

Reset 0

R/W R/W

Addr 0x9F2 (BRGC1), 0x9F6 (BRGC2), 0x9FA (BRGC3), 0x9FE (BRGC4)

Figure 20-23. Baud Rate Generator Configuration Registers (BRGCn)

Table 20-10. BRGCn Field Descriptions

Bits Name Description

0–13 — Reserved, should be cleared.

14 RST Reset BRG. Performs a software reset of the BRG identical to that of an external reset. A reset disables
the BRG and drives BRGO high. This is externally visible only if BRGO is connected to the
corresponding parallel I/O pin.
0 Enable the BRG.
1 Reset the BRG (software reset).

15 EN Enable BRG count. Used to dynamically stop the BRG from counting—useful for low-power modes.
0 Stop all clocks to the BRG.
1 Enable clocks to the BRG.

16–17 EXTC External clock source. Selects the BRG input clock.
00 BRGCLK (internal clock generated by the clock synthesizer in the SIU).
01 CLK2
10 CLK6
11 Reserved.

18 ATB Autobaud. Selects autobaud operation for BRG1 on the corresponding RXD1. ATB must remain zero
until the SCC receives the three Rx clocks. Then the user must set ATB to obtain the correct baud rate.
After the baud rate is obtained and locked, it is indicated by setting AB in the UART event register. See
Section 20.4.2, “Autobaud Operation on the SCC UART.”
0 Normal operation of the BRG.
1 When RXD goes low, the BRG determines the length of the start bit and synchronizes the BRG to

the actual baud rate.

Chapter 20. Serial Interface

Baud Rate Generators (BRGs)

20.4.2 Autobaud Operation on the SCC UART

During the autobaud process, the SCC UART deduces the baud rate of its received character
stream by examining the received pattern and its timing. A built-in autobaud control
function automatically measures the length of a start bit and modifies the baud rate
accordingly.

If the autobaud bit BRGC1[ATB] is set, the autobaud control function starts searching for
a low level on the corresponding RXD1 input, which it assumes marks the beginning of a
start bit, and begins counting the start bit length. During this time, the BRG output clock
toggles for 16 BRG clock cycles at the BRG source clock rate and then stops with BRGO1
in the low state.

When RXD1 goes high again, the autobaud control block rewrites BRGC1[CD, DIV16] to
the divide ratio found, which at high baud rates may not be exactly the final rate desired (for
example, 56,600 may result rather than 57,600). An interrupt can be enabled in the UART
SCC event register to report that the autobaud controller rewrote BRGC1. The interrupt
handler can then adjust BRGC1[CD, DIV16] (see Table 20-11) for accuracy before the first
character is fully received, ensuring that the UART recognizes all characters.

After a full character is received, the software can verify that the character matches a
predefined value (such as ‘a’ or ‘A’). Software should then check for other characters (such
as ‘t’ or ‘T’) and program the preferred parity mode in the UART’s protocol-specific mode
register (PSMR).

Note that SCC1 must be programmed to UART mode and select the 16× option for TDCR
and RDCR in the general SCC mode register (GSMR_L). Input frequencies such as 1.8432,
3.68, 7.36, and 14.72 MHz should be used.

Also, to detect an autobaud lock and generate an interrupt, the SCC must receive three full
Rx clocks from the BRG before the autobaud process begins. To do this, first clear
BRGC1[ATB] and enable the BRG receive clock to the highest frequency. Then,

19–30 CD Clock divider. CD presets an internal 12-bit counter that is decremented at the DIV16 output rate. When
the counter reaches zero, it is reloaded with CD. CD = 0xFFF produces the minimum clock rate for
BGRO (divide by 4,096); CD = 0x000 produces the maximum rate (divide by 1). When dividing by an
odd number, the counter ensures a 50% duty-cycle by asserting the terminal count once on clock low
and next on clock high. The terminal count signals counter expiration and toggles the clock. See
Section 20.4.3, “UART Baud Rate Examples.”

31 DIV16 Divide-by-16. Selects a divide-by-1 or divide-by-16 prescaler before reaching the clock divider. See
Section 20.4.3, “UART Baud Rate Examples.”
0 Divide by 1.
1 Divide by 16.

Table 20-10. BRGCn Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Baud Rate Generators (BRGs)

immediately before the autobaud process starts (after device initialization), set
BRGC1[ATB].

20.4.3 UART Baud Rate Examples

For synchronous communication using the internal BRG, the BRGO output clock must not
exceed the system frequency divided by 2. So, with a 25-MHz system frequency, the
maximum BRGO rate is 12.5 MHz. Program the UART to 16× oversampling when using
the SCC as a UART. Rates of 8× and 32× are also available. Assuming 16× oversampling
is chosen in the UART, the maximum data rate is 25 MHz ÷ 16 = 1.5625 Mbps. Keeping
the above in mind, use the following formula to calculate the bit rate based on a particular
BRG configuration for a UART:

async baud rate = (BRGCLK or CLK2 or CLK6) ÷ (1 or 16 according to BRGCx[DIV16])
÷ (clock divider + 1) ÷ (8, 16, or 32 according to GSMR_L[TDCR, RDCR] in the
general SCC mode register low)

Table 20-11 lists typical bit rates of asynchronous communication. Notice that here the
internal clock rate is assumed to be 16× the baud rate; that is,
GSMR_L[TDCR] = GSMR_L[RDCR] = 0b10.

For synchronous communication, the internal clock is identical to the baud rate output. To
get the preferred rate, select the system clock according to the following:

Table 20-11. Typical Baud Rates for Asynchronous Communication

Baud
Rate

System Frequency

20 MHz 25 MHz 24.5760 MHz

Div16 CD Actual Frequency Div16 CD Actual Frequency Div16 CD Actual Frequency

50 1 1561 50.02 1 1952 50 1 1919 50

75 1 1040 75.05 1 1301 75 1 1279 75

150 1 520 149.954 1 650 150 1 639 150

300 1 259 300.48 1 324 300.5 1 319 300

600 0 2082 600.09 0 2603 600 0 2559 600

1200 0 1040 1200.7 0 1301 1200 0 1279 1200

2400 0 520 2399.2 0 650 2400.1 0 639 2400

4800 0 259 4807.7 0 324 4807.69 0 319 4800

9600 0 129 9615.4 0 162 9585.9 0 159 9600

19200 0 64 19231 0 80 19290 0 79 19200

38400 0 32 37879 0 40 38109 0 39 38400

57600 0 21 56818 0 26 57870 0 26 56889

115200 0 10 113636 0 13 111607 0 12 118154

Chapter 20. Serial Interface

Baud Rate Generators (BRGs)

sync baud rate = (BRGCLK or CLK2 or CLK6) ÷ (1 or 16 according to BRGCx[DIV16])
÷ (clock divider + 1)

For example, to get a rate of 64 kbps, the system clock can be 24.96 MHz, DIV16 = 0, and
the clock divider = 389.

MPC855T User’s Manual

Baud Rate Generators (BRGs)

Chapter 21. Serial Communications Controller

Chapter 21
Serial Communications Controller
The MPC855T has one serial communications controller (SCC1), which can be configured
independently to implement different protocols for bridging functions, routers, and
gateways, and to interface with a wide variety of standard WANs, LANs, and proprietary
networks. The SCC has many physical interface options such as interfacing to a TDM bus,
an ISDN bus, or a standard modem interface.

The SCC is independent from the physical interface, but SCC logic formats and
manipulates data from the physical interface. Furthermore, the choice of protocol is
independent from the choice of interface. The SCC is described in terms of the protocol it
runs. When the SCC is programmed to a certain protocol or mode, it implements
functionality that corresponds to parts of the protocol’s link layer (layer 2 of the OSI
reference model). Many SCC functions are common to protocols of the following
controllers:

• UART, described in Chapter 22, “SCC UART Mode.”
• HDLC and HDLC bus, described in Chapter 23, “SCC HDLC Mode.”
• IrDA or asynchronous HDLC, described in Chapter 25, “SCC Asynchronous HDLC

Mode and IrDA.”
• AppleTalk/LocalTalk, described in Chapter 24, “SCC AppleTalk Mode.”
• BISYNC, described in Chapter 26, “SCC BISYNC Mode.”
• Transparent, described in Chapter 28, “SCC Transparent Mode.”
• Ethernet, described in Chapter 27, “SCC Ethernet Mode.”

Although the selected protocol usually applies to both the SCC transmitter and receiver, one
half of the SCC can run transparent operations while the other half runs a standard protocol
(except Ethernet and serial ATM as applicable).

Each Rx and Tx internal clock can be programmed with either an external or internal
source. Internal clocks originate from one of four baud rate generators (BRGs) or one of
eight external clock pins; see Section 20.2.4.3, “SI Clock Route Register (SICR),” for the
SCC’s available clock sources. These clocks can be as fast as a 1:2 ratio of the system clock.
(For example, the SCC internal clock can run at 12.5 MHz in a 25-MHz system.) However,
the SCC’s ability to support a sustained bit stream depends on the protocol as well as other
factors. See Appendix B, “Serial Communications Performance.”

MPC855T User’s Manual

Features

Associated with the SCC is a digital phase-locked loop (DPLL) for external clock recovery,
which supports NRZ, NRZI, FM0, FM1, Manchester, and Differential Manchester. If the
clock recovery function is not required (that is, synchronous communication), then the
DPLL can be disabled, in which case only NRZ and NRZI are supported.

The SCC can be connected to its own set of pins on the MPC855T. This configuration is
called the non-multiplexed serial interface (NMSI) and is described in Chapter 20, “Serial
Interface.” Using NMSI, the SCC can support standard modem interface signals, RTS,
CTS, and CD, through the port C pins and the CPM interrupt controller (CPIC). If required,
software and additional parallel I/O lines can be used to support additional handshake
signals. Figure 21-1 shows the SCC block diagram.

Figure 21-1. SCC Block Diagram

21.1 Features
The following is a list of the main SCC features. (Performance figures assume a 25-MHz
system clock.)

• Implements HDLC/SDLC, HDLC bus, asynchronous HDLC, BISYNC,
synchronous start/stop, asynchronous start/stop (UART), AppleTalk/LocalTalk, and
totally transparent protocols

• Supports 10-Mbps Ethernet/IEEE 802.3 (half- or full-duplex)

• Additional protocols can be added in the future through the use of RAM microcodes.
Maximum serial clocking rates of 12.5 MHz on a 25-MHz system

Decoder Delimiter Shifter Delimiter

Internal Clocks

Encoder

Modem Lines
Rx

Control
Unit

Rx
Data
FIFO

Tx
Data
FIFO Tx

Control
Unit

RXD

Modem Lines

Clock
Generator

DPLL
and Clock
Recovery

TCLK

TXD

Control
Registers

Shifter

U-Bus

Peripheral Bus

RCLK

Chapter 21. Serial Communications Controller

SCC Registers

• DPLL circuitry for clock recovery with NRZ, NRZI, FM0, FM1, Manchester, and
Differential Manchester (also known as Differential Bi-phase-L)

• Clocks can be derived from a baud rate generator, an external pin, or DPLL

• Data rate for asynchronous communication can be as high as 3.125 Mbps at 25 MHz

• Supports automatic control of the RTS, CTS, and CD modem signals

• Multi-buffer data structure for receive and send (the number of buffer descriptors
(BDs) is limited only by the size of the internal dual-port RAM—8 bytes per BD)

• Deep FIFOs (The SCC1 transmit and receive FIFOs are 32 bytes each.)

• Transmit-on-demand feature decreases time to frame transmission (transmit
latency)

• Low FIFO latency option for send and receive in character-oriented and totally
transparent protocols

• Frame preamble options

• Full-duplex operation

• Fully transparent option for one half of the SCC (Rx/Tx) while another protocol
executes on the other half (Tx/Rx)—except for Ethernet and serial ATM operation

• Echo and local loopback modes for testing

21.2 SCC Registers
The SCC has a general SCC mode register (GSMR), a protocol-specific mode register
(PSMR), a data synchronization register (DSR), and a transmit-on-demand register
(TODR). The SCC supporting registers are described in the following sections.

21.2.1 General SCC Mode Register (GSMR)

The SCC contains a general SCC mode register (GSMR) that defines options common to
the SCC regardless of the protocol. GSMR_L contains the low-order 32 bits; GSMR_H,
shown in Figure 21-2, contains the high-order 32 bits. Some GSMR operations are
described in later sections. These registers are affected by HRESET and SRESET.

MPC855T User’s Manual

SCC Registers

Table 21-1 describes GSMR_H fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — GDE

Reset 0

R/W R/W

Addr 0xA04 (GSMR_H1)

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field TCRC REVD TRX TTX CDP CTSP CDS CTSS TFL RFW TXSY SYNL RTSM RSYN

Reset 0

R/W R/W

Addr 0xA06 (GSMR_H1)

Figure 21-2. GSMR_H—General SCC Mode Register (High Order)

Table 21-1. GSMR_H Field Descriptions

Bit Name Description

0–14 — Reserved, should be cleared.

15 GDE Glitch detect enable. Determines whether the SCC searches for glitches on the external Rx and Tx
serial clock lines. Regardless of the GDE setting, a Schmitt trigger on the input lines is used to reduce
signal noise.
0 No glitch detection. Clear GDE if the external serial clock exceeds the limits of glitch detection logic

(6.25 MHz assuming a 25-MHz system clock), if an internal BRG supplies the SCC clock, or if
external clocks are used and glitch detection matters less than power consumption.

1 Glitches can be detected and reported as maskable interrupts in the SCC event register (SCCE).

16–17 TCRC Transparent CRC (valid for totally transparent channel only). Selects the frame checking provided on
transparent channels of the SCC (either the receiver, transmitter, or both, as defined by TTX and TRX).
Although this configuration selects a frame check type, the decision to send the frame check is made
in the TxBD. Thus, frame checks are not needed in transparent mode and frame check errors
generated on the receiver can be ignored.
00 16-bit CCITT CRC (HDLC). (X16 + X12 + X5 + 1).
01 CRC16 (BISYNC). (X16 + X15 + X2 + 1).
10 32-bit CCITT CRC (Ethernet and HDLC).

(X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 + 1).
11 Reserved.

18 REVD Reverse data (valid for a totally transparent channel only)
0 Normal operation.
1 Reverses the bit order for totally transparent channels on the SCC (either the receiver, transmitter,

or both, as defined by TTX and TRX) and sends the msb of each byte first. Section 26.11, “BISYNC
Mode Register (PSMR),” describes reversing bit order in a BISYNC protocol.

Chapter 21. Serial Communications Controller

SCC Registers

19, 20 TRX,
TTX

Transparent receiver/transmitter. The receiver, transmitter, or both can use totally transparent
operation, regardless of GSMR_L[MODE]. For example, to configure the transmitter as a UART and
the receiver for totally transparent operation, set MODE = 0b0100 (UART), TTX = 0, and TRX = 1.
0 Normal operation.
1 The receiver/transmitter uses totally transparent mode, regardless of the protocol chosen in

GSMR_L[MODE].
For full-duplex totally transparent operation, set both TTX and TRX.
Note that the SCC cannot operate half in Ethernet or serial ATM mode and half in transparent mode.
For example, if MODE = 0b1100 (Ethernet), erratic operation occurs unless TTX = TRX.

21, 22 CDP,
CTSP

CD/CTS pulse. If the SCC is used in the TSA and is programmed in transparent mode, set CTSP and
refer to Section 28.4.2, “Synchronization and the TSA,” for options on programming CDP.
0 Normal operation (envelope mode). CD/CTS should envelope the frame. Negating CD/CTS during

reception causes a CD/CTS lost error.
1 Pulse mode. Synchronization occurs when CD/CTS is asserted; further CD/CTS transitions do not

affect reception.

23, 24 CDS,
CTSS

CD/CTS sampling. Determine synchronization characteristics of CD and CTS. If the SCC is in
transparent mode and is used in the TSA, CDS and CTSS must be set. Also, CDS and CTSS must
be set for loopback testing in transparent mode.
0 CD/CTS is assumed to be asynchronous with data. It is internally synchronized by the SCC, then

data is received (CD) or sent (CTS) after several clock delays.
1 CD/CTS is assumed to be synchronous with data, which speeds up operation. CD or CTS must

transition while the Rx/Tx clock is low, at which time, the transfer begins. Useful for connecting
MPC855T in transparent mode since the RTS of one MPC855T can connect directly to the CD/CTS
of another.

25 TFL Transmit FIFO length.
0 Normal operation. The SCC transmit FIFO is 32 bytes.
1 The Tx FIFO is 1 byte. This option is used with character-oriented protocols, such as UART, to

ensure a minimum FIFO latency at the expense of performance.

26 RFW Rx FIFO width.
0 Receive FIFO is 32 bits wide for maximum performance; the Rx FIFO is 32 bytes for the SCC. Data

is not normally written to receive buffers until at least 32 bits are received. This configuration is
required for HDLC-type protocols and Ethernet and is recommended for high-performance
transparent protocols.

1 Low-latency operation. The receive FIFO is 8 bits wide, reducing the Rx FIFO to a quarter its normal
size. This allows data to be written to the buffer as soon as a character is received, instead of
waiting to receive 32 bits. This configuration must be chosen for character-oriented protocols, such
as UART. It can also be used for low-performance, low-latency, transparent operation. However, it
must not be used with HDLC, HDLC Bus, AppleTalk, or Ethernet because it causes erratic behavior.

27 TXSY Transmitter synchronized to the receiver. Intended for X.21 applications where the transmitted data
must begin an exact multiple of 8-bit periods after the received data arrives.
0 No synchronization between receiver and transmitter (default).
1 The transmit bit stream is synchronized to the receiver. Additionally, if RSYN = 1, transmission in

totally transparent mode does not occur until the receiver synchronizes with the bit stream and CTS
is asserted to the SCC. Assuming CTS is asserted, transmission begins 8 clocks after the receiver
starts receiving data.

Table 21-1. GSMR_H Field Descriptions (continued)

Bit Name Description

MPC855T User’s Manual

SCC Registers

Figure 21-3 shows GSMR_L.

28–29 SYNL Sync length (BISYNC and transparent mode only). See the data synchronization register (DSR)
definition in the BISYNC (Section 26.9, “Sending and Receiving the Synchronization Sequence”) and
totally transparent (Section 28.4.2.1, “In-line Synchronization Pattern”) chapters.
00 An external sync (CD) is used instead of the sync pattern in the DSR.
01 4-bit sync. The receiver synchronizes on a 4-bit sync pattern stored in the DSR. This sync and

additional syncs can be stripped by programming the SCC’s parameter RAM for character
recognition.

10 8-bit sync. Should be chosen along with the BISYNC protocol to implement mono-sync. The
receiver synchronizes on an 8-bit sync pattern in the DSR.

11 16-bit sync. Also called BISYNC. The receiver synchronizes on a 16-bit sync pattern stored in the
DSR.

30 RTSM RTS mode. Determines whether flags or idles are to be sent. Can be changed on-the-fly.
0 Send idles between frames as defined by the protocol and the TEND bit. RTS is negated between

frames (default).
1 Send flags/syncs between frames according to the protocol. RTS is always asserted whenever the

SCC is enabled.

31 RSYN Receive synchronization timing (totally transparent mode only).
0 Normal operation.
1 If CDS = 1, CD should be asserted on the second bit of the Rx frame rather than on the first.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — EDGE TCI TSNC RINV TINV TPL TPP TEND TDCR

Reset 0

R/W R/W

Addr 0xA00 (GSMR_L1)

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field RDCR RENC TENC DIAG ENR ENT MODE

Reset 0

R/W R/W

Addr 0xA02 (GSMR_L1)

Figure 21-3. GSMR_L—General SCC Mode Register (Low Order)

Table 21-1. GSMR_H Field Descriptions (continued)

Bit Name Description

Chapter 21. Serial Communications Controller

SCC Registers

Table 21-2 describes GSMR_L fields.
Table 21-2. GSMR_L Field Descriptions

Bit Name Description

0 — Reserved, should be cleared.

1–2 EDGE Clock edge. Determines the clock edge the DPLL uses to adjust the receive sample point due to jitter
in the received signal. Ignored in UART protocol or if the 1x clock mode is selected in RDCR.
00 Both the positive and negative edges are used for changing the sample point (default).
01 Positive edge. Only the positive edge of the received signal is used to change the sample point.
10 Negative edge. Only the negative edge of the received signal is used to change the sample point.
11 No adjustment is made to the sample point.

3 TCI Transmit clock invert.
0 Normal operation.
1 Before it is used, the internal Tx clock (TCLK) is inverted by the SCC so it can clock data out one-half

clock earlier (on the rising rather than the falling edge). In this case, the SCC offers a minimum and
maximum rising clock edge-to-data specification. Data output by the SCC after the rising edge of an
external Tx clock can be latched by the external receiver one clock cycle later on the next rising edge
of the same Tx clock. Recommended for Ethernet, HDLC, and transparent operation when clock
rates exceed 8 MHz to improve data setup time for the external transceiver.

4–5 TSNC Transmit sense. Determines the amount of time the internal carrier sense signal stays active after the
last transition on RXD, indicating that the line is free. For instance, AppleTalk can use TSNC to avoid
a spurious CS-changed (SCCE[DCC]) interrupt that would otherwise occur during the frame sync
sequence before the opening flags. If RDCR is configured to 1× clock mode, the delay is the greater of
the two numbers listed. If RDCR is configured to 8×, 16×, or 32× mode, the delay is the smaller number.
00 Infinite. Carrier sense is always active (default).
01 14- or 6.5-bit times as determined by RDCR.
10 4- or 1.5-bit times as determined by RDCR (normally for AppleTalk).
11 3- or 1-bit times as determined by RDCR.

6 RINV DPLL Rx input invert data. Must be zero in HDLC bus mode or asynchronous UART mode.
0 Do not invert.
1 Invert data before sending it to the DPLL for reception. Used to produce FM1 from FM0 and NRZI

space from NRZI mark or to invert the data stream in regular NRZ mode.

7 TINV DPLL Tx input invert data. Must be zero in HDLC bus mode.
0 Do not invert.
1 Invert data before sending it to the DPLL for transmission. Used to produce FM1 from FM0 and NRZI

space from NRZI mark and to invert the data stream in regular NRZ mode. In T1 applications, setting
TINV and TEND creates a continuously inverted HDLC data stream.

8–10 TPL Tx preamble length. Determines the length of the preamble configured by the TPP bits.
000 No preamble (default).
001 8 bits (1 byte).
010 16 bits (2 bytes).
011 32 bits (4 bytes).
100 48 bits (6 bytes). Select this setting for Ethernet operation.
101 64 bits (8 bytes).
110 128 bits (16 bytes).
111 Reserved.

MPC855T User’s Manual

SCC Registers

11–12 TPP Tx preamble pattern. Determines what, if any, bit pattern should precede each Tx frame. The preamble
pattern is sent before the first flag/sync of the frame. TPP is ignored in UART mode. The preamble
length is programmed in TPL; the preamble pattern is typically sent to a receiving station that uses a
DPLL for clock recovery. The receiving DPLL uses the regular preamble pattern to help it lock onto the
received signal in a short, predictable time period.
00 All zeros.
01 Repetitive 10s. Select this setting for Ethernet operation.
10 Repetitive 01s.
11 All ones. Select this setting for LocalTalk operation.

13 TEND Transmitter frame ending. Intended for NRZI transmitter encoding of the DPLL. TEND determines
whether TXD should idle in a high state or in an encoded ones state (high or low). It can, however, be
used with other encodings besides NRZI.
0 Default operation. TXD is encoded only when data is sent, including the preamble and opening and

closing flags/syncs. When no data is available to send, the signal is driven high.
1 TXD is always encoded, even when idles are sent.

14–15 TDCR Transmitter/receiver DPLL clock rate. If the DPLL is not used, choose 1× mode except in asynchronous
UART mode where 8×, 16×, or 32× must be chosen. TDCR should match RDCR in most applications
to allow the transmitter and receiver to use the same clock source. If an application uses the DPLL, the
selection of TDCR/RDCR depends on the encoding/decoding. If communication is synchronous, select
1×. FM0/FM1, Manchester, and Differential Manchester require 8×, 16×, or 32×. If NRZ- or
NRZI-encoded communication is asynchronous (that is, clock recovery required), select 8×, 16×, or
32×. The 8× option allows highest speed, whereas the 32× option provides the greatest resolution.
00 1× clock mode. Only NRZ or NRZI encodings/decodings are allowed.
01 8× clock mode.
10 16× clock mode. Normally chosen for UART and AppleTalk.
11 32× clock mode.

16–17 RDCR

18–20 RENC Receiver decoding/transmitter encoding method. Select NRZ if DPLL is not used. RENC should equal
TENC in most applications. However, do not use this internal DPLL for Ethernet.
000 NRZ (default setting if DPLL is not used). Required for UART (synchronous or asynchronous).
001 NRZI Mark (set RINV/TINV also for NRZI space).
010 FM0 (set RINV/TINV also for FM1).
011 Reserved.
100 Manchester.
101 Reserved.
110 Differential Manchester (Differential Bi-phase-L).
111 Reserved.

21–23 TENC

Table 21-2. GSMR_L Field Descriptions (continued)

Bit Name Description

Chapter 21. Serial Communications Controller

SCC Registers

24–25 DIAG Diagnostic mode.
00 Normal operation, CTS and CD are under automatic control. Data is received through RXD and

transmitted through TXD. The SCC uses modem signals to enable or disable transmission and
reception. These timings are shown in Section 21.4.4, “Controlling SCC Timing with RTS, CTS, and
CD.”

01 Local loopback mode. Transmitter output is connected internally to the receiver input, while the
receiver and the transmitter operate normally. The value on RXD is ignored. If enabled, data
appears on TXD, or the parallel I/O registers can be programmed to make TXD high. RTS can also
be programmed to be disabled in the appropriate parallel I/O register. The transmitter and receiver
must share the same clock source, but separate CLKx pins can be used if connected to the same
external clock source.
If external loopback is preferred, program DIAG for normal operation and externally connect TXD
and RXD. Then, physically connect the control signals (RTS connected to CD, and CTS grounded)
or set the parallel I/O registers so CD and CTS are permanently asserted to the SCC by configuring
the associated CTS and CD pins as general-purpose I/O.

10 Automatic echo mode. The transmitter automatically resends received data bit-by-bit using the Rx
clock provided. The receiver operates normally and receives data if CD is asserted. CTS is ignored.

11 Loopback and echo mode. Loopback and echo operation occur simultaneously. CD and CTS are
ignored. See the loopback bit description above for clocking requirements.

For TDM operation, the diagnostic mode is selected by SIMODE[SDMa]; see Section 20.2.4.2, “SI
Mode Register (SIMODE).”

26 ENR Enable receive. Enables the receiver hardware state machine for the SCC.
0 The receiver is disabled and data in the Rx FIFO is lost. If ENR is cleared during reception, the

receiver aborts the current character.
1 The receiver is enabled.
ENR can be set or cleared, regardless of whether serial clocks are present. Section 21.4.7,
“Reconfiguring the SCC,” describes how to disable/enable the SCC. Note also these other tools
provided for controlling SCC reception: the ENTER HUNT MODE and CLOSE RXBD commands, and
RxBD[E].

27 ENT Enable transmit. Enables the transmitter hardware state machine for the SCC.
0 The transmitter is disabled. If ENT is cleared during transmission, the current character is aborted

and TXD returns to the idle state. Data already in the Tx shift register is not sent.
1 The transmitter is enabled.
ENT can be set or cleared, regardless of whether serial clocks are present. Section 21.4.7,
“Reconfiguring the SCC,” describes how to disable/enable the SCC. Note also these other tools
provided for controlling SCC transmission: the STOP TRANSMIT, GRACEFUL STOP TRANSMIT, and RESTART
TRANSMIT commands, the freeze option and CTS flow control option in UART mode, and TxBD[R].

28–31 MODE Channel protocol mode. See also GSMR_H[TTX, TRX].
0000 HDLC
0001 Reserved
0010 AppleTalk/LocalTalk
0011 SS7—reserved for RAM microcode
0100 UART
0101
0110
0111 V.14—reserved for RAM microcode
1000 BISYNC
1001 DDCMP—reserved for RAM microcode
101x Reserved
1100 Ethernet
All others reserved.

Table 21-2. GSMR_L Field Descriptions (continued)

Bit Name Description

MPC855T User’s Manual

SCC Registers

21.2.2 Protocol-Specific Mode Register (PSMR)

The protocol implemented by the SCC is selected by its GSMR_L[MODE]. The SCC has
an additional protocol-specific mode register (PSMR) for configurations specific to the
chosen protocol. The PSMR fields are described in the specific chapters that describe each
protocol. These registers are affected by HRESET and SRESET.

21.2.3 Data Synchronization Register (DSR)

The SCC has a data synchronization register (DSR) that specifies the pattern used for frame
synchronization. The programmed value for DSR depends on the protocol:

• UART—DSR is used to configure fractional stop bit transmission.

• BISYNC and transparent—DSR should be programmed with the sync pattern.

• Ethernet—DSR should be programmed with 0xD555.

• HDLC—At reset, DSR defaults to 0x7E7E (two HDLC flags), so it does not need to
be written.

This register is affected by HRESET and SRESET. Figure 21-4 shows the sync fields.

21.2.4 Transmit-on-Demand Register (TODR)

In normal operation, if no frame is being sent by the SCC, the CP periodically polls the R
bit of the next TxBD to see if a new frame/buffer is requested. Depending on the SCC
configuration, this polling occurs every 8–32 serial Tx clocks. The transmit-on-demand
option, selected in the transmit-on-demand register (TODR) shown in Figure 21-5,
shortens the latency of the Tx buffer/frame and is useful in LAN-type protocols where
maximum interframe gap times are limited by the protocol specification.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field SYN2 SYN1

Reset 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0

R/W R/W

Addr 0xA0E (DSR1)

Figure 21-4. Data Synchronization Register (DSR)

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field TOD —

Reset 0

R/W R/W

Addr 0xA0C (TODR1)

Figure 21-5. Transmit-on-Demand Register (TODR)

Chapter 21. Serial Communications Controller

SCC Buffer Descriptors (BDs)

The CP can be configured to begin processing a new frame/buffer without waiting the
normal polling time by setting TODR[TOD] after TxBD[R] is set. Because this feature
favors the specified TxBD, it may affect servicing of the FIFOs of other CPM controllers.
Therefore, transmitting on demand should only be used when a high-priority TxBD has
been prepared and enough time has passed since the last SCC transmission. Table 21-3
describes TODR fields. This register is affected by HRESET and SRESET.

21.3 SCC Buffer Descriptors (BDs)
Data associated with the SCC is stored in buffers and each buffer is referenced by a buffer
descriptor (BD) that can reside anywhere in dual-port RAM. The total number of 8-byte
BDs is limited only by the size of the dual-port RAM (128 BDs/1 Kbyte). These BDs are
shared among all serial controllers—SCC, SMCs, SPI, and I2C. The user defines how the
BDs are allocated among the controllers.

Each 64-bit BD has the following structure:

• The half word at offset + 0x0 contains status and control bits that control and report
on the data transfer. These bits vary from protocol to protocol. The CP updates the
status bits after the buffer is sent or received.

• The half word at offset + 0x2 (data length) holds the number of bytes sent or
received.

— For an RxBD, this is the number of bytes the controller writes into the buffer. The
CP writes the length after received data is placed into the associated buffer and
the buffer closed. In frame-based protocols (but not including SCC transparent
operation), this field contains the total frame length, including CRC bytes. Also,
if a received frame’s length, including CRC, is an exact multiple of MRBLR, the
last BD holds no actual data but does contain the total frame length.

— For a TxBD, this is the number of bytes the controller should send from its buffer.
Normally, this value should be greater than zero. The CP never modifies this
field.

Table 21-3. TODR Field Descriptions

Bits Name Description

0 TOD Transmit on demand.
0 Normal operation.
1 The CP gives high priority to the current TxBD and begins sending the frame without waiting the

normal polling time to check TxBD[R]. TOD is cleared automatically after one serial clock, but
transmitting on demand continues until an unprepared (R = 0) BD is reached. TOD does not need to
be set again if new TxBDs are added to the BD table as long as older TxBDs are still being
processed. New TxBDs are processed in order. The first bit of the frame is typically clocked out 5-6
bit times after TOD is set.

1–15 — Reserved, should be cleared.

MPC855T User’s Manual

SCC Buffer Descriptors (BDs)

• The word at offset + 0x4 (buffer pointer) points to the beginning of the buffer in
memory (internal or external).

— For an RxBD, the value must be even.

— For a TxBD, this pointer can be even or odd.

Shown in Figure 21-6, the format of Tx and Rx BDs is the same in each SCC mode. Only
the status and control bits differ for each protocol.

For frame-oriented protocols, a message can reside in as many buffers as necessary. Each
buffer has a maximum length of 65,535 bytes. The CP does not assume that all buffers of a
single frame are currently linked to the BD table. The CP does assume, however, that the
unlinked buffers are provided by the core in time to be sent or received; otherwise, an error
condition is reported—an underrun error when sending and a busy error when receiving.
Figure 21-7 shows the SCC BD table and buffer structure.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 Status and Control

Offset + 2 Data Length

Offset + 4 High-Order Buffer Pointer

Offset + 6 Low-Order Buffer Pointer

Figure 21-6. SCC Buffer Descriptors (BDs)

Chapter 21. Serial Communications Controller

SCC Buffer Descriptors (BDs)

Figure 21-7. SCC Buffer Descriptor and Buffer Structure

In all protocols, BDs can point to buffers in the internal dual-port RAM. However, because
internal RAM is used for descriptors, buffers are usually put in external RAM, especially if
they are large. Usually, the internal U bus transfers data to the buffer.

The CP processes TxBDs in a straightforward manner. Once the transmit side of the SCC
is enabled, it starts with the first BD in that SCC TxBD table. Once the CP detects that the
R bit is set in the TxBD, it starts processing the buffer. The CP detects that the BD is ready
when it polls the R bit or when the user writes to the TODR. After data from the BD is put
in the Tx FIFO, if necessary the CP waits for the next descriptor’s R bit to be set before
proceeding. Thus, the CP does no look-ahead descriptor processing and does not skip BDs
that are not ready. When the CP sees a BD’s W bit (wrap) set, it returns to the start of the
BD table after this last BD of the table is processed. The CP clears R (not ready) after using
a TxBD, which keeps it from being retransmitted before it is confirmed by the core.
However, some protocols support a continuous mode (CM), for which R is not cleared
(always ready).

The CP uses RxBDs similarly. When data arrives, the CP performs required processing on
the data and moves resultant data to the buffer pointed to by the first BD; it continues until
the buffer is full or an event, such as an error or end-of-frame detection, occurs. The buffer
is then closed; subsequent data uses the next BD. If E = 0, the current buffer is not empty
and it reports a busy error. The CP does not move from the current BD until E is set by the

Status and Control

Data Length

Buffer Pointer

SCC TxBD Table Pointer
(TBASE)

SCC RxBD Table Pointer
(RBASE)

SCC RxBD
Table

SCC TxBD
Table

Dual-Port RAM

Status and Control

Data Length

Buffer Pointer

Tx Buffer

External Memory

Rx Buffer Descriptors

Tx Buffer Descriptors

Rx Buffer

MPC855T User’s Manual

SCC Parameter RAM

core (the buffer is empty). After using a descriptor, the CP clears E (not empty) and does
not reuse a BD until it has been processed by the core. However, in continuous mode (CM),
E remains set. When the CP discovers a descriptor’s W bit set (indicating it is the last BD
in the circular BD table), it returns to the beginning of the table when it is time to move to
the next buffer.

21.4 SCC Parameter RAM
The protocol-specific portions of the SCC parameter RAM are discussed in the specific
protocol descriptions and the part that is common to all SCC protocols is shown in
Table 21-4.

Some parameter RAM values must be initialized before the SCC can be enabled. Other
values are initialized or written by the CP. Once initialized, most parameter RAM values do
not need to be accessed because most activity centers around the descriptors rather than the
parameter RAM. However, if the parameter RAM is accessed, note the following:

• Parameter RAM can be read at any time.

• Tx parameter RAM can be written only when the transmitter is disabled—after a
STOP TRANSMIT command and before a RESTART TRANSMIT command or after the
buffer/frame finishes transmitting after a GRACEFUL STOP TRANSMIT command and
before a RESTART TRANSMIT command.

• Rx parameter RAM can be written only when the receiver is disabled. Note the
CLOSE RX BD command does not stop reception, but it does allow the user to extract
data from a partially full Rx buffer.

• See Section 21.4.7, “Reconfiguring the SCC.”

Table 21-4 shows the parameter RAM map for all SCC protocols. Boldfaced entries must
be initialized by the user.

Table 21-4. SCC Parameter RAM Map for All Protocols

Offset 1 Name Width Description

0x00 RBASE Hword Rx/TxBD table base address—offset from the beginning of dual-port RAM. The BD tables
can be placed in any unused portion of the dual-port RAM.
Values in RBASE and TBASE should be multiples of eight.0x02 TBASE Hword

0x04 RFCR Byte Rx function code. See Section 21.4.1, “Function Code Registers (RFCR and TFCR).”

0x05 TFCR Byte Tx function code. See Section 21.4.1, “Function Code Registers (RFCR and TFCR).”

Chapter 21. Serial Communications Controller

SCC Parameter RAM

0x06 MRBLR Hword Maximum receive buffer length. Defines the maximum number of bytes the CP writes to
a receive buffer before it goes to the next buffer. The CP can write fewer bytes than
MRBLR if a condition such as an error or end-of-frame occurs. It never writes more bytes
than the MRBLR value. Therefore, user-supplied buffers should be no smaller than
MRBLR. MRBLR should be greater than zero for all modes. It should be a multiple of 4
for Ethernet and HDLC modes, and in totally transparent mode unless the Rx FIFO is
8-bits wide (GSMR_H[RFW] = 1).
Note that although MRBLR is not intended to be changed while the SCC is operating, it
can be changed dynamically in a single-cycle, 16-bit move (not two 8-bit cycles).
Changing MRBLR has no immediate effect. To guarantee the exact Rx BD on which the
change occurs, change MRBLR only while the receiver is disabled.
Transmit buffer length is programmed in TxBD[Data Length] and is not affected by
MRBLR.

0x08 RSTATE Word Rx internal state3

0x0C RIP Word Rx internal buffer pointer 2. The Rx and Tx internal buffer pointers are updated by the
SDMA channels to show the next address in the buffer to be accessed.

0x10 RBPTR Hword Current RxBD pointer. Points to the current BD being processed or to the next BD the
receiver uses when it is idling. After reset or when the end of the BD table is reached, the
CP initializes RBPTR to the value in the RBASE. Although most applications do not need
to write RBPTR, it can be modified when the receiver is disabled or when no Rx buffer is
in use.

0x12 RCOUNT Hword Rx internal byte count2. The Rx internal byte count is a down-count value initialized with
MRBLR and decremented with each byte written by the supporting SDMA channel.

0x14 RTEMP Word Rx temp3

0x18 TSTATE Word Tx internal state3

0x1C TIP Word Tx internal buffer pointer2. The Rx and Tx internal buffer pointers are updated by the
SDMA channels to show the next address in the buffer to be accessed.

0x20 TBPTR Hword Current TxBD pointer. Points to the current BD being processed or to the next BD the
transmitter uses when it is idling. After reset or when the end of the BD table is reached,
the CP initializes TBPTR to the value in the TBASE. Although most applications do not
need to write TBPTR, it can be modified when the transmitter is disabled or when no Tx
buffer is in use (after a STOP TRANSMIT or GRACEFUL STOP TRANSMIT command is issued
and the frame completes its transmission).

0x22 TCOUNT Hword Tx internal byte count2. A down-count value initialized with TxBD[Data Length] and
decremented with each byte read by the supporting SDMA channel.

0x24 TTEMP Word Tx temp3

0x28 RCRC Word Temp receive CRC2

0x2C TCRC Word Temp transmit CRC2

0x30 Protocol-specific area. (The size of this area depends on the protocol chosen.)

1 From SCC base. SCC base = IMMR + 0x3C00 (SCC1)
2 These parameters need not be accessed for normal operation but may be helpful for debugging.
3 For CP use only

Table 21-4. SCC Parameter RAM Map for All Protocols (continued)

Offset 1 Name Width Description

MPC855T User’s Manual

SCC Parameter RAM

21.4.1 Function Code Registers (RFCR and TFCR)

The SCC has two separate function code registers—one for Rx buffers (RFCR) and one for
Tx buffers (TFCR). Function code registers contain the value to appear on AT[1–3] when
the associated SDMA channel accesses memory. It also selects the byte-ordering
convention. Figure 21-8 shows the register format.

Table 21-5 describes RFCR/TFCR fields.

21.4.2 Handling SCC Interrupts

SCC interrupts are handled globally by the CPM interrupt controller (CPIC) using the CPM
interrupt pending register (CIPR), CPM interrupt mask register (CIMR), and CPM
in-service register (CISR), described in Chapter 34, “CPM Interrupt Controller.” Bits in
each CPIC register are used to mask, enable, or report individual interrupts in the SCC.

To allow interrupt handling for SCC-specific events, further event, mask, and status
registers are provided within the SCC’s internal memory map area; see Table 21-6. Since
interrupt events are protocol-dependent, event descriptions are found in the specific
protocol chapters.

Bit 0 1 2 3 4 5 6 7

Field — BO AT[1–3]

Reset 0000_0000

R/W R/W

Addr SCC base + 0x04 (RFCR); SCC base + 0x05 (TFCR)

Figure 21-8. Function Code Registers (RFCR and TFCR)

Table 21-5. RFCR /TFCR Field Descriptions

Bits Name Description

0–2 — Reserved, should be cleared.

3–4 BO Byte ordering. Program BO to select the required byte ordering for the buffer. If BO is changed
on-the-fly, it takes effect at the beginning of the next frame (Ethernet, HDLC, and transparent) or at
the beginning of the next BD. See Appendix A, “Byte Ordering.”
00 Reserved
01 Modified little-endian.
1x Big-endian or true little-endian.

5–7 AT[1–3] Address type. Contains the function code value used during the SDMA channel memory access.
Note AT[0] is driven high to identify this SDMA channel access as a DMA type.

Chapter 21. Serial Communications Controller

SCC Parameter RAM

Follow these steps to handle an SCC interrupt:

1. Once an interrupt occurs, read SCCE to determine the interrupt sources and clear
those SCCE bits (in most cases).

2. Process the TxBDs to reuse them if SCCE[TX] or SCCE[TXE] = 1. If the transmit
speed is fast or the interrupt delay is long, the SCC may have sent more than one Tx
buffer. Thus, it is important to check more than one TxBD during interrupt
handling. A common practice is to process all TxBDs in the handler until one is
found with its R bit set.

3. Extract data from the RxBD if SCCE[RX], SCCE[RXB], or SCCE[RXF] is set. As
with transmit buffers, if the receive speed is fast or the interrupt delay is long, the
SCC may have received more than one buffer and the handler should check more
than one RxBD. A common practice is to process all RxBDs in the interrupt
handler until one is found with its E bit set.

4. Clear CISR[SCC].

5. Execute the rfi instruction.

21.4.3 SCC Initialization

SCC initialization requires that a number of registers and parameters be configured after a
power-on reset. Regardless of the protocol used, follow these steps:

1. Write the parallel I/O ports to configure and connect the I/O pins to the SCC.

2. Set the SDMA configuration register SDCR[RAID] field to 0b01 (U-bus arbitration
priority level 5).

3. Configure the parallel I/O registers to enable RTS, CTS, and CD if these signals are
required.

Table 21-6. SCCx Event, Mask, and Status Registers

Register &
IMMR Offset

Description

SCCE
0xA10 (SCC1)

SCC event register. This 16-bit register reports events recognized by the SCC. When an event is
recognized, the SCC sets its corresponding bit in SCCE, regardless of the corresponding mask bit.
When the corresponding event occurs, an interrupt is signaled to the CPIC. Bits are cleared by writing
ones (writing zeros has no effect). SCCE is cleared at reset, is affected by HRESET and SRESET, and
can be read at any time.

SCCM
0xA14 (SCC1)

SCC mask register. The 16-bit, read/write register allows interrupts to be enabled or disabled using the
CPM for specific events in the SCC. An interrupt is generated only if interrupts in the SCC are enabled
in the CPIC. If an SCCM bit is zero, the CPM does not proceed with interrupt handling when that event
occurs. If an SCCM bit is set, a 1 in the corresponding SCCE bit sets the SCC event bit in CIPR. The
SCCM and SCCE bit positions are identical. This register is affected by HRESET and SRESET.

SCCS
0xA17 (SCC1)

SCC status register. This 8-bit, read-only register allows monitoring of the real-time status of RXD. It
does not show the real-time status of CTS and CD, which is available in the parallel I/O data registers.
Interrupts caused by CTS and CD are described in Section Chapter 33, “Parallel I/O Ports.” This
register is affected by HRESET and SRESET.

MPC855T User’s Manual

SCC Parameter RAM

4. If the time-slot assigner (TSA) is used, the serial interface (SI) must be configured.
If the SCC is used in NMSI mode, SICR must still be initialized.

5. Write all GSMR bits except ENT or ENR.

6. Write the PSMR.

7. Write the DSR.

8. Initialize the required values for the SCC’s parameter RAM.

9. Clear out any current events in SCCE (optional).

10. Write ones to SCCM register to enable interrupts.

11. Clear out any current interrupts in the CIPR (optional).

12. Write the CIMR to enable interrupts to the CPIC.

13. Set GSMR_L[ENT] and GSMR_L[ENR].

Descriptors can have their R or E bits set at any time. Notice that the CPCR does not need
to be accessed after a hard reset. The SCC should be disabled and reenabled after any
dynamic change to its parallel I/O ports or serial channel physical interface configuration.
A full reset can also be implemented using CPCR[RST].

21.4.4 Controlling SCC Timing with RTS, CTS, and CD
When GSMR_L[DIAG] is programmed to normal operation, CD and CTS are controlled
by the SCC. In the following subsections, it is assumed that GSMR_L[TCI] is zero,
implying normal transmit clock operation.

21.4.4.1 Synchronous Protocols

RTS is asserted when the SCC data is loaded into the Tx FIFO and a falling Tx clock occurs.
At this point, the SCC starts sending data once appropriate conditions occur on CTS. In all
cases, the first data bit is the start of the opening flag, sync pattern, or preamble.

Figure 21-9 shows that the delay between RTS and data is 0 bit times, regardless of
GSMR_H[CTSS]. This operation assumes that CTS is already asserted to the SCC or that
CTS is reprogrammed to be a parallel I/O line, in which case CTS to the SCC is always
asserted. RTS is negated one clock after the last bit in the frame.

Chapter 21. Serial Communications Controller

SCC Parameter RAM

Figure 21-9. Output Delay from RTS Asserted for Synchronous Protocols

When RTS is asserted, if CTS is not already asserted, delays to the first data bit depend on
when CTS is asserted. Figure 21-10 shows that the delay between CTS and the data can be
approximately 0.5 to 1 bit times or 0 bit times, depending on GSMR_H[CTSS].

Figure 21-10. Output Delay from CTS Asserted for Synchronous Protocols

If CTS is programmed to envelope data, negating it during frame transmission causes a
CTS lost error. Negating CTS forces RTS high and Tx data to become idle. If
GSMR_H[CTSS] is zero, the SCC must sample CTS before a CTS lost is recognized;

1. A frame includes opening and closing flags and syncs, if present in the protocol.

TCLK

TXD

Last Bit of Frame DataFirst Bit of Frame Data

NOTE:

(Output)

RTS
(Output)

CTS
(Input)

1. GSMR_H[CTSS] = 0. CTSP is a don’t care.

TCLK

TXD

Last Bit of Frame DataFirst Bit of Frame Data

NOTE:

CTS Sampled Low Here

1. GSMR_H[CTSS] = 1. CTSP is a don’t care.

TCLK

TXD

Last Bit of Frame DataFirst Bit of Frame Data

NOTE:

(Output)

RTS
(Output)

CTS
(Input)

(Output)

RTS
(Output)

CTS
(Input)

MPC855T User’s Manual

SCC Parameter RAM

otherwise, the negation of CTS immediately causes the CTS lost condition. See
Figure 21-11.

Figure 21-11. CTS Lost in Synchronous Protocols

Note that if GSMR_H[CTSS] = 1, CTS transitions must occur while the Tx clock is low.

Reception delays are determined by CD as shown in Figure 21-12. If GSMR_H[CDS] is
zero, CD is sampled on the rising Rx clock edge before data is received. If GSMR_H[CDS]
is 1, CD transitions cause data to be immediately gated into the receiver.

1. GSMR_H[CTSS] = 0. CTSP=0 or no CTS lost can occur.

TCLK

TXD

First Bit of Frame Data

NOTE:

CTS Sampled Low Here

1. GSMR_H[CTSS] = 1. CTSP=0 or no CTS lost can occur.

TCLK

First Bit of Frame Data

NOTE:

CTS Sampled High Here

Data Forced High

RTS Forced High

Data Forced High

RTS Forced High

CTS Lost Signaled in Frame BD

CTS Lost Signaled in Frame BD

(Output)

RTS
(Output)

CTS
(Input)

CTS
(Input)

RTS
(Output)

TXD
(Output)

Chapter 21. Serial Communications Controller

SCC Parameter RAM

Figure 21-12. Using CD to Control Synchronous Protocol Reception

If CD is programmed to envelope the data, it must remain asserted during frame
transmission or a CD lost error occurs. Negation of CD terminates reception. If
GSMR_H[CDS] is zero, CD must be sampled by the SCC before a CD lost error is
recognized; otherwise, the negation of CD immediately causes the CD lost condition.

If GSMR_H[CDS] is set, all CD transitions must occur while the Rx clock is low.

21.4.4.2 Asynchronous Protocols

In asynchronous protocols, RTS is asserted when SCC data is loaded into the Tx FIFO and
a falling Tx clock occurs. CD and CTS can be used to control reception and transmission
in the same manner as the synchronous protocols. The first bit sent in an asynchronous
protocol is the start bit of the first character. In addition, the UART protocol has an option
for CTS flow control as described in Chapter 22, “SCC UART Mode.”

• If CTS is already asserted when RTS is asserted, transmission begins in two
additional bit times.

• If CTS is not already asserted when RTS is asserted and GSMR_H[CTSS] = 0,
transmission begins in three additional bit times.

• If CTS is not already asserted when RTS is asserted and GSMR_H[CTSS] = 1,
transmission begins in two additional bit times.

1. GSMR_H[CDS] = 0. CDP=0.

RCLK

First Bit of Frame Data

NOTE:

CD Sampled Low Here

RCLK

CD Sampled High Here

Last Bit of Frame Data

2. If CD is negated prior to the last bit of the receive frame, CD lost is signaled in the frame BD.
3. If CDP=1, CD lost cannot occur and CD negation has no effect on reception.

1. GSMR_H[CDS] = 1. CDP=0.
NOTE:

2. If CD is negated prior to the last bit of the receive frame, CD lost is signaled in the frame BD.
3. If CDP=1, CD lost cannot occur and CD negation has no effect on reception.

Last Bit of Frame DataFirst Bit of Frame Data

CD Assertion Immediately
Gates Reception

CD Negation Immediately
Halts Reception

RXD
(Input)

CD
(Input)

CD
(Input)

RXD
(Input)

MPC855T User’s Manual

SCC Parameter RAM

21.4.5 Digital Phase-Locked Loop (DPLL) Operation

The SCC includes a digital phase-locked loop (DPLL) for recovering clock information
from a received data stream. For applications that provide a direct clock source to the SCC,
the DPLL can be bypassed by selecting 1x mode for GSMR_L[RDCR, TDCR]. If the
DPLL is bypassed, only NRZ or NRZI encodings are available. The DPLL must not be used
when the SCC is programmed to Ethernet and is optional for other protocols. Figure 21-13
shows the DPLL receiver block; Figure 21-14 shows the transmitter block diagram.

Figure 21-13. DPLL Receiver Block Diagram

DPLL

HSRCLK

RXD

RINV

TSNC

EDGE

RDCR

RENC

Receiver

Carrier SNC

Decoded Data

Hunting

Noise

0

S

Recovered Clock

HSRCLK RCLK
1

1x Mode

0

S

SCCR Data
1

1x Mode

D

CLK

Q

HSRCLK

RXD

RINV

RENC ≠ NRZI

Chapter 21. Serial Communications Controller

SCC Parameter RAM

Figure 21-14. DPLL Transmitter Block Diagram

The DPLL can be driven by one of the baud rate generator outputs or an external clock,
CLKx. In the block diagrams, this clock is labeled HSRCLK/HSTCLK. The
HSRCLK/HSTCLK should be approximately 8x, 16x, or 32x the data rate, depending on
the coding chosen. The DPLL uses this clock, along with the data stream, to construct a data
clock that can be used as the SCC Rx and/or Tx clock. In all modes, the DPLL uses the input
clock to determine the nominal bit time. If the DPLL is bypassed, HSRCLK/HSTCLK is
used directly as RCLK/TCLK.

At the beginning of operation, the DPLL is in search mode, whereas the first transition
resets the internal DPLL counter and begins DPLL operation. While the counter is
counting, the DPLL watches the incoming data stream for transitions; when one is detected,
the DPLL adjusts the count to produce an output clock that tracks incoming bits.

The DPLL has a carrier-sense signal that indicates when data transfers are on RXD. The
carrier-sense signal asserts as soon as a transition is detected on RXD; it negates after the
programmed number of clocks in GSMR_L[TSNC] when no transitions are detected.

To prevent itself from locking on the wrong edges and to provide fast synchronization, the
DPLL should receive a preamble pattern before it receives the data. In some protocols, the
preceding flags or syncs can function as a preamble; others use the patterns in Table 21-7.
When transmission occurs, the SCC can generate preamble patterns, as programmed in
GSMR_L[TPP, TPL].

DPLL
HSTCLK

TEND

TENC

Transmitter

0

S

Divided Clock

HSTCLK TCLK
1

1x Mode

0

S

1

TENC = NRZI

D

CLK

Q

SCCT Data
0

S

1

1x Mode

TDCR

D

CLK

Q

HSTCLK

TXEN

HSTCLK

TXD
TINV

Encoded

MPC855T User’s Manual

SCC Parameter RAM

The DPLL can also be used to invert the data stream of a transfer. This feature is available
in all encodings, including standard NRZ format. Also, when the transmitter is idling, the
DPLL can either force TXD high or continue encoding the data supplied to it.

The DPLL is used for UART encoding/decoding, which gives the option of selecting the
divide ratio in the UART decoding process (8×, 16×, or 32×). Typically, 16× is used.

The maximum data rate supported with the DPLL is 3.125 MHz, assuming a 25-MHz
system clock and the 8× ratio (25 MHz/8 = 3.125 MHz). Thus, the frequency applied to
CLKx or generated by an internal baud rate generator may be up to 25 MHz on a 25-MHz
MPC855T, if the DPLL 8×, 16×, or 32× option is used.

Note the 1:2 system clock/serial clock ratio does not apply when the DPLL is used to
recover the clock in the 8×, 16×, or 32× modes. Synchronization occurs internally after the
DPLL generates the Rx clock. Therefore, even the fastest DPLL clock generation (the 8×
option) easily meets the required 1:2 ratio clocking limit.

21.4.5.1 Encoding Data with a DPLL

The SCC contains a DPLL unit that can be programmed to encode and decode the SCC data
as NRZ, NRZI Mark, NRZI Space, FM0, FM1, Manchester, and Differential Manchester.
Figure 21-15 shows the different encoding methods.

Table 21-7. Preamble Requirements

Decoding Method Preamble Pattern Minimum Preamble Length Required

NRZI Mark All zeros 8-bit

NRZI Space All ones 8-bit

FM0 All ones 8-bit

FM1 All zeros 8-bit

Manchester 101010...10 8-bit

Differential Manchester All ones 8-bit

Chapter 21. Serial Communications Controller

SCC Parameter RAM

Figure 21-15. DPLL Encoding Examples

If the DPLL is not needed, NRZ or NRZI codings can be selected in GSMR_L[RENC,
TENC]. Coding definitions are shown in Table 21-8.

Table 21-8. DPLL Codings

Coding Description

NRZ A one is represented by a high level for the duration of the bit and a zero is represented by a low level.

NRZI Mark A one is represented by no transition at all. A zero is represented by a transition at the beginning of the
bit (the level present in the preceding bit is reversed).

NRZI Space A one is represented by a transition at the beginning of the bit (the level present in the preceding bit is
reversed). A zero is represented by no transition at all.

FM0 A one is represented by a transition only at the beginning of the bit. A zero is represented by a transition
at the beginning of the bit and another transition at the center of the bit.

FM1 A one is represented by a transition at the beginning of the bit and another transition at the center of the
bit. A zero is represented by a transition only at the beginning of the bit.

Manchester A one is represented by a high-to-low transition at the center of the bit. A zero is represented by a low to
high transition at the center of the bit. In both cases there may be a transition at the beginning of the bit
to set up the level required to make the correct center transition.

Differential
Manchester

A one is represented by a transition at the center of the bit with the opposite direction from the transition
at the center of the preceding bit. A zero is represented by a transition at the center of the bit with the
same polarity from the transition at the center of the preceding bit.

Data

NRZ

NRZI Mark

NRZI Space

FM0

FM1

Manchester

Differential
Manchester

0 1 1 0 0 1

MPC855T User’s Manual

SCC Parameter RAM

21.4.6 Clock Glitch Detection

Clock glitches cause problems for many communications systems, and they may go
undetected by the system. Systems that supply an external clock to a serial channel are often
susceptible to glitches from noise, connecting or disconnecting the physical cable from the
application board, or excessive ringing on a clock line. A clock glitch occurs when more
than one edge occurs in a time period that violates the minimum high or low time
specification of the input clock.

The SCC on the MPC855T has a special circuit designed to detect glitches and alert the
system of a problem at the physical layer. The glitch-detect circuit is not a specification test;
if a circuit does not meet the SCC’s input clocking specifications, erroneous data may not
be detected or false glitch indications can occur. Regardless of whether the DPLL is used,
the received clock is passed through a noise filter that eliminates any noise spikes that affect
a single sample. This sampling is enabled using GSMR_H[GDE].

If a spike is detected, a maskable Rx or Tx glitched clock interrupt is generated in
SCCE[GLR,GLT]. Although the receiver or transmitter can be reset or allowed to continue
operation, statistics on clock glitches should be kept for evaluation to help in debugging,
especially during prototype testing.

21.4.7 Reconfiguring the SCC

The proper reconfiguration sequence must be followed for SCC parameters that cannot be
changed dynamically. For instance, the internal baud rate generators allow on-the-fly
changes, but the DPLL-related GSMR does not. The steps in the following sections show
how to disable, reconfigure and re-enable the SCC to ensure that buffers currently in use
are properly closed before reconfiguring the SCC and that subsequent data goes to or from
new buffers according to the new configuration.

Modifying parameter RAM does not require the SCC to be fully disabled. See the
parameter RAM description for when values can be changed. To disable the SCC, SMCs,
SPI, and the I2C, set CPCR[RST] to reset the entire CPM.

21.4.7.1 General Reconfiguration Sequence for the SCC Transmitter

The SCC transmitter can be reconfigured by following these general steps:

1. If the SCC is sending data, issue a STOP TRANSMIT command. Transmission should
stop smoothly. If the SCC is not transmitting (no TxBDs are ready or the GRACEFUL
STOP TRANSMIT command has been issued and completed) or the INIT TX
PARAMETERS command is issued, the STOP TRANSMIT command is not required.

2. Clear GSMR_L[ENT] to disable the SCC transmitter and put it in reset state.

3. Modify SCC Tx parameters or parameter RAM. To switch protocols or restore the
initial Tx parameters, issue an INIT TX PARAMETERS command.

Chapter 21. Serial Communications Controller

SCC Parameter RAM

4. If an INIT TX PARAMETERS command was not issued in step 3, issue a RESTART
TRANSMIT command.

5. Set GSMR_L[ENT]. Transmission begins using the TxBD pointed to by TBPTR,
assuming the R bit is set.

21.4.7.2 Reset Sequence for the SCC Transmitter

The following steps reinitialize the SCC transmit parameters to the reset state:

1. Clear GSMR_L[ENT].

2. Make any modifications then issue the INIT TX PARAMETERS command.

3. Set GSMR_L[ENT].

21.4.7.3 General Reconfiguration Sequence for the SCC Receiver

The SCC receiver can be reconfigured by following these steps:

1. Clear GSMR_L[ENR]. The SCC receiver is now disabled and put in a reset state.

2. Modify SCC Rx parameters or parameter RAM. To switch protocols or restore Rx
parameters to their initial state, issue an INIT RX PARAMETERS command.

3. If the INIT RX PARAMETERS command was not issued in step 2, issue an ENTER
HUNT MODE command.

4. Set GSMR_L[ENR]. Reception begins using the RxBD pointed to by RBPTR,
assuming the E bit is set.

21.4.7.4 Reset Sequence for the SCC Receiver

To reinitialize the SCC receiver to the state it was in after reset, follow these steps:

1. Clear GSMR_L[ENR].

2. Make any modifications then issue the INIT RX PARAMETERS command.

3. Set GSMR_L[ENR].

21.4.7.5 Switching Protocols

To switch the SCC’s protocol without resetting the board, follow these steps:

1. Clear GSMR_L[ENT, ENR].

2. Make protocol changes in the GSMR and additional parameters then issue the INIT
TX and RX PARAMETERS command to initialize both Tx and Rx parameters.

3. Set GSMR_L[ENT, ENR] to enable the SCC with the new protocol.

MPC855T User’s Manual

SCC Parameter RAM

21.4.8 Saving Power

To save power when not in use, the SCC can be disabled by clearing GSMR_L[ENT, ENR].

Chapter 22. SCC UART Mode

Chapter 22
SCC UART Mode
The universal asynchronous receiver transmitter (UART) protocol is commonly used to
send low-speed data between devices. The term asynchronous is used because it is not
necessary to send clocking information along with the data being sent. UART links are
typically 38400 baud or less and are character-based. Asynchronous links are used to
connect terminals with other devices. Even where synchronous communications are
required, the UART is often used as a local port to run board debugger software. The
character format of the UART protocol is shown in Figure 22-1.

Figure 22-1. UART Character Format

Because the transmitter and receiver operate asynchronously, there is no need to connect
the transmit and receive clocks. Instead, the receiver oversamples the incoming data stream
(usually by a factor of 16) and uses some of these samples to determine the bit value.
Traditionally, the middle 3 of the 16 samples are used. Two UARTs can communicate using
this system if the transmitter and receiver use the same parameters, such as the parity
scheme and character length.

When data is not sent, a continuous stream of ones is sent (idle condition). Because the start
bit is always a zero, the receiver can detect when real data is once again on the line. UART
specifies an all-zeros break character, which ends a character transfer sequence.

The most popular protocol that uses asynchronous characters is the RS-232 standard, which
specifies baud rates, handshaking protocols, and mechanical/electrical details. Another
popular format is RS-485, which defines a balanced line system allowing longer cables than
RS-232 links. Even synchronous protocols like HDLC are sometimes defined to run over
asynchronous links. The Profibus standard extends UART protocol to include
LAN-oriented features such as token passing.

UART TCLK

UART TXD

8x, 16x, or 32x

Start
Bit

Addr
Bit

Parity
Bit

(Optional)

5, 6, 7, or 8 Data Bits with the
Least Significant Bit First

9/16 to 2
Stop Bits

NOTE:
1. Clock is not to scale.

MPC855T User’s Manual

Features

All standards provide handshaking signals, but some systems require only three physical
lines—Tx data, Rx data, and ground. Many proprietary standards have been built around
the UART’s asynchronous character frame, some of which implement a multidrop
configuration where multiple stations, each with a specific address, can be present on a
network. In multidrop mode, frames of characters are broadcast with the first character
acting as a destination address. To accommodate this, the UART frame is extended one bit
to distinguish address characters from normal data characters.

In synchronous UART (isochronous operation), a separate clock signal is explicitly
provided with the data. Start and stop bits are present in synchronous UART, but
oversampling is not required because the clock is provided with each bit.

The general SCC mode register (GSMR) is used to configure an SCC channel to function
in UART mode, which provides standard serial I/O using asynchronous character-based
(start-stop) protocols with RS-232C-type lines. Using standard asynchronous bit rates and
protocols, an SCC UART controller can communicate with any existing RS-232-type
device and provides a serial communications port to other microprocessors and terminals
(either locally or via modems). The independent transmit and receive sections, whose
operations are asynchronous with the core, send data from memory (either internal or
external) to TXD and receive data from RXD. The UART controller supports a multidrop
mode for master/slave operations with wake-up capability on both the idle signal and
address bit. It also supports synchronous operation where a clock (internal or external) must
be provided with each bit received.

22.1 Features
The following list summarizes main features of an SCC UART controller:

• Flexible message-based data structure
• Implements synchronous and asynchronous UART
• Multidrop operation
• Receiver wake-up on idle line or address bit
• Receive entire messages into buffers as indicated by receiver idle timeout or by

control character reception
• Eight control character comparison
• Two address comparison in multidrop configurations
• Maintenance of four 16-bit error counters
• Received break character length indication
• Programmable data length (5–8 bits)
• Programmable fractional stop bit lengths (from 9/16 to 2 bits) in transmission
• Capable of reception without a stop bit
• Even/odd/force/no parity generation and check

Chapter 22. SCC UART Mode

Normal Asynchronous Mode

• Frame error, noise error, break, and idle detection
• Transmit preamble and break sequences
• Freeze transmission option with low-latency stop

22.2 Normal Asynchronous Mode
In normal asynchronous mode, the receive shift register receives incoming data on RXD.
Control bits in the UART mode register (PSMR) define the length and format of the UART
character. Bits are received in the following order:

1. Start bit
2. 5–8 data bits (lsb first)
3. Address/data bit (optional)
4. Parity bit (optional)
5. Stop bits

The receiver uses a clock 8×, 16×, or 32× faster than the baud rate and samples each bit of
the incoming data three times around its center. The value of the bit is determined by the
majority of those samples; if all do not agree, the noise indication counter (NOSEC) in
parameter RAM is incremented. When a complete character has been clocked in, the
contents of the receive shift register are transferred to the receive FIFO before proceeding
to the receive buffer. The CPM flags UART events, including reception errors, in SCCE and
the RxBD status and control fields.

The SCC can receive fractional stop bits. The next character’s start bit can begin any time
after the three middle samples are taken. The UART transmit shift register sends outgoing
data on TXD. Data is then clocked synchronously with the transmit clock, which may have
either an internal or external source. Characters are sent lsb first. Only the data portion of
the UART frame is stored in the buffers because start and stop bits are generated and
stripped by the SCC. A parity bit can be generated in transmission and checked during
reception; although it is not stored in the buffer, its value can be inferred from the buffer’s
reporting mechanism. Similarly, the optional address bit is not stored in the transmit or
receive buffer, but is supplied in the BD itself. Parity generation and checking includes the
optional address bit. GSMR_H[RFW] must be set for an 8-bit receive FIFO in the UART
receiver.

22.3 Synchronous Mode
In synchronous mode, the controller uses a 1× data clock for timing. The receive shift
register receives incoming data on RXD synchronous with the clock. The bit length and
format of the serial character are defined by the control bits in the PSMR in the same way
as in asynchronous mode. When a complete byte has been clocked in, the contents of the
receive shift register are transferred to the receive FIFO before proceeding to the receive
buffer. The CPM flags UART events, including reception errors, in SCCE and the RxBD
status and control fields. GSMR_H[RFW] must be set for an 8-bit receive FIFO.

MPC855T User’s Manual

SCC UART Parameter RAM

The synchronous UART transmit shift register sends outgoing data on TXD. Data is then
clocked synchronously with the transmit clock, which can have an internal or external
source.

22.4 SCC UART Parameter RAM
For UART mode, the protocol-specific area of the SCC parameter RAM is mapped as in
Table 22-1.

Table 22-1. UART-Specific SCC Parameter RAM Memory Map

Offset 1 Name Width Description

0x30 — DWord Reserved

0x38 MAX_IDL Hword Maximum idle characters. When a character is received, the receiver begins
counting idle characters. If MAX_IDL idle characters are received before the next
data character, an idle timeout occurs and the buffer is closed, generating a
maskable interrupt request to the core to receive the data from the buffer. Thus,
MAX_IDL offers a way to demarcate frames. To disable the feature, clear
MAX_IDL. The bit length of an idle character is calculated as follows: 1 + data
length (5–9) + 1 (if parity is used) + number of stop bits (1–2). For 8 data bits, no
parity, and 1 stop bit, the character length is 10 bits.

0x3A IDLC Hword Temporary idle counter. Holds the current idle count for the idle timeout process.
IDLC is a down-counter and does not need to be initialized or accessed.

0x3C BRKCR Hword Break count register (transmit). Determines the number of break characters the
transmitter sends. The transmitter sends a break character sequence when a
STOP TRANSMIT command is issued. For 8 data bits, no parity, 1 stop bit, and
1 start bit, each break character consists of 10 zero bits.

0x3E PAREC Hword User-initialized,16-bit (modulo–2
16

) counters incremented by the CP.
PAREC counts received parity errors.
FRMEC counts received characters with framing errors.
NOSEC counts received characters with noise errors.
BRKEC counts break conditions on the signal. A break condition can last for
hundreds of bit times, yet BRKEC is incremented only once during that period.

0x40 FRMEC Hword

0x42 NOSEC Hword

0x44 BRKEC Hword

0x46 BRKLN Hword Last received break length. Holds the length of the last received break character
sequence measured in character units. For example, if RXD is low for 20 bit
times and the defined character length is 10 bits, BRKLN = 0x002, indicating that
the break sequence is at least 2 characters long. BRKLN is accurate to within
one character length.

0x48 UADDR1 Hword UART address character 1/2. In multidrop mode, the receiver provides automatic
address recognition for two addresses. In this case, program the lower order
bytes of UADDR1 and UADDR2 with the two preferred addresses.0x4A UADDR2 Hword

0x4C RTEMP Hword Temporary storage

0x4E TOSEQ Hword Transmit out-of-sequence character. Inserts out-of-sequence characters, such
as XOFF and XON, into the transmit stream. The TOSEQ character is put in the
Tx FIFO without affecting a Tx buffer in progress. See Section 22.11, “Inserting
Control Characters into the Transmit Data Stream.”

Chapter 22. SCC UART Mode

Data-Handling Methods: Character- or Message-Based

22.5 Data-Handling Methods: Character- or
Message-Based

An SCC UART controller uses the same BD table and buffer structures as the other
protocols and supports both multibuffer, message-based and single-buffer, character-based
operation.

For character-based transfers, each character is sent with stop bits and parity and received
into separate 1-byte buffers. A maskable interrupt is generated when each buffer is received.

In a message-based environment, transfers can be made on entire messages rather than on
individual characters. To simplify programming and save processor overhead, a message is
transferred as a linked list of buffers without core intervention. For example, before
handling input data, a terminal driver may wait for an end-of-line character or an idle
timeout rather than be interrupted when each character is received. Conversely, ASCII files
can be sent as messages ending with an end-of-line character.

When receiving messages, up to eight control characters can be configured to mark the end
of a message or generate a maskable interrupt without being stored in the buffer. This option

0x50 CHARACTER1 Hword Control character 1–8. These characters define the Rx control characters on
which interrupts can be generated.

0x52 CHARACTER2 Hword

0x54 CHARACTER3 Hword

0x56 CHARACTER4 Hword

0x58 CHARACTER5 Hword

0x5A CHARACTER6 Hword

0x5C CHARACTER7 Hword

0x5E CHARACTER8 Hword

0x60 RCCM Hword Receive control character mask. Used to mask comparison of CHARACTER1–8
so classes of control characters can be defined. A one enables the comparison,
and a zero masks it.

0x62 RCCR Hword Receive control character register. Used to hold the last rejected control
character (not written to the Rx buffer). Generates a maskable interrupt. If the
core does not process the interrupt and read RCCR before a new control
character arrives, the previous control character is overwritten.

0x64 RLBC Hword Receive last break character. Used in synchronous UART when PSMR[RZS] =
1; holds the last break character pattern. By counting zeros in RLBC, the core
can measure break length to a one-bit resolution. Read RLBC by counting the
zeros written from bit 0 to where the first one was written. RLBC =
0b001xxxxxxxxxxxxx indicates two zeros; 0b1xxxxxxxxxxxxxxx indicates no
zeros.
Note that RLBC can be used in combination with BRKLN above to measure the
break length down to a bit resolution: (BRKLN + number of zeros in RLBC).

1 From SCC base. SCC base = IMMR + 0x3C00 (SCC1)

Table 22-1. UART-Specific SCC Parameter RAM Memory Map (continued)

MPC855T User’s Manual

Error and Status Reporting

is useful when flow control characters such as XON or XOFF are needed but are not part
of the received message. See Section 22.9, “Receiving Control Characters.”

22.6 Error and Status Reporting
Overrun, parity, noise, and framing errors are reported via the BDs and/or error counters in
the UART parameter RAM. Signal status is indicated in the status register; a maskable
interrupt is generated when status changes.

22.7 SCC UART Commands
The transmit commands in Table 22-2 are issued to the CP command register (CPCR).

Receive commands are described in Table 22-3.

Table 22-2. Transmit Commands

Command Description

STOP
TRANSMIT

After a hardware or software reset and a channel is enabled in the GSMR, the transmitter starts polling
the first BD in the TxBD table every 8 Tx clocks. STOP TRANSMIT disables character transmission. If the
SCC receives STOP TRANSMIT as a message is being sent, the message is aborted. The transmitter
finishes sending data transferred to its FIFO and stops. The TBPTR is not advanced. The UART
transmitter sends a programmable break sequence and starts sending idles. The number of break
characters in the sequence (which can be zero) should be written to BRKCR in the parameter RAM
before issuing this command.

GRACEFUL
STOP
TRANSMIT

Used to stop transmitting smoothly. The transmitter stops after the current buffer has been completely
sent or immediately if no buffer is being sent. SCCE[GRA] is set once transmission stops, then the UART
Tx parameters, including the TxBD, can be modified. TBPTR points to the next TxBD in the table.
Transmission begins once the R bit of the next BD is set and a RESTART TRANSMIT command is issued.

RESTART
TRANSMIT

Enables transmission. The controller expects this command after it disables the channel in its PSMR,
after a STOP TRANSMIT command, after a GRACEFUL STOP TRANSMIT command, or after a transmitter error.
Transmission resumes from the current BD.

INIT TX
PARAMETERS

Resets the transmit parameters in the parameter RAM. Issue only when the transmitter is disabled. Note
that INIT TX AND RX PARAMETERS resets both Tx and Rx parameters.

Table 22-3. Receive Commands

Command Description

ENTER HUNT
MODE

Forces the receiver to close the RxBD in use and enter hunt mode. After a hardware or software reset,
once an SCC is enabled in the GSMR, the receiver is automatically enabled and uses the first BD in the
RxBD table. If a message is in progress, the receiver continues receiving in the next BD. In multidrop hunt
mode, the receiver continually scans the input data stream for the address character. When it is not in
multidrop mode, it waits for the idle sequence (one character of idle). Data present in the Rx FIFO is not
lost when this command is executed.

CLOSE RXBD Forces the SCC to close the RxBD in use and use the next BD for subsequent received data. If the SCC
is not in the process of receiving data, no action is taken.
Note that in an SCC UART controller, CLOSE RXBD functions like ENTER HUNT MODE but does not need to
receive an idle character to continue receiving.

INIT RX
PARAMETERS

Resets the receive parameters in the parameter RAM. Should be issued when the receiver is disabled.
Note that INIT TX AND RX PARAMETERS resets both Tx and Rx parameters.

Chapter 22. SCC UART Mode

Multidrop Systems and Address Recognition

22.8 Multidrop Systems and Address Recognition
In multidrop systems, more than two stations can be on a network, each with a specific
address. Figure 22-2 shows two examples of this configuration. Frames made up of many
characters can be broadcast as long as the first character is the destination address. The
UART frame is extended by one bit to distinguish an address character from standard data
characters. Programmed in PSMR[UM], the controller supports the following two
multidrop modes:

• Automatic multidrop mode—The controller checks the incoming address character
and accepts subsequent data only if the address matches one of two user-defined
values. The two 16-bit address registers, UADDR1 and UADDR2, support address
recognition. Only the lower 8 bits are used so the upper 8 bits should be cleared; for
addresses less than 8 bits, unused high-order bits should also be cleared. The
incoming address is checked against UADDR1 and UADDR2. When a match
occurs, RxBD[AM] indicates whether UADDR1 or UADDR2 matched.

• Manual multidrop mode—The controller receives all characters. An address
character is always written to a new buffer and can be followed by data characters.
User software performs the address comparison.

Figure 22-2. Two UART Multidrop Configurations

22.9 Receiving Control Characters
The UART receiver can recognize special control characters used in a message-based
environment. Eight control characters can be defined in a control character table in the
UART parameter RAM. Each incoming character is compared to the table entries using a

Tx Rx

1

Tx Rx

2

Tx Rx

3

Tx Rx

4

Tx Rx Tx Rx Tx Rx Tx Rx

SLAVE 2 SLAVE 3SLAVE 1MASTER

UADDR1

UADDR2

PAODR

Choose Wired-Or Operation in the Port A
Open-Drain Register to Allow Multiple Transmit

Pins to be Directly Connected

+ V

R

Two 8-Bit Addresses can be Automatically
Recognized in Either Configuration

+ V

R

MPC855T User’s Manual

Receiving Control Characters

mask (the received control character mask, RCCM) to strip don’t cares. If a match occurs,
the received control character can either be written to the receive buffer or rejected.

If the received control character is not rejected, it is written to the receive buffer. The receive
buffer is then automatically closed to allow software to handle end-of-message characters.
Control characters that are not part of the actual message, such as XOFF, can be rejected.
Rejected characters bypass the receive buffer and are written directly to the received control
character register (RCCR), which triggers maskable interrupt.

The 16-bit entries in the control character table support control character recognition. Each
entry consists of the control character, a valid bit (end of table), and a reject bit. See
Figure 22-3.

Table 22-4 describes the data structure used in control character recognition.

Offset1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x50 E R — CHARACTER1

0x52 E R — CHARACTER2

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

0x5E E R — CHARACTER8

0x60 1 1 — RCCM

0x62 — RCCR

1 From SCCx base address

Figure 22-3. Control Character Table, RCCM, and RCCR

Table 22-4. Control Character Table, RCCM, and RCCR Descriptions

Offset Bits Name Description

0x50–
0x5E

0 E End of table. In tables with eight control characters, E is always 0.
0 This entry is valid.
1 The entry is not valid and is not used.

1 R Reject character.
0 A matching character is not rejected but is written into the Rx buffer, which is then

closed. If RxBD[I] is set, the buffer closing generates a maskable interrupt
through SCCE[RX]. A new buffer is opened if more data is in the message.

1 A matching character is written to RCCR and not to the Rx buffer. A maskable
interrupt is generated through SCCE[CCR]. The current Rx buffer is not closed.

2–7 — Reserved

8–15 CHARACTERn Control character values 1–8. Defines control characters to be compared to the
incoming character. For characters smaller than 8 bits, the most significant bits
should be zero.

Chapter 22. SCC UART Mode

Hunt Mode (Receiver)

22.10Hunt Mode (Receiver)
A UART receiver in hunt mode remains deactivated until an idle or address character is
recognized, depending on PSMR[UM]. A receiver is forced into hunt mode by issuing an
ENTER HUNT MODE command.

The receiver aborts any message in progress when ENTER HUNT MODE is issued. When the
message is finished, the receiver is reenabled by detecting the idle line (one idle character)
or by the address bit of the next message, depending on PSMR[UM]. When a receiver in
hunt mode receives a break sequence, it increments BRKEC and generates a BRK interrupt
condition.

22.11Inserting Control Characters into the Transmit
Data Stream

The SCC UART transmitter can send out-of-sequence, flow-control characters like XON
and XOFF. The controller polls the transmit out-of-sequence register (TOSEQ), shown in
Figure 22-4, whenever the transmitter is enabled for UART operation, including during a
UART freeze operation, UART buffer transmission, and when no buffer is ready for
transmission. The TOSEQ character (in CHARSEND) is sent at a higher priority than the
other characters in the transmit buffer, but does not preempt characters already in the
transmit FIFO. This means that the XON or XOFF character may not be sent for eight
(SCC1) character times. To reduce this latency, set GSMR_H[TFL] to decrease the FIFO
size to one character before enabling the transmitter.

0x60 0–1 0b11 Must be set. Used to mark the end of the control character table in case eight
characters are used. Setting these bits ensures correct operation during control
character recognition.

2–7 — Reserved

8–15 RCCM Received control character mask. Used to mask the comparison of CHARACTERn.
Each RCCM bit corresponds to the respective bit of CHARACTERn and decodes
as follows.
0 Ignore this bit when comparing the incoming character to CHARACTERn.
1 Use this bit when comparing the incoming character to CHARACTERn.

0x62 0–7 — Reserved

8–15 RCCR Received control character register. If the newly arrived character matches and is
rejected from the buffer (R = 1), the PIP controller writes the character into the
RCCR and generates a maskable interrupt. If the core does not process the
interrupt and read RCCR before a new control character arrives, the previous
control character is overwritten.

Table 22-4. Control Character Table, RCCM, and RCCR Descriptions (continued)

Offset Bits Name Description

MPC855T User’s Manual

Sending a Break (Transmitter)

Table 22-5 describes TOSEQ fields.

22.12Sending a Break (Transmitter)
A break is an all-zeros character with no stop bit that is sent by issuing a STOP TRANSMIT

command. The SCC finishes transmitting outstanding data, sends a programmable number
of break characters (determined by BRKCR), and reverts to idle or sends data if a RESTART

TRANSMIT command is given before completion. When the break code is complete, the
transmitter sends at least one high bit before sending more data, to guarantee recognition
of a valid start bit. Because break characters do not preempt characters in the transmit FIFO,
they may not be sent for eight (SCC1) character times. To reduce this latency, set
GSMR_H[TFL] to decrease the FIFO size to one character before enabling the transmitter.

22.13Sending a Preamble (Transmitter)
Sending a preamble sequence of consecutive ones ensures that a line is idle before sending
a message. If the preamble bit TxBD[P] is set, the SCC sends a preamble sequence (idle
character) before sending the buffer. For example, for 8 data bits, no parity, 1 stop bit, and
1 start bit, a preamble of 10 ones is sent before the first character in the buffer.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — REA I CT — A CHARSEND

Reset 0000_0000_0000_0000

R/W R/W

Addr SCC base + 0x4E

Figure 22-4. Transmit Out-of-Sequence Register (TOSEQ)

Table 22-5. TOSEQ Field Descriptions

Bit Name Description

0–1 — Reserved, should be cleared.

2 REA Ready. Set when the character is ready for transmission. Remains 1 while the character is being
sent. The CP clears this bit after transmission.

3 I Interrupt. If this bit is set, transmission completion is flagged in the event register (SCCE[TX] is
set), triggering a maskable interrupt to the core.

4 CT Clear-to-send lost. Operates only if the SCC monitors CTS (GSMR_L[DIAG]). The CP sets this
bit if CTS negates when the TOSEQ character is sent. If CTS negates and the TOSEQ character
is sent during a buffer transmission, the TxBD[CT] status bit is also set.

5–6 — Reserved, should be cleared.

7 A Address. Setting this bit indicates an address character for multidrop mode.

8–15 CHARSEND Character send. Contains the character to be sent. Any 5- to 8-bit character value can be sent
in accordance with the UART configuration. The character should be placed in the lsbs of
CHARSEND. This value can be changed only while REA = 0.

Chapter 22. SCC UART Mode

Fractional Stop Bits (Transmitter)

22.14Fractional Stop Bits (Transmitter)
The asynchronous UART transmitter can be programmed to send fractional stop bits. The
FSB field in the data synchronization register (DSR) determines the fractional length of the
last stop bit to be sent. FSB can be modified at any time. If two stop bits are sent, only the
second is affected. Idle characters are always sent as full-length characters.

Table 22-6 describes DSR fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — FSB — — — — — — — — — — —

Reset 0 1 1 1 0 0 1 1 1 1 1 1 0

R/W R/W

Addr 0xA0E (DSR1)

Figure 22-5. Data Synchronization Register (DSR)

Table 22-6. DSR Fields Descriptions

Bit Name Description

0 — 0b0

1–4 FSB Fractional stop bits. For 16× oversampling:
1111 Last transmitted stop bit 16/16. Default value after reset.
1110 Last transmitted stop bit 15/16.

…
1000 Last transmitted stop bit 9/16.
0xxx Invalid. Do not use.

For 32× oversampling:
1111 Last transmitted stop bit 32/32. Default value after reset.
1110 Last transmitted stop bit 31/32.

…
0000 Last transmitted stop bit 17/32.

For 8× oversampling:
1111 Last transmitted stop bit 8/8. Default value after reset.
1110 Last transmitted stop bit 7/8.
1101 Last transmitted stop bit 6/8.
1100 Last transmitted stop bit 5/8.
10xx Invalid. Do not use.
0xxx Invalid. Do not use.

The UART receiver can always receive fractional stop bits. The next character’s start bit can begin
any time after the three middle samples have been taken.

5–6 — 0b11

7–8 — 0b00

9–14 — 0b111111

15 — 0b0

MPC855T User’s Manual

Handling Errors in the SCC UART Controller

22.15Handling Errors in the SCC UART Controller
The UART controller reports character reception and transmission error conditions via the
BDs, the error counters, and the SCCE. Modem interface lines can be monitored by the port
C pins. Transmission errors are described in Table 22-7.

Reception errors are described in Table 22-8.

Table 22-7. Transmission Errors

Error Description

CTS Lost
during
Character
Transmission

When CTS negates during transmission, the channel stops after finishing the current character. The
CP sets TxBD[CT] and generates the TX interrupt if it is not masked. The channel resumes
transmission after the RESTART TRANSMIT command is issued and CTS is asserted.
Note that if CTS is used, the UART also offers an asynchronous flow control option that does not
generate an error. See the description of PSMR[FLC] in Table 22-9.

Table 22-8. Reception Errors

Error Description

Overrun Occurs when the channel overwrites the previous character in the Rx FIFO with a new character, losing
the previous character. The channel then writes the new character to the buffer, closes it, sets RxBD[OV],
and generates an RX interrupt if not masked. In automatic multidrop mode, the receiver enters hunt mode
immediately.

CD Lost
during
Character
Reception

If this error occurs and the channel is using this pin to automatically control reception, the channel
terminates character reception, closes the buffer, sets RxBD[CD], and generates the RX interrupt if not
masked. This error has the highest priority. The last character in the buffer is lost and other errors are not
checked. In automatic multidrop mode, the receiver enters the hunt mode immediately.

Parity When a parity error occurs, the channel writes the received character to the buffer, closes the buffer, sets
RxBD[PR], and generates the RX interrupt if not masked. The channel also increments the parity error
counter PAREC. In automatic multidrop mode, the receiver enters hunt mode immediately.

Noise A noise error occurs when the three samples of a bit are not identical. When this error occurs, the channel
writes the received character to the buffer, proceeds normally, but increments the noise error counter
NOSEC. Note that this error does not occur in synchronous mode.

Idle
Sequence
Receive

If the UART is receiving data and gets an idle character (all ones), the channel begins counting consecutive
idle characters received. If MAX_IDL is reached, the buffer is closed and an RX interrupt is generated if
not masked. If no buffer is open, this event does not generate an interrupt or any status information. The
internal idle counter (IDLC) is reset every time a character is received. To disable the idle sequence
function, clear MAX_IDL.

Chapter 22. SCC UART Mode

UART Mode Register (PSMR)

22.16UART Mode Register (PSMR)
For UART mode, the SCC protocol-specific mode register (PSMR) is called the UART
mode register. Many bits can be modified while the receiver and transmitter are enabled.
Figure 22-6 shows the PSMR in UART mode.

Table 22-9 describes PSMR UART fields.

Framing The UART reports a framing errors when it receives a character with no stop bit, regardless of the mode.
The channel writes the received character to the buffer, closes it, sets RxBD[FR], generates the RX
interrupt if not masked, increments FRMEC, but does not check parity for this character. In automatic
multidrop mode, the receiver immediately enters hunt mode. If the UART allows data with no stop bits
(PSMR[RZS] = 1) when in synchronous mode (PSMR[SYN] = 1), framing errors are reported but reception
continues assuming the unexpected zero is the start bit of the next character; in this case, the user may
ignore a reported framing error until multiple framing errors occur within a short period.

Break
Sequence

When the first break sequence is received, the UART increments the break error counter BRKEC. It
updates BRKLN when the sequence completes. After the first 1 is received, the UART sets SCCE[BRKE],
which generates an interrupt if not masked. If the UART is receiving characters when it receives a break,
it closes the Rx buffer, sets RxBD[BR], and sets SCCE[RX], which can generate an interrupt if not masked.
If PSMR[RZS] = 1 when the UART is in synchronous mode, a break sequence is detected after two
successive break characters are received.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field FLC SL CL UM FRZ RZS SYN DRT — PEN RPM TPM

Reset 0

R/W R/W

Addr 0xA08 (PSMR1)

Figure 22-6. Protocol-Specific Mode Register for UART (PSMR)

Table 22-9. PSMR UART Field Descriptions

Bit Name Description

0 FLC Flow control.
0 Normal operation. The GSMR and port C registers determine the mode of CTS.
1 Asynchronous flow control. When CTS is negated, the transmitter stops at the end of the current

character. If CTS is negated past the middle of the current character, the next full character is sent
before transmission stops. When CTS is asserted again, transmission continues where it left off
and no CTS lost error is reported. Only idle characters are sent while CTS is negated.

1 SL Stop length. Selects the number of stop bits the SCC sends. SL can be modified on-the-fly. The
receiver is always enabled for one stop bit unless the SCC UART is in synchronous mode and
PSMR[RZS] is set. Fractional stop bits are configured in the DSR.
0 One stop bit.
1 Two stop bits.

Table 22-8. Reception Errors (continued)

Error Description

MPC855T User’s Manual

UART Mode Register (PSMR)

2–3 CL Character length. Determines the number of data bits in the character, not including optional parity or
multidrop address bits. If a character is less than 8 bits, most-significant bits are received as zeros
and are ignored when the character is sent. CL can be modified on-the-fly.
00 5 data bits
01 6 data bits
10 7 data bits
11 8 data bits

4–5 UM UART mode. Selects the asynchronous channel protocol. UM can be modified on-the-fly.
00 Normal UART operation. Multidrop mode is disabled and idle-line wake-up mode is selected. The

UART receiver leaves hunt mode by receiving an idle character (all ones).
01 Manual multidrop mode. An additional address/data bit is sent with each character. Multidrop

asynchronous modes are compatible with the MC68681 DUART, MC68HC11 SCI, DSP56000
SCI, and Intel 8051 serial interface. The receiver leaves hunt mode when the address/data bit is
a one, indicating the received character is an address that all inactive processors must process.
The controller receives the address character and writes it to a new buffer. The core then
compares the written address with its own address and decides whether to ignore or process
subsequent characters.

10 Reserved.
11 Automatic multidrop mode. The CPM compares the address of an incoming address character

with UADDRx parameter RAM values; subsequent data is accepted only if a match occurs.

6 FRZ Freeze transmission. Allows the UART transmitter to pause and later continue from that point.
0 Normal operation. If the buffer was previously frozen, it resumes transmission from the next

character in the same buffer that was frozen.
1 The SCC completes transmission of any data already transferred to the Tx FIFO (the number of

characters depends on GSMR_H[TFL]) and then freezes. After FRZ is cleared, transmission
resumes from the next character.

7 RZS Receive zero stop bits.
0 The receiver operates normally, but at least one stop bit is needed between characters. A framing

error is issued if a stop bit is missing. Break status is set if an all-zero character is received with a
zero stop bit.

1 Configures the receiver to receive data without stop bits. Useful in V.14 applications where SCC
UART controller data is supplied synchronously and all stop bits of a particular character can be
omitted for cross-network rate adaptation. RZS should be set only if SYN is set. The receiver
continues if a stop bit is missing. If the stop bit is a zero, the next bit is considered the first data bit
of the next character. A framing error is issued if a stop bit is missing, but a break status is reported
only after two consecutive break characters have no stop bits.

8 SYN Synchronous mode.
0 Normal asynchronous operation. GSMR_L[TENC,RENC] must select NRZ and GSMR_L[TDCR,

RDCR] select either 8×, 16×, or 32×. 16× is recommended for most applications.
1 Synchronous SCC UART controller using 1× clock (isochronous UART operation).

GSMR_L[TENC, RENC] must select NRZ and GSMR_L[RDCR, TDCR] select 1× mode. A bit is
transferred with each clock and is synchronous to the clock, which can be internal or external.

9 DRT Disable receiver while transmitting.
0 Normal operation.
1 While the SCC is sending data, the internal RTS disables and gates the receiver. Useful for a

multidrop configuration in which the user does not want to receive its own transmission. For
multidrop UART mode, set the BDs’ preamble bit, TxBD[P].

10 — Reserved, should be cleared.

Table 22-9. PSMR UART Field Descriptions (continued)

Bit Name Description

Chapter 22. SCC UART Mode

UART Mode Register (PSMR)

11 PEN Parity enable.
0 No parity.
1 Parity is enabled and determined by the parity mode bits.

12–13,
14–15

RPM,
TPM

Receiver/transmitter parity mode. Selects the type of parity check the receiver/transmitter performs;
can be modified on-the-fly. Receive parity errors can be ignored but not disabled.
00 Odd parity. If a transmitter counts an even number of ones in the data word, it sets the parity bit

so an odd number is sent. If a receiver receives an even number, a parity error is reported.
01 Low parity (space parity). A transmitter sends a zero in the parity bit position. If a receiver does

not read a 0 in the parity bit, a parity error is reported.
10 Even parity. Like odd parity, the transmitter adjusts the parity bit, as necessary, to ensure that the

receiver receives an even number of one bits; otherwise, a parity error is reported.
11 High parity (mark parity). The transmitter sends a one in the parity bit position. If the receiver does

not read a 1 in the parity bit, a parity error is reported.

Table 22-9. PSMR UART Field Descriptions (continued)

Bit Name Description

MPC855T User’s Manual

SCC UART Receive Buffer Descriptor (RxBD)

22.17SCC UART Receive Buffer Descriptor (RxBD)
The CPM uses RxBDs to report on each buffer received. The CPM closes the current buffer,
generates a maskable interrupt, and starts receiving data into the next buffer after one of the
following occurs:

• A user-defined control character is received.

• An error occurs during message processing.

• A full receive buffer is detected.

• A MAX_IDL number of consecutive idle characters is received.

• An ENTER HUNT MODE or CLOSE RXBD command is issued.

• An address character is received in multidrop mode. The address character is written
to the next buffer for a software comparison.

Figure 22-7 shows an example of how RxBDs are used in receiving.

Chapter 22. SCC UART Mode

SCC UART Receive Buffer Descriptor (RxBD)

Figure 22-7. SCC UART Receiving using RxBDs

Byte 5

Buffer

0

0008

32-Bit Buffer Pointer

0

E ID
Rx BD 0

Status

Length

Pointer

0

0002

32-Bit Buffer Pointer

1

E ID
Rx BD 1

Status

Length

Pointer

0

0004

32-Bit Buffer Pointer

0

E ID
Rx BD 2

Status

Length

Pointer

1

XXXX

32-Bit Buffer Pointer

E
Rx BD 3

Status

Length

Pointer

Byte 1

Byte 2

Byte 8

Buffer

Byte 9

Byte 10

Buffer

Byte 1

Byte 2

Byte 3

Buffer

Byte 4 Error!

Empty

Additional Bytes
will be Stored Unless

Idle Count Expires
(MAX_IDL)

8 Bytes

8 Bytes

8 Bytes

8 Bytes

Characters
Received by UART

Fourth Character

10 Characters

Long Idle Period

has Framing Error!
Present

TimeTime

5 Characters

Buffer Full

Idle Time-Out
Occurred

Byte 4 has
Framing Error

Reception
Still in Progress
with this Buffer

1

FR

etc.

Empty

MRBLR = 8 Bytes for the SCC

MPC855T User’s Manual

SCC UART Receive Buffer Descriptor (RxBD)

Figure 22-8 shows the SCC UART RxBD.

Table 22-10 describes RxBD status and control fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E — W I C A CM ID AM — BR FR PR — OV CD

Offset + 2 Data Length

Offset + 4 Rx Buffer Pointer

Offset + 6

Figure 22-8. SCC UART RxBD

Table 22-10. SCC UART RxBD Status and Control Field Descriptions

Bits Name Description

0 E Empty.
0 The buffer is full or reception was aborted due to an error. The core can read or write to any fields of

this BD. The CPM does not reuse this BD while E = 0.
1 The buffer is not full. The CPM controls this BD and buffer. The core should not modify this BD.

1 — Reserved, should be cleared.

2 W Wrap (last buffer descriptor in the BD table).
0 Not the last descriptor in the table.
1 Last descriptor in the table. After this buffer is used, the CPM receives incoming data using the BD

pointed to by RBASE. The number of BDs in this table is programmable and determined only by the W
bit.

3 I Interrupt.
0 No interrupt is generated after this buffer is filled.
1 The CP sets SCCE[RX] when this buffer is completely filled by the CPM, indicating the need for the

core to process the buffer. Setting SCCE[RX] causes an interrupt if not masked.

4 C Control character.
0 This buffer does not contain a control character.
1 The last byte in this buffer matches a user-defined control character.

5 A Address.
0 The buffer contains only data.
1 For manual multidrop mode, A indicates the first byte of this buffer is an address byte. Software should

perform address comparison. In automatic multidrop mode, A indicates the buffer contains a message
received immediately after an address matched UADDR1 or UADDR2. The address itself is not written
to the buffer but is indicated by the AM bit.

6 CM Continuous mode.
0 Normal operation. The CPM clears E after this BD is closed.
1 The CPM does not clear E after this BD is closed, allowing the buffer to be overwritten when the CPM

accesses this BD again. E is cleared if an error occurs during reception, regardless of CM.

7 ID Buffer closed on reception of idles. The buffer is closed because a programmable number of consecutive
idle sequences (MAX_IDL) was received.

8 AM Address match. Significant only if the address bit is set and automatic multidrop mode is selected in
PSMR[UM]. After an address match, AM identifies which user-defined address character was matched.
0 The address matched the value in UADDR2.
1 The address matched the value in UADDR1.

9 — Reserved, should be cleared.

Chapter 22. SCC UART Mode

SCC UART Transmit Buffer Descriptor (TxBD)

Section 21.3, “SCC Buffer Descriptors (BDs),” describes the data length and buffer pointer
fields.

22.18SCC UART Transmit Buffer Descriptor (TxBD)
The CPM uses BDs to confirm transmission and indicate error conditions so the core knows
that buffers have been serviced. Figure 22-9 shows the SCC UART TxBD.

Table 22-11 describes TxBD status and control fields.

10 BR Break received. Set when a break sequence is received as data is being received into this buffer.

11 FR Framing error. Set when a character with a framing error (a character without a stop bit) is received and
located in the last byte of this buffer. A new Rx buffer is used to receive subsequent data.

12 PR Parity error. Set when a character with a parity error is received and located in the last byte of this buffer.
A new Rx buffer is used to receive subsequent data.

13 — Reserved, should be cleared.

14 OV Overrun. Set when a receiver overrun occurs during reception.

15 CD Carrier detect lost. Set when the carrier detect signal is negated during reception.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R — W I CR A CM P NS — CT

Offset + 2 Data Length

Offset + 4 Tx Buffer Pointer

Offset + 6

Figure 22-9. SCC UART Transmit Buffer Descriptor (TxBD)

Table 22-11. SCC UART TxBD Status and Control Field Descriptions

Bit Name Description

0 R Ready.
0 The buffer is not ready. This BD and buffer can be modified. The CPM automatically clears R after

the buffer is sent or an error occurs.
1 The user-prepared buffer is waiting to begin transmission or is being transmitted. Do not modify the

BD once R is set.

1 — Reserved, should be cleared.

2 W Wrap (last buffer descriptor in TxBD table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CPM sends data using the BD pointed to by

TBASE. The number of TxBDs in this table is determined only by the W bit.

3 I Interrupt.
0 No interrupt is generated after this buffer is processed.
1 SCCE[TX] is set after this buffer is processed by the CPM, which can cause an interrupt.

Table 22-10. SCC UART RxBD Status and Control Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

SCC UART Event Register (SCCE) and Mask Register (SCCM)

The data length and buffer pointer fields are described in Section 21.3, “SCC Buffer
Descriptors (BDs).”

22.19SCC UART Event Register (SCCE) and Mask
Register (SCCM)

The SCC event register (SCCE) is used to report events recognized by the UART channel
and to generate interrupts. When an event is recognized, the controller sets the
corresponding SCCE bit. Interrupts can be masked in the UART mask register (SCCM),
which has the same format as SCCE. Setting a mask bit enables the corresponding SCCE
interrupt; clearing a bit masks it. Figure 22-10 shows example interrupts that can be
generated by the SCC UART controller.

4 CR Clear-to-send report.
0 The next buffer is sent with no delay (assuming it is ready), but if a CTS lost condition occurs,

TxBD[CT] may not be set in the correct TxBD or may not be set at all. Asynchronous flow control,
however, continues to function normally.

1 Normal CTS lost error reporting and three bits of idle are sent between consecutive buffers.

5 A Address. Valid only in multidrop mode—automatic or manual.
0 This buffer contains only data.
1 This buffer contains address characters. All data in this buffer is sent as address characters.

6 CM Continuous mode.
0 Normal operation. The CPM clears R after this BD is closed.
1 The CPM does not clear R after this BD is closed, allowing the buffer to be resent next time the CPM

accesses this BD. However, R is cleared by transmission errors, regardless of CM.

7 P Preamble.
0 No preamble sequence is sent.
1 Before sending data, the controller sends an idle character consisting of all ones. If the data length

of this BD is zero, only a preamble is sent.

8 NS No stop bit or shaved stop bit sent.
0 Normal operation. Stop bits are sent with all characters in this buffer.
1 If PSMR[SYN] = 1, data in this buffer is sent without stop bits. If SYN = 0, the stop bit is shaved,

depending on the DSR setting; see Section 22.14, “Fractional Stop Bits (Transmitter).”

9–14 — Reserved, should be cleared.

15 CT CTS lost. The CPM writes this status bit after sending the associated buffer.
0 CTS remained asserted during transmission.
1 CTS negated during transmission.

Table 22-11. SCC UART TxBD Status and Control Field Descriptions (continued)

Bit Name Description

Chapter 22. SCC UART Mode

SCC UART Event Register (SCCE) and Mask Register (SCCM)

Figure 22-10. SCC UART Interrupt Event Example

SCCE bits are cleared by writing ones; writing zeros has no effect. Unmasked bits must be
cleared before the CPM clears an internal interrupt request. Figure 22-11 shows
SCCE/SCCM for UART operation.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — GLR GLT — AB IDL GRA BRKE BRKS — CCR BSY TX RX

Reset 0000_0000_0000_0000

R/W R/W

Addr 0xA10 (SCCE1)/0xA14 (SCCM1)

Figure 22-11. SCC UART Event Register (SCCE) and Mask Register (SCCM)

CD IDL RX CCR IDL RX IDL BRKS BRKE IDL CD

Break

Line Idle
10 Characters

RXD

CD

Characters
Received by UART

Time

Line Idle

TXD

RTS

Characters
Transmitted by UART

CTS

TX CTSCTS

Line Idle Line Idle

7 Characters

Notes:

UART SCCE
Events

1. The first RX event assumes Rx buffers are 6 bytes each.
2. The second IDL event occurs after an all-ones character is received.
3. The second RX event position is programmable based on the MAX_IDL value.
4. The BRKS event occurs after the first break character is received.
5. The CD event must be programmed in the port C parallel I/O, not in the SCC itself.

Legend:

A receive control character defined not to be stored in the Rx buffer.

Notes:

UART SCCE
Events

1. TX event assumes all seven characters were put into a single buffer and TxBD[CR]=1.
2. The CTS event must be programmed in the port C parallel I/O, not in the SCC itself.

MPC855T User’s Manual

SCC UART Status Register (SCCS)

Table 22-12 describes SCCE fields for UART mode.

22.20SCC UART Status Register (SCCS)
The SCC UART status register (SCCS), shown in Figure 22-12, monitors the real-time
status of RXD. The real-time status of CTS and CD is part of the port C parallel I/O.

Table 22-12. SCCE/SCCM Field Descriptions for UART Mode

Bit Name Description

0–2 — Reserved, should be cleared.

3 GLR Glitch on Rx. Set when the SCC encounters an Rx clock glitch.

4 GLT Glitch on transmit. Set when the SCC encounters a Tx clock glitch.

5 — Reserved, should be cleared.

6 AB Autobaud. Set when an autobaud lock is detected. The core should rewrite the baud rate generator with
the precise divider value. See Section 20.4, “Baud Rate Generators (BRGs).”

7 IDL Idle sequence status changed. Set when the channel detects a change in the serial line. The line’s
real-time status can be read in SCCS[ID]. Idle is entered when a character of all ones is received; it is
exited when a zero is received.

8 GRA Graceful stop complete. Set as soon as the transmitter finishes any buffer in progress after a GRACEFUL
STOP TRANSMIT command is issued. It is set immediately if no buffer is in progress.

9 BRKE Break end. Set when an idle bit is received after a break sequence.

10 BRKS Break start. Set when the first character of a break sequence is received. Multiple BRKS events are not
received if a long break sequence is received.

11 — Reserved, should be cleared.

12 CCR Control character received and rejected. Set when a control character is recognized and stored in the
receive control character register RCCR.

13 BSY Busy. Set when a character is received and discarded due to a lack of buffers. In multidrop mode, the
receiver automatically enters hunt mode; otherwise, reception continues when a buffer is available. The
latest point that an RxBD can be changed to empty and guarantee avoiding the busy condition is the
middle of the stop bit of the first character to be stored in that buffer.

14 TX Tx event. Set when a buffer is sent. If TxBD[CR] = 1, TX is set no sooner than when the last stop bit of
the last character in the buffer begins transmission. If TxBD[CR] = 0, TX is set after the last character is
written to the Tx FIFO. TX also represents a CTS lost error; check TxBD[CT].

15 RX Rx event. Set when a buffer is received, which is no sooner than the middle of the first stop bit of the
character that caused the buffer to close. Also represents a general receiver error (overrun, CD lost,
parity, idle sequence, and framing errors); the RxBD status and control fields indicate the specific error.

Bit 0 1 2 3 4 5 6 7

Field — ID

Reset 0000_0000_0000_0000

R/W R

Addr 0xA17 (SCCS1)

Figure 22-12. SCC Status Register for UART Mode (SCCS)

Chapter 22. SCC UART Mode

SCC UART Programming Example

Table 22-13 describes UART SCCS fields.

22.21SCC UART Programming Example
The following initialization sequence is for the 9,600 baud, 8 data bits, no parity, and stop
bit of the SCC in UART mode assuming a 25-MHz system frequency. BRG1 is used. The
controller is configured with RTS1, CTS1, and CD1 active; CTS1 acts as an automatic
flow-control signal.

1. Configure port A to enable TXD1 and RXD1. Set PAPAR[14,15] and clear
PADIR[14,15] and PAODR[14,15].

2. Configure port C to enable RTS1, CTS1, and CD1. Set PCPAR[15] and
PCSO[10,11] and clear PCPAR[10,11] and PCDIR[10,11,15].

3. Configure BRG1. Write BRGC1 with 0x010144. The DIV16 bit is not used and the
divider is 162 (decimal). The resulting BRG1 clock is 16× the preferred bit rate.

4. Connect BRG1 to SCC1 using the serial interface. Clear SICR[R1CS,T1CS].

5. Initialize the SDMA configuration register (SDCR = 0x0001 for normal operation).

6. Connect the SCC1 to the NMSI. Clear SICR[SC1].

7. Write RBASE and TBASE in the SCC1 parameter RAM to point to the RxBD and
TxBD tables in dual-port RAM. Assuming one RxBD at the start of dual-port RAM
followed by one TxBD, write RBASE with 0x0000 and TBASE with 0x0008.

8. Write 0x0001 to CPCR to execute the INIT RX AND TX PARAMS command for
SCC1. This command updates RBPTR and TBPTR of the serial channel with the
new values of RBASE and TBASE.

9. Write RFCR with 0x10 and TFCR with 0x10 for normal operation.

10. Write MRBLR with the maximum number of bytes per Rx buffer. For this case,
assume 16 bytes, so MRBLR = 0x0010.

11. Write MAX_IDL with 0x0000 in the parameter RAM to disable the maximum idle
functionality for this example.

12. Set BRKCR to 0x0001 so STOP TRANSMIT commands send only one break
character.

13. Clear PAREC, FRMEC, NOSEC, and BRKEC in parameter RAM.

14. Clear UADDR1 and UADDR2. They are not used.

Table 22-13. UART SCCS Field Descriptions

Bits Name Description

0–6 — Reserved, should be cleared.

7 ID Idle status. Set when RXD has been a logic one for at least a full character time.
0 The line is not idle.
1 The line is idle.

MPC855T User’s Manual

S-Records Loader Application

15. Clear TOSEQ. It is not used.

16. Write CHARACTER1–8 with 0x8000. They are not used.

17. Write RCCM with 0xC0FF. It is not used.

18. Initialize the RxBD. Assume the Rx buffer is at 0x0000_1000 in main memory.
Write 0xB000 to the RxBD[Status and Control], 0x0000 to RxBD[Data Length]
(optional), and 0x0000_1000 to RxBD[Buffer Pointer].

19. Initialize the TxBD. Assume the buffer is at 0x0000_2000 in main memory and
contains sixteen 8-bit characters. Write 0xB000 to the TxBD[Status and Control],
0x0010 to TxBD[Data Length], and 0x00002000 to TxBD[Buffer Pointer].

20. Write 0xFFFF to SCCE1 to clear any previous events.

21. Write 0x0003 to SCCM1 to allow the TX and RX interrupts.

22. Write 0x4000_0000 to the CPM interrupt mask register (CIMR) to allow SCC1 to
generate a system interrupt. The CICR should also be initialized.

23. Write 0x0000_0020 to GSMR_H1 to configure a small Rx FIFO width.

24. Write 0x0002_8004 to GSMR_L1 to configure 16× sampling for transmit and
receive, CTS and CD to automatically control transmission and reception (DIAG
bits), and the SCC for UART mode. Notice that the transmitter (ENT) and receiver
(ENR) have not been enabled yet.

25. Set PSMR1 to 0xB000 to configure automatic flow control using CTS, 8-bit
characters, no parity, 1 stop bit, and asynchronous SCC UART operation.

26. Write 0x0002_8034 to GSMR_L1 to enable the transmitter and receiver. This
ensures that ENT and ENR are enabled last.

Note that after 16 bytes are sent, the transmit buffer is closed. Additionally, the receive
buffer is closed after 16 bytes are received. Data received after 16 bytes causes a busy
(out-of-buffers) condition because only one RxBD is prepared.

22.22S-Records Loader Application
This section describes a downloading application that uses an SCC UART controller. The
application performs S-record downloads and uploads between a host computer and an
intelligent peripheral through a serial asynchronous line. S-records are strings of ASCII
characters that begin with ‘S’ and end in an end-of-line character. This characteristic is used
to impose a message structure on the communication between the devices. For flow control,
each device can transmit XON and XOFF characters, which are not part of the program
being uploaded or downloaded.

For simplicity, assume that the line is not multidrop (no addresses are sent) and that each
S-record fits into a single buffer. Follow the basic UART initialization sequence above in
Section 22.21, “SCC UART Programming Example,” except allow for more and larger
buffers and create the control character table as described in Table 22-14.

Chapter 22. SCC UART Mode

S-Records Loader Application

To receive S-records, the core must wait for an RX interrupt, indicating that a complete
S-record buffer was received. Transmission requires assembling S-records into buffers and
linking them to the TxBD table; transmission can be paused when an XOFF character is
received. This scheme minimizes the number of interrupts the core receives (one per
S-record) and relieves it from continually scanning for control characters.

Table 22-14. UART Control Characters for S-Records Example

Character Description

Line Feed Both the E and R bits should be cleared. When an end-of-line character is received, the current buffer is
closed and made available to the core for processing. This buffer contains an entire S record that the
processor can now check and copy to memory or disk as required.

XOFF E should be cleared; R should be set. Whenever the core receives a control-character-received (CCR)
interrupt and the RCCR contains XOFF, the software should immediately stop transmitting by setting
PSMR[FRZ]. This keeps the other station from losing data when it runs out of Rx buffers.

XON XON should be received after XOFF. E should be cleared and R should be set. PSMR[FRZ] on the
transmitter should now be cleared. The CPM automatically resumes transmission of the serial line at the
point at which it was previously stopped. Like XOFF, the XON character is not stored in the receive buffer.

MPC855T User’s Manual

S-Records Loader Application

Chapter 23. SCC HDLC Mode

Chapter 23
SCC HDLC Mode
HDLC (high-level data link control) is one of the most common protocols in the data link
layer, layer 2 of the OSI model. Many other common layer 2 protocols, such as SDLC,
SS#7, AppleTalk, LAPB, and LAPD, are based on HDLC and its framing structure in
particular. Figure 23-1 shows the HDLC framing structure.

HDLC uses a zero insertion/deletion process (bit-stuffing) to ensure that a data bit pattern
matching the delimiter flag does not occur in a field between flags. The HDLC frame is
synchronous and relies on the physical layer for clocking and synchronization of the
transmitter/receiver.

An address field is needed to carry the frame's destination address because the layer 2 frame
can be sent over point-to-point links, broadcast networks, packet-switched or
circuit-switched systems. An address field is commonly 0, 8, or 16 bits, depending on the
data link layer protocol. SDLC and LAPB use an 8-bit address. SS#7 has no address field
because it is always used in point-to-point signaling links. LAPD divides its 16-bit address
into different fields to specify various access points within one device. LAPD also defines
a broadcast address. Some HDLC-type protocols permit addressing beyond 16 bits.

The 8- or 16-bit control field provides a flow control number and defines the frame type
(control or data). The exact use and structure of this field depends on the protocol using the
frame. The length of the data in the data field depends on the frame protocol. Layer 3 frames
are carried in this data field. Error control is implemented by appending a cyclic redundancy
check (CRC) to the frame, which in most protocols is 16 bits long but can be as long as 32
bits. In HDLC, the lsb of each octet is sent first; the msb of the CRC is sent first.

HDLC mode is selected for the SCC by writing GSMR_L[MODE] = 0b0000. In a
nonmultiplexed modem interface, SCC outputs connect directly to external pins. Modem
signals can be supported through port C. The Rx and Tx clocks can be supplied from either
the bank of baud rate generators, by the DPLL, or externally. The SCC can also be
connected through the TDM channels of the serial interface (SI). In HDLC mode, the SCC
becomes an HDLC controller, and consists of separate transmit and receive sections whose
operations are asynchronous with the core.

MPC855T User’s Manual

SCC HDLC Features

23.1 SCC HDLC Features
The main features of the SCC in HDLC mode are follows:

• Flexible buffers with multiple buffers per frame

• Separate interrupts for frames and buffers (Rx and Tx)

• Received-frames threshold to reduce interrupt overhead

• Can be used with the SCC DPLL

• Four address comparison registers with mask

• Maintenance of five 16-bit error counters

• Flag/abort/idle generation and detection

• Zero insertion/deletion

• 16- or 32-bit CRC-CCITT generation and checking

• Detection of nonoctet aligned frames

• Detection of frames that are too long

• Programmable flags (0–15) between successive frames

• Automatic retransmission in case of collision

23.2 SCC HDLC Channel Frame Transmission
The HDLC transmitter is designed to work with little or no core intervention. Once enabled
by the core, a transmitter starts sending flags or idles as programmed in the HDLC mode
register (PSMR). The HDLC polls the first BD in the TxBD table. When there is a frame to
transmit, the SCC fetches the data from memory and starts sending the frame after sending
the minimum number of flags specified between frames. When the end of the current buffer
is reached and TxBD[L] (last buffer in frame) is set, the CRC and closing flag are appended.
In HDLC mode, the lsb of each octet and the msb of the CRC are sent first. Figure 23-1
shows a typical HDLC frame.

Figure 23-1. HDLC Framing Structure

After a closing flag is sent, the SCC updates the frame status bits of the BD and clears
TxBD[R] (buffer ready). At the end of the current buffer, if TxBD[L] is not set (multiple
buffers per frame), only TxBD[R] is cleared. Before the SCC proceeds to the next TxBD in
the table, an interrupt can be issued if TxBD[I] is set. This interrupt programmability allows
the core to intervene after each buffer, after a specific buffer, or after each frame.

Opening Flag Address Control Information (Optional) CRC Closing Flag

8 bits 16 bits 8 bits 8n bits 16 bits 8 bits

Chapter 23. SCC HDLC Mode

SCC HDLC Channel Frame Reception

The STOP TRANSMIT command can be used to expedite critical data ahead of previously
linked buffers or to support efficient error handling. When the SCC receives a STOP

TRANSMIT command, it sends idles or flags instead of the current frame until it receives a
RESTART TRANSMIT command. The GRACEFUL STOP TRANSMIT command can be used to
insert a high-priority frame without aborting the current one—a graceful-stop-complete
event is generated in SCCE[GRA] when the current frame is finished. See Section 23.6,
“SCC HDLC Commands.”

23.3 SCC HDLC Channel Frame Reception
The HDLC receiver is designed to work with little or no core intervention to perform
address recognition, CRC checking, and maximum frame length checking. Received
frames can be used to implement any HDLC-based protocol.

Once enabled by the core, the receiver waits for an opening flag character. When it detects
the first byte of the frame, the SCC compares the frame address with four
user-programmable, 16-bit address registers and an address mask. The SCC compares the
received address field with the user-defined values after masking with the address mask. To
detect broadcast (all ones) address frames, one address register must be written with all
ones.

If an address match is detected, the SCC fetches the next BD and SCC starts transferring
the incoming frame to the buffer if it is empty. When the buffer is full, the SCC clears
RxBD[E] and generates a maskable interrupt if RxBD[I] is set. If the incoming frame is
larger than the current buffer, the SCC continues receiving using the next BD in the table.

During reception, the SCC checks for frames that are too long (using MFLR). When the
frame ends, the CRC field is checked against the recalculated value and written to the
buffer. RxBD[Data Length] of the last BD in the HDLC frame contains the entire frame
length. This also enables software to identify the frames in which the maximum frame
length violations occur. The SCC sets RxBD[L] (last buffer in frame), writes the frame
status bits, and clears RxBD[E]. It then generates a maskable event (SCCE[RXF]) to
indicate a frame was received. The SCC then waits for a new frame. Back-to-back frames
can be received with only one shared flag between frames.

The received frames threshold parameter (RFTHR) can be used to postpone interrupts until
a specified number of frames is received. This function can be combined with a timer to
implement a timeout if fewer than the specified number of threshold frames is received.

Note that the SCC in HDLC mode, or any other synchronous mode, must receive a
minimum of eight clocks after the last bit arrives to account for Rx FIFO delay.

MPC855T User’s Manual

SCC HDLC Parameter RAM

23.4 SCC HDLC Parameter RAM
For HDLC mode, the protocol-specific area of the SCC parameter RAM is mapped as in
Table 23-1.

Table 23-1. HDLC-Specific SCC Parameter RAM Memory Map

Offset 1

1 From SCC base. SCC base = IMMR + 0x3C00 (SCC1)

Name Width Description

0x30 — Word Reserved

0x34 C_MASK Word CRC mask. For the 16-bit CRC-CCITT, initialize with 0x0000_F0B8. For 32-bit
CRC-CCITT, initialize with 0xDEBB_20E3.

0x38 C_PRES Word CRC preset. For the 16-bit CRC-CCITT, initialize with 0x0000_FFFF. For 32-bit
CRC-CCITT, initialize with 0xFFFF_FFFF.

0x3C DISFC Hword Modulo 2
16

 counters maintained by the CPM. Initialize them while the channel is
disabled.
DISFC (Discarded frame counter) Counts error-free frames discarded due to lack of
free buffers.
CRCEC (CRC error counter) Includes frames not addressed to the user or frames
received in the BSY condition, but does not include overrun errors.
ABTSC (Abort sequence counter)
NMARC (Nonmatching address received counter) Includes error-free frames only.
RETRC (Frame retransmission counter) Counts number of frames resent due to
collision.

0x3E CRCEC Hword

0x40 ABTSC Hword

0x42 NMARC Hword

0x44 RETRC Hword

0x46 MFLR Hword Max frame length register. The HDLC compares the incoming HDLC frame’s length
with the user-defined limit in MFLR. If the limit is exceeded, the rest of the frame is
discarded and RxBD[LG] is set in the last BD of that frame. At the end of the frame
the SCC reports frame status and frame length in the last RxBD. The MFLR is defined
as all in-frame bytes between the opening and closing flags.

0x48 MAX_CNT Hword Maximum length counter. A temporary down-counter used to track frame length.

0x4A RFTHR Hword Received frames threshold. Used to reduce potential interrupt overhead when each in
a series of short HDLC frames causes an SCCE[RXF] event. Setting RFTHR
determines the frequency of RXF interrupts, which occur only when the RFTHR limit
is reached. Provide enough empty RxBDs for the number of frames specified in
RFTHR.

0x4C RFCNT Hword Received frames count. RFCNT is a down-counter used to implement RFTHR.

0x4E HMASK Hword Mask register (HMASK) and four address registers (HADDRn) for address
recognition. The SCC reads the frame address from the HDLC receiver, compares it
with the HADDRs, and masks the result with HMASK. Setting an HMASK bit enables
the corresponding comparison bit, clearing a bit masks it. When a match occurs, the
frame address and data are written to the buffers. When no match occurs and a frame
is error-free, the nonmatching address received counter (NMARC) is incremented.
The eight low-order bits of HADDRn should contain the first address byte after the
opening flag. For example, to recognize a frame that begins 0x7E (flag), 0x68, 0xAA,
using 16-bit address recognition, HADDRn should contain 0xAA68 and HMASK
should contain 0xFFFF. For 8-bit addresses, clear the eight high-order HMASK bits.
See Figure 23-2..

0x50 HADDR1 Hword

0x52 HADDR2 Hword

0x54 HADDR3 Hword

0x56 HADDR4 Hword

0x58 TMP Hword Temporary storage.

0x5A TMP_MB Hword Temporary storage.

Chapter 23. SCC HDLC Mode

Programming the SCC HDLC Controller

Figure 23-2 shows 16- and 8-bit address recognition.

Figure 23-2. HDLC Address Recognition

23.5 Programming the SCC HDLC Controller
HDLC mode is selected for the SCC by writing GSMR_L[MODE] = 0b0000. The HDLC
controller uses the same buffer and BD data structure as other modes and supports
multibuffer operation and address comparisons. Receive errors are reported through the
RxBD; transmit errors are reported through the TxBD.

23.6 SCC HDLC Commands
The transmit and receive commands are issued to the CPM command register (CPCR).
Transmit commands are described in Table 23-2.

Table 23-2. Transmit Commands

Command Description

STOP
TRANSMIT

After a hardware or software reset and a channel is enabled in the GSMR, the transmitter starts polling
the first BD in the TxBD table every 64 Tx clocks, or immediately if TODR[TOD] = 1, and begins sending
data if TxBD[R] is set. If the SCC receives the STOP TRANSMIT command while not transmitting, the
transmitter stops polling the BDs. If the SCC receives the command during transmission, transmission is
aborted after a maximum of 64 additional bits, the Tx FIFO is flushed, and the current BD pointer TBPTR
is not advanced (no new BD is accessed). The transmitter then sends an abort sequence (0x7F) and stops
polling the BDs.
When not transmitting, the channel sends flags or idles as programmed in the GSMR.
Note that if PSMR[MFF] = 1, multiple small frames could be flushed from the Tx FIFO; a GRACEFUL STOP
TRANSMIT command prevents this.

GRACEFUL
STOP
TRANSMIT

Stops transmission smoothly. Unlike a STOP TRANSMIT command, it stops transmission after the current
frame is finished or immediately if no frame is being sent. SCCE[GRA] is set when transmission stops.
HDLC Tx parameters and Tx BDs can then be updated. TBPTR points to the next TxBD. Transmission
begins once TxBD[R] of the next BD is set and a RESTART TRANSMIT command is issued.

Flag
0x7E etc.

Flag
0x7E

Address
0x68

Address
0xAA

Control
0x44 etc.

Address
0x55

Control
0x44

16-Bit Address Recognition 8-Bit Address Recognition

0x00FFHMASK

0xXX55HADDR1

0xXX55HADDR2

0xXX55HADDR3

0xXX55HADDR4

0xFFFFHMASK

0xAA68HADDR1

0xFFFFHADDR2

0xAA68HADDR3

0xAA68HADDR4

Recognizes one 16-bit address (HADDR1) and
the 16-bit broadcast address (HADDR2)

Recognizes a single 8-bit address (HADDR1)

MPC855T User’s Manual

Handling Errors in the SCC HDLC Controller

Receive commands are described in Table 23-3.

23.7 Handling Errors in the SCC HDLC Controller
The SCC HDLC controller reports frame reception and transmission errors using BDs,
error counters, and the SCCE. Transmission errors are described in Table 23-4.

RESTART
TRANSMIT

Enables frames to be sent on the transmit channel. The HDLC controller expects this command after a
STOP TRANSMIT is issued and the channel in its GSMR is disabled, after a GRACEFUL STOP TRANSMIT
command, or after a transmitter error. The transmitter resumes from the current BD.

INIT TX
PARAMETERS

Resets the Tx parameters in the parameter RAM. Issue only when the transmitter is disabled. INIT TX AND
RX PARAMETERS resets both Tx and Rx parameters.

Table 23-3. Receive Commands

Command Description

ENTER HUNT
MODE

After a hardware or software reset, once the SCC is enabled in the GSMR, the receiver is automatically
enabled and uses the first BD in the RxBD table. While the SCC is looking for the beginning of a frame,
that SCC is in hunt mode. The ENTER HUNT MODE command is used to force the HDLC receiver to stop
receiving the current frame and enter hunt mode, in which the HDLC continually scans the input data
stream for a flag sequence. After receiving the command, the buffer is closed and the CRC is reset.
Further frame reception uses the next BD.

CLOSE RXBD Should not be used in the HDLC protocol.

INIT RX
PARAMETERS

Resets the Rx parameters in the parameter RAM.; issue only when the receiver is disabled. Note that
INIT TX AND RX PARAMETERS resets both Tx and Rx parameters.

Table 23-4. Transmit Errors

Error Description

Transmitter
Underrun

The channel stops transmitting, closes the buffer, sets TxBD[UN], and generates a TXE interrupt if not
masked. Transmission resumes when a RESTART TRANSMIT command is issued. The SCC1 transmit and
receive FIFOs are 32 bytes each.

CTS Lost
during Frame
Transmission

The channel stops transmitting, closes the buffer, sets TxBD[CT], and generates the TXE interrupt if not
masked. Transmission resumes after a RESTART TRANSMIT command. If this error occurs on the first or
second buffer of the frame and PSMR[RTE] = 1, the channel resends the frame when CTS is reasserted
and no error is reported. If collisions are possible, to ensure proper retransmission of multi-buffer
frames, the first two buffers of each frame should in total contain more than 36 bytes for SCC1 or 20
bytes for SCC. The channel also increments the retransmission counter RETRC in the parameter RAM.

Table 23-2. Transmit Commands (continued)

Command Description

Chapter 23. SCC HDLC Mode

HDLC Mode Register (PSMR)

Reception errors are described in Table 23-5.

23.8 HDLC Mode Register (PSMR)
The protocol-specific mode register (PSMR), shown in Figure 23-3, functions as the HDLC
mode register.

Table 23-5. Receive Errors

Error Description

Overrun Each SCC maintains an internal FIFO for receiving data. The CPM begins programming the SDMA
channel (if the buffer is in external memory) and updating the CRC when a full or partial FIFO’s worth
of data (according to GSMR_H[RFW]) is received in the Rx FIFO. When an Rx FIFO overrun occurs,
the previous byte is overwritten by the next byte. The previous data byte and the frame status are lost.
The channel closes the buffer with RxBD[OV] set and generates an RXF interrupt if not masked. The
receiver then enters hunt mode. Even if an overrun occurs during a frame whose address is not
recognized, an RxBD with data length two is opened to report the overrun and the interrupt is
generated.

CD Lost
during Frame
Reception

Highest priority error. The channel stops frame reception, closes the buffer, sets RxBD[CD], and
generates the RXF interrupt if not masked. The rest of the frame is lost and other errors are not checked
in that frame. At this point, the receiver enters hunt mode.

Abort
Sequence

Occurs when seven or more consecutive ones are received. When this occurs while receiving a frame,
the channel closes the buffer, sets RxBD[AB] and generates a maskable RXF interrupt. The channel
also increments the abort sequence counter ABTSC. The CRC and nonoctet error status conditions are
not checked on aborted frames. The receiver then enters hunt mode.

Nonoctet
Aligned
Frame

The channel writes the received data to the buffer, closes the buffer, sets RxBD[NO], and generates a
maskable RXF interrupt. CRC error status should be disregarded on nonoctet frames. After a nonoctet
aligned frame is received, the receiver enters hunt mode. An immediate back-to-back frame is still
received. The nonoctet data may be derived from the last word in the buffer as follows:

Note that if buffer swapping is used (RFCR[BO] = 0b0x), the figure above refers to the last byte, rather
than the last word, of the buffer. The lsb of each octet is sent first while the msb of the CRC is sent first.

CRC The channel writes the received CRC to the buffer, closes the buffer, sets RxBD[CR], generates a
maskable RXF interrupt, and increments the CRC error counter CRCEC. After receiving a frame with
a CRC error, the receiver enters hunt mode. An immediate back-to-back frame is still received. CRC
checking cannot be disabled, but the CRC error can be ignored if checking is not required.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field NOF CRC RTE — FSE DRT BUS BRM MFF —

Reset 0

R/W R/W

Address 0xA08 (PSMR1)

Figure 23-3. HDLC Mode Register (PSMR)

msb lsb

1 0 0

Valid Data Nonvalid Data

MPC855T User’s Manual

HDLC Mode Register (PSMR)

Table 23-6 describes PSMR HDLC fields.
Table 23-6. PSMR HDLC Field Descriptions

Bits Name Description

0-3 NOF Number of flags. Minimum number of flags between or before frames. If NOF = 0b0000, no flags are
inserted between frames and the closing flag of one frame is followed by the opening flag of the next
frame in the case of back-to-back frames. NOF can be modified on-the-fly.

4–5 CRC CRC selection.
00 16-bit CCITT-CRC (HDLC). X16 + X12 + X5 + 1.
x1 Reserved.
10 32-bit CCITT-CRC (Ethernet and HDLC). X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8

+ X7 + X5 + X4 + X2 + X1 +1.

6 RTE Retransmit enable.
0 No retransmission.
1 Automatic frame retransmission is enabled. Particularly useful in the HDLC bus protocol and ISDN

applications where multiple HDLC controllers can collide. Note that retransmission occurs only if a
lost CTS occurs on the first or second buffer of the frame.

7 — Reserved, should be cleared.

8 FSE Flag sharing enable. Valid only if GSMR_H[RTSM] = 1. Can be modified on-the-fly.
0 Normal operation.
1 If NOF[0–3] = 0b0000, a single shared flag is sent between back-to-back frames. Other values of

NOF[0–3] are decremented by 1. Useful in signaling system #7 applications.

9 DRT Disable receiver while transmitting.
0 Normal operation.
1 As the SCC sends data, the receiver is disabled and gated by the internal RTS. This helps if the

HDLC channel is on a multidrop line and the SCC does not need to receive its own transmission.

10 BUS HDLC bus mode.
0 Normal HDLC operation.
1 HDLC bus operation is selected. See Section 23.14, “HDLC Bus Mode with Collision Detection.”

11 BRM HDLC bus RTS mode. Valid only if BUS = 1. Otherwise, it is ignored.
0 Normal RTS operation during HDLC bus mode. RTS is asserted on the first bit of the Tx frame and

negated after the first collision bit is received.
1 Special RTS operation during HDLC bus mode. RTS is delayed by one bit with respect to the normal

case, which helps when the HDLC bus protocol is being run locally and sent over a long-distance
line at the same time. The one-bit delay allows RTS to be used to enable the transmission line buffers
so that the electrical effects of collisions are not sent over the transmission line.

12 MFF Multiple frames in Tx FIFO. The receiver is not affected.
0 Normal operation. The Tx FIFO must never contain more than one HDLC frame. The CTS lost status

is reported accurately on a per-frame basis.
1 The Tx FIFO can hold multiple frames, but lost CTS may not be reported on the buffer/frame it

occurred on. This can improve performance of HDLC transmissions of small back-to-back frames or
when the number of flags between frames should be limited.

13–15 — Reserved, should be cleared.

Chapter 23. SCC HDLC Mode

SCC HDLC Receive Buffer Descriptor (RxBD)

23.9 SCC HDLC Receive Buffer Descriptor (RxBD)
The CPM uses the RxBD, shown in Figure 23-4, to report on data received for each buffer.

Table 23-7 describes HDLC RxBD status and control fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E — W I L F CM — DE — LG NO AB CR OV CD

Offset + 2 Data Length

Offset + 4 Rx Buffer Pointer

Offset + 6

Figure 23-4. SCC HDLC Receive Buffer Descriptor (RxBD)

Table 23-7. SCC HDLC RxBD Status and Control Field Descriptions

Bits Name Description

0 E Empty.
0 The buffer is full or reception stopped because of an error. The core can read or write to any fields of

this RxBD. The CPM does not use this BD while E = 0.
1 The buffer is not full. The CP controls the BD and buffer. The core should not update the BD.

1 — Reserved, should be cleared.

2 W Wrap (last BD in the RxBD table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CPM receives incoming data using the BD pointed to

by RBASE. The number of BDs in this table are programmable and determined only by RxBD[W] and
overall space constraints of the dual-port RAM.

3 I Interrupt.
0 SCCE[RXB] is not set after this buffer is used; SCCE[RXF] is unaffected.
1 SCCE[RXB] or SCCE[RXF] is set when the SCC uses this buffer.

4 L Last buffer in frame.
0 Not the last buffer in frame.
1 Last buffer in frame. Indicates reception of a closing flag or an error, in which case one or more of the

CD, OV, AB, and LG bits are set. The SCC writes the number of frame octets to the data length field.

5 F First in frame.
0 Not the first buffer in a frame.
1 First buffer in a frame.

6 CM Continuous mode. Note that RxBD[E] is cleared if an error occurs during reception, regardless of CM.
0 Normal operation.
1 RxBD[E] is not cleared by the CPM after this BD is closed, allowing the associated buffer to be

overwritten next time the CPM accesses it.

7 — Reserved, should be cleared.

8 DE DPLL error. Set when a DPLL error occurs while this buffer is being received. DE is also set due to a
missing transition when using decoding modes in which a transition is required for every bit. Note that
when a DPLL error occurs, the frame closes and error checking halts.

9 — Reserved, should be cleared.

MPC855T User’s Manual

SCC HDLC Receive Buffer Descriptor (RxBD)

Data length and buffer pointer fields are described in Section 21.3, “SCC Buffer
Descriptors (BDs).” Because HDLC is a frame-based protocol, RxBD[Data Length] of the
last buffer of a frame contains the total number of frame bytes, including the 2 or 4 bytes
for CRC. Figure 23-5 shows an example of how RxBDs are used in receiving.

10 LG Rx frame length violation. Set when a frame larger than the maximum defined for this channel is
recognized. Only the maximum-allowed number of bytes (MFLR) is written to the buffer. This event is not
reported until the buffer is closed, SCCE[RXF] is set, and the closing flag is received. The total number
of bytes received between flags is still written to the data length field.

11 NO Rx nonoctet aligned frame. Set when a received frame contains a number of bits not divisible by eight.

12 AB Rx abort sequence. Set when at least seven consecutive ones are received during frame reception.

13 CR Rx CRC error. Set when a frame contains a CRC error. CRC bytes received are always written to the Rx
buffer.

14 OV Overrun. Set when a receiver overrun occurs during frame reception.

15 CD Carrier detect lost (NMSI mode only). Set when CD is negated during frame reception.

Table 23-7. SCC HDLC RxBD Status and Control Field Descriptions (continued)

Bits Name Description

Chapter 23. SCC HDLC Mode

SCC HDLC Receive Buffer Descriptor (RxBD)

Figure 23-5. SCC HDLC Receiving using RxBDs

Buffer

0

0x0008

32-Bit Buffer Pointer

1

E F
Receive BD 0

Status

Length

Pointer

0

0x000B

32-Bit Buffer Pointer

0

E F
Receive BD 1

Status

Length

Pointer

0

0x0003

32-Bit Buffer Pointer

1

E F
Receive BD 2

Status

Length

Pointer

1

XXXX

32-Bit Buffer Pointer

E
Receive BD 3

Status

Length

Pointer

Address 1

Address 2

Control Byte

Buffer

CRC Byte 1

CRC Byte 2

Buffer

Address 1

Address 2

Buffer

Control Byte

Empty

8 Bytes

8 Bytes

8 Bytes

8 Bytes

Two Frames
Received in HDLC

Unexpected Abort

Stored in Rx Buffer

Line Idle

Occurs before
Present

TimeTime

Stored in Rx Buffer

Buffer Full

Buffer Closed
when Closing Flag

Buffer
Still Empty

1

AB

5

Empty

MRBLR = 8 Bytes for the SCC

Empty

Last I-Field Byte

Information
(I-Field) Bytes

Received

Abort was
Received after
Control Byte

0

L

1

L

1

L

F A A C I I I I I I CR CR F

Closing Flag

Abort/IdleF A A C

Legend:
F = Flag
A = Address Byte
C = Control Byte
I = Information Byte
CR = CRC Byte

MPC855T User’s Manual

SCC HDLC Transmit Buffer Descriptor (TxBD)

23.10SCC HDLC Transmit Buffer Descriptor (TxBD)
The CPM uses the TxBD, shown in Figure 23-6, to confirm transmissions and indicate error
conditions.

Table 23-8 describes HDLC TxBD status and control fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R — W I L TC CM — UN CT

Offset + 2 Data Length

Offset + 4 Tx Buffer Pointer

Offset + 6

Figure 23-6. SCC HDLC Transmit Buffer Descriptor (TxBD)

Table 23-8. SCC HDLC TxBD Status and Control Field Descriptions

Bits Name Description

0 R Ready.
0 The buffer is not ready for transmission. Both the buffer and the BD can be updated. The CPM clears

R after the buffer is sent or an error is encountered.
1 The buffer has not been sent or is being sent and the BD cannot be updated.

1 — Reserved, should be cleared.

2 W Wrap (last BD in TxBD table).
0 Not the last BD in the table.
1 Last BD in the BD table. After this buffer is used, the CPM sends data using the BD pointed to by

TBASE. The number of TxBDs in this table is determined by TxBD[W] and the space constraints of
the dual-port RAM.

3 I Interrupt.
0 No interrupt is generated after this buffer is processed.
1 SCCE[TXB] or SCCE[TXE] is set when this buffer is processed, causing interrupts if not masked.

4 L Last.
0 Not the last buffer in the frame.
1 Last buffer in the frame.

5 TC Tx CRC. Valid only when TxBD[L] = 1. Otherwise, it is ignored.
0 Transmit the closing flag after the last data byte. This setting can be used to send a bad CRC after

the data for testing purposes.
1 Transmit the CRC sequence after the last data byte.

6 CM Continuous mode.
0 Normal operation.
1 The CP does not clear TxBD[R] after this BD is closed allowing the buffer to be resent the next time

the CP accesses this BD. However, TxBD[R] is cleared if an error occurs during transmission,
regardless of CM.

7–13 — Reserved, should be cleared.

14 UN Underrun. Set after the SCC sends a buffer and a transmitter underrun occurred.

15 CT CTS lost. Indicates when CTS in NMSI mode or layer 1 grant is lost during frame transmission. If data
from more than one buffer is currently in the FIFO when this error occurs, the HDLC writes CT in the
current BD after sending the buffer.

Chapter 23. SCC HDLC Mode

HDLC Event Register (SCCE)/HDLC Mask Register (SCCM)

The data length and buffer pointer fields are described in Section 21.3, “SCC Buffer
Descriptors (BDs).”

23.11HDLC Event Register (SCCE)/HDLC Mask
 Register (SCCM)

The SCC event register (SCCE) is used as the HDLC event register to report events
recognized by the HDLC channel and to generate interrupts. When an event is recognized,
the SCC sets the corresponding SCCE bit. Interrupts generated through SCCE can be
masked in the SCC mask register (SCCM) which has the same bit format as the SCCE.
Setting an SCCM bit enables the corresponding interrupt; clearing a bit masks it. SCCE bits
are cleared by writing ones; writing zeros has no effect. All unmasked bits must be cleared
before the CPM clears the internal interrupt request. Figure 23-7 shows SCCE/SCCM for
HDLC operation.

Table 23-9 describes SCCE/SCCM fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — GLR GLT DCC FLG IDL GRA — TXE RXF BSY TXB RXB

Reset 0000_0000_0000_0000

R/W R/W

Addr 0xA10 (SCCE1)/0xA14 (SCCM1)

Figure 23-7. HDLC Event Register (SCCE)/HDLC Mask Register (SCCM)

Table 23-9. SCCE/SCCM Field Descriptions

Bits Name Description

0–2 — Reserved, should be cleared.

3, 4 GLR/
GLT

Glitch on Rx/Tx. Set when the SCC detects a clock glitch on the receive/transmit clock. See
Section 21.4.6, “Clock Glitch Detection.”

5 DCC DPLL carrier sense changed. Set when the carrier sense status generated by the DPLL changes.
Real-time status can be read in SCCS[CS]. This is not the CD status reported in port C. Valid only when
the DPLL is used.

6 FLG Flag status. Set when the SCC stops or starts receiving HDLC flags. Real-time status can be read in
SCCS[FG].

7 IDL Idle sequence status changed. Set when HDLC line status changes. Real-time status of the line can be
read in SCCS[ID].

8 GRA Graceful stop complete. A GRACEFUL STOP TRANSMIT command completed execution. Set as soon as
the transmitter has sent a frame in progress when the command was issued. Set immediately if no
frame was in progress when the command was issued.

9–10 — Reserved, should be cleared.

11 TXE Tx error. Indicates an error (CTS lost or underrun) has occurred on the transmitter channel.

MPC855T User’s Manual

HDLC Event Register (SCCE)/HDLC Mask Register (SCCM)

Figure 23-8 shows interrupts that can be generated using the HDLC protocol.

Figure 23-8. SCC HDLC Interrupt Event Example

12 RXF Rx frame. Set when the number of receive frames specified in RFTHR are received on the HDLC
channel. It is set no sooner than two clocks after the last bit of the closing flag is received. This event is
not maskable via the RxBD[I] bit.

13 BSY Busy condition. Indicates a frame arrived but was discarded due to a lack of buffers.

14 TXB Transmit buffer. Enabled by setting TxBD[I]. TXB is set when a buffer is sent on the HDLC channel. For
the last buffer in the frame, TXB is not set before the last bit of the closing flag begins its transmission;
otherwise, it is set after the last byte of the buffer is written to the Tx FIFO.

15 RXB Receive buffer. Enabled by setting RxBD[I]. RXB is set when the HDLC channel receives a buffer that
is not the last in a frame.

Table 23-9. SCCE/SCCM Field Descriptions (continued)

Bits Name Description

CD IDL FLG RXB RXF IDL CD

Line Idle

Stored in Rx Buffer

RXD

CD

Frame
Received by HDLC

Time

Line Idle

TXD

RTS

Frame
Transmitted by HDLC

CTS

TXB CTSCTS

Line Idle Line Idle

Stored in Tx Buffer

NOTES:

HDLC SCCE
Events

1. RXB event assumes receive buffers are 6 bytes each.
2. The second IDL event occurs after 15 ones are received in a row.
3. The FLG interrupts show the beginning and end of flag reception.
4. The FLG interrupt at the end of the frame may precede the RXF interrupt due to receive FIFO latency.
5. The CD event must be programmed in the port C parallel I/O, not in the SCC itself.

NOTES:

HDLC SCCE
Events

1. TXB event shown assumes all three bytes were put into a single buffer.
2. Example shows one additional opening flag. This is programmable.

FF A A C I I I CR CR F

FLG FLG
FLG

6. F = flag, A = address byte, C = control byte, I = information byte, and CR = CRC byte

F F A A C CR CR F

3. The CTS event must be programmed in the port C parallel I/O, not in the SCC itself.

Chapter 23. SCC HDLC Mode

SCC HDLC Status Register (SCCS)

23.12SCC HDLC Status Register (SCCS)
The SCC status register (SCCS), shown in Figure 23-9, permits monitoring of real-time
status conditions on RXD. The real-time status of CTS and CD are part of the port C
parallel I/O.

Table 23-10 describes HDLC SCCS fields.

23.13SCC HDLC Programming Examples
The following sections show examples for programming the SCC in HDLC mode. The first
example uses an external clock. The second example implements Manchester encoding.

Bit 0 1 2 3 4 5 6 7

Field — FG CS ID

Reset 0000_0000

R/W R

Addr 0xA17 (SCCS1)

Figure 23-9. SCC HDLC Status Register (SCCS)

Table 23-10. HDLC SCCS Field Descriptions

Bits Name Description

0–4 — Reserved, should be cleared.

5 FG Flags. The line is checked after the data has been decoded by the DPLL.
0 HDLC flags are not being received. The most recently received 8 bits are examined every bit time to

see if a flag is present.
1 HDLC flags are being received. FG is set as soon as an HDLC flag (0x7E) is received on the line.

Once it is set, it remains set at least 8 bit times and the next eight received bits are examined. If
another flag occurs, FG stays set for at least another eight bits. If not, it is cleared and the search
begins again.

6 CS Carrier sense (DPLL). Shows the real-time carrier sense of the line as determined by the DPLL.
0 The DPLL does not sense a carrier.
1 The DPLL senses a carrier.

7 ID Idle status.
0 The line is busy.
1 Set when RXD is a logic 1 (idle) for 15 or more consecutive bit times. It is cleared after a single logic

0 is received.

MPC855T User’s Manual

SCC HDLC Programming Examples

23.13.1SCC HDLC Programming Example #1

The following initialization sequence is for the SCC HDLC channel with an external clock.
RTS1, CTS1, and CD1 are active; CLK3 is used for both the HDLC receiver and
transmitter.

1. Configure port A to enable TXD1 and RXD1. Set PAPAR[14,15] and clear
PADIR[14,15] and PAODR[14,15].

2. Configure port C to enable RTS1, CTS1, and CD1. Set PCPAR[15] and
PCSO[10,11] and clear PCPAR[10,11] and PCDIR[10,11,15].

3. Configure port A to enable CLK3. Set PAPAR[5] and clear PADIR[5].

4. Connect CLK3 to SCC1 using the SI. Write 0b110 to SICR[R1CS] and
SICR[T1CS].

5. Connect the SCC1 to the NMSI (its own set of pins) and clear SICR[SC1].

6. Write 0x0001 to the SDCR to initialize the SDMA configuration register.

7. Write RBASE and TBASE in the SCC1 parameter RAM to point to the RxBD and
TxBD tables in dual-port RAM. Assuming one RxBD at the start of dual-port RAM
and one TxBD following it, write RBASE with 0x0000 and TBASE with 0x0008.

8. Write 0x0001 to CPCR to execute the INIT RX AND TX PARAMS command for
SCC1. This command updates RBPTR and TBPTR of the serial channel with the
new values of RBASE and TBASE.

9. Write RFCR with 0x10 and TFCR with 0x10 for normal operation.

10. Write MRBLR with the maximum number of bytes per Rx buffer. Choose 256
bytes (MRBLR = 0x0100) so an entire Rx frame can fit in one buffer.

11. Write C_MASK with 0x0000F0B8 to comply with 16-bit CCITT-CRC.

12. Write C_PRES with 0x0000FFFF to comply with 16-bit CCITT-CRC.

13. Clear DISFC, CRCEC, ABTSC, NMARC, and RETRC for clarity.

14. Write MFLR with 0x0100 so the maximum frame size is 256 bytes.

15. Write RFTHR with 0x0001 to allow interrupts after each frame.

16. Write HMASK with 0x0000 to allow all addresses to be recognized.

17. Clear HADDR1–HADDR4 for clarity.

18. Initialize the RxBD. Assume the buffer is at 0x0000_1000 in main memory.
RxBD[Status and Control]= 0xB000, RxBD[Data Length] = 0x0000 (not required),
and RxBD[Buffer Pointer] = 0x0000_1000.

19. Initialize the TxBD. Assume the Tx data frame is at 0x0000_2000 in main memory
and contains five 8-bit characters. TxBD[Status and Control] = 0xBC00,
TxBD[Data Length] = 0x0005, and TxBD[Buffer Pointer] = 0x0000_2000.

20. Write 0xFFFF to SCCE to clear any previous events.

Chapter 23. SCC HDLC Mode

HDLC Bus Mode with Collision Detection

21. Write 0x001A to SCCM to allow TXE, RXF, and TXB interrupts.

22. Write 0x4000_0000 to the CPM interrupt mask register (CIMR) to allow SCC1 to
generate a system interrupt. The CICR should also be initialized.

23. Write 0x0000_0000 to GSMR_H1 to enable normal CTS and CD behavior with
idles (not flags) between frames.

24. Write 0x0000_0000 to GSMR_L1 to configure CTS and CD to control
transmission and reception in HDLC mode. Normal Tx clock operation is used.
Notice that the transmitter (ENT) and receiver (ENR) have not been enabled. If
inverted HDLC operation is preferred, set RINV and TINV.

25. Write 0x0000 to PSMR1 to configure one opening and one closing flag, 16-bit
CCITT-CRC, and prevent multiple frames in the FIFO.

26. Write 0x00000030 to GSMR_L1 to enable the transmitter and receiver. This
additional write ensures that ENT and ENR are enabled last.

Note that after 5 bytes and CRC have been sent, the Tx buffer is closed; the Rx buffer is
closed after a frame is received. Frames larger than 256 bytes cause a busy (out-of-buffers)
condition because only one RxBD is prepared.

23.13.2SCC HDLC Programming Example #2

The following sequence initializes an HDLC channel that uses the DPLL in a Manchester
encoding. Provide a clock which is 16× the chosen bit rate of CLK3. Then connect CLK3
to the HDLC transmitter and receiver. (A baud rate generator could be used instead.)
Configure SCC1 to use RTS1, CTS1, and CD1.

1. Follow steps 1–23 in example #1 above.

2. Write 0x004A_A400 to GSMR_L1 to make carrier sense always active, a 16-bit
preamble of ‘01’ patterns, 16× operation of the DPLL and Manchester encoding for
the receiver and transmitter, and HDLC mode. CTS and CD should be configured
to control transmission and reception. Do not set GSMR[ENT, ENR].

3. Write 0x0000 to PSMR1 to use one opening and one closing flag and 16-bit
CCITT-CRC and to reject multiple frames in the FIFO.

4. Write 0x004A_A430 to GSMR_L1 to enable the transmitter and receiver. This
additional write to GSMR_L1 ensures that ENT and ENR are enabled last.

23.14HDLC Bus Mode with Collision Detection
The HDLC controller includes an option for hardware collision detection and
retransmission on an open-drain connected HDLC bus, referred to as HDLC bus mode.
Most HDLC-based controllers provide only point-to-point communications; however, the
HDLC bus enhancement allows implementation of an HDLC-based LAN and other
point-to-multipoint configurations. The HDLC bus is based on techniques used in the

MPC855T User’s Manual

HDLC Bus Mode with Collision Detection

CCITT ISDN I.430 and ANSI T1.605 standards for D-channel point-to-multipoint
operation over the S/T interface. However, the HDLC bus does not fully comply with I.430
or T1.605 and cannot replace devices that implement these protocols. Instead, it is more
suited to non-ISDN LAN and point-to-multipoint configurations.

Review the basic features of the I.430 and T1.605 before learning about the HDLC bus. The
I.430 and T1.605 define a way to connect eight terminals over the D-channel of the S/T
ISDN bus. The layer 2 protocol is a variant of HDLC, called LAPD. However, at layer 1, a
method is provided to allow the eight terminals to send frames to the switch through the
physical S/T bus.

To determine whether a channel is clear, the S/T interface device looks at an echo bit on the
line designed to echo the last bit sent on the D channel. Depending on the class of terminal
and the context, an S/T interface device waits for 7–10 ones on the echo bit before letting
the LAPD frame begin transmission, after which the S/T interface monitors transmitted
data. As long as the echo bit matches the sent data, transmission continues. If the echo bit
is ever 0 when the transmit bit is 1, a collision occurs between terminals; the station(s) that
sent a zero stops transmitting. The station that sent a 1 continues as normal.

The I.430 and T1.605 standards provide a physical layer protocol that allows multiple
terminals to share one physical connection. These protocols handle collisions efficiently
because one station can always complete its transmission, at which point, it lowers its own
priority to give other devices fair access to the physical connection.

The HDLC bus differs from the I.430 and T1.605 standards as follows:

• The HDLC bus uses a separate input signal rather than the echo bit to monitor data;
the transmitted data is simply connected to the CTS input.

• The HDLC bus is a synchronous, digital open-drain connection for short-distance
configurations, rather than the more complex S/T interface.

• Any HDLC-based frame protocol can be used at layer 2, not just LAPD.

• HDLC bus devices wait 8–10 rather than 7–10 bit times before transmitting. (HDLC
bus has only one class.)

The collision-detection mechanism supports only:

• NRZ-encoded data

• A common synchronous clock for all receivers and transmitters

• Non-inverted data (GSMR[RINV, TINV] = 0)

• Open-drain connection with no external transceivers

Figure 23-10 shows the most common HDLC bus LAN configuration, a multimaster
configuration. A station can transfer data to or from any other LAN station. Transmissions
are half-duplex, which is typical in LANs.

Chapter 23. SCC HDLC Mode

HDLC Bus Mode with Collision Detection

Figure 23-10. Typical HDLC Bus Multimaster Configuration

In single-master configuration, a master station transmits to any slave station without
collisions. Slaves communicate only with the master, but can experience collisions in their
access over the bus. In this configuration, a slave that communicates with another slave
must first transmit its data to the master, where the data is buffered in RAM and then resent
to the other slave. The benefit of this configuration, however, is that full-duplex operation

HDLC Bus
Controller

RXD CTSTXD

A

RCLK/TCLK

HDLC Bus
Controller

RXD CTSTXD

B

RCLK/TCLK

HDLC Bus
Controller

RXD CTSTXD

C

RCLK/TCLK

Clock

HDLC Bus LAN

+ 3.3 V

R

Master MasterMaster
NOTES:

1. Transceivers may be used to extend the LAN size.
2. The TXD pins of slave devices should be configured to open-drain in the port C parallel I/O port.
3. Clock is a common RCLK/TCLK for all stations.

MPC855T User’s Manual

HDLC Bus Mode with Collision Detection

can be obtained. In a point-to-multipoint environment, this is the preferred configuration.
Figure 23-11 shows the single-master configuration.

Figure 23-11. Typical HDLC Bus Single-Master Configuration

23.14.1HDLC Bus Features

The main features of the HDLC bus are as follows:

• Superset of the HDLC controller features

• Automatic HDLC bus access

• Automatic retransmission in case of collision

• May be used with the NMSI or a TDM bus

• Delayed RTS mode

23.14.2Accessing the HDLC Bus

The HDLC bus protocol ensures orderly bus control when multiple transmitters attempt
simultaneous access. The transmitter sending a zero bit at the time of collision completes
the transmission. If a station sends out an opening flag (0x7E) while another station is
already sending, the collision is always detected within the first byte, because the
transmission in progress is using zero bit insertion to prevent flag imitation.

While in the active condition (ready to transmit), the HDLC bus controller monitors the bus
using CTS. It counts the one bits on CTS. When eight consecutive ones are counted, the
HDLC bus controller starts transmitting on the line; if a zero is detected, the internal
counter is cleared. During transmission, data is continuously compared with the external

HDLC
Controller

RXD TXD

A

RCLK

HDLC Bus
Controller

RXD CTSTXD

B

HDLC Bus
Controller

RXD CTSTXD

C

Clock1

HDLC Bus LAN

+ 3.3 V

R

Slave SlaveMaster
NOTES:

1. Transceivers may be used to extend the LAN size.
2. The TXD pins of slave devices should be configured to open-drain in the port C parallel I/O port.
3. Clock1 is the master RCLK and the slave TCLK.

Clock2

TCLK RCLK TCLKRCLK TCLK

4. Clock2 is the master TCLK and the slave RCLK.

Chapter 23. SCC HDLC Mode

HDLC Bus Mode with Collision Detection

bus using CTS. CTS is sampled halfway through the bit time using the rising edge of the
Tx clock. If the transmitted bit matches the received CTS bus sample, transmission
continues. However, if the received CTS sample is 0 and the transmitted bit is 1,
transmission stops after that bit and waits for an idle line before attempting retransmission.
Since the HDLC bus uses a wired-OR scheme, a transmitted zero has priority over a
transmitted 1. Figure 23-12 shows how CTS is used to detect collisions.

Figure 23-12. Detecting an HDLC Bus Collision

If both the destination address and source address are included in the HDLC frame, then a
predefined priority of stations results; if two stations begin to transmit simultaneously, they
necessarily detect a collision no later than the end of the source address.

The HDLC bus priority mechanism ensures that stations share the bus equally. To minimize
idle time between messages, a station normally waits for eight one bits on the line before
attempting transmission. After successfully sending a frame, a station waits for 10 rather
than eight consecutive one bits before attempting another transmission. This mechanism
ensures that another station waiting to transmit acquires the bus before a station can
transmit twice. When a low priority station detects 10 consecutive ones, it tries to transmit;
if it fails, it reinstates the high priority of waiting for only eight ones.

23.14.3Increasing Performance

Because it uses a wired-OR configuration, HDLC bus performance is limited by the rise
time of the one bit. To increase performance, give the one bit more rise time by using a
clock that is low longer than it is high, as shown in Figure 23-13.

TCLK

CTS
(Input)

TXD
(Output)

CTS sampled at halfway point.
Collision detected when

TXD=1, but CTS=0.

MPC855T User’s Manual

HDLC Bus Mode with Collision Detection

Figure 23-13. Nonsymmetrical Tx Clock Duty Cycle for Increased Performance

23.14.4Delayed RTS Mode

Figure 23-14 shows local HDLC bus controllers using a standard transmission line and a
local bus. The controllers do not communicate with each other but with a station on the
transmission line; yet the HDLC bus protocol controls access to the transmission line.

Figure 23-14. HDLC Bus Transmission Line Configuration

Normally, RTS goes active at the beginning of the opening flag’s first bit. Setting
PSMR[BRM] delays RTS by one bit, which is useful when the HDLC bus connects
multiple local stations to a transmission line. If the transmission line driver has a one-bit
delay, the delayed RTS can be used to enable the output of the line driver. As a result, the
electrical effects of collisions are isolated locally. Figure 23-15 shows RTS timing.

TCLK

CTS
(Input)

TXD
(Output)

CTS sampled at three quarter point.
Collision detected when

TXD=1, but CTS=0.

Local HDLC Bus

HDLC Bus
Controller

RXD CTSTXD

A

HDLC Bus
Controller

RXD CTSTXD

B

RTS

+ 3.3V

R

NOTES:
1. The TXD pins of slave devices should be configured to open-drain in the port C parallel I/O port.
2. The RTS pins of each HDLC bus controller are configured to delayed RTS mode.

RTS

Tx

Rx

EN

(1-Bit Delay)

Line Driver

Chapter 23. SCC HDLC Mode

HDLC Bus Mode with Collision Detection

Figure 23-15. Delayed RTS Mode

23.14.5Using the Time-Slot Assigner (TSA)

HDLC bus controllers can be used with a time-division multiplexed transmission line and
a local bus, as shown in Figure 23-16. Local stations use time slots to communicate over
the TDM transmission line; stations that share a time slot use the HDLC bus protocol to
control access to the local bus.

Figure 23-16. HDLC Bus TDM Transmission Line Configuration

TCLK

RTS active for
only 2 bit times

TXD

CTS

RTS

1st Bit 2nd Bit 3rd Bit

Collision

Local HDLC Bus

HDLC Bus
Controller

L1RXD CTSL1TXD

B

HDLC Bus
Controller

L1RXD CTSL1TXD

D

+ 3.3V

R

NOTES:
1. All TXD pins of slave devices should be configured to open-drain in the port C parallel I/O port.
2. The TSA in the SI of each station is used to configure the preferred time slot.

Tx

Rx

Line Driver

HDLC Bus
Controller

L1RXD CTSL1TXD

C

HDLC Bus
Controller

L1RXD CTSL1TXD

A

Stations share time-slot n Stations share time-slot m

3. The choice of the number of stations to share a time slot is user-defined. It is two in this example.

MPC855T User’s Manual

HDLC Bus Mode with Collision Detection

23.14.6HDLC Bus Protocol Programming

The HDLC bus is implemented using the SCC in HDLC mode with bus-specific options
selected in the PSMR and GSMR, as outlined below. See also Section 23.5, “Programming
the SCC HDLC Controller.”

23.14.6.1Programming GSMR and PSMR for the HDLC Bus Protocol

To program the protocol-specific mode register (PSMR), set the bits as described below:

• Configure NOF as preferred

• Set RTE and BUS to 1

• Set BRM to 1 if delayed RTS is desired

• Configure CRC to 16-bit CRC CCITT (0b00).

• Configure other bits to zero or default.

To program the general SCC mode register (GSMR), set the bits as described below:

• Set MODE to HDLC mode (0b0000).

• Configure CTSS to 1 and all other bits to zero or default.

• Configure the DIAG bits for normal operation (0b00).

• Configure RDCR and TDCR for 1× clock (0b00).

• Configure TENC and RENC for NRZ (0b000).

• Clear RTSM to send idles between frames.

• Set GSMR_L[ENT, ENR] as the last step to begin operation.

23.14.6.2HDLC Bus Controller Programming Example

Except for the above discussion in Section 23.14.6.1, “Programming GSMR and PSMR for
the HDLC Bus Protocol,” use the example in Section 23.13.1, “SCC HDLC Programming
Example #1.”

Chapter 24. SCC AppleTalk Mode

Chapter 24
SCC AppleTalk Mode
AppleTalk is a set of protocols developed by Apple Computer, Inc. to provide a LAN
service between Macintosh computers and printers. Although AppleTalk can be
implemented over a variety of physical and link layers, including Ethernet, AppleTalk
protocols have been most closely associated with the LocalTalk physical and link-layer
protocol, an HDLC-based protocol that runs at 230.4 kbps. In this manual, the term
‘AppleTalk controller’ assumes the support that the MPC855T provides for LocalTalk
protocol. The AppleTalk controller provides required frame synchronization, bit sequence,
preamble, and postamble onto standard HDLC frames. These capabilities, as well as the use
of the HDLC controller in conjunction with DPLL operation in FM0 mode, provide the
proper connection formats to the LocalTalk bus.

24.1 Operating the LocalTalk Bus
A LocalTalk frame, shown in Figure 24-1, is basically a modified HDLC frame.

Figure 24-1. LocalTalk Frame Format

First, a synchronization sequence of more than three bits is sent. This sequence consists of
at least one logical one bit (FM0 encoded) followed by two bit times or more of line idle
with no particular maximum time specified. The idle time allows LocalTalk equipment to
sense a carrier by detecting a missing clock on the line. The remainder of the frame is a
typical half-duplex HDLC frame. Two or more flags are sent, allowing bit, byte, and frame
delineation or detection. Two bytes of address, destination, and source are sent next,
followed by a byte of control and 0–600 data bytes. Next, two bytes of CRC (the common
16-bit CRC-CCITT polynomial referenced in the HDLC standard protocol) are sent. The
LocalTalk frame is then terminated by a flag and a restricted HDLC abort sequence. Then
the transmitter’s driver is disabled.

> 3 bits 2 or more 1 byte 1 byte 0-600 bytes 2 bytes 12-18 ones1 byte 1 byte
bytes

HDLC
CRC-16Flags

Destination
Address

Data
(Optional)

Control
Byte

Sync
Sequence

Source
Address

Closing
Flag

Abort
Sequence

MPC855T User’s Manual

Features

The control byte within the LocalTalk frame indicates the type of frame. Control byte
values from 0x01–0x7F are data frames; control byte values from 0x80–0xFF are control
frames. Four control frames are defined:

• ENQ—Enquiry

• ACK—Enquiry acknowledgment

• RTS—Request to send a data frame

• CTS—Clear to send a data frame

Frames are sent in groups known as dialogs, which are handled by the software. For
instance, to transfer a data frame, three frames are sent over the network. An RTS frame
(not to be confused with the RS-232 RTS pin) is sent to request the network, a CTS frame
is sent by the destination node, and the data frame is sent by the requesting node. These
three frames comprise one possible type of dialog. After a dialog begins, other nodes cannot
start sending until the dialog is complete. Frames within a dialog are sent with a maximum
interframe gap (IFG) of 200 µs. Although the LocalTalk specification does not state it, there
is also a minimum recommended IFG of 50 µs. Dialogs must be separated by a minimum
interdialog gap (IDG) of 400 µs. In general, these gaps are implemented by the software.

Depending on the protocol, collisions should be encountered only during RTS and ENQ
frames. Once frame transmission begins, it is fully sent, regardless of whether it collides
with another frame. ENQ frames are infrequent and are sent only when a node powers up
and enters the network. A higher-level protocol controls the uniqueness and transmission
of ENQ frames.

In addition to the frame fields, LocalTalk requires that the frame be FM0 (differential
Manchester space) encoded, which requires one level transition on every bit boundary. If
the value to be encoded is a logical zero, FM0 requires a second transition in the middle of
the bit time. The purpose of FM0 encoding is to avoid having to transmit clocking
information on a separate wire. With FM0, the clocking information is present whenever
valid data is present.

24.2 Features
The following list summarizes the features of the SCC in AppleTalk mode:

• Superset of the HDLC controller features
• FM0 encoding/decoding
• Programmable transmission of sync sequence
• Automatic postamble transmission
• Reception of sync sequence does not cause extra SCCE[DCC] interrupts
• Reception is automatically disabled while sending a frame
• Transmit-on-demand feature expedites frames

Chapter 24. SCC AppleTalk Mode

Connecting to AppleTalk

• Connects directly to an RS-422 transceiver

24.3 Connecting to AppleTalk
As shown in Figure 24-2, the MPC855T connects to LocalTalk, and, using TXD, RTS, and
RXD, is an interface for the RS-422 transceiver. The RS-422, in turn, is an interface for the
LocalTalk connector. Although it is not shown, a passive RC circuit is recommended
between the transceiver and connector.

Figure 24-2. Connecting the MPC855T to LocalTalk

The 16× overspeed of a 3.686-MHz clock can be generated from an external frequency
source or from one of the baud rate generators if the resulting output frequency is close to
a multiple of the 3.686 MHz frequency. The MPC855T asserts RTS throughout the duration
of the frame so that RTS can be used to enable the RS-422 transmit driver.

24.4 Programming the SCC in AppleTalk Mode
The AppleTalk controller is implemented by setting certain bits in the HDLC controller.
Otherwise, Chapter 23, “SCC HDLC Mode,” describes how to program the HDLC
controller. Use GSMR, PSMR, or TODR to program the AppleTalk controller.

24.4.1 Programming the GSMR

Program the GSMR as described below:

1. Set MODE to 0b0010 (AppleTalk).

Two HDLC
CRC-16Flags

Destination
Address Data

Control
Byte

6-Bit Sync
Sequence

Source
Address

Closing
Flag

16 Ones
(Abort)

RS-422

TXD

RTS

RXD

Stored in Receive Buffer

Standard HDLC frame handling

MINI-DIN 8

Stored in Transmit Buffer

SCC

RTS

TXD

Tx Data

Tx Enable

Rx Data

MPC855T

Connection

MPC855T User’s Manual

Programming the SCC in AppleTalk Mode

2. Set DIAG to 0b00 for normal operation, with CD and CTS grounded or configured
for parallel I/O. This causes CD and CTS to be internally asserted to the SCC.

3. Set RDCR and TDCR to (0b10) a 16× clock.

4. Set the TENC and RENC bits to 0b010 (FM0).

5. Clear TEND for default operation.

6. Set TPP to 0b11 for a preamble pattern of all ones.

7. Set TPL to 0b000 to transmit the next frame with no synchronization sequence and
to 001 to transmit the next frame with the LocalTalk synchronization sequence. For
example, data frames do not require a preceding synchronization sequence. These
bits may be modified on-the-fly if the AppleTalk protocol is selected.

8. Clear TINV and RINV so data will not be inverted.

9. Set TSNC to 1.5 bit times (0b10).

10. Clear EDGE. Both the positive and negative edges are used to change the sample
point (default).

11. Clear RTSM (default).

12. Set all other bits to zero or default.

13. Set ENT and ENR as the last step to begin operation.

24.4.2 Programming the PSMR

Follow these steps to program the protocol-specific mode register:

1. Set NOF to 0b0001 giving two flags before frames (one opening flag, plus one
additional flag).

2. Set CRC 16-bit CRC-CCITT.

3. Set DRT.

4. Set all other bits to zero or default.

For the PSMR definition, see Section 23.8, “HDLC Mode Register (PSMR).”

24.4.3 Programming the TODR

Use the transmit-on-demand (TODR) register to expedite a transmit frame. See
Section 21.2.4, “Transmit-on-Demand Register (TODR).”

24.4.4 SCC AppleTalk Programming Example

Except for the previously discussed register programming, use the example in
Section 23.13.1, “SCC HDLC Programming Example #1.”

Chapter 24. SCC AppleTalk Mode

Programming the SCC in AppleTalk Mode

MPC855T User’s Manual

Programming the SCC in AppleTalk Mode

Chapter 25. SCC Asynchronous HDLC Mode and IrDA

Chapter 25
SCC Asynchronous HDLC Mode and IrDA
Asynchronous HDLC and IrDA uses HDLC framing techniques with UART-type
characters. This document refers to both protocols collectively as asynchronous HDLC.
The asynchronous HDLC protocol is typically used as the physical layer for point-to-point
protocol (PPP) and the infrared link access protocol (IrLAP). Although asynchronous
HDLC can be implemented in conjunction with the core, it is more efficient and less
computationally intensive to let the CPM handle framing and transparency functions.

The RFC 1549 octet stuffing/unstuffing provided by this mode supports only asynchronous
transmission. This mode cannot be used to provide octet stuffing for synchronous
communication lines.

25.1 Asynchronous HDLC Features
The following list summarizes the main features of the SCC in asynchronous HDLC mode:

• Flexible buffer structure lets all or part of a frame be sent or received

• Separate interrupts for received frames and transmitted buffers

• Automatic CRC generation and checking

• Support for nonmultiplexed serial interface control signals

• Automatic generation of opening and closing flags

• Reception of frames with a single shared flag

• Automatic generation and stripping of transparency characters according to RFC
1549 using transmit and receive control character maps

• Programmable opening flag, closing flag, and control escape characters

• Automatic transmission of the abort sequence after a STOP TRANSMIT command

• Automatic transmission of idle characters between frames and between characters

25.2 Asynchronous HDLC Frame Transmission
Processing

The SCC in asynchronous HDLC mode (asynchronous HDLC controller) works with
minimal core intervention. When the core enables the transmitter and sets TxBD[R] in the

MPC855T User’s Manual

Asynchronous HDLC Frame Reception Processing

first BD of the table, the asynchronous HDLC controller fetches data from memory and
starts sending the frame. If the current TxBD[L] is set (last buffer of a frame), the CRC and
closing flag are appended. If TxBD[CM] is zero, the transmitter updates frame status bits
in the BD and clears TxBD[R]. If TxBD[I] is set, the controller sets SCCE[TXB] so an
interrupt can be generated after each buffer, after a group of buffers, or after each frame is
sent.

If TxBD[CM] is set, the asynchronous HDLC transmitter updates frame status bits in the
BD after transmission but does not clear TxBD[R]. The transmitter then proceeds to the
next TxBD and if necessary waits until it is ready. As the transmitter sends data, it performs
the transparency encoding specified by the protocol. See Section 25.4, “Transmitter
Transparency Encoding.”

To rearrange buffers, such as for error handling or to expedite data ahead of previously
linked buffers, issue a STOP TRANSMIT command before modifying the TxBD table or
directly changing the current TxBD pointer TBPTR. When the asynchronous HDLC
controller receives a STOP TRANSMIT command, it stops the transmission and sends the
asynchronous HDLC abort sequence. It then sends idle characters until the RESTART

TRANSMIT command is given, at which point it resumes transmission with the next TxBD.

25.3 Asynchronous HDLC Frame Reception
Processing

The asynchronous HDLC receiver is designed to work with minimal core intervention. It
can decode transparency characters, check the CRC of the frame, and detect errors on the
line and in the controller. When the core enables the receiver and the receiver detects a data
byte of the incoming frame preceded by one or more opening flags, the asynchronous
HDLC controller fetches the next BD. If RxBD[E] is set, the controller starts transferring
the incoming frame into the buffer. When the buffer is full, the controller clears RxBD[E].
If the incoming frame is larger than the buffer, the controller fetches the next BD, and if E
is set, continues transferring the rest of the frame into its buffer.

The receiver decodes the transparency character required by asynchronous HDLC protocol
as described in Section 25.5, “Receiver Transparency Decoding.” When the frame ends, the
controller checks the incoming CRC field and writes it to the buffer. The controller then
updates RxBD[Data Length] with the total frame length, including the CRC bytes. The
controller sets RxBD[L], writes the frame status bits, and clears RxBD[E] (if RxBD[CM]
is zero). It then sets SCCE[RXF], which indicates that a frame was received and is in
memory. The controller then waits for the start of the next frame, which may or may not
have an opening flag.

Figure 25-1. Asynchronous HDLC Frame Structure

BOF Address Control Information FCS (CRC) EOF

8 bits 8 bits 8 bits M * 8 bits 2 • 8 bits 8 bits

Chapter 25. SCC Asynchronous HDLC Mode and IrDA

Transmitter Transparency Encoding

25.4 Transmitter Transparency Encoding
The asynchronous HDLC transmitter encodes characters according to RFC 1549, a de facto
standard of the Internet Engineering Task Force (IETF). It examines outgoing bytes and
performs the transparency algorithm for the following conditions:

• The byte is a flag (0x7E for PPP, 0xC0 or 0xC1 for IrLAP)

• The byte is a control-escape character (0x7D)

• The byte value is between 0x00 and 0x1F and the corresponding bit in the Tx control
character table is set

When a condition applies, a two-byte sequence is sent instead of the byte. The sequence
consists of the control-escape character (0x7D) followed by the original byte
exclusive-ORed with 0x20.

25.5 Receiver Transparency Decoding
The asynchronous HDLC receiver decodes characters according to RFC 1549. To recover
the original data, it examines incoming data bytes and performs the transparency algorithm
in the following ways:

• It discards characters whose corresponding bit is set in the Rx control character map.
This character is assumed to have been inserted in the character stream by an
intermediate device and is not part of the original frame.

• It reverses the transmission transparency sequence by discarding a received
control-escape character (0x7D) and exclusive-ORing the following byte with 0x20
before performing the CRC calculation and writing the byte into memory.

Figure 25-2 shows the algorithm because some cases are not covered by RFC 1549.

MPC855T User’s Manual

Exceptions to RFC 1549

Figure 25-2. Receive Flowchart

25.6 Exceptions to RFC 1549
• An unmapped control character that follows 0x7D is modified by the XOR process.

The CRC check should catch this.

• In addition to the abort sequence, frames are terminated by the following errors:

— CD (carrier detect) lost

— Receiver overrun

— Framing error

— Break sequence

• If an invalid sequence(0x7D7D) is received, the first control escape character is
discarded, and the second is unconditionally XORed with 0x20. The sequence is
thus stored in the buffer as 0x5D.

XOR_NEXT
?

Rx CHAR

CHAR < 0x20
?

XOR_NEXT=1

CHAR=CTRL ESC
?

CHAR=Closing Flag
?

False

True

False

True

False

True

True

False

False

Write CHAR to
Buffer

ExitEnd of Frame

True Mapped
?

Abort

Exit

True

CHAR ⊕ 0x20
XOR_NEXT=0

CHAR=Closing Flag
?

False

Chapter 25. SCC Asynchronous HDLC Mode and IrDA

Asynchronous HDLC Channel Implementation

25.7 Asynchronous HDLC Channel Implementation
The following points are specific to asynchronous HDLC channel implementation:

• Flag sequence—The transmitter automatically generates the opening and closing
flags. The receiver removes opening and closing flags before writing a frame to
memory and receives frames with only one shared flag between frames, ignoring
multiple flags.

• Address field—The address field is neither generated nor examined by the
microcode while sending or receiving. The destination address field of the frame
must be included in the Tx buffer. Any address field compression, expansion, or
checking must be performed by the core.

• Control field—The control field is neither generated nor examined by the microcode
during a transfer. The control field of the frame must be included in the buffer. Any
control field compression, expansion, or checking is done by the core.

• Frame check sequence—When sending, the frame check sequence (FCS) is
appended to the frame before the closing flag is sent. The FCS is generated on the
original frame before transparency characters, start/stop bits, or flags are added.
When receiving, the FCS is checked automatically and calculated after any
transparency characters, start/stop bits, and flags are removed. For both, the
controller uses only a 16-bit CRC-CCITT polynomial.

• Encoding—The asynchronous HDLC controller supports 8 data bits, one start bit,
one stop bit, and no parity. Program PSMR[CHLN] to 0b11 for proper operation.

• Idle characters—When sending, the asynchronous HDLC controller sends idle
characters when no data is available; when receiving, it ignores idle characters.

25.8 Asynchronous HDLC Mode Parameter RAM
For asynchronous HDLC mode, the protocol-specific area of the SCC parameter RAM is
mapped as in Table 25-1.

Table 25-1. Asynchronous HDLC-Specific SCC Parameter RAM
Memory Map

Offset 1 Name Width Description

0x30 — Word Reserved

0x34 C_MASK Word CRC constant. Initialize with 0x0000_F0B8.

0x38 C_PRES Word CRC preset. Initialize with 0x0000_FFFF.

0x3C BOF Hword Beginning-of-flag-character. Initialize to PPP-0x7E, IrLAP - 0xC0.

0x3E EOF Hword End-of-flag character. Initialize to PPP-0x7E, IrLAP-0xC1.

0x40 ESC Hword Control escape character. Initialize to 0x7D for both PPP and IrLAP.

0x42 — Word Reserved

MPC855T User’s Manual

Configuring GSMR and DSR for Asynchronous HDLC

Figure 25-3 shows bit arrangements for TXCTL_TBL and RXCTL_TBL.

25.9 Configuring GSMR and DSR for Asynchronous
HDLC

General SCC parameters can be configured as described in Chapter 21, “Serial
Communications Controller,” except for the following changes to the general SCC mode
register and the data synchronization register.

0x46 ZERO Hword Clear this field.

0x48 — Hword Reserved

0x4A RFTHR Hword Received frames threshold. Number of Rx frames needed to trigger SCCE[RXF]

0x4C — Word Reserved

0x50 TXCTL_TBL Word Control character tables. Stores the bit array used for the Tx/Rx control characters.
See Figure 25-3. Each bit corresponds to a character that should be mapped
according to RFC 1549. If a TXCTL_TBL bit is set, its corresponding character is
mapped; otherwise, it is not mapped. If an RXCTL_TBL bit is set, its corresponding
character is discarded if received; otherwise, it is received normally. TXCTL_TBL and
RXCTL_TBL should be initialized to zero for IrLAP.

0x54 RXCTL_TBL Word

0x58 NOF Hword Number of opening flags to be sent at the beginning of a frame. A value of n
corresponds to n+1 flags.

0x5A — Hword Reserved

1 From SCC base. SCC base = IMMR + 0x3C00 (SCC1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x1F 0x1E 0x1D 0x1C 0x1B 0x1A 0x19 0x18 0x17 0x16 0x15 0x14 0x13 0x12 0x11 0x10

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00

Figure 25-3. TXCTL_TBL/RXCTL_TBL

Table 25-1. Asynchronous HDLC-Specific SCC Parameter RAM
Memory Map (continued)

Offset 1 Name Width Description

Chapter 25. SCC Asynchronous HDLC Mode and IrDA

Programming the Asynchronous HDLC Controller

25.9.1 General SCC Mode Register (GSMR)

Table 25-2 shows asynchronous HDLC-specific information for the GSMR.

25.9.2 Data Synchronization Register (DSR)

The data synchronization register (DSR) is reserved in asynchronous HDLC mode. It
should be left in its reset state of 0x7E7E.

25.10Programming the Asynchronous HDLC Controller
Asynchronous HDLC mode is selected for an SCC by writing GSMR_L[MODE] =
0b0110. The asynchronous HDLC controller uses the same buffer and BD data structure as
other modes and supports multibuffer operation. Receive errors are reported through the
RxBD; transmit errors are reported through the TxBD. Status line information (CD and
CTS) is reported through the port C pins; a maskable interrupt is generated when the status
of either line changes.

25.11Asynchronous HDLC Commands
The transmit and receive commands are issued to the CP command register (CPCR).

Transmit commands are described in Table 25-3. After a hardware or software reset and a
channel is enabled in the GSMR, the transmitter starts polling the first BD in the TxBD
table every 8 transmit clocks, or immediately if TODR[TOD] = 1, and begins sending data
if TxBD[R] is set.

Table 25-2. Asynchronous HDLC-Specific GSMR Field Descriptions

Name Description

RFW Rx FIFO width (GSMR_H[26])
0 Do not use.
1 Low-latency operation—for character-oriented protocols like UART, BISYNC, and asynchronous HDLC.

The Rx FIFO is 8 bits wide and the Rx FIFO is one-fourth its normal size (8 bytes for SCC1). This allows
each character to be written to the buffer without waiting for 32 bits to be received.

TDCR/
RDCR

Tx/Rx divide clock rate (GSMR_L[14–15/16–17]). For asynchronous HDLC mode, 8×, 16×, or 32× must be
chosen. Set TDCR = RDCR in most applications.
00 Do not use.
01 8× clock mode (do not use for IrLAP).
10 16× clock mode.
11 32× clock mode (do not use for IrLAP).

MPC855T User’s Manual

Handling Errors in the Asynchronous HDLC Controller

Table 25-4 describes receive commands. After hardware or software is reset and a channel
is enabled in the GSMR, reception begins with the first BD in the RxBD table.

25.12Handling Errors in the Asynchronous HDLC
Controller

The asynchronous HDLC controller reports frame reception and transmission error
conditions using the channel BDs and the asynchronous HDLC event register (SCCE).
Table 25-5 describes transmit errors.

Table 25-3. Transmit Commands

Command Description

STOP TRANSMIT Sends the asynchronous HDLC abort sequence (0x7D;0x7E for PPP, 0x7D; 0xC1 for IrLAP) and
disables data transmission. If the asynchronous HDLC controller receives this command during
frame transmission, the abort sequence is put in the FIFO and the transmitter does not try to send
more data from the current BD or advance to the next TxBD. The BD to be terminated is indicated by
the TBPTR entry in the parameter RAM table.
Note that unlike with other SCC protocols, the STOP TRANSMIT command does not flush the FIFO. Up
to 32 characters can be sent ahead of the abort sequence unless GSMR_H[TFL] = 1.

GRACEFUL
STOP TRANSMIT

Not supported by the asynchronous HDLC controller.

RESTART
TRANSMIT

Reenables transmission of characters; the asynchronous HDLC controller expects it after a STOP
TRANSMIT command or transmitter error. The controller continues sending from the first character in
the buffer using the current TxBD (pointed to by TBPTR).

INIT TX
PARAMETERS

Initializes all Tx parameters in this channel’s parameter RAM to reset state. It must be issued only
when the transmitter is disabled. The INIT TX AND RX PARAMETERS command resets both Tx and Rx
parameters.

Table 25-4. Receive Commands

Command Description

ENTER HUNT
MODE

Forces the asynchronous HDLC controller to close the current RxBD, if it is in use, and enter hunt mode.
Reception resumes after the controller finds a frame preceded by one or more opening flags.

CLOSE RXBD Not supported by the asynchronous HDLC controller.

INIT RX
PARAMETERS

Initializes all Rx parameters in the channel’s parameter RAM to reset state. Issue only when the receiver
is disabled. The INIT TX AND RX PARAMETERS command resets both Tx and Rx parameters.

Table 25-5. Transmit Errors

Error Description

CTS Lost during
Frame Transmission

The channel stops sending the buffer, closes it, sets SCCE[TXE] and TxBD[CT]. The channel
resumes sending from the next TxBD after a RESTART TRANSMIT command is issued.

Chapter 25. SCC Asynchronous HDLC Mode and IrDA

SCC Asynchronous HDLC Registers

Table 25-6 describes reception errors.

25.13SCC Asynchronous HDLC Registers
The following sections describe the SCC registers when in asynchronous HDLC mode.

25.13.1Asynchronous HDLC Event Register
 (SCCE)/Asynchronous HDLC Mask Register (SCCM)

The SCC event register (SCCE) is used as the asynchronous HDLC event register to
generate interrupts and report events recognized by the asynchronous HDLC channel.
When an event is recognized, the asynchronous HDLC controller sets the corresponding
SCCE bit. Interrupts can be masked by clearing the appropriate bit in the asynchronous
HDLC mask register (SCCM). SCCE bits, shown in Figure 25-4, are cleared by writing
ones—writing zeros has no effect. Unmasked SCCE bits must be cleared before the CPM
clears the internal interrupt request.

Table 25-6. Receive Errors

Error Description

Overrun SCC1 has 32-byte Rx FIFOs. Overrun occurs when the CP cannot keep up with the data rate or the
SDMA channel cannot write the received data to memory. The previous data byte and frame status are
lost. The controller closes the buffer and sets RxBD[OV] and SCCE[RXF]. The receiver then looks for
the next frame.

CD Lost
during Frame
Reception

The channel stops receiving frames, closes the buffer, and sets SCCE[RXF] and RxBD[CD]. This error
has highest priority. The rest of the frame is lost and other errors are not checked in that frame. The
receiver then searches for the next frame once CD is reasserted.

Abort
Sequence

When an abort sequence (0x7D, 0x7E for PPP; 0x7D, 0xC1 for IrLAP) is detected, the channel closes
the buffer by setting SCCE[RXF] and RxBD[AB]. CRC error status is not checked on aborted frames.
If no frame is being received, the next BD is opened and then closed with RxBD[AB] set.

CRC The channel writes the received cyclic redundancy check to the buffer, closes the buffer, and sets
SCCE[RXF] and RxBD[CR]. After receiving this error, the receiver prepares to receive the next frame.

Break
Sequence
Received

The receiver detected the first character in a break sequence. The channel closes the buffer and sets
SCCE[RXF] and RxBD[BRK]. CRC error status is not checked. SCCE[BRKS] is set when the first break
of a sequence is found; SCCE[BRKE] is set when an idle bit is received after a break sequence.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — GLR GLT — IDL — BRKE BRKS TXE RXF BSY TXB RXB

Reset 0

R/W R/W

Addr 0xA10 (SCCE1)/0xA14 (SCCM1)

Figure 25-4. Asynchronous HDLC Event Register (SCCE)/Asynchronous HDLC
Mask Register (SCCM)

MPC855T User’s Manual

SCC Asynchronous HDLC Registers

Table 25-7 describes SCCE/SCCM fields.

25.13.2SCC Asynchronous HDLC Status Register (SCCS)

The SCC asynchronous HDLC status register (SCCS), shown in Figure 25-5, monitors the
real-time status of RXD. The real-time status of CTS and CD is part of the port C parallel
I/O.

Table 25-7. SCCE/SCCM Field Descriptions

Bits Name Description

0–2 — Reserved, should be cleared.

3 GLR Glitch on Rx. Set when the SCC finds a Rx clock glitch.

4 GLT Glitch on Tx. Set when the SCC finds a Tx clock glitch.

5–6 — Reserved, should be cleared.

7 IDL Idle sequence status changed. Set when serial line status changes. Real-time status can be read in
SCCS[ID].

8 — Reserved, should be cleared.

9 TXE Tx error. Set when an error occurs on the transmitter channel.

10 BRKE Break end. Marks the end of a break sequence—set when an idle bit is detected after a break sequence.

11 BRKS Break start. Set when the first break character of a break sequence is received. Only one BRKS event
occurs per break sequence, no matter the length of the sequence.

12 RXF Rx frame. Set when the number of frames specified in RFTHR are received. RXF is set no sooner than
when the midpoint of the closing flag’s stop bit arrives.

13 BSY Busy condition. Set when a frame is received and discarded due to a buffer shortage.

14 TXB Transmit buffer. Set when a buffer with TxBD[I] set is sent on the channel, not before the last bit of the
closing flag begins its transmission if the buffer is the last one in the frame. Otherwise, TXB is set after
the last byte of the buffer is written to the Tx FIFO.

15 RXB Rx buffer. Set when a buffer with RxBD[I] set and RxBD[L] cleared is received over the channel.

Bit 0 1 2 3 4 5 6 7

Field — ID

Reset 0000_0000_0000_0000

R/W R

Addr 0xA17 (SCCS1)

Figure 25-5. SCC Status Register for Asynchronous HDLC Mode (SCCS)

Chapter 25. SCC Asynchronous HDLC Mode and IrDA

SCC Asynchronous HDLC Registers

Table 25-8 describes asynchronous HDLC SCCS fields.

25.13.3Asynchronous HDLC Mode Register (PSMR)

When the SCC is in asynchronous HDLC mode, the PSMR, shown in Figure 25-6, acts as
the asynchronous HDLC mode register.

Table 25-9 describes PSMR fields.

Table 25-8. Asynchronous HDLC SCCS Field Descriptions

Bits Name Description

0–6 — Reserved, should be cleared.

7 ID Idle status. Set when RXD has been a logic one for at least a full character time.
0 The line is not idle.
1 The line is idle.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field FLC — CHLN —

Reset 0

R/w R/W

Addr 0xA08 (PSMR1)

Figure 25-6. Asynchronous HDLC Mode Register (PSMR)

Table 25-9. PSMR Field Descriptions

Bits Name Description

0 FLC Flow control
0 Normal operation.
1 Asynchronous flow control. When CTS is negated, the transmitter stops at the end of the current

character. If CTS remains negated past the middle of the character, the next full character is sent
before transmission stops. If CTS is reasserted, transmission resumes from where it stopped and no
CTS lost error is reported. Only idle characters are sent while CTS is negated.

1 — Reserved, should be cleared.

2–3 CHLN Character length. On other protocols CHLN is the number of data bits in a character. For asynchronous
HDLC mode and IrDA modes, CHLN must be set to 0b11 (indicating a character length of 8 bits).

4–15 — Reserved, should be cleared.

MPC855T User’s Manual

SCC Asynchronous HDLC RxBDs

25.14SCC Asynchronous HDLC RxBDs
The CPM uses the RxBD, shown in Figure 25-7, to report on received data. An example of
the RxBD process is shown in Figure 23-5 of Section 23.9, “SCC HDLC Receive Buffer
Descriptor (RxBD).”

Table 25-10 describes the SCC asynchronous HDLC RxBD status and control fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E — W I L F CM — BRK BOF — AB CR OV CD

Offset + 2 Data Length

Offset + 4 Rx Buffer Pointer

Offset + 6

Figure 25-7. SCC Asynchronous HDLC RxBDs

Table 25-10. Asynchronous HDLC RxBD Status and Control Field
Descriptions

Bits Name Description

0 E Empty.
0 The buffer is full or stops receiving because of an error. The core can read or update any fields of

this RxBD. The CPM cannot reuse this BD while E = 0.
1 The buffer is not full. The CP controls the BD and buffer. The core should not update the BD.

1 — Reserved, should be cleared.

2 W Wrap (last BD in table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CPM receives incoming data using the BD pointed

to by RBASE. The number of RxBDs in a table is determined by the W bit.

3 I Interrupt.
0 SCCE[RXB] is not set after this buffer is used. SCCE[RXF] is unaffected.
1 SCCE[RXB] or SCCE[RXF] is set when this buffer is used by the asynchronous HDLC controller.

4 L Last in frame.
0 Not the last buffer in a frame.
1 Set by SCC when a buffer is the last in a frame which happens when a closing flag or error is

received. If an error occurs, one or more of the BRK, CD, OV, BOF, CR, and AB bits are set. The
SCC updates RxBD[Data Length].

5 F First in frame. Set by the SCC when this buffer is the first in a frame.
0 Not the first buffer in a frame.
1 First buffer in a frame.

6 CM Continuous mode.
0 Normal operation.
1 The CP does not clear E after the BD is closed allowing a buffer to be overwritten when the CP next

accesses the BD. However, E is cleared if an error other than CRC occurs during reception,
regardless of CM.

7 — Reserved, should be cleared.

8 BRK Break character received. Set when a frame is closed because a break character is received.

Chapter 25. SCC Asynchronous HDLC Mode and IrDA

SCC Asynchronous HDLC TxBDs

The data length and buffer pointer fields are described in Section 21.3, “SCC Buffer
Descriptors (BDs).” Because asynchronous HDLC is a frame-based protocol, RxBD[Data
Length] of the last buffer of a frame contains the total number of frame bytes, including the
2 or 4 bytes for CRC.

25.15SCC Asynchronous HDLC TxBDs
The CPM uses the TxBD, shown in Figure 25-8, to confirm transmissions and indicate error
conditions.

Table 25-11 describes the SCC asynchronous HDLC TxBD status and control fields.

9 BOF Beginning of frame. Set when a frame is closed because a BOF character is received instead of the
expected EOF.

10–
11

— Reserved, should be cleared.

12 AB Rx abort sequence. Set when an abort sequence or framing error terminates a frame.

13 CR Rx CRC error. Set when a frame has a CRC error. Received CRC bytes are written to the buffer.

14 OV Overrun. Set when a receiver overrun occurs during frame reception.

15 CD Carrier detect lost. Set when CD is negated during frame reception.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R — W I L — CM — CT

Offset + 2 Data Length

Offset + 4 Tx Buffer Pointer

Offset + 6

Figure 25-8. SCC Asynchronous HDLC TxBDs

Table 25-11. Asynchronous HDLC TxBD Status and Control Field
Descriptions

Bits Name Description

0 R Ready.
0 The buffer is not ready for transmission; the BD and the buffer can be updated. The CPM clears R

after the buffer is sent or after an error condition.
1 The buffer is ready but is not sent or is being sent. Do not update the BD while R =1.

1 — Reserved, should be cleared.

Table 25-10. Asynchronous HDLC RxBD Status and Control Field
Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Differences between HDLC and Asynchronous HDLC

The data length and buffer pointer fields are described in Section 21.3, “SCC Buffer
Descriptors (BDs).”

25.16Differences between HDLC and Asynchronous
HDLC

The basic differences between HDLC and asynchronous HDLC modes are as follows:

• Asynchronous HDLC does not support the GRACEFUL STOP TRANSMIT command.

• Because asynchronous HDLC has no maximum received frame length counter, it
receives all characters between opening and closing flags. There is no way to keep
it from writing to memory. This does not affect the number of bytes received into a
specific BD. A frame over the maximum length is received into memory in its
entirety.

• If an error causes a frame to stop being received, the character being received at the
moment the error occurred is not written into memory. For example, if a CD lost
error occurs, the frame is closed and the partial character is not written to memory.
Thus, the octet count reflects only the number of bytes written to memory.

• The automatic error counters in the HDLC controller are not implemented in the
asynchronous HDLC controller.

2 W Wrap (last BD in table).
0 Not the last BD in the table.
1 The last BD in the table. After this buffer is used, the CPM sends incoming data using the BD pointed

to by TBASE. The number of TxBDs in this table are determined only by the W bit.

3 I Interrupt.
0 SCCE[TXB] is not set after this buffer is sent.
1 SCCE[TXB] is set when this buffer is sent by the asynchronous HDLC controller.

4 L Last.
0 Not the last buffer in the current frame.
1 Last buffer in the current frame. The proper CRC and closing flag are sent after the last byte.

5 — Reserved, should be cleared.

6 CM Continuous mode.
0 Normal operation.
1 The CP does not clear R after this BD is closed, allowing its buffer to be resent when the CP next

accesses this BD. However, R is cleared if an error occurs during transmission, regardless of CM.

7–14 — Reserved, should be cleared.

15 CT CTS lost. In NMSI mode, CTS is lost during frame transmission. If more than one buffer has data in the
FIFO when this error occurs, CT is set in the currently open TxBD. Written by the asynchronous HDLC
controller after it finishes sending the buffer.

Table 25-11. Asynchronous HDLC TxBD Status and Control Field
Descriptions (continued)

Bits Name Description

Chapter 25. SCC Asynchronous HDLC Mode and IrDA

SCC Asynchronous HDLC Programming Example

• Noisy characters (characters for which all three samples are not identical) are not
accounted for in the asynchronous HDLC controller. It is assumed that the CRC
catches any data integrity problems.

25.17SCC Asynchronous HDLC Programming Example
The following example shows initialization for an SCC in asynchronous HDLC mode.

1. Initialize SDCR.

2. In NMSI mode, configure ports A and C to enable RXD, TXD, CTS, CD, and RTS.
In other modes, configure the TSA and its pins.

3. Configure a baud rate generator to the appropriate channel clocking frequency.

4. Program SICR. Route the BRG clocking to the SCC and select whether the channel
is using the TSA or the NMSI.

5. Point RBASE and TBASE in the SCC parameter RAM to the first RxBD and
TxBD.

6. Issue the INIT RX AND TX PARAMETERS command for the SCC.

7. Program RFCR and TFCR.

8. Write MRBLR with the maximum Rx buffer size.

9. Write C_MASK and C_PRES with the standard values.

10. Clear the Zero register.

11. Program RFTHR to the number of frames to be received before generating an
interrupt.

12. Program the control character tables, TXCTL_TBL and RXCTL_TBL.

13. Initialize all RxBDs.

14. Initialize all TxBDs.

15. Clear SCCE by writing 0xFFFF to it.

16. Program SCCM to enable all preferred interrupts.

17. Program GSMR_H.

18. Program GSMR_L to asynchronous HDLC mode, but do not turn on the
transmitter or receiver.

19. Set the PSMR appropriately. See Section 25.13.3, “Asynchronous HDLC Mode
Register (PSMR).”

20. Enable the transmitter and receiver in GSMR_L.

MPC855T User’s Manual

SCC Asynchronous HDLC Programming Example

Chapter 26. SCC BISYNC Mode

Chapter 26
SCC BISYNC Mode
The byte-oriented BISYNC protocol was developed by IBM for use in networking
products. There are three classes of BISYNC frames—transparent, nontransparent with
header, and nontransparent without header, shown in Figure 26-1. The transparent frame
type in BISYNC is not related to transparent mode, discussed in Chapter 28, “SCC
Transparent Mode.” Transparent BISYNC mode allows full binary data to be sent with any
possible character pattern. Each class of frame starts with a standard two-octet
synchronization pattern and ends with a block check code (BCC). The end-of-text character
(ETX) is used to separate the text and BCC fields.

Figure 26-1. Classes of BISYNC Frames

The bulk of a frame is divided into fields whose meaning depends on the frame type. The
BCC is a 16-bit CRC format if 8-bit characters are used; it is a combination longitudinal
(sum check) and vertical (parity) redundancy check if 7-bit characters are used. In
transparent operation, a special character (DLE) is defined that tells the receiver that the
next character is text, allowing BISYNC control characters to be valid text data in a frame.
A DLE sent as data must be preceded by a DLE character. This is sometimes called
byte-stuffing. The physical layer of the BISYNC communications link must synchronize
the receiver and transmitter, usually by sending at least one pair of synchronization
characters before each frame.

BISYNC protocol is unusual in that a transmit underrun need not be an error. If an underrun
occurs, a synchronization pattern is sent until data is again ready. In nontransparent
operation, the receiver discards additional synchronization characters (SYNCs) as they are

Nontransparent with Header

SYN1 SYN2 SOH Header STX Text ETX BCC

Nontransparent without Header

SYN1 SYN2 STX Text ETX BCC

Transparent

SYN1 SYN2 DLE STX Transparent
Text

DLE ETX BCC

MPC855T User’s Manual

Features

received. In transparent mode, DLE-SYNC pairs are discarded. Normally, for proper
transmission, an underrun must not occur between the DLE and its following character.
This failure mode cannot occur with the MPC855T.

The SCC can be configured as a BISYNC controller to handle basic BISYNC protocol in
normal and transparent modes. The controller can work with the time-slot assigner (TSA)
or nonmultiplexed serial interface (NMSI). The SCC supports modem lines by connecting
to port C pins or general-purpose I/O pins. The controller has separate transmit and receive
sections whose operations are asynchronous with the core.

26.1 Features
The following list summarizes features of the SCC in BISYNC mode:

• Flexible data buffers
• Eight control character recognition registers
• Automatic SYNC1–SYNC2 detection
• 16-bit pattern (bisync)
• 8-bit pattern (monosync)
• 4-bit pattern (nibblesync)
• External SYNC pin support
• SYNC/DLE stripping and insertion
• CRC16 and LRC (sum check) generation/checking
• VRC (parity) generation/checking
• Supports BISYNC transparent operation
• Maintains parity error counter
• Reverse data mode capability

26.2 SCC BISYNC Channel Frame Transmission
The BISYNC transmitter is designed to work with almost no core intervention. When the
transmitter is enabled, it starts sending SYN1–SYN2 pairs in the data synchronization
register (DSR) or idles as programmed in the PSMR. The BISYNC controller polls the first
BD in the channel’s TxBD table. If there is a message to send, the controller fetches the
message from memory and starts sending it after the SYN1–SYN2 pair. The entire pair is
always sent, regardless of GSMR[SYNL].

After a buffer is sent, if the last (TxBD[L]) and the Tx block check sequence (TxBD[TB])
bits are set, the BISYNC controller appends the CRC16/LRC and then writes the message
status bits in TxBD status and control fields and clears the ready bit, TxBD[R]. It then starts
sending the SYN1–SYN2 pairs or idles, according to GSMR[RTSM]. If the end of the
current BD is reached and TxBD[L] is not set, only TxBD[R] is cleared. In both cases, an

Chapter 26. SCC BISYNC Mode

SCC BISYNC Channel Frame Reception

interrupt is issued according to TxBD[I]. TxBD[I] controls whether interrupts are generated
after transmission of each buffer, a specific buffer, or each block. The controller then
proceeds to the next BD.

If no additional buffers have been sent to the controller for transmission, an in-frame
underrun is detected and the controller starts sending syncs or idles. If the controller is in
transparent mode, it sends DLE-sync pairs. Characters are included in the block check
sequence (BCS) calculation on a per-buffer basis. Each buffer can be programmed
independently to be included or excluded from the BCS calculation; thus, excluded
characters must reside in a separate buffer. The controller can reset the BCS generator
before sending a specific buffer. In transparent mode, the controller inserts a DLE before
sending a DLE character, so that only one DLE is used in the calculation.

26.3 SCC BISYNC Channel Frame Reception
Although the receiver is designed to work with almost no core intervention, the user can
intervene on a per-byte basis if necessary. The receiver performs CRC16, longitudinal
(LRC) or vertical redundancy (VRC) checking, sync stripping in normal mode, DLE-sync
stripping, stripping of the first DLE in DLE-DLE pairs in transparent mode, and control
character recognition. Control characters are discussed in Section 26.6, “SCC BISYNC
Control Character Recognition.”

When enabled, the receiver enters hunt mode where the data is shifted into the receiver shift
register one bit at a time and the contents of the shift register are compared to the contents
of DSR[SYN1, SYN2]. If the two are unequal, the next bit is shifted in and the comparison
is repeated. When registers match, hunt mode is terminated and character assembly begins.
The controller is character-synchronized and performs SYNC stripping and message
reception. It reverts to hunt mode when it receives an ENTER HUNT MODE command, an error
condition, or an appropriate control character.

When receiving data, the controller updates the BCS bit in the BD for each byte transferred.
When the buffer is full, the controller clears the E bit in the BD and generates an interrupt
if the I bit in the BD is set. If incoming data exceeds the buffer length, the controller fetches
the next BD; if E is zero, reception continues to its buffer.

When a BCS is received, it is checked and written to the buffer. The BISYNC controller
sets the last bit, writes the message status bits into the BD, clears the E bit, and then
generates a maskable interrupt, indicating that a block of data was received and is in
memory. The BCS calculations do not include SYNCs (in nontransparent mode) or
DLE-SYNC pairs (in transparent mode).

Note that GSMR_H[RFW] should be set for an 8-bit-wide receive FIFO for the BISYNC
receiver. See Section 21.2.1, “General SCC Mode Register (GSMR).”

MPC855T User’s Manual

SCC BISYNC Parameter RAM

26.4 SCC BISYNC Parameter RAM
When BISYNC mode is selected in GSMR_L[MODE], the protocol-specific area of the
SCC parameter RAM is mapped as in Table 26-1.

The SYN1–SYN2 synchronization characters are programmed in the DSR (see
Section 21.2.3, “Data Synchronization Register (DSR).”) The BISYNC controller uses the
same basic data structure as other modes; receive and transmit errors are reported through
their respective BDs. Line status is reflected on port C pins and a maskable interrupt is
generated when the status changes. There are two basic ways to handle BISYNC channels:

• The controller can inspect data on a per-byte basis and interrupt the core each time
a byte is received.

Table 26-1. SCC BISYNC Parameter RAM Memory Map

Offset 1

1 From SCC base. SCC base = IMMR + 0x3C00 (SCC1)

Name Width Description

0x30 — Word Reserved

0x34 CRCC Word CRC constant temporary value.

0x38 PRCRC Hword Preset receiver/transmitter CRC16/LRC. These values should be preset to all ones
or zeros, depending on the BCS used.

0x3A PTCRC Hword

0x3C PAREC Hword Receive parity error counter. This 16-bit (modulo 2
16

) counter maintained by the
CP counts parity errors on receive if the parity feature of BISYNC is enabled.
Initialize PAREC while the channel is disabled.

0x3E BSYNC Hword BISYNC SYNC register. Contains the value of the SYNC to be sent as the second
byte of a DLE–SYNC pair in an underrun condition and stripped from incoming
data on receive once the receiver synchronizes to the data using the DSR and
SYN1–SYN2 pair. See Section 26.7, “BISYNC SYNC Register (BSYNC).”

0x40 BDLE Hword BISYNC DLE register. Contains the value to be sent as the first byte of a
DLE–SYNC pair and stripped on receive. See Section 26.8, “SCC BISYNC DLE
Register (BDLE).”

0x42 CHARACTER1 Hword Control character 1–8. These values represent control characters that the BISYNC
controller recognizes. See Section 26.6, “SCC BISYNC Control Character
Recognition.”0x44 CHARACTER2 Hword

0x46 CHARACTER3 Hword

0x48 CHARACTER4 Hword

0x4A CHARACTER5 Hword

0x4C CHARACTER6 Hword

0x4E CHARACTER7 Hword

0x50 CHARACTER8 Hword

0x52 RCCM Hword Receive control character mask. Masks CHARACTERn comparison so control
character classes can be defined. Setting a bit enables and clearing a bit masks
comparison. See Section 26.6, “SCC BISYNC Control Character Recognition.”

Chapter 26. SCC BISYNC Mode

SCC BISYNC Commands

• The controller can be programmed so software handles the first two or three bytes.
The controller directly handles subsequent data without interrupting the core.

26.5 SCC BISYNC Commands
Transmit and receive commands are issued to the CP command register (CPCR). Transmit
commands are described in Table 26-2.

Receive commands are described in Table 26-3.

Table 26-2. Transmit Commands

Command Description

STOP
TRANSMIT

After hardware or software is reset and the channel is enabled in the GSMR, the channel is in transmit
enable mode and starts polling the first BD every 64 transmit clocks. This command stops transmission
after a maximum of 64 additional bits without waiting for the end of the buffer and the transmit FIFO to
be flushed. TBPTR is not advanced, no new BD is accessed, and no new buffers are sent for this
channel. SYNC–SYNC or DLE–SYNC pairs are sent continually until a RESTART TRANSMIT is issued. A
STOP TRANSMIT can be used when an EOT sequence should be sent and transmission should stop. After
transmission resumes, the EOT sequence should be the first buffer sent to the controller.
Note that the controller remains in transparent or normal mode after it receives a STOP TRANSMIT or
RESTART TRANSMIT command.

GRACEFUL
STOP
TRANSMIT

Stops transmission after the current frame finishes sending or immediately if there is no frame being
sent. SCCE[GRA] is set once transmission stops. Then BISYNC transmit parameters and TxBDs can
be modified. The TBPTR points to the next TxBD. Transmission resumes when the R bit of the next BD
is set and a RESTART TRANSMIT is issued.

RESTART
TRANSMIT

Lets characters be sent on the transmit channel. The BISYNC controller expects it after a STOP TRANSMIT
or a GRACEFUL STOP TRANSMIT command is issued, after a transmitter error occurs, or after a STOP
TRANSMIT is issued and the channel is disabled in its SCCM. The controller resumes transmission from
the current TBPTR in the channel’s TxBD table.

INIT TX
PARAMETERS

Initializes all transmit parameters in the serial channel’s parameter RAM to their reset state. Issue only
when the transmitter is disabled. INIT TX AND RX PARAMETERS resets transmit and receive parameters.

Table 26-3. Receive Commands

Command Description

RESET BCS
CALCULATION

Immediately resets the receive BCS accumulator. It can be used to reset the BCS after recognizing a
control character, thus signifying that a new block is beginning.

ENTER HUNT
MODE

After hardware or software is reset and the channel is enabled in SCCM, the channel is in receive enable
mode and uses the first BD. This command forces the controller to stop receiving and enter hunt mode,
during which the controller continually scans the data stream for an SYN1–SYN2 sequence as
programmed in the DSR. After receiving the command, the current receive buffer is closed and the BCS
is reset. Message reception continues using the next BD.

CLOSE RXBD Used to force the SCC to close the current RxBD if it is in use and to use the next BD for subsequent
data. If data is not being received, no action is taken.

INIT RX
PARAMETERS

Initializes receive parameters in this serial channel’s parameter RAM to reset state. Issue only when the
receiver is disabled. An INIT TX AND RX PARAMETERS resets transmit and receive parameters.

MPC855T User’s Manual

SCC BISYNC Control Character Recognition

26.6 SCC BISYNC Control Character Recognition
The BISYNC controller recognizes special control characters that customize the protocol
implemented by the BISYNC controller and aid its operation in a DMA-oriented
environment. They are used for receive buffers longer than one byte. In single-byte buffers,
each byte can easily be inspected so control character recognition should be disabled.

The control character table lets the BISYNC controller recognize the end of the current
block. Because the controller imposes no restrictions on the format of BISYNC blocks,
software must respond to received characters and inform the controller of mode changes
and of certain protocol events, such as resetting the BCS. Using the control character table
correctly allows the remainder of the block to be received without interrupting software.

Up to eight control characters can be defined to inform the BISYNC controller that the end
of the current block is reached and whether a BCS is expected after the character. For
example, the end-of-text character (ETX) implies an end-of-block (ETB) with a subsequent
BCS. An enquiry (ENQ) character designates an end of block without a subsequent BCS.
All the control characters are written into the data buffer. The BISYNC controller uses a
table of 16-bit entries to support control character recognition. Each entry consists of the
control character, an end-of-table bit (E), a BCS expected bit (B), and a hunt mode bit (H).
The RCCM entry defines classes of control characters that support masking option.

Offset from
SCC Base

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x42 E B H — CHARACTER1

0x44 E B H — CHARACTER2

0x46 E B H — CHARACTER3

0x48 E B H — CHARACTER4

0x4A E B H — CHARACTER5

0x4D E B H — CHARACTER6

0x4E E B H — CHARACTER7

0x50 E B H — CHARACTER8

0x52 1 1 1 — MASK VALUE(RCCM)

Figure 26-2. Control Character Table and RCCM

Chapter 26. SCC BISYNC Mode

BISYNC SYNC Register (BSYNC)

Table 26-4 describes control character table and RCCM fields.

26.7 BISYNC SYNC Register (BSYNC)
The BSYNC register defines BISYNC stripping and SYNC character insertion. When an
underrun occurs, the BISYNC controller inserts SYNC characters until the next buffer is
available for transmission. If the receiver is not in hunt mode when a SYNC character is
received, it discards this character if the valid bit (BSYNC[V]) is set.When using 7-bit
characters with parity, the parity bit should be included in the SYNC register value.

Table 26-4. Control Character Table and RCCM Field Descriptions

Offset Bit Name Description

0x42–0x50 0 E End of table.
0 This entry is valid. The lower eight bits are checked against the incoming

character. In tables with eight control characters, E should be zero in all eight
positions.

1 The entry is not valid. No other valid entries exist beyond this entry.

1 B BCS expected. A maskable interrupt is generated after the buffer is closed.
0 The character is written into the receive buffer and the buffer is closed.
1 The character is written into the receive buffer. The receiver waits for one LRC

or two CRC bytes of BCS and then closes the buffer. This should be used for
ETB, ETX, and ITB.

2 H Hunt mode. Enables hunt mode when the current buffer is closed.
0 The BISYNC controller maintains character synchronization after closing this

buffer.
1 The BISYNC controller enters hunt mode after closing the buffer. When the B

bit is set, the controller enters hunt mode after receiving the BCS.

3–7 — Reserved

8–15 CHARACTERn Control character 1–8. When using 7-bit characters with parity, include the parity
bit in the character value.

0x52 0–2 — All ones.

3–7 — Reserved

8–15 RCCM Received control character mask. Masks comparison of CHARACTERn. Each
bit of RCCM masks the corresponding bit of CHARACTERn.
0 Mask this bit in the comparison of the incoming character and

CHARACTERn.
1 The address comparison on this bit proceeds normally and no masking

occurs. If RCCM is not set, erratic operation can occur during control
character recognition.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field V 0 0 0 0 0 0 0 SYNC

Reset Undefined

R/W R/W

Address SCC Base + 0x3E

Figure 26-3. BISYNC SYNC (BSYNC)

MPC855T User’s Manual

SCC BISYNC DLE Register (BDLE)

Table 26-5 describes BSYNC fields.

26.8 SCC BISYNC DLE Register (BDLE)
The BDLE register is used to define the BISYNC stripping and insertion of DLE characters.
When an underrun occurs while a message is being sent in transparent mode, the BISYNC
controller inserts DLE-SYNC pairs until the next buffer is available for transmission.

In transparent mode, the receiver discards any DLE character received and excludes it from
the BCS if the valid bit (BDLE[V]) is set. If the second character is SYNC, the controller
discards it and excludes it from the BCS. If it is a DLE, the controller writes it to the buffer
and includes it in the BCS. If it is not a DLE or SYNC, the controller examines the control
character table and acts accordingly. If the character is not in the table, the buffer is closed
with the DLE follow character error bit set. If the valid bit is not set, the receiver treats the
character as a normal character. When using 7-bit characters with parity, the parity bit
should be included in the DLE register value.

Table 26-6 describes BDLE fields.

Table 26-5. BSYNC Field Descriptions

Bits Name Description

0 V Valid. If V = 1 and the receiver is not in hunt mode when a SYNC character is received, this
character is discarded.

1–7 — All zeros

8–15 SYNC SYNC character

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field V 0 0 0 0 0 0 0 DLE

Reset Undefined

R/W R/W

Address SCC Base + 0x40

Figure 26-4. BISYNC DLE (BDLE)

Table 26-6. BDLE Field Descriptions

Bits Name Description

0 V Valid. If V = 1 and the receiver is not in hunt mode when a SYNC character is received, this
character is discarded.

1–7 — All zeros

8–15 DLE DLE character

Chapter 26. SCC BISYNC Mode

Sending and Receiving the Synchronization Sequence

26.9 Sending and Receiving the Synchronization
Sequence

The BISYNC channel can be programmed to send and receive a synchronization pattern
defined in the DSR. GSMR_H[SYNL] defines pattern length, as shown in Table 26-7. The
receiver synchronizes on this pattern. Unless SYNL is zero (external sync), the transmitter
always sends the entire DSR contents, lsb first, before each frame—the chosen 4- or 8-bit
pattern can be repeated in the lower-order bits.

26.10Handling Errors in the SCC BISYNC
The controller reports message transmit and receive errors using the channel BDs, error
counters, and the SCCE. Modem lines can be directly monitored via the port C pins.
Table 26-8 describes transmit errors.

Table 26-7. Receiver SYNC Pattern Lengths of the DSR

GSMR_H[SYNL]
Setting

Bit Assignments

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

00 An external SYNC signal is used instead of the SYNC pattern in the DSR.

01 4-Bit

10 8-Bit

11 16-Bit

Table 26-8. Transmit Errors

Error Description

Transmitter
Underrun

The channel stops sending the buffer, closes it, sets TxBD[UN], and generates a TXE interrupt if it
is enabled. The channel resumes transmission after a RESTART TRANSMIT command is received.
Underrun cannot occur between frames or during a DLE–XXX pair in transparent mode.

CTS Lost during
Message
Transmission

The channel stops sending the buffer, closes it, sets TxBD[CT], and generates a TXE interrupt if not
masked. Transmission resumes when a RESTART TRANSMIT command is received.

MPC855T User’s Manual

BISYNC Mode Register (PSMR)

Table 26-9 describes receive errors.

26.11BISYNC Mode Register (PSMR)
The PSMR is used as the BISYNC mode register, shown in Figure 26-5. PSMR[RBCS,
RTR, RPM, TPM] can be modified on-the-fly.

Table 26-10 describes PSMR fields.

Table 26-9. Receive Errors

Error Description

Overrun The controller maintains a receiver FIFO for receiving data. The CP begins programming the SDMA
channel (if the buffer is in external memory) and updating the CRC when the first byte is received in
the Rx FIFO. If an Rx FIFO overrun occurs, the controller writes the received byte over the previously
received byte. The previous character and its status bits are lost. The channel then closes the buffer,
sets RxBD[OV], and generates the RXB interrupt if it is enabled. Finally, the receiver enters hunt
mode.

CD Lost during
Message
Reception

The channel stops receiving, closes the buffer, sets RxBD[CD], and generates the RXB interrupt if
not masked. This error has the highest priority. If the rest of the message is lost, no other errors are
checked in the message. The receiver immediately enters hunt mode.

Parity The channel writes the received character to the buffer and sets RxBD[PR]. The channel stops
receiving, closes the buffer, sets RxBD[PR], and generates the RXB interrupt if it is enabled. The
channel also increments PAREC and the receiver immediately enters hunt mode.

CRC The channel updates the CR bit in the BD every time a character is received with a byte delay of eight
serial clocks between the status update and the CRC calculation. When control character recognition
is used to detect the end of the block and cause CRC checking, the channel closes the buffer, sets
the CR bit in the BD, and generates the RXB interrupt if it is enabled.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field NOS CRC RBCS RTR RVD DRT — RPM TPM

Reset 0

R/W R/W

Addr 0xA08 (PSMR1)

Figure 26-5. Protocol-Specific Mode Register for BISYNC (PSMR)

Chapter 26. SCC BISYNC Mode

BISYNC Mode Register (PSMR)

Table 26-10. PSMR Field Descriptions

Bits Name Description

0–3 NOS Minimum number of SYN1–SYN2 pairs (defined in DSR) sent between or before messages.If NOS =
0000, one pair is sent. If NOS = 1111, 16 pairs are sent. The entire pair is always sent, regardless of
how GSMR[SYNL) is set. NOS can be modified on-the-fly.

4–5 CRC CRC selection.
x0 Reserved.
01 CRC16 (BISYNC). X16 + X15 + X2 + 1. PRCRC and PTCRC should be initialized to all zeros or all

ones before the channel is enabled. In either case, the transmitter sends the calculated CRC
noninverted and the receiver checks the CRC against zero. Eight-bit data characters (without
parity) are configured when CRC16 is chosen.

11 LRC (sum check). (BISYNC). For even LRC, initialize PRCRC and PTCRC to zeros before the
channel is enabled; for odd LRC, they should be initialized to ones.
Note that the receiver checks character parity when BCS is programmed to LRC and the receiver
is not in transparent mode. The transmitter sends character parity when BCS is programmed to
LRC and the transmitter is not in transparent mode. Use of parity in BISYNC assumes that 7-bit
data characters are being used.

6 RBCS Receive BCS. The receiver internally stores two BCS calculations separated by an eight serial clock
delay to allow examination of a received byte to determine whether it should used in BCS calculation.
0 Disable receive BCS.
1 Enable receive BCS. Should be set (or reset) within the time taken to receive the following data byte.

When RBCS is reset, BCS calculations exclude the latest fully received data byte. When RBCS is
set, BCS calculations continue as normal.

7 RTR Receiver transparent mode.
0 Normal receiver mode with SYNC stripping and control character recognition.
1 Transparent receiver mode. SYNCs, DLEs, and control characters are recognized only after a

leading DLE character. The receiver calculates the CRC16 sequence even if it is programmed to
LRC while in transparent mode. Initialize PRCRC to the CRC16 preset value before setting RTR.

8 RVD Reverse data.
0 Normal operation.
1 Any portion of the SCC defined to operate in BISYNC mode operates by reversing the character bit

order and sending the msb first.

9 DRT Disable receiver while sending. DRT should not be set for typical BISYNC operation.
0 Normal operation.
1 As the SCC sends data, the receiver is disabled and gated by the internal RTS signal. This helps if

the BISYNC channel is being configured onto a multidrop line and the user does not want to receive
its own transmission. Although BISYNC usually uses a half-duplex protocol, the receiver is not
actually disabled during transmission.

10–11 — Reserved, should be cleared.

MPC855T User’s Manual

SCC BISYNC Receive BD (RxBD)

26.12SCC BISYNC Receive BD (RxBD)
The CP uses BDs to report on each buffer received. It closes the buffer, generates a
maskable interrupt, and starts receiving data into the next buffer after any of the following:

• A user-defined control character is received.
• An error is detected.
• A full receive buffer is detected.
• The ENTER HUNT MODE command is issued.
• The CLOSE RX BD command is issued.

Figure 26-6 shows the SCC BISYNC RxBD.

12–13 RPM Receiver parity mode. Selects the type of parity check that the receiver performs. RPM can be modified
on-the-fly and is ignored unless CRC = 11 (LRC). Receive parity errors cannot be disabled but can be
ignored.
00 Odd parity. The transmitter counts ones in the data word. If the sum is not odd, the parity bit is set

to ensure an odd number. An even sum indicates a transmission error.
01 Low parity. If the parity bit is not low, a parity error is reported.
10 Even parity. An even number must result from the calculation performed at both ends of the line.
11 High parity. If the parity bit is not high, a parity error is reported.

14–15 TPM Transmitter parity mode. Selects the type of parity the transmitter performs and can be modified
on-the-fly. TPM is ignored unless CRC = 11 (LRC).
00 Odd parity.
01 Force low parity (always send a zero in the parity bit position).
10 Even parity.
11 Force high parity (always send a one in the parity bit position).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E — W I L F CM — DE — NO PR CR OV CD

Offset + 2 Data Length

Offset + 4 Rx Data Buffer Pointer

Offset + 6

Figure 26-6. SCC BISYNC RxBD

Table 26-10. PSMR Field Descriptions (continued)

Bits Name Description

Chapter 26. SCC BISYNC Mode

SCC BISYNC Receive BD (RxBD)

Table 26-11 describes SCC BISYNC RxBD status and control fields.

Data length and buffer pointer fields are described in Section 21.3, “SCC Buffer
Descriptors (BDs).” Data length represents the number of octets the CP writes into this
buffer, including the BCS. For BISYNC mode, clear these bits. It is incremented each time
a received character is written to the buffer.

Table 26-11. SCC BISYNC RxBD Status and Control Field Descriptions

Bits Name Description

0 E Empty.
0 The buffer is full or stopped receiving because of an error. The core can read or write any fields of this

RxBD. The CP does not use this BD as long as the E bit is zero.
1 The buffer is not full. The CP controls this BD and buffer. The core should not update this BD.

1 — Reserved, should be cleared.

2 W Wrap (last BD in table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CP receives incoming data into the first BD that

RBASE points to. The number of BDs in this table is determined by the W bit.

3 I Interrupt.
0 No interrupt is generated after this buffer is used.
1 SCCE[RXB] is set when the controller closes this buffer, which can cause an interrupt if it is enabled.

4 L Last in frame. Set when this buffer is the last in a frame. If CD is negated in envelope mode or an error
is received, one or more of the OV, CD, and DE bits are set. The controller writes the number of frame
octets to the data length field.
0 Not the first buffer in the frame.
1 The first buffer in the frame.

5 F First in frame. Set when this is the first buffer in a frame.
0 Not the first buffer in a frame.
1 First buffer in a frame

6 CM Continuous mode.
0 Normal operation.
1 The CP does not clear E after this BD is closed; the buffer is overwritten when the CP accesses this

BD next. However, E is cleared if an error occurs during reception, regardless of how CM is set.

7 — Reserved, should be cleared.

8 DE DPLL error. Set when a DPLL error occurs during reception. In decoding modes where a transition is
should occur every bit, the DPLL error is set when a transition is missing.

9–10 — Reserved, should be cleared.

11 NO Rx non-octet-aligned frame. Set when a frame is received containing a number of bits not evenly divisible
by eight.

12 PR Parity error. Set when a character with parity error is received. Upon a parity error, the buffer is closed;
thus, the corrupted character is the last byte of the buffer. A new Rx buffer receives subsequent data.

13 CR Rx CRC error. Set when this frame contains a CRC error. Received CRC bytes are always written to the
receive buffer.

14 OV Overrun. Set when a receiver overrun occurs during frame reception.

15 CD Carrier detect lost. Indicates when the carrier detect signal, CD, is negated during frame reception.

MPC855T User’s Manual

SCC BISYNC Transmit BD (TxBD)

26.13SCC BISYNC Transmit BD (TxBD)
The CP arranges data to be sent on the SCC channel in buffers referenced by the channel
TxBD table. The CP uses BDs to confirm transmission or indicate errors so the core knows
buffers have been serviced. The user configures status and control bits before transmission,
but the CP sets them after the buffer is sent.

Table 26-12 describes SCC BISYNC TxBD status and control fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R — W I L TB CM BR TD TR B — UN CT

Offset + 2 Data Length

Offset + 4 Tx Data Buffer Pointer

Offset + 6

Figure 26-7. SCC BISYNC TxBD

Table 26-12. SCC BISYNC TxBD Status and Control Field Descriptions

Bits Name Description

0 R Ready.
0 The buffer is not ready for transmission. The current BD and buffer can be updated. The CP clears R

after the buffer is sent or after an error condition.
1 The user-prepared buffer has not been sent or is being sent. This BD cannot be updated while R = 1.

1 — Reserved, should be cleared.

2 W Wrap (last BD in table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CP sends data using the first BD that TBASE points

to. The number of TxBDs in this table is determined only by the W bit.

3 I Interrupt.
0 No interrupt is generated after this buffer is serviced.
1 SCCE[TXB] or SCCE[TXE] is set after the CP services this buffer, which can cause an interrupt.

4 L Last in message.
0 The last character in the buffer is not the last character in the current block.
1 The last character in the buffer is the last character in the current block. The transmitter enters and

stays in normal mode after sending the last character in the buffer and the BCS, if enabled.

5 TB Transmit BCS. Valid only when the L bit is set.
0 Send an SYN1–SYN2 or idle sequence (specified in GSMR_H[RTSM]) after the last character in the

buffer.
1 Send the BCS sequence after the last character. The controller also resets the BCS generator after

sending the BCS.

6 CM Continuous mode.
0 Normal operation.
1 The CP does not clear R after this BD is closed, so the buffer is resent when the CP next accesses

this BD. However, R is cleared if an error occurs during transmission, regardless of how CM is set.

7 BR BCS reset. Determines whether transmitter BCS accumulation is reset before sending the data buffer.
0 BCS accumulation is not reset.
1 BCS accumulation is reset before sending the data buffer.

Chapter 26. SCC BISYNC Mode

BISYNC Event Register (SCCE)/BISYNC Mask Register (SCCM)

Data length and buffer pointer fields are described in Section 21.3, “SCC Buffer
Descriptors (BDs).” Although it is never modified by the CP, data length should be greater
than zero. The CPM writes these fields after it finishes sending the buffer.

26.14BISYNC Event Register (SCCE)/BISYNC Mask
 Register (SCCM)

The BISYNC controller uses the SCC event register (SCCE) to report events recognized by
the BISYNC channel and to generate interrupts. When an event is recognized, the controller
sets the corresponding SCCE bit. Interrupts are enabled by setting, and masked by clearing,
the equivalent bits in the BISYNC mask register (SCCM). SCCE bits are reset by writing
ones; writing zeros has no effect. Unmasked bits must be reset before the CP negates the
internal interrupt request signal.

8 TD Transmit DLE.
0 No automatic DLE transmission can occur before the data buffer.
1 The transmitter sends a DLE character before sending the buffer, which saves writing the first DLE to

a separate buffer in transparent mode. See TR for information on control characters.

9 TR Transparent mode.
0 The transmitter enters and stays in normal mode after sending the buffer. The transmitter

automatically inserts SYNCs if an underrun condition occurs.
1 The transmitter enters or stays in transparent mode after sending the buffer. It automatically inserts

DLE–SYNC pairs if an underrun occurs (the controller finishes a buffer with L = 0 and the next BD is
not available). It also checks all characters before sending them. If a DLE is detected, another DLE is
sent automatically. Insert a DLE or program the controller to insert one before each control character.
The transmitter calculates the CRC16 BCS even if PSMR[BCS] is programmed to LRC. Initialize
PTCRC to CRC16 before setting TR.

10 B BCS enable.
0 The buffer consists of characters that are excluded from BCS accumulation.
1 The buffer consists of characters that are included in BCS accumulation.

11–13 — Reserved, should be cleared.

14 UN Underrun. Set when the BISYNC controller encounters a transmitter underrun error while sending the
associated data buffer. The CPM writes UN after it sends the associated buffer.

15 CT CTS lost. The CP sets CT when CTS is lost during message transmission after it sends the data buffer.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — GLR GLT DCC — GRA — TXE RCH BSY TXB RXB

Reset 0000_0000_0000_0000

R/W R/W

Addr 0xA10 (SCCE1)/0xA14 (SCCM1)

Figure 26-8. BISYNC Event Register (SCCE)/BISYNC Mask Register (SCCM)

Table 26-12. SCC BISYNC TxBD Status and Control Field Descriptions

Bits Name Description

MPC855T User’s Manual

SCC Status Registers (SCCS)

Table 26-13 describes SCCE and SCCM fields.

26.15SCC Status Registers (SCCS)
The SCC status (SCCS) register allows real-time monitoring of RXD. The real-time status
of CTS and CD are part of the port C parallel I/O.

Table 26-14 describes SCCS fields.

Table 26-13. SCCE/SCCM Field Descriptions

Bits Name Description

0–2 — Reserved, should be cleared.

3 GLR Glitch on Rx. Set when the SCC finds an Rx clock glitch.

4 GLT Glitch on Tx. Set when the SCC finds a Tx clock glitch.

5 DCC DPLL CS changed. Set when carrier sense status generated by the DPLL changes. Real-time status
can be found in SCCS. This is not the CD status discussed elsewhere. Valid only when DPLL is used.

6–7 — Reserved, should be cleared.

8 GRA Graceful stop complete. Set as soon the transmitter finishes any message in progress when a GRACEFUL
STOP TRANSMIT is issued (immediately if no message is in progress).

9–10 — Reserved, should be cleared.

11 TXE Tx Error. Set when an error occurs on the transmitter channel.

12 RCH Receive character. Set when a character is received and written to the buffer.

13 BSY Busy. Set when a character is received and discarded due to a lack of buffers. The receiver resumes
reception after an ENTER HUNT MODE command.

14 TXB Tx buffer. Set when a buffer is sent. TXB is set as the last bit of data or the BCS begins transmission.

15 RXB Rx buffer. Set when the CPM closes the receive buffer on the BISYNC channel.

Bit 0 1 2 3 4 5 6 7

Field — CS —

Reset 0000_0000

R/W R

Addr 0xA17 (SCCS1)

Figure 26-9. SCC Status Registers (SCCS)

Table 26-14. SCCS Field Descriptions

Bit Name Description

0–5 — Reserved, should be cleared.

6 CS Carrier sense (DPLL). Shows the real-time carrier sense of the line as determined by the DPLL.
0 The DPLL does not sense a carrier.
1 The DPLL senses a carrier.

7 — Reserved, should be cleared.

Chapter 26. SCC BISYNC Mode

Programming the SCC BISYNC Controller

26.16Programming the SCC BISYNC Controller
Software has two ways to handle data received by the BISYNC controller. The simplest is
to allocate single-byte receive buffers, request an interrupt on reception of each buffer, and
implement BISYNC protocol entirely in software on a byte-by-byte basis. This flexible
approach can be adapted to any BISYNC implementation. The obvious penalty is the
overhead caused by interrupts on each received character.

A more efficient method is to prepare and link multi-byte buffers in the RxBD table and use
software to analyze the first two to three bytes of the buffer to determine the type of block
received. When this is determined, reception continues without further software
intervention until it encounters a control character, which signifies the end of the block and
causes software to revert to byte-by-byte reception.

To accomplish this, set SCCM[RCH] to enable an interrupt on every received byte so
software can analyze each byte. After analyzing the initial characters of a block, either set
PSMR[RTR] or issue a RESET BCS CALCULATION command. For example, if a DLE-STX is
received, enter transparent mode. By setting the appropriate PSMR bit, the controller strips
the leading DLE from DLE-character sequences. Thus, control characters are recognized
only when they follow a DLE character. PSMR[RTR] should be cleared after a DLE-ETX
is received.

Alternatively, after an SOH is received, a RESET BCS CALCULATION should be issued to
exclude SOH from BCS accumulation and reset the BCS. Notice that PSMR[RBCS] is not
needed because the controller automatically excludes SYNCs and leading DLEs.

After the type of block is recognized, SCCE[RCH] should be masked. The core does not
interrupt data reception until the end of the current block, which is indicated by the
reception of a control character matching the one in the receive control character table.
Using Table 26-15, the control character table should be set to recognize the end of the
block.

After ETX, a BCS is expected; then the buffer should be closed. Hunt mode should be
entered when a line turnaround occurs. ENQ characters are used to stop sending a block
and to designate the end of the block for a receiver, but no CRC is expected. After control
character reception, set SCCM[RCH] to reenable interrupts for each byte of data received.

Table 26-15. Control Characters

Control Characters E B H

ETX 0 1 1

ITB 0 1 0

ETB 0 1 1

ENQ 0 0 0

Next entry 0 X X

MPC855T User’s Manual

SCC BISYNC Programming Example

26.17SCC BISYNC Programming Example
This BISYNC controller initialization example for SCC1 uses an external clock. The
controller is configured with RTS1, CTS1, and CD1 active. Both the receiver and
transmitter use CLK3.

1. Configure the port A pins to enable TXD1 and RXD1. Write PAPAR[14,15] and
PAODR[14,15] with ones and PADIR[14,15] with zeros.

2. Configure the port C pins to enable RTS1, CTS1, and CD1. Set PCSO[10,11] and
PCPAR[15]; clear PCPAR[10,11] and PCDIR[10,11,15].

3. Configure port A to enable CLK3. Set PAPAR[5] and clear PADIR[5].

4. Connect CLK3 to SCC1 using the serial interface. Set SICR[R1CS, T1CS] to
0b110.

5. Connect the SCC1 to the NMSI and clear SICR[SC1].

6. Initialize the SDMA configuration register (SDCR).

7. Assuming one RxBD at the beginning of dual-port RAM followed by one TxBD,
write RBASE with 0x0000 and TBASE with 0x0008.

8. Write 0x0001 to CPCR to execute the INIT RX AND TX PARAMS command for
SCC1. This command updates RBPTR and TBPTR of the serial channel with the
new values of RBASE and TBASE.

9. Write RFCR and TFCR with 0x10 for normal operation.

10. Write MRBLR with the maximum number of bytes per receive buffer. For this
case, assume 16 bytes, so MRBLR = 0x0010.

11. Write PRCRC with 0x0000 to comply with CRC16.

12. Write PTCRC with 0x0000 to comply with CRC16.

13. Clear PAREC for clarity.

14. Write BSYNC with 0x8033, assuming a SYNC value of 0x33.

15. Write DSR with 0x3333.

16. Write BDLE with 0x8055, assuming a DLE value of 0x55.

17. Write CHARACTER1–8 with 0x8000. They are not used.

18. Write RCCM with 0xE0FF. It is not used.

19. Initialize the RxBD and assume the data buffer is at 0x00001000 in main memory.
Then write 0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data Length]
(optional), and 0x00001000 to RxBD[Buffer Pointer].

20. Initialize the TxBD and assume the Tx data buffer is at 0x00002000 in main
memory and contains five 8-bit characters. Then write 0xBD20 to TxBD[Status and
Control] 0x0005 to TxBD[Data Length], and 0x00002000 to TxBD[Buffer
Pointer].

Chapter 26. SCC BISYNC Mode

SCC BISYNC Programming Example

21. Write 0xFFFF to SCCE to clear any previous events.

22. Write 0x0013 to SCCM to enable the TXE, TXB, and RXB interrupts.

23. Write 0x4000_0000 to the CPM interrupt mask register (CIMR) to allow SCC1 to
generate a system interrupt. The CICR should also be initialized.

24. Write 0x00000020 to GSMR_H1 to configure a small receive FIFO width.

25. Write 0x00000008 to GSMR_L1 to configure CTS and CD to automatically
control transmission and reception (DIAG bits) and the BISYNC mode. Notice that
the transmitter (ENT) and receiver (ENR) are not yet enabled.

26. Set PSMR1 to 0x0600 to configure CRC16, CRC checking on receive, and normal
operation (not transparent).

27. Write 0x00000038 to GSMR_L1 to enable the transmitter and receiver. This
additional write ensures that ENT and ENR are enabled last.

Note that after 5 bytes are sent, the TxBD is closed. The buffer is closed after 16 bytes are
received. Any received data beyond 16 bytes causes a busy (out-of-buffers) condition since
only one RxBD is prepared.

MPC855T User’s Manual

SCC BISYNC Programming Example

Chapter 27. SCC Ethernet Mode

Chapter 27
SCC Ethernet Mode

The ethernet IEEE 802.3 protocol is a widely used LAN protocol based on the carrier sense
multiple access/collision detect (CSMA/CD) approach. Because ethernet and IEEE 802.3
protocols are similar and can coexist on the same LAN, both are referred to as ethernet in
this manual, unless otherwise noted. Figure 27-1 shows ethernet and IEEE 802.3 frame
structure.

Figure 27-1. Ethernet Frame Structure

The frame begins with a 7-byte preamble of alternating ones and zeros. Because the frame
is Manchester encoded, the preamble gives receiving stations a known pattern on which to
lock. The start frame delimiter follows the preamble, signifying the beginning of the frame.
The 48-bit destination address is next, followed by the 48-bit source address. Original
versions of the IEEE 802.3 specification allowed 16-bit addressing, but this addressing has
never been widely used and is not supported.

The next field is the ethernet type field/IEEE 802.3 length field. The type field signifies the
protocol used in the rest of the frame and the length field specifies the length of the data
portion of the frame. For ethernet and IEEE 802.3 frames to coexist on the same LAN, the
length field of the frame must always be different from any type fields used in ethernet. This
limits the length of the data portion of the frame to 1,500 bytes and total frame length to
1,518 bytes. The last 4 bytes of the frame are the frame check sequence (FCS), a standard
32-bit CCITT-CRC polynomial used in many protocols.

When a station needs to transmit, it checks for LAN activity. When the LAN is silent for a
specified period, the station starts sending. At that time, the station continually checks for
collisions on the LAN; if one is found, the station forces a jam pattern (all ones) on its frame
and stops sending. Most collisions occur close to the beginning of a frame. The station waits
a random period of time, called a backoff, before trying to retransmit. Once the backoff time

Preamble
Start Frame

DataDelimiter
Destination

Address
Type/

Length
Source
Address

Frame Check
Sequence

7 Bytes 1 Byte 6 Bytes 6 Bytes 2 Bytes 46–1500 Bytes 4 Bytes

Frame Length is 64–1518 Bytes

NOTE: The lsb of each octet is transmitted first.

MPC855T User’s Manual

Ethernet on the MPC855T

expires, the station waits for silence on the LAN before retransmitting, which is called a
retry. If the frame cannot be sent within 15 retries, an error occurs.

10-Mbps ethernet transmits at 0.8 µs per byte. The preamble plus start frame delimiter is
sent in 6.4 µs. The minimum 10-Mbps ethernet interframe gap is 9.6 µs and the slot time is
52 µs.

27.1 Ethernet on the MPC855T
Setting GSMR[MODE] to 0b1100 selects ethernet. The SCC performs the full set of IEEE
802.3/ethernet CSMA/CD media access control and channel interface functions.
Figure 27-2 shows the ethernet block diagram.

Figure 27-2. Ethernet Block Diagram

The MPC855T ethernet controller requires an external serial interface adaptor (SIA) and
transceiver function to complete the interface to the media. This function is implemented
in the Motorola MC68160 enhanced ethernet serial transceiver (EEST).

The MPC855T and EEST solution provides a direct connection to the attachment unit
interface (AUI) or twisted-pair (10BASE-T). The EEST provides a glueless interface to the
MPC855T, Manchester encoding and decoding, automatic selection of 10BASE-T versus
AUI ports, 10BASE-T polarity detection and correction. The MC68160 documentation
gives more information.

Although the MPC855T contains DPLLs that allow Manchester encoding and decoding,
these DPLLs were not designed for ethernet rates. Therefore, the MPC855T ethernet
controller bypasses the on-chip DPLLs and uses the external system interface adaptor on

SHIFTER

RXRECEIVER
CONTROL

UNIT FIFO

SHIFTER

TX TRANSMITTER
CONTROL

UNITFIFO

SLOT TIME

CLOCK
GENERATOR

INTERNAL CLOCKS

CONTROL
REGISTERS

TXDRXD

PERIPHERAL BUS

DATADATA

RCLK

TCLK

AND DEFER
COUNTER

RTS = TENA

R
AN

D
O

M
 N

O
.

CD = RENA

CTS = CLSNCTS = CLSN

CD = RENA

REJECT

RSTRT

U-BUS

Chapter 27. SCC Ethernet Mode

Features

the EEST instead. The on-chip DPLL cannot be used for low-speed (1-Mbps) ethernet
either because it cannot properly detect start-of-frame or end-of-frame.

Note that the CPM of the MPC855T requires a minimum system clock frequency of 24
MHz to support ethernet.

27.2 Features
The following list summarizes the main features of the SCC in ethernet mode:

• Performs MAC layer functions of ethernet and IEEE 802.3
• Performs framing functions

— Preamble generation and stripping
— Destination address checking
— CRC generation and checking
— Automatically pads short frames on transmit
— Framing error (dribbling bits) handling

• Full collision support
— Enforces the collision (jamming)
— Truncated binary exponential backoff algorithm for random wait
— Two nonaggressive backoff modes
— Automatic frame retransmission (until the retry limit is reached)
— Automatic discard of incoming collided frames
— Delay transmission of new frames for specified interframe gap

• Maximum 10 Mbps bit rate
• Optional full-duplex support
• Back-to-back frame reception
• Detection of receive frames that are too long
• Multibuffer data structure
• Supports 48-bit addresses in three modes

— Physical–One 48-bit address recognized or 64-bin hash table for physical
addresses

— Logical–64-bin group address hash table plus broadcast address checking
— Promiscuous–Receives all addresses, but discards frame if REJECT is asserted

• External content-addressable memory (CAM)
support on both serial and system bus interfaces

• Up to eight parallel I/O pins can be sampled and appended to any frame
• Optional heartbeat indication
• Transmitter network management and diagnostics

MPC855T User’s Manual

Learning Ethernet on the MPC855T

— Lost carrier sense
— Underrun
— Number of collisions exceeded the maximum allowed
— Number of retries per frame
— Deferred frame indication
— Late collision

• Receiver network management and diagnostics
— CRC error indication
— Nonoctet alignment error
— Frame too short
— Frame too long
— Overrun
— Busy (out of buffers)

• Error counters
— Discarded frames (out of buffers or overrun occurred)
— CRC errors
— Alignment errors

• Internal and external loopback mode

27.3 Learning Ethernet on the MPC855T
The standard SCC functionality has been enhanced to support ethernet. First-time
MPC855T users who plan to use ethernet should first read the following:

• Chapter 21, “Serial Communications Controller,” describes basic operation of the
SCC.

• Chapter 17, “Communications Processor Module and CPM Timers,” describes how
the CPM issues special commands to the ethernet channel. The dual-port RAM
loads ethernet parameters and initializes BDs for the ethernet channel to use.

• Chapter 19, “SDMA Channels and IDMA Emulation,” discusses how SDMA
channels are used to transfer data between the ethernet channel and system memory.

• Section 20.3, “NMSI Configuration,” explains how clocks are routed to the SCC
through the bank of clocks.

• Chapter 27, “SCC Ethernet Mode,” should be read next.
• Chapter 33, “Parallel I/O Ports,” shows how to configure the preferred ethernet pin

functions to be active.
• Chapter 34, “CPM Interrupt Controller,” defines SCC interrupt priorities and how

interrupts are generated to the core.

Chapter 27. SCC Ethernet Mode

Connecting the MPC855T to Ethernet

27.4 Connecting the MPC855T to Ethernet
The basic interface to the external EEST chip consists of the following ethernet signals:

• Receive clock (RCLK)—a CLKx signal routed through the bank of clocks on the
MPC855T.

• Transmit clock (TCLK)—a CLKx signal routed through the bank of clocks on the
MPC855T. Note that RCLK and TCLK should not be connected to the same CLKx
since the EEST provides separate transmit and receive clock signals.

• Transmit data (TXD)—the MPC855T TXD signal.

• Receive data (RXD)—the MPC855T RXD signal.

The following signals take on different functionality when the SCC is in ethernet mode:

• Transmit enable (TENA)—RTS becomes TENA. The polarity of TENA is active
high, whereas the polarity of RTS is active low.

• Receive enable (RENA)—CD becomes RENA.

• Collision (CLSN)—CTS becomes CLSN. The carrier sense signal is referenced in
ethernet descriptions because it indicates when the LAN is in use. Carrier sense is
defined as the logical OR of RENA and CLSN.

Figure 27-3 shows the basic components and signals required to make an ethernet
connection between the MPC855T and EEST.

Figure 27-3. Connecting the MPC855T to Ethernet

MPC855T EEST
MC68160

TXD

TENA (RTS)

TCLK (CLKx)

RXD

RENA (CD)

RCLK (CLKx)

CLSN (CTS)

Parallel I/O

Tx

TENA

TCLK

Rx

RENA

RCLK

CLSN

Loop

Passive

Passive

Twisted
Pair

AUI

Preamble
Start Frame

DataDelimiter
Destination

Address
Type/

Length
Source
Address

Frame Check
Sequence

7 Bytes 1 Byte 6 Bytes 6 Bytes 2 Bytes 46–1500 Bytes 4 Bytes

Stored in Receive Buffer

RJ-45

D-15

Stored in Transmit Buffer

SCC

NOTE: Short Tx frames are padded automatically.

(Pads)

MPC855T User’s Manual

SCC Ethernet Channel Frame Transmission

The EEST has similar names for its connection to the above seven MPC855T signals. The
EEST also provides a loopback input so the MPC855T can perform external loopback
testing, which can be controlled by any available MPC855T parallel I/O signal. There are
additional pins for interfacing with an optional external content-addressable memory
(CAM) described in Section 27.7, “Content-Addressable Memory (CAM) Interface.” The
passive components needed to connect to AUI or twisted-pair media are external to the
EEST. The MC68160 documentation describes EEST connection circuits.

The MPC855T uses SDMA channels to store bytes received after the start frame delimiter
in system memory. When sending, provide the destination address, source address,
type/length field, and the transmit data. To meet minimum frame requirements, the
MPC855T pads frames with fewer than 46 bytes in the data field and appends the FCS to
the frame.

27.5 SCC Ethernet Channel Frame Transmission
The ethernet transmitter works with almost no core intervention. When the core enables the
transmitter, the SCC polls the first TxBD in the table every 128 serial clocks. Setting
TODR[TOD] lets the next frame be sent without waiting for the next poll.

To begin transmission, the SCC in ethernet mode (called the ethernet controller) fetches
data from the buffer, asserts TENA to the EEST, and starts sending the preamble sequence,
the start frame delimiter, and frame information. If the line is busy, it waits for carrier sense
to remain inactive for 6.0 µs, at which point it waits an additional 3.6 µs before it starts
sending (9.6 µs after carrier sense originally became inactive).

If a collision occurs during frame transmission, the ethernet controller follows a specified
backoff procedure and tries to retransmit the frame until the retry limit threshold is reached.
The ethernet controller stores the first 5 to 8 bytes of the transmit frame in internal RAM
so they need not be retrieved from system memory in case of a collision. This improves bus
usage and latency when the backoff timer output requires an immediate retransmission. If
a collision occurs during frame transmission, the controller returns to the first buffer for a
retransmission. The only restriction is that the first buffer must contain at least 9 bytes.

Note that if an ethernet frame consists of multiple buffers, do not reuse the first BD until
the CPM clears the R bit of the last BD.

When the end of the current BD is reached and TxBD[L] is set, the FCS bytes are appended
(if the TC bit is set in the TxBD), and TENA is negated. This notifies the EEST of the need
to generate the illegal Manchester encoding that marks the end of an ethernet frame. After
CRC transmission, the ethernet controller writes the frame status bits into the BD and clears
the R bit. When the end of the current BD is reached and the L bit is not set, only the R bit
is cleared.

Chapter 27. SCC Ethernet Mode

SCC Ethernet Channel Frame Reception

In either mode, whether an interrupt is issued depends on how the I bit is set in the TxBD.
The ethernet controller proceeds to the next TxBD. Transmission can be interrupted after
each frame, after each buffer, or after a specific buffer is sent. The ethernet controller can
pad characters to short frames. If TxBD[PAD] is set, the frame is padded up to the value of
the minimum frame length register (MINFLR).

To send expedited data before previously linked buffers or for error situations, the
GRACEFUL STOP TRANSMIT command can be used to rearrange transmit queue before the
CPM sends all the frames; the ethernet controller stops immediately if no transmission is
in progress or it will keep sending until the current frame either finishes or terminates with
a collision. When the ethernet controller receives a RESTART TRANSMIT command, it
resumes transmission. The ethernet controller sends bytes least-significant bit first.

27.6 SCC Ethernet Channel Frame Reception
The ethernet receiver handles address recognition and performs CRC, short frame,
maximum DMA transfer, and maximum frame length checking with almost no core
intervention. When the core enables the ethernet receiver, it enters hunt mode as soon as
RENA is asserted while CLSN is negated. In hunt mode, as data is shifted into the receive
shift register one bit at a time, the register contents are compared to the contents of the
SYN1 field in the data synchronization register (DSR). This compare function becomes
valid a certain number of clocks after the start of the frame (depending on PSMR[NIB]). If
the two are not equal, the next bit is shifted in and the comparison is repeated. If a
double-zero or double-one fault is detected between bits 14 to 21 from the first received
preamble bit, the frame is rejected. If a double-zero fault is detected after 21 bits from the
first received preamble bit and before detection of the start frame delimiter (SFD), the frame
is also rejected. When the incoming pattern is not rejected and matches the DSR, the SFD
has been detected; hunt mode is terminated and character assembly begins.

When the receiver detects the first bytes of the frame, the ethernet controller performs
address recognition on the frame. The receiver can receive physical (individual), group
(multicast), and broadcast addresses. Ethernet receive frame data is not written to memory
until the internal address recognition process completes, which improves bus usage with
frames not addressed to this station. The receiver also operates with an external CAM. With
an external CAM, frame reception continues normally, unless the CAM specifically signals
the frame to be rejected. See Section 27.7, “Content-Addressable Memory (CAM)
Interface.”

If a match is found, the ethernet controller fetches the next RxBD and, if it is empty, starts
transferring the incoming frame to the RxBD associated data buffer. If a collision is
detected during the frame, the RxBDs associated with this frame are reused. Thus, there
will be no collision frames presented to you except late collisions, which indicate serious
LAN problems. When the data buffer has been filled, the ethernet controller clears the E bit
in the RxBD and generates an interrupt if the I bit is set. If the incoming frame exceeds the
length of the data buffer, the ethernet controller fetches the next RxBD in the table and, if

MPC855T User’s Manual

Content-Addressable Memory (CAM) Interface

it is empty, continues transferring the rest of the frame to this buffer. The RxBD length is
determined by MRBLR in the SCC general-purpose parameter RAM, which should be at
least 64 bytes.

During reception, the ethernet controller checks for a frame that is either too short or too
long. When the frame ends, the receive CRC field is checked and written to the buffer. The
data length written to the last BD in the ethernet frame is the length of the entire frame and
it enables the software to correctly recognize the frame-too-long condition.

When the receive frame is complete, the ethernet controller can sample one byte from the
port B parallel I/O and append this byte to the end of the last RxBD in the frame. For any
PB[16–23] pins defined as outputs, the contents of the PBDAT latch is read instead of the
pin. This capability is useful for CAM applications and can be used when the external CAM
is not present. Sampling occurs at the end of frame reception.

The ethernet controller then sets the L bit in the RxBD, writes the other frame status bits
into the RxBD, and clears the E bit. Then it generates a maskable interrupt, which indicates
that a frame has been received and is in memory. The ethernet controller then waits for a
new frame. It receives serial data least-significant bit first.

27.7 Content-Addressable Memory (CAM) Interface
The ethernet controller can connect to an external CAM through the serial interface or a
system bus interface. Both interfaces can be used at the same time because there is no mode
bit to select them, but they are described separately here for clarity. To implement an option,
enable the pins needed for the implementation. Both interfaces use the MPC855T REJECT
signal to signify that the current frame should be discarded. Internal address recognition
logic and an external CAM can be used simultaneously; see Section 27.11, “SCC Ethernet
Address Recognition.”

Note that the IDMA and the ethernet CAM interfaces both use the SDACK(1–2) signals. If
both functions are needed, the function code registers (FCRs) of the IDMA and the ethernet
SCC can be programmed with unique values for the address type, AT[1–3]. External logic
can then distinguish between the two interfaces.

27.7.1 Serial CAM Interface

When the start frame delimiter is recognized, the MPC855T asserts RSTRT for one bit time
on the second destination address bit. The CAM control logic uses RSTRT (in combination
with RXD and RCLK) to store the destination or source address and to generate writes to
the CAM for address recognition. In addition, RENA supplied from the EEST can abort the
comparison if a collision occurs on the receive frame.

After the comparison, if CAM control logic asserts REJECT for the current receive frame,
the ethernet controller immediately stops writing data to system memory and reuses the

Chapter 27. SCC Ethernet Mode

Content-Addressable Memory (CAM) Interface

buffer(s) for the next frame. If the CAM accepts the frame, CAM control logic does nothing
and REJECT is not asserted. REJECT must be asserted before the end of the receive frame.

The CAM control logic can provide additional information on PB(16–23). The ethernet
controller writes this additional byte to memory during the last SDMA write if PSMR[SIP]
is set. The ethernet controller samples this information tag as the last FCS byte is read from
the receive FIFO. The CAM control logic must provide the information tag no later than
when RENA is negated at the end of a noncollision frame and should be held stable on
PB(16–23) until SDACK(1–2) indicate that the tag byte is being written to memory.

MPC855T User’s Manual

Content-Addressable Memory (CAM) Interface

Figure 27-4. MPC855T Ethernet Serial CAM Interface

27.7.2 Parallel CAM Interface
The MPC855T outputs SDACK1 and SDACK2 whenever it writes ethernet frame data to
system memory. They are asserted during all bus cycles on which ethernet frame data is
written to memory and are not used for other protocols. The CAM control logic uses these
signals simultaneously to enable the CAM writes with system memory writes. The
advantage of the CAM capturing frame data as it is written to system memory is that the

NOTE: The receive data is sent directly from the EEST serial interface to the CAM using RXD and RCLK. RSTRT is
asserted at the beginning of the destination address. REJECT should be asserted during the frame to cause the
frame to be rejected. The system bus is used for CAM initialization and maintenance.

EEST
MC68160

TXD

TENA (RTS)

TCLK (CLKx)

RXD

RENA (CD)

RCLK (CLKx)

CLSN (CTS)

REJECT

Tx

TENA

TCLK

Rx

RENA

RCLK

CLSN

Loop

Passive To Media

Preamble
Start Frame

DataDelimiter
Destination

Address
Type/

Length
Source
Address

Frame Check
Sequence

7 Bytes 1 Byte 6 Bytes 6 Bytes 2 Bytes 46–1500 Bytes 4 Bytes

RSTRT

Parallel I/O

PB[16:23]

SDACK1/SDACK2

Shift Register
and

CAM Control

Buffers

Optional Frame
Tag Byte

CAM

System
Bus

RxD

REJECT

RSTRT

Asserted on Second Destination Address Bit
for a Duration of 1-Bit Time

Frame Rejected if Asserted During Frame Reception.
Further Transmissions on System Bus Cease,

and Buffer Descriptors are Reused.

SCC

MPC855T

Chapter 27. SCC Ethernet Mode

Content-Addressable Memory (CAM) Interface

data is already in parallel form when it leaves the MPC855T. Figure 27-5 shows a parallel
interface configuration.

Figure 27-5. MPC855T Ethernet Parallel CAM Interface

NOTE: The receive data is sent to the CAM as it is written to system memory. The SDACK1/SDACK2 signals are used to
identify the destination address and any other preferred frame bytes. The RSTRT signal is not required in this
configuration, although it is still available.

EEST
MC68160

TXD

TENA (RTS)

TCLK (CLKx)

RXD

RENA (CD)

RCLK (CLKx)

CLSN (CTS)

REJECT

Tx

TENA

TCLK

Rx

RENA

RCLK

CLSN

Loop

Passive To Media

Tag
Destination

DataAddress
Destination

Address
Type/

Length
Source
Address

Frame Check
Sequence

1 Byte (Optional)4 Byte 2 Bytes 6 Bytes 2 Bytes 46–1500 Bytes 4 Bytes

Parallel I/O

PB[16:23]

SDACK1/SDACK2

CAM Control

Optional Frame
Tag Byte

CAM

System
Bus

SDMA

SDACK2

SCC

Bus
Writes

Asserted for One
Cycle or Two 16-Bit
Write Cycles, etc.

Asserted on Each Write
Cycle to Memory up to
and Including the Last

System Bus Write
of the Frame

Frame can be Rejected if Asserted During
Frame Reception. Further Transmissions

on System Bus Cease and Buffer
Descriptors are Reused. SDACK1 Asserted

when New Frame Arrives

Signifies Last 32-Bit Bus
Write to Memory Only if

Tag Byte is Appended. Tag
Byte Could be Byte 0, 1, 2,

or 3 of the 32-Bit Write

SDACK1

REJECT

NOTE: The diagram shows SDMA system bus writes, not data on the RXD pin. Other bus activity can occur between
successive 32-bit writes. In such a case, SDACK1/SDACK2 would not be asserted for other bus activity.

MPC855T

MPC855T User’s Manual

SCC Ethernet Parameter RAM

The SDACK1 and SDACK2 signals are asserted during all bus cycle writes of the frame
data. One SDACK1/SDACK2 combination identifies the first 32 bits of the frame, another
identifies all mid-frame data, and a third identifies the last 32-bit bus write of the frame only
if the tag byte is appended. The tag byte is appended from the sample of PB(16–23) if
PSMR[SIP] is set and it is always in byte 3 of the last 32-bit write. The RxBD data length
does not include tag byte in the length calculation.

If system memory is 32 bits, the MPC855T 32-bit write takes one bus cycle. If it is 16 or 8
bits, a 32-bit write takes two or four bus cycles. In any case, SDACK(1–2) are valid on each
bus cycle of a 32-bit write cycle and only during bus cycles associated with the ethernet
receiver. As an alternate way to identify accesses from the SCC, a unique address type can
be chosen with the SDMA receive channel associated with the ethernet controller.

Note that the tag byte is always written to byte 3 of the last SDMA write to the buffer and
is not necessarily appended to the last byte of the frame. The data length field does not
include the tag byte. Also, SDACK(1–2) equal 0b00 whenever the frame is not a multiple
of four regardless of whether the tag byte is appended.

27.8 SCC Ethernet Parameter RAM
For ethernet mode, the protocol-specific area of the SCC parameter RAM is mapped as in
Table 27-1.

Table 27-1. SCC Ethernet Parameter RAM Memory Map

Offset 1 Name Width Description

0x30 C_PRES Word Preset CRC. For the 32-bit CRC-CCITT, initialize to 0xFFFFFFFF.

0x34 C_MASK Word Constant mask for CRC. For the 32-bit CRC-CCITT, initialized to 0xDEBB20E3.

0x38 CRCEC Word CRC error, alignment error, and discard frame counters. The CPM maintains these
32-bit (modulo 232) counters that can be initialized while the channel is disabled.
CRCEC is incremented for each received frame with a CRC error, not including
frames not addressed to the controller, frames received in the out-of-buffers
condition, frames with overrun errors, or frames with alignment errors. ALEC is
incremented for frames received with dribbling bits, but does not include frames not
addressed to the controller, frames received in the out-of-buffers condition, or
frames with overrun errors. DISFC is incremented for frames discarded because of
the out-of-buffers condition or an overrun error. The CRC does not have to be
correct for DISFC to be incremented.

0x3C ALEC

0x40 DISFC

0x44 PADS Hword Short frame PAD character. Write the pad character pattern to be sent when short
frame padding is implemented into PADS. The pattern may be of any value, but both
the high and low bytes should be the same.

0x46 RET_LIM Hword Retry limit. Number of retries (typically 15 decimal) that can be made to send a
frame. An interrupt can be generated if the limit is reached.

0x48 RET_CNT Hword Retry limit counter. Temporary down-counter for counting retries.

Chapter 27. SCC Ethernet Mode

SCC Ethernet Parameter RAM

0x4A MFLR Hword Maximum frame length register (typically 1518 decimal). The ethernet controller
checks the length of an incoming ethernet frame against this limit. If it is exceeded,
the rest of the frame is discarded and LG is set in the last BD of that frame. The
controller reports frame status and length in the last BD. MFLR is defined as all
in-frame bytes between the start frame delimiter and the end of the frame.

0x4C MINFLR Hword Minimum frame length register. The ethernet controller checks the incoming frame’s
length against MINFLR (typically 64 decimal). If the received frame is smaller than
MINFLR, it is discarded unless PSMR[RSH] is set, in which case, SH is set in the
last BD for the frame. For transmitting a frame that is too short, the ethernet
controller pads the frame to make it MINFLR bytes long, depending on how PAD is
set in the TxBD and on the PAD value in the parameter RAM.

0x4E MAXD1 Hword Max DMAn length. Gives the option to stop system bus writes after a frame exceeds
a certain size. However, this value is valid only if an address match is found. The
ethernet controller checks the length of an incoming ethernet frame against this
user-defined value (usually 1520 decimal). If this limit is exceeded, the rest of the
incoming frame is discarded. The ethernet controller waits until the end of the frame
or until MFLR bytes are received and reports the frame status and the frame length
in the last RxBD.
MAXD1 is used when an address matches an individual or group address. MAXD2
is used in promiscuous mode when no address match is detected. In a monitor
station, MAXD2 can be much less than MAXD1 to receive entire frames addressed
to this station, but only the headers of the other frames are received.

0x50 MAXD2 Hword

0x52 MAXD Hword Rx max DMA.

0x54 DMA_CNT Hword Rx DMA counter. A temporary down-counter used to track frame length.

0x56 MAX_B Hword Maximum BD byte count.

0x58 GADDR1 Hword Group address filter 1–4. Used in the hash table function of the group addressing
mode. Write zeros to these values after reset and before the ethernet channel is
enabled to disable all group hash address recognition functions. The SET GROUP
ADDRESS command is used to enable the hash table.

0x5A GADDR2

0x5C GADDR3

0x5E GADDR4

0x60 TBUF0_DATA0 Word Save area 0—current frame.

0x64 TBUF0_DATA1 Word Save area 1—current frame.

0x68 TBUF0_RBA0 Word

0x6C TBUF0_CRC Word

0x70 TBUF0_BCNT Hword

0x72 PADDR1_H Hword PADDR1 is the 48-bit individual address of this station. PADDR1_L is the lowest
order halfword and PADDR1_H is the highest order halfword.

0x74 PADDR1_M

0x76 PADDR1_L

Table 27-1. SCC Ethernet Parameter RAM Memory Map (continued)

Offset 1 Name Width Description

MPC855T User’s Manual

Programming the Ethernet Controller

27.9 Programming the Ethernet Controller
The core configures the SCC to operate as an ethernet controller by setting GSMR[MODE]
to 0b1100. Receive and transmit errors are reported through RxBD and TxBD. Several
GSMR fields must be programmed to special values for ethernet. Set DSR[SYN1] to 0x55
and DSR[SYN2] to 0xD5. The 6 bytes of preamble programmed in the GSMR, in
combination with the DSR programming, causes 8 bytes of preamble on transmit
(including the 1-byte start delimiter with the value 0xD5).

0x78 P_PER Hword Persistence. Lets the ethernet controller be less aggressive after a collision.
Normally, 0x0000. It can be a value between 1 and 9 (1 is most aggressive). The
value is added to the retry count in the backoff algorithm to reduce the chance of
transmission on the next time slot.
Note: Using P_PER is fully allowed in the ethernet/802.3 specifications. A less
aggressive backoff algorithm used by multiple stations on a congested ethernet
LAN increases overall throughput by reducing the chance of collision. PSMR[SBT]
offers another way to reduce the aggressiveness of the ethernet controller.

0x7A RFBD_PTR Hword Rx first BD pointer.

0x7C TFBD_PTR Hword Tx first BD pointer.

0x7E TLBD_PTR Hword Tx last BD pointer.

0x80 TBUF1_DATA0 Word Save area 0—next frame.

0x84 TBUF1_DATA1 Word Save area 1—next frame.

0x88 TBUF1_RBA0 Word

0x8C TBUF1_CRC Word

0x90 TBUF1_BCNT Hword

0x92 TX_LEN Hword Tx frame length counter.

0x94 IADDR1 Hword Individual address filter 1–4. Used in the hash table function of the individual
addressing mode. Zeros can be written to these values after reset and before the
ethernet channel is enabled to disable all individual hash address recognition
functions. The SET GROUP ADDRESS command is used to enable the hash table.

0x96 IADDR2

0x98 IADDR3

0x9A IADDR4

0x9C BOFF_CNT Hword Backoff counter.

0x9E TADDR_H Hword Allows addition and deletion of addresses from individual and group hash tables.
After placing an address in TADDR, issue a SET GROUP ADDRESS command.
TADDR_L (temp address low) is the least-significant half word and TADDR_H
(temp address high) is the most-significant half word.

0x A0 TADDR_M

0x A2 TADDR_L

1 From SCC base address. SCC base = IMMR + 0x3C00 (SCC1)

Table 27-1. SCC Ethernet Parameter RAM Memory Map (continued)

Offset 1 Name Width Description

Chapter 27. SCC Ethernet Mode

SCC Ethernet Commands

27.10SCC Ethernet Commands
Transmit and receive commands are issued to the CP command register (CPCR).
Table 27-2 describes transmit commands.

Table 27-3 describes receive commands.

Note that after a CPM reset via CPCR[RST], the ethernet transmit enable (TENA) signal
defaults to its RTS, active-low functionality. To prevent false TENA assertions to an
external transceiver, configure TENA as an input before issuing a CPM reset. See step 3 in
Section 27.22, “SCC Ethernet Programming Example.”

Table 27-2. Transmit Commands

Command Description

STOP
TRANSMIT

When used with the ethernet controller, this command violates a specific behavior of an ethernet/IEEE
802.3 station. It should not be used.

GRACEFUL
STOP
TRANSMIT

Used to ensure that transmission stops smoothly after the current frame finishes or has a collision.
SCCE[GRA] is set once transmission stops, at which point ethernet transmit parameters and their BDs
can be updated. TBPTR points to the next TxBD. Transmission begins once the R bit of the next BD is
set and a RESTART TRANSMIT command is issued.
Note that if GRACEFUL STOP TRANSMIT is issued and the current frame ends in a collision, TBPTR points
to the start of the collided frame with the R bit still set in the BD. The frame looks as if it was never sent.

RESTART
TRANSMIT

Enables transmission of characters on the transmit channel. The ethernet controller expects it after a
GRACEFUL STOP TRANSMIT command is issued or a transmitter error. The ethernet controller resumes
transmission from the current TBPTR in the channel TxBD table.

INIT TX
PARAMETERS

Initializes transmit parameters in this serial channel parameter RAM to reset state. Issue only when the
transmitter is disabled. INIT TX and RX PARAMETERS resets both transmit and receive parameters.

Table 27-3. Receive Commands

Command Description

ENTER HUNT
MODE

After hardware or software is reset and the channel is enabled in GSMR_L, the channel is in receive
enable mode and uses the first BD in the table. The receiver then enters hunt mode, waiting for an
incoming frame. The ENTER HUNT MODE command is generally used to force the ethernet receiver to stop
receiving the current frame and enter hunt mode, in which the ethernet controller continually scans the
input data stream for a transition of carrier sense from inactive to active and then a preamble sequence
followed by the start frame delimiter. After receiving the command, the buffer is closed and the CRC
calculation is reset. The next RxBD is used to receive more frames.

CLOSE RXBD Should not be used with the ethernet controller.

INIT RX
PARAMETERS

Initializes receive parameters in this serial channel parameter RAM to their reset state. Issue it only when
the receiver is disabled. INIT TX and RX PARAMETERS resets receive and transmit parameters.

SET GROUP
ADDRESS

Used to set one of the 64 bits of the four individual/group address hash filter registers. The address to
be added to the hash table should be written to TADDR_L, TADDR_M, and TADDR_H in the parameter
RAM before executing this command. The CP uses an individual address if the I/G bit in the address
stored in TADDR is 0; otherwise, it uses a group address. This command can be executed at any time,
regardless of whether the ethernet channel is enabled.
To delete an address from the hash table, disable the ethernet channel, clear the hash table registers,
and execute this command for the remaining addresses. Do not simply clear the channel’s associated
hash table bit because the hash table may have multiple addresses mapped to the same hash table bit.

MPC855T User’s Manual

SCC Ethernet Address Recognition

27.11SCC Ethernet Address Recognition
The ethernet controller can filter received frames based on different addressing
types—physical (individual), group (multicast), broadcast (all-ones group address), and
promiscuous. The difference between an individual address and a group address is
determined by the I/G bit in the destination address field. A flowchart for address
recognition on received frames is shown in Figure 27-6.

In the physical type of address recognition, the ethernet controller compares the destination
address field of the received frame with the user-programmed physical address in PADDR1.
Address recognition can be performed on multiple individual addresses using the
IADDR1–4 hash table.

Figure 27-6. Ethernet Address Recognition Flowchart

Check Address

I/G Address
?

Hash_Search
False

G

True

True

Multiple IND
?

Broadcast
Address

Use Indicated
Table

Hash Search
Use Group

Table

Match
?

Match
?

Receive Frame
Ignore REJECT

Receive Frame
Ignore REJECT

Match
?

Receive Frame
Ignore REJECT

PROMISC
?

Start Receive
Discard Frame if REJECTDiscard Frame

is Asserted

I

True

True

False

False True

True

FalseFalse

?

Broadcast
Enabled

?

True False

False

Multiple Individual
Addresses

Single
Address

Chapter 27. SCC Ethernet Mode

Hash Table Algorithm

In group address recognition, the controller determines whether the group address is a
broadcast address. If broadcast addresses are enabled, the frame is accepted, but if the
group address is not a broadcast address, address recognition can be performed on multiple
group addresses using the GADDRn hash table. In promiscuous mode, the controller
receives all incoming frames regardless of their address, unless REJECT is asserted.

If an external CAM is used for address recognition, select promiscuous mode; the frame
can be rejected by asserting REJECT while the frame is being received. The on-chip
address recognition functions can be used in addition to the external CAM address
recognition functions.

If the external CAM stores addresses that should be rejected rather than accepted, the use
of REJECT by the CAM should be logically inverted.

27.12Hash Table Algorithm
Individual and group hash filtering operate using certain processes. The ethernet controller
maps any 48-bit address into one of 64 bins, each represented by a bit stored in GADDRx
or IADDRx. When a SET GROUP ADDRESS command is executed, the ethernet controller
maps the selected 48-bit address into one of the 64 bits by passing the 48-bit address
through the on-chip 32-bit CRC generator and selecting 6 bits of the CRC-encoded result
to generate a number between 1 and 64. Bits 31–30 of the CRC result select one of the
GADDRs or IADDRs; bits 29–26 of the CRC result indicate the bit in that register.

When the ethernet controller receives a frame, the same process is used. If the CRC
generator selects a bit that is set in the group/individual hash table, the frame is accepted.
Otherwise, it is rejected. So, if eight group addresses are stored in the hash table and
random group addresses are received, the hash table prevents roughly 56/64 (87.5%) of the
group address frames from reaching memory. Frames that reach memory must be further
filtered by the processor to determine if they contain one of the eight preferred addresses.

Better performance is achieved by using the group and individual hash tables
simultaneously. For instance, if eight group and eight physical addresses are stored in their
respective hash tables, 87.5% of all frames are prevented from reaching memory. The
effectiveness of the hash table declines as the number of addresses increases. For instance,
with 128 addresses stored in a 64-bin hash table, the vast majority of the hash table bits are
set, thus preventing a small fraction of the frames from reaching memory. In such instances,
an external CAM is advised if the extra bus usage cannot be tolerated. See Section 27.7,
“Content-Addressable Memory (CAM) Interface.”

Hash tables cannot be used to reject frames that match a set of entered addresses because
unintended addresses are mapped to the same bit in the hash table. Thus, an external CAM
must be used to implement this function.

MPC855T User’s Manual

Interpacket Gap Time

27.13Interpacket Gap Time
The receiver receives back-to-back frames with a minimum interpacket spacing of 9.6 µs.
In addition, after the backoff algorithm, the transmitter waits for carrier sense to be negated
before resending the frame. Retransmission begins 9.6 µs after carrier sense is negated if it
stays negated for at least 6.4 µs.

27.14Handling Collisions
If a collision occurs as a frame is being sent, the ethernet controller continues sending for
at least 32 bit times, thus sending a JAM pattern of 32 ones. If a collision occurs during the
preamble sequence, the JAM pattern is sent at the end of the sequence.

If a collision occurs within 64 byte times, the retry process is initiated. The transmitter waits
a random number of slot times (512 bit times or 52 µs). If a collision occurs after 64 byte
times, no retransmission is performed and the buffer is closed with an LC error indication.
If a collision occurs while a frame is being received, reception stops. This error is reported
only in the BD if the length of the frame exceeds MINFLR or if PSMR[RSH] = 1.

27.15Internal and External Loopback
Both internal and external loopback are supported by the ethernet controller. In loopback
mode, both of the SCC FIFOs are used and the channel actually operates in a full-duplex
fashion. Both internal and external loopback are configured using combinations of
PSMR[LPB] and GSMR[DIAG].

Internal loopback disconnects the SCC from the serial interface. Receive data is connected
to the transmit data and the receive clock is connected to the transmit clock. Data from the
transmit FIFO is received immediately into the receive FIFO. There is no heartbeat check
in this mode; configure TENA as a general-purpose output. That is, set PCDIR[15], and
clear PCPAR[15], PCDAT[15], and PSMR[HBC].

In external loopback operation, the ethernet controller listens for data being received from
the EEST at the same time that it is sending.

27.16Full-Duplex Ethernet Support
To run full-duplex ethernet, select loopback and full-duplex ethernet modes in the SCC’s
protocol-specific mode register, (PSMR[LPB, FDE] = 1). The loopback mode tells the
ethernet controller to accept received frames without signaling a collision. Setting
PSMR[FDE] tells the controller that it can send while receiving without waiting for a clear
line (carrier sense).

Chapter 27. SCC Ethernet Mode

Handling Errors in the Ethernet Controller

27.17Handling Errors in the Ethernet Controller
The ethernet controller reports frame reception and transmission error conditions using
channel BDs, error counters, and SCCE. Table 27-4 describes transmission errors.

Table 27-4 describes reception errors.

27.18Ethernet Mode Register (PSMR)
In ethernet mode, the protocol-specific mode register (PSMR), shown in Figure 27-7, is
used as the ethernet mode register.

Table 27-4. Transmission Errors

Error Description

Transmitter underrun If this error occurs, the channel sends 32 bits that ensures a CRC error, stops sending the
buffer, closes it, sets the UN bit in the TxBD and SCCE[TXE]. The channel resumes
transmission after it receives a RESTART TRANSMIT command.

Carrier sense lost
during frame
transmission

When this error occurs and no collision is found in the frame, the channel sets the CSL bit in
the TxBD, sets SCCE[TXE], and continues sending the buffer normally. No retries are
performed after this error occurs. Carrier sense is the logical OR of RENA and CLSN.

Retransmission retry
limit expired

The channel stops sending the buffer, closes it, sets the RL bit in the TxBD and SCCE[TXE].
The channel resumes transmission after it receives a RESTART TRANSMIT command.

Late collision When this error occurs, the channel stops sending the buffer, closes it, sets SCCE[TXE] and
the LC bit in the TxBD. The channel resumes transmission after it receives the RESTART
TRANSMIT command. This error is discussed further in the definition of PSMR[LCW].

Heartbeat Some transceivers have a heartbeat (signal-quality error) self-test. To signify a good self-test,
the transceiver indicates a collision to the MPC855T within 20 clocks after the ethernet
controller sends a frame. This heartbeat condition does not imply a collision error, but that the
transceiver seems to be functioning properly. If SCCE[HBC] = 1 and the MPC855T does not
detect a heartbeat condition after sending a frame, a heartbeat error occurs; the channel
closes the buffer, sets the HB bit in the TxBD, and generates the TXE interrupt if it is enabled.

Table 27-5. Reception Errors

Error Description

Overrun The ethernet controller maintains an internal FIFO for receiving data. When it overruns, the channel writes
the received byte over the previously received byte. The previous byte and frame status are lost. The
channel closes the buffer, sets RxBD[OV] and SCCE[RXF], and increments the discarded frame counter
(DISFC). The receiver then enters hunt mode.

Busy A frame was received and discarded because of a lack of buffers. The channel sets SCCE[BSY] and
increments DISFC. The receiver then enters hunt mode.

Non-Octet
Error
(Dribbling
Bits)

The ethernet controller handles up to seven dribbling bits when the receive frame terminates nonoctet
aligned. It checks the CRC of the frame on the last octet boundary. If there is a CRC error, a frame nonoctet
aligned error is reported, SCCE[RXF] is set, and the alignment error counter is incremented. If there is no
CRC error, no error is reported. The receiver then enters hunt mode.

CRC When a CRC error occurs, the channel closes the buffer, sets SCCE[RXF] and CR in the RxBD, and
increments the CRC error counter (CRCEC). After receiving a frame with a CRC error, the receiver enters
hunt mode. CRC checking cannot be disabled, but CRC errors can be ignored if checking is not required.

MPC855T User’s Manual

Ethernet Mode Register (PSMR)

Table 27-6 describes PSMR fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field HBC FC RSH IAM CRC PRO BRO SBT LPB SIP LCW NIB FDE

Reset 0000_0000_0000_0000

R/W R/W

Addr 0xA08 (PSMR1)

Figure 27-7. Ethernet Mode Register (PSMR)

Table 27-6. PSMR Field Descriptions

Bits Name Description

0 HBC Heartbeat checking.
0 No heartbeat checking is performed. Do not wait for a collision after transmission.
1 Wait 20 transmit clocks or 2 µs for a collision asserted by the transceiver after transmission. The HB

bit in the TxBD is set if the heartbeat is not heard within 20 transmit clocks.

1 FC Force collision.
0 Normal operation.
1 The channel forces a collision when each frame is sent. To test collision logic configure the

MPC855T in loopback operation. In the end, the retry limit for each transmit frame is exceeded.

2 RSH Receive short frames.
0 Discard short frames that are not as long as MINFLR.
1 Receive short frames.

3 IAM Individual address mode.
0 Normal operation. A single 48-bit physical address in PADDR1 is checked when it is received.
1 The individual hash table is used to check all individual addresses that are received.

4–5 CRC CRC selection. Only CRC = 10 is valid. Complies with ethernet specifications. 32-bit CCITT-CRC. X32
+ X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X1 +1.

6 PRO Promiscuous.
0 Check the destination address of incoming frames.
1 Receive the frame regardless of its address unless REJECT is asserted as it is being received.

7 BRO Broadcast address.
0 Receive all frames containing the broadcast address.
1 Reject all frames containing the broadcast address, unless PRO = 1.

8 SBT Stop backoff timer.
0 The backoff timer is functioning normally.
1 The backoff timer for the random wait after a collision is stopped when carrier sense is active.

Retransmission is less aggressive than the maximum allowed in IEEE 802.3. The persistence
(P_PER) feature in the parameter RAM can be used in combination with or in place of SBT.

9 LPB Loopback operation.
0 Normal operation.
1 External loopback is used if GSMR[DIAG] is set for normal operation; internal loopback is used if

DIAG is configured for loopback operation.

10 SIP Sample input pins.
0 Normal operation.
1 After a frame is received, the value on PB(16–23) is sampled and written to the end of the last buffer

of the frame. This value is called a tag byte. If the frame is discarded, the tag byte is also discarded.

Chapter 27. SCC Ethernet Mode

SCC Ethernet Receive Buffer Descriptor

27.19SCC Ethernet Receive Buffer Descriptor
The ethernet controller uses the RxBD to report on the received data for each buffer.

Table 27-7 describes RxBD status and control fields.

11 LCW Late collision window.
0 A late collision is any collision that occurs at least 64 bytes from the preamble.
1 A late collision is any collision that occurs at least 56 bytes from the preamble.

12–14 NIB Number of ignored bits. Determines how soon after RENA assertion the ethernet controller should
begin looking for the start frame delimiter. Typically NIB = 101 (22 bits).
000 Begin searching 13 bits after the assertion of RENA.
001 Begin searching 14 bits after the assertion of RENA.
...
111 Begin searching 24 bits after the assertion of RENA.

15 FDE Full duplex ethernet.
0 Disable full-duplex ethernet mode.
1 Enable full-duplex ethernet mode.
Note: When FDE = 1, PSMR[LPB] must be set also.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E — W I L F — M — LG NO SH CR OV CL

Offset + 2 Data Length

Offset + 4 Rx Data Buffer Pointer

Offset + 6

Figure 27-8. SCC Ethernet RxBD

Table 27-7. SCC Ethernet RxBD Status and Control Field Descriptions

Bits Name Description

0 E Empty.
0 The buffer is full or stopped receiving data because an error occurred. The core can read or write any

fields of this RxBD. The CPM does not use this BD as long as the E bit is zero.
1 The buffer is not full. The CPM controls this BD and its buffer; do not modify this BD.

1 — Reserved, should be cleared.

2 W Wrap (final BD in table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CPM receives incoming data into the first BD that

RBASE points to. The number of BDs is determined only by the W bit.

3 I Interrupt. Note that this bit does not mask SCCE[RXF] interrupts.
0 No SCCE[RXB] interrupt is generated after this buffer is used.
1 SCCE[RXB] or SCCE[RXF] is set when this buffer is used by the ethernet controller. These two bits

can cause interrupts if they are enabled.

Table 27-6. PSMR Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

SCC Ethernet Receive Buffer Descriptor

Data length and buffer pointer fields are described in Section 21.3, “SCC Buffer
Descriptors (BDs).” Data length includes the total number of frame octets (including four
bytes for CRC).

Figure 27-9 shows an example of how RxBDs are used in receiving.

4 L Last in frame. The ethernet controller sets this bit when this buffer is the last one in a frame, which occurs
when the end of a frame is reached or an error is received. In the case of error, one or more of the CL,
OV, CR, SH, NO, and LG bits are set. The ethernet controller writes the number of frame octets to the
data length field.
0 The buffer is not the last one in a frame.
1 The buffer is the last one in a frame.

5 F First in frame. The ethernet controller sets this bit when this buffer is the first one in a frame.
0 The buffer is not the first one in a frame.
1 The buffer is the first one in a frame.

6 — Reserved, should be cleared.

7 M Miss. (valid only if L = 1) The ethernet controller sets M for frames that are accepted in promiscuous
mode, but are flagged as a miss by internal address recognition. Thus, in promiscuous mode, M
determines whether a frame is destined for this station.
0 The frame is received because of an address recognition hit.
1 The frame is received because of promiscuous mode.

8–9 — Reserved, should be cleared.

10 LG Rx frame length violation. Set when a frame length greater than the maximum defined for this channel
has been recognized. Only the maximum number of bytes allowed is written to the buffer.

11 NO Rx nonoctet-aligned frame. Set when a frame containing a number of bits not divisible by eight is
received. Also, the CRC check that occurs at the preceding byte boundary generated an error.

12 SH Short frame. Set if a frame smaller than the minimum defined for this channel was recognized. Occurs
if PSMR[RSH] = 1.

13 CR Rx CRC error. set when a frame contains a CRC error.

14 OV Overrun. Set when a receiver overrun occurs during frame reception.

15 CL Collision. This frame is closed because a collision occurred during frame reception. CL is set only if a
late collision occurs or if PSMR[RSH] is enabled. Late collisions are better defined in PSMR[LCW].

Table 27-7. SCC Ethernet RxBD Status and Control Field Descriptions (continued)

Bits Name Description

Chapter 27. SCC Ethernet Mode

SCC Ethernet Receive Buffer Descriptor

Figure 27-9. Ethernet Receiving using RxBDs

Buffer

0

0x0040

32-Bit Buffer Pointer

1

E F
Receive BD 0

Status

Length

Pointer

0

0x0045

32-Bit Buffer Pointer

0

E F
Receive BD 1

Status

Length

Pointer

1

XXXX

32-Bit Buffer Pointer

E
Receive BD 2

Status

Length

Pointer

1

XXXX

32-Bit Buffer Pointer

E
Receive BD 3

Status

Length

Pointer

Destination Address (6)

Source Address (6)

Type/Length (2)

Buffer

CRC Bytes (4)

Tag Byte (1)

Buffer

Buffer

Old Data from

Empty

64 Bytes

64 Bytes

64 Bytes

64 Bytes

Two Frames
Received in ethernet

Collision

Line Idle

Present
TimeTime

Buffer Full

Buffer Closed
after CRC Received.

Buffer
Still Empty

Empty

MRBLR = 64 Bytes for the SCC

Empty

Data Bytes (50)

Optional Tag Byte

Collision
Causes Buffer
to be Reused

0

L

1

L

Frame 2

Collided Frame will
be Overwritten

Appended

Non-Collided ethernet Frame 1

MPC855T User’s Manual

SCC Ethernet Transmit Buffer Descriptor

27.20SCC Ethernet Transmit Buffer Descriptor
Data is sent to the ethernet controller for transmission on the SCC channel by arranging it
in buffers referenced by the channel TxBD table. The ethernet controller uses TxBDs to
confirm transmission or indicate errors so the core knows buffers have been serviced.

Table 27-8 describes TxBD status and control fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R PAD W I L TC DEF HB LC RL RC UN CSL

Offset + 2 Data Length

Offset + 4 Tx Data Buffer Pointer

Offset + 6

Figure 27-10. SCC Ethernet TxBD

Table 27-8. SCC Ethernet TxBD Status and Control Field Descriptions

Bits Name Description

0 R Ready.
0 The buffer is not ready for transmission. The user can update this BD or its data buffer. The CPM

clears R after the buffer has been sent or after an error occurs.
1 The user-prepared buffer has not been sent or is currently being sent. Do not modify this BD.

1 PAD Short frame padding. Valid only when L is set. Otherwise, it is ignored.
0 Do not add PADs to short frames.
1 Add PADs to short frames. Pad bytes are inserted until the length of the sent frame equals the

MINFLR and they are stored in PADs in the parameter RAM.

2 W Wrap (final BD in table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CPM receives incoming data into the first BD that

TBASE points to in the table. The number of TxBDs in this table is determined only by the W bit.
Note: The TxBD table must contain more than one BD in ethernet mode.

3 I Interrupt.
0 No interrupt is generated after this buffer is serviced.
1 SCCE[TXB] or SCCE[TXE] is set after this buffer is serviced. These bits can cause interrupts if they

are enabled.

4 L Last.
0 Not the last buffer in the transmit frame.
1 Last buffer in the transmit frame.

5 TC Tx CRC. Valid only when L = 1. Otherwise, it is ignored.
0 End transmission immediately after the last data byte.
1 Transmit the CRC sequence after the last data byte.

6 DEF Defer indication. The frame was deferred before being sent successfully, that is, the transmitter had to
wait for carrier sense before sending because the line was busy. This is not a collision indication;
collisions are indicated in RC.

7 HB Heartbeat. Set when the collision input was not asserted within 20 transmit clocks after transmission.
HB cannot be set unless PSMR[HBC] = 1. The SCC writes HB after it finishes sending the buffer.

Chapter 27. SCC Ethernet Mode

SCC Ethernet Event Register (SCCE)/Mask Register (SCCM)

Data length and buffer pointer fields are described in Section 21.3, “SCC Buffer
Descriptors (BDs).”

27.21SCC Ethernet Event Register (SCCE)/Mask
 Register (SCCM)

The SCC event register (SCCE) is used as the ethernet event register to generate interrupts
and report events recognized by the ethernet channel. When an event is recognized, the
ethernet controller sets the corresponding SCCE bit. Interrupts are enabled by setting, and
masked by clearing, the equivalent bits in the ethernet mask register (SCCM). SCCE bits
are cleared by writing ones; writing zeros has no effect. All unmasked bits must be cleared
before the CPM clears the internal interrupt request.

Figure 27-9 describes SCCE and SCCM fields.

8 LC Late collision. Set when a collision occurred after the number of bytes defined for PSMR[LCW] are
sent. The ethernet controller stops sending and writes this bit after it finishes sending the buffer.

9 RL Retransmission limit. Set when the transmitter fails (Retry Limit + 1) attempts to successfully transmit
a message because of repeated collisions on the medium. The ethernet controller writes this bit after
it finishes attempting to send the buffer.

10–13 RC Retry count. Indicates the number of retries required before the frame was sent successfully. If RC =
0, the frame was sent correctly the first time. If RC = 15 and RET_LIM = 15 in the parameter RAM, 15
retries were required. Because the counter saturates at 15, if RC = 15 and RET_LIM > 15, then 15 or
more retries were required. The controller writes this field after it successfully sends the buffer.

14 UN Underrun. Set when the ethernet controller encounters a transmitter underrun while sending the buffer.
The ethernet controller writes UN after it finishes sending the buffer.

15 CSL Carrier sense lost. Set when carrier sense is lost during frame transmission. The ethernet controller
writes CSL after it finishes sending the buffer.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — GRA — TXE RXF BSY TXB RXB

Reset 0000_0000_0000_0000

R/W R/W

Addr 0xA10 (SCCE1)/0xA14 (SCCM1)

Figure 27-11. SCC Ethernet Event Register (SCCE)/Mask Register (SCCM)

Table 27-9. SCCE/SCCM Field Descriptions

Bits Name Description

0–7 — Reserved, should be cleared.

8 GRA Graceful stop complete. Set as soon the transmitter finishes any frame that was in progress when a
GRACEFUL STOP TRANSMIT command was issued. It is set immediately if no frame was in progress.

Table 27-8. SCC Ethernet TxBD Status and Control Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

SCC Ethernet Event Register (SCCE)/Mask Register (SCCM)

Figure 27-12 shows an example of interrupts that can be generated in ethernet protocol.

Figure 27-12. Ethernet Interrupt Events Example

9–10 — Reserved, should be cleared.

11 TXE Set when an error occurs on the transmitter channel.

12 RXF Rx frame. Set when a complete frame has been received on the ethernet channel.

13 BSY Busy condition. Set when a frame is received and discarded due to a lack of buffers.

14 TXB Tx buffer. Set when a buffer has been sent on the ethernet channel.

15 RXB Rx buffer. Set when a buffer that was not a complete frame was received on the ethernet channel.

Table 27-9. SCCE/SCCM Field Descriptions (continued)

Bits Name Description

RXB

Line Idle

Stored in Rx Buffer

RXD

RENA

Frame
Received in ethernet

Time

Line Idle

TXD

TENA

Frame
Transmitted by ethernet

CLSN

TXB, GRATXB

Line Idle Line Idle

Stored in Tx Buffer

NOTES:

ethernet SCCE
Events

1. RXB event assumes receive buffers are 64 bytes each.
2. The RENA events, if required, must be programmed in the port C parallel I/O, not in the SCC itself.
3. The RxF interrupt may occur later than RENA due to receive FIFO latency.

NOTES:

ethernet SCCE
Events

1. TXB events assume the frame required two transmit buffers.
2. The GRA event assumes a GRACEFUL STOP TRANSMIT command was issued during frame transmission.

P SFD DA SA CR

RXF

3. The TENA or CLSN events, if required, must be programmed in the port C parallel I/O, not in the SCC itself.

T/L D

P SFD DA SA CRT/L D

LEGEND:
P = Preamble, SFD = Start frame delimiter, DA and SA = Source/Destination address,
T/L = Type/Length, D = Data, CR = CRC bytes

Chapter 27. SCC Ethernet Mode

SCC Ethernet Programming Example

Note that the SCC status register (SCCS) cannot be used with the ethernet protocol. The
current state of the RENA and CLSN signals can be found in port C.

27.22SCC Ethernet Programming Example
The following is an initialization sequence for the SCC1 in ethernet mode. The CLK1 pin
is used for the ethernet receiver and CLK2 is used for the transmitter.

1. Configure port A to enable TXD1 and RXD1. Set PAPAR[14, 15] and clear
PADIR[14, 15] and PAODR[14].

2. Configure port C to enable CTS1 (CLSN) and CD1 (RENA). Clear PCPAR[10, 11]
and PCDIR[10, 11] and set PCSO[10, 11].

3. Do not enable the RTS1 (TENA) pin yet because it is still functioning as RTS and
transmission on the LAN could begin accidentally.

4. Configure port A to enable the CLK1 and CLK2 pins. Set PAPAR[6, 7] and clear
PADIR[6, 7].

5. Connect CLK1 and CLK2 to SCC1 using the serial interface. Set SICR[R1CS] to
0b101 and SICR[T1CS] to 0b100.

6. Connect the SCC1 to the NMSI and clear SICR[SC1].

7. Initialize the SDMA configuration register (SDCR) to 0x0001.

8. Write RBASE and TBASE in the SCC1 parameter RAM to point to the RxBD and
TxBD in the dual-port RAM. Assuming one RxBD at the beginning of the
dual-port RAM and one TxBD following that RxBD, write RBASE with 0x0000
and TBASE with 0x0008.

9. Program the CPCR to execute an INIT RX AND TX PARAMETERS command for this
channel.

10. Write RFCR and TFCR with 0x10 for normal operation.

11. Write MRBLR with the maximum number of bytes per receive buffer. Here,
assume 1520 bytes, so MRBLR = 0x05F0. In this example, the user wants to
receive an entire frame into one buffer, so MRBLR is the first value larger than
1518 evenly divisible by four.

12. Write C_PRES with 0xFFFF_FFFF to comply with 32-bit CCITT-CRC.

13. Write C_MASK with 0xDEBB_20E3 to comply with 32-bit CCITT-CRC.

14. Clear CRCEC, ALEC, and DISFC for clarity.

15. Write PAD with 0x8888 for the PAD value.

16. Write RET_LIM with 0x000F.

17. Write MFLR with 0x05EE to make the maximum frame size 1518 bytes.

18. Write MINFLR with 0x0040 to make the minimum frame size 64 bytes.

MPC855T User’s Manual

SCC Ethernet Programming Example

19. Write MAXD1 and MAXD2 with 0x05F0 to make the maximum DMA count 1520
bytes.

20. Clear GADDR1–GADDR4. The group hash table is not used.

21. Write PADDR1_H with 0x0380, PADDR1_M with 0x12E0, and PADDR1_L with
0x5634 to configure the physical address 0x8003_E012_3456.

22. Clear P_PER. It is not used.

23. Clear IADDR1–IADDR4. The individual hash table is not used.

24. Clear TADDR_H, TADDR_M, and TADDR_L for clarity.

25. Initialize the RxBD and assume the Rx data buffer is at 0x0000_1000 in main
memory. Write 0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data
Length] (optional), and 0x0000_1000 to RxBD[Buffer Pointer].

26. Initialize the TxBD and assume the Tx data frame is at 0x0000_2000 in main
memory and contains fourteen 8-bit characters (destination and source addresses
plus the type field). Write 0xFC00 to TxBD[Status and Control], add PAD to the
frame and generate a CRC. Then write 0x000D to TxBD[Data Length] and
0x0000_2000 to TxBD[Buffer Pointer].

27. Write 0xFFFF to the SCCE register to clear any previous events.

28. Write 0x001A to the SCCM register to enable the TXE, RXF, and TXB interrupts.

29. Write 0x4000_0000 to the CIMR so that SCC1 can generate a system interrupt.
The CICR register should also be initialized.

30. Write 0x0000_0000 to GSMR_H1 to enable normal operation of all modes.

31. Write 0x1088_000C to the GSMR_L1 register to configure CTS (CLSN) and CD
(RENA) to automatically control transmission and reception (DIAG bits) and the
ethernet mode. TCI is set to allow more setup time for the EEST to receive the
MPC855T transmit data. TPL and TPP are set for ethernet requirements. The
DPLL is not used with ethernet. Note that the ENT and ENR are not enabled yet.

32. Write 0xD555 to the DSR.

33. Set the PSMR1 to 0x0A0A to configure 32-bit CRC, promiscuous mode, and begin
searching for the start frame delimiter 22 bits after RENA.

34. Enable the TENA pin (RTS). Since GSMR[MODE] are written to ethernet, the
TENA signal is low. Set PCPAR[15] and clear PCDIR[15].

35. Write 0x1088_003C to GSMR_L1 to enable the SCC1 transmitter and receiver. This
additional write ensures that ENT and ENR are enabled last.

After 14 bytes and the 46 bytes of automatic pad (plus the 4 bytes of CRC) are sent, the
TxBD is closed. Additionally, the receive buffer is closed after a frame is received. Any data
received after 1520 bytes or a single frame causes a busy (out-of-buffers) condition because
only one RxBD is prepared.

Chapter 28. SCC Transparent Mode

Chapter 28
SCC Transparent Mode
Transparent mode (also called totally transparent or promiscuous mode) provides a clear
channel on which the SCC can send or receive serial data without bit-level manipulation.
Software implements protocols run over transparent mode. The SCC in transparent mode
functions as a high-speed serial-to-parallel and parallel-to-serial converter.

Transparent mode can be used for serially moving data that requires no superimposed
protocol, for applications that require serial-to-parallel and parallel-to-serial conversion for
communication among chips on the same board, and for applications that require data to be
switched without interfering with the protocol encoding itself, such as when data from a
high-speed time-multiplexed serial stream is multiplexed into low-speed data streams. The
concept is to switch the data path without altering the protocol encoded on that data path.

Transparent mode is configured in the GSMR; see Section 21.2.1, “General SCC Mode
Register (GSMR).” Transparent mode is selected in GSMR_H[TTX, TRX] for the
transmitter and receiver, respectively. Setting both bits enables full-duplex transparent
operation. If only one is set, the other half of the SCC uses the protocol specified in
GSMR_L[MODE]. This allows loop-back modes to DMA data from one memory location
to another while data is converted to a specific serial format.

The SCC operations are asynchronous with the core. The SCC clock can be supplied from
the internal baud rate generator bank, DPLL output, or external pins.

The SCC can work with the time-slot assigner (TSA) or nonmultiplexed serial interface
(NMSI) and supports modem lines with the general-purpose I/O pins. Data can be
transferred either the msb or lsb first in each octet.

28.1 Features
The following list summarizes the main features of the SCC in transparent mode:

• Flexible buffers
• Automatic SYNC detection on receive
• CRCs can be sent and received
• Reverse data mode
• Another protocol can be performed on the other half of the SCC
• MC68360-compatible SYNC options

MPC855T User’s Manual

SCC Transparent Channel Frame Transmission Process

28.2 SCC Transparent Channel Frame Transmission
Process

The transparent transmitter is designed to work almost no intervention from the core. When
the core enables the SCC transmitter in transparent mode, it starts sending idles, which are
logic high or encoded ones, as programmed in GSMR_L[TEND]. The SCC polls the first
BD in the TxBD table. When there is a message to send, the SCC fetches data from
memory, loads the transmit FIFO, and waits for transmitter synchronization, which is
achieved with CTS or by waiting for the receiver to achieve synchronization, depending on
GSMR_H[TXSY]. Transmission begins when transmitter synchronization is achieved.

When all BD data has been sent, if TxBD[L] is set, the SCC writes the message status bits
into the BD, clears TxBD[R], and sends idles until the next BD is ready. If it is ready, some
idles are still sent. The transmitter resumes sending only after it achieves synchronization.

If TxBD[L] is cleared when the end of the BD is reached, only TxBD[R] is cleared and the
transmitter moves immediately to the next buffer to begin transmission with no gap on the
serial line between buffers. Failure to provide the next buffer in time causes a transmit
underrun which sets SCCE[TXE].

In both cases, an interrupt is issued according to TxBD[I]. By appropriately setting
TxBD[I] in each BD, interrupts are generated after each buffer or group of buffers is sent.
The SCC then proceeds to the next BD in the table and any whole number of bytes can be
sent. If GSMR_H[REVD] is set, the bit order of each byte is reversed before being sent; the
msb of each octet is sent first.

Setting GSMR_H[TFL] makes the transmit FIFO smaller and reduces transmitter latency,
but it can cause transmitter underruns at higher transmission speeds. An optional CRC,
selected in GSMR_H[TCRC], can be appended to each transparent frame if it is enabled in
the TxBD.

When the time-slot assigner (TSA) is used with a transparent-mode channel,
synchronization is provided by the TSA. There is a start-up delay for the transmitter, but
delays will always be some whole number of complete TSA frames. This means that n-byte
transmit buffers can be mapped directly into n-byte time slots in the TSA frames.

28.3 SCC Transparent Channel Frame Reception
Process

When the core enables the SCC receiver in transparent mode, it waits to achieve
synchronization before data is received. The receiver can be synchronized to the data by a
synchronization pulse or SYNC pattern.

After a buffer is full, the SCC clears RxBD[E] and generates a maskable interrupt if
RxBD[I] is set. It moves to the next RxBD in the table and begins moving data to its buffer.

Chapter 28. SCC Transparent Mode

Achieving Synchronization in Transparent Mode

If the next buffer is not available, SCCE[BSY] signifies a busy signal that can generate a
maskable interrupt. The receiver reverts to hunt mode when an ENTER HUNT MODE

command or an error is received. If GSMR_H[REVD] is set, the bit order of each byte is
reversed before it is written to memory.

Setting GSMR_H[RFW] reduces receiver latency by making the receive FIFO smaller,
which may cause receiver overruns at higher transmission speeds. The receiver always
checks the CRC of the received frame, according to GSMR_H[TCRC]. If a CRC is not
required, resulting errors can be ignored.

28.4 Achieving Synchronization in Transparent Mode
Once the SCC transmitter is enabled for transparent operation, the TxBD is prepared and
the transmit FIFO is preloaded by the SDMA channel, another process must occur before
data can be sent. It is called transmit synchronization. Similarly, once the SCC receiver is
enabled for transparent operation in the GSMR and the RxBD is made empty for the SCC,
receive synchronization must occur before data can be received. An in-line synchronization
pattern or an external synchronization signal can provide bit-level control of the
synchronization process when sending or receiving.

28.4.1 Synchronization in NMSI Mode

The following sections describe synchronization in NMSI mode.

28.4.1.1 In-Line Synchronization Pattern

The transparent channel can be programmed to receive a synchronization pattern. This
pattern is defined in the data synchronization register, DSR; see Section 21.2.3, “Data
Synchronization Register (DSR).” Pattern length is specified in GSMR_H[SYNL], as
shown in Table 28-1. See also Section 21.2.1, “General SCC Mode Register (GSMR).”

If a 4-bit SYNC is selected, reception begins as soon as these four bits are received,
beginning with the first bit following the 4-bit SYNC. The transmitter synchronizes on the
receiver pattern if GSMR_H[RSYN] = 1.

Table 28-1. Receiver SYNC Pattern Lengths of the DSR

GSMR_H[SYNL]
Setting

Bit Assignments

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

00 An external SYNC signal is used instead of the SYNC pattern in the DSR.

01 4-bit

10 8-bit

11 16-bit

MPC855T User’s Manual

Achieving Synchronization in Transparent Mode

Note that the transparent controller does not automatically send the synchronization
pattern; therefore, the synchronization pattern must be included in the transmit buffer.

28.4.1.2 External Synchronization Signals
If GSMR_H[SYNL] is 0b00, the transmitter uses CTS and the receiver uses CD to begin
the sequence. These signals share two options—pulsing and sampling.

GSMR_H[CDP] and GSMR_H[CTSP] determine whether CD or CTS need to be asserted
only once to begin reception/transmission or whether they must remain asserted for the
duration of the transparent frame. Pulse operation allows an uninterrupted stream of data.
However, use envelope mode to identify frames of transparent data.

The sampling option determines the delay between CD and CTS being asserted and the
resulting action by the SCC. Assume either that these signals are asynchronous to the data
and internally synchronized by the SCC or that they are synchronous to the data with faster
operation. This option allows RTS of one SCC to be connected to CD of another SCC and
to have the data synchronized and bit aligned. It is also an option to link the transmitter
synchronization to the receiver synchronization. Diagrams for the pulse/envelope and
sampling options are shown in Section 21.4.4, “Controlling SCC Timing with RTS, CTS,
and CD.”

28.4.1.2.1 External Synchronization Example

Figure 28-1 shows synchronization using external signals.

Chapter 28. SCC Transparent Mode

Achieving Synchronization in Transparent Mode

Figure 28-1. Sending Transparent Frames between MPC855T

MPC855T(A) and MPC855T(B) exchange transparent frames and synchronize each other
using RTS and CD. However, CTS is not required because transmission begins at any time.
Thus, RTS is connected directly to the other MPC855T CD pin. GSMR_H[RSYN] is not
used and transmission and reception from each MPC855T are independent.

28.4.1.3 Transparent Mode without Explicit Synchronization

If there is no need to synchronize the transparent controller at a specific point, the user can
‘fake’ synchronization in one of the following ways:

• Tie a parallel I/O pin to the CTS and CD lines. Then, after enabling the receiver and
transmitter, provide a falling edge by manipulating the I/O pin in software.

• Enable the receiver and transmitter for the SCC in loopback mode and then change
GSMR_L[DIAG] to 0b00 while the transmitter and receiver and enabled.

RXD

CD

CLKx

TXD

RTSCD

RXD

BRGOx

RTS

TXD

CLKx BRGOx

BRGOx

Last Bit of Frame Data
First Bit of Frame Data

(Output is CLKx Input)

TXD
(Output is RXD Input)

RTS
(Output is CD Input)

or CRC

TxBD[L] = 1 Causes Negation of RTS

CD Lost Condition Terminates Reception of Frame

MPC855T (A) MPC855T (B)

Notes:
 • 1. Each MPC855T generates its own transmit clocks. If the transmit and receive clocks are the same, one MPC855T can generate

transmit and receive clocks for the other MPC855T. For example, CLKx on MPC855T(B) could be used to clock the transmitter and
receiver.

 • 2. CTS should be configured as always asserted in the Port C parallel I/O or connected to ground externally.
 • 3. The required GSMR configurations are DIAG= 00, CTSS=1, CTSP is a “don’t care”, CDS=1, CDP=0, TTX=1, and TRX=1. REVD and TCRC

are application-dependent.
 • 4. The transparent frame contains a CRC if TxBD[TC] is set.

MPC855T User’s Manual

CRC Calculation in Transparent Mode

28.4.1.4 End of Frame Detection

An end of frame cannot be detected in the transparent data stream since there is no defined
closing flag in transparent mode. Therefore, if framing is needed, the user must use the CD
line to alert the transparent controller of an end of frame.

28.4.2 Synchronization and the TSA

A transparent-mode SCC using the time-slot assigner can synchronize either on a
user-defined in-line pattern or by inherent synchronization.

Note that when using the TSA, a newly-enabled transmitter sends from 10 to 15 frames of
idles before sending the actual transparent data due to start-up requirements of the TDM.
Therefore, when loopback testing through the TDM, expect to receive several bytes of 0xFF
before the actual data.

28.4.2.1 In-line Synchronization Pattern

The receiver can be programmed to begin receiving data into the receive buffers only after
a specified data pattern arrives. To synchronize on an in-line pattern:

• Set GSMR_H[SYNL].

• Program the DSR with the desired pattern.

• Clear GSMR_H[CDP].

• Set GSMR_H[CTSP, CTSS, CDS].

If GSMR_H[TXSY] is also used, the transmitter begins transmission eight clocks after the
receiver achieves synchronization.

28.4.2.2 Inherent Synchronization

Inherent synchronization assumes synchronization by default when the channel is enabled;
all data sent from the TDM to the SCC is received. To implement inherent synchronization:

• Set GSMR_H[CDP, CDS, CTSP, CTSS].

If these bits are not set, the received bit stream will be bit-shifted. The SCC loses the first
received bit because CD and CTS are treated as asynchronous signals.

28.5 CRC Calculation in Transparent Mode
The CRC calculations follow the ITU/IEEE standard. The CRC is calculated on the
transmitted data stream; that is, from lsb to msb for non-bit-reversed (GSMR_H[REVD] =
0) and from msb to lsb for bit-reversed (GSMR_H[REVD] = 1) transmission. The
appended CRC is sent msb to lsb.When receiving, the CRC is calculated as the incoming

Chapter 28. SCC Transparent Mode

SCC Transparent Parameter RAM

bits arrive. The optional reversal of data (GSMR_H[REVD] = 1) is done just before data is
stored in memory (after the CRC calculation).

28.6 SCC Transparent Parameter RAM
For transparent mode, the protocol-specific area of the SCC parameter RAM is mapped as
in Table 28-2.

CRC_P and CRC_C overlap with the CRC parameters for the HDLC-based protocols.
However, this overlap is not detrimental since the CRC constant is used only for the receiver
and the CRC preset is used only for the transmitter, so only one entry is required for each.
Thus, the user can choose an HDLC transmitter with a transparent receiver or a transparent
transmitter with an HDLC receiver.

28.7 SCC Transparent Commands
The following transmit and receive commands are issued to the CP command register.
Table 28-3 describes transmit commands.

Table 28-2. SCC Transparent Parameter RAM Memory Map

Offset 1

1 From SCC base address. SCC base = IMMR + 0x3C00 (SCC1)

Name Width Description

0x 30 CRC_P Long CRC preset for totally transparent. For the 16-bit CRC-CCITT, initialize with 0x0000_FFFF.
For the 32-bit CRC-CCITT, initialize with 0xFFFF_FFFF and for the CRC-16, initialize with
ones (0x0000_FFFF) or zeros (0x0000_0000).

0x 34 CRC_C Long CRC constant for totally transparent receiver. For the 16-bit CRC-CCITT, initialize with
0x0000_F0B8. For the 32-bit CRC-CCITT, CRC_C initialize with 0xDEBB_20E3 and for the
CRC-16, which is normally used with BISYNC, initialize with 0x0000_0000.

Table 28-3. Transmit Commands

Command Description

STOP TRANSMIT After hardware or software is reset and the channel is enabled in the GSMR, the channel is in transmit
enable mode and starts polling the first BD every 64 clocks (or immediately if TODR[TOD] = 1). STOP
TRANSMIT disables frame transmission on the transmit channel. If the transparent controller receives the
command during frame transmission, transmission is aborted after a maximum of 64 additional bits and
the transmit FIFO is flushed. The current TxBD pointer (TBPTR) is not advanced, no new BD is
accessed and no new buffers are sent for this channel. The transmitter will send idles.

GRACEFUL
STOP TRANSMIT

Stops transmission smoothly, rather than abruptly, in much the same way that the regular STOP TRANSMIT
command stops. It stops transmission after the current frame finishes or immediately if no frame is being
sent. A transparent frame is not complete until a BD with TxBD[L] set has its buffer completely sent.
SCCE[GRA] is set once transmission stops; transmit parameters and their BDs can then be modified.
The current TxBD pointer (TBPTR) advances to the next TxBD in the table. Transmission resumes once
TxBD[R] is set and a RESTART TRANSMIT command is issued.

MPC855T User’s Manual

Handling Errors in the Transparent Controller

Table 28-4 describes receive commands.

28.8 Handling Errors in the Transparent Controller
The SCC reports message reception and transmission errors using the channel buffer
descriptors, the error counters, and SCCE. Table 28-5 describes transmit errors.

RESTART
TRANSMIT

Reenables transmission of characters on the transmit channel. The transparent controller expects it after
a STOP TRANSMIT command is issued (at which point the channel is disabled in SCCM), after a GRACEFUL
STOP TRANSMIT command is issued, or after a transmitter error. The transparent controller resumes
transmission from the current TBPTR in the channel TxBD table.

INIT TX
PARAMETERS

Initializes all transmit parameters in the serial channel parameter RAM to reset state. Issue only when
the transmitter is disabled. INIT TX AND RX PARAMETERS resets receive and transmit parameters.

Table 28-4. Receive Commands

Command Description

ENTER HUNT
MODE

After hardware or software is reset and the channel is enabled, the channel is in receive enable mode
and uses the first BD in the table. ENTER HUNT MODE forces the transparent receiver to the current frame
and enter hunt mode where the transparent controller waits for the synchronization sequence. After
receiving the command, the current buffer is closed. Further data reception uses the next BD.

CLOSE RXBD Forces the SCC to close the RxBD if it is being used and to use the next BD for any subsequently
received data. If the SCC is not receiving data, no action is taken by this command.

INIT RX
PARAMETERS

Initializes all receive parameters in this serial channel parameter RAM to reset state. Issue only when
the receiver is disabled. INIT TX AND RX PARAMETERS resets receive and transmit parameters.

Table 28-5. Transmit Errors

Error Description

Transmitter
Underrun

When this occurs, the channel stops sending the buffer, closes it, sets TxBD[UN], and generates a
TXE interrupt if it is enabled. Transmission resumes after a RESTART TRANSMIT command is received.
Underrun occurs after a transmit frame for which TxBD[L] was not set. In this case, only SCCE[TXE]
is set. Underrun cannot occur between transparent frames.

CTS Lost During
Message
Transmission

When this occurs, the channel stops sending the buffer, closes it, sets TxBD[CT], and generates the
TXE interrupt if it is enabled. The channel resumes sending after RESTART TRANSMIT is received.

Table 28-3. Transmit Commands (continued)

Command Description

Chapter 28. SCC Transparent Mode

Transparent Mode and the PSMR

Table 28-6 describes receive errors.

28.9 Transparent Mode and the PSMR
The protocol-specific mode register (PSMR) is not used by the transparent controller
because all transparent mode selections are made in the GSMR. If only half of the SCC
(transmitter or receiver) is running the transparent protocol, the other half (receiver or
transmitter) can support another protocol. In such a case, use the PSMR for the
non-transparent protocol.

28.10SCC Transparent Receive Buffer Descriptor
(RxBD)

The CPM reports information about the received data for each buffer using an RxBD,
closes the current buffer, generates a maskable interrupt, and starts receiving data into the
next buffer after one of the following occurs:

• An error is detected.

• A full receive buffer is detected.

• An ENTER HUNT MODE command is Issued.

• A CLOSE RXBD command is issued.

Table 28-6. Receive Errors

Error Description

Overrun The SCC maintains a receive FIFO. The CPM starts programming the SDMA channel if the buffer is
in external memory and updating the CRC when 8 or 32 bits are received in the FIFO as determined
by GSMR_H[RFW]. If a FIFO overrun occurs, the SCC writes the received byte over the previously
received byte. The previous character and its status bits are lost. Afterwards, the channel closes the
buffer, sets OV in the BD, and generates the RXB interrupt if it is enabled. The receiver immediately
enters hunt mode.

CD Lost During
Message
Reception

When this occurs, the channel stops receiving messages, closes the buffer, sets RxBD[CD], and
generates the RXB interrupt if it is enabled. This error has highest priority. The rest of the message
is lost, and no other errors are checked in the message. The receiver immediately enters hunt mode.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E — W I L F CM — DE — NO — CR OV CD

Offset + 2 Data Length

Offset + 4 Rx Buffer Pointer

Offset + 6

Figure 28-2. SCC Transparent Receive Buffer Descriptor (RxBD)

MPC855T User’s Manual

SCC Transparent Receive Buffer Descriptor (RxBD)

Table 28-7 describes RxBD status and control fields.

Data length and buffer pointer fields are described in Section 21.3, “SCC Buffer
Descriptors (BDs).” The Rx buffer pointer must be divisible by four, unless

Table 28-7. SCC Transparent RxBD Status
and Control Field Descriptions

Bits Name Description

0 E Empty.
0 The buffer is full or stopped receiving data because an error occurred. The core can read or write to

any fields of this RxBD. The CPM does not use this BD when RxBD[E] is zero.
1 The buffer is not full. This RxBD and buffer are owned by the CPM. Once E is set, the core should

not write any fields of this RxBD.

1 — Reserved, should be cleared.

2 W Wrap (final BD in table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CPM receives data into the first BD that RBASE

points to. The number of BDs in this table is determined only by RxBD[W].

3 I Interrupt.
0 No interrupt is generated after this buffer is used.
1 When this buffer is closed by the transparent controller, the SCCE[RXB] is set. SCCE[RXB] can

cause an interrupt if it is enabled.

4 L Last in frame. Set by the transparent controller when this buffer is the last in a frame, which occurs when
CD is negated (if GSMR_H[CDP] = 0) or an error is received. If an error is received, one or more of
RxBD[OV, CD, DE] are set. The transparent controller writes the number of frame octets to the BD’s
data length field.
0 Not the last buffer in a frame.
1 Last buffer in a frame.

5 F First in frame. The transparent controller sets F when this buffer is the first in the frame:
0 Not the first buffer in a frame.
1 First buffer in a frame.

6 CM Continuous mode.
0 Normal operation.
1 The CPM does not clear RxBD[E] after this BD is closed, letting the buffer be overwritten when the

CPM next accesses this BD. However, RxBD[E] is cleared if an error occurs during reception,
regardless of how CM is set.

7 — Reserved, should be cleared.

8 DE DPLL error. Set by the transparent controller when a DPLL error occurs as this buffer is received. In
decoding modes, where a transition is promised every bit, DE is set when a missing transition occurs.
If a DPLL error occurs, no other error checking is performed.

9–10 — Reserved, should be cleared.

11 NO Rx non-octet. Set when a frame containing a number of bits not exactly divisible by eight is received.

12 — Reserved, should be cleared.

13 CR CRC error indication bits. Indicates that this frame contains a CRC error. The received CRC bytes are
always written to the receive buffer. CRC checking cannot be disabled, but it can be ignored.

14 OV Overrun. Indicates that a receiver overrun occurred during buffer reception.

15 CD Carrier detect lost. Indicates when CD is negated during buffer reception.

Chapter 28. SCC Transparent Mode

SCC Transparent Transmit Buffer Descriptor (TxBD)

GSMR_H[RFW] is set to 8 bits wide, in which case the pointer can be even or odd. The
buffer can reside in internal or external memory.

28.11SCC Transparent Transmit Buffer Descriptor
(TxBD)

Data is sent to the CPM for transmission on the SCC channel by arranging it in buffers
referenced by the TxBD table. The CPM uses BDs to confirm transmission or indicate error
conditions so the processor knows buffers have been serviced. Prepare status and control
bits before transmission; they are set by the CPM after the buffer is sent.

Table 28-8 describes SCC Transparent TxBD status and control fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R — W I L TC CM — UN CT

Offset + 2 Data Length

Offset + 4 Tx Buffer Pointer

Offset + 6

Figure 28-3. SCC Transparent Transmit Buffer Descriptor (TxBD)

Table 28-8. SCC Transparent Tx BD Status
and Control Field Descriptions

Bit Name Description

0 R Ready.
0 The buffer is not ready for transmission. The BD and buffer can be updated. The CPM clears R after

the buffer is sent or after an error is encountered.
1 The user-prepared buffer is not sent yet or is being sent. This BD cannot be updated while R = 1.

1 — Reserved, should be cleared.

2 W Wrap (final BD in table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CPM receives incoming data into the first BD that

TBASE points to. The number of TxBDs in this table is determined only by TxBD[W].

3 I Interrupt. Note that clearing this bit does not disable SCCE[TXE].
0 No interrupt is generated after this buffer is serviced.
1 When the CPM services this buffer, SCCE[TXB] or SCCE[TXE] is set. These bits can cause

interrupts if they are enabled.

4 L Last in message.
0 The last byte in the buffer is not the last byte in the transmitted transparent frame. Data from the

next transmit buffer is sent immediately after the last byte of this buffer.
1 The last byte in the buffer is the last byte in the transmitted transparent frame. After this buffer is

sent, the transmitter requires synchronization before the next buffer is sent.

5 TC Transmit CRC.
0 No CRC sequence is sent after this buffer.
1 A frame check sequence defined by GSMR_H[TCRC] is sent after the last byte of this buffer.

MPC855T User’s Manual

SCC Transparent Event Register (SCCE)/ Mask Register (SCCM)

Data length and buffer pointer fields are described in Section 21.3, “SCC Buffer
Descriptors (BDs).” Although it is never modified by the CP, data length should be greater
than zero. The buffer pointer can be even or odd and can reside in internal or external
memory.

28.12SCC Transparent Event Register (SCCE)/
Mask Register (SCCM)

When the SCC is in transparent mode, the SCC event register (SCCE) functions as the
transparent event register to report events recognized by the transparent channel and to
generate interrupts. When an event is recognized, the transparent controller sets the
corresponding SCCE bit. Interrupts are enabled by setting, and masked by clearing, the
equivalent bits in the transparent mask register (SCCM).

Event bits are reset by writing ones; writing zeros has no effect. All unmasked bits must be
reset before the CPM negates the internal interrupt request signal. Figure 28-4 shows the
event and mask registers.

6 CM Continuous mode.
0 Normal operation.
1 The CPM does not clear TxBD[R] after this BD is closed, so the buffer is automatically resent when

the CPM accesses this BD next. However, TxBD[R] is cleared if an error occurs during transmission,
regardless of how CM is set.

7–13 — Reserved, should be cleared.

14 UN Underrun. Set when the SCC encounters a transmitter underrun condition while sending the buffer.

15 CT CTS lost. Indicates the CTS was lost during frame transmission.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — GLR GLT DCC — GRA — TXE — BSY TXB RXB

Reset 0000_0000_0000_0000

R/W R/W

Address 0xA10 (SCCE1)/0xA14 (SCCM1)

Figure 28-4. SCC Transparent Event Register (SCCE)/Mask Register (SCCM)

Table 28-8. SCC Transparent Tx BD Status
and Control Field Descriptions (continued)

Bit Name Description

Chapter 28. SCC Transparent Mode

SCC Status Register in Transparent Mode (SCCS)

Table 28-9 describes SCCE/SCCM fields.

28.13SCC Status Register in Transparent Mode
(SCCS)

The SCC status register (SCCS) allows monitoring of real-time status conditions on the
RXD line. The real-time status of CTS and CD are part of the port C parallel I/O.

Table 28-9. SCCE/SCCM Field Descriptions

Bit Name Description

0–2 — Reserved, should be cleared.

3 GLR Glitch on Rx. Set when the SCC finds a glitch on the receive clock.

4 GLT Glitch on Tx. Set when the SCC finds a glitch on the transmit clock.

5 DCC DPLL CS changed. Set when the DPLL-generated carrier sense status changes (valid only when the
DPLL is used). Real-time status can be read in SCCS. This is not the CD status mentioned elsewhere.

6–7 — Reserved, should be cleared.

8 GRA Graceful stop complete. Set when a graceful stop initiated by completes as soon as the transmitter
finishes any frame in progress when the GRACEFUL STOP TRANSMIT command was issued. Immediately
if no frame was in progress when the command was issued.

9–10 — Reserved, should be cleared.

11 TXE Tx error. Set when an error occurs on the transmitter channel.

12 — Reserved, should be cleared.

13 BSY Busy condition. Set when a byte or word is received and discarded due to a lack of buffers. The receiver
resumes reception after it gets an ENTER HUNT MODE command.

14 TXB Tx buffer. Set no sooner than when the last bit of the last byte of the buffer begins transmission,
assuming L is set in the TxBD. If it is not, TXB is set when the last byte is written to the transmit FIFO.

15 RXB Rx buffer. Set when a complete buffer was received on the SCC channel, no sooner than two serial
clocks after the last bit of the last byte in which the buffer is received on RXD.

Bit 0 1 2 3 4 5 6 7

Field — CS —

Reset 0000_0000

R/W R

Address 0xA17 (SCCS1)

Figure 28-5. SCC Status Register in Transparent Mode (SCCS)

MPC855T User’s Manual

SCC1 Transparent Programming Example

Table 28-10 describes SCCS fields.

28.14SCC1 Transparent Programming Example
The following initialization sequence enables the transmitter and receiver, which operate
independently of each other. The sequence implements the connection shown for
MPC855T(B) in Figure 28-1. The transparent controller is configured with RTS1 and CD1
active, and CTS1 is configured to be grounded internally in port C. CLK3 externally
provides the transmit and receive clocks. A 16-bit CRC-CCITT is sent with each
transparent frame. The FIFOs are configured for fast operation.

1. Configure port A to enable TXD1 and RXD1. Set PAPAR[14,15] and clear
PADIR[14,15] and PAODR[14,15].

2. Configure port C to enable RTS1, CTS1, and CD1. Set PCPAR[15] and
PCSO[10,11] and clear PCPAR[10,11] and PCDIR[10,11,15].

3. Configure port A to enable CLK3.Set PAPAR[5] and clear PADIR[5].

4. Connect CLK3 to SCC1 using the SI. Write 0b110 to SICR[R1CS] and
SICR[T1CS].

5. Connect the SCC1 to the NMSI (its own set of pins) and clear SICR[SC1].

6. Initialize the SDMA configuration register (SDCR) to 0x0001.

7. Write RBASE with 0x0000 and TBASE with 0x0008 in the SCC1 parameter RAM
to point to one RxBD at the beginning of dual-port RAM followed by one TxBD.

8. Write 0x0001 to CPCR to execute the INIT RX AND TX PARAMS command for
SCC1. This command updates RBPTR and TBPTR of the serial channel with the
new values of RBASE and TBASE.

9. Write RFCR and TFCR with 0x10 for normal operation.

10. Write MRBLR with the maximum number of bytes per receive buffer and assume
16-bytes, so MRBLR = 0x0010.

11. Write CRC_P with 0x0000_FFFF to comply with the 16-bit CRC-CCITT.

12. Write CRC_C with 0x0000_F0B8 to comply with the 16-bit CRC-CCITT.

Table 28-10. SCCS Field Descriptions

Bit Name Description

0–5 — Reserved, should be cleared.

6 CS Carrier sense (DPLL). Shows the real-time carrier sense of the line as determined by the DPLL.
0 The DPLL does not sense a carrier.
1 The DPLL senses a carrier.

7 — Reserved, should be cleared.

Chapter 28. SCC Transparent Mode

SCC1 Transparent Programming Example

13. Initialize the RxBD. Assume the Rx buffer is at 0x0000_1000 in main memory.
Write 0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data Length]
(optional), and 0x0000_1000 to RxBD[Buffer Pointer].

14. Initialize the TxBD. Assume the Tx buffer is at 0x0000_2000 in main memory and
contains five 8-bit characters. Write 0xBC00 to TxBD[Status and Control], 0x0005
to TxBD[Data Length], and 0x0000_2000 to TxBD[Buffer Pointer].

15. Write 0xFFFF to SCCE to clear any previous events.

16. Write 0x0013 to SCCM to enable the TXE, TXB, and RXB interrupts.

17. Write 0x4000_0000 to the CPM interrupt mask register (CIMR) to allow SCC1 to
generate a system interrupt. The CICR should also be initialized.

18. Write 0x0000_1980 to GSMR_H1 to configure the transparent channel.

19. Write 0x0000_0000 to GSMR_L1 to configure CTS and CD to automatically
control transmission and reception (DIAG bits). Normal operation of the transmit
clock is used. Note that the transmitter (ENT) and receiver (ENR) are not enabled
yet.

20. Write 0x0000_0030 to GSMR_L1 to enable the SCC2 transmitter and receiver. This
additional write ensures that the ENT and ENR bits are enabled last.

Note that after 5 bytes are sent, the Tx buffer is closed and after 16 bytes are received the
Rx buffer is closed. Any data received after 16 bytes causes a busy (out-of-buffers)
condition since only one RxBD is prepared.

MPC855T User’s Manual

SCC1 Transparent Programming Example

Chapter 29. Serial Management Controllers (SMCs)

Chapter 29
Serial Management Controllers (SMCs)
The two serial management controllers (SMCs) are full-duplex ports that can be configured
independently to support one of three protocols—UART, transparent, or general-circuit
interface (GCI). Simple UART operation is used to provide a debug/monitor port in an
application, which allows the SCC to be free for other purposes. The SMC in UART mode
is not as complex as the SCC in UART mode. The SMC clock can be derived from one of
the four internal baud rate generators (BRGs) or from an external clock pin. However, the
clock should be a 16× clock.

In totally transparent mode, the SMC can be connected to TDM channel (such as a T1 line)
or directly to its own set of pins. The receive and transmit clocks are derived from the TDM
channel, the internal BRGs, or from an external 1× clock. The transparent protocol allows
the transmitter and receiver to use the external synchronization pin. The SMC in transparent
mode is not as complex as the SCC in transparent mode.

Each SMC supports the C/I and monitor channels of the GCI bus, for which the SMC
connects to a time-division multiplex (TDM) channel in the serial interface (SI).
Chapter 20, “Serial Interface,” describes GCI interface configuration.

The SMCs support loopback and echo modes for testing. The SMC receiver and transmitter
are double-buffered, corresponding to an effective FIFO size (latency) of two characters.
Figure 29-1 shows the SMC block diagram.

MPC855T User’s Manual

SMC Features

Figure 29-1. SMC Block Diagram

The receive data source can be L1RXDa if the SMC is connected to the TDM channel of
the SI or SMRXD if it is connected to the NMSI. Likewise, the transmit data source can be
L1TXD if using the TDM or SMTXD if using the NMSI.

If the SMC is connected to TDM, the SMC receive and transmit clocks can be independent
from each other, as defined in Chapter 20, “Serial Interface.” However, if the SMC is
connected to the NMSI, receive and transmit clocks must be connected to a single clock
source (SMCLK), an internal signal name for a clock generated from the bank of clocks.
SMCLK originates from an external pin or one of the four internal BRGs. See Section 20.3,
“NMSI Configuration.”

An SMC connected to TDM derives a synchronization pulse from the TSA. An SMC
connected to the NMSI using transparent protocol can use SMSYN for synchronization to
determine when to start a transfer. SMSYN is not used when the SMC is in UART mode.

29.1 SMC Features
The following is a list of the SMC’s main features:

• Each SMC can implement the UART protocol on its own pins

Each SMC can implement a totally transparent protocol on a multiplexed (TDM) or
nonmultiplexed (NMSI) line. The transparent mode can also be used for a fast connection
between MPC855Ts.

• Each SMC channel fully supports the C/I and monitor channels of the GCI (IOM-2)
in ISDN applications

• Two SMCs support the two sets of C/I and monitor channels in the SCIT channels 0
and 1

• Full-duplex operation

Shifter

SYNC

Rx
Data

Register

Tx
Data

Register

RXD

Control
Logic

TXD

Control
Registers

Shifter

Peripheral Bus

CLK

Chapter 29. Serial Management Controllers (SMCs)

Common SMC Settings and Configurations

• Local loopback and echo capability for testing

29.2 Common SMC Settings and Configurations
The following sections describe settings and configurations that are common to the serial
management controllers.

29.2.1 SMC Mode Registers (SMCMRn)

The two SMC mode registers (SMCMR), shown in Figure 29-2, select the SMC mode as
well as mode-specific parameters. The functions of SMCMR[8–15] are the same for each
protocol. SMCMR[0–7] vary according to the protocol selected by SMCMR[SM].

These registers are affected by HRESET and SRESET. Table 29-1 describes SMCMR
fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field: UART — CLEN SL PEN PM — SM DM TEN REN

Transparent — BS REVD

GCI ME — C#

Reset 0

R/W R/W

Address 0xA82 (SMCMR1), 0xA92 (SMCMR2)

Figure 29-2. SMC Mode Registers (SMCMRn)

Table 29-1. SMCMR Field Descriptions

Bits Name Description

0 — Reserved, should be cleared

MPC855T User’s Manual

Common SMC Settings and Configurations

1–4 CLEN Character length (UART). Number of bits in the character minus one. The total is the sum of 1 (start
bit always present) + number of data bits (5–14) + number of parity bits (0 or 1) + number of stop bits
(1 or 2). For example, for 8 data bits, no parity, and 1 stop bit, the total number of bits in the character
is 1 + 8 + 0 + 1 = 10. So, CLEN should be programmed to 9.
Characters range from 5–14 bits. If the data bit length is less than 8, the msbs of each byte in memory
are not used on transmit and are written with zeros on receive. If the length is more than 8, the msbs
of each 16-bit word are not used on transmit and are written with zeros on receive.
The character must not exceed 16 bits. For a 14-bit data length, set SL to one stop bit and disable
parity. For a 13-bit data length with parity enabled, set SL to one stop bit. Writing values 0 to 3 to CLEN
causes erratic behavior.

Character length (transparent). The values 3–15 specify 4–16 bits per character. If a character is less
than 8 bits, the msbs of the byte in buffer memory are not used on transmit and are written with zeros
on receive. If character length is more than 8 bits but less than 16, the msbs of the half-word in buffer
memory are not used on transmit and are written with zeros on receive.
Note: Using values 0–2 causes erratic behavior. Larger character lengths increase an SMC channel’s
potential performance and lowers the performance impact of other channels. For instance, using 16-
rather than 8-bit characters is encouraged if 16-bit characters are acceptable in the end application.

Character length (GCI). Number of bits in the C/I and monitor channels of the SCIT channels 0 or 1.
Values 0–15 correspond to 1–16 bits. CLEN should be 13 for SCIT channel 0 or GCI (8 data bits, plus
A and E bits, plus 4 C/I bits = 14 bits). It should be 15 for the SCIT channel 1 (8 data, bits, plus A and
E bits, plus 6 C/I bits = 16 bits).

5 SL Stop length. (UART)
0 One stop bit.
1 Two stop bits.

— Reserved, should be cleared (transparent)

ME Monitor enable. (GCI)
0 The SMC does not support the monitor channel.
1 The SMC supports the monitor channel.

6 PEN Parity enable. (UART)
0 No parity.
1 Parity is enabled for the transmitter and receiver as determined by the PM bit.

BS Byte sequence (transparent). For a character length greater than 8 bits, BS controls the byte
transmission sequence if REVD is set. Clear BS to maintain compatibility with MC68360 QUICC.
0 Normal mode. Should be selected if the character length is not larger than 8 bits.
1 Transmit lower address byte first.

— Reserved, should be cleared. (GCI)

7 PM Parity mode. (UART)
0 Odd parity.
1 Even parity.

REVD Reverse data. (transparent)
0 Normal mode.
1 Reverse the character bit order. The msb is sent first.

C# SCIT channel number. (GCI)
0 SCIT channel 0
1 SCIT channel 1. Required for Siemens ARCOFI and SGS S/T chips.

8–9 — Reserved, should be cleared

Table 29-1. SMCMR Field Descriptions (continued)

Bits Name Description

Chapter 29. Serial Management Controllers (SMCs)

Common SMC Settings and Configurations

29.2.2 SMC Buffer Descriptors (BDs)

In UART and transparent modes, the SMC’s memory structure is like the SCC’s in that
SMC-associated data is stored in buffers. Each buffer is referenced by a BD and organized
in a BD table located in the dual-port RAM. See Figure 29-3.

10–11 SM SMC mode.
00 GCI or SCIT support.
01 Reserved.
10 UART (must be selected for SMC UART operation).
11 Totally transparent operation.

12–13 DM Diagnostic mode.
00 Normal operation.
01 Local loopback mode.
10 Echo mode.
11 Reserved.

14 TEN SMC transmit enable.
0 SMC transmitter disabled.
1 SMC transmitter enabled.

15 REN SMC receive enable.
0 SMC receiver disabled.
1 SMC receiver enabled.

Table 29-1. SMCMR Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Common SMC Settings and Configurations

Figure 29-3. SMC Memory Structure

The BD table allows buffers to be defined for transmission and reception. Each table forms
a circular queue. The CP uses BDs to confirm reception and transmission so that the
processor knows buffers have been serviced. The data resides in external or internal buffers.

When SMCs are configured to operate in GCI mode, their memory structure is predefined
to be one half-word long for transmit and one half-word long for receive. For more
information on these half-word structures, see Section 29.5, “SMC in GCI Mode.”

29.2.3 SMC Parameter RAM

Each SMC parameter RAM area begins at the same offset from each SMC base. The
protocol-specific portions of the SMC parameter RAM are discussed in the sections that
follow. The SMC parameter RAM shared by the UART and transparent protocols is shown
in Table 29-2. Parameter RAM for GCI protocol is described in Section 29.5.1, “SMC GCI
Parameter RAM.”

Status and Control

Data Length

Buffer Pointer

Pointer to SMCx
TxBD Table

Pointer to SMCx
RxBD Table

SMC RxBD
Table

SMC TxBD
Table

Dual-Port RAM

Status and Control

Data Length

Buffer Pointer

Tx Data Buffer

External Memory

RxBD Table

TxBD Table

Rx Data Buffer

Chapter 29. Serial Management Controllers (SMCs)

Common SMC Settings and Configurations

Table 29-2. SMC UART and Transparent Parameter RAM Memory Map

Offset 1 Name Width Description

0x00 RBASE Hword RxBDs and TxBDs base address. (BD table pointer) Define starting points in the dual-port
RAM of the set of BDs for the SMC send and receive functions. They allow flexible
partitioning of the BDs. By selecting RBASE and TBASE entries for all SMCs and by
setting W in the last BD in each list, BDs are allocated for the send and receive side of
every SMC. Initialize these entries before enabling the corresponding channel.
Configuring BD tables of two enabled SMCs to overlap causes erratic operation. RBASE
and TBASE should be a multiple of eight.

0x02 TBASE Hword

0x04 RFCR Byte Rx/Tx function code. See Section 29.2.3.1, “SMC Function Code Registers
(RFCR/TFCR).”

0x05 TFCR Byte

0x06 MRBLR Hword Maximum receive buffer length. The most bytes the MPC855T writes to a Rx buffer before
moving to the next buffer. It can write fewer bytes than MRBLR if a condition like an error
or end-of-frame occurs, but it cannot exceed MRBLR. Rx buffers should not be smaller
than MRBLR. SMC Tx buffers are unaffected by MRBLR.
Tx buffers can be individually given varying lengths through the data length field. MRBLR
can be changed while an SMC is operating only if it is done in a single bus cycle with one
16-bit move (not two 8-bit bus cycles back-to-back). This occurs when the CP shifts
control to the next RxBD, so the change does not take effect immediately. To guarantee
the exact RxBD on which the change occurs, change MRBLR only while the SMC receiver
is disabled. MRBLR should be greater than zero and should be even if character length
exceeds 8 bits.

0x08 RSTATE Word Rx internal state. Can be used only by the CP.

0x0C — Word Rx internal data pointer. 2 Updated by the SDMA channels to show the next address in
the buffer to be accessed.

0x10 RBPTR Hword RxBD pointer. Points to the next BD for each SMC channel that the receiver transfers data
to when it is in idle state, or to the current BD during frame processing. After a reset or
when the end of the BD table is reached, the CP initializes RBPTR to the value in RBASE.
Most applications never need to write RBPTR, but it can be written when the receiver is
disabled or when no receive buffer is in use.

0x12 — Hword Rx internal byte count. 2 A down-count value initialized with the MRBLR value and
decremented with every byte the SDMA channels write.

0x14 — Word Rx temp. 2 Can be used only by the CP.

0x18 TSTATE Word Tx internal state. Can be used only by the CP.

0x1C — Word Tx internal data pointer. 2 Updated by the SDMA channels to show the next address in
the buffer to be accessed.

0x20 TBPTR Hword TxBD pointer. Points to the next BD for each SMC channel the transmitter transfers data
from when it is in idle state or to the current BD during frame transmission. After reset or
when the end of the table is reached, the CP initializes TBPTR to the TBASE value. Most
applications never need to write TBPTR, but it can be written when the transmitter is
disabled or when no transmit buffer is in use. For instance, after a STOP TRANSMIT or
GRACEFUL STOP TRANSMIT command is issued and the frame completes its transmission.

0x22 — Hword Tx internal byte count. 2 A down-count value initialized with the TxBD data length and
decremented with every byte the SDMA channels read.

0x24 — Word Tx temp. 2 Can be used only by the CP.

MPC855T User’s Manual

Common SMC Settings and Configurations

To extract data from a partially full Rx buffer, issue a CLOSE RXBD command.

Certain parameter RAM values must be initialized before the SMC is enabled. Other values
are initialized or written by the CP. Once values are initialized, software typically does not
need to update them because activity centers mostly around Tx and Rx BDs rather than
parameter RAM. However, note the following:

• Parameter RAM can be read at any time.

• Values that pertain to the SMC transmitter can be written only if SMCMR[TEN] is
zero or between the STOP TRANSMIT and RESTART TRANSMIT commands.

• Values for the SMC receiver can be written only when SMCMR[REN] is zero, or, if
the receiver is previously enabled, after an ENTER HUNT MODE command is issued
but before the CLOSE RXBD command is issued and REN is set.

29.2.3.1 SMC Function Code Registers (RFCR/TFCR)

Each SMC channel has two function code registers—one for receiving (RFCRn) and one
for transmitting (TFCRn). The function code entry contains the value to appear on the
function code pins AT[1–3] when the associated SDMA channel accesses memory. The
FCRs also control byte-ordering. See Figure 29-4.

Table 29-3 describes RFCR fields.

0x28 — Hword First half-word of protocol-specific area.

0x32 — Hword Last half-word of protocol-specific area.

1 From SMC base address. SMC base = IMMR + 3E80 (SMC1), 3F80 (SMC2).
2 Not accessed for normal operation. May hold helpful information for experienced users and for debugging.

Bit 0 1 2 3 4 5 6 7

R/W R/W

Address SMC base + 0x04 (RFCR)/SMC base + 0x05 (TFCR)

Figure 29-4. SMC Function Code Registers (RFCR/TFCR)

Table 29-3. RFCR/TFCR Field Descriptions

Bit Name Description

0–2 — Reserved, should be cleared.

Table 29-2. SMC UART and Transparent Parameter RAM Memory Map (continued)

Offset 1 Name Width Description

Chapter 29. Serial Management Controllers (SMCs)

Common SMC Settings and Configurations

29.2.4 Disabling SMCs On-the-Fly

An SMC can be disabled and reenabled later by ensuring that buffers are closed properly
and new data is transferred to or from a new buffer. Such a sequence is required if the
parameters to be changed are not dynamic. If the register or bit description states that
on-the-fly changes are allowed, the sequences need not be followed and the register or bits
may be changed directly.

Note that the SMC does not have to be fully disabled for parameter RAM to be modified.
Table 29-2 describes when parameter RAM values can be modified. To disable the SCC,
SMCs, SPI, and the I2C, use CPCR[RST] to reset the CPM.

29.2.4.1 SMC Transmitter Full Sequence
Follow these steps to fully enable or disable the SMC transmitter:

1. If the SMC is sending data, issue a STOP TRANSMIT command to stop transmission
smoothly. If the SMC is not sending, this command is not required.

2. Clear SMCMR[TEN] to disable the SMC transmitter and put it in reset state.

3. Update SMC transmit parameters, including the parameter RAM. To switch
protocols or reinitialize parameters, issue an INIT TX PARAMETERS command.

4. Issue a RESTART TRANSMIT if an INIT TX PARAMETERS was not issued in step 3.

5. Set SMCMR[TEN]. Transmission now begins using the TxBD that the TBPTR
value points to as soon as the R bit is set in that TxBD.

29.2.4.2 SMC Transmitter Shortcut Sequence
This shorter sequence reinitializes transmit parameters to the state they had after reset.

1. Clear SMCMR[TEN].

2. Make any changes, then issue an INIT TX PARAMETERS command.

3. Set SMCMR[TEN].

3–4 BO Byte ordering. Set BO to select the required byte ordering for the buffer. If BO is changed on-the-fly, it
takes effect at the beginning of the next frame (Ethernet, HDLC, and transparent) or at the beginning of
the next BD. See Appendix A, “Byte Ordering.”
00 Reserved
01 Modified little-endian.
1x Big-endian or true little-endian.

5–7 AT[1–3] Address type 1–3. Contains the user-defined function code value used during the SDMA channel
memory access. AT[0] is always driven high to identify this channel access as a DMA-type access.

Table 29-3. RFCR/TFCR Field Descriptions (continued)

Bit Name Description

MPC855T User’s Manual

Common SMC Settings and Configurations

29.2.4.3 SMC Receiver Full Sequence
Follow these steps to fully enable or disable the receiver:

1. Clear SMCMR[REN]. Reception is aborted immediately, which disables the SMC
receiver and puts it in a reset state.

2. Modify SMC receive parameters, including parameter RAM. To switch protocols
or reinitialize SMC receive parameters, issue an INIT RX PARAMETERS command.

3. Issue a CLOSE RXBD command if INIT RX PARAMETERS was not issued in step 2.

4. Set SMCMR[REN]. Reception immediately uses the RxBD that RBPTR points to
if E is set in that RxBD.

29.2.4.4 SMC Receiver Shortcut Sequence
This shorter sequence reinitializes receive parameters to their state after reset.

1. Clear SMCMR[REN].

2. Make any changes, then issue an INIT RX PARAMETERS command.

3. Set SMCMR[REN].

29.2.4.5 Changing SMC Protocols
To switch the protocol that the SMC is executing without resetting the board or affecting
the other SMC, follow these steps:

1. Clear SMCMR[REN, TEN].

2. Make any SMCMR changes, modify the parameter RAM appropriately, and issue
an INIT TX AND RX PARAMETERS COMMAND to initialize transmit and receive
parameters.

3. Set SMCMR[REN, TEN]. The SMC is now enabled with the new protocol.

29.2.5 Saving Power

When the SMCMR[TEN, REN] are zero, the SMC consumes very little power.

29.2.6 Handling Interrupts in the SMC
Follow these steps to handle an interrupt in the SMC:

1. Once an interrupt occurs, read SMCE to identify the interrupt source. The SMCE
bits are usually cleared at this time.

2. Process the TxBD to reuse it if SMCE[TX] is set. Extract data from the RxBD if
SMCE[RX] is set. To send another buffer, set R in the TxBD.

3. Clear CISR[SMC1].

4. Execute the rfi instruction.

Chapter 29. Serial Management Controllers (SMCs)

SMC in UART Mode

29.3 SMC in UART Mode
SMCs generally offer less functionality and performance in UART mode than SCC, which
makes them more suitable for simpler debug/monitor ports instead of full-featured UARTs.
SMCs do not support the following features in UART mode:

• RTS, CTS, and CD signals
• Receive and transmit sections clocked at different rates
• Fractional stop bits
• Built-in multidrop modes
• Freeze mode for implementing flow control
• Isochronous operation (1× clock) (That is, a 16× clock is required.)
• Interrupts on special control character reception
• Ability to transmit data on demand using the TODR
• SCCS register to determine idle status of the receive pin
• Other features for the SCC as described in the GSMR

However, the SMC UART frame format, shown in Figure 29-5, allows a data length of up
to 14 bits. The SCC format supports only up to 8 bits.

Figure 29-5. SMC UART Frame Format

29.3.1 SMC UART Features
The following list summarizes the main features of the SMC in UART mode:

• Flexible message-oriented data structure
• Programmable data length (5–14 bits)
• Programmable 1 or 2 stop bits
• Even/odd/no parity generation and checking
• Frame error, break, and IDLE detection
• Transmit preamble and break sequences
• Received break character length indication
• Continuous receive and transmit modes

SMCLK

SMTXD

16x

Start
Bit

Parity
Bit

(Optional)

5 to 14 Data Bits with the
Least Significant Bit First

1 or 2
Stop Bits

NOTE:
1. Clock is not to scale.

MPC855T User’s Manual

SMC in UART Mode

29.3.2 SMC UART-Specific Parameter RAM

For UART mode, the protocol-specific area of the SMC parameter RAM is mapped as in
Table 29-4.

29.3.3 SMC UART Channel Transmission Process

The UART transmitter is designed to work with almost no intervention from the core. When
the core enables the SMC transmitter, it starts sending idles, which are defined as the full
character length of logic high. The SMC immediately polls the first BD in the transmit
channel BD table and once every character time after that, depending on character length.
When there is a message to transmit, the SMC fetches data from memory and starts sending
the message.

When a BD data is completely written to the transmit FIFO, the SMC writes the message
status bits into the BD and clears R. An interrupt is issued if the I bit in the BD is set. If the
next TxBD is ready, the data from its buffer is appended to the previous data and sent over
the transmit pin without any gaps between buffers. If the next TxBD is not ready, the SMC
starts sending idles and waits for the next TxBD to be ready.

Table 29-4. SMC UART-Specific Parameter RAM Memory Map

Offset 1

1 From SMC base address. SMC base = IMMR + 0x3E80 (SMC1), 0x3F80 (SMC2).

Name Width Description

0x28 MAX_IDL Hword Maximum idle characters. When a character is received on the line, the SMC starts
counting idle characters received. If MAX_IDL idle characters arrive before the next
character, an idle time-out occurs and the buffer closes, which sends an interrupt request
to the core to receive data from the buffer. An idle character is defined as a full character
length of logic high. MAX_IDL can be used to demarcate frames in UART mode. Clearing
MAX_IDL disables this function so idle never causes the buffer to close, regardless of
how many idle characters are received. The length of an idle character is calculated as
follows: 1 + data length (5 to 14) + 1 (if parity bit is used) + number of stop bits (1 or 2).
For example, for 8 data bits, no parity, and 1 stop bit, character length is 10 bits.

0x2A IDLC Hword Temporary idle counter. Down-counter in which the CP stores the current idle counter
value in the MAX_IDL time-out process.

0x2C BRKLN Hword Last received break length. Holds the length of the last received break character
sequence measured in character units. For example, if the receive signal is low for 20 bit
times and the defined character length is 10 bits, BRKLN = 0x002, indicating that the
break sequence is at least 2 characters long. BRKLN is accurate to within one character
length.

0x2E BRKEC Hword Receive break condition counter. Counts break conditions on the line. A break condition
may last for hundreds of bit times, yet BRKEC increments only once during that period.

0x30 BRKCR Hword Break count register (transmit). Determines the number of break characters the UART
controller sends when the SMC sends a break character sequence after a STOP TRANSMIT
command. For 8 data bits, no parity, 1 stop bit, and 1 start bit, each break character is 10
zeros.

0x32 R_MASK Hword Temporary bit mask.

Chapter 29. Serial Management Controllers (SMCs)

SMC in UART Mode

By appropriately setting the I bit in each BD, interrupts can be generated after each buffer,
a specific buffer, or each block is sent. The SMC then proceeds to the next BD. If the CM
bit is set in the TxBD, the R bit is not cleared, allowing a buffer to be automatically resent
next time the CP accesses this buffer. For instance, if a single TxBD is initialized with the
CM and W bits set, the buffer is sent continuously until R is cleared in the BD.

29.3.4 SMC UART Channel Reception Process

When the core enables the SMC receiver, it enters HUNT mode and waits for the first
character. The CP then checks the first RxBD to see if it is empty and starts storing
characters in the buffer. When the buffer is full or the MAX_IDL timer expires (if enabled),
the SMC clears the E bit in the BD and generates an interrupt if the I bit in the BD is set. If
incoming data exceeds the buffer’s length, the SMC fetches the next BD, and, if it is empty,
continues transferring data to this BD’s buffer. If CM is set in the RxBD, the E bit is not
cleared, so the CP can overwrite this buffer on its next access.

29.3.5 Data Handling Modes: Character- and
Message-Oriented

UART mode uses the same data structures as other modes. The structures support
multibuffer operation and allow break and preamble sequences to be sent. Overrun, parity,
and framing errors are reported via the BDs. At its simplest, the SMC UART controller
functions in a character-oriented environment, whereas each character is sent with the
selected stop bits and parity. They are received into separate 1-byte buffers. A maskable
interrupt can be generated when each buffer is received.

Many applications can take advantage of the message-oriented capabilities that the SMC
UART supports through linked buffers for sending or receiving. Data is handled in a
message-oriented environment, so entire messages can be handled instead of individual
characters. A message can span several linked buffers; each one can be sent and received as
a linked list of buffers without core intervention, which simplifies programming and saves
processor overhead. In a message-oriented environment, an idle sequence is used as the
message delimiter. The transmitter can generate an idle sequence before starting a new
message and the receiver can close a buffer when an idle sequence is found.

MPC855T User’s Manual

SMC in UART Mode

29.3.6 SMC UART Commands

Table 29-5 describes transmit commands issued to the CPCR.

Table 29-6 describes receive commands issued to the CPCR.

29.3.7 Sending a Break

A break is an all-zeros character without stop bits. It is sent by issuing a STOP TRANSMIT

command. After sending any outstanding data, the SMC sends a character of consecutive
zeros, the number of which is the sum of the character length, plus the number of start,
parity, and stop bits. The SMC sends a programmable number of break characters
according to BRKCR and then reverts to idle or sends data if a RESTART TRANSMIT is issued
before completion. When the break completes, the transmitter sends at least one idle
character before sending any data to guarantee recognition of a valid start bit.

29.3.8 Sending a Preamble

A preamble sequence provides a way to ensure that the line is idle before a new message
transfer begins. The length of the preamble sequence is constructed of consecutive ones that
are one character long. If the preamble bit in a BD is set, the SMC sends a preamble
sequence before sending that buffer. For 8 data bits, no parity, 1 stop bit, and 1 start bit, a

Table 29-5. Transmit Commands

Command Description

STOP
TRANSMIT

Disables transmission of characters on the transmit channel. If the SMC UART controller receives this
command while sending a message, it stops sending. The SMC UART controller finishes sending any data
that has already been sent to its FIFO and shift register and then stops sending data. The TBPTR is not
advanced when this command is issued. The SMC UART controller sends a programmable number of
break sequences and then sends idles. The number of break sequences, which can be zero, should be
written to the BRKCR before this command is issued to the SMC UART controller.

RESTART
TRANSMIT

Enables characters to be sent on the transmit channel. The SMC UART controller expects it after disabling
the channel in its SMCMR and after issuing the STOP TRANSMIT command. The SMC UART controller
resumes transmission from the current TBPTR in the channel’s TxBD table.

INIT TX
PARAMETERS

Initializes transmit parameters in this serial channel’s parameter RAM to their reset state and should only
be issued when the transmitter is disabled. The INIT TX AND RX PARAMETERS command can also be used
to reset the transmit and receive parameters.

Table 29-6. Receive Commands

Command Description

ENTER HUNT MODE Use the CLOSE RXBD command instead of ENTER HUNT MODE for an SMC UART channel.

CLOSE RXBD Forces the SMC to close the current RxBD if it is currently being used and to use the next BD in
the list for any subsequently received data. If the SMC is not receiving data, no action is taken.

INIT RX
PARAMETERS

Initializes receive parameters in this serial channel parameter RAM to reset state. Issue it only if
the receiver is disabled. INIT TX AND RX PARAMETERS resets both receive and transmit parameters.

Chapter 29. Serial Management Controllers (SMCs)

SMC in UART Mode

preamble of 10 ones would be sent before the first character in the buffer. If no preamble
sequence is sent, data from two ready transmit buffers can be sent on the transmit pin with
no delay between them.

29.3.9 Handling Errors in the SMC UART Controller
The SMC UART controller reports character reception errors via the channel RxBD status
fields and the SMC event register (SMCE). Table 29-7 shows the possible UART receiving
errors. The SMC UART controller has no transmission errors.

29.3.10SMC UART Receive BD (RxBD)

The CP reports information about the received data in each buffer’s RxBD, shown in
Figure 29-6. The CP then closes the current buffer, generates a maskable interrupt, and
starts receiving data into the next buffer after one of the following occurs:

• An error is received during message processing
• A full receive buffer is detected

Table 29-7. SMC UART Errors

Error Description

Overrun The SMC maintains a two-character length FIFO for receiving data. Data is moved to the buffer after the
first character is received into the FIFO; if a receiver FIFO overrun occurs, the channel writes the received
character into the internal FIFO. It then writes the character to the buffer, closes it, sets RxBD[OV], and
generates the RX interrupt if it is enabled. Reception then resumes as normal.
Overrun errors that occasionally occur when the line is idle can be ignored.

Parity The channel writes the received character to the buffer, closes it, sets the PR bit in the BD, and generates
the RX interrupt if it is enabled. Reception then resumes as normal.

Idle
Sequence
Receive

An idle is found when a character of all ones is received, at which point the channel counts consecutive
idle characters. If the count reaches MAX_IDL, the buffer is closed and an RX interrupt is generated. If
no receive buffer is open, this does not generate an interrupt or any status information. The idle counter
is reset each time a character is received.

Framing The SMC received a character with no stop bit. When it occurs, the channel writes the received character
to the buffer, closes the buffer, sets FR in the BD, and generates the RX interrupt if it is enabled. When
this error occurs, parity is not checked for the character.

Break
Sequence

The SMC receiver received an all-zero character with a framing error. The channel increments BRKEC,
generates a maskable BRK interrupt in SMCE, measures the length of the break sequence, and stores
this value in BRKLN. If the channel was processing a buffer when the break was received, the buffer is
closed with the BR bit in the RxBD set. The RX interrupt is generated if it is enabled.

MPC855T User’s Manual

SMC in UART Mode

• A programmable number of consecutive idle characters are received

Table 29-8 describes SMC UART RxBD status and control fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E — W I — CM ID — BR FR PR — OV —

Offset + 2 Data Length

Offset + 4 Rx Buffer Pointer

Offset + 6

Figure 29-6. SMC UART Receive BD (RxBD)

Table 29-8. SMC UART RxBD Status and Control Field Descriptions

Bit Name Description

0 E Empty.
0 The buffer is full or data reception stopped due to an error. The core can read or write any fields of

this RxBD. The CP does not use this BD while E is zero.
1 The buffer is empty or reception is in progress. This RxBD and its buffer are owned by the CP. Once

E is set, the core should not write any fields of this RxBD.

1 — Reserved, should be cleared

2 W Wrap (last BD in RxBD table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CP receives incoming data into the first BD that

RBASE points to in the table. The number of RxBDs in this table is determined only by the W bit.

3 I Interrupt.
0 No interrupt is generated after this buffer is filled.
1 The SMCE[RX] is set when this buffer is completely filled by the CP, indicating the need for the core

to process the buffer. RX can cause an interrupt if it is enabled.

4–5 — Reserved, should be cleared

6 CM Continuous mode.
0 Normal operation.
1 The CP does not clear the E bit after this BD is closed, allowing the CP to automatically overwrite

the buffer when it next accesses the BD. However, E is cleared if an error occurs during reception,
regardless of how CM is set.

7 ID Buffer closed on reception of idles. Set when the buffer has closed because a programmable number
of consecutive idle sequences is received. The CP writes ID after received data is in the buffer.

8–9 — Reserved, should be cleared

10 BR Buffer closed on reception of break. Set when the buffer closes because a break sequence was
received. The CP writes BR after the received data is in the buffer.

11 FR Framing error. Set when a character with a framing error is received and located in the last byte of this
buffer. A framing error is a character with no stop bit. A new receive buffer is used to receive additional
data. The CP writes FR after the received data is in the buffer.

12 PR Parity error. Set when a character with a parity error is received in the last byte of the buffer. A new
buffer is used for additional data. The CP writes PR after received data is in the buffer.

13 — Reserved, should be cleared

Chapter 29. Serial Management Controllers (SMCs)

SMC in UART Mode

Data length represents the number of octets the CP writes into the buffer. After data is
received in the buffer, the CP only writes the data length once as the BD closes. Note that
the memory allocated for this buffer should be no smaller than MRBLR. The Rx buffer
pointer points to the first location of the buffer and must be even. The buffer can be in
internal or external memory. Figure 29-7 shows an example of how RxBDs are used in
receiving 10 characters, an idle period, and five characters (one with a framing error). The
example assumes that MRBLR = 8.

14 OV Overrun. Set when a receiver overrun occurs during reception. The CP writes OV after the received
data is in the buffer.

15 — Reserved, should be cleared

Table 29-8. SMC UART RxBD Status and Control Field Descriptions (continued)

Bit Name Description

MPC855T User’s Manual

SMC in UART Mode

Figure 29-7. SMC UART Receiving using RxBDs

Byte 5

Buffer

0

0008

32-Bit Buffer Pointer

0

E ID
Receive BD 0

Status

Length

Pointer

0

0002

32-Bit Buffer Pointer

1

E ID
Receive BD 1

Status

Length

Pointer

0

0004

32-Bit Buffer Pointer

0

E ID
Receive BD 2

Status

Length

Pointer

1

XXXX

32-Bit Buffer Pointer

E
Receive BD 3

Status

Length

Pointer

Byte 1

Byte 2

Byte 8

Buffer

Byte 9

Byte 10

Buffer

Byte 1

Byte 2

Byte 3

Buffer

Byte 4 Error!

Empty

Additional Bytes
will be Stored Unless

Idle Count Expires
(MAX_IDL)

8 Bytes

8 Bytes

8 Bytes

8 Bytes

Characters
Received by UART

Fourth Character

10 Characters

Long Idle Period

has Framing Error!
Present

TimeTime

5 Characters

Buffer Full

Idle Time-Out
Occurred

Byte 4 has
Framing Error

Reception
Still in Progress
with this Buffer

1

FR

etc.

Empty

MRBLR = 8 Bytes for this SMC

Chapter 29. Serial Management Controllers (SMCs)

SMC in UART Mode

29.3.11SMC UART Transmit BD (TxBD)

Data is sent to the CPM for transmission on an SMC channel by arranging it in buffers
referenced by descriptors in the channel’s TxBD table. Using the BDs, the CP confirms
transmission or indicates error conditions so that the processor knows the buffers have been
serviced.

Table 29-9 describes SMC UART TxBD status and control fields.

Data length represents the number of octets that the CP should transmit from this BD’s
buffer. It is never modified by the CP and normally is greater than zero. It can be zero if P
is set, in which case only a preamble is sent. If there are more than 8 bits in the UART

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R — W I — CM P —

Offset + 2 Data Length

Offset + 4 Tx Buffer Pointer

Offset + 6

Figure 29-8. SMC UART Transmit BD (TxBD)

Table 29-9. SMC UART TxBD Status and Control Field Descriptions

Bits Name Description

0 R Ready
0 The buffer is not ready for transmission; BD and its buffer can be altered. The CP clears R after the

buffer has been sent or an error occurs.
1 The buffer has not been completely sent. This BD must not be updated while R is set.

1 — Reserved, should be cleared.

2 W Wrap (final BD in the TxBD table)
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CP transmits outgoing data from the first BD that

TBASE points to. The number of TxBDs in this table is determined only by the W bit.

3 I Interrupt
0 No interrupt is generated after this buffer is serviced.
1 The SMCE[TX] is set when this buffer is serviced. TX can cause an interrupt if it is enabled.

4–5 — Reserved, should be cleared.

6 CM Continuous mode
0 Normal operation.
1 The CP does not clear R after this BD is closed and automatically retransmits the buffer when it

accesses this BD next.

7 P Preamble
0 No preamble sequence is sent.
1 The UART sends one all-ones character before it sends the data so that the other end detects an idle

line before the data is received. If this bit is set and the data length of this BD is zero, only a preamble
is sent.

8–15 — Reserved, should be cleared.

MPC855T User’s Manual

SMC in UART Mode

character, data length should be even. For example, to transmit three UART characters of
8-bit data, 1 start, and 1 stop, initialize the data length field to 3. To send three UART
characters of 9-bit data, 1 start, and 1 stop, the data length field should 6, because the three
9-bit data fields occupy three half words in memory (the 9 LSBs of each half word).

Tx buffer pointer points to the first location of the buffer. It can be even or odd, unless the
number of data bits in the UART character is greater than 8 bits, in which case the buffer
pointer must be even. For instance, the pointer to 8-bit data, 1 start, and 1 stop characters
can be even or odd, but the pointer to 9-bit data, 1 start, and 1 stop characters must be even.
The buffer can reside in internal or external memory.

29.3.12SMC UART Event Register (SMCE)/Mask Register
(SMCM)

The SMC event register (SMCE) generates interrupts and report events recognized by the
SMC UART channel. When an event is recognized, the SMC UART controller sets the
corresponding SMCE bit. SMCE bits are cleared by writing ones; writing zeros has no
effect. The SMC mask register (SMCM) has the same bit format as SMCE. Setting an
SMCM bit enables, and clearing it disables, the corresponding interrupt. All unmasked bits
must be cleared before the CP clears the internal interrupt request.

These registers are affected by HRESET and SRESET. Table 29-10 describes
SMCE/SMCM fields.

Bit 0 1 2 3 4 5 6 7

Field — BRKE — BRK — BSY TX RX

Reset 0

R/W R/W

Address 0xA86 (SMCE1), 0xA96 (SMCE2)/ 0xA8A (SMCM1), 0xA9A (SMCM2)

Figure 29-9. SMC UART Event Register (SMCE)/Mask Register (SMCM)

Table 29-10. SMCE/SMCM Field Descriptions

Bits Name Description

0 — Reserved, should be cleared.

1 BRKE Break end. Set no sooner than after one idle bit is received after the break sequence.

2 — Reserved, should be cleared.

3 BRK Break character received. Set when a break character is received. If a very long break sequence
occurs, this interrupt occurs only once after the first all-zeros character is received.

4 — Reserved, should be cleared.

5 BSY Busy condition. Set when a character is received and discarded due to a lack of buffers. Set no sooner
than the middle of the last stop bit of the first receive character for which there is no available buffer.
Reception resumes when an empty buffer is provided.

Chapter 29. Serial Management Controllers (SMCs)

SMC in UART Mode

Figure 29-10 shows an example of the timing of various events in the SMCE.

Figure 29-10. SMC UART Interrupts Example

29.3.13SMC UART Controller Programming Example
The following initialization sequence assumes 9,600 baud, 8 data bits, no parity, and 1 stop
bit in a 25-MHz system. BRG1 and SMC1 are used.

1. Configure the port B pins to enable SMTXD1 and SMRXD1. Set PBPAR[24, 25]
then clear PBDIR[24, 25] and PBODR[24, 25].

2. Configure the BRG1. Write BRGC1 with 0x01_0144. The DIV16 bit is not used
and the divider is 162 (decimal). The resulting BRG1 clock is 16× the preferred bit
rate.

3. Connect BRG1 to SMC1 using the SI. Clear SIMODE[SMC1, SMC1CS].

4. Assuming one RxBD at the beginning of dual-port RAM followed by one TxBD,
write RBASE with 0x0000 and TBASE with 0x0008.

6 TX Tx buffer. Set when the transmit data of the last character in the buffer is written to the transmit FIFO.
Wait two character times to ensure that data is completely sent over the transmit pin.

7 RX Rx buffer. Set when a buffer is received and its associated RxBD is closed. Set no sooner than the
middle of the last stop bit of the last character that is written to the receive buffer.

Table 29-10. SMCE/SMCM Field Descriptions (continued)

Bits Name Description

RX RX BRK BRKE

Break

Line Idle
10 Characters

RXD

Characters
Received by SMC UART

Time

Line Idle

TXD

Characters
Transmitted by SMC UART

TX

Line Idle Line Idle

7 Characters

NOTES:

SMC UART SMCE
Events

1. The first RX event assumes receive buffers are 6 bytes each.
2. The second RX event position is programmable based on the MAX_IDL value.
3. The BRK event occurs after the first break character is received.

SMC UART SMCE
Events

NOTES:
The TX event assumes all seven characters were put into a single buffer, and the TX event occurred when the seventh
character was written to the SMC transmit FIFO.

1.

MPC855T User’s Manual

SMC in Transparent Mode

5. Write 0x0091 to CPCR to execute the INIT RX AND TX PARAMETERS command.

6. Initialize the SDMA configuration register (SDCR) to 0x0001.

7. Write RFCR and TFCR with 0x10 for normal operation.

8. Write MRBLR with the maximum number of bytes per receive buffer. Assume 16
bytes, so MRBLR = 0x0010.

9. Write MAX_IDL with 0x0000 in the SMC UART-specific parameter RAM to
disable the MAX_IDL functionality for this example.

10. Clear BRKLN and BRKEC in the SMC UART-specific parameter RAM.

11. Set BRKCR to 0x0001; if a STOP TRANSMIT COMMAND is issued, one break
character is sent.

12. Initialize the RxBD. Assume the Rx buffer is at 0x0000_1000 in main memory.
Write 0xB000 to Rx_BD_Status, 0x0000 to Rx_BD_Length (not required), and
0x0000_1000 to Rx_BD_Pointer.

13. Assuming the Tx buffer is at 0x00002000 in main memory and contains five 8-bit
characters, write 0xB000 to Tx_BD_Status, 0x0005 to Tx_BD_Length, and
0x00002000 to Tx_BD_Pointer.

14. Write 0xFF to the SMCE register to clear any previous events.

15. Write 0x17 to the SMCM register to enable all possible SMC interrupts.

16. Write 0x00000010 to the CIMR so the SMC1 can generate a system interrupt.
Initialize the CICR.

17. Write 0x4820 to SMCMR to configure normal operation (not loopback), 8-bit
characters, no parity, 1 stop bit. The transmitter and receiver are not yet enabled.

18. Write 0x4823 to SMCMR to enable the SMC transmitter and receiver. This
additional write ensures that the TEN and REN bits are enabled last.

After 5 bytes are sent, the TxBD is closed. The receive buffer closes after receiving 16
bytes. Subsequent data causes a busy (out-of-buffers) condition since only one RxBD is
ready.

29.4 SMC in Transparent Mode
Compared to the SCC in transparent mode, the SMCs generally have less functionality,
simpler functions and slower speeds. Transparent mode is selected by setting
SMCMR[SM] to 0b11. Section 29.2.1, “SMC Mode Registers (SMCMRn),” describes
other protocol-specific bits in the SMCMR. The SMC in transparent mode does not support
the following features:

• Independent transmit and receive clocks, unless connected to TDM channel of the SI
• CRC generation and checking
• Full RTS, CTS, and CD signals (supports only one SMSYN signal)

Chapter 29. Serial Management Controllers (SMCs)

SMC in Transparent Mode

• Ability to transmit data on demand using the TODR
• Receiver/transmitter in transparent mode while executing another protocol
• 4-, 8-, or 16-bit SYNC recognition
• Internal DPLL support

However, the SMC in transparent mode provides a data character length option of 4 to 16
bits, whereas the SCC provide 8 or 32 bits, depending on GSMR[RFW]. The SMC in
transparent mode is also referred to as the SMC transparent controller.

29.4.1 SMC Transparent Mode Features
The following list summarizes the features of the SMC in transparent mode:

• Flexible buffers

• Can connect to a TDM bus using the TSA in the SI

• Can transmit and receive transparently on its own set of pins using a sync pin to
synchronize the beginning of transmission and reception to an external event

• Programmable character length (4–16)

• Reverse data mode

• Continuous transmission and reception modes

29.4.2 SMC Transparent-Specific Parameter RAM

The protocol-specific parameter RAM for the SMC in transparent mode is reserved. Only
the general SMC parameter RAM is used. See Section 29.2.3, “SMC Parameter RAM.”

29.4.3 SMC Transparent Channel Transmission Process

The transparent transmitter is designed to work with almost no core intervention. When the
core enables the SMC transmitter in transparent mode, it starts sending idles. The SMC
immediately polls the first BD in the transmit channel BD table and once every character
time, depending on the character length (every 4 to 16 serial clocks). When there is a
message to transmit, the SMC fetches the data from memory and starts sending the message
when synchronization is achieved.

Synchronization can be achieved in two ways. First, when the transmitter is connected to a
TDM channel, it can be synchronized to a time slot. Once the frame sync is received, the
transmitter waits for the first bit of its time slot before it starts transmitting. Data is sent only
during the time slots defined by the TSA. Secondly, when working with its own set of pins,
the transmitter starts sending when SMSYNx is asserted.

When a BD data is completely written to the transmit FIFO, the L bit is checked and if it is
set, the SMC writes the message status bits into the BD and clears the R bit. It then starts
transmitting idles. When the end of the current BD is reached and the L bit is not set, only

MPC855T User’s Manual

SMC in Transparent Mode

R is cleared. In both cases, an interrupt is issued according to the I bit in the BD. By
appropriately setting the I bit in each BD, interrupts can be generated after each buffer, a
specific buffer, or each block is sent. The SMC then proceeds to the next BD. If no
additional buffers have been presented to the SMC for transmission and the L bit was
cleared, an underrun is detected and the SMC begins sending idles.

If the CM bit is set in the TxBD, the R bit is not cleared, so the CP can overwrite the buffer
on its next access. For instance, if a single TxBD is initialized with the CM and W bits set,
the buffer is sent continuously until R is cleared in the BD.

29.4.4 SMC Transparent Channel Reception Process

When the core enables the SMC receiver in transparent mode, it waits for synchronization
before receiving data. Once synchronization is achieved, the receiver transfers the incoming
data into memory according to the first RxBD in the table. Synchronization can be achieved
in two ways. First, when the receiver is connected to TDM channel, it can be synchronized
to a time slot. Once the frame sync is received, the receiver waits for the first bit of its time
slot to occur before reception begins. Data is received only during the time slots defined by
the TSA. Secondly, when working with its own set of pins, the receiver starts reception
when SMSYNx is asserted.

When the buffer full, the SMC clears the E bit in the BD and generates an interrupt if the I
bit in the BD is set. If incoming data exceeds the buffer length, the SMC fetches the next
BD; if it is empty, the SMC continues transferring data to this BD’s buffer. If the CM bit is
set in the RxBD, the E bit is not cleared, so the CP can automatically overwrite the buffer
on its next access.

29.4.5 Using SMSYN for Synchronization

The SMSYN signal offers a way to externally synchronize the SMC channel. This method
differs somewhat from the synchronization options available in the SCC and should be
studied carefully. See Figure 29-11 for an example.

Once SMCMR[REN] is set, the first rising edge of SMCLK that finds SMSYN low causes
the SMC receiver to achieve synchronization. Data starts being received or latched on the
same rising edge of SMCLK that latched SMSYN. This is the first bit of data received. The
receiver does not lose synchronization again, regardless of the state of SMSYN, until REN
is cleared.

Once SMCMR[TEN] is set, the first rising edge of SMCLK that finds SMSYN low
synchronizes the SMC transmitter which begins sending ones asynchronously from the
falling edge of SMSYN. After one character of ones is sent, if the transmit FIFO is loaded
(the TxBD is ready with data), data starts being send on the next falling edge of SMCLK
after one character of ones is sent. If the transmit FIFO is loaded later, data starts being sent
after some multiple number of all-ones characters is sent.

Chapter 29. Serial Management Controllers (SMCs)

SMC in Transparent Mode

Note that regardless of whether the transmitter or receiver uses SMSYN, it must make
glitch-free transitions from high-to-low or low-to-high. Glitches on SMSYN can cause
erratic behavior of the SMC.

The transmitter and receiver never lose synchronization again, regardless of the state of
SMSYN, until the TEN bit is cleared or an ENTER HUNT MODE command is issued.

Figure 29-11. Synchronization with SMSYNx

If both SMCMR[REN] and SMCMR[TEN] are set, the first falling edge of SMSYN causes
both the transmitter and receiver to achieve synchronization. The SMC transmitter can be
disabled and reenabled and SMSYN can be used again to resynchronize the transmitter
itself. Section 29.2.4, “Disabling SMCs On-the-Fly,” describes how to safely disable and
reenable the SMC. Simply clearing and setting TEN may be insufficient. The receiver can
also be resynchronized this way.

29.4.6 Using TSA for Synchronization
The TSA offers an alternative to using SMSYN to internally synchronize the SMC channel.
This method is similar, except that the synchronization event is the first time-slot for this

SMCLK

SMSYN

SMTXD 1s are sent Five 1s are sent

TEN set
here

Tx FIFO
loaded

approximately
here

Five 1s
assume

character
length

equals 5

First bit of
first 5-bit
transmit

character
(lsb)

Transmission
could begin

here if Tx FIFO
not loaded

in time

SMSYN
detected
low here

SMCLK

SMSYN

SMRXD

REN set
here or

First bit
of receive

data
(lsb)

SMSYN
detected
low hereENTER HUNT

MODE
command

issued

NOTES:
SMCLK is an internal clock derived from an external
CLKx or a baud rate generator.

1.

This example shows the SMC receiver and transmitter2.
enabled separately. If the REN and TEN bits were set at
the same time, a single falling edge of SMSYN would
synchronize both.

SMC1 Transmit Data

SMC1 Receive Data

MPC855T User’s Manual

SMC in Transparent Mode

SMC receiver/transmitter after the frame sync indication rather than the falling edge of
SMSYN. Chapter 20, “Serial Interface,” describes how to configure time slots. The TSA
allows the SMC receiver and transmitter to be enabled simultaneously and synchronized
separately; SMSYN does not provide this capability. Figure 29-12 shows synchronization
using the TSA.

Figure 29-12. Synchronization with the TSA

Once SMCMR[REN] is set, the first time-slot after the frame sync causes the SMC receiver
to achieve synchronization. Data is received immediately, but only during defined receive
time slots. The receiver continues receiving data during its defined time slots until REN is
cleared. If an ENTER HUNT MODE command is issued, the receiver loses synchronization,
closes the buffer, and resynchronizes to the first time slot after the frame sync.

Once SMCMR[TEN] is set, the SMC waits for the transmit FIFO to be loaded before trying
to achieve synchronization. If only a single time slot in a TDM frame is assigned to the
SMC, USMC transmission, as well as reception, is always synchronized to the beginning
of that time slot. If multiple time slots in a TDM frame are assigned to the SMC (as shown
in Figure 29-12), then synchronization depends on the order of initialization.

TDM Tx CLK

TDM Tx SYNC

TDM Tx

After TEN If SMC runs out of Tx buffers and new ones
are provided later, transmission begins atis set,

transmission
begins here.

the beginning of either time slot.

SMC1SMC1

TDM Rx CLK

TDM Rx SYNC

TDM Rx

After REN is set or after
ENTER HUNT MODE command,

reception begins here.

SMC1 SMC1

Chapter 29. Serial Management Controllers (SMCs)

SMC in Transparent Mode

When the transmit FIFO is loaded, synchronization and transmission begins depending on
the following:

• If a buffer is made ready before the SMC is enabled, the first byte is placed in time
slot 1 if CLEN is 8 and to slot 2 if CLEN is greater than 8.

• If a buffer is made ready after its SMC is enabled, the first byte can appear in any
time slot associated with this channel.

• If a buffer is closed with BD[L] set, then the next buffer can appear in any time slot
associated with this channel.

If the SMC runs out of transmit buffers and a new buffer is provided later, idles are sent in
the gap between buffers. Data transmission from the later buffer begins at the start of an
SMC time slot, but not necessarily the first time slot after the frame sync. So, to maintain a
certain bit alignment beginning with the first time slot, make sure that at least one TxBD is
always ready and that underruns do not occur. Otherwise, the SMC transmitter should be
disabled and reenabled. Section 29.2.4, “Disabling SMCs On-the-Fly,” describes how to
safely disable and reenable the SMC. Simply clearing and setting TEN may not be enough.

29.4.7 SMC Transparent Commands

Table 29-11 describes transmit commands issued to the CPCR.

Figure 29-12 describes receive commands issued to the CPCR.

Table 29-11. SMC Transparent Transmit Commands

Command Description

STOP TRANSMIT After hardware or software is reset and the channel is enabled in the SMCMR, the channel is in transmit
enable mode and polls the first BD. This command disables transmission of frames on the transmit
channel. If the transparent controller receives this command while sending a frame, it stops after the
contents of the FIFO are sent (up to 2 characters). The TBPTR is not advanced to the next BD, no new
BD is accessed, and no new buffers are sent for this channel. The transmitter sends idles until a RESTART
TRANSMIT command is issued.

RESTART
TRANSMIT

Starts or resumes transmission from the current TBPTR in the channel TxBD table. When the channel
receives this command, it polls the R bit in this BD. The SMC expects this command after a STOP
TRANSMIT is issued. The channel is disabled in its mode register or after a transmitter error occurs. In
addition, the transmitter awaits resynchronization before transmission continues.

INIT TX
PARAMETERS

Initializes transmit parameters in this serial channel to reset state. Use only if the transmitter is disabled.
The INIT TX AND RX PARAMETERS command resets transmit and receive parameters.

Table 29-12. SMC Transparent Receive Commands

Command Description

ENTER HUNT
MODE

Forces the SMC to close the current receive BD if it is in use and to use the next BD for subsequent
data. If the SMC is not receiving data, the buffer is not closed. Additionally, this command causes the
receiver to wait for a resynchronization before reception resumes.

MPC855T User’s Manual

SMC in Transparent Mode

29.4.8 Handling Errors in the SMC Transparent Controller
The SMC uses BDs and the SMCE to report message transmit and receive errors.

29.4.9 SMC Transparent Receive BD (RxBD)
Using BDs, the CP reports information about the received data for each buffer and closes
the current buffer, generates a maskable interrupt, and starts to receive data into the next
buffer after one of the following events:

• An overrun error occurs.

• A full receive buffer is detected.

• The ENTER HUNT MODE command is issued.

Figure 29-13 shows the SMC transparent RxBD format.

CLOSE RXBD Forces the SMC to close the current receive BD if it in use and to use the next BD in the list for
subsequent received data. If the SMC is not in the process of receiving data, no action is taken.

iNIT RX
PARAMETERS

Initializes receive parameters in this serial channel to reset state. Use only if the receiver is disabled.
The INIT TX AND RX PARAMETERS command resets receive and transmit parameters.

Table 29-13. SMC Transparent Error Conditions

Error Descriptions

Underrun The channel stops sending the buffer, closes it, sets UN in the BD, and generates a TXE interrupt if it is
enabled. The channel resumes sending after a RESTART TRANSMIT command. Underrun cannot occur
between frames.

Overrun The SMC maintains an internal FIFO for receiving data. If the buffer is in external memory, the CP begins
programming the SDMA channel when the first character is received into the FIFO. If a FIFO overrun occurs,
the SMC writes the received data character over the previously received character. The previous character
and its status bits are lost. Then the channel closes the buffer, sets OV in the BD, and generates the RX
interrupt if it is enabled. Reception continues as normal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E — W I — CM — OV —

Offset + 2 Data Length

Offset + 4 Rx Buffer Pointer

Offset + 6

Figure 29-13. SMC Transparent Receive BD (RxBD)

Table 29-12. SMC Transparent Receive Commands (continued)

Command Description

Chapter 29. Serial Management Controllers (SMCs)

SMC in Transparent Mode

Table 29-14 describes SMC transparent RxBD fields.

Data length and buffer pointer fields are described in Section 21.3, “SCC Buffer
Descriptors (BDs).”

29.4.10SMC Transparent Transmit BD (TxBD)

Data is sent to the CPM for transmission on an SMC channel by arranging it in buffers
referenced by the channel TxBD table. The CP uses BDs to confirm transmission or
indicate error conditions so the processor knows buffers have been serviced.

Table 29-14. SMC Transparent RxBD Field Descriptions

Bits Name Description

0 E Empty.
0 The buffer is full or reception was aborted due to an error. The core can read or write any fields of

this RxBD. The CP does not use this BD while E = 0.
1 The buffer is empty or is receiving data. The CP owns this RxBD and its buffer. Once E is set, the

core should not write any fields of this RxBD.

1 — Reserved, should be cleared.

2 W Wrap (last BD in RxBD table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CP receives incoming data into the first BD that

RBASE points to. The number of RxBDs is determined only by the W bit.

3 I Interrupt.
0 No interrupt is generated after this buffer is filled.
1 SMCE[RX] is set when the CP completely fills this buffer indicating that the core must process the

buffer. The RX bit can cause an interrupt if it is enabled.

4–5 — Reserved, should be cleared.

6 CM Continuous mode.
0 Normal operation.
1 The CP does not clear E after this BD is closed, allowing the buffer to be overwritten when the CP

next accesses this BD. However, E is cleared if an error occurs during reception, regardless of how
CM is set.

7–13 — Reserved, should be cleared.

14 OV Overrun. Set when a receiver overrun occurs during reception. The CP writes OV after the received data
is placed into the buffer.

15 — Reserved, should be cleared.

MPC855T User’s Manual

SMC in Transparent Mode

Figure 29-14 shows the SMC transparent TxBD format.

Table 29-15 describes SMC transparent TxBD fields.

Data length represents the number of octets the CP should transmit from this buffer. It is
never modified by the CP. The data length can be even or odd, but if the number of bits in
the transparent character is greater than 8, the data length should be even. For example, to
transmit three transparent 8-bit characters, the data length field should be initialized to 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R — W I L — CM — UN —

Offset + 2 Data Length

Offset + 4 Tx Buffer Pointer

Offset + 6

Figure 29-14. SMC Transparent Transmit BD (TxBD)

Table 29-15. SMC Transparent TxBD Field Descriptions

Bits Name Description

0 R Ready.
0 The buffer is not ready for transmission. The BD and buffer can be updated. The CP clears R after

the buffer is sent or after an error occurs.
1 The user-prepared buffer is not sent or is being sent. BD fields must not be updated if R is set.

1 — Reserved, should be cleared.

2 W Wrap (final BD in table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CP receives incoming data into the first BD that

TBASE points to. The number of TxBDs in this table is programmable and determined by the W bit.

3 I Interrupt.
0 No interrupt is generated after this buffer is serviced unless an error occurs.
1 SMCE[TX] or SMCE[TXE] are set when the buffer is serviced. They can cause interrupts if they are

enabled.
Note that this bit does not mask SMCE[TXE].

4 L Last in message.
0 The last byte in the buffer is not the last byte in the transmitted transparent frame. Data from the next

transmit buffer (if ready) is sent immediately after the last byte of this buffer.
1 The last byte in this buffer is the last byte in the transmitted transparent frame. After this buffer is sent,

the transmitter requires synchronization before the next buffer is sent.

5 — Reserved, should be cleared.

6 CM Continuous mode.
0 Normal operation.
1 The CP does not clear R after this BD is closed, allowing the buffer to be automatically resent when

the CP accesses this BD again. However, the R bit is cleared if an error occurs during transmission,
regardless of how CM is set.

7–13 — Reserved, should be cleared.

14 UM Underrun. Set when the SMC encounters a transmitter underrun condition while sending the buffer.

15 — Reserved, should be cleared.

Chapter 29. Serial Management Controllers (SMCs)

SMC in Transparent Mode

However, to transmit three transparent 9-bit characters, the data length field should be
initialized to 6 because the three 9-bit characters occupy three half words in memory.

The buffer pointer points to the first byte of the buffer. They can be even or odd, unless
character length is greater than 8 bits, in which case the transmit buffer pointer must be
even. For instance, the pointer to 8-bit transparent characters can be even or odd, but the
pointer to 9-bit transparent characters must be even. The buffer can reside in internal or
external memory.

29.4.11SMC Transparent Event Register (SMCE)/
Mask Register (SMCM)

The SMC event register (SMCE) generates interrupts and reports events recognized by the
SMC channel. When an event is recognized, the SMC sets the corresponding SMCE bit.
Interrupts are masked in the SMCM, which has the same format as the SMCE. SMCE bits
are cleared by writing ones; writing zeros has no effect. Unmasked bits must be cleared
before the CP clears the internal interrupt request.

Figure 29-15 shows the SMCE/SMCM register format.

Table 29-16 describes SMCE/SMCM fields.

Bit 0 1 2 3 4 5 6 7

Field — TXE — BSY TX RX

Reset 0

R/W R/W

Address 0xA86 (SMCE1), 0xA96 (SMCE2)/ 0xA8A (SMCM1), 0xA9A (SMCM2)

Figure 29-15. SMC Transparent Event Register (SMCE)/Mask Register (SMCM)

Table 29-16. SMCE/SMCM Field Descriptions

Bits Name Description

0–2 — Reserved, should be cleared.

3 TXE Tx error. Set when an underrun error occurs on the transmitter channel.

4 — Reserved, should be cleared.

5 BSY Busy condition. Set when a character is received and discarded due to a lack of buffers. Reception
begins after a new buffer is provided, without waiting for resynchronization. To resynchronize after error
recovery, issue an ENTER HUNT MODE command.

6 TX Tx buffer. Set after a buffer is sent. If the L bit of the TxBD is set, TX is set when the last character starts
being sent. A one character-time delay is required to ensure that data is completely sent over the
transmit pin. If the L bit of the TxBD is cleared, TX is set when the last character is written to the transmit
FIFO. A two character-time delay is required to ensure that data is completely sent.

7 RX Rx buffer. Set when a buffer is received (after the last character is written) on the SMC channel and its
associated RxBD is closed.

MPC855T User’s Manual

SMC in Transparent Mode

29.4.12SMC Transparent NMSI Programming Example
The following example initializes the SMC1 transparent channel over its own set of pins.
The CLK3 pin supplies the transmit and receive clocks; the SMSYNx pin is used for
synchronization. The SMC UART example shows baud-rate generator configuration.

Chapter 29. Serial Management Controllers (SMCs)

SMC in Transparent Mode

1. Configure the port B pins to enable SMTXD1, SMRXD1, and SMSYN1. Set
PBPAR[23– 25] and clear PBDIR[23– 25] and PBODR[23– 25].

2. Configure the port A pins to enable CLK3. Set PAPAR[5] and clear PADIR[5]. The
other pin functions are the timers or the TSA. These alternate functions cannot be
used on this pin.

3. Connect CLK3 to SMC1 using the SI. Clear SIMODE[SMC1] and set
SIMODE[SMC1CS] to 0b110.

4. Write RBASE and TBASE in the SMC parameter RAM to point to the RxBD and
TxBD in the dual-port RAM. Assuming one RxBD at the beginning of the
dual-port RAM followed by one TxBD, write RBASE with 0x0000 and TBASE
with 0x0008.

5. Program the CPCR to execute the INIT RX AND TX PARAMETERS command. Write
0x0091 to the CPCR.

6. Write 0x0001 to the SDCR to initialize the SDCR.

7. Write RFCR and TFCR with 0x10 for normal operation.

8. Write MRBLR with the maximum bytes per receive buffer. Assuming 16 bytes,
MRBLR = 0x0010.

9. Initialize the RxBD assuming the buffer is at 0x0000_1000 in main memory. Write
0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data Length] (optional),
and 0x0000_1000 to RxBD[Buffer Pointer].

10. Initialize the TxBD assuming the Tx buffer is at 0x0000_2000 in main memory and
contains five 8-bit characters. Write 0xB000 to TxBD[Status and Control], 0x0005
to TxBD[Data Length], and 0x0000_2000 to TxBD[Buffer Pointer].

11. Write 0xFF to SMCE to clear any previous events.

12. Write 0x13 to SMCM to enable all possible SMC interrupts.

13. Write 0x0000_0010 to the CIMR to allow SMC1 to generate a system interrupt.
The CICR should also be initialized.

14. Write 0x3830 to the SMCMR to configure 8-bit characters, unreversed data, and
normal operation (not loopback). The transmitter and receiver are not enabled yet.

15. Write 0x3833 to the SMCMR to enable the SMC transmitter and receiver. This
additional write ensures that TEN and REN are enabled last.

After 5 bytes are sent, the TxBD is closed; after 16 bytes are received the receive buffer is
closed. Any data received after 16 bytes causes a busy (out-of-buffers) condition since only
one RxBD is prepared.

29.4.13SMC Transparent TSA Programming Example

The following is an example initialization sequence for the SMC1 transparent channel over
the TSA. It is assumed that the TSA and the TDM pins have been set up to route time-slot

MPC855T User’s Manual

SMC in GCI Mode

data to the SMC transmitter and receiver. Chapter 20, “Serial Interface,” has examples for
configuring the TSA which provides transmit and receive clocks and synchronization
signals internally.

1. Write RBASE and TBASE in the SMC parameter RAM to point to the RxBD and
TxBD in the dual-port RAM. Assuming one RxBD at the beginning of the dual-port
RAM followed by one TxBD, write RBASE with 0x0000 and TBASE with 0x0008.

2. Program CPCR to execute the INIT TX AND RX PARAMETERS command. Write
0x0091 to the CPCR.

3. Initialize the SDCR to 0x0001.

4. Write RFCR and TFCR with 0x10 for normal operation.

5. Write MRBLR with the maximum number of bytes per receive buffer. Assume 16
bytes, so MRBLR = 0x0010.

6. Initialize the RxBD and assume the Rx buffer is at 0x0000_1000 in main memory.
Write 0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data Length]
(optional), and 0x0000_1000 to RxBD[Buffer Pointer].

7. Initialize the TxBD and assume the Tx buffer is at 0x0000_2000 in main memory
and contains five 8-bit characters. Write 0xB000 to TxBD[Status and Control],
0x0005 to TxBD[Data Length], and 0x0000_2000 to TxBD[Buffer Pointer].

8. Write 0xFF to SMCE to clear any previous events.

9. Write 0x13 to SMCM to enable all possible SMC interrupts.

10. Write 0x0000_0010 to the CIMR so SMC1 can generate a system interrupt.
Initialize CICR.

11. Set SMCMR to 0x3830 for 8-bit characters, unreversed data, and normal operation
(not loopback). The transmitter and receiver are not enabled yet.

12. Write 0x3833 to SMCMR to enable the SMC transmitter and receiver. This
additional write ensures that TEN and REN are enabled last.

29.5 SMC in GCI Mode
A single SMC can control both the C/I and monitor channels of a GCI frame. When using
the SCIT configuration of GCI, one SMC can handle SCIT channel 0 and the other can
handle SCIT channel 1. The main features of the SMC in GCI mode are as follows:

• Each SMC channel can support both the C/I and monitor channels of the GCI
(IOM-2) in ISDN applications

• Two SMCs support both sets of C/I and monitor channels in SCIT channels 0 and 1
• Full-duplex operation
• Local loopback and echo capability for testing

Chapter 29. Serial Management Controllers (SMCs)

SMC in GCI Mode

To use the SMC GCI channels properly, the TSA must be configured to route the monitor
and C/I channels to the preferred SMC. Chapter 20, “Serial Interface,” describes how to
program this configuration. GCI mode is selected by programming SMCMR[SM] to 0b00.
Section 29.2.1, “SMC Mode Registers (SMCMRn),” describes other protocol-specific
SMCMR bits.

29.5.1 SMC GCI Parameter RAM

The SMC GCI parameter RAM area begins at the same offset from each SMC base. The
parameter RAM differs from that for UART and transparent mode. In GCI mode, parameter
RAM contains both the BDs and their buffers. Compare Table 29-17 with Table 29-2 to see
the differences. In GCI mode the SMC has no protocol-specific parameter RAM.

29.5.2 Handling the GCI Monitor Channel

The following sections describe how the GCI monitor channel is handled.

29.5.2.1 SMC GCI Monitor Channel Transmission Process

Monitor channel 0 is used to exchange data with an OSI layer 1 device (reading and writing
internal registers and transferring of the S and Q bits). In SCIT configuration, monitor
channel 1 is used for programming and controlling voice/data modules such as CODECs.
The core writes the byte into the TxBD. The SMC sends the data on the monitor channel
and handles the A and E control bits according to the GCI monitor channel protocol. The

Table 29-17. SMC GCI Parameter RAM Memory Map

Offset 1

1 SMC base = IMMR + 0x3E80 (SMC1), 0x3F80 (SMC2).

Name Width Description

0x00 M_RxBD Hword Monitor channel RxBD. See Section 29.5.5, “SMC GCI Monitor Channel RxBD.”

0x02 M_TxBD Hword Monitor channel TxBD. See Section 29.5.6, “SMC GCI Monitor Channel TxBD.”

0x04 CI_RxBD Hword C/I channel RxBD. See Section 29.5.7, “SMC GCI C/I Channel RxBD.”

0x06 CI_TxBD Hword C/I channel TxBD. See Section 29.5.8, “SMC GCI C/I Channel TxBD.”

0x08 RSTATE 2

2 RSTATE, M_RxD, M_TxD, CI_RxD, and CI_TxD do not need to be accessed by the user in normal operation, and are
reserved for CP use only.

Word Rx/ Tx Internal State

0x0C M_RxD 2 Hword Monitor Rx Data

0x0E M_TxD 2 Hword Monitor Tx Data

0x10 CI_RxD 2 Hword C/I Rx Data

0x12 CI_TxD 2 Hword C/I Tx Data

MPC855T User’s Manual

SMC in GCI Mode

TIMEOUT command resolves deadlocks when errors in the A and E bit states occur on the
data line.

29.5.2.1.1 SMC GCI Monitor Channel Reception Process

The SMC receives data and handles the A and E control bits according to the GCI monitor
channel protocol. When the CP stores a received data byte in the SMC RxBD, a maskable
interrupt is generated. A TRANSMIT ABORT REQUEST command causes the MPC855T to
send an abort request on the E bit.

29.5.3 Handling the GCI C/I Channel

The C/I channel is used to control the OSI layer 1 device. The OSI layer 2 device in the TE
sends commands and receives indication to or from the upstream layer 1 device through C/I
channel 0. In the SCIT configuration, C/I channel 1 is used to convey real-time status
information between the layer 2 device and nonlayer 1 peripheral devices (CODECs).

29.5.3.1 SMC GCI C/I Channel Transmission Process

The core writes the data byte into the C/I TxBD and the SMC transmits the data
continuously on the C/I channel to the physical layer device.

29.5.3.2 SMC GCI C/I Channel Reception Process

The SMC receiver continuously monitors the C/I channel. When it recognizes a change in
the data and this value is received in two successive frames, it is interpreted as valid data.
This is called the double last-look method. The CP stores the received data byte in the C/I
RxBD and a maskable interrupt is generated. If the SMC is configured to support SCIT
channel 1, the double last-look method is not used.

29.5.4 SMC GCI Commands
The commands in Table 29-18 are issued to the CPCR.

Table 29-18. SMC GCI Commands

Command Description

INIT TX AND RX
PARAMETERS

Initializes transmit and receive parameters in the parameter RAM to their reset state.

TRANSMIT ABORT
REQUEST

This receiver command can be issued when the MPC855T implements the monitor channel
protocol. When it is issued, the MPC855T sends an abort request on the A bit.

TIMEOUT This transmitter command can be issued when the MPC855T implements the monitor channel
protocol. It is usually issued because the device is not responding or A bit errors are detected. The
MPC855T sends an abort request on the E bit at the time this command is issued.

Chapter 29. Serial Management Controllers (SMCs)

SMC in GCI Mode

29.5.5 SMC GCI Monitor Channel RxBD

The GCI monitor channel RxBD, shown in Figure 29-16, is used by the CP to report on the
monitor channel receive byte. The RxBD itself receives the monitor data.

Table 29-19 describes SMC monitor channel RxBD fields.

29.5.6 SMC GCI Monitor Channel TxBD

The CP uses the GCI monitor channel TxBD, shown in Figure 29-17, to report on the
monitor channel transmit byte. The TxBD itself contains the monitor data to be sent.

Table 29-20 describes SMC monitor channel TxBD fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E L ER MS — Data

Figure 29-16. SMC GCI Monitor Channel RxBD

Table 29-19. SMC Monitor Channel RxBD Field Descriptions

Bits Name Description

0 E Empty.
0 The CP clears E when the byte associated with this BD is available to the core.
1 The core sets E when the byte associated with this BD has been read.

1 L Last (EOM). Set when the EOM indication is received on the E bit. Note that when this bit is set, the data
byte is invalid.

2 ER Error condition. Set when an error occurs on the monitor channel protocol. The error condition indicates
that a new byte was sent before the SMC acknowledged the previous byte.

3 MS Data mismatch. Set when two different consecutive bytes are received; cleared when the last two
consecutive bytes match. The SMC waits for the reception of two identical consecutive bytes before
writing new data to the RxBD.

4–7 — Reserved, should be cleared.

8–15 Data Data field. Contains the monitor channel data byte that the SMC received.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R L AR — Data

Figure 29-17. SMC GCI Monitor Channel TxBD

Table 29-20. SMC Monitor Channel TxBD Field Descriptions

Bits Name Description

0 R Ready.
0 Cleared by the CP after transmission. The TxBD is now available to the core.
1 Set by the core when the data byte associated with this BD is ready for transmission.

1 L Last (EOM). When L = 1, the SMC first transmits the buffer data and then transmits the EOM indication
on the E bit.

MPC855T User’s Manual

SMC in GCI Mode

29.5.7 SMC GCI C/I Channel RxBD

The GCI C/I channel RxBD, shown in Figure 29-18, is used by the CP to report on the C/I
channel receive byte. The RxBD itself receives the C/I data.

Table 29-21 describes SMC C/I channel RxBD fields

29.5.8 SMC GCI C/I Channel TxBD

The GCI C/I channel TxBD, shown in Figure 29-19, is used by the CP to report on the C/I
channel transmit byte. The TxBD itself contains the C/I data to be sent.

2 AR Abort request. Set by the SMC when an abort request is received on the A bit. The transmitter sends
the EOM on the E bit after receiving an abort request.

3–7 — Reserved, should be cleared.

8–15 Data Data field. Contains the data to be sent by the SMC on the monitor channel.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E — C/I Data —

Figure 29-18. SMC C/I Channel RxBD

Table 29-21. SMC C/I Channel RxBD Field Descriptions

Bits Name Description

0 E Empty.
0 Cleared by the CP to indicate that the byte associated with this BD is available to the core.
1 The core sets E to indicate that the byte associated with this BD has been read.
Note that additional data received is discarded until E bit is set.

1–7 — Reserved, should be cleared.

8–13 C/I Data Command/indication data bits. For C/I channel 0, bits 10–13 contain the 4-bit data field and bits 8–9
are always written with zeros. For C/I channel 1, bits 8–13 contain the 6-bit data field.

14–15 — Reserved, should be cleared.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R — C/I Data —

Figure 29-19. SMC C/I Channel TxBD

Table 29-20. SMC Monitor Channel TxBD Field Descriptions (continued)

Bits Name Description

Chapter 29. Serial Management Controllers (SMCs)

SMC in GCI Mode

Table 29-22 describes SMC C/I channel TxBD fields.

29.5.9 SMC GCI Event Register (SMCE)/
Mask Register (SMCM)

The SMCE generates interrupts and reports events recognized by the SMC channel. When
an event is recognized, the SMC sets its corresponding SMCE bit. SMCE bits are cleared
by writing ones; writing zeros has no effect. SMCM has the same bit format as SMCE.
Setting an SMCM bit enables, and clearing an SMCM bit disables, the corresponding
interrupt Unmasked bits must be cleared before the CP clears the internal interrupt request
to the CP interrupt controller (CPIC). Figure 29-20 shows the SMCE/SMCM register
format.

Table 29-23 describes SMCE/SMCM fields.

Table 29-22. SMC C/I Channel TxBD Field Descriptions

Bits Name Description

0 R Ready.
0 Cleared by the CP after transmission to indicate that the BD is available to the core.
1 Set by the core when data associated with this BD is ready for transmission.

1–7 — Reserved, should be cleared.

8–13 C/I Data Command/indication data bits. For C/I channel 0, bits 10–13 hold the 4-bit data field (bits 8 and 9
should be written with zeros). For C/I channel 1, bits 8–13 contain the 6-bit data field.

14–15 — Reserved, should be cleared.

Bit 0 1 2 3 4 5 6 7

Field — CTXB CRXB MTXB MRXB

Reset 0000_0000

R/W R/W

Address 0xA86 (SMCE1), 0xA96 (SMCE2)/ 0xA8A (SMCM1), 0xA9A (SMCM2)

Figure 29-20. SMC GCI Event Register (SMCE)/Mask Register (SMCM)

Table 29-23. SMCE/SMCM Field Descriptions

Bits Name Description

0–3 — Reserved, should be cleared.

4 CTXB C/I channel buffer transmitted. Set when the C/I transmit buffer becomes empty.

5 CRXB C/I channel buffer received. Set when the C/I receive buffer becomes full.

6 MTXB Monitor channel buffer transmitted. Set when the monitor transmit buffer becomes empty.

7 MRXB Monitor channel buffer received. Set when the monitor receive buffer becomes full.

MPC855T User’s Manual

SMC in GCI Mode

Chapter 30. Serial Peripheral Interface (SPI)

Chapter 30
Serial Peripheral Interface (SPI)
The serial peripheral interface (SPI) allows the MPC855T to exchange data between other
MPC855T chips, the MC68360, the MC68302, the M68HC11 and M68HC05
microcontroller families, and peripheral devices such as EEPROMs, real-time clocks, A/D
converters, and ISDN devices.

The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire
interface (receive, transmit, clock and slave select). The SPI block consists of transmitter
and receiver sections, an independent baud rate generator, and a control unit. The
transmitter and receiver sections use the same clock, which is derived from the SPI baud
rate generator in master mode and generated externally in slave mode. During an SPI
transfer, data is sent and received simultaneously.

Because the SPI receiver and transmitter are double-buffered, as shown in Figure 30-1, the
effective FIFO size (latency) is 2 characters. The SPI’s msb is shifted out first. When the
SPI is disabled in the SPI mode register (SPMODE[EN] = 0), it consumes little power.

Figure 30-1. SPI Block Diagram

SPI Mode Register Transmit_Register Receive_Register

Counter Shift_Register

SPIBRGPins Interface BRGCLK

SPIMOSISPISEL SPIMISO SPICLK

TxDRxD IN_CLK

IMB Peripheral Bus

MPC855T User’s Manual

Features

30.1 Features
The following is a list of the SPI’s main features:

• Four-signal interface (SPIMOSI, SPIMISO, SPICLK, and SPISEL)
• Full-duplex operation
• Works with data characters from 4 to 16 bits long
• Supports back-to-back character transmission and reception
• Master or slave SPI modes supported
• Multimaster environment support
• Continuous transfer mode for autoscanning of a peripheral
• Supports maximum clock rates of 6.25 MHz in master mode and12.5 MHz in slave

mode, assuming a 25-MHz system clock
• Independent programmable baud rate generator
• Programmable clock phase and polarity
• Open-drain outputs support multimaster configuration
• Local loopback capability for testing

30.2 SPI Clocking and Signal Functions
The SPI can be configured as a slave or as a master in single- or multiple-master
environments. The master SPI generates the transfer clock SPICLK using the SPI baud rate
generator (BRG). The SPI BRG takes its input from BRGCLK, which is generated in the
MPC855T clock synthesizer.

SPICLK is a gated clock, active only during data transfers. Therefore, SPI clock rates can
be very high, up to BRGCLK/4 in master mode or BRGCLK/2 in slave mode. Note,
however, that this high clock rate can be supported only over the period of a single
character, if messages consist of multiple back-to-back characters, operation becomes
limited by CPM performance, and thus the clock rate should be adjusted down accordingly.
CPM bandwidth required by the SPI channel should be calculated as the maximum rate that
back-to-back characters must be transmitted and received. Four combinations of SPICLK
phase and polarity can be configured with SPMODE[CI, CP]. SPI signals can also be
configured as open-drain to support a multimaster configuration in which a shared SPI
signal is driven by the MPC855T or an external SPI device.

The SPI master-in slave-out SPIMISO signal acts as an input for master devices and as an
output for slave devices. Conversely, the master-out slave-in SPIMOSI signal is an output
for master devices and an input for slave devices. The dual functionality of these signals
allows the SPIs in a multimaster environment to communicate with one another using a
common hardware configuration.

Chapter 30. Serial Peripheral Interface (SPI)

Configuring the SPI Controller

• When the SPI is a master, SPICLK is the clock output signal that shifts received data
in from SPIMISO and transmitted data out to SPIMOSI. SPI masters must output a
slave select signal to enable SPI slave devices by using a separate general-purpose
I/O signal. Assertion of an SPI’s SPISEL, while it is in master mode, causes an error.

• When the SPI is a slave, SPICLK is the clock input that shifts received data in from
SPIMOSI and transmitted data out through SPIMISO. SPISEL is the enable input to
the SPI slave.

• In a multimaster environment, SPISEL (always an input) is also used to detect when
more than one master is operating, which is an error condition.

As described in Chapter 33, “Parallel I/O Ports,” SPIMISO, SPIMOSI, SPICLK, and
SPISEL are multiplexed with port B[28–31] signals, respectively. They are configured as
SPI signals through the port B signal assignment register (PBPAR) and the Port B data
direction register (PBDIR), specifically by setting PBPAR[DDn] and PBDIR[DRn].

30.3 Configuring the SPI Controller
The SPI can be programmed to work in a single- or multiple-master environment. This
section describes SPI master and slave operation in a single-master configuration and then
discusses the multi-master environment.

SPI transmission and reception will always be enabled simultaneously. If the transmit or
receive function is not needed, the user can point the associated channel of a non-ready
TxBD or RxBD, and simply ignore the resultant Tx underrun or Rx busy errors.

30.3.1 The SPI as a Master Device

In master mode, the SPI sends a message to the slave peripheral, which sends back a
simultaneous reply. A single master MPC855T with multiple slaves can use
general-purpose parallel I/O signals to selectively enable slaves, as shown in Figure 30-2.
To eliminate the multimaster error in a single-master environment, the master’s SPISEL
input can be forced inactive by selecting port B[31] for general-purpose I/O
(PBPAR[DD31] = 0).

MPC855T User’s Manual

Configuring the SPI Controller

Figure 30-2. Single-Master/Multi-Slave Configuration

To start exchanging data, the core writes the data to be sent into a buffer, configures a TxBD
with TxBD[R] set, and configures one or more RxBDs. The core then sets SPCOM[STR]
in the SPI command register to start sending data, which starts once the SDMA channel
loads the Tx FIFO with data.

The SPI then generates programmable clock pulses on SPICLK for each character and
simultaneously shifts Tx data out on SPIMOSI and Rx data in on SPIMISO. Received data
is written into a Rx buffer using the next available RxBD. The SPI keeps sending and
receiving characters until the whole buffer is sent or an error occurs. The CPM then clears
TxBD[R] and RxBD[E] and issues a maskable interrupt to the CPM interrupt controller
(CPIC).

When multiple TxBDs are ready, TxBD[L] determines whether the SPI keeps transmitting
without SPCOM[STR] being set again. If the current TxBD[L] is cleared, the next TxBD
is processed after data from the current buffer is sent. Typically there is no delay on
SPIMOSI between buffers. If the current TxBD[L] is set, sending stops after the current
buffer is sent. In addition, the RxBD is closed after transmission stops, even if the Rx buffer
is not full; therefore, Rx buffers need not be the same length as Tx buffers.

SPIMOSI

SPIMISO

SPICLK

SPISEL

Slave 0

SPIMISO

SPICLK

SPISEL

Slave 1

Slave 2

Master SPI

SPIMOSI

SPIMISO

SPICLK

SPISEL

SPIMOSI

The SPISEL

SPICLK

SPIMISO

SPIMOSI

decoder can be
either internal or
external logic.

MPC855T

Chapter 30. Serial Peripheral Interface (SPI)

Configuring the SPI Controller

30.3.2 The SPI as a Slave Device

In slave mode, the SPI receives messages from an SPI master and sends a simultaneous
reply. The slave’s SPISEL must be asserted before Rx clocks are recognized; once SPISEL
is asserted, SPICLK becomes an input from the master to the slave. SPICLK can be any
frequency from DC to BRGCLK/2 (12.5 MHz for a 25-MHz system).

To prepare for data transfers, the slave’s core writes data to be sent into a buffer, configures
a TxBD with TxBD[R] set, and configures one or more RxBDs. The core then sets
SPCOM[STR] to activate the SPI. Once SPISEL is asserted, the slave shifts data out from
SPIMISO and in through SPIMOSI. A maskable interrupt is issued when a full buffer
finishes receiving and sending or after an error. The SPI uses successive RxBDs in the table
to continue reception until it runs out of Rx buffers or SPISEL is negated.

Transmission continues until no more data is available or SPISEL is negated. If it is negated
before all data is sent, it stops but the TxBD stays open. Transmission continues once
SPISEL is reasserted and SPICLK begins toggling. After the characters in the buffer are
sent, the SPI sends ones as long as SPISEL remains asserted.

30.3.3 The SPI in Multi-master Operation

The SPI can operate in a multimaster environment in which SPI devices are connected to
the same bus. In this configuration, the SPIMOSI, SPIMISO, and SPICLK signals of all
SPIs are shared; the SPISEL inputs are connected separately, as shown in Figure 30-3. Only
one SPI device can act as master at a time—all others must be slaves. When an SPI is
configured as a master and its SPISEL input is asserted, a multimaster error occurs because
more than one SPI device is a bus master. The SPI sets SPIE[MME] in the SPI event register
and a maskable interrupt is issued to the core. It also disables SPI operation and the output
drivers of SPI signals. The core must clear SPMODE[EN] before the SPI is used again.
After correcting the problems, clear SPIE[MME] and reenable the SPI.

MPC855T User’s Manual

Configuring the SPI Controller

Figure 30-3. Multimaster Configuration

SPIMISO
SPIMOSI

SELOUT0
SPISEL
SPICLK

SELOUT3
SELOUT1

SPI #2

SPIMISO
SPIMOSI

SELOUT1
SPISEL
SPICLK

SELOUT3
SELOUT2

SPIMISO
SPIMOSI

SPI #1

SELOUT0
SPISEL
SPICLK

SELOUT3
SELOUT2

SPI #0

Notes:
• All signals are open-drain
• For a multi-master system with more than two masters, SPISEL and SPIE[MME]

• It is the responsibility of software to arbitrate for the SPI bus (with token passing, for example)
will not detect all possible conflicts

• SELOUTx signals are implemented in software with general-purpose I/O signals

SP
IS

EL
1

SP
IS

EL
0

SP
IS

EL
3

SP
IS

EL
2

SPIMISO
SPIMOSI

SELOUT0
SPISEL
SPICLK

SELOUT2
SELOUT1

SPI #3

MPC855T

MPC855T

MPC855T

MPC855T

Chapter 30. Serial Peripheral Interface (SPI)

SPI Registers

30.4 SPI Registers
The following sections describe the registers used in configuring and operating the SPI.

30.4.1 SPI Mode Register (SPMODE)

The SPI mode register (SPMODE), shown in Figure 30-4, controls both the SPI operation
mode and clock source.

This register is affected by HRESET and SRESET. Table 30-1 describes the SPMODE
fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — LOOP CI CP DIV16 REV M/S EN LEN PM

Reset 0000_00 — 0_0000_0000

R/W R/W

Addr 0xAA0

Figure 30-4. SPI Mode Register (SPMODE)

Table 30-1. SPMODE Field Descriptions

Bits Name Description

0 — Reserved, should be cleared.

1 LOOP Loop mode. Enables local loopback operation.
0 Normal operation.
1 Loopback mode. The transmitter output is internally connected to the receiver input. The receiver

and transmitter operate normally, except that received data is ignored.

2 CI Clock invert. Inverts SPI clock polarity. See Figure 30-5 and Figure 30-6.
0 The inactive state of SPICLK is low.
1 The inactive state of SPICLK is high.

3 CP Clock phase. Selects the transfer format. See Figure 30-5 and Figure 30-6.
0 SPICLK starts toggling at the middle of the data transfer.
1 SPICLK starts toggling at the beginning of the data transfer.

4 DIV16 Divide by 16. Selects the clock source for the SPI baud rate generator when configured as an SPI
master. In slave mode, SPICLK is the clock source.
0 BRGCLK is the input to the SPI BRG.
1 BRGCLK/16 is the input to the SPI BRG.

5 REV Reverse data. Determines the receive and transmit character bit order.
0 Reverse data—lsb of the character sent and received first.
1 Normal operation—msb of the character sent and received first.

6 M/S Master/slave. Selects master or slave mode.
0 The SPI is a slave.
1 The SPI is a master.
Note that master/slave mode is undefined at reset.

MPC855T User’s Manual

SPI Registers

30.4.1.1 SPI Transfers with Different Clocking Modes

Figure 30-5 shows the SPI transfer format in which SPICLK starts toggling in the middle
of the transfer (SPMODE[CP] = 0).

Figure 30-5. SPI Transfer Format with SPMODE[CP] = 0

Figure 30-6 shows the SPI transfer format in which SPICLK starts toggling at the
beginning of the transfer (SPMODE[CP] = 1).

7 EN Enable SPI. Do not change other SPMODE bits when EN is set.
0 The SPI is disabled. The SPI is in a reset state and consumes minimal power. The SPI BRG is not

functioning and the input clock is disabled.
1 The SPI is enabled.

8–11 LEN Character length in bits per character. Must be between 0011 (4 bits) and 1111 (16 bits). A value less
than 4 causes erratic behavior. If the value is not greater than a byte, every byte in memory holds LEN
valid bits. If the value is greater than a byte, every half-word holds LEN valid bits. See Section 30.4.1.2,
“SPI Examples with Different SPMODE[LEN] Values.”

12–15 PM Prescale modulus select. Specifies the divide ratio of the prescale divider in the SPI clock generator.
BRGCLK is divided by 4 * ([PM0–PM3] + 1), a range from 4 to 64. The clock has a 50% duty cycle.

Table 30-1. SPMODE Field Descriptions (continued)

Bits Name Description

SPICLK

SPICLK

SPIMOSI

SPISEL

(From Master)

SPIMISO
(From Slave)

(CI = 0)

(CI = 1)

NOTE: Q = Undefined Signal.

msb lsb

msb Qlsb

Chapter 30. Serial Peripheral Interface (SPI)

SPI Registers

Figure 30-6. SPI Transfer Format with SPMODE[CP] = 1

30.4.1.2 SPI Examples with Different SPMODE[LEN] Values

The examples below show how SPMODE[LEN] is used to determine character length. To
help map the process, the conventions shown in Table 30-2 are used in the examples.

For all examples below, assume the memory contains the following binary image:
msb ghij_klmn__opqr_stuv lsb

Example 1
with LEN=4 (data size=5), the following data is selected:

msb xxxj_klmn__xxxr_stuv lsb

with REV=0, the order of the string appearing on the line is:
first nmlk_j__vuts_r last

with REV=1, the order of the string appearing on the line is:
first j_klmn__r_stuv last

Example 2
with LEN=7 (data size=8), the following data is selected:

msb ghij_klmn__opqr_stuv lsb

Table 30-2. Example Conventions

Convention Description

g–v Binary symbols

x Deleted bit

__ 1

1 Both __ and _ are used to aid readability.

Original byte boundary

_ 1 Original 4-bit boundary.

SPICLK

SPICLK

SPIMOSI

SPISEL

(From Master)

SPIMISO
(From Slave)

(CI = 0)

(CI = 1)

NOTE: Q = Undefined Signal.

msb lsb

lsbQ msb

MPC855T User’s Manual

SPI Registers

with REV=0, the string transmitted is:
first nmlk_jihg__vuts_rqpo last

with REV=1, the string is transmitted:
first ghij_klmn__opqr_stuv last

Example 3
with LEN=0xC (data size=13), the following data is selected:

msb ghij_klmn__xxxr_stuv lsb

with REV=0, the string transmitted:
first nmlk_jihg__vuts_r last

with REV=1, the string is transmitted:
first ghij_klmn__r_stuv last

30.4.2 SPI Event/Mask Registers (SPIE/SPIM)

The SPI event register (SPIE) generates interrupts and reports events recognized by the SPI.
When an event is recognized, the SPI sets the corresponding SPIE bit. Clear SPIE bits by
writing a 1—writing 0 has no effect. Setting a bit in the SPI mask register (SPIM) enables
and clearing a bit masks the corresponding interrupt. Unmasked SPIE bits must be cleared
before the CPM clears internal interrupt requests. Figure 30-7 shows both registers.

These registers are affected by HRESET and SRESET. Table 30-3 describes the
SPIE/SPIM fields.

Bit 0 1 2 3 4 5 6 7

Field — MME TXE — BSY TXB RXB

Reset 0

R/W R/W

Addr 0xAA6 (SPIE); 0xAAA (SPIM)

Figure 30-7. SPI Event/Mask Registers (SPIE/SPIM)

Table 30-3. SPIE/SPIM Field Descriptions

Bits Name Description

0–1 — Reserved, should be cleared.

2 MME Multimaster error. Set when SPISEL is asserted externally while the SPI is in master mode.

3 TXE Tx error. Set when an error occurs during transmission.

4 — Reserved, should be cleared.

5 BSY Busy. Set after the first character is received but discarded because no Rx buffer is available.

Chapter 30. Serial Peripheral Interface (SPI)

SPI Parameter RAM

30.4.3 SPI Command Register (SPCOM)

The SPI command register (SPCOM), shown in Figure 30-8, is used to start SPI operation.

This register is affected by HRESET and SRESET. Table 30-4 describes the SPCOM fields.

30.5 SPI Parameter RAM
The SPI parameter RAM area begins at the SPI base address. It is similar to the SCC
general-purpose parameter RAM. Some values must be user-initialized before the SPI is
enabled; the CPM initializes the others. Once initialized, parameter RAM values do not
usually need to be accessed. They should be changed only when the SPI is inactive.
Table 30-5 shows the memory map of the SPI parameter RAM.

6 TXB Tx buffer. Set when the Tx data of the last character in the buffer is written to the Tx FIFO. Wait two
character times to be sure data is completely sent over the transmit signal.

7 RXB Rx buffer. Set after the last character is written to the Rx buffer and the BD is closed.

Bit 0 1 2 3 4 5 6 7

Field STR —

Reset 0 0

R/W R/W

Addr 0xAAD

Figure 30-8. SPI Command Register (SPCOM)

Table 30-4. SPCOM Field Descriptions

Bits Name Description

0 STR Start transmit. For an SPI master, setting STR causes the SPI to start transferring data to and from the
Tx/Rx buffers if they are prepared. For a slave, setting STR when the SPI is idle causes it to load the Tx
data register from the SPI Tx buffer and start sending with the next SPICLK after SPISEL is asserted.
STR is cleared automatically after one system clock cycle.

1–7 — Reserved and should be cleared.

Table 30-5. SPI Parameter RAM Memory Map

Offset 1 Name Width Description

0x00 RBASE Hword Rx/Tx BD table base address. Indicate where the BD tables begin in the dual-port RAM.
Setting Rx/TxBD[W] in the last BD in each BD table determines how many BDs are
allocated for the Tx and Rx sections of the SPI. Initialize RBASE/TBASE before enabling
the SPI. Furthermore, do not configure BD tables of the SPI to overlap any other active
controller’s parameter RAM.
RBASE and TBASE should be divisible by eight.

0x02 TBASE Hword

Table 30-3. SPIE/SPIM Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

SPI Parameter RAM

0x04 RFCR Byte Rx/Tx function code. Contains the value to appear on AT[1-3] when the associated SDMA
channel accesses memory. Also controls byte ordering for the transfers. See
Section 30.5.1, “Receive/Transmit Function Code Registers (RFCR/TFCR).”0x05 TFCR Byte

0x06 MRBLR Hword Maximum receive buffer length. The SPI has one MRBLR entry to define the maximum
number of bytes the MPC855T writes to a Rx buffer before moving to the next buffer. The
MPC855T can write fewer bytes than MRBLR if an error or end-of-frame occurs, but never
exceeds the MRBLR value. User-supplied buffers should be no smaller than MRBLR.
Tx buffers are unaffected by MRBLR and can have varying lengths; the number of bytes
to be sent is programmed in TxBD[Data Length].
MRBLR is not intended to be changed while the SPI is operating. However it can be
changed in a single bus cycle with one 16-bit move (not two 8-bit bus cycles
back-to-back). The change takes effect when the CPM moves control to the next RxBD.
To guarantee the exact RxBD on which the change occurs, change MRBLR only while
the SPI receiver is disabled. MRBLR should be greater than zero; it should be an even
number if the character length of the data exceeds 8 bits.

0x08 RSTATE Word Rx internal state. Reserved for CPM use.

0x0C — Word The Rx internal data pointer 2 is updated by the SDMA channels to show the next address
in the buffer to be accessed.

0x10 RBPTR Hword RxBD pointer. Points to the current Rx BD being processed or to the next BD to be
serviced when idle. After a reset or when the end of the BD table is reached, the CPM
initializes RBPTR to the RBASE value. Most applications should not modify RBPTR, but
it can be updated when the receiver is disabled or when no Rx buffer is in use.

0x12 — Hword The Rx internal byte count2 is a down-count value that is initialized with the MRBLR value
and decremented with every byte the SDMA channels write.

0x14 — Word Rx temp. Reserved for CPM use.

0x18 TSTATE Word Tx internal state. Reserved for CPM use.

0x1C — Word The Tx internal data pointer2 is updated by the SDMA channels to show the next address
in the buffer to be accessed.

0x20 TBPTR Hword TxBD pointer. Points to the current Tx BD during frame transmission or the next BD to be
processed when idle. After reset or when the end of the Tx BD table is reached, the CPM
initializes TBPTR to the TBASE value. Most applications do not need to modify TBPTR,
but it can be updated when the transmitter is disabled or when no Tx buffer is in use.

0x22 — Hword The Tx internal byte count2 is a down-count value initialized with TxBD[Data Length]and
decremented with every byte read by the SDMA channels.

0x24 — Word Tx temp. Reserved for CPM use.

0x28 -
0x2F

— — Used during I2C/SPI relocation, see Section 18.6.3, “Parameter RAM.

Note: The user must initialize only items in bold.

1 As programmed in SPI_BASE. The default value is IMMR + 0x3D80. See Section 18.6.3, “Parameter RAM.”
2 Normally, these parameters need not be accessed. They are listed to help experienced users in debugging.

Table 30-5. SPI Parameter RAM Memory Map (continued)

Offset 1 Name Width Description

Chapter 30. Serial Peripheral Interface (SPI)

SPI Commands

30.5.1 Receive/Transmit Function Code Registers
 (RFCR/TFCR)

Figure 30-9 shows the fields in the receive/transmit function code registers (RFCR/TFCR)

Table 30-6 describes the RFCR/TFCR fields.

30.6 SPI Commands
Table 30-7 lists transmit/receive commands sent to the CPM command register (CPCR).

Bit 0 1 2 3 4 5 6 7

Field — BO AT[1–3]

Reset 0000_0000

R/W R/W

Addr SPI Base + 04 (RFCR)/SPI Base + 05 (TFCR)

Figure 30-9. Receive/Transmit Function Code Registers (RFCR/TFCR)

Table 30-6. RFCR/TFCR Field Descriptions

Bits Name Description

0– — Reserved, should be cleared.

3–4 BO Byte ordering. Set BO to select the required byte ordering for the buffer. If BO is changed on-the-fly, it
takes effect at the beginning of the next frame or BD. See Appendix A, “Byte Ordering.”
00 Reserved
01 Modified little-endian.
1x Big-endian or true little-endian.

5–7 AT[1–3] Address type 1–3. Contains the user-defined function code value used during the SDMA channel
memory access. AT0 is always driven high to identify this channel access as a DMA-type access.

Table 30-7. SPI Commands

Command Description

INIT TX
PARAMETERS

Initializes all transmit parameters in the parameter RAM to their reset state and should be issued only
when the transmitter is disabled. The INIT TX AND RX PARAMETERS command can also be used to reset
both the Tx and Rx parameters.

CLOSE RXBD Forces the SPI controller to close the current RxBD and use the next BD for subsequently received data.
If the controller is not receiving data, no action is taken. Use this command to extract data from a partially
full buffer.

INIT RX
PARAMETERS

Initializes all receive parameters in the parameter RAM to their reset state. Should be issued only when
the receiver is disabled. The INIT TX AND RX PARAMETERS command can also be used to reset both the Tx
and Rx parameters.

MPC855T User’s Manual

The SPI Buffer Descriptor (BD) Table

30.7 The SPI Buffer Descriptor (BD) Table
As shown in Figure 30-10, buffer descriptors (BDs) are organized into separate Rx and Tx
BD tables in dual-port RAM. The tables have the same basic configuration as the SCC and
SMCs and form circular queues that determine the order buffers are transferred. The CPM
uses BDs to confirm reception and transmission or to indicate error conditions so that the
core knows buffers have been serviced. The buffers themselves can be placed in external
memory or in any unused parameter area of the dual-port RAM.

Figure 30-10. SPI Memory Structure

30.7.1 SPI Buffer Descriptors (BDs)

Receive and transmit BDs report information about each buffer transferred and whether a
maskable interrupt should be generated. Each 64-bit BD, shown in Figure 30-11 and
Figure 30-12, has the following structure:

• The half word at offset + 0 contains status and control bits. The CPM updates the
status bits after the buffer is sent or received.

• The half word at offset + 2 contains the data length (in bytes) that is sent or received.

— For an RxBD, this is the number of octets the CPM writes into this RxBD’s
buffer once the BD closes. The CPM updates this field after the received data is
placed into the buffer. Memory allocated for this buffer should be no smaller than
MRBLR.

— For a TxBD, this is the number of octets the CPM should transmit from its buffer.
Normally, this value should be greater than zero. If the character length is more
than 8 bits, the data length should be even. For example, to send three characters
of 8-bit data the data length field should be initialized to 3. However, to send
three characters of 9-bit data, the data length field should be initialized to 6 since
the three 9-bit data fields occupy three half-words in memory. The CPM never
modifies this field.

Frame Status

Data Length

Buffer Pointer

Frame Status

Data Length

Buffer Pointer

Tx Buffer

Pointer to SPI
RxBD Table Rx Buffer

Dual-Port RAM External Memory

TxBD Table

RxBD Table

Tx Buffer

Pointer to SPI
TxBD Table

Chapter 30. Serial Peripheral Interface (SPI)

The SPI Buffer Descriptor (BD) Table

• The word at offset + 4 points to the beginning of the buffer.

— For an RxBD, the pointer must be even and can point to internal or external
memory.

— For a TxBD, the pointer can be even or odd, unless the character exceeds 8 bits,
for which it must be even. The buffer can be in internal or external memory.

30.7.1.1 SPI Receive BD (RxBD)

The CPM uses RxBDs to report on each received buffer. It closes the current buffer,
generates a maskable interrupt, and starts receiving data in the next buffer once the current
buffer is full. The CPM also closes the buffer when the SPI is configured as a slave and
SPISEL is negated, indicating that reception stopped. The core should write RxBD bits
before the SPI is enabled. The format of an RxBD is shown in Figure 30-11.

Table 30-8 describes the RxBD status and control fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E — W I L — CM — OV ME

Offset + 2 Data Length

Offset + 4 Rx Buffer Pointer

Offset + 6

Figure 30-11. SPI Receive BD (RxBD)

Table 30-8. SPI RxBD Status and Control Field Descriptions

Bits Name Description

0 E Empty.
0 The buffer is full or stopped receiving because of an error. The core can examine or write to any fields

of this RxBD, but the CPM does not use this BD while E = 0.
1 The buffer is empty or reception is in progress. The CPM owns this RxBD and its buffer. Once E is set,

the core should not write any fields of this RxBD.

1 — Reserved, should be cleared.

2 W Wrap (last BD in table).
0 Not the last BD in the RxBD table.
1 Last BD in the RxBD table. After this buffer is used, the CPM receives incoming data using the BD

pointed to by RBASE (top of the table). The number of BDs in this table is determined only by the W bit.

3 I Interrupt.
0 No interrupt is generated after this buffer is filled.
1 SPIE[RXB] is set when this buffer is full, indicating the need for the core to process the buffer.

SPIE[RXB] causes an interrupt if not masked.

4 L Last. Updated by the SPI when the buffer is closed. In slave mode, this occurs because SPISEL was
negated. The SPI updates L after received data is placed in the buffer.
0 This buffer does not contain the last character of the message.
1 This buffer contains the last character of the message.

5 — Reserved, should be cleared.

MPC855T User’s Manual

The SPI Buffer Descriptor (BD) Table

30.7.1.2 SPI Transmit BD (TxBD)

Data to be sent with the SPI is sent to the CPM by arranging it in buffers referenced by
TxBDs in the TxBD table. TxBD fields should be prepared before data is sent. The format
of an TxBD is shown in Figure 30-12.

Table 30-9 describes the TxBD status and control fields.

6 CM Continuous mode. Master mode only; in slave mode, CM should be cleared.
0 Normal operation.
1 The CPM does not clear RxBD[E] after this BD is closed; the buffer is overwritten when the CPM next

accesses this BD. This allows continuous reception from an SPI slave into one buffer, which can be
used, for example, for autoscanning of a serial A/D peripheral.

7–13 — Reserved, should be cleared.

14 OV Overrun. Set when a receiver overrun occurs during reception (slave mode only). The SPI updates OV
after the received data is placed in the buffer.

15 ME Multimaster error. Set when this buffer is closed because SPISEL was asserted when the SPI was in
master mode. Indicates an arbitration problem between multiple masters on the SPI bus. The SPI
updates ME after the received data is placed in the buffer.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R — W I L — CM — UN ME

Offset + 2 Data Length

Offset + 4 Tx Buffer Pointer

Offset + 6

Figure 30-12. SPI Transmit BD (TxBD)

Table 30-9. SPI TxBD Status and Control Field Descriptions

Bits Name Description

0 R Ready.
0 The buffer is not ready to be sent. This BD or its buffer can be modified. The CPM clears R (unless

RxBD[CM] is set) after the buffer is sent (unless RxBD[CM] is set) or an error occurs.
1 The buffer is ready for transmission or is being sent. The BD cannot be modified once R is set.

1 — Reserved, should be cleared.

2 W Wrap (last BD in TxBD table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CPM receives incoming data using the BD pointed

to by TBASE (top of the table). The number of BDs in this table is determined only by the W bit.

3 I Interrupt.
0 No interrupt is generated after this buffer is processed if an error does not occur.
1 SPIE[TXB] or SPIE[TXE] are set when this buffer is processed and causes interrupts if not masked.
Note that this bit does not mask SPIE[TXE].

Table 30-8. SPI RxBD Status and Control Field Descriptions (continued)

Bits Name Description

Chapter 30. Serial Peripheral Interface (SPI)

SPI Master Programming Example

30.8 SPI Master Programming Example
The following sequence initializes the SPI to run at a high speed in master mode:

1. Configure port B to enable SPIMISO, SPIMOSI, and SPICLK. Set
PBPAR[28, 29,30] and PBDIR[28, 29, 30], then clear PBODR[28, 29, 30].

For multimaster operation, connect the internal SPISEL input to the SPI by setting
PBPAR[31] and PBDIR[31] and by clearing PBODR[31].

2. Configure a parallel I/O signal to operate as the SPI select output signal if needed.
If PB156 is chosen, clear PBODR[156] and PBPAR[156] and set PBDIR[156].

3. Write RBASE and TBASE in the SPI parameter RAM to point to the RxBD and
TxBD tables in the dual-port RAM. Assuming one RxBD followed by one TxBD at
the beginning of the dual-port RAM, write RBASE with 0x0000 and TBASE with
0x0008.

4. Execute the INIT RX AND TX PARAMETERS command by writing 0x0051 to CPCR.

5. Write 0x0001 to the SDCR to initialize the SDMA configuration register (SDCR).

6. Write RFCR and TFCR with 0x10 for normal operation.

7. Write MRBLR with the maximum number of bytes per Rx buffer. For this case,
assume 16 bytes, so MRBLR = 0x0010.

8. Initialize the RxBD. Assume the Rx buffer is at 0x0000_1000 in main memory.
Write 0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data Length]
(optional), and 0x0000_1000 to RxBD[Buffer Pointer].

9. Initialize the TxBD. Assume the Tx buffer is at 0x0000_2000 in main memory and
contains five 8-bit characters. Write 0xB800 to TxBD[Status and Control], 0x0005
to TxBD[Data Length], and 0x0000_2000 to TxBD[Buffer Pointer].

4 L Last.
0 This buffer does not contain the last character of the message.
1 This buffer contains the last character of the message.

5 — Reserved, should be cleared.

6 CM Continuous mode. Valid only when the SPI is in master mode. In slave mode, it should be cleared.
0 Normal operation.
1 The CPM does not clear TxBD[R] after this BD is closed, allowing the buffer to be resent automatically

when the CPM next accesses this BD.

7–13 — Reserved, should be cleared.

14 UN Underrun. Indicates that the SPI encountered a transmitter underrun condition while sending the buffer.
This error occurs only when the SPI is in slave mode. The SPI updates UN after it sends the buffer.

15 ME Multimaster error. Indicates that this buffer is closed because SPISEL was asserted when the SPI was
in master mode. An arbitration problem occurred between devices on the SPI bus. The SPI updates ME
after sending the buffer.

Table 30-9. SPI TxBD Status and Control Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

SPI Slave Programming Example

10. Write 0xFF to SPIE to clear any previous events.

11. Write 0x37 to SPIM to enable all possible SPI interrupts.

12. Write 0x0000_0020 to the CPM interrupt mask register (CIMR). This sets
CIMR[SPI] to enable SPI-generated system interrupts. The CICR should also be
initialized.

13. Write 0x0370 to SPMODE to enable normal operation (not loopback), master
mode, SPI enabled, 8-bit characters, and the fastest speed possible.

14. Clear PBDAT[156], assuming PB156 is chosen above, to constantly assert the SPI
select output signal.

15. Set SPCOM[STR] to start the transfer.

After 5 bytes are sent, the TxBD is closed because TxBD[L] is set. The RxBD is closed
when the TxBD closes.

30.9 SPI Slave Programming Example
The following is an example initialization sequence to follow when the SPI is in slave
mode. It is very similar to the SPI master example, except that SPISEL is used instead of a
general-purpose I/O signal (as shown in Figure 30-2).

1. Set PBPAR[28–31] and PBDIR[28–31] to enable SPIMISO, SPIMOSI, SPICLK,
and SPISEL, then clear PBODR[28–31].

2. Assuming one RxBD at the beginning of the dual-port RAM followed by one
TxBD, write RBASE with 0x0000 and TBASE with 0x0008 in the SPI parameter
RAM.

3. Write RFCR and TFCR with 0x10 for normal operation.
4. Execute the INIT RX AND TX PARAMETERS command by writing 0x0051 to CPCR.
5. Write 0x0001 to SDCR.
6. Set MRBLR = 0x0010 for 16 bytes, the maximum number of bytes per buffer.
7. Initialize the RxBD. Assume the Rx buffer is at 0x0000_1000 in main memory.

Write 0xB000 to RxBD[Status and Control], 0x0000 to RxBD[Data Length]
(optional), and 0x0000_1000 to RxBD[Buffer Pointer].

8. Initialize the TxBD. Assume the Tx buffer is at 0x0000_2000 in main memory and
contains five 8-bit characters. Write 0xB800 to TxBD[Status and Control], 0x0005
to TxBD[Data Length], and 0x0000_2000 to TxBD[Buffer Pointer].

9. Write 0xFF to SPIE to clear any previous events.
10. Write 0x37 to SPIM to enable all SPI interrupts.
11. Write 0x0000_0020 to CIMR (that is, set CIMR[SPI]) to allow the SPI to generate

a system interrupt. The CICR should also be initialized.

Chapter 30. Serial Peripheral Interface (SPI)

Handling Interrupts in the SPI

12. Set SPMODE to 0x0170 to enable normal operation (not loopback), slave mode,
SPI enabled, and 8-bit characters. Baud-rate generator speed is ignored in slave
mode.

13. Set SPCOM[STR] to enable the SPI to be ready once the master begins the transfer.

Note that if the master sends 3 bytes and negates SPISEL, the RxBD is closed but the TxBD
remains open. If the master sends 5 or more bytes, the TxBD is closed after the fifth byte.
If the master sends 16 bytes and negates SPISEL, the RxBD is closed without triggering a
busy error (SPIE[BSY]). If the master sends more than 16 bytes, the RxBD is closed (full)
and an SPIE[BSY] event occurs after the 17th byte is received.

30.10Handling Interrupts in the SPI
The following sequence should be followed to handle interrupts in the SPI:

1. Once an interrupt occurs, read SPIE to determine the interrupt source. Normally,
SPIE bits should be cleared at this time.

2. Process the TxBD to reuse it and the RxBD to extract the data from it. To transmit
another buffer, simply set TxBD[R], RxBD[E], and SPCOM[STR].

3. Clear the interrupt by writing a one to CISR[SPI].

4. Execute an rfi instruction.

MPC855T User’s Manual

Handling Interrupts in the SPI

Chapter 31. I2C Controller

Chapter 31
I2C Controller
The inter-integrated circuit (I2C®) controller lets the MPC855T exchange data with other
I2C devices, such as microcontrollers, EEPROMs, real-time clock devices, A/D converters,
and LCD displays. The I2C controller uses a synchronous, multimaster bus that can connect
several integrated circuits on a board. It uses two signals—serial data (SDA) and serial
clock (SCL)—to carry information between the integrated circuits connected to it.

As shown in Figure 31-1, the I2C controller consists of transmit and receive sections, an
independent baud-rate generator (BRG), and a control unit. The transmit and receive
sections use the same clock, which is derived from the I2C BRG when in master mode and
generated externally when in slave mode. Wait states are inserted during a data transfer if
SCL is held low by a slave device. In the middle of a data transfer, the master I2C controller
recognizes the need for wait states by monitoring SCL. However, the I2C controller has no
automatic time-out mechanism if the slave device does not release SCL; therefore, software
should monitor how long SCL stays low to generate bus timeouts.

Figure 31-1. I2C Controller Block Diagram

Control

Tx Data RegisterRx Data Register

Peripheral Bus

Mode Register

Shift Register Shift Register

Baud-Rate Generator SCL

SDA

MPC855T User’s Manual

I2C Features

The I2C receiver and transmitter are double-buffered, which corresponds to an effective
two-character FIFO latency. In normal operation, the msb (bit 0) is shifted out first. When
the I2C is not enabled in the I2C mode register (I2MOD[EN] = 0), it consumes little power.

31.1 I2C Features
The following is a list of the I2C controller’s main features:

• Two-signal interface (SDA on PB[27] and SCL on PB[26])
• Support for master and slave I2C operation
• Multiple-master environment support
• Continuous transfer mode for autoscanning of a peripheral
• Supports a maximum clock rate of 520 KHz (with a CPM utilization of 25%),

assuming a 25-MHz system clock.
• Independent, programmable baud-rate generator
• Supports 7-bit I2C addressing
• Open-drain output signals allow multiple master configuration
• Local loopback capability for testing

31.2 I2C Controller Clocking and Signal Functions
The I2C controller can be configured as a master or slave for the serial channel. As a master,
the controller’s BRG provides the transfer clock. The I2C BRG takes its input from the BRG
clock (BRGCLK), which is described in Section 14.3, “Clock Signals.”

SDA and SCL are bidirectional signals connected to a positive supply voltage through an
external pull-up resistor. When the bus is free, both signals are pulled high. The general I2C
master/slave configuration is shown in Figure 31-2.

Figure 31-2. I2C Master/Slave General Configuration

When the I2C controller is the master, the SCL clock output, taken directly from the I2C
BRG, shifts receive data in and transmit data out through SDA. The transmitter arbitrates
for the bus during transmission and aborts if it loses arbitration. When the I2C controller is

VDD

VDD

Master Slave

(EEPROM, for example)

SCL SCL

SDASDA

Chapter 31. I2C Controller

I2C Controller Transfers

a slave, the SCL clock input shifts data in and out through SDA. The SCL frequency can
range from DC to BRGCLK/48.

31.3 I2C Controller Transfers
To initiate a transfer, the master I2C controller sends a message specifying a read or write
request to an I2C slave. The first byte of the message consists of a 7-bit slave port address
and a R/W request bit. Note that because the R/W request follows the slave port address in
the I2C bus specification, the R/W request bit must be placed in the lsb (bit 7) unless
operating in reverse data mode; see Section 31.4.1, “I2C Mode Register (I2MOD).”

To write to a slave, the master sends a write request (R/W = 0) along with either the target
slave’s address or the general call (broadcast) address of all zeros, followed by the data to
be written. To read from a slave, the master sends a read request (R/W = 1) and the target
slave’s address. When the target slave acknowledges the read request, the transfer direction
is reversed, and the master receives the slave’s transmit buffers. If the receiver (master or
slave) does not acknowledge each byte transfer in the ninth bit frame, the transmitter signals
a transmission error event (I2ER[TXE]). An I2C transfer timing diagram is shown in
Figure 31-3.

Figure 31-3. I2C Transfer Timing

Select master or slave mode for the controller using the I2C command register
(I2COM[M/S]). Set the master’s start bit, I2COM[STR], to begin a transfer; setting a
slave’s I2COM[STR] activates the slave to wait for a transfer request from a master.

If a master or slave transmitter’s current TxBD[L] is set, transmission stops once the buffer
is sent; that is, I2COM[STR] must be set again to reactivate transfers. If TxBD[L] is zero,
once the current buffer is sent, the controller begins processing the next TxBD without
waiting for I2COM[STR] to be set again.

The following sections further detail the transfer process.

SCL

SDA Data Byte

Start Condition Stop Condition

A
C
K

7 8 94 5 61 2 3

MPC855T User’s Manual

I2C Controller Transfers

31.3.1 I2C Master Write (Slave Read)

If the MPC855T is the master, prepare the transmit buffers and BDs before initiating a
write. Initialize the first transmit data byte with the slave address and write request
(R/W = 0).

If the MPC855T is the slave target of the write, prepare receive buffers and BDs to await
the master’s request. Figure 31-4 shows the timing for a master write.

Figure 31-4. I2C Master Write Timing

A master write performed by the MPC855T occurs as follows:

1. Set the master’s I2COM[STR]. The transfer starts when the SDMA channel loads
the transmit FIFO with data and the I2C bus is not busy.

2. The I2C master generates a start condition—a high-to-low transition on SDA while
SCL is high—and the transfer clock SCL pulses for each bit shifted out on SDA. If
the master transmitter detects a multiple-master collision (by sensing a ‘0’ on SDA
while sending a ‘1’), transmission stops and the channel reverts to slave mode. A
maskable interrupt is sent to the master’s core so software can try to retransmit
later.

3. The slave acknowledges each byte and writes to its current receive buffer until a
new start or stop condition is detected.

4. After sending each byte, the master monitors the acknowledge indication. If the
slave receiver fails to acknowledge a byte, transmission stops and the master
generates a stop condition—a low-to-high transition on SDA while SCL is high.

31.3.2 I2C Loopback Testing

When in master mode, an I2C controller supports loopback operation for master write
requests. The master I2C controller simply issues a write request directed to its own address
(programmed in I2ADD). The master’s receiver monitors the transmission and reads the
transmitted data into its receive buffer. Loopback operation requires no special register
programming.

31.3.3 I2C Master Read (Slave Write)

Before initiating a master read with the MPC855T, prepare a transmit buffer of size n+1
bytes, where n is the number of bytes to be read from the slave. The first transmit byte

SDA Device Address W Data Byte

S
T
A
R
T

S
T
O
P

A
C
K

A
C
K

Note: Data and ACK are repeated n times.

Chapter 31. I2C Controller

I2C Controller Transfers

should be initialized to the slave address with R/W = 1. The next n transmit bytes are used
strictly for timing and can be left uninitialized. Configure suitable receive buffers and BDs
to receive the slave’s transmission.

If the MPC855T is the slave target of the read, prepare the I2C transmit buffers and BDs and
activate it by setting I2COM[STR]. Figure 31-5 shows the timing for a master read.

Figure 31-5. I2C Master Read Timing

A master read performed by the MPC855T occurs as follows:

1. Set the master’s I2COM[STR] to initiate the read. The transfer starts when the
SDMA channel loads the transmit FIFO with data and the I2C bus is not busy.

2. The slave detects a start condition on SDA and SCL.

3. After the first byte is shifted in, the slave compares the received data to its slave
address. If the slave is an MPC855T, the address is programmed in its I2C address
register (I2ADD).

— If a match is found and the slave is ready, then the slave acknowledges the request
and begins sending on the clock pulse after the acknowledge. If the slave is an
MPC855T, it is ready when its transmit FIFO has been loaded by the SDMA
channel (the transmit buffers and BDs have been prepared and I2COM[STR] has
been set).

— If a match is found but the slave is not ready, the read request is not
acknowledged and the transaction is aborted. If the slave is an MPC855T, a
maskable transmission error interrupt is triggered to allow software to prepare
data for transmission on the next try.

— If a mismatch occurs, the slave ignores the message and searches for a new start
condition.

4. The master acknowledges each byte sent as long as an overrun does not occur. If the
master receiver fails to acknowledge a byte, the slave aborts transmission. For a
slave MPC855T, the abort generates a maskable interrupt. A maskable interrupt is
also issued after a complete buffer is sent or after an error. If an underrun occurs, the
MPC855T slave sends ones until a stop condition is detected.

SDA Data ByteDevice Address R

S
T
O
P

S
T
A
R
T

N
O

A
C
K

A
C
K

Note: After the nth data byte, the master does not acknowledge the slave.

MPC855T User’s Manual

I2C Registers

31.3.4 I2C Multi-Master Considerations

The I2C controller supports a multi-master configuration, in which the I2C controller must
alternate between master and slave modes. The I2C controller supports this by
implementing I2C master arbitration in hardware. However, due to the nature of the I2C bus
and the implementation of the I2C controller, certain software considerations must be made.

An MPC855T I2C controller attempting a master read request could simultaneously be
targeted for an external master write (slave read). Both operations trigger the controller’s
I2CER[RXB] event, but only one operation wins the bus arbitration. To determine which
operation caused the interrupt, software must verify that its transmit operation actually
completed before assuming that the received data is the result of its read operation.

Problems could also arise if the MPC855T's I2C controller master sets up a transmit buffer
and BD for a write request, but then is the target of a read request from another master.
Without software precautions, the I2C controller responds to the other master with the
transmit buffer originally intended for its own write request. To avoid this situation, a
higher-level handshake protocol must be used. For example, a master, before reading a
slave, writes the slave with a description of the requested data (which register should be
read, for example). This operation is typical with many I2C devices.

31.4 I2C Registers
The following sections describe the I2C registers.

31.4.1 I2C Mode Register (I2MOD)

The I2C mode register, shown in Figure 31-6, controls the I2C modes and clock source.

This register is affected by HRESET and SRESET. Table 31-1 describes I2MOD bit
functions.

Bit 0 1 2 3 4 5 6 7

Field — REVD GCD FLT PDIV EN

Reset 0000_0000

R/W R/W

Addr 0x860

Figure 31-6. I2C Mode Register (I2MOD)

Chapter 31. I2C Controller

I2C Registers

31.4.2 I2C Address Register (I2ADD)

The I2C address register, shown in Figure 31-7, holds the address for this I2C port.

This register is not affected by HRESET or SRESET. Table 31-2 describes I2CADD fields.

Table 31-1. I2MOD Field Descriptions

Bits Name Description

0–1 — Reserved and should be cleared.

2 REVD Reverse data. Determines the Rx and Tx character bit order.
0 Normal operation. The msb (bit 0) of each character is sent and received first.
1 Reverse data. The lsb (bit 7) of each character is sent and received first.
Note: Clearing REVD is strongly recommended to ensure consistent bit ordering across devices.

3 GCD General call disable. Determines whether the receiver acknowledges a general call address (all zeros).
0 General call address is enabled.
1 General call address is disabled.

4 FLT Clock filter. Determines if the I2C input clock SCL is filtered to prevent spikes in a noisy environment.
0 SCL is not filtered.
1 SCL is filtered by a digital filter.

5–6 PDIV Predivider. Selects the clock division factor before it is input into the I2C BRG. The clock source for the
I2C BRG is the BRGCLK generated by the SIU.
00 BRGCLK/32
01 BRGCLK/16
10 BRGCLK/8
11 BRGCLK/4
Note: To both save power and reduce noise susceptibility, select the PDIV with the largest division factor
(slowest clock) that still meets performance requirements.

7 EN Enable I2C operation.
0 I2C is disabled. The I2C is in a reset state and consumes minimal power.
1 I2C is enabled. Do not change other I2MOD bits when EN is set.

Bit 0 1 2 3 4 5 6 7

Field SAD —

Reset Undefined

R/W R/W

Addr 0x864

Figure 31-7. I2C Address Register (I2ADD)

Table 31-2. I2ADD Field Descriptions

Bits Name Description

0–6 SAD Slave address 0–6. Holds the slave address for the I2C port.

7 — Reserved and should be cleared.

MPC855T User’s Manual

I2C Registers

31.4.3 I2C Baud Rate Generator Register (I2BRG)

The I2C baud rate generator register, shown in Figure 31-8, sets the divide ratio of the I2C
BRG.

This register is affected by HRESET but is not affected by SRESET. Table 31-3 describes
I2BRG fields.

31.4.4 I2C Event/Mask Registers (I2CER/I2CMR)

The I2C event register (I2CER) is used to generate interrupts and report events. When an
event is recognized, the I2C controller sets the corresponding I2CER bit. I2CER bits are
cleared by writing ones—writing zeros has no effect. Setting a bit in the I2C mask register
(I2CMR) enables and clearing a bit masks the corresponding interrupt. Unmasked I2CER
bits must be cleared before the CPM clears internal interrupt requests. Figure 31-9 shows
both registers.

Bit 0 1 2 3 4 5 6 7

Field DIV

Reset 1111_1111

R/W R/W

Addr 0x868

Figure 31-8. I2C Baud Rate Generator Register (I2BRG)

Table 31-3. I2BRG Field Descriptions

Bits Name Description

0–7 DIV Division ratio 0–7. Specifies the divide ratio of the BRG divider in the I2C clock generator. The output of
the prescaler is divided by 2 * ([DIV0–DIV7] + 3) and the clock has a 50% duty cycle. DIV must be
programmed to a minimum value of 3 if the digital filter is disabled and 6 if it is enabled.

Bit 0 1 2 3 4 5 6 7

Field — TXE — BSY TXB RXB

Reset 0000_0000

R/W R/W

Addr 0x870(I2CER)/0x874 (I2CMR)

Figure 31-9. I2C Event/Mask Registers (I2CER/I2CMR)

Chapter 31. I2C Controller

I2C Parameter RAM

This registers are affected by HRESET and SRESET. Table 31-4 describes the
I2CER/I2CMR fields.

31.4.5 I2C Command Register (I2COM)

The I2C command register, shown in Figure 31-10, is used to start I2C transfers and to select
master or slave mode.

This register is affected by HRESET and SRESET. Table 31-5 describes I2COM fields.

31.5 I2C Parameter RAM
The I2C controller parameter RAM area, shown in Table 31-6, is used for the general I2C
parameters. It is similar to the SCC general-purpose parameter RAM. Certain parameter
RAM values, such as the maximum receive buffer length (MRBLR), must be initialized by

Table 31-4. I2CER/I2CMR Field Descriptions

Bits Name Description

0–2 — Reserved and should be cleared.

3 TXE Tx error. Set when an error occurs during transmission.

4 — Reserved and should be cleared.

5 BSY Busy. Set after the first character is received but discarded because no Rx buffer is available.

6 TXB Tx buffer. Set when the Tx data of the last character in the buffer has been sent.

7 RXB Rx buffer. Set after the last character is written to the Rx buffer and the RxBD is closed.

Bit 0 1 2 3 4 5 6 7

Field STR — M/S

Reset 0000_0000

R/W R/W

Addr 0x86C

Figure 31-10. I2C Command Register (I2COM)

Table 31-5. I2COM Field Descriptions

Bits Name Description

0 STR Start transmit. In master mode, setting STR causes the I2C controller to start sending data from the I2C
Tx buffers if they are ready. In slave mode, setting STR when the I2C controller is idle causes it to load
the Tx data register from the current Tx buffer (if ready) and start sending when it receives an address
byte that matches the slave address with R/W = 1. STR is always read as a 0.

1–6 — Reserved and should be cleared.

7 M/S Master/slave. Configures the I2C controller to operate as a master or a slave.
0 I2C is a slave.
1 I2C is a master.

MPC855T User’s Manual

I2C Parameter RAM

the user before the I2C is enabled, while other parameters, used by the CPM, do not need
initialization. Software usually does not access parameter RAM entries once they are
initialized; they should be changed only when the I2C is inactive.

Table 31-6. I2C Parameter RAM Memory Map

Offset 1 Name Width Description

0x00 RBASE Hword Rx/TxBD table base address. Indicate where the BD tables begin in the dual-port RAM.
Setting Rx/TxBD[W] in the last BD in each BD table determines how many BDs are
allocated for the Tx and Rx sections of the I2C. Initialize RBASE/TBASE before enabling
the I2C. Furthermore, do not configure BD tables of the I2C to overlap any other active
controller’s parameter RAM.
RBASE and TBASE should be divisible by eight.

0x02 TBASE Hword

0x04 RFCR Byte Rx/Tx function code. The value to appear on AT[1–3] when the associated SDMA channel
accesses memory. Also controls the byte-ordering convention for transfers. See
Figure 31-11 and Table 31-7. 0x05 TFCR Byte

0x06 MRBLR Hword Maximum receive buffer length. Defines the maximum number of bytes the I2C receiver
writes to a receive buffer before moving to the next buffer. The receiver writes fewer bytes
to the buffer than the MRBLR value if an error or end-of-frame occurs. Receive buffers
should not be smaller than MRBLR.
Transmit buffers are unaffected by MRBLR and can vary in length; the number of bytes to
be sent is specified in TxBD[Data Length].
MRBLR is not intended to be changed while the I2C is operating. However it can be
changed in a single bus cycle with one 16-bit move (not two 8-bit bus cycles
back-to-back). The change takes effect when the CP moves control to the next RxBD. To
guarantee the exact RxBD on which the change occurs, change MRBLR only while the
I2C receiver is disabled. MRBLR should be greater than zero.

0x08 RSTATE Word Rx internal state. Reserved for CPM use.

0x0C RPTR Word Rx internal data pointer 2 is updated by the SDMA channels to show the next address in
the buffer to be accessed.

0x10 RBPTR Hword RxBD pointer. Points to the next descriptor the receiver transfers data to when it is in an
idle state or to the current descriptor during frame processing for each I2C channel. After
a reset or when the end of the descriptor table is reached, the CP initializes RBPTR to
the value in RBASE. Most applications should not write RBPTR, but it can be modified
when the receiver is disabled or when no receive buffer is used.

0x12 RCOUNT Hword Rx internal byte count 2 is a down-count value that is initialized with the MRBLR value and
decremented with every byte the SDMA channels write.

0x14 RTEMP Word Rx temp. Reserved for CPM use.

0x18 TSTATE Word Tx internal state. Reserved for CPM use.

0x1C TPTR Word Tx internal data pointer 2 is updated by the SDMA channels to show the next address in
the buffer to be accessed.

0x20 TBPTR Hword TxBD pointer. Points to the next descriptor that the transmitter transfers data from when
it is in an idle state or to the current descriptor during frame transmission. After a reset or
when the end of the descriptor table is reached, the CPM initializes TBPTR to the value
in TBASE.Most applications should not write TBPTR, but it can be modified when the
transmitter is disabled or when no transmit buffer is used.

0x22 TCOUNT Hword Tx internal byte count 2 is a down-count value initialized with TxBD[Data Length] and
decremented with every byte read by the SDMA channels.

Chapter 31. I2C Controller

I2C Commands

Figure 31-11 shows the RFCR/TFCR bit fields.

Table 31-7 describes the RFCR/TFCR bit fields.

31.6 I2C Commands
The I2C transmit and receive commands, shown in Table 31-8, are issued to the CPM
command register (CPCR).

0x24 TTEMP Word Tx temp. Reserved for CP use.

0x28-0x2F — — Used for I2C/SPI relocation, see Section 18.6.3, “Parameter RAM.

1 As programmed in I2C_BASE. The default value is IMMR + 0x3C80. See Section 18.6.3, “Parameter RAM.”
2 Normally, these parameters need not be accessed.

Bit 0 1 2 3 4 5 6 7

Field — BO AT[1–3]

Reset 0000_0000

R/W R/W

Addr I2C Base + 04 (RFCR)/I2C Base + 05 (TFCR)

Figure 31-11. I2C Function Code Registers (RFCR/TFCR)

Table 31-7. RFCR/TFCR Field Descriptions

Bits Name Description

0–2 — Reserved, should be cleared.

3–4 BO Byte ordering. Set BO to select the required byte ordering for the buffer. If BO is changed on-the-fly, it
takes effect at the beginning of the next frame (Ethernet, HDLC, and transparent) or at the beginning
of the next BD. See Appendix A, “Byte Ordering.”
00 Reserved
01 Modified little-endian.
1x Big-endian or true little-endian.

5–7 AT[1–3] Address type 1–3. Contains the user-defined function code value used during the SDMA channel
memory access. AT0 is always driven high to identify this channel access as a DMA-type access.

Table 31-8. I2C Transmit/Receive Commands

Command Description

INIT TX
PARAMETERS

Initializes all transmit parameters in the parameter RAM to their reset state. Should be issued only when
the transmitter is disabled. The INIT TX AND RX PARAMETERS command can also be used to reset both the
Tx and Rx parameters.

Table 31-6. I2C Parameter RAM Memory Map (continued)

Offset 1 Name Width Description

MPC855T User’s Manual

I2C Buffer Descriptor (BD) Tables

31.7 I2C Buffer Descriptor (BD) Tables
As shown in Figure 31-12, buffer descriptors (BDs) are organized into separate Rx and
TxBD tables in dual-port RAM. The tables have the same basic configuration as for the
SCC and SMCs and form circular queues that determine the order buffers are transferred.
The CPM uses BDs to confirm reception and transmission or to indicate error conditions so
that the core knows buffers have been serviced. The buffers themselves can be placed in
external memory or in any unused parameter area of the dual-port RAM.

Figure 31-12. I2C Memory Structure

31.7.1 I2C Buffer Descriptors (BDs)

Receive and transmit buffer descriptors report information about each buffer transferred
and whether a maskable interrupt should be generated. Each 64-bit BD, shown in
Figure 31-13 and Figure 31-14, has the following structure:

• The half word at offset + 0 contains status and control bits. The CPM updates the
status bits after the buffer is sent or received.

• The half word at offset + 2 contains the data length (in bytes) that is sent or received.

CLOSE RXBD Forces the I2C controller to close the current Rx BD and use the next BD for subsequently received data.
If the controller is not receiving data, no action is taken. Use this command to extract data from a partially
full buffer.

INIT RX
PARAMETERS

Initializes all receive parameters in the parameter RAM to their reset state. Should be issued only when
the receiver is disabled. The INIT TX AND RX PARAMETERS command can also be used to reset both the
Tx and Rx parameters.

Table 31-8. I2C Transmit/Receive Commands (continued)

Command Description

Status and Control

Data Length

Buffer Pointer

Status and Control

Data Length

Buffer Pointer

Tx Buffer

I2C RxBD Table Pointer
(RBASE)

Rx Buffer

Dual-Port RAM External Memory

TxBD Table

RxBD Table

Tx Buffer

I2C TxBD Table Pointer
(TBASE)

I2C RxBD Table

I2C TxBD Table

Chapter 31. I2C Controller

I2C Buffer Descriptor (BD) Tables

— For an RxBD, this is the number of octets the CPM writes into this RxBD’s
buffer once the descriptor closes. The CPM updates this field after the received
data is placed into the associated buffer. Memory allocated for this buffer should
be no smaller than MRBLR.

— For a TxBD, this is the number of octets the CPM should transmit from its buffer.
Normally, this value should be greater than zero. The CPM never modifies this
field.

• The word at offset + 4 points to the beginning of the buffer.

— For an RxBD, the pointer must be even and can point to internal or external
memory.

— For a TxBD, the pointer can be even or odd. The buffer can reside in internal or
external memory.

31.7.1.1 I2C Receive Buffer Descriptor (RxBD)

Using RxBDs, the CPM reports on each buffer received, closes the current buffer, generates
a maskable interrupt, and starts receiving data in the next buffer when the current one is full.
It closes the buffer when a stop or start condition is found on the I2C bus or when an overrun
error occurs. The core should write RxBD bits before the I2C controller is enabled.

Table 31-9 describes I2C RxBD status and control bits.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E — W I L — OV —

Offset + 2 Data Length

Offset + 4 RX Buffer Pointer

Offset + 6

Figure 31-13. I2C Receive Buffer Descriptor (RxBD)

Table 31-9. I2C RxBD Status and Control Bits

Bits Name Description

0 E Empty.
0 The buffer is full or stopped receiving because of an error. The core can examine or write to any fields

of this RxBD, but the CPM does not use this BD while E = 0.
1 The buffer is empty or reception is in progress. The CPM owns this RxBD and its buffer. Once E is

set, the core should not write any fields of this RxBD.

1 — Reserved and should be cleared.

2 W Wrap (last BD in table).
0 Not the last BD in the RxBD table.
1 Last BD in the RxBD table. After this buffer is used, the CPM receives incoming data using the BD

pointed to by RBASE (top of the table). The number of BDs in this table is determined only by the W
bit.

MPC855T User’s Manual

I2C Buffer Descriptor (BD) Tables

31.7.1.2 I2C Transmit Buffer Descriptor (TxBD)

Transmit data is arranged in buffers referenced by TxBDs in the TxBD table. The first word
of the TxBD, shown in Figure 31-14, contains status and control bits.

Table 31-10 describes I2C TxBD status and control bits.

3 I Interrupt.
0 No interrupt is generated after this buffer is full.
1 The I2CER[RXB] is set when the CPM fills this buffer, indicating that the core needs to process the

buffer. The RXB bit can cause an interrupt if it is enabled.

4 L Last. The I2C controller sets L.
0 This buffer does not contain the last character of the message.
1 This buffer holds the last character of the message. The I2C controller sets L after all received data

is placed into the associated buffer, or because of a stop or start condition or an overrun.

5–13 — Reserved and should be cleared.

14 OV Overrun. Set when a receiver overrun occurs during reception. The I2C controller updates this bit after
the received data is placed into the associated buffer.

15 — Reserved and should be cleared.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R — W I L S — NAK UN CL

Offset + 2 Data Length

Offset + 4 Tx Buffer Pointer

Offset + 6

Figure 31-14. I2C Transmit Buffer Descriptor (TxBD)

Table 31-10. I2C TxBD Status and Control Bits

Bits Name Description

0 R Ready.
0 The buffer is not ready to be sent. This BD or its buffer can be modified. The CPM clears R after the

buffer is sent or an error occurs.
1 The buffer is ready for transmission or is being sent. The BD cannot be modified once R is set.

1 — Reserved and should be cleared.

2 W Wrap (last BD in TxBD table).
0 Not the last BD in the table.
1 Last BD in the table. After this buffer is used, the CPM transmits data using the BD pointed to by

TBASE (top of the table). The number of BDs in this table is determined only by the W bit.

3 I Interrupt.
0 No interrupt is generated after this buffer is serviced.
1 I2CER[TXB] or I2CER[TXE] is set when the buffer is serviced. If enabled, an interrupt occurs.

Table 31-9. I2C RxBD Status and Control Bits (continued)

Bits Name Description

Chapter 31. I2C Controller

I2C Buffer Descriptor (BD) Tables

4 L Last.
0 This buffer does not contain the last character of the message.
1 This buffer contains the last character of the message. After sending this buffer, the transmitter

generates a stop condition and deactivates. (Retrigger I2COM[STR] to initiate a new transmission.)

5 S Generate start condition. Provides ability to send back-to-back messages on one I2COM[STR] trigger.
0 Do not send a start condition before the first byte of the buffer.
1 Send a start condition before the first byte of the buffer. (Used to separate messages.)
Note: If this BD is the first one in a message when I2COM[STR] is triggered, a start condition is sent
regardless of the value of TxBD[S].

6–12 — Reserved and should be cleared.

13 NAK No acknowledge. Indicates that the transmission was aborted because the last byte sent was not
acknowledged. The I2C controller updates NAK after the buffer is sent.

14 UN Underrun. Indicates that the I2C controller encountered a transmitter underrun condition while sending
the associated buffer. The I2C controller updates UN after the buffer is sent.

15 CL Collision. Indicates that transmission terminated because the transmitter was lost while arbitrating for
the bus. The I2C controller updates CL after the buffer is sent.

Table 31-10. I2C TxBD Status and Control Bits (continued)

Bits Name Description

MPC855T User’s Manual

I2C Buffer Descriptor (BD) Tables

Chapter 32. Parallel Interface Port (PIP)

Chapter 32
Parallel Interface Port (PIP)
Multiplexed through the 18-bit port B parallel I/O, the parallel interface port (PIP) allows
data to be sent to and from the MPC855T over 8 or 16 parallel data lines with two
handshake control signals. The PIP signals are grouped into two sets, PB[24–31] and
PB[14–23], allowing the PIP to be configured as an 8- or 16-bit port. When the PIP is used,
SMC2 is not available since they share registers and parameter RAM.

PIP transfers can operate in one of the three following modes:

• Handshaking I/O port. Timing attributes, such as setup time and pulse width, are
programmable. Controlled by the CP or the core. There are two handshake options
for strobed I/O:

— Two interlocked handshake signals. Supports level-sensitive handshake control
signals compatible with the advanced byte transfer mode of the P1284 protocol;
see Section 32.7.1, “Interlocked Handshake Mode.”

— Two pulsed handshake signals. Supports edge-sensitive handshakes like those
used for a Centronics interface; see Section 32.7.2, “Pulsed Handshake Mode.”

• Transparent I/O port with one strobe signal. Controlled by the CP only. See
Section 32.8, “Transparent Transfers.”

32.1 Features
The following is a list of the PIP’s main features:

• Eighteen general-purpose I/O signals
• Two handshake modes for strobed I/O
• Transparent I/O using a single strobe
• Programmable handshake timing attributes
• Supports the Centronics receiver/transmitter interface
• Supports fast connection between MPC860 family devices
• Can be controlled by the core or CP

Figure 32-1 is a block diagram of the PIP.

MPC855T User’s Manual

Core Control vs. CP Control

Figure 32-1. PIP Block Diagram

32.2 Core Control vs. CP Control
The host-control bit in the PIP configuration register PIPC[HSC] determines whether the
PIP transfer is controlled by the CP or by the core.

32.2.1 Core Control
When the PIP is controlled by the core (PIPC[HSC] = 1), only the interlocked and pulsed
handshaking modes can be used. The CP does not directly participate in the transfer, but an
Rx or Tx character event (RCH or TCH) is flagged in the event register (PIPE). The PIPE
is then masked against the PIP mask register (PIPM); unmasked events interrupt the core.

• When the PIP is configured to receive and STB is asserted on STBI (strobe-in on
PB14), PIPE[RCH] is set to indicate that a character has arrived. When software
reads the port B data register (PBDAT), the PIP asserts ACK through STBO
(strobe-out on PB15).

• When the PIP is configured to send and the core writes PBDAT, STB is driven low
on STBO (strobe-out on PB15). When the destination device drives ACK low onto
STBI (strobe-in on PB14), the PIP indicates that a character was successfully sent
by flagging PIPE[TCH].

For a core-controlled PIP, only the PIPC, PIPE, PIPM and port B registers need to be
configured or monitored. The PIP parameter RAM and buffer descriptors are not used.

32.2.2 CP Control
When the PIP is controlled by the CP (PIPC[HSC] = 0), any of the three handshake modes

Port B Signals

Peripheral Bus

Handshake

U-Bus

Control

PIP Data Register

PIP Mask Register (PIPM)

PIP Event Register (PIPE)

Port B Open Drain Register (PBODR)

Port B Pin Assignment Register (PBPAR)

Port B Data Direction (PBDIR)

Timing Parameters Register (PTPR)

PIP Configuration Register (PIPC)

Chapter 32. Parallel Interface Port (PIP)

The PIP Parameter RAM

can be used. Data is prepared by the core using PIP buffer descriptors. CP-controlled
strobed transfers are the same as core-controlled transfers described above, except reads
and writes to PBDAT are done automatically by DMA. Blocks of data can be transferred
without interrupting the core. The data block can span several linked buffers (a buffer
chain), and an entire block can be transferred without core intervention. CP-controlled
transparent transfers are described in Section 32.8, “Transparent Transfers.”

For a CP-controlled PIP:

• Initialize the PIPC and parameter RAM to configure the channel.
• Set up buffer descriptors and buffers for the DMA.
• Use PIPM and PIPE to control and monitor events reported.

32.3 The PIP Parameter RAM
The PIP remaps the SMC2 parameter RAM. The following subsections describe the PIP
parameter RAM for sending and receiving.

32.3.1 PIP Transmitter Parameter RAM

The PIP transmitter uses the parameter RAM mapping shown in Table 32-1. Certain
parameter RAM values must be initialized before the transmitter is enabled; others are
initialized or written by the CP. Most software does not need access to parameter RAM
values after initialization because activity centers around the buffer descriptors.

Table 32-1. PIP Transmitter Parameter RAM Memory Map

Offset1 Name Width Description

0x00 — Hword Reserved for receiving.

0x02 TBASE Hword PIP TxBD table base offset from the beginning of dual-port RAM. Initialize TBASE before
enabling the channel. TBASE should be divisible by 8.

0x04 PFCR Byte PIP function code. Appears on AT[1-3] when the associated SDMA channel accesses
memory. Also controls byte ordering for the transfers. See Section 32.3.1.1, “PIP Function
Code Register (PFCR).”

0x05 SMASK Byte Status mask. Controls which, if any, printer status lines are checked before each transfer.
See Section 32.3.1.2, “Status Mask Register (SMASK).”

0x06–
0x17

— — Reserved for receiving.

0x18 TSTATE Word Tx internal state.

0x1C T_PTR Word Tx internal data pointer.

0x20 TBPTR Hword TxBD pointer. Points to the current Tx BD during frame transmission or the next BD to be
processed when idle. After reset or when the end of the Tx BD table is reached, the CP
initializes TBPTR to the TBASE value. Most applications do not need to write TBPTR, but
it can be updated when the transmitter is disabled or when no Tx buffer is in use.

MPC855T User’s Manual

The PIP Parameter RAM

32.3.1.1 PIP Function Code Register (PFCR)

Figure 32-2 shows the PIP function code register (PFCR).

Table 32-2 describes the PFCR fields.

32.3.1.2 Status Mask Register (SMASK)

The status mask register (SMASK), shown in Figure 32-3, is important only if the PIP is
implementing a Centronics-type transmitter and the CP controls the transfer; see
Section 32.9, “Implementing Centronics.” When the CP is handling the DMA transfers, it
automatically checks the status lines (from a printer) and masks them against SMASK.
Unmasked signals are flagged as errors in the TxBD; see Section 32.5.1, “The PIP Tx
Buffer Descriptor (TxBD).”

0x22 T_CNT Hword Tx internal byte count.

0x24 TTEMP Word Tx temporary.

1From PIP base address. PIP base = IMMR + 0x3F80 (SMC2)

Bit 0 1 2 3 4 5 6 7

Field — BO AT[1–3]

Reset 0000_0000_0000_0000

R/W R/W

Addr PIP base + 0x04

Figure 32-2. PIP Function Code Register (PFCR)

Table 32-2. PFCR Field Descriptions

Bits Name Description

0–2 — Reserved and should be 0.

3–4 BO Byte ordering. Set BO to select the required byte ordering for the buffer. If BO is changed on-the-fly, it
takes effect at the beginning of the next frame (Ethernet, HDLC, and transparent) or at the beginning
of the next BD. See Appendix A, “Byte Ordering.”
00 Reserved
01 Modified little-endian.
1x Big-endian or true little-endian.

5–7 AT[1–3] Address type 1–3. Contains the user-defined function code value used during the SDMA channel
memory access. AT0 is always driven high to identify this channel access as a DMA-type access.

Table 32-1. PIP Transmitter Parameter RAM Memory Map (continued)

Offset1 Name Width Description

Chapter 32. Parallel Interface Port (PIP)

The PIP Parameter RAM

If the core controls the transmitter, the masking function can be performed in software by
reading the individual status signals for errors. When receiving, core software drives the
status signals using general-purpose outputs.

Table 32-3 describes the SMASK fields.

32.3.2 PIP Receiver Parameter RAM

The PIP receiver uses the parameter RAM mapping shown in Table 32-4. Certain parameter
RAM values must be initialized before the receiver is enabled; others are initialized or
written by the CP. Most software does not need access to parameter RAM values after
initialization because activity centers around the buffer descriptors.

Bit 0 1 2 3 4 5 6 7

Field 0 F PE S 0

R/W R/W

Addr PIP base + 0x05

Figure 32-3. Status Mask Register (SMASK)

Table 32-3. SMASK Field Descriptions

Bits Name Description

0–3 — Reserved. Should be 0.

4 F Fault.
0 FAULT status line is ignored.
1 FAULT status line is checked during transmission. If a fault occurs, indication is given in TxBD[F] and

a TXE event is generated in the PIPE.

5 PE Paper error.
0 PERROR status line is ignored.
1 PERROR status line is checked during transmission. If a paper error occurs, indication is given in

TxBD[PE] and a TXE event is generated in the PIPE.

6 S Select error.
0 SELECT status line is ignored.
1 SELECT status line is checked during transmission. If a select error occurs, indication is given in

TxBD[S] and a TXE event is generated in the PIPE.

7 — Reserved. Should be 0.

Table 32-4. PIP Receiver Parameter RAM Memory Map

Offset 1 Name Width Description

0x00 RBASE Hword PIP Rx BD table base offset from the beginning of dual-port RAM. Initialize
RBASE before enabling the channel. RBASE should be divisible by 8.

0x02 — Hword Reserved for transmitting.

0x04 PFCR Byte PIP function code. This value appears on AT[1-3] when the associated SDMA
channel accesses memory. Also controls byte ordering for the transfers. See
Section 32.3.1.1, “PIP Function Code Register (PFCR).”

MPC855T User’s Manual

The PIP Parameter RAM

32.3.2.1 Control Character Table, RCCM, and RCCR

The PIP receiver can recognize special control characters used when it functions in a
message-oriented environment like Centronics; see Section 32.9, “Implementing
Centronics.” Up to eight characters can be defined in the control character table. The user
can write an incoming control character to the buffer or reject it. Rejected characters are
written to the RCCR in the PIP Rx parameter RAM and reported in the maskable event
register PIPE. The rejection method allows the user to handle control characters that are not
part of the received message. The PIP receiver uses the structure shown in Figure 32-4 to
support control character recognition.

0x05 — Byte Reserved for transmitting.

0x06 MRBLR Hword Maximum receive buffer length.

0x08 RSTATE Word Rx internal state.

0x0C R_PTR Word Rx internal data pointer.

0x10 RBPTR Hword RxBD pointer. Points to the current Rx BD being processed or to the next BD to
be serviced when idle. After reset or when the end of the Rx BD table is reached,
the CP initializes RBPTR to the RBASE value. Most applications should not
modify RBPTR, but it can be updated if the receiver is disabled or if no Rx buffer
is in use.

0x12 R_CNT Hword Rx internal byte count.

0x14 RTEMP Word Rx temp.

0x18–
0x27

— — Reserved for transmitting.

0x28 MAX_SL Hword Maximum silence period. The PIP controller can be programmed to close the Rx
buffer after a period of inactivity determined by MAX_SL.The silence counter
decrements every 1,024 system clocks. If the counter reaches zero before new
data arrives, the Rx buffer closes. Clearing MAX_SL disables this function.

0x2A SL_CNT Hword Silence counter. Internal-use.

0x2C CHARACTER1 Hword Control character table.
The PIP receiver uses this 8-entry table to support control character recognition.
Each entry consists of the control character, a valid bit, and a reject bit. See
Section 32.3.2.1, “Control Character Table, RCCM, and RCCR.”

0x2E CHARACTER2 Hword

•
•
•

•
•
•

•
•
•

0x3A CHARACTER8 Hword

0x3C RCCM Hword Receive control character mask. See Section 32.3.2.1, “Control Character Table,
RCCM, and RCCR.”

0x3E RCCR Hword Receive control character register.See Section 32.3.2.1, “Control Character
Table, RCCM, and RCCR.”

1 Offset from PIP base address. PIP base = IMMR + 0x3F80 (SMC2).

Table 32-4. PIP Receiver Parameter RAM Memory Map (continued)

Offset 1 Name Width Description

Chapter 32. Parallel Interface Port (PIP)

The PIP Parameter RAM

Table 32-5 describes the control character table, RCCM, and RCCR fields.

Offset1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x2C E R — CHARACTER1

0x2E E R — CHARACTER2

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

0x3A E R — CHARACTER8

0x3C 1 1 — RCCM

0x3E — RCCR

1 From PIP base address

Figure 32-4. Control Character Table, RCCM, and RCCR

Table 32-5. Control Character Table, RCCM, and RCCR Descriptions

Offset 1

1 Offset from PIP base address. PIP base = IMMR + 0x3F80 (SMC2).

Bits Name Description

0x2C–
0x3A

0 E End of table. In tables with eight control characters, E is always 0.
0 This entry is valid.
1 The entry is not valid and is not used.

1 R Reject character.
0 The character is not rejected but is written into the Rx buffer, which is then

closed. A new buffer is opened if more data is in the message. A maskable
interrupt is generated.

1 If this character is recognized it is written to RCCR and not to the Rx buffer. A
maskable interrupt is generated. The current Rx buffer is not closed.

2–7 — Reserved

8–15 CHARACTERn Control character values 1–8. Defines control characters to be compared to the
incoming character. For characters smaller than 8 bits, the most significant bits
should be zero.

0x3C 0–1 0b11 Must be set. Used to mark the end of the control character table in case eight
characters are used. Setting these bits ensures correct operation during control
character recognition.

2–7 — Reserved

8–15 RCCM Received control character mask. Used to mask the comparison of
CHARACTERn. RCCM[8–15] correspond to the eight bits of CHARACTERn and
are decoded as follows.
0 Ignore this bit when comparing the incoming character to CHARACTERn.
1 Use this bit when comparing the incoming character to CHARACTERn.

0x3E 0–7 — Reserved

8–15 RCCR Received control character register. If the newly arrived character matches and is
rejected from the buffer (R = 1), the PIP controller writes the character into the
RCCR and generates a maskable interrupt. If the core does not process the
interrupt and read RCCR before a new control character arrives, the previous
control character is overwritten.

MPC855T User’s Manual

The PIP Registers

32.4 The PIP Registers
The PIP registers include one configuration register (PIPC), and an event register (PIPE)
with its corresponding mask register (PIPM). A timing parameters register (PTPR) allows
the user to program pulsed handshake timings. The port B registers must also be configured
for PIP operation. The following subsections describe the PIP registers.

32.4.1 PIP Configuration Register (PIPC)

The PIP configuration (PIPC) register determines all PIP options. Figure 32-5 shows the
register format.

This register is affected by HRESET but is not affected by SRESET. Table 32-6 describes
PIPC fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field STR — SACK CBSY SBSY EBSY TMOD MODL MODH HSC T/R

Reset 0000_0000_0000_0000

R/W R/W

Addr 0xAB2

Figure 32-5. PIP Configuration Register (PIPC)

Table 32-6. PIPC Field Descriptions

Bits Name Description

0 STR Start transmit. Applies when T/R = 1 (Tx operation). Setting STR causes the CP to poll the TxBD table
looking for the next TxBD in which the R-bit is set. Prepare TxBDs and buffers before setting STR. The
CP clears STR after one system clock.

1–3 — Reserved and should be cleared.

4 SACK Set acknowledge. When set, SACK asserts the receiver’s ACK output regardless of the receiver state.
SACK should be used to implement the IEEE P1284 bidirectional Centronics protocol.

5 CBSY Clear BUSY. When CBSY is set, BUSY is driven low. CBSY is automatically cleared after the PIP
negates BUSY. Set EBSY before using SBSY or CBSY. Note that PIPC[T/R] should be cleared
(receiving) if SBSY or CBSY are used.

6 SBSY Set BUSY. When SBSY is set, BUSY is driven high. SBSY is automatically cleared after the PIP asserts
BUSY. Set EBSY before using SBSY or CBSY. Note that PIPC[T/R] should be cleared (receiving) if
SBSY or CBSY are used.

7 EBSY Enable BUSY. The bit definition depends on whether T/R is set to receive or transmit. BUSY is not
affected by MODL programming if EBSY = 1.

T/R = 0 (Receiving):
0 Disable BUSY signal generation on PB31 for the receiver.
1 Enable the BUSY output on PB31. EBSY takes effect only if BUSY is configured as a PIP output

(PBPAR[31] = 0 and PBDIR[31] = 1).
T/R = 1 (Transmitting):
0 Ignore the BUSY input on PB31 for the transmitter.
1 Assertion of STB requires negation of BUSY. STB is not asserted until BUSY, input on PB31, is

negated. EBSY takes effect only if BUSY is configured as a PIP input (PBPAR[31] = PBDIR[31] = 0).

Chapter 32. Parallel Interface Port (PIP)

The PIP Registers

32.4.2 PIP Event Register (PIPE)

The PIP event (PIPE) register is used to generate interrupts and report events recognized by
the PIP controller. It shares the same address as the SMC2 event register, which cannot be
used at the same time as the PIP. Since PIP is not full duplex, the one PIPE register can
report both transmit and receive events concurrently.

When the PIP recognizes an event, it sets the corresponding event bit in the PIPE. PIPE
interrupts can be masked in the PIP mask register (PIPM). Writing ones to the PIPE bits
clears the events; writing zeros has no effect. All unmasked flags must be cleared before the
CP clears internal interrupt requests. Figure 32-6 shows the register format.

8–9 TMOD Timing mode. Used to implement a Centronics-type receiver. Valid only when T/R = 0 (Rx operation)
and MODH = 11 (pulsed handshake). For the definition of these timing modes, see Section 32.7.2.2,
“Pulsed Handshake Timing.”
00 PIP receiver timing mode 0.
01 PIP receiver timing mode 1.
10 PIP receiver timing mode 2.
11 PIP receiver timing mode 3.

10–11 MODL Mode low. Determines the mode of the PIP’s lower 8 signals, PB[24–31], which extend the PIP interface
to 16 bits. (If the PIP is 8-bit, program MODL to 0b00.)
00 Port B general-purpose I/O
01 Transparent transfer mode—controlled by the CP.
1x Mode of operation is controlled by MODH.
Note that BUSY is not affected by MODL programming if EBSY = 1.

12–13 MODH Mode high. Determines the mode of the PIP upper 10 signals, PB[14–23], which comprise the 8-bit PIP
and its control signals. Can be modified when the CP is not transferring data.
00 Port B general-purpose I/O (PIP disabled)
01 Transparent transfer mode—controlled by the CP.
10 Interlocked handshake mode—controlled by the CP or core.
11 Pulsed handshake mode—controlled CP or core.

14 HSC Host control.
0 The CP controls transfers using PIP parameter RAM, buffer descriptors, and SDMA channels.
1 PIP data transfers are controlled by the core.

15 T/R Transmit/receive. Selects transmitter or receiver operation for the PIP.
0 Receive. Data is input to the PIP.
1 Transmit. Data is output from the PIP.

Bit 0 1 2 3 4 5 6 7

Field — TXE CCR BSY RCH/TCH RXB/TXB

Reset 0

R/W R/W

Addr 0xA96

Figure 32-6. PIP Event Register (PIPE)

Table 32-6. PIPC Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

The PIP Registers

Table 32-7 describes PIPE fields.

32.4.3 PIP Mask Register

The PIP mask register (PIPM), whose layout is identical to PIPE, shares address 0xA9A
with the SMC2 mask register. Setting a PIPM bit enables the corresponding interrupt;
clearing a bit disables the interrupt. PIPM is cleared by reset.

32.4.4 PIP Timing Parameters Register (PTPR)

The PIP timing parameters register (PTPR) holds two timing parameters, TPAR1 and
TPAR2, used in the pulsed handshake modes for both sending and receiving. See
Section 32.7.2.2, “Pulsed Handshake Timing.”

Table 32-7. PIPE Field Descriptions

Bits Name Description

0–2 — Reserved. Should be cleared by writing ones.

3 TXE Transmit error. Indicates a general transmit error—the source of the specific error can be read in the
current buffer descriptor’s status and control field; see Section 32.5.1, “The PIP Tx Buffer Descriptor
(TxBD).”

4 CCR Control character received. A control character was received and stored in the received control
character register (RCCR) in the PIP parameter RAM.

5 BSY Busy. Due to a lack of buffers, the PIP did not receive, and therefore discarded, a data byte/half-word.

6 RCH/TCH Character received/transmitted. Indicates that a data character has been sent or received. Used to
generate interrupts to the core if the PIP is configured to be controlled by core software.

7 RXB/TXB Rx/Tx buffer. Under CP control, indicates that the PIP controller has closed the current buffer due to one
of the following events: the transfer byte count reaches zero (for Rx and Tx), a user-defined control
character is received and not rejected (R-bit = 0), or the programmable silence period times out.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field TPAR2 TPAR1

Reset 0

R/W R/W R/W

Addr 0xAB6

Figure 32-7. PIP Timing Parameters Register (PTPR)

Chapter 32. Parallel Interface Port (PIP)

PIP Buffer Descriptors

This register is affected by HRESET but is not affected by SRESET. Table 32-8 describes
PTPR fields.

32.4.5 The Port B Registers

The PIP uses parallel I/O port B. Figure 32-8 shows the basic operation of port B.

Figure 32-8. Port B General-Purpose I/O

The following describes the configuration of the port B registers for PIP operation; see also
Section 33.3.1, “The Port B Registers.”

• Port B assignment register (PBPAR). To use port B for PIP, clear the corresponding
PBPAR bits and configure PIPC[MODH] and PIPC[MODL]. See Section 33.3.1.4,
“Port B Pin Assignment Register (PBPAR).”

• Port B data direction register (PBDIR). Configures the data signals PBDAT as inputs
or outputs. The direction settings for the handshake signals PB14 and PB15 are
ignored. See Section 33.3.1.3, “Port B Data Direction Register (PBDIR).”

• Port B data register (PBDAT) register functions as the PIP data register when the PIP
is used. Use this register to receive or transmit PIP data when the PIP is controlled
by core software. See Section 33.3.1.2, “Port B Data Register (PBDAT).”

• Port B open-drain register. Configures the data signals PBDAT[16–31] as normal or
wired-OR. See Section 33.3.1.1, “Port B Open-Drain Register (PBODR).”

32.5 PIP Buffer Descriptors
The CP uses PIP receive and transmit buffer descriptors to manage the specific transfer of
each buffer. Each 64-bit buffer descriptor has the following structure:

Table 32-8. PTPR Field Descriptions

Bits Name Description

0–7 TPAR1 Timing parameter 1/2. Defines the number of 860 general system clocks for TPAR1/TPAR2 in
transmitter or receiver pulsed handshake mode. The value 0x00 specifies one clock; 0xFF specifies
256 clocks. For a 25-MHz system, the general system clock period is 40 ns.8–15 TPAR2

LatchBuffer

I/O Pin

Write from U-BusRead from U-Bus

DIR = Output

U-Bus

MPC855T User’s Manual

PIP Buffer Descriptors

• The half word at offset + 0 contains status and control bits.
• The half word at offset + 2 contains the data length (in bytes) that is sent or received.

— For an RxBD, this is the number of octets the CP writes into this RxBD’s buffer
once the descriptor closes. The controller writes this field after the received data
is placed into the associated buffer. Memory allocated for this buffer should be
no smaller than MRBLR.

— For a TxBD, this is the number of octets the CP should transmit from its buffer.
However, it is never modified by the CP. This value should be greater than zero.
For an 8-bit PIP, this value can be odd or even; for a 16-bit PIP, it must be even.

• The word at offset + 4 points to the beginning of the buffer.

— For an RxBD, the value must be even and can reside in internal or external
memory.

— For a TxBD, this pointer can be even or odd, unless the port size exceeds 8 bits,
for which it must be even. The buffer can reside in internal or external memory.

32.5.1 The PIP Tx Buffer Descriptor (TxBD)

The CP uses buffer descriptors (TxBDs) to confirm buffer transmission and indicate error
conditions to the core. Figure 32-9 shows the PIP TxBD.

Table 32-9 describes the PIP Tx buffer descriptor status and control field. The data length
and buffer pointer are described in Section 32.5, “PIP Buffer Descriptors,” above.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R — W I L — CM — F PE S —

Offset + 2 Data Length

Offset + 4 Tx Buffer Pointer

Offset + 6

Figure 32-9. PIP Tx Buffer Descriptor (TxBD)

Table 32-9. PIP TxBD Status and Control Field Descriptions

Bits Name Description

0 R Ready. If PIP tries to transmit a buffer that is not ready, PIPE[TXE] is flagged.
0 The buffer associated with this descriptor is not ready for transmission. This descriptor and its buffer

can be updated. The CP clears R after the buffer is sent or an error is encountered.
1 The buffer is ready for sending or is being sent. No fields of this BD can be written while R = 1.

1 — Reserved and should be cleared.

2 W Wrap (last buffer descriptor in TxBD table). The number of TxBDs in the table is determined only by the
W bit and space constraints of the dual-port RAM.
0 Not the last descriptor in the TxBD table.
1 The last BD in the TxBD table. After this BD is processed, the current TxBD pointer wraps to the top

of the TxBD table (TBASE).

Chapter 32. Parallel Interface Port (PIP)

PIP Buffer Descriptors

32.5.2 The PIP Rx Buffer Descriptor (RxBD)

Using buffer descriptors, the CP confirms reception or indicates error conditions so the core
knows which buffers have been serviced. Figure 32-10 shows the PIP RxBD.

3 I Interrupt.
0 No interrupt is generated after this buffer is serviced.
1 PIPE[TXB] is set when this buffer is serviced by the CP, which can cause an interrupt.

4 L Last.
0 Not the last buffer of the frame.
1 Last buffer of the frame.

5 — Reserved and should be cleared.

6 CM Continuous mode.
0 Normal operation.
1 The CP does not clear R after this buffer is closed, allowing the associated buffer to be resent when

the CP next accesses this BD. However, R is cleared if an error occurs during transmission.

7–11 — Reserved and should be cleared.

12 F Fault.
0 The FAULT status line has remained negated during transmission.
1 The FAULT status line has been asserted during transmission.

13 PE Paper error.
0 The PERROR status line has remained negated during transmission.
1 The PERROR status line has been asserted during transmission.

14 S Select error.
0 The SELECT status line has remained asserted during transmission.
1 The SELECT status line has been negated during transmission.

15 — Reserved and should be cleared.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E — W I C — CM SL —

Offset + 2 Data Length

Offset + 4 Rx Buffer Pointer

Offset + 6

Figure 32-10. PIP Rx Buffer Descriptor (RxBD)

Table 32-9. PIP TxBD Status and Control Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

PIP CP Commands

Table 32-10 describes the PIP RxBD status and control field. The data length and buffer
pointer are described in Section 32.5, “PIP Buffer Descriptors,” above.

32.6 PIP CP Commands
The PIP transmit and receive CP commands are the same as the corresponding SMC2
commands (same opcodes and channel number). The PIP transmit commands are described
in Table 32-11.

Table 32-10. PIP RxBD Status and Control Field Descriptions

Bits Name Description

0 E Empty.
0 The buffer associated with this descriptor is full or stopped receiving data because an error occurred.

The core can read or write any fields of this RxBD. The CP cannot use this BD while E is 0.
1 The buffer associated with this BD is empty or is receiving data. Once E is set, the core should not

write any fields of this RxBD.

1 — Reserved and should be cleared.

2 W Wrap (last buffer descriptor in RxBD table). The number of RxBDs in the table is determined only by the
W bit and space constraints of the dual-port RAM.
0 Not the last BD in the RxBD table.
1 The last BD in the RxBD table. After this BD is processed, the current RxBD pointer wraps to the top

of the RxBD table (RBASE).

3 I Interrupt.
0 No interrupt is generated after this buffer is filled.
1 PIPE[RXB] is set when the CP fills this buffer, signaling the core to process the buffer. The RXB bit

causes an interrupt if not masked.

4 C Control character
0 This buffer does not contain a control character.
1 This buffer has a user-defined control character as its last byte.

5 — Reserved and should be cleared.

6 CM Continuous mode.
0 Normal operation.
1 The E bit is not cleared by the CP after this buffer is closed, thus allowing the associated buffer to be

automatically overwritten the next time the CP processes this BD.

7 SL Silence. Indicates that the buffer has closed because the programmable silence period has timed-out.

8–15 — Reserved and should be cleared.

Table 32-11. PIP Transmit CP Commands

Command Description

STOP
TRANSMIT

Disables transmission of frames on the transmit channel. If the PIP controller receives this command
during frame transmission, transmission stops and the TBPTR is not advanced to the next BD. No new
BD is accessed and no new buffers are sent for this channel. The transmitter idles until RESTART TRANSMIT
is issued.

Chapter 32. Parallel Interface Port (PIP)

Handshaking I/O Modes

The PIP receive commands are described in Table 32-12.

32.7 Handshaking I/O Modes
In either handshaking I/O mode, interlocked or pulsed, the PIP can be configured as a
transmitter or receiver and either the CP or the core can control communications. For CP
control, BD and parameter RAM initialization is required; data is stored in the buffers using
the SDMA channels dedicated to SMC2. For core control, software interrupt routines read
and write to the PIP data register (PBDAT).

When the PIP transmits, STBO (PB15) is the STB handshake control signal and STBI
(PB14) is the ACK input. When the PIP receives, it generates ACK on STBO in response
to STB on STBI. Note that the PIP controller overrides bits 15 and 14 in the port B data
direction register (PBDIR) and PBDAT corresponding to STBO and STBI. (The open-drain
register PBODR does not apply to PB15 and PB14.)

The following subsections describe interlocked and pulsed handshake modes.

32.7.1 Interlocked Handshake Mode

The interlocked handshake mode provides a fast connection between MPC860s and can be
used for P1284-protocol advanced byte mode transfers. To connect MPC860s using this
interface, connect STBO from one 860 to the STBI of the other and connect the appropriate
data signals (either PB[23–16] or PB[31–16]).

When the PIP is transmitting, the CP loads data into the output latch when it receives a
request from the core to begin transfers. Once data is loaded, STB is asserted after a
programmable setup time. When ACK is sampled as low, data is sent, and STB is negated.
STB remains negated until new data is loaded into the output latch and ACK is negated.

RESTART
TRANSMIT

Used to begin or resume sending using the current BD pointed to by TBPTR. When the channel receives
this command after PIPC[STR] is set, it starts processing the current BD. The PIP controller expects
RESTART TRANSMIT after STOP TRANSMIT is issued, or after a transmitter error occurs.

INIT TX
PARAMETERS

Initializes all transmit parameters in the PIP parameter RAM to their reset state and should be issued only
when the transmitter is disabled.

Table 32-12. PIP Receive CP Commands

Command Description

INIT RX
PARAMETERS

Initializes all the receive parameters in the PIP parameter RAM to their reset state and should only be
issued when the receiver is disabled.

CLOSE RXBD Forces the PIP controller to close the current RxBD if it is being used and to use the next BD in the table
for subsequent data. No action is taken if the PIP controller is not receiving data.

Table 32-11. PIP Transmit CP Commands (continued)

Command Description

MPC855T User’s Manual

Handshaking I/O Modes

When the PIP is receiving, input data is latched when STB is sampled as low. ACK is
asserted and then negated after the data is removed from the input latch. Figure 32-11
shows the handshake timing of the interlocked mode.

Figure 32-11. Interlocked Handshake Mode Timing

32.7.2 Pulsed Handshake Mode

The pulsed handshake mode, shown in Figure 32-12, supports a Centronics-compatible
interface.

Transmitter
Data

Transmitter
STB

(Output Ready)

Receiver
ACK

(Input Ready)

TSetup THold

Chapter 32. Parallel Interface Port (PIP)

Handshaking I/O Modes

Figure 32-12. Pulsed Handshake Full Cycle

• When sending, the PIP generates STB when data is ready in the PIP output latch and
the previous transfer is acknowledged. The setup time and the pulse width of STB
are programmable.

• When receiving, the PIP uses STB to latch input data and ACK to acknowledge the
transfer. The timing of ACK is also programmable.

The core configures the PIP to implement a Centronics protocol by programming the PIP
configuration (PIPC) register. When the PIP is under CP control, timing attributes are set in
PTPR. Transmit and receive errors are reported through BDs. For information about
supporting a Centronics interface, see Section 32.9, “Implementing Centronics.”

CP/Core
In Use

STB

Tx Data

CP/Core
In Use

ACK

Rx Data Byte A Byte B

Byte A Byte B

PIP Transmit

PIP Receive

Write from Handshake
Control Logic (DIR = OUT)

LatchLatch

I/O Pin

Write from CPRead from CP

DIR = Output

Peripheral Bus

MPC855T User’s Manual

Handshaking I/O Modes

32.7.2.1 The BUSY Signal

In pulsed handshake mode, the PIP receiver can generate an additional BUSY handshake
signal that is useful when implementing a Centronics receiver interface. The BUSY output
is used to indicate a transfer in progress; the PIP receiver asserts BUSY as soon as data is
latched into the PIP data register. Figure 32-13 shows the pulsed handshake timing
including a BUSY signal.

Figure 32-13. Pulsed Handshake BUSY Signal

The timing of BUSY negation can be programmed relative to ACK; see Section 32.7.2.2,
“Pulsed Handshake Timing.” Core software can also control the assertion and negation of
BUSY via PIPC; see Section 32.4.1, “PIP Configuration Register (PIPC).”

BUSY is multiplexed onto PB31. It can be used only with the 8-bit PIP interface (not the
16-bit interface). A PIP transmitter can be configured to ignore BUSY or suspend assertion
of the STB output until the receiver BUSY signal is negated.

32.7.2.2 Pulsed Handshake Timing

When the PIP is under CP control, the pulsed-handshake timing parameters are governed
by PTPR[TPARn] fields, which define an interval from 1 to 256 system clocks; see
Section 32.4.4, “PIP Timing Parameters Register (PTPR).”

Figure 32-14 shows how the timing parameter TPAR1 governs the setup time and TPAR2
defines the pulse width of STB of a PIP transmitter using pulsed handshake mode timing.

Transmitter
Data

Transmitter
STBO
(STB)

Receiver
STBO
(ACK)

Receiver
PB31

(BUSY)

TSetup THold

TWidth

Chapter 32. Parallel Interface Port (PIP)

Handshaking I/O Modes

Figure 32-14. PIP Transmitter Timing Diagram

A PIP receiver in pulsed handshake mode has four options for determining the relative
timing of BUSY to ACK. Figure 32-15 through Figure 32-18 show how the definitions of
TPAR1 and TPAR2 vary for each receiver mode. The receiver mode is selected in
PIPC[TMOD]; see Table 32-6.

Figure 32-15. PIP Receiver Timing—Mode 0

Figure 32-16. PIP Receiver Timing—Mode 1

Figure 32-17. PIP Receiver Timing—Mode 2

STB

Data

TPAR1 TPAR2

ACK

BUSY

TPAR1 TPAR2

(PB31)

ACK

BUSY

TPAR1 TPAR2

(PB31)

ACK

BUSY

TPAR1 TPAR2

(PB31)

MPC855T User’s Manual

Transparent Transfers

Figure 32-18. PIP Receiver Timing—Mode 3

32.8 Transparent Transfers
The timing of transparent transfers, shown in Figure 32-19, is controlled by the timing of
the strobe signal STBI (PB14). Transparent transfers must be controlled by the CP, which
requires BD and parameter RAM initialization. The CP moves data in and out of buffers
using the virtual SDMA channels dedicated to SMC2. The falling edge of STBI generates
the request to the CP causing it to send or receive data. Signal direction is controlled by the
port B data direction register (PBDIR[14]).

Figure 32-19. PIP Transparent Transfers

32.9 Implementing Centronics
The PIP can implement a Centronics-compatible interface for both sending and receiving.
The Centronics protocol is a parallel peripheral interface for communicating between a host
computer and a printer. To implement Centronics, the PIP uses an 8-bit data bus, two
handshake signals that control the data exchange, and signals that reflect the peripheral
device status.

STB

BUSY
(PB31)

ACK

TPAR1 TPAR2

BUSY
Cleared
by S/W

LatchBuffer

I/O PB14

Write from CPRead from CP

DIR = Output

Peripheral Bus

Chapter 32. Parallel Interface Port (PIP)

Implementing Centronics

Traditionally, Centronics transfers have been one-way from the host to a peripheral device,
but new standards like IEEE P1284 allow bidirectional transfers. With software to allow
switching between receive and transmit modes, the PIP can support bidirectional transfers,
but does not fully comply with the full-duplex P1284 standard interface.

The following is a list of the PIP controller’s Centronics-compatible features:

• Superset of the Centronics standard

• Supports Centronics-type transmitter and receiver operating modes

• Supports bidirectional Centronics

• Message-oriented data structure flexibility

• Flexible receive control character comparison

• Flexible timing modes with programmable timing parameters

Figure 32-20 shows the signals needed to implement a standard Centronics interface.

Figure 32-20. The PIP Centronics Interface Signals

The following subsections describe the PIP configured as a Centronics interface.

32.9.1 PIP as a Centronics Transmitter

Once the TxBDs are prepared and PIPC[STR] is set, the PIP processes the next ready BD
in the TxBD table. When configured for a Centronics interface, the PIP transmitter fetches
data from memory and starts sending to the printer. Assuming the corresponding status
mask bits are set in SMASK, the PIP transmitter checks the printer status lines (SELECT,
PERROR and FAULT) for Tx errors before each transfer. Configure PB30, PB29, and PB28

Data

STB

BUSY

ACK

SELECT

PERROR

FAULT

MPC855T User’s Manual

Implementing Centronics

as general-purpose inputs and connect them to SELECT, PERROR, and FAULT,
respectively.

For each transfer, the PIP drives the data on the Centronics interface data lines and
generates a strobe pulse, assuming the previous data has been acknowledged and the
minimum setup time requirement is met. Strobe pulse width and setup time parameters are
set in the PIP timing parameters register (PTPR). Note that one data frame can span several
buffers with a maskable interrupt generated after each BD is processed.

Figure 32-21 shows the PIP configured as a Centronics transmitter.

Figure 32-21. PIP as a Centronics Transmitter

32.9.1.1 Centronics Tx Errors and the PIPE

The Centronics transmission errors are described in Table 32-13.

The relevant PIPE flags during Centronics transmission are TXE, TCH, and TXB; see
Section 32.4.2, “PIP Event Register (PIPE).” For core-controlled transmissions, only the
character-based TCH interrupt applies.

Table 32-13. Centronics Tx Errors

Error Description

BD Not
Ready

The current BD to be processed is not ready. PIPE[TXE] is flagged. The channel continues sending after
S/W prepares the BD and sets PIPC[STR].

Printer
Off-Line

The printer is off-line. TxBD[S] and PIPE[TXE] are flagged. The channel resumes sending after RESTART
TRANSMIT. Note that SMASK[S] must be set to sense this printer status line when the CP is controlling the
transfer.

Printer
Fault

The printer has a fault condition. TxBD[F] and PIPE[TXE] are flagged. The channel resumes sending after
RESTART TRANSMIT. Note that SMASK[F] must be set to sense this printer status line when the CP is
controlling the transfer.

Paper Error The printer has an error in its paper path. TxBD[PE] and PIPE[TXE] are flagged. The channel resumes
sending after RESTART TRANSMIT. Note that SMASK[PE] must be set to sense this printer status line when
the CP is controlling the transfer.

BUSY

SELECTPB30

PB31

PB14

PB15

MPC855T

FAULTPB28

PERRORPB29

(Host)
Centronics

Device

PB[16:23] Data[0:7]

STB

ACK

[*]

[*]

[*]

[*]

[*] – Optional

Chapter 32. Parallel Interface Port (PIP)

Implementing Centronics

32.9.2 PIP as a Centronics Receiver

If the current BD in the RxBD table is empty and a character is received from the
Centronics interface, the PIP receiver first compares the character against the user-defined
control character table. If no match is found, the character is written to the buffer. If a match
is found, the control character is either written to the Rx buffer or rejected, depending on
the reject bit in the control character table. If rejected, the character is written to the received
control character register (RCCR) in the PIP Rx parameter RAM and a maskable interrupt
is generated when the BD finishes processing. Note that a single received data frame can
span several buffers.

For each transfer, the PIP controller generates ACK and BUSY handshake signals on the
Centronics interface. The ACK pulse width and the timing of BUSY with respect to ACK
are determined by the timing parameter register PTPR.

Figure 32-22 shows the PIP configured as a Centronics receiver. The SELECT, PERROR,
and FAULT signals shown are not automatically generated; they are controlled by software
and driven on general-purpose outputs.

Figure 32-22. PIP as a Centronics Receiver

32.9.2.1 Centronics Rx Errors and the PIPE

The Centronics receiving error is described in Table 32-14.

The relevant PIPE event bits for Centronics receiving are CCR, BSY, RCH, and RXB; see
Section 32.4.2, “PIP Event Register (PIPE).” For core-controlled receiving, only the
character-based RCH interrupt applies.

Table 32-14. Centronics Rx Error

Error Description

BD Busy The current BD to be processed is not empty. PIPE[BSY] is flagged. The channel resumes receiving after
user software prepares the BD.

PB31

PB30SELECT

BUSY

ACK

STB

PB28FAULT

PB29PERROR

Host
MPC855T

(Centronics Device)

Data[0:7] PB[16:23]

PB14

PB15

[*]

[*]

[*]

[*]

[*] – Optional

MPC855T User’s Manual

Implementing Centronics

Chapter 33. Parallel I/O Ports

Chapter 33
Parallel I/O Ports
The CPM supports four general-purpose I/O ports—A, B, C, and D. Each signal in the I/O
ports can be configured as a general-purpose I/O signal or as a signal dedicated to
supporting communications devices, such as SMCs and SCC1.

• Port A is shared with the RXD and TXD signals of SCC1, the bank of clock signals,
and some time-division multiplexed (TDM) signals.

• Port B is shared with the parallel interface port (PIP) and other functions such as
TDM, IDMA, SMC, SPI, UTOPIA, and I2C signals.

• Port C is shared with the RTS, CTS, and CD signals of SCC1 as well as some TDM
signals. However, port C is unique in that its signals can generate interrupts to the
CPM interrupt controller (CPIC).

• Port D is for general-purpose I/O shared with SAR-specific, TDM signals, and
Ethernet CAM-support signals.

The read/write port signals can be configured as inputs or outputs with a latch for data
output. They can be configured to be either general-purpose I/O or dedicated peripheral
signals. Regardless of the programmed function, the I/O signals’ state can always be read
from their data registers (PxDAT).

Ports A and B have signals that can be configured as open-drain. Open-drain signals drive
a zero voltage, but they three-state when driving a high voltage. Note that none of the port
signals have internal pull-up resistors.

To support flexible configuration of the CPM, many dedicated peripheral functions are
multiplexed onto ports A, B, C, and D. Functions are grouped to maximize the signals’
usefulness to the greatest number of MPC855T applications. To understand signal
assignments described in this chapter, it helps to understand each CPM peripheral.

MPC855T User’s Manual

Features

33.1 Features
The following lists the main features of the parallel I/O ports:

• Port A is 16 bits
• Port B is 18 bits. Port B is shared with the PIP, which is described in Chapter 32,

“Parallel Interface Port (PIP).”
• Port C is 12 bits
• Port D is 13 bits
• All ports are bidirectional
• All ports are three-stated at hardware reset
• All ports have alternate on-chip peripheral functions and all signal values can be

read while the signal is connected to an on-chip peripheral
• Ports A and B have open-drain capability
• Port C has 12 interrupt input signals

33.2 Port A
Port A signals are configured as follows in the port A pin assignment register (PAPAR):

• General-purpose I/O signal (the corresponding PAPAR[DDn] = 0)
• Dedicated on-chip peripheral signal (PAPAR[DDn] = 1)

PAPAR and the port A data direction register (PADIR) are cleared at reset, thus configuring
all port A signals as general-purpose input signals. Table 33-1 shows defaults for port A
signal options.

Table 33-1. Port A Pin Assignment

Signal

Pin Function

PAPAR[DDn] = 0
(General I/O) 1

PAPAR[DDn] = 1 Input to On-Chip Peripherals
(Default)PADIR[DRn] = 0 PADIR[DRn] = 1

PA15 PORT A15 RXD1 — GND

PA14 PORT A14 TXD1 — —

PA13 PORT A13 — — GND

PA12 PORT A12 — — —

PA11 PORT A11 — — Undefined

PA10 PORT A10 — — GND

PA9 PORT A9 — L1TXDA Undefined

PA8 PORT A8 — L1RXDA L1RXDA = GND

PA7 PORT A7 CLK1/TIN1/L1RCLKA 2 BRGO1 CLK1/TIN1/L1RCLKA = BRGO1

PA6 PORT A6 CLK2 TOUT1 CLK2 = GND

Chapter 33. Parallel I/O Ports

Port A

Port A signals selected for general-purpose I/O can be accessed through the port A data
register (PADAT). Data written to PADAT is stored in an output latch. For port A outputs,
the latch data is gated onto the signal. When PADAT is read, the signal itself is read. For
inputs, data written to PADAT is also stored in the output latch but cannot reach the port
signal, so when PADAT is read, the signal’s state is read. If an input to a peripheral is not
supplied from a signal, the default value listed in Table 33-1 is supplied.

33.2.1 Port A Registers

Port A has four memory-mapped control registers, described in the following sections.

33.2.1.1 Port A Open-Drain Register (PAODR)

The port A open-drain register (PAODR), shown in Figure 33-1, determines which port
signals with serial channel output capability are configured in a normal or wired-OR
configuration. Setting the PAODR bits configure the signals for open-drain operation.

PA5 PORT A5 CLK3/TIN2/L1TCLKA2 BRGO2 CLK3/TIN2/L1TCLKA = BRGO2

PA4 PORT A4 CLK4 TOUT2 CLK4 = CLK8

PA3 PORT A3 CLK5/TIN32 BRGO3 CLK5/TIN3 = BRGO3

PA2 PORT A2 CLK6 TOUT3 CLK6 = GND

PA1 PORT A1 CLK7/TIN42 BRGO4 CLK7/TIN4 = BRGO4

PA0 PORT A0 CLK8 TOUT4 CLK8 = GND

1 Clearing the corresponding PADIR bit makes the signal an input; setting PADIR makes it an output.
2 Multi-function peripheral input signals, such as CLK1/TIN1/L1RCLKA, can perform multiple functions

simultaneously. (That is, a clock supplied at PA7 can be used for both CLK1 and TIN1.)

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — OD8 OD9 OD10 OD11 OD12 — OD14 —

Reset 0

R/W R/W

Addr 0x954

Figure 33-1. Port A Open-Drain Register (PAODR)

Table 33-1. Port A Pin Assignment (continued)

Signal

Pin Function

PAPAR[DDn] = 0
(General I/O) 1

PAPAR[DDn] = 1 Input to On-Chip Peripherals
(Default)PADIR[DRn] = 0 PADIR[DRn] = 1

MPC855T User’s Manual

Port A

Table 33-2 describes PAODR bits.

33.2.1.2 Port A Data Register (PADAT)

Reading the port A data (PADAT) register returns the value of the signal, regardless of
whether the signal is an input or output. Comparing written data with the data on the signal
can detect output conflicts. A write to a PADAT bit is latched; if the bit is configured as an
output, the value latched for that bit is driven onto its respective signal. PADAT can be read
or written at any time, is not initialized, and is undefined at reset.

Table 33-3 describes PADAT bits.

33.2.1.3 Port A Data Direction Register (PADIR)

Port A data direction register (PADIR) bits configure port A signals as general-purpose
inputs or outputs. If a signal is not programmed for general-purpose I/O, PADIR selects the
peripheral function to be performed.

Table 33-2. PAODR Bit Descriptions

Bits Name Description

0–7, 13, 15 — Reserved, always reads as 0.

8–12, 14 ODn Tells how the corresponding port A signal is interpreted.
0 The signal is actively driven as an output.
1 The signal is an open-drain driver. Outputs are actively driven low. Otherwise, it is three-stated.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Addr 0x956

Figure 33-2. Port A Data Register (PADAT)

Table 33-3. PADAT Bit Descriptions

Bits Name Description

0–15 Dn Contains the data on the corresponding signal.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field DR0 DR1 DR2 DR3 DR4 DR5 DR6 DR7 DR8 DR9 DR10 DR11 DR12 DR13 DR14 DR15

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Addr 0x950

Figure 33-3. Port A Data Direction Register (PADIR)

Chapter 33. Parallel I/O Ports

Port A

Table 33-4 describes PADIR bits.

33.2.1.4 Port A Pin Assignment Register (PAPAR)

The port A pin assignment register (PAPAR) configures signals as general-purpose I/O or
dedicated for use with a peripheral.

Table 33-5 describes PAPAR bits.

33.2.2 Port A Configuration Examples
This section describes the configuration for several PA signals, which are as follows:

• PA15 can be configured as a general-purpose I/O signal but not as an open-drain
signal. It can also be RXD1 for SCC1 in NMSI (nonmultiplexed serial interface)
mode. If it is configured as a general-purpose I/O signal, the RXD1 input is
internally grounded. If SCC1 is connected to a TDM or is not used, PA15 can be
used for general-purpose I/O. See Section 33.2.3, “Port A Functional Block
Diagrams.”

• PA14 can be configured as a general-purpose I/O signal, either open-drain or not.
See Section 33.2.3, “Port A Functional Block Diagrams.”
— If PA14 is configured as a general-purpose I/O signal, the TXD1 output is not

connected externally. If SCC1 is connected to a TDM or is not used, PA14 can
be used for general-purpose I/O.

— In NMSI mode, if TXD1 is an output on PA14 and PAODR[OD14] = 1, TXD1

Table 33-4. PADIR Bit Descriptions

Bits Name Description

0–15 DRn Port A data direction. Configures port A signals as inputs or outputs when functioning as
general-purpose I/O; otherwise, used to select the peripheral function.
0 Select the signal for general-purpose input, or select peripheral function 0.
1 Select the signal for general-purpose output, or select peripheral function 1.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field DD0 DD1 DD2 DD3 DD4 DD5 DD6 DD7 DD8 DD9 DD10 DD11 DD12 DD13 DD14 DD15

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Addr 0x952

Figure 33-4. Port A Pin Assignment Register (PAPAR)

Table 33-5. PAPAR Bit Descriptions

Bits Name Description

0–15 DDn Configures a signal for general-purpose I/O or for dedicated peripheral function
0 General-purpose I/O. The peripheral functions of the signal are not used.
1 Dedicated peripheral function. The signal is used by the internal module. The on-chip peripheral

function to which it is dedicated can be determined by other bits.

MPC855T User’s Manual

Port A

is an open-drain output from SCC1.
• PA11 can be configured as a general-purpose I/O and an open-drain signal.PA7 can

be configured as a general-purpose I/O signal but not an open-drain signal.

— If PADIR[DR7] = 0, PA7 can also be CLK1, TIN1, L1RCLKA, or all three. The
connections are made separately in the serial interface and timer mode registers.

— If PADIR[DR7] = 1, PA7 can also be BRGO1. If PA7 is a general-purpose I/O
signal, the input to the on-chip peripheral is connected internally to BRG01.
Chapter 20, “Serial Interface,” describes CLK1 and L1RCLKA.

• PA4 can be configured as a general-purpose I/O signal but not an open-drain signal.

— If PADIR[DR4] = 0, PA4 can be CLK4. If DR4 = 1, PA4 can be TOUT2.

— If PA4 is a general-purpose I/O signal, the on-chip CLK4 function is provided
via CLK8 (default input). This is useful because CLK signals cannot always be
routed to all serial channels. See Chapter 20, “Serial Interface.”

33.2.3 Port A Functional Block Diagrams

Using PA15 as an example, Figure 33-5 shows the functional block diagram for all port A
signals without open-drain capability.

Figure 33-5. Block Diagram for PA15 (True for all Non-Open-Drain Port Signals)

Using PA14 as an example, Figure 33-6 shows the functional block diagram for all port A
signals with open-drain capability.

MUX

0

1 EN

MUX

0

1 EN

MUX

0

1EN

EN

16-Bits

16-Bits

PAPAR

PADIR

Output
Latch

ENWrite Path From
PADAT[15]

Read Path To
PADAT[15]

To SCC1
RXD1

RXD1/PA15
Pin

Chapter 33. Parallel I/O Ports

Port B

Figure 33-6. Block Diagram for PA14 (True for all Open-Drain Port Signals)

33.3 Port B
All port B signals can be open-drain. They are configured independently as general-purpose
I/O signals if the corresponding bit in the PBPAR is cleared and they are configured as
dedicated on-chip peripheral signals if the corresponding PBPAR bit is set. When
configured as a general-purpose I/O signal, the signal direction of that signal is determined
by the corresponding control bit in the PBDIR. The port I/O signal is configured as an input
if the corresponding PBDIR bit is cleared and it is configured as an output if the
corresponding PBDIR bit is set. All PBPAR bits and PBDIR bits are cleared by hardware
reset, thus configuring all port B signals as general-purpose inputs. Table 33-6 describes
port B signal options. Port B is shared with the PIP, which is described in Chapter 32,
“Parallel Interface Port (PIP).”

If a port B signal is selected as a general-purpose I/O signal, it can be accessed through the
PBDAT where data is stored in an output latch. If a port B signal is configured as an output,
the output latch data is gated onto the port signal. When PBDAT is read, the port signal itself
is read.

All port B signals can have multiple configurations, which include on-chip peripheral
functions for SPI, I2C, SMCs, and the TDM. Port B is also multiplexed with the PIP, which
can implement fast parallel interfaces. For a description of the dedicated PIP signal
functions, see Chapter 32, “Parallel Interface Port (PIP).”

PB[26–28], and PB[15] are special in that their on-chip peripheral functions (BRGOx) are
also available in port A. This allows an alternate way to output BRG signals if other

MUX

0

1
EN

MUX

0

1 EN

MUX

0

1EN

EN

16-Bits

16-Bits

PAPAR

PADIR

Output
Latch

EN
Open
Drain

16-Bits

PAODR

Control

EN

Read Path To
PADAT[14]

Write Path From
PADAT[14] RXD1/PA14

Pin

From SCC1
TXD1

MPC855T User’s Manual

Port B

functions are used. PB[16–19] are special in that their on-chip peripheral functions (RTSx
and L1STx) are available in port C providing an alternate location to output these signals if
other functions on port C are used. (The STBI and STBO signals (PB14 and PB15) used by
the PIP are not listed in Table 33-6. Section 32.7.1, “Interlocked Handshake Mode,” gives
instructions for enabling them.)

33.3.1 The Port B Registers

The four port B control registers determine whether a signal is open-drain, input or output,
and general-purpose or dedicated to a peripheral.

Table 33-6. Port B Pin Assignment

Signal

Signal Function

PBPAR[DDn] = 0
PBPAR[DDn] = 1 Input to On-chip Peripherals

(Default)PBDIR[DRn] = 0 PBDIR[DRn] = 1

PB31 Port B31 REJECT1 SPISEL VDD

PB30 Port B30 — SPICLK SPICLK = GND

PB29 Port B29 — SPIMOSI SPIMOSI = VDD

PB28 Port B28 BRGO4 SPIMISO SPIMISO = SPIMOSI

PB27 Port B27 BRGO1 I2CSDA I2CSDA = VDD

PB26 Port B26 BRGO2 I2CSCL I2CSCL = GND

PB25 Port B25 SMTXD1 — —

PB24 Port B24 SMRXD1 — SMRXD1 = GND

PB23 Port B23 SMSYN1 SDACK1 SMSYN1 = GND

PB22 Port B22 SMSYN2 SDACK2 SMSYN2 = GND

PB21 Port
B21/PHYSEL[1] 1

1 PBDIR[DRn]=1

SMTXD2 — —

PB20 Port
B20/PHYSEL[0] 2

2 PBDIR[DRn]=1

SMRXD2 L1CLKOA SMRXD2 = GND

PB19 Port B19 L1ST1 RTS1 —

PB18 Port B18 L1ST2 RTS1 —

PB17 Port
B17/PHYREQ[1]

L1ST3 — —

PB16 Port
B16/PHYREQ[0]

L1ST4 L1RQa —

PB15 Port B15 TxClav BRGO3 —

PB14 Port B14 — RSTRT1 —

Chapter 33. Parallel I/O Ports

Port B

33.3.1.1 Port B Open-Drain Register (PBODR)

The port B open-drain register (PBODR) indicates when the port signals are configured in
a normal or wired-OR configuration. Bits 14 and 15 of PBODR are not implemented.
PBODR is cleared by system reset.

Table 33-7 describes PBODR bits.

33.3.1.2 Port B Data Register (PBDAT)

Reading the port B data register (PBDAT) returns data to the signal, regardless of whether
it is an input or output. This allows output conflicts to be found on the signal by comparing
the written data with the data on the signal. Data written to PBDAT is latched; if the
corresponding PBDIR bit is configured as an output, the latched value is driven onto its
respective signal. PBDAT can be read or written at any time and is not initialized.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0000_0000_0000_0000

R/W —

Addr 0xAC0

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field OD16 OD17 OD18 OD19 0D20 0D21 OD22 OD23 OD24 OD25 OD26 OD27 OD28 OD29 OD30 OD31

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Addr 0xAC2

Figure 33-7. Port B Open-Drain Register (PBODR)

Table 33-7. PBODR Bit Descriptions

Bits Name Description

0–15 — Reserved

16–31 ODn Port B open-drain configuration.
0 The I/O signal is actively driven as an output.
1 The I/O signal is an open-drain driver. As an output, the signal is actively driven low. Otherwise,

it is three-stated.
Note that SMTXD1 cannot be configured as an open-drain driver, regardless of PBODR[OD25].

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reset Undefined

Addr 0xAC4

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31

Figure 33-8. Port B Data Register (PBDAT)

MPC855T User’s Manual

Port B

Table 33-8 describes PBDAT bits.

33.3.1.3 Port B Data Direction Register (PBDIR)

Port B data direction register (PBDIR) bits configure port B signals as general-purpose
inputs or outputs. If a signal is not programmed for general-purpose I/O, PBDIR selects the
peripheral function to be performed.

m

Table 33-9 describes PBDIR bits.

Reset Undefined

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Addr 0xAC6

Table 33-8. PBDAT Bit Descriptions

Bits Name Description

0–13 — Reserved

14–31 Dn Contains the data on the corresponding signal.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — DR14 DR15

Reset — — — — — — — — — — — — — — 0 0

R/W — R/W R/W

Addr 0xAB8

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field DR16 DR17 DR18 DR19 DR20 DR21 DR22 DR23 DR24 DR25 DR26 DR27 DR28 DR29 DR30 DR31

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Addr 0xABA

Figure 33-9. Port B Data Direction Register (PBDIR)

Table 33-9. PBDIR Bit Descriptions

Bits Name Description

0–13 — Reserved

14–31 DRn Port B data direction. Configures port B signals as inputs or outputs when functioning as
general-purpose I/O; otherwise, used to select the peripheral function.
0 Select the signal for general-purpose input, or select peripheral function 0.
1 Select the signal for general-purpose output, or select peripheral function 1.
DR14 and DR15 are ignored when port B is used by the PIP controller.

Figure 33-8. Port B Data Register (PBDAT)

Chapter 33. Parallel I/O Ports

Port C

33.3.1.4 Port B Pin Assignment Register (PBPAR)

The port B pin assignment register (PBPAR) configures signals as general-purpose I/O or
dedicated for use with a peripheral.

Table 33-10 describes PBPAR bits.

33.3.2 Port B Configuration Example

PB[31] can be configured as a general-purpose I/O or open-drain signal. It can also be the
REJECT1 signal for the SCC1 Ethernet CAM interface or the SPI select input, SPISEL. If
PB[31] is not configured to connect to REJECT1 or SPISEL, the SCC and/or SPI receives
VDD on that signal. In the description of the PIP, PB[31] and other port B signals can be
used as PIP functions. However, the PIP does not affect the operation of port B unless it is
enabled.

33.4 Port C
Port C consists of 12 general-purpose I/O signals that can generate interrupts, which are
managed by the CPM interrupt controller (CPIC). Table 33-11 lists port C signal options.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — DD14 DD15

Reset — — — — — — — — — — — — — — 0 0

R/W — R/W R/W

Addr 0xABC

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field DD16 DD17 DD18 DD19 DD20 DD21 DD22 DD23 DD24 DD25 DD26 DD27 DD28 DD29 DD30 DD31

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Addr 0xABE

Figure 33-10. Port B Pin Assignment Register (PBPAR)

Table 33-10. PBPAR Bit Descriptions

Bits Name Description

0–13 — Reserved

14–31 DDn Port assignment. Determines whether a signal is configured for general-purpose I/O or dedicated
peripheral function.
0 General-purpose I/O. The peripheral functions of the signal are not used.
1 Dedicated peripheral function. The signal is used by the internal module. The on-chip peripheral

function to which it is dedicated can be determined by other bits such as those in the PBDIR.

MPC855T User’s Manual

Port C

PCDIR and PCPAR bits are cleared at system reset, making all port signals general-purpose
inputs. The CPM interrupt mask register (CIMR) (see Section 34.5.3, “CPM Interrupt
Mask Register”) is also cleared, so port C I/O signals left floating do not cause false
interrupts.

General-purpose port C I/O signals can be accessed through PCDAT where written data is
stored in an output latch. If a port C signal is configured as an output, output latch data is
gated onto the port signal. Reading PCDAT reads the value of the port signal itself. For port
C input signals, data written to PCDAT is stored in the output latch but cannot reach the
port signal. In this case, when the PCDAT register is read, the state of the port signal is read.

The following steps configure port C signals as general-purpose outputs. When the signal
is configured as an output, port C interrupts are not generated.

1. Write the corresponding PCPAR bit with a 0.

2. Write the corresponding PCDIR bit with a 1.

3. Write the corresponding PCSO bit with a zero (for clarity).

4. The corresponding PCINT bit is a ‘don’t care’.

5. Write the signal value using the PCDAT register.

The following steps can be taken to configure a port C signal as a general-purpose input
signal that does not generate an interrupt:

1. Write the corresponding PCPAR bit with a zero.

2. Write the corresponding PCDIR bit with a zero.

Table 33-11. Port C Pin Assignment

Signals

PCPAR[DDn] = 0 PCPAR[DDn] = 1 Input to On-Chip
Peripherals

(Default)
PCDIR[DRn] = 1
or PCSO[n] = 0

PCDIR[DRn] = 0
and PCSO[n] = 1

PCDIR[DRn] = 0 PCDIR[DRn] = 1

PC15 Port C15 DREQ0 RTS1 L1ST1 DREQ0 = VDD

PC14 Port C14 DREQ1 — L1ST2 DREQ1 = VDD

PC13 Port C13 — RTS3 L1ST3 —

PC12 Port C12 L1RQa L1ST4 —

PC11 Port C11 CTS1 — GND

PC10 Port C10 CD1 TGATE1 GND

PC9 Port C9 — — GND

PC8 Port C8 — TGATE2 GND

PC7 Port C7 SDACK2 GND

PC6 Port C6 — GND

PC5 Port C5 — L1TSYNCA SDACK1 GND

PC4 Port C4 — L1RSYNCA = GND

Chapter 33. Parallel I/O Ports

Port C

3. Write the corresponding PCSO bit with a zero.

4. The corresponding PCINT bit is a ‘don’t care’ bit.

5. Write the corresponding CIMR bit with a zero to prevent interrupts from being
generated to the core.

6. Read the signal value using the PCDAT register.

When a port C signal is configured as a general-purpose I/O input, a change in the port C
interrupt register (PCINT) causes an interrupt request signal to be sent to the CPIC. Each
port C signal can be configured to assert an interrupt request either when a high-to-low
change occurs or when any change occurs. Each port C signal asserts a unique interrupt
request to the CPM interrupt pending register (CIPM) (see Section 34.5.2, “CPM Interrupt
Pending Register (CIPR)”) and has a different internal interrupt priority level within the
CPM interrupt controller (see Section 34.2, “CPM Interrupt Source Priorities.”

Requests can be masked independently in the CPM interrupt mask register (CPMR). See
Section 34.5.3, “CPM Interrupt Mask Register.” The following steps configure a port C
signal as a general-purpose input that generates an interrupt:

1. Write the corresponding PCPAR bit with a 0.

2. Write the corresponding PCDIR bit with a 0.

3. Write the corresponding PCSO bit with a 0.

4. Set the PCINT bit to determine which edges cause interrupts.

5. Write the corresponding CIMR bit with a 1 so that interrupts can be sent to the core.

6. Read the signal value using the PCDAT register.

The port C signals associated with CDx and CTSx have a mode of operation in which the
signal can be connected to the SCC internally but can also generate interrupts. Port C still
detects changes on CTS and CD and asserts the corresponding interrupt request, but the
SCC simultaneously uses CTS and/or CD to control operation automatically. This allows
the implementation of V.24, X.21, and X.21 bis protocols with help from other
general-purpose I/O signals. To configure a port C signal as a CTS or CD signal that
connects to the SCC and generates interrupts, follow these steps:

1. Write the corresponding PCPAR bit with a 0.

2. Write the corresponding PCDIR bit with a 0.

3. Write the corresponding PCSO bit with a 1.

4. Set the PCINT bit to determine which edges cause interrupts.

5. Write the corresponding CIMR bit with a 1 so that interrupts can be sent to the core.

6. The signal value can be read at any time using the PCDAT register.

After connecting CTS or CD to the SCC, choose normal operation mode in GSMR[DIAG]
to enable or disable SCC transmission and reception with these signals.

MPC855T User’s Manual

Port C

PC14 and PC15 can be programmed to assert special requests directly to the CPM by
setting RCCR[EIE]; however, do not do so unless instructed by a Motorola-supplied RAM
microcode package.

For IDMA, PC14 and PC15 can be programmed to function as external DMA request
(DREQx) signals. Do not configure PC14and PC15 as DREQ1 and DREQ0 unless IDMA
is initialized; otherwise, erratic operation can occur.

33.4.1 Port C—RxClav Signal

Port C also includes the RxClav signal. When PDPAR[UT] is set, DREQ0[PC15] is
configured to support the RxClav signal. The PCPAR and PCDIR fields must be cleared and
the PCSO field must be set to enable the RxClav signal input on the PC15 signal.

Po

33.4.2 Port C Registers

Port C is supported by five registers. The port C interrupt control register (PCINT) defines
how changes on the signal cause interrupts when they are generated with that signal. The
port C special options register (PCSO) determines whether certain port C signals can
connect to on-chip peripherals and generate an interrupt at the same time. The remaining
port C registers (PCDAT, PCDIR, and PCPAR) have the same functions as their
counterparts on ports A and B. Port C has no open-drain capability.

33.4.2.1 Port C Data Register (PCDAT)

When read, the port C data (PCDAT) register always reflects the current status of each line.

Table 33-12 describes PCDAT bits.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — D4–D15

Reset 0

R/W R/W

Addr 0x966

Figure 33-11. Port C Data Register (PCDAT)

Table 33-12. PCDAT Bit Descriptions

Bits Name Description

0–3 — Reserved

4–15 Dn Contains the data on the corresponding signal.

Chapter 33. Parallel I/O Ports

Port C

33.4.2.2 Port C Data Direction Register (PCDIR)

Port C data direction register (PCDIR) bits configure port C signals as general-purpose
inputs or outputs. If a signal is not programmed for general-purpose I/O, PCDIR, along
with PCSO, selects the peripheral function to be performed.

Table 33-13 describes PCDIR bits.

33.4.2.3 Port C Pin Assignment Register (PCPAR)

The port C pin assignment register (PCPAR) configures signals as general-purpose I/O or
dedicated for use with a peripheral.

Table 33-14 describes PCPAR bits.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — DR4–DR15

Reset 0000_0000_0000_0000

R/W R/W

Addr 0x960

Figure 33-12. Port C Data Direction Register (PCDIR)

Table 33-13. PCDIR Bit Descriptions

Bits Name Description

0–3 — Reserved

4–15 DRn Port C data direction. Configures port C signals as inputs or outputs when functioning as
general-purpose I/O; otherwise, used with PCSO to select the peripheral function.
0 Select the signal for general-purpose input, or select peripheral function 0.
1 Select the signal for general-purpose output, or select peripheral function 1.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — DD4 DD5 DD6 DD7 DD8 DD9 DD10 DD11 DD12 DD13 DD14 DD15

Reset 0000_0000_0000_0000

R/W R/W

Addr 0x962

Figure 33-13. Port C Pin Assignment Register (PCPAR)

Table 33-14. PCPAR Bit Descriptions

Bits Name Description

0–3 — Reserved.

4–15 DDn Configures a signal for general-purpose I/O or for dedicated peripheral function
0 General-purpose I/O. The peripheral functions of the signal are not used.
1 Dedicated peripheral function. The signal is used by the internal module. The on-chip

peripheral function to which it is dedicated can be determined by other bits.

MPC855T User’s Manual

Port C

33.4.2.4 Port C Special Options Register (PCSO)

The port C special options (PCSO) register, shown in Figure 33-14, further configures the
corresponding port C signals.

Table 33-15 describes PCSO bits.

33.4.2.5 Port C Interrupt Control Register (PCINT)

Each bit of the port C interrupt control (PCINT) register, shown in Figure 33-15,
corresponds to a port C signal to determine whether that line asserts an interrupt request on

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — — — — — — CD1 CTS1 — — DREQ1 DREQ0

Reset 0

R/W R/W

Addr 0x964

Figure 33-14. Port C Special Options Register (PCSO)

Table 33-15. PCSO Bit Descriptions

Bits Name Description

0–3 — Reserved, should be cleared.

4, 810 CDx Carrier detect
0 PCx is a general-purpose interrupt I/O signal. The SCC internal CDx signal is always asserted. If

PCDIR configures CDx as an input, it can generate an interrupt to the core, as controlled by the
PCINT bits.

1 PCx is connected to the corresponding SCC input as well as being a general-purpose interrupt
signal.

5, 911 CTSx Clear to send
0 PCx is a general-purpose interrupt I/O signal. The SCC internal CTSx signal is always asserted. If

PCDIR configures this signal as an input, the signal can generate an interrupt to the core, as
controlled by the PCINT bits.

1 PCx is connected to the corresponding SCC input as well as being a general-purpose interrupt
signal.

14–15 DREQx Enable DMA request to the CPM. Set DREQx only if IDMA is being used. Note that the IDMA
request function and the general-purpose interrupt function operate concurrently and
independently.

0 PCx is a general-purpose interrupt I/O signal. If PCDIR configures this signal as an input, the
signal can generate an interrupt to the core, as controlled by the PCINT bits.

1 As well as being a general-purpose interrupt signal PCx becomes an external request to the CPM
for IDMA service. RCCR[DRxM] controls whether IDMA requests are edge- or level-sensitive. The
corresponding PCINT bits still control when a general-purpose interrupt is generated.

Chapter 33. Parallel I/O Ports

Port D

a high-to-low transition or on any transition. PCINT is cleared by reset.

Table 33-16 describes PCINT bits.

33.5 Port D
The 13 port D signals are configured independently as general-purpose I/O signals if the
corresponding port D pin assignment register (PDPAR) is cleared. They are configured as
dedicated on-chip peripheral signals if the corresponding PDPAR bit is set.

The port I/O signal is configured as an input if the corresponding bit in the port D data
direction register (PDDIR) is cleared and as an output if the bit is set. PDPAR and PDDIR
are cleared at system reset, which configures all port D signals as general-purpose inputs.
Table 33-17 describes port D signal defaults.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — EDM4–EDM15

Reset 0

R/W R/W

Addr 0x968

Figure 33-15. Port C Interrupt Control Register (PCINT)

Table 33-16. PCINT Bit Descriptions

Bits Name Description

0–3 — Reserved and should be cleared.

4–15 EDMn Edge detect mode. The corresponding port C signal asserts an interrupt request.
0 Any edge on PCx generates an interrupt request.
1 A falling edge on PCx generates an interrupt request.

Table 33-17. Port D Pin Assignment

Signal PDPAR = 0

PDPAR=1
Input to On-Chip

Peripherals
UT=0

UT=1
PDDIR=0 PDDIR=1

PD15 Port D15 L1TSYNCA MII-RXD3 (I) UTPB[0] L1TSYNCA=GND

PD14 Port D14 L1RSYNCA MII-RXD2 (I) UTPB[1] L1RSYNCA=GND

PD13 Port D13 — MII-RXD1 (I) UTPB[2] —

PD12 Port D12 — MII-MDC (O) UTPB[3] —

PD11 Port D11 — MII-TX-ERR (O) RxEnb —

PD10 Port D10 — MII-RXD0 (I) TxEnb —

PD9 Port D9 — MII-TXD0 (O) UtpClk —

PD8 Port D8 — MII-RX_CLK (I) — —

PD7 Port D7 — MII-RX-ERR(I) UTPB[4] —

MPC855T User’s Manual

Port D

33.5.1 Port D Registers

Port D has three memory-mapped, read/write control registers.

33.5.1.1 Port D Data Register

A read of the port D data (PDDAT) register returns the value of the signal, regardless of
whether it is an input or output. This allows output conflicts to be found on the signal by
comparing the written data with the data on the signal. A write to a PDDAT bit is latched,
and if configured as an output, is driven onto its respective signal. PDDAT can be read or
written at any time. PDDAT is not initialized and is undefined by reset.

Table 33-18 describes PDDAT bits.

33.5.1.2 Port D Data Direction Register (PDDIR)

The port D data direction register (PDDIR) provides bits for specifying whether port D
signals are inputs or outputs when functioning as general-purpose I/O.

PD6 Port D6 — MII-RXDV (I) UTPB[5] —

PD5 Port D5 — MII-TXD3 (O) UTPB[6] —

PD4 Port D4 — MII-TXD2 (O) UTPB[7] —

PD3 Port D3 — MII-TXD1 (O) SOC —

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — D3–D15

Reset Undefined

R/W R/W

Addr 0x976

Figure 33-16. Port D Data Register (PDDAT)

Table 33-18. PDDAT Bit Descriptions

Bits Name Description

0–2 — Reserved

3–15 Dn Contains the data on the corresponding signal.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — DR3 DR4 DR5 DR6 DR7 DR8 DR9 DR10 DR11 DR12 DR13 DR14 DR15

Reset 0000_0000_0000_0000

R/W R/W

Addr 0x970

Figure 33-17. Port D Data Direction Register (PDDIR)

Table 33-17. Port D Pin Assignment (continued)

Chapter 33. Parallel I/O Ports

Port D

Table 33-19 describes PDDIR bits.

33.5.2 Port D Pin Assignment Register (PDPAR)
The ATM and UT bits are included in the PDPAR register, shown in Figure 33-18. The
PDPAR register is cleared at system reset.

The fields in the PDPAR register are described in Table 33-20.

Table 33-19. PDDIR Bit Descriptions

Bits Name Description

0–2 — Reserved and should be cleared.

3–15 DRn Port D data direction. Configures port D signals as inputs or outputs when functioning as
general-purpose I/O.
0 The corresponding signal is an input.
1 The corresponding signal is an output.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field ATM UT — DD3 DD4 DD5 DD6 DD7 DD8 DD9 DD10 DD11 DD12 DD13 DD14 DD15

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Oper R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR OFFSET TO IMMR: 0X972 (PDPAR)

Figure 33-18. Port D Pin Assignment Register (PDPAR)

Table 33-20. PDPAR Field Descriptions

Bits Name Description

0 ATM ATM global enable.
0 =Disable ATM SAR functionality
1 =Enable ATM SAR functionality

1 UT UTOPIA enable. Determines whether the parameter RAM’s page 4 operates in serial or
UTOPIA mode.
0 =Serial mode using page 4.
1 = UTOPIA mode

2 — Reserved

3–15 DDx Signal assignment. Determines whether the signal is a general-purpose I/O signal or
performs a dedicated function.
0 =General-purpose I/O. The peripheral functions of the signal are not used.
1 =Dedicated peripheral function. The signal performs the function assigned by the

internal module.

MPC855T User’s Manual

Port D

Chapter 34. CPM Interrupt Controller

Chapter 34
CPM Interrupt Controller
The CPM interrupt controller (CPIC) accepts and prioritizes the internal and external
interrupt requests from the CPM blocks and passes them to the system interface unit (SIU).
The CPIC also provides a vector during the core interrupt acknowledge cycle.

34.1 Features
The following is a list of the CPIC’s main features:

• Twenty-six interrupt sources—14 internal and 12 external (through port C)
• Sources can be assigned to a programmable interrupt level
• Programmable highest priority request
• Fully-nested interrupt environment
• Individual interrupt sources can be masked in the CPM interrupt mask register

(CIMR).
• Unique vector number for each interrupt source

The CPIC manages interrupts from internal CPM sources. These sources are primarily
generated by controllers, such as SCC1, SMCs, SPI, and I2C but also include the 12
general-purpose timers and port C parallel I/O signals described in Section 33.4, “Port C.”
More than one of these sources may generate interrupts at the same time; therefore, the
CIMR register is provided for masking individual sources. Additional masking is provided
for specific interrupt events within each controller that reports interrupts through the CPIC.
These mask registers are described in the chapters that describe individual controllers. All
CPIC-managed interrupt sources are prioritized and bits are set in the CPM interrupt
pending register (CIPR).

Figure 34-1 shows the MPC855T interrupt structure. The left of the figure shows individual
interrupt sources managed by the CPIC, which signals CPIC-managed interrupts to the
SIU, shown in the middle of Figure 34-1. All interrupts signaled by the CPIC are presented
to the SIU at a single programmable priority level (0–7). In turn, the SIU controls which
PowerPC architecture-defined external interrupt exception condition is reported to the
MPC8xx core.

For information about the SIU interrupt structure, see Section 10.5.1, “Interrupt Structure.”
For information about the external interrupt exception, see Section 6.1.2.5, “External
Interrupt Exception (0x00500).”

MPC855T User’s Manual

Features

Figure 34-1. MPC855T Interrupt Structure

Although all CPM interrupts are presented to the SIU at the same priority level (specified
in CICR[IRL]), individual CPM interrupt sources are prioritized as described in
Section 34.2, “CPM Interrupt Source Priorities.” The MPC855Tprovides limited ability to
reorder the interrupt priorities of SCCs and to specify the highest priority interrupt source.

As shown in Figure 34-1, when the CIPR indicates that an unmasked interrupt source is
pending, the CPIC sends an interrupt request to the SIU at the interrupt level specified in
CICR[IRL]. The CPIC then waits for the interrupt to be recognized. The core honors the
interrupt request and then acknowledges the interrupt by setting the IACK bit in the CPM
interrupt vector register (CIVR). When CIVR[IACK] is set, the contents of CIVR[VN] are
updated with the 5-bit vector corresponding to the sub-block with the highest current
priority. CIVR[IACK] is cleared after one clock cycle.

CPM

Decrementer

Periodic
Interrupt Timer

Real-Time
Clock

Software
Watchdog Timer

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 0

NMI
Generator

MPC8xx
Core

External

Decrementer

Debug

System Reset
Edge/
Level

Timebase

PCMCIA

Debug

IRQ[0:7]

Controller

IRQ0

Interrupt
Controller

Port C[4:15]

CPM Timer[1–4]

SCC[1]

SMC[1–2]

SPI

I2C

PIP

IDMA[1–2]

SDMA

RISC Timers

Communications Processor Module
(CPM)

System Interface Unit (SIU)

Interrupt
Interrupt

SIU

Interrupt

Chapter 34. CPM Interrupt Controller

CPM Interrupt Source Priorities

34.2 CPM Interrupt Source Priorities
The CPIC has interrupt sources that assert a single programmable interrupt request level to
the core. Default interrupt priorities are as shown in Table 34-1.

The only true SDMA interrupt source is the SDMA channel bus error entry that is reported
when a bus error occurs during an SDMA access. Other SDMA-related interrupts are
reported through each individual SCC, SMC, SPI, or I2C channel.

34.2.1 Highest Priority Interrupt
The highest priority interrupt source can be selected dynamically by entering the interrupt
number in CICR[HPn], described in Table 34-3. This interrupt is still within the same
interrupt level specified in CICR[IRL] but is serviced before any other CPM interrupt (that
is, if this type of interrupt is pending, its vector number returns first when the CIVR is read.

Table 34-1. Prioritization of CPM Interrupt Sources

Priority Source Description
Multiple
Events

Priority Source Description
Multiple
Events

0x1F
(Highest)

Parallel I/O–PC15 1

1 Port C interrupts (external sources) are described in Section 33.4.2.5, “Port C Interrupt Control Register (PCINT).”

No 0x0F Parallel I/O–PC11 1 No

0x1E SCC Yes 0x0E Parallel I/O–PC10 1 No

0x1D SCC Yes 0x0D SCC Yes

0x1C SCC Yes 0x0C Timer3 Yes

0x1B SCC Yes 0x0B Parallel I/O–PC9 1 No

0x1A Parallel I/O–PC14 1 No 0x0A Parallel I/O–PC8 1 No

0x19 Timer 1 Yes 0x09 Parallel I/O–PC7 1 No

0x18 Parallel I/O–PC13 1 No 0x08 SCC Yes

0x17 Parallel I/O–PC12 1 No 0x07 Timer4 Yes

0x16 SDMA channel bus error Yes 0x06 Parallel I/O–PC6 1 No

0x15 IDMA1 Yes 0x05 SPI Yes

0x14 IDMA2 Yes 0x04 SMC1 Yes

0x13 SCC Yes 0x03 SMC2 Yes

0x12 Timer 2 Yes 0x02 Parallel I/O–PC5 1 No

0x11 RISC timer table Yes 0x01 Parallel I/O–PC4 1 No

0x10 I2C Yes 0x00
(Lowest)

Reserved —

MPC855T User’s Manual

Masking Interrupt Sources in the CPM

34.2.2 Nested Interrupts
The CPIC supports a fully nested interrupt environment that allows a high priority interrupt
from another CPM source to suspend a lower priority service routine. An interrupt request
with highest priority is presented to the core for servicing, which the core acknowledges by
setting CIVR[IACK]. After IACK is set, the corresponding vector is indicated in the CIVR
and the request is cleared. The next request can be presented to the core. When the interrupt
is taken, the external interrupt enable bit of the core’s machine state register, MSR[EE] is
cleared to disable further interrupt requests until software can handle them.

The CPM interrupt in-service register (CISR) can be used to allow a higher priority
interrupt within the same interrupt level to be presented to the core before a lower priority
interrupt service completes. Each CISR bit corresponds to a CPM interrupt source. When
the core acknowledges the interrupt by setting IACK, the CPIC sets the CISR bit for that
interrupt source. This prevents subsequent CPM interrupt requests at this priority level or
lower, until the current interrupt is serviced and the CISR bit is cleared. Lower-priority
interrupts can still be set in the CPIC during this time, but they will pend until the CISR bit
for the higher-priority interrupt is cleared. Therefore, in the interrupt service routine for the
CPM interrupts, the core external interrupt enable MSR[EE] can be set to allow
higher-priority interrupts within the CPM or from other sources to generate an interrupt
request.

34.3 Masking Interrupt Sources in the CPM
An interrupt is masked by clearing and enabled by setting the corresponding CIMR bit; see
Section 34.5.3, “CPM Interrupt Mask Register.” When a masked source requests an
interrupt, the corresponding CIPR bit is set but the CPIC does not signal the interrupt to the
core. Masking all sources allows the implementation of a polling interrupt servicing
scheme.

CPM sub-blocks with multiple interrupting events can be masked individually by
programming a mask register within that block (such as the SMC UART register (SMCM),
described in Section 29.3.12, “SMC UART Event Register (SMCE)/Mask Register
(SMCM)”). Table 34-2 shows the interrupt sources that have multiple interrupting events.
Figure 34-2 shows masking using the SMC sub-block.

Chapter 34. CPM Interrupt Controller

Generating and Calculating Interrupt Vectors

Figure 34-2. Interrupt Request Masking

The following procedure prevents possible interrupt errors when modifying mask registers,
such as the CIMR, SCCM, SMCM, or any other CPM interrupt mask:

1. Clear MSR[EE]. (Disable external interrupts to the core.)

2. Modify the mask register.

3. Set MSR[EE]. (Enable external interrupts to the core.)

This mask modification procedure ensures that an already pending interrupt is not masked
before being serviced. Masking a pending interrupt causes the interrupt error vector (see
Table 34-2) to be issued if no other valid CPM interrupts are pending. (The error vector
cannot be masked.)

34.4 Generating and Calculating Interrupt Vectors
Unmasked CPM interrupts are presented to the core in order of priority. The core responds
to an interrupt request by setting CIVR[IACK]. The CPIC passes the five low-order bits of
the vector corresponding to the highest priority, unmasked, pending CPM interrupt in
CIVR[VN]. These encodings are shown in Table 34-2.

Table 34-2. Interrupt Vector Encodings

Interrupt
Number

 Source Description CIVR[0–4]
Interrupt
Number

Source Description CIVR[0–4]

0x1F Parallel I/O–PC15 11111 0x0F Parallel I/O—PC11 01111

0x1E SCC1 11110 0x0E Parallel I/O—PC10 01110

BRK – BSY TX RX BRK – BSY TX RX• • •

SMCx Interrupt to CPIC

• • •
3 4 5 6 7 3 4 5 6 7SMCMxSMCEx

MPC855T User’s Manual

CPIC Registers

The table is the same as the CPM interrupt priority table (Table 34-1) except that the SCC
vector number is fixed. Also the last entry in this table is the error vector, which the CPM
issues if it requested an interrupt that the user cleared before the core serviced it and no
other interrupts for the CPM are pending. The user should provide an error interrupt service
routine even if it is only an rfi instruction.

34.5 CPIC Registers
There are four CPIC registers:

• CPM interrupt configuration register (CICR)—Defines CPM interrupt attributes.

• CPM interrupt pending register (CIPR)—Indicates which CPM interrupt sources
require interrupt service.

• CPM interrupt mask register (CIMR)—Can be used to mask CPM interrupt sources.

• CPM interrupt in-service register (CISR)—Allows nesting interrupt requests within
the CPM interrupt level.

Note that the names and placement of bits is identical in the CIPR, CIMR, and CISR.

0x1D — 11101 0x0D Reserved 01101

0x1C — 11100 0x0C Timer 3 01100

0x1B — 11011 0x0B Parallel I/O—PC9 01011

0x1A Parallel I/O—PC14 11010 0x0A Parallel I/O—PC8 01010

0x19 Timer 1 11001 0x09 Parallel I/O—PC7 01001

0x18 Parallel I/O—PC13 11000 0x08 Reserved 01000

0x17 Parallel I/O—PC12 10111 0x07 Timer 4 00111

0x16 SDMA channel bus error 10110 0x06 Parallel I/O—PC6 00110

0x15 IDMA1 10101 0x05 SPI 00101

0x14 IDMA2 10100 0x04 SMC1 00100

0x13 Reserved 10011 0x03 SMC2 00011

0x12 Timer 2 10010 0x02 Parallel I/O—PC5 00010

0x11 RISC timer table 10001 0x01 Parallel I/O—PC4 00001

0x10 I2C 10000 0x00 Error 00000

Table 34-2. Interrupt Vector Encodings (continued)

Interrupt
Number

 Source Description CIVR[0–4]
Interrupt
Number

Source Description CIVR[0–4]

Chapter 34. CPM Interrupt Controller

CPIC Registers

34.5.1 CPM Interrupt Configuration Register (CICR)

The CPM interrupt configuration register (CICR) defines CPM interrupt request levels, the
priority between the SCCs, and the highest priority interrupt.

This register is affected by HRESET but is not affected by SRESET. CICR bits are
described in Table 34-3.

34.5.2 CPM Interrupt Pending Register (CIPR)

Each bit in the read/write CPM interrupt pending register (CIPR) corresponds to a CPM
interrupt source. The CPIC sets the appropriate CIPR bit when a CPM interrupt is received.
Names and placement of bits, shown in Figure 34-4, are identical in the CIPR, CIMR, and
CISR, and they follow the priorities described in Table 34-1. These registers are affected by
HRESET and SRESET.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0000_0000_0000_0000

R/W R/W

Address 0x940

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field IRL HP IEN — —

Reset 0000_0000_0000_0000

R/W R/W

Add 0x942

Figure 34-3. CPM Interrupt Configuration Register (CICR)

Table 34-3. CICR Field Descriptions

Bits Name Description

0–15 — Reserved, should be cleared.

16–18 IRL Interrupt request level. Contains the priority request level of the interrupt from the CPM that is sent to
the SIU. Level 0 indicates highest priority. IRL is initialized to zero during reset. In most systems, value
0b100 is a good value to choose for IRL.

19–23 HP Highest priority. Specifies the 5-bit interrupt number of the CPIC interrupt source that is advanced to
the highest priority in the table. These bits can be modified dynamically. (Programming HP = 0b11111
keeps PC15 the highest priority source for external interrupts to the core.)

24 IEN Interrupt enable. Master enable for CPM interrupts.
0 CPM interrupts are disabled
1 CPM interrupts are enabled

25–30 — Reserved

31 — Reserved

MPC855T User’s Manual

CPIC Registers

In a vectored interrupt scheme, the CPIC clears the appropriate CIPR bit when the core
acknowledges the interrupt by setting CIVR[IACK]. The vector number corresponding to
the CPM interrupt source is then available for the core in CIVR[VN]. However, the CIPR
bit is not cleared if an event register exists for that interrupt source. Event registers exist
only for interrupt sources with multiple interrupt events.

In a polled interrupt scheme, the user must periodically read the CIPR. To avoid losing
subsequent events from the same interrupt source, acknowledge an interrupt before actually
handling it in the service routine. Acknowledge interrupts from port C by clearing the CIPR
bit directly (by writing ones). For all other interrupt sources, however, clear the unmasked
event register bits instead, thus causing the CIPR bit to be cleared.

34.5.3 CPM Interrupt Mask Register

Each bit in the read/write CPM interrupt mask register (CIMR) corresponds to a CPM
interrupt source indicated in CIPR. The CIPR and CIMR are shown in Figure 34-4. An
interrupt is masked by clearing and enabled by setting the corresponding CIMR bit. Even
if an interrupt is masked, the corresponding CIPR bit is set when an interrupt condition
occurs, but the interrupt request is not passed to the core.

If a CPM interrupt source is requesting interrupt service when its CIMR bit is cleared, the
request stops. If the bit is set later, the core processes previously pending interrupt requests
according to priority.

34.5.4 CPM Interrupt In-Service Register (CISR)
Each bit in the CPM interrupt in-service register (CISR) corresponds to a CPM interrupt
source. The CISR, CIPR, and CIMR are shown in Figure 34-4. In a vectored interrupt
environment, the CPIC sets a CISR bit when the core acknowledges the interrupt by setting

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field PC15 SCC1 — — — PC14 TIMER1 PC13 PC12 SDMA IDMA1 IDMA2 — TIMER2 RTT I2C

Reset 0000_0000_0000_0000

R/W R/W

Addr 0x944 (CIPR), 0x948 (CIMR), 0x94C (CISR)

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field PC11 PC10 — TIMER3 PC9 PC8 PC7 — TIMER4 PC6 SPI SMC1 SMC2/
PIP

PC5 PC4 —

Reset 0000_0000_0000_0000

R/W R/W

Addr 0x946 (CIPR), 0x94A (CIMR), 0x94E (CISR)

Figure 34-4. CPM Interrupt Pending/Mask/In-Service Registers (CIPR/CIMR/CISR)

Chapter 34. CPM Interrupt Controller

CPIC Registers

CIVR[IACK]. An interrupt service routine must clear the corresponding CISR bit after
servicing is complete. If an event register exists for this peripheral, its bits would normally
be cleared. Write ones to clear CISR bits; writing zeros has no effect.

Bits set in this register indicate which interrupt requests are in progress for each CPM
interrupt source. More than one CISR bit can be set if higher priority CPM interrupts are
allowed to interrupt lower priority level interrupts within the same CPM interrupt level. For
example, the TIMER1 interrupt routine could interrupt the TIMER2 interrupt handler. See
Section 34.2.2, “Nested Interrupts.” During this time, both CISR[TIMER1] and
CISR[TIMER2] are set.

If error vector is taken, no CISR bit is set. All undefined CISR bits return zeros when read.
The extent to which CPM interrupts can interrupt one another is controlled by selectively
clearing the CISR. A new interrupt is processed if it has a higher priority than the highest
priority interrupt having its CISR bit set. Thus, if an interrupt routine sets the external
interrupt enable bit in the core (MSR[EE]) and clears its CISR bit at the beginning of the
interrupt routine, a lower priority interrupt can interrupt a higher one if the lower priority
interrupt has higher priority than any other CISR bits that are currently set. Therefore, the
interrupt service routine should clear its CISR bit at the end.

34.5.5 CPM Interrupt Vector Register (CIVR)

The CPM interrupt vector register (CIVR) is used to identify an interrupt source. The core
uses the IACK bit to acknowledge an interrupt. CIVR can be read at any time. This register
is affected by HRESET and SRESET.

Table 34-4 describes CIVR fields. Section 34.6, “Interrupt Handler
Example—Single-Event Interrupt Source,” and Section 34.7, “Interrupt Handler
Example—Multiple-Event Interrupt Source,” show how CIVR fields are used.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field VN 0 IACK

Reset 0000_00000_0000_0000

R/w R/W

Address 0x930

Figure 34-5. CPM Interrupt Vector Register (CIVR)

Table 34-4. CIVR Field Descriptions

Bits Name Description

0–4 VN Vector number. Identifies the interrupt source. These values are listed in Table 34-2.

5–14 — Reserved. Writing to bits 5-15 has no effect because they are always read as zeros.

15 IACK Interrupt acknowledge. When the core sets IACK, CIVR[VN] is updated with a 5-bit vector
corresponding to the sub-block with the highest current priority. IACK is cleared after one clock cycle.

MPC855T User’s Manual

Interrupt Handler Example—Single-Event Interrupt Source

34.6 Interrupt Handler Example—Single-Event
Interrupt Source

In this example, the CPIC hardware clears CIPR[PC6] during the interrupt acknowledge
cycle. The following steps show how to handle an interrupt source without multiple events.

1. Set CIVR[IACK].
2. Read CIVR[VN] to determine the vector number for the interrupt handler.
3. Handle the interrupt event indicated through the port C6 signal.
4. Clear CISR[PC6].
5. Execute the rfi instruction.

34.7 Interrupt Handler Example—Multiple-Event
Interrupt Source

In this example, CIPR[SCC1] remains set as long as one or more event bits remain
unmasked in SCCE1. This is an example of a handler for an interrupt source with multiple
events. Notice that the handler must clear the CISR bit but not the CIPR bit.

1. Set the CIVR[IACK].

2. Read CIVR[VN] to determine the vector number for the interrupt handler.

3. Immediately read the SCC1 event register into a temporary location.

4. Decide which events in the SCCE1 must be handled and clear those bits as soon as
possible. SCCE bits are cleared by writing ones.

5. Handle the events in the SCC1 Rx BD or Tx BD tables.

6. Clear CISR[SCC2].

7. Execute the rfi instruction. If any unmasked SCCE bits remain (either not cleared
by the software or set by the MPC855T during the execution of this handler), this
interrupt source is pending again immediately after the rfi instruction.

Part VI. Asynchronous Transfer Mode (ATM)

Part VI
Asynchronous Transfer Mode (ATM)

Intended Audience
Part VI is intended for system designers who need to use the MPC8asynchronous transfer
mode capabilities. It assumes a basic understanding of the PowerPC exception model, the
MPC8interrupt structure, the MPC8communications processor module (CPM) with a
particular emphasis on the SCC, as well a working knowledge of ATM. A complete
discussion of these protocols is beyond the scope of this book.

Contents
Part VI describes the MPC8’s implementation of asynchronous transfer mode (ATM). It
contains the following chapters:

• Chapter 35, “ATM Overview,” gives a high-level description of the MPC855TATM
implementation

• Chapter 36, “Buffer Descriptors and Connection Tables,” describes the structure and
configuration of the buffer descriptors (BDs) and the transmit and receive
connection tables (TCTs and RCTs) used with ATM.

• Chapter 37, “ATM Parameter RAM,” describes how the parameter RAM is used to
configure the SCC for serial ATM and the UTOPIA interface. The CP also uses
parameter RAM to store operational and temporary values used during SAR
activities.

• Chapter 38, “ATM Controller,” describes the address mapping mechanisms of the
ATM controller to support connection tables for single-PHY interfaces, and the
commands provided to control ATM transmit and receive operations on a
channel-by-channel basis.

• Chapter 39, “ATM Pace Control,” describes how the ATM pace control unit (APC)
processes traffic parameters of each channel and defines the multiplex timing for all
the channels.

MPC855T User’s Manual

• Chapter 40, “ATM Exceptions,” describes how the circular ATM interrupt queue
operates with an event register (SCCE or IDSR1) to provide an interrupt model for
ATM operations.

• Chapter 41, “Interface Configuration,” describes the programming of registers and
parameters for ATM operations through both the UTOPIA and serial interfaces.

• Chapter 42, “UTOPIA Interface,” describes how the MPC855Tsupports SAR
MPHY ATM operation, including the UTOPIA modes and the signals provided for
UTOPIA support.

Conventions
This document uses the following notational conventions:

Bold entries in figures and tables showing registers and parameter
RAM should be initialized by the user.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

REG[FIELD] Abbreviations or acronyms for registers or buffer descriptors are
shown in uppercase text. Specific bits, fields, or numerical ranges
appear in brackets. For example, MSR[LE] refers to the little-endian
mode enable bit in the machine state register.

x In certain contexts, such as in a signal encoding or a bit field,
indicates a don’t care.

n Indicates an undefined numerical value

¬ NOT logical operator

& AND logical operator

| OR logical operator

Acronyms and Abbreviations
Table i contains acronyms and abbreviations used in this document. Note that the meanings
for some acronyms (such as SDR1 and DSISR) are historical, and the words for which an
acronym stands may not be intuitively obvious.

Bold

Part VI. Asynchronous Transfer Mode (ATM)

Table i. Acronyms and Abbreviated Terms

Term Meaning

AAL ATM adaptation layer

AAL5 CPCS–PDU

ABR Available bit rate

ACR Allowed cell rate

ALU Arithmetic logic unit

APC ATM pace control

ATM Asynchronous transfer mode

BD Buffer descriptor

BIP Bit interleaved parity

BIST Built-in self test

BRC Backward reporting cells

BT Burst tolerance

CBR Constant bit rate

CAM Content-addressable memory

CEPT Conference des administrations Europeanes des Postes et Telecommunications (European
Conference of Postal and Telecommunications Administrations).

C/I Condition/indication channel used in the GCI protocol

CLP Cell loss priority

CP Communications processor

CP-CS Common part convergence sublayer

CPCS-PDU Common part convergence sublayer–protocol data unit

CPCS-UU Common part convergence sublayer–user to user information

CPI Common part indicators

CPM Communications processor module

CPS Cells per slot

CSMA Carrier sense multiple access

CSMA/CD Carrier sense multiple access with collision detection

DMA Direct memory access

DPLL Digital phase-locked loop

DPR Dual-port RAM

DRAM Dynamic random access memory

DSISR Register used for determining the source of a DSI exception

MPC855T User’s Manual

EA Effective address

EEST Enhanced Ethernet serial transceiver

EPROM Erasable programmable read-only memory

ESAR Enhanced segmentation and reassembly

FBP Free buffer pool

FIFO First-in-first-out (buffer)

FMC Forward monitor cells

FRM Forward resource management

GCI General circuit interface

GCRA Generic cell rate algorithm (leaky bucket)

GFC Generic flow control

GPCM General-purpose chip-select machine

GUI Graphical user interface

HDLC High-level data link control

HEC Header error control

I2C Inter-integrated circuit

IDL Inter-chip digital link

IEEE Institute of Electrical and Electronics Engineers

IrDA Infrared Data Association

ISDN Integrated services digital network

JTAG Joint Test Action Group

JTAG Joint Test Action Group

LAN Local area network

LIFO Last-in-first-out

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

MAC Multiply accumulate or media access control

MBS Maximum burst size

MII Media-independent interface

MSB Most-significant byte

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

Part VI. Asynchronous Transfer Mode (ATM)

msb Most-significant bit

MSR Machine state register

NaN Not a number

NCITS Number of cells in a time slot

NIC Network interface card

NIU Network interface unit

NMSI Nonmultiplexed serial interface

NRT Non-real time

OSI Open systems interconnection

PCI Peripheral component interconnect

PDU Protocol data unit

PCR Peak cell rate

PHY Physical layer

PM Performance monitors

PPM Pulse-position modulation

PTI Payload type identifier

PTP Port-to-port switching

RCT Receive connection table

RM Resource management

RT Real-time

RTOS Real-time operating system

Rx Receive

SAR Segmentation and reassembly

SCC Serial communications controller

SCP Serial control port

SCR Sustained cell rate

SDLC Synchronous Data Link Control

SDMA Serial DMA

SI Serial interface

SIU System interface unit

SMC Serial management controller

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

MPC855T User’s Manual

SNA Systems network architecture

SPI Serial peripheral interface

SRAM Static random access memory

SRTS Synchronous residual time stamp

TCT Transmit connection table

TDM Time-division multiplexed

TE Terminal endpoint of an ISDN connection

TLB Translation lookaside buffer

TSA Time-slot assigner

Tx Transmit

UBR Unspecified bit rate

UBR+ Unspecified bit rate with minimum cell rate guarantee

UART Universal asynchronous receiver/transmitter

UPM User-programmable machine

USART Universal synchronous/asynchronous receiver/transmitter

Utopia Universal test operation physical interface for ATM

VBR Variable bit rate

VC Virtual channel or circuit or call or connection

VCC Virtual channel connection

VCI Virtual circuit identifier

VP Virtual path

VPC Virtual path connection

VPI Virtual path identifier

UTOPIA Universal test and operations physical interface for ATM

VC Virtual channel or virtual circuit

WAN Wide area network

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

Chapter 35. ATM Overview

Chapter 35
ATM Overview
This chapter provides an overview of the ATM features of the MPC855T.

35.1 ATM Capabilities
The MPC855T can be used as an adaptable ATM controller suited for a variety of
applications, including the following:

• ATM line card controllers

• ATM to WAN interworking, including frame relay, T1/E1 circuit emulation service
(CES), and xDSL applications

• Residential broadband network interface units (ATM-to-Ethernet)

• Set-top controllers

• ATM25 SAR applications

• Bridging and routing applications

35.2 MPC855T and MPC860 Differences
The MPC855T is pin-compatible with the standard MPC860, and they have identical
electrical and mechanical specifications. However, when running an ATM application, the
MPC855T loses some functionality due to internal resource conflicts.

35.2.1 Parameter RAM Conflicts

Operating serial ATM on SCC1 or the UTOPIA interface causes other peripherals to lose
their parameter RAM. For SCC1, the serial ATM parameters extend into the I2C parameter
RAM default location. However, the parameters for both SPI and I2C can be relocated
without the need for RAM-based microcode. The parameter RAM for SMC2/PIP is
affected in the same manner when using the UTOPIA interface.

MPC855T User’s Manual

ATM Features

35.2.2 IDMA2 Restriction

Because of internal system constraints, IDMA2 can only be used in level-sensitive mode
when ATM is enabled. This requires the user to set the RCCR[DR1M] bit.

35.2.3 UTOPIA Conflicts

The UTOPIA interface is implemented using the hardware of IDMA1. Therefore, if the
UTOPIA port is used:

• IDMA1 is unavailable. (The DREQ0 signal is lost, and the IDMA1 event and mask
registers IDSR1 and IDMR1 are used for UTOPIA events.)

• Parallel interface port (PIP) is unavailable (due to the loss of the PIP handshake
signals)

35.2.4 The ATM Pace Controller (APC) and APC Timer

The ATM pace controller (APC) uses the CPM general-purpose timer 4 to schedule ATM
cells for transmission. That is, CPM timer 4 becomes the APC timer and cannot be used as
a general purpose timer. The APC can be disabled simply by disabling the APC timer.

35.3 ATM Features
The MPC855T supports the following features:

• Serial ATM capability on the SCC

• Optional UTOPIA port

• Cell processing up to 96 Mbps aggregate receive and transmit via UTOPIA interface
(with 80 MHz system clock)

• Memory-to-memory cell processing (via UTOPIA or serial interface with
loopback).

• Performs transmission convergence (TC) to E1/T1/xDSL serial lines.

• Support of AAL0 and AAL5 protocols on a per virtual circuit (VC) basis.

• AAL0 support allows other AAL types to be implemented in application software.

• Support for 32 active VCs using internal dual-port RAM, and up to 64K using
external memory.

• Flexible and efficient cell rate pacing support for CBR and UBR, with software
hooks provided for host-managed ABR services.

• Supports UTOPIA and serial (E1/T1/xDSL) interfaces.

• Compliant with ATM Forum UNI 4.0 specification.

• CLP and congestion indication marking in RxBD.

Chapter 35. ATM Overview

ATM Features

• Separate transmit and receive buffer descriptor (BD) tables for each channel.

• Interrupt reporting optionally enabled per channel

• Supports 53-byte to 64-byte (expanded) ATM cell size.

• Glueless serial interface to an xDSL interface device.

• Supports AAL5 connections:
— Reassembly:

– Reassembles CPCS_PDU directly to host memory
– CRC32 check
– CPCS_PDU padding removal
– CS_UU, CPI, and LENGTH reporting
– CLP and congestion reporting
– Interrupt per buffer or per frame
– Report on errors (CRC, length mismatch, message abort)
– Real-time time stamp capability to support connection timeout

— Segmentation:
– Segments CPCS_PDU directly from host memory
– Performs CPCS_PDU padding
– CRC32 generation
– Automatic last cell marking (in the PTI field of the cell header)
– Automatic CS_UU, CPI, and LENGTH insertion (in the last cell of the frame)

• Supports AAL0 connections:
— Receive:

– Complete cell is stored in memory (with exception of the HEC).
– CRC10 pass/fail indication
– Optional interrupt per cell

— Transmit:
– Reads a complete cell (with exception of the HEC) from the buffer.
– Optional CRC10 insertion

• Physical layer (PHY) support:
— UTOPIA port provides glueless interface to PHY

– UTOPIA master (ATM side) with cell-level handshake
– Supports use of external logic to implement UTOPIA level 2 multi-PHY

interface (for up to 4 PHY)
— Serial interface

– Cell delineation
– HEC generation/checking
– Cell payload scrambling/de-scrambling option (X43+1 polynomial)

MPC855T User’s Manual

MPC855T Application Example

– Automatic idle/un-assigned cell insertion/stripping
– Cells with incorrect HEC are marked and counted.

• ATM pace control (APC) unit:
– Constant bit rate (CBR) service on a per VC basis
– Unspecified bit rate (UBR) pacing
– Available bit rate (ABR) pacing (pace is managed by upper-layer host

software when establishing a connection)
• Receive address mapping supported by three mechanisms:

— Sequential look-up table (for up to 32 channels)
— Flexible, user-defined address compression mechanism
— Content-addressable memory (CAM)

35.4 MPC855T Application Example
Figure 35-1 shows a possible MPC855T configuration supporting both serial and UTOPIA
ATM transmissions.

Figure 35-1. MPC855T Application Example

Timeslot

TDMa

MEM

M
P

C
855T

Assigner
SMC

SMC

SCC1

UTOPIA

Ethernet

Embedded
MPC8xx

Core

Communications

Processor

PCMCIA

SPI I2C

T1/E1/xDSL

MEMMemory
DRAM / EPROM / SRAM

Flash

PCMCIA

card

PCI PCI Bus

Bridge

ATM
PHY

Port B

Chapter 35. ATM Overview

Overview of ATM Operation

35.5 Overview of ATM Operation
The MPC855T supports ATM adaptation layers AAL0 and AAL5 segmentation and
reassembly and the ATM layer for the convergence sublayer (CS). User data resides in
system memory in single or multiple data buffers.

There are two physical layer/interface modes of operation: a UTOPIA interface and a serial
interface. In UTOPIA mode, the ATM layer directly interfaces to the PHY through the
UTOPIA interface. In serial mode, the ATM controller also implements the transmission
convergence (TC) sublayer and interfaces to the PHY layer through the SCC.

The following sections describe the transfer mechanisms for the serial and UTOPIA
interface modes and the functionality of the ATM pace controller (APC), which is utilized
in both modes of operations. Internal and external ATM channels are introduced.
Port-to-port cell switching and memory-to-memory SAR operation is also discussed.

35.6 UTOPIA Operation
In UTOPIA mode, the ATM controller handles transfers on a cell-by-cell basis. The
UTOPIA interface implements a cell-level handshake. The supported bit rate of the
UTOPIA interface is higher than that of serial ATM which additionally implements the
transmission convergence (TC) layer.

The following sections describe the transmit and receive mechanisms for the UTOPIA
interface. The expanded cell option is also discussed. Detailed information about UTOPIA
mode can be found in Chapter 41, “Interface Configuration,” and in Chapter 42, “UTOPIA
Interface.”

35.6.1 UTOPIA Transmit Overview
The UTOPIA transmit process begins with the ATM pace control unit (APC). The APC
schedules the ATM traffic using a scheduling table and a user-configured APC timer (CPM
general-purpose timer 4) that defines the maximum transmit bit rate (bandwidth). The APC
maintains the traffic parameters for each channel and divides the total bandwidth among the
active channels. It can provide CBR and UBR traffic services. ABR can also be supported
through application software manipulation of APC parameters. See Chapter 39, “ATM Pace
Control,” for additional information about the operation and programming of the APC.

With each tick of the APC timer, the APC prepares the channel(s) in the current time slot
for transmission by inserting the channel number(s) into the transmit queue. When the PHY
asserts the transmit cell available (TxClav) signal, the transmitter takes the next channel
number from the transmit queue. The transmitter uses the channel number to find the
channel’s transmit connection table (TCT).

For AAL5, the transmitter then copies 48 bytes (or up to 65 bytes for channels configured
with expanded cells) from the external buffer, performs CRC32, copies the cell header from

MPC855T User’s Manual

UTOPIA Operation

the cell header entry of the TCT, and sends the complete cell through the UTOPIA
interface. For the last cell of an AAL5 frame, the transmitter appends the trailer of the
common part conversion sublayer-protocol data unit (CPCS-PDU) to the user frame. It
pads as required, appends the length (calculated during the frame transmit), and copies the
CPCS-UU and CPI from the TxBD. The transmitter also sets the PTI[1] bit in the header.
An interrupt can be optionally generated to declare the end of the transmit frame.

For AAL0, the transmitter simply copies the cell (except the HEC) prepared by the user
from the channel’s buffer and sends it through the UTOPIA interface. The ATM controller
can optionally generate CRC10 on the cell payload and place the result at the end of the
payload (CRC10 field). This feature is used to support OAM CRC10; refer to the ITU
specification I.610 for additional details.

If, however, the current active channel’s buffer is not ready, the transmit process ends and
no cell is sent to the PHY. The PHY is responsible for generating an idle cell in an empty
cell slot. An empty cell slot will continue to be generated each time the APC schedules this
channel in the transmit queue until either a buffer is made ready or a TRANSMIT

DEACTIVATE CHANNEL command is issued. See Section 38.3, “ATM Commands,” for
additional information about ATM controller commands.

NOTE:
The ATM controller does not generate the HEC in UTOPIA
mode. The transmitter sends a dummy byte value (0x00) in
place of the HEC; the PHY is responsible for the actual
calculation of the HEC.

35.6.2 UTOPIA Receive Overview

The UTOPIA receive process begins when the PHY asserts the receive cell available signal
(RxClav), indicating that the PHY has a complete cell in its receive FIFO buffer. The ATM
controller first receives the cell header through the UTOPIA interface. The receiver
translates the header address (GFC/VPI/VCI/PTI) to a channel number using either a
look-up table in dual-port RAM, address compression tables in external RAM, or an
external content-addressable memory (CAM). A cell header that has no match is treated as
an AAL0 cell and is passed to the global raw cell queue (usually defined by convention to
be channel number 0). If the cell header is matched to an active channel, the payload (48
bytes) is copied to the current buffer, the CRC is calculated (optional for AAL0), and the
RCT parameters are updated. If, however, the current buffer is not empty, a busy interrupt
is optionally generated and the cell is discarded.

For AAL5, when a cell with an end-of-frame marker (indicated by PTI[1]) is received, the
receiver separates the trailer of the CPCS-PDU from the user data. The pads are removed
as required, the length field is checked against the length which was calculated during the
frame receive, the CPCS-UU and CPI are copied to the RxBD, and the buffer is closed. An
interrupt is optionally generated to declare the end of received frame. If a CRC or length

Chapter 35. ATM Overview

Serial ATM Operation

error occurs, it is marked in the RxBD and an interrupt is optionally generated.

For AAL0, the ATM controller copies the cell (except the HEC) from the UTOPIA interface
to the channel’s current buffer and optionally performs a CRC10 check on the cell payload.
The CRC10 option is used to support OAM cell checking (by host software) according to
the ITU specification I.610.

NOTE:
The received HEC is not checked by the ATM controller in
UTOPIA mode; it is the responsibility of the PHY to check the
HEC and discard cells with an incorrect HEC.

35.6.3 Expanded Cells

An option for supporting ATM cells larger than the standard 53 bytes (4-byte header, 1-byte
HEC and 48-byte payload) is available when operating in UTOPIA mode.

The MPC855T also supports cells up to 65 bytes in length (referred to as expanded cells)
that use extra header fields for internal information in switching applications. Expanded
cells consist of an expanded header of 0 to 12 bytes, a cell header (4 bytes), and a payload
(48 bytes); the HEC can be optionally included. Figure 35-2 shows the structure of an
expanded cell.

Figure 35-2. Expanded Cell Structure

For transmitting, the expanded header of each cell is taken from the expansion field in the
TxBD and sent ahead of the cell header and payload. For receiving, the expanded header of
the last cell of the current connection is copied to the expansion field in the connection’s
RxBD.

35.7 Serial ATM Operation
The SCC running serial ATM operates independently of the physical interface standard
used. The TDM port can be used with serial ATM to allow an easy connection to an E1 or
T1 line interface device. It is also possible to use the SCC directly through the NMSI.

Expanded Header

Payload

Header

(0-12 bytes)

(4 bytes)

(48 bytes)

HEC - Optional (1 byte)

MPC855T User’s Manual

Serial ATM Operation

In addition to the functions provided for UTOPIA operation, the serial ATM mode includes
a transmission convergence (TC) layer. The TC layer provides cell delineation, scrambling,
idle cell generation or filtering, and defines the interface characteristics to support E1/T1 or
xDSL line interface devices.

35.7.1 Serial ATM Transmit Overview

The serial transmit process begins with the APC. The APC controls the ATM traffic of the
transmitter through a user-configured timer that defines the maximum outgoing bit rate.
The APC uses each ATM channel’s specific traffic parameters to divide the total bit rate
among the active channels. It can provide CBR and UBR traffic services. ABR can also be
supported through software manipulation of APC parameters. The task of the APC is to
define the next channel (or channels) to be transmitted. Refer to Chapter 39, “ATM Pace
Control,” for additional information about the operation and programming of the APC.

When operating in serial mode, transmit requests are internally generated by the SCC. The
transmitter takes the next channel from the transmit queue for the SCC. It then reads the
channel-specific information from the transmit connection table (TCT), and updates the
TCT. The cell data is then copied from the transmit buffer to an internal buffer where the
CRC32 and HEC are calculated, the cell header is appended, and scrambling is optionally
performed. After the cell assembly process, the cell is moved into the SCC’s transmit FIFO
for transmission.

The transmitter appends the trailer of the CPCS-PDU in the last cell of an AAL5 user frame.
The CPCS-PDU consists of the frame length (which is calculated during the frame
transmit), the CPCS-UU and CPI fields from the TxBD, and cell padding as required. The
transmitter also sets PTI[1] in the header of the last cell of the frame. An interrupt can be
optionally generated to declare the end of a transmit frame.

When transmitting AAL0 cells, the ATM controller copies the cell (except the HEC) from
the channel’s cell transmit buffer. The ATM controller optionally generates CRC10 for the
cell payload and places the result at the end of the payload. This feature is used to support
OAM CRC10 per ITU specification I.610.

In the event of an empty transmit queue or no valid BDs for the active channel in the BD
table, the transmitter generates an idle or unassigned cell (with the cell contents defined by
the user). The transmitter sends idle cells if there are no channel numbers in the transmit
queue or if the current channel in the transmit queue has no valid buffers. Channels can be
removed from the transmit queue with the deactivate channel command. For additional
information about ATM controller commands, refer to Section 38.3, “ATM Commands.”

Chapter 35. ATM Overview

Serial ATM Operation

35.7.2 Serial ATM Receive Overview

The serial receive process starts after the receiver becomes synchronized with the incoming
cells and can perform cell delineation. A receive request is then generated by theSCC. The
receiver copies the first word from the SCC to the dual-port RAM (DPR). The receiver
translates the header address (VCI/VPI/PTI) to a channel number through either a look-up
table in dual-port RAM, address compression tables in external RAM, or an external
content-addressable memory (CAM). If the header has no match the incoming cell is
treated as an AAL0 cell, and is passed to the global raw cell queue (channel 0). If the cell
is matched to a channel the channel status is read from the receive connection table (RCT).
As the FIFO of the SCC fills, the received cell is read from the FIFO, the HEC is checked,
and the cell is optionally descrambled. Cells with HEC errors are passed to the global raw
cell queue, and the HEC error is recorded in the BD. The receiver screens out either idle
cells or unassigned cells as programmed.

After each cell is assembled, either the entire cell (for AAL0 connections) or the cell
payload (for AAL5 connections) is copied to external memory using SDMA channels, and
the RCT is updated. If no empty buffer is available for the received channel in the BD table,
an interrupt is generated and the cell is discarded.

CRC32 is checked on the cell payload for AAL5 connections, with pass/fail indication
provided in the last BD of the received CPCS_PDU. The end of an AAL5 frame is indicated
by the PTI[1] bit in the received cell header. When an end-of-frame indication occurs, the
receiver separates the trailer of the CPCS-PDU from the user data. The length field is
compared against the length calculated during the frame receive operation, the pads are
removed as required, the CPCS-UU and CPI are copied to the BD, and the receive buffer is
closed. An interrupt can be optionally generated to declare the end of a receive frame.
Detected CRC or length errors are marked in the BD and an interrupt can be generated.

When AAL0 cells are received the ATM controller copies the cell (except the HEC) from
the SCC FIFO to the next receive buffer in the channel’s BD table. The ATM controller
calculates and checks CRC10 on the cell payload. This option supports the OAM cell check
per ITU specification I.610.

35.7.2.1 Cell Delineation

In serial mode cell delineation is part of the receiver flow control. The ATM controller
provides SDH/PDH oriented cell delineation on an octet basis using the HEC mechanism
defined in the ITU specification I.432.

When cell reception begins, the ATM controller attempts to acquire the correct cell
delineation. Once locked onto the cell boundaries of the incoming data stream, the ATM
controller remains synchronized unless excessive errors disrupt the flow. A status bit
(ASTATUS[LOCK]) indicates the current delineation status, and an interrupt
(SCCE[SYNC]) can be generated whenever the cell lock status changes. Cells received
before proper cell delineation is achieved are stored in the global raw cell queue.

MPC855T User’s Manual

ATM Pace Control (APC)

35.7.3 Cell Payload Scrambling/Descrambling

Cell payload scrambling and descrambling can be performed in the cell stream using the
X43+1 scrambling algorithm. The ATM controller automatically transmits an empty cell
following initialization to establish the 43-bit delay line and thereby avoid data corruption.
On cell reception, the descrambling algorithm self-synchronizes before the HEC
delineation process is complete and valid cell reception begins.

35.8 ATM Pace Control (APC)
The ATM pace controller determines the next channel (or n channels) to be transmitted and
writes the channel number of these channels in the transmit queue every APC slot time. The
transmitter sends one cell for each channel entry in the transmit queue.

Controlled by the communications processor (CP), the APC provides traffic shaping. Thus,
the APC can flexibly combine SAR traffic with PTP traffic (cell switching). Its pace
controller is based on multiple-level circular tables (APC scheduling tables) in the dual-port
RAM that are used to schedule transmission of all the active channels.

The operation of the APC is controlled by several input parameters programmed by the
user. Scheduling of traffic is controlled through the APC scheduling table length, the
number of cells to be selected in an APC slot time, and the APC request timer. The period
of the APC request timer determines the length of an APC slot time. The APC uses the
APC_period parameter in the TCT to schedule the channel in the APC scheduling table.

For ABR transmission, the host adjusts the APC parameters in response to incoming
resource management (RM) cells and defines the ABR available cell rate (ACR). The APC
period can be changed on-the-fly, thereby allowing the bit rate for a channel to be changed
dynamically, which is necessary to control transmission of traffic types such as ABR. For
ABR, it is the user’s responsibility to evaluate RM cells and update the APC_period entry
in the TCT.

The APC input parameters are described in Chapter 39, “ATM Pace Control.” These
parameters define the minimum and maximum cell rate and cell delay variation.

35.9 Internal and External Channels (Extended
Channel Mode)

Internal channels are the channels numbered 0 through 31; external channels have channel
numbers greater than 31. The external channels become available only when the user
selects extended channel mode (see Section 37.2, “SAR Receive State Register
(SRSTATE)”).

The TCTs and RCTs for internal channels are directly accessed in the (internal) dual-port
RAM. For external channels, the TCT and RCT structures are placed in external memory

Chapter 35. ATM Overview

Internal and External Channels (Extended Channel Mode)

and thus require DMA accesses to read and update. Also, the GFC/VPI/VCI/PTI mapping
for external channels requires a CAM or address compression method instead of the
generally faster dual-port RAM look-up table method used for internal channels. Therefore,
the bit rate supported in extended channel mode is reduced. The overall throughput depends
on the number of external channels and the bit rate ratio between external and internal
channels; that is, higher bit rate channels should be assigned internal channel numbers.

MPC855T User’s Manual

Internal and External Channels (Extended Channel Mode)

Chapter 36. Buffer Descriptors and Connection Tables

Chapter 36
Buffer Descriptors and Connection
Tables
The communications processor module (CPM) manages ATM traffic through the UTOPIA
and serial interfaces by means of transmit and receive buffer descriptors (BDs) and transmit
and receive connection tables (TCTs and RCTs). The BDs are grouped into circular tables
of pointers into the data buffer space in external memory. The following sections describe
the structure and configuration of the BDs, TCTs, and RCTs.

36.1 ATM Buffer Descriptors (BDs)
ATM segmentation and reassembly (SAR) operates as a multi-channel protocol,
segmenting and reassembling each channel’s transmit and receive data to and from different
sets of memory buffers simultaneously. The buffer descriptor (BD) implementation for
ATM operation builds on the traditional SCC buffering method in which each controller has
one pair of BD tables for receiving and transmitting. To accommodate multiple ATM
channels, each channel number is given its own pair of BD tables located in external
memory. The base pointers to a channel’s BD tables are programmed as part of the
channel-specific information in the channel’s RCT and TCT; see Section 36.2, “Receive
and Transmit Connection Tables (RCTs and TCTs).”

Each transmit channel has a separate TxBD table and a TCT which holds the TxBD pointers
(TBASE and TBD_PTR). Likewise, each receive channel has a separate RxBD table and a
RCT holding the RxBD pointers (RBASE and RBD_PTR). The global parameters
TBDBASE and RBDBASE, located in the ATM-specific SCC (serial and UTOPIA)
parameter RAM (see Chapter 37, “ATM Parameter RAM”), define the base addresses for
the blocks of external memory containing all the channels’ BD tables. The BD base offset
pointers (TBASE and RBASE) point to the beginning of a given channel’s BD tables. The
BD offset pointers (TBD_PTR and RBD_PTR) specify the next (or currently active) BD.

Figure 36-1 shows TxBD tables and buffers and their associated pointers for two example
transmit channels, channel 1 and channel 4. (The RxBD tables and buffers for receive
channels have the same structure.)

MPC855T User’s Manual

ATM Buffer Descriptors (BDs)

Figure 36-1. Transmit Buffer and TxBD Table Example

In the example of Figure 36-1, when the transmitter encounters channel number 1 in the
transmit queue, it sends a cell using transmit buffer 4 because TxBD 4 is the active BD in
channel number 1’s TxBD table. As the cell is sent, the transmit buffer pointer TB_PTR
tracks the current data position. After the cell is sent, the transmitter advances the channel’s
TBD_PTR to the next BD in the table (unless the current buffer is a multiple-cell AAL5
frame in which case TBD_PTR is not advanced and the current data position is kept in
TB_PTR) and moves on to the next channel in the transmit queue. When the end of the BD
table is reached (TxBD[W] = 1), the transmitter returns to the head of the table by
re-initializing TBD_PTR to the channel’s TBASE address.

36.1.1 AAL5 Buffers

Each AAL5 buffer can hold either a whole frame or part of it. During transmit or receive
operations, interrupts are optionally generated at the closing of each buffer or at the end of
a frame.

The last buffer of a frame is padded automatically by the transmitter to fit an AAL5 cell
payload according to ITU specification I.363. The transmit buffer data length for AAL5
transmit buffers must be greater than or equal to 48 bytes for all buffers except the first and
last buffer of a frame; the first and last buffers of a frame must have a data length greater
than zero. Note that AAL5 transmit buffers have no alignment restrictions.

Receive buffers, however, must start on a burst-aligned address (divisible by 16) and their
lengths should be a multiple of 48 bytes (that is, the value of SMRBLR in the SCC

BD Memory Space (up to 256 KByte)

TBASE
Pointers from

Ch1 TCT

Tx BD Table
of Ch1

Tx BD Table
of Ch4

Buffer Memory Space (4 Gbyte)

Ch1TB_PTR

TBD_PTR

TBD_BASE

TBASE

TBD_PTR

Pointers from
Ch4 TCT

Tx BD 1
Tx BD 2
Tx BD 3
Tx BD 4
Tx BD 5
Tx BD 6
Tx BD 7
Tx BD 8
Tx BD 9

Tx BD 1
Tx BD 2
Tx BD 3
Tx BD 4
Tx BD 5
Tx BD 6

Tx Buffer3 of
Channel1

Tx Buffer4 of
Channel1

Tx Buffer1 of
Channel4

Tx Buffer2 of
Channel4

Tx Buffer3 of
Channel4

Ch4TB_PTR

Tx Buffer2 of
Channel1

Tx Buffer8 of
Channel4

Tx Buffer1 of
Channel1

Pointer from
Parameter RAM

Chapter 36. Buffer Descriptors and Connection Tables

ATM Buffer Descriptors (BDs)

parameter RAM should be a multiple of 48). The buffers are filled with multiples of 48
bytes, except for the last buffer in a frame from which the AAL5 pads are removed.

36.1.2 AAL0 Buffers

AAL0 buffers contain one raw cell. When the receiver or transmitter completes writing or
reading the buffer, it moves to the next BD in the AAL0 channel’s BD table in preparation
for the next transfer and optionally issues an interrupt.

AAL0 buffers are 64 bytes. 52 bytes are used to hold the cell header and payload—the HEC
is not included in the receive or transmit buffers. The remaining 12 bytes of the buffer are
not used and are available to the user. The AAL0 buffer structure is shown in Figure 36-2.

Figure 36-2. AAL0 Buffer Structure

Unlike other protocols, both the AAL0 transmit and receive buffers should be 16-byte
aligned.

36.1.3 ATM Receive Buffer Descriptors (RxBDs)

The format of the ATM receive buffer descriptor (RxBD) applies to both UTOPIA and
serial ATM modes. ATM RxBDs are 12 bytes, as shown in Figure 36-3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OFFSET + 0 E — W I L F CM — HEC CLP CNG ABT — — LN CR

OFFSET + 2 DATA LENGTH/CHANNEL Code

OFFSET + 4 RX DATA BUFFER POINTER

OFFSET + 8 CPCS-UU+CPI

OFFSET + A —

Figure 36-3. ATM RxBD

Cell Header (without HEC)

12-byte User Space

48-byte Payload

MPC855T User’s Manual

ATM Buffer Descriptors (BDs)

For UTOPIA operation, a global option to support expanded cells is available. ATM RxBDs
in expanded cell mode are 24 bytes, as shown in Figure 36-4.

Table 36-1 describes the ATM RxBD fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OFFSET + 0 E — W I L F CM — HEC CLP CNG ABT — — LN CR

OFFSET + 2 DATA LENGTH/CHANNEL Code

OFFSET + 4 RX DATA BUFFER POINTER

OFFSET + 8 CPCS-UU+CPI

OFFSET + A —

OFFSET + C Cell Header Expansion 1

OFFSET + 10 Cell Header Expansion 2

OFFSET + 14 Cell Header Expansion 3

Figure 36-4. ATM RxBD in Expanded Cell Mode (UTOPIA Only)

Table 36-1. ATM RxBD Field Descriptions

Offset
from

RBD_PTR
Bits Name Description

0x00 0 E Empty. Determines whether a buffer is accessible by the CPU core or the CP.
0 The data buffer associated with this RxBD has been filled with the received

data, or data reception has been aborted due to an error condition. The
CPU core is free to examine or write to this RxBD and buffer. The CP will
not access a BD while the E-bit is cleared.

1 The data buffer associated with this RxBD is empty, or reception is
currently in progress. This RxBD and its associated receive buffer are in
use by the CP. Once the E bit is set, the CPU core should not write to this
RxBD.

1 — Reserved

2 W Wrap. Determines that this is the final BD in the table.
0 This is not the last BD in the RxBD table.
1 This is the last BD in the RxBD table. The next time this channel receives

data, the first BD in the channel’s RxBD table (the BD pointed to by the
channels’s RCT[RBASE] address) will be used. The number of RxBDs in
this table is programmable and is determined only by the W bit and the
overall space constraints of the 256K memory space available for all the
receive channels.

3 I Interrupt. Enables RXB interrupts when a receive buffer is closed during
receipt of an AAL5 frame buffer or an AAL0 buffer. Note that RXF (receive
AAL5 frame) interrupts are not affected by this bit.
0 No interrupt is generated after this buffer has been used.
1 Interrupt occurs after this buffer has been closed by the ATM controller.

This class of interrupt is indicated through the setting of the RXB bit in an
entry in the interrupt queue.

Chapter 36. Buffer Descriptors and Connection Tables

ATM Buffer Descriptors (BDs)

0x00 4 L Last in frame (AAL5). Set by the ATM controller when this buffer is the last in
an AAL5 frame or when an error occurs, in which case one or more error bits
are also set. The ATM controller writes the total number of frame octets to the
data length field.
0 The buffer is not the last in a frame.
1 The buffer is the last in a frame or an error has occurred.

5 F F (AAL5) First in frame. Set by the ATM controller when this buffer is the first
in a frame
0 The buffer is not the first in a frame.
1 The buffer is the first in a frame.

6 CM Continuous mode. Note that RxBD[E] is cleared if an error occurs during
reception, regardless of CM.
0 Normal operation.
1 RxBD[E] is not cleared by the CPM after this BD is closed, allowing the

associated buffer to be overwritten next time the CPM accesses it.

7 — Reserved.

8 HEC HEC error (AAL5). A receiver HEC error occurred on at least one cell of the
frame. Cells with HEC errors are passed to the global raw cell queue with this
bit set.

9 CLP Cell loss priority. Indicates that at least one cell was received with its CLP bit
set. This bit is set in the last BD in the frame by the CP for channels that
implement AAL5. For channels that implement AAL0, this bit is copied from
the CLP bit in the header of the received cell.

10 CNG Congestion indication. Indicates that the last cell in the frame was received
with its PTI congestion bit set. This bit is set in the last BD of the frame by the
CP for channels that implement AAL5. For channels that implement AAL0,
this bit is copied from the PTI bit in the header of the received cell.

11 ABT Abort (AAL5). Indicates that a frame abort was detected (last cell in frame
indicated zero frame length.) This error bit is set in the last BD of the aborted
frame by the CP for channels that implement AAL5.

12–13 — Reserved

14 LN Receive length error (AAL5). Indicates the number of octets received in the
frame does not match the length specified in the length field of the AAL5
frame. This bit is set in the last BD of the frame by the CP for channels that
implement AAL5. Note that the whole received PDU is written to the data
buffer even if a receive length error is detected.

15 CR Receive CRC error. Indicates a CRC32 error for AAL5 channels or a CRC10
error for AAL0 channels. The receiver performs CRC32 checking on the
frame for AAL5 channels and sets the CR bit in the last BD when a CRC
error is detected. For AAL0 channels, the receiver performs CRC10 checking
on the cell payload and sets the CR bit if a CRC error is detected.
0 No error
1 CRC32 error for AAL5 channels; CRC10 failure for AAL0 channels
Note: RxBD[CR] is set only when the received cell includes a CRC10 field in
the payload and an error is detected. This check is provided to support OAM
CRC10 according to the ITU specification I.610.

Table 36-1. ATM RxBD Field Descriptions (continued)

Offset
from

RBD_PTR
Bits Name Description

MPC855T User’s Manual

ATM Buffer Descriptors (BDs)

36.1.4 ATM Transmit Buffer Descriptors (TxBDs)

The format of the ATM transmit buffer descriptor (TxBD) applies to both UTOPIA and
serial ATM modes. ATM TxBDs are 12 bytes, as shown in Figure 36-5.

For UTOPIA operation, a global option to support expanded cells is available. ATM TxBDs
in expanded cell mode are 24 bytes, as shown in Figure 36-6.

0x02 — Data length Data length. For AAL5 BDs, the data length is the number of octets written by
the CP into the BD’s data buffer. When the buffer is the last buffer in the
frame (BD[L] = 1), the data length contains the total number of frame octets.
This field is written by the CP as the buffer is closed.

0x04 — Receive data
buffer pointer

Receive data buffer pointer. Points to the first location of this BD’s data buffer,
which may reside in either internal or external memory. This pointer must be
burst aligned (divisible by 16).

0x08 — CPCS-UU
and CPI

CPCS-UU and CPI (AAL5 only). Contains the frame’s CPCS-UU and CPI
fields. This field is taken from the frame trailer, and contains user-to-user
(UU) information and common part indications (CPI). This field is written by
the CP and is valid only for the last BD in the AAL5 frame.

0x0A — — Reserved, should be cleared.

0x0C — Cell header
expansion 1,

2, and 3

Cell header expansion 1, 2, and 3 (UTOPIA expanded cell mode only). These
fields are added to the BD when expanded cells are enabled (SRSTATE[EC]
is set in the UTOPIA parameter RAM). The size of the cell header expansion
is programmable and is determined by ECSIZE in the UTOPIA parameter
RAM.
When the last BD of an AAL5 frame is closed, the ATM controller copies the
expanded cell header into these fields. For AAL0 channels, the expanded cell
headers are copied into these fields for every RxBD.
Cell header expansion 1 is the first word to be received; cell header
expansion 3 is the last. The bytes are ordered according to the DMA byte
ordering (programmed through SRFCR in the parameter RAM).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OFFSET + 0 R — W I L — CM — — — — — — — — —

OFFSET + 2 DATA LENGTH

OFFSET + 4 TX DATA BUFFER POINTER

OFFSET + 8 CPCS-UU+CPI/HEADER_L

OFFSET + A Reserved/HEADER_H

Figure 36-5. ATM TxBD

Table 36-1. ATM RxBD Field Descriptions (continued)

Offset
from

RBD_PTR
Bits Name Description

Chapter 36. Buffer Descriptors and Connection Tables

ATM Buffer Descriptors (BDs)

 Table 36-2 describes the ATM TxBD fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OFFSET + 0 R — W I L — CM — — — — — — — — —

OFFSET + 2 DATA LENGTH
OFFSET + 4 TX DATA BUFFER POINTER
OFFSET + 8 CPCS-UU+CPI/HEADER_L
OFFSET + A Reserved/HEADER_H
OFFSET + C Cell Header Expansion 1
OFFSET + 10 Cell Header Expansion 2
OFFSET + 14 Cell Header Expansion 3

Figure 36-6. ATM TxBD in Expanded Cell Mode (UTOPIA Only)

Table 36-2. ATM TxBD Field Descriptions

Offset
from

TBD_PTR
Bits Name Description

0x00 0 R Ready. Determines whether the data buffer is ready for transmission.
0 The data buffer associated with this BD is not ready for transmission. The

CPU core is free to manipulate this BD and its associated data buffer. The CP
clears this bit after the buffer has been sent or after an error condition is
encountered.

1 The data buffer, which has been prepared for transmission by the user, has
not been sent or is currently being sent. This BD and its buffer should not be
modified by the CPU core.

1 — Reserved

2 W Wrap. Determines whether this is the final BD in the table.
0 This is not the last BD in the TxBD table.
1 This is the last BD in the TxBD table. The next time this channel is scheduled

to send data, the first BD in the channel’s TxBD table (the BD pointed to by
the channels’s TCT[TBASE] address) will be used. The number of TxBDs in
the table is programmable and is limited by the 256K memory space for all
the transmit channels.

3 I Interrupt. Enables interrupts generated when the contents of the buffer have
been sent.
0 No interrupt is generated after the buffer has been transmitted.
1 The TXB bit is set in an entry in the interrupt queue after the buffer has been

sent.

4 L Last in frame (AAL5). Set by the user for the last buffer in an AAL5 frame.
0 This is not the last buffer in the transmit frame.
1 This is the last buffer in the current transmit frame.

5 — Reserved

6 CM Continuous mode. Note that TxBD[R] is cleared if an error occurs during
transmission, regardless of CM.
0 Normal operation.
1 The CP does not clear TxBD[R] after this BD is closed, allowing the buffer to

be resent the next time the CP accesses this BD.

7–15 — Reserved

MPC855T User’s Manual

Receive and Transmit Connection Tables (RCTs and TCTs)

36.2 Receive and Transmit Connection Tables
(RCTs and TCTs)

The receive and transmit connection tables (RCTs and TCTs) hold configuration and
control information and temporary parameters for each receive and transmit ATM channel.
Although the transmit and receive sections of the same channel number are independent of
each other, their RCTs and TCTs are paired together in connection tables (CTs). Each CT
is 64 bytes. The upper 32 bytes is used for the RCT, and the lower 32 bytes is the TCT.

The CTs for internal channels (channels 0–31) are in the dual-port RAM. In extended
channel mode (UTOPIA only), the tables for external channels (numbered 32 and above)
are kept in external memory. The structure of the CTs is shown in Figure 36-7.

0x02 — Data length Specifies the number of octets the ATM controller sends from this BD’s data
buffer. The value of data length should follow the guidelines in Section 36.1.1,
“AAL5 Buffers,” or Section 36.1.2, “AAL0 Buffers,” as appropriate. This value is
not modified by the CP.

0x04 — Transmit data
buffer pointer

Contains the address of the associated data buffer. The buffer may reside in
either internal or external memory. This value is not modified by the CP.

0x08 — CPCS-UU
and CPI

CPCS-UU and CPI (AAL5 only and RH = 0 and L = 1). Valid only when the
current BD is the last BD of an AAL5 frame. CPCS-UU and CPI are used in the
frame trailer to transfer user-to-user (UU) information and common part
indications (CPI). The transmitter copies this field to the AAL5 frame trailer.

0x0C — Cell header
expansion 1, 2,

and 3

Cell header expansion 1, 2, and 3 (UTOPIA expanded cell mode only). These
fields are added to the BD when expanded cells are enabled (SRSTATE[EC] is
set in the UTOPIA parameter RAM). The size of the cell header expansion is
programmable and is determined by ECSIZE in the UTOPIA parameter RAM.
For AAL5 channels, the ATM controller copies the contents of the cell header
expansion fields from the first BD of the current frame and appends them to
every cell of the frame sent. For AAL0 channels, these fields are copied into the
expanded cell header of the cell.
Cell header expansion 1 is the first word to be sent; cell header expansion 3 is
the last. The bytes are ordered according to the DMA byte ordering
(programmed through STFCR in the parameter RAM).

Table 36-2. ATM TxBD Field Descriptions (continued)

Offset
from

TBD_PTR
Bits Name Description

Chapter 36. Buffer Descriptors and Connection Tables

Receive and Transmit Connection Tables (RCTs and TCTs)

Figure 36-7. Connection Tables in Dual-port RAM and External Memory

Note that some CT space is reserved. RCT0 is reserved for the global raw cell queue. (TCT0
is still available to the user.) In extended channel mode, an additional CT pair immediately
above the CTBASE pointer is reserved for internal use.

36.2.1 Receive Connection Table (RCT)

Each receive connection table (RCT) holds parameters (channel configuration, pointers,
status flags, and temporary data) for a single ATM receive channel. Figure 36-8 shows the
RCT structure.

RCT (Internal Use)
TCT (Internal Use)

RCT0 (Global raw cell queue)
TCT0
RCT1
TCT1
RCT2

RCT3

TCT31

CTBASE

Dual-port RAM

Reserved in
32 x 64 Bytes

RCT32
TCT32
RCT33
TCT33
RCT34

RCT65534
TCT65534

ECTBASE

External Memory

Extended Channel
Mode of User Space

(Located in the
Parameter RAM)

(Located in the
Parameter RAM)

RCT31

TCT3

TCT2

Connection Tables for Internal Channels

TCT34

Connection Tables for External Channels

MPC855T User’s Manual

Receive and Transmit Connection Tables (RCTs and TCTs)

Table 36-3 describes the RCT fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CT_Offset + 0 FHNT — — — — — — — HEC CLP CNG INF CNGI CDIS AAL

CT_Offset + 2 RBALEN

CT_Offset + 4 RCRC

CT_Offset + 6

CT_Offset + 8 RB_PTR

CT_Offset + A

CT_Offset + C RTMLEN

CT_Offset + E RBD_PTR

CT_Offset + 10 RBASE

CT_Offset + 12 TSTAMP

CT_Offset + 14 IMASK

CT_Offset + 16
to

CT_Offset + 1F

—

Figure 36-8. Receive Connection Table (RCT)

Table 36-3. RCT Field Descriptions

CT Offset Bits Name Description

0x00 0 FHNT Frame hunt mode. Indicates that this channel has had a busy exception or a
restart and is currently in frame hunt mode. In frame hunt mode the CP
discards all received cells until a new frame is started (indicated by the CPI bit
of the last cell header). FHNT is cleared by the user during initialization, and is
modified accordingly by the CP thereafter.
0 Not in frame hunt mode
1 In frame hunt mode

1-7 — Reserved, should be cleared.

8 HEC Header error control indication (serial ATM only). Used internally by the CP,
RCT[HEC] indicates that a HEC error has been detected in at least one cell of
the current frame.
For AAL5, this bit is set as soon as a cell of the current frame is determined to
have a HEC error. At the end of the frame, this bit is copied to the last
RxBD[HEC] of the frame. For AAL0, this bit is copied to the RxBD[HEC] for
each cell.
0 No HEC error has been detected.
1 A HEC error has been detected.

9 CLP Cell loss priority indication (AAL5 only). Used internally by the CP, RCT[CLP]
indicates that at least one low priority cell has arrived as part of the current
AAL5 frame. This bit is set as soon as a cell of the current frame is determined
to have a CLP bit set in its header. At the end of the frame, this bit is copied to
the last RxBD[CLP] of the frame. For AAL0 channels, the CLP indication is
available in the cell header in the data buffer.
0 No low priority cells have arrived in the current frame.
1 A low priority cell has arrived during the current frame.

Chapter 36. Buffer Descriptors and Connection Tables

Receive and Transmit Connection Tables (RCTs and TCTs)

0x00 10 CNG CNG—Congestion (AAL5 only). Used internally by the CP, RCT[CNG]
indicates that congestion has been reported in the last cell of the current frame.
RCT[CNG] is set only if the last cell of the current AAL5 frame has arrived with
the PTI[EFCI] bit set in its header. At the end of the frame, this bit is copied to
the last RxBD[CNG] of the frame.
0 No congestion has been reported.
1 Congestion has been reported.

11 INF In frame. The receiver sets RCT[INF] when a new frame starts and clears it
when the frame ends. This bit is used internally.
0 Idle state. No buffer is open for this channel.
1 Receiving. The receiver is in the middle of a frame; a receive buffer is open.

12 CNGI CNGI (AAL5 only)- Congestion interrupt. This bit enables interrupts when the
SAR layer detects a cell’s PTI[EFCI] bit is set.
0 Disable congestion interrupts. Congestion is indicated in the last

RxBD[CNG] of the frame.
1 Enable congestion interrupts. An interrupt entry is added to the interrupt

queue if PTI[EFCI] is set in a received cell. See Chapter 40, “ATM
Exceptions.”

13 CDIS Channel disable status. Set by the STOP RECEIVE command; cleared by the
RESTART RECEIVE command.
0 The channel is enabled to receive cells.
1 The channel is disabled. Cells addressed to this channel are discarded.
Note that the user should not modify this bit directly; that is, the STOP RECEIVE
and RESTART RECEIVE commands should be used to control the CDIS bit.
However, CDIS should be cleared during initialization.

14–15 AAL AAL type. Selects the ATM adaptation layer support for receive cells.
00 AAL0 (raw-cell channel). The receiver stores cells using the AAL0 buffer

format.
01 AAL5. The receiver performs AAL5 cell reassembly and copies the 48 bytes

of payload to the receive buffer. The AAL5 frame trailer is checked when the
last cell of the PDU is received.

1x Reserved

0x02 — RBALEN (AAL5 only) Receive buffer available length. Contains the number of bytes
available in the receive buffer. When a buffer is opened, the CP initializes
RBALEN with the value programmed in SMRBLR in parameter RAM. RBALEN
is then decremented by 48 for each cell received by the channel.

0x04 — RCRC (AAL5 only) Receive CRC. Contains the CRC32 value calculated during a cell
receive operation.

0x08 — RB_PTR Receive buffer pointer. This field is valid only when INF is set. RB_PTR is the
physical address of the current buffer location to which data is being written.
Should be cleared during initialization.

0x0C — RTMLEN (AAL5 only) Frame buffer count. Contains the total number of bytes received
during the current AAL5 frame. The CP clears RTMLEN at the beginning of a
frame and increments it by the value in SMRBLR in parameter RAM as each
additional buffer is received. The receiver uses RTMLEN to calculate the total
frame length which is then compared to the length field of the frame.

Table 36-3. RCT Field Descriptions (continued)

CT Offset Bits Name Description

MPC855T User’s Manual

Receive and Transmit Connection Tables (RCTs and TCTs)

36.2.2 Transmit Connection Table (TCT)

Each TCT holds parameters (channel configuration, pointers, status flags, and temporary
data) for a single ATM transmit channel. Figure 36-9 shows the TCT structure.

0x0E — RBD_PTR RxBD pointer. Points to the current BD in the RxBD table. The actual address
of the current BD is (RBD_PTR x 4) + RBDBASE (where RBDBASE is the
base pointer to the RxBD memory space). Initialize RBD_PTR to the same
value as RBASE.
Note that RBD_PTR is a word-aligned offset pointer from RBDBASE; that is, it
provides bits [14–29] of the offset, and bits [30–31] are always 00.

0x10 — RBASE RxBD table base. Points to the first BD in the RxBD table of this channel. The
actual address of the table is (RBASE x 4) plus the base address RBDBASE in
the parameter RAM; see.
Note that RBASE is a word-aligned offset pointer from RBDBASE; that is, it
provides bits [14–29] of the offset, and bits [30–31] are always 00.

0x12 — TSTAMP Time stamp. Contains the arrival time stamp for the current frame. The CP
copies the time value taken from the CP timer (selected by TSTA in parameter
RAM) to the TSTAMP field on the arrival of the frame’s first cell. TSTAMP can
be used to check for a time-out condition.

0x14 — IMASK Interrupt mask. Contains the interrupt mask for both the receive and transmit
sides of this channel number. The interrupt mask allows the user to enable or
disable interrupt generation. If a bit in IMASK is cleared, interrupt queue entries
are not generated for the corresponding event, and the GINT global interrupt
counter is not advanced. See Section 40.3, “Interrupt Queue Mask (IMASK).”

0x16–0x1F — — Reserved, should be cleared.

Table 36-3. RCT Field Descriptions (continued)

CT Offset Bits Name Description

Chapter 36. Buffer Descriptors and Connection Tables

Receive and Transmit Connection Tables (RCTs and TCTs)

Table 36-4 describes the TCT fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CT_Offset + 20 — — — — — — — — PC — — INF CR10 CDIS AAL

CT_Offset + 22 TBALEN

CT_Offset + 24 TCRC

CT_Offset + 28 TB_PTR

CT_Offset + 2C TTMLEN

CT_Offset + 2E TBD_PTR

CT_Offset + 30 TBASE

CT_Offset + 32 —

CT_Offset + 34 CHEAD

CT_Offset + 38 APCL

CT_Offset + 3A APCPR

CT_Offset + 3C OUT APCP

CT_Offset + 3E APCPF

Figure 36-9. Transmit Connection Table (TCT)

Table 36-4. TCT Field Descriptions

CT Offset Bits Name Description

0x20 0–7 — Reserved

8 PC Padded cell. Indicates that the transmitter must add an additional padded cell to the
end of an AAL5 frame. The user must clear this bit during initialization.

9–10 — Reserved

11 INF In frame status. The transmitter sets TCT[INF] when a new frame starts and clears it
when the frame ends. This bit is used internally.
0 Idle state. No buffer is open for this channel.
1 Sending. The transmitter is in the middle of a frame; a transmit buffer is open.

12 CR10 Perform CRC10 (AAL0 only). This bit enables CRC10 calculation on the transmit
cell payload for OAM support according to the ITU specification I.610.
0 Do not perform CRC10.
1 Perform CRC10 and insert the result into the CRC field (the last 10 bits of the

OAM cell payload).

13 CDIS Channel disable status. Set by the STOP TRANSMIT (abort) command; cleared by the
RESTART TRANSMIT command.
0 Transmission is enabled.
1 Transmission is disabled.
Note that the user should not modify this bit directly; that is, the STOP TRANSMIT and
RESTART TRANSMIT commands should be used to control the CDIS bit. However,
CDIS should be cleared during initialization.

MPC855T User’s Manual

Receive and Transmit Connection Tables (RCTs and TCTs)

0x20 14–15 AAL AAL type. Selects the ATM adaptation layer support for transmit cells.
00 AAL0 (raw-cell channel). The transmitter sends cells using the AAL0 buffer

format.
01 AAL5. The transmitter performs AAL5 cell segmentation and sends the 48 bytes

of payload from the transmit buffer. The AAL5 frame trailer is generated when
the last cell of the PDU is sent.

1x Reserved

0x22 — TBALEN Transmit buffer available length (AAL5 only). Contains the number of bytes in the
current transmit buffer. TBALEN is initialized with the data length field of the TxBD
when a new buffer opens and is decremented by 48 for each cell sent.

0x24 — TCRC Temporary CRC32 (AAL5 only). CP scratch pad area for the CRC32 calculation.

0x28 — TB_PTR Transmit buffer pointer. Contains the real address of the current data position in the
transmit buffer.

0x2C — TTMLEN Transmit total message length (AAL5 only). Counts bytes sent in the current frame.
The transmitter initializes TTMLEN with the data length field of a frame’s first TxBD.
TTMLEN accumulates the buffer data lengths as each additional BD is opened. At
the end of the frame, TTMLEN is copied into the AAL5 length field.

0x2E — TBD_PTR TxBD pointer. Points to the current BD in the TxBD table. The actual address of the
current BD is (TBD_PTR x 4) + TBDBASE (where TBDBASE is the base pointer to
the TxBD memory space). Initialize TBD_PTR to the same value as TBASE.
Note that TBD_PTR is a word-aligned offset pointer from TBDBASE; that is, it
provides bits [14–29] of the offset, and bits [30–31] are always 00.

0x30 — TBASE TxBD table base. Points to the first BD in the TxBD table of this channel. The actual
address of the first BD in the table is (TBASE x 4) plus the offset value TBDBASE in
parameter RAM; see.
Note that TBASE is a word-aligned offset pointer from TBDBASE; that is, it provides
bits [14–29] of the offset, and bits [30–31] are always 00.

0x32 — — Reserved

0x34 — CHEAD Channel header (AAL5 only). Contains the full (4-byte) cell header for this AAL5
channel. The transmitter appends CHEAD and the calculated HEC to the payload to
create a complete cell. This field should be initialized by the user and should not be
modified while the channel is active.
Note that the byte ordering of this field is reversed; that is, CHEAD[0–7] is the LSB
with CHEAD[0] the msb, and CHEAD[24–31] is the MSB with CHEAD[24] the msb.

0x38 — APCL APC link. Used by the CP to link additional channels to the same APC time slot
occupied by the current channel. Initialize this field with 0xFFFF to indicate the end
of the linked list.

0x3A — APCPR APC pace remainder. Contains the remainder of the rate generated by the APC
after adding the pace FRACTION to the cumulative APCPR.
Should be cleared during initialization.

Table 36-4. TCT Field Descriptions (continued)

CT Offset Bits Name Description

Chapter 36. Buffer Descriptors and Connection Tables

Receive and Transmit Connection Tables (RCTs and TCTs)

0x3C 0 OUT APC out. Can be used as a completion flag for the TRANSMIT DEACTIVATE CHANNEL
command. When the TRANSMIT DEACTIVATE CHANNEL command is issued, OUT is
immediately set. OUT is then cleared when the channel is actually removed from
the APC scheduling table.
0 No TRANSMIT DEACTIVATE CHANNEL command is pending.
1 The channel is waiting to be removed from the APC scheduling table.

1–15 APCP APC pace. Contains the channel’s APC pacing. When the channel is placed in the
transmit queue, the APC reschedules the channel in a new position (time slot) in the
APC scheduling table. The new slot position is (the current slot position + APCP)
modulo the table length. Note that the APCP value selected is bounded as shown
below:

For more information about the APC, see Chapter 39, “ATM Pace Control.”

0x3E — APCPF APC pace fraction. Contains the channel’s APCP_FRACTION in units of 1/65536 of
a time slot. For example, a pace of 1.5 is obtained by programming APCP to 1 and
APCPF to 0x8000. The pace thus becomes 1+32768/65536, or a value of 1.5.

Table 36-4. TCT Field Descriptions (continued)

CT Offset Bits Name Description

1 APCP APCPF
65536

-------------------+
 APCTablelength 1–[]≤ ≤

MPC855T User’s Manual

Receive and Transmit Connection Tables (RCTs and TCTs)

Chapter 37. ATM Parameter RAM

Chapter 37
ATM Parameter RAM
The SCC parameter RAM is used to configure the SCC for serial ATM and the UTOPIA
interface. The CP also uses parameter RAM to store operational and temporary values used
during SAR activities.

When ATM operations are performed, the SCC parameter RAM is mapped as shown in
Table 37-1, Table 37-2, and Table 37-2. The values written in the parameter RAM by the
user or the CP determine the ATM capabilities of the SCC and the UTOPIA interface.
Table 37-1 describes the shared parameters for serial ATM and UTOPIA modes. Note that
the shaded table entries are for serial ATM only.

Table 37-1. Serial ATM and UTOPIA Interface Parameter RAM Map

Offset 1 Name Width Description

0x00 RBDBASE Word Base pointer for all RxBD tables. Defines the starting location in external
memory of up to 256 Kbytes in which the RxBD tables for all connections are
located. The RxBD table pointer for a specific connection is offset from
RBDBASE and is located in the channel’s RCT[RBASE]. (For the receive
channel of a PTP connection, the PTP BD table pointer is offset from
RBDBASE and is located in the channel’s PTP RCT[PTP_BASE].)
RBDBASE should be word aligned.

0x04 SRFCR Byte SAR receive function code register. Contains global parameters for DMA
transfers. See Section 37.1, “SAR Receive Function Code Register (SRFCR).”

0x05 SRSTATE Byte SAR receive state. Contains global state parameters. See Section 37.2, “SAR
Receive State Register (SRSTATE).”

0x06 MRBLR Hword Maximum receive buffer length register. MRBLR should be cleared for ATM
operation; that is, if MRBLR is programmed with a non-zero value the SCC
operates in transparent mode. The SAR MRBLR (SMRBLR) field is used
instead (see below).

0x08 RSTATE Word SCC internal receive state parameters. Stores internal state variables and flags.
During initialization, copy the value of SRFCR into the MSB of RSTATE; the
less-significant bytes should be cleared. Do not write to RSTATE during receive
operations.

0x0C — Word Reserved

0x10 R_CNT Hword Receive internal byte counter. Counts the bytes received during ATM cell
reception. The user must not write to this location.

0x12 STFCR Byte SAR transmit function code register. Contains global parameters for DMA
transfers. See Section 37.3, “SAR Transmit Function Code Register (STFCR).”

MPC855T User’s Manual

0x13 STSTATE Byte SAR transmit state. Contains global state parameters. See Section 37.4, “SAR
Transmit State Register (STSTATE).”

0x14 TBDBASE Word Base pointer for all TxBD tables. Defines the starting location in external
memory of up to 256 Kbytes in which the TxBD tables for all connections are
located. The TxBD table pointer for a specific connection is offset from
TBDBASE and is located in the channel’s TCT[TBASE]. (For the transmit
channel of a PTP connection, the PTP BD table pointer is offset from TBDBASE
and is located in the channel’s PTP TCT[PTP_BASE].)
TBDBASE should be word aligned.

0x18 TSTATE Word SCC internal transmit state parameters. Stores internal state variables and
flags.
During initialization, copy the value of STFCR into the MSB of TSTATE; the
less-significant bytes should be cleared. Do not write to TSTATE during transmit
operations.

0x1C COMM_CH Hword Command channel. Contains the channel number associated with current
channel command. The host should write the required channel number to
COMM_CH before a channel-specific command is issued. See Section 38.3,
“ATM Commands.”

0x1E STCHNUM 2 Hword Current SAR transmit channel number (channel code). Internal use.

0x20 T_CNT Hword Transmit internal byte counter. Counts the bytes sent during ATM cell
transmission. The user must not write to this location.

0x22 CTBASE Hword Connection table base address. Contains the 64-byte-aligned base address in
the dual-port RAM for the connection tables of the internal channels (numbered
0–31). CTBASE is an offset from the beginning of dual-port RAM. See
Section 36.2, “Receive and Transmit Connection Tables (RCTs and TCTs).”

0x24 ECTBASE Word External connection table base address. Valid only in extended channel mode
(SxSTATE[EXT] = 1). Contains the 64-byte-aligned base address for the
connection tables of the external channels (numbered 32 and higher). See
Section 36.2, “Receive and Transmit Connection Tables (RCTs and TCTs).”

0x28 INTBASE Word Interrupt base pointer. Contains the word-aligned starting address of the
interrupt queue in external memory. See Chapter 40, “ATM Exceptions.”

0x2C INTPTR Word Pointer to interrupt queue. Contains the address of the next interrupt entry in
the interrupt queue. See Chapter 40, “ATM Exceptions.”
Copy the value of INTBASE into INTPTR before enabling interrupts.

0x30 C-MASK Word Constant mask for CRC32. C-MASK is used by the receiver to check CRC32
results when supporting AAL5 connections.
Initialize to 0xDEBB_20E3.

0x34 SRCHNUM2 Hword Current SAR receive channel number (channel code). Internal use.

0x36 INT_CNT Hword Interrupt counter. Initialize with INT_ICNT. The CP decrements INT_CNT for
each interrupt added to the interrupt queue. When INT_CNT reaches zero, the
CP sets the queue’s global interrupt flag (SCCE[GINT] or IDSR1[GINT]) and
reinitializes the counter with INT_ICNT. See also Chapter 40, “ATM Exceptions.”

0x38 INT_ICNT Hword Interrupt initial count. INT_ICNT is the user-defined global interrupt
threshold—the number of interrupts required before the CP issues a global
interrupt through SCCE[GINT] or IDSR1[GINT].

Table 37-1. Serial ATM and UTOPIA Interface Parameter RAM Map (continued)

Offset 1 Name Width Description

Chapter 37. ATM Parameter RAM

0x3A TSTA Hword Time stamp timer address (AAL5 only). Contains the address of the RISC timer
to be used for the time-out process. The receiver copies the RISC timer value
from the address specified by the TSTA field to the RCT when a new frame is
received. TSTA should be initialized with a value equal to (TM_BASE + 4*timer
number).

0x3C OLDLEN2 Hword Transmitter temporary length. Do not write to this location.

0x3E SMRBLR Hword SAR maximum receive buffer length register. Determines the number of bytes
the CP writes to a receive buffer before moving to the next buffer. SMRBLR is
user-defined and should be a multiple of 48 bytes. SMRBLR is global for all
ATM connections per controller.

0x40 EHEAD Word Empty cell header and empty cell payload for serial mode. Contain the data for
the empty cell header (EHEAD) and payload (EPAYLOAD). The CP sends and
receives empty (idle) cells using the data contained in EHEAD and EPAYLOAD.
When transmitting, the CP assembles an empty cell by sending EHEAD once,
calculating and sending a HEC, and then sending EPAYLOAD twelve times (48
bytes). When receiving, the CP compares the incoming header with EHEAD to
check for empty cells; if they match the cell is discarded.
The user should program EHEAD and EPAYLOAD as required: The ATM Forum
UNI specification states that unassigned cells should be sent when no valid
transmit data is available, while the ITU mandates the use of idle cells.
Unassigned cells are used as empty cells when EHEAD = 0x0000_0000 and
idle cells when EHEAD = 0x0100_0000. In both cases, EPAYLOAD should be
initialized to 0x6A6A_6A6A. Note that the data for these fields must be written in
little-endian byte order.

0x44 EPAYLOAD Word

0x48 TQBASE Hword Transmit queue base pointer. Contains the user-defined pointer to the base
address of the transmit queue in the dual-port RAM. See Section 39.6, “PHY
Transmit Queues.”

0x4A TQEND Hword Transmit queue end pointer. Contains the user-defined pointer to the last entry
in the transmit queue in the dual-port RAM. The size of the transmit queue is
user-defined, but note that the minimum number of entries is (NCITS +2). See
Section 39.6, “PHY Transmit Queues.”
If a channel is in MPHY UTOPIA mode, the minimum size should be equal to

0x4C TQAPTR Hword Transmit queue APC pointer. Points to the next available entry in the transmit
queue. The APC uses TQAPTR for the channel currently scheduled to transmit.
TQAPTR automatically wraps back to TQBASE when it reaches the end of the
queue. See Section 39.6, “PHY Transmit Queues.”
Initialize TQAPTR to the value in TQBASE.

Table 37-1. Serial ATM and UTOPIA Interface Parameter RAM Map (continued)

Offset 1 Name Width Description

NCITSx〈 〉 2+[]
nMPHY

∑

MPC855T User’s Manual

0x4E TQTPTR Hword Transmit queue transmitter pointer. Points to the next channel to be sent.
TQTPTR lags behind the APC pointer (TQAPTR). TQTPTR automatically
wraps back to TQBASE when it reaches the end of the queue. See
Section 39.6, “PHY Transmit Queues.”
Initialize TQTPTR to the value in TQBASE.

0x50 APCST Hword APC state. See Section 37.6, “APC State Register (APCST).”

0x52 APCPTR Hword APC priority level base pointer. Points to the base address of the APC priority
levels (see Section 39.7, “APC Priority Levels”). APCPTR is an offset from the
beginning of dual-port RAM. It should be divisible by 32 (end with 0b00000).

0x54 AM1 Hword Address match parameters 1–5. The ATM controller provides three methods for
address matching: using a lookup table, address compression, or
content-addressable memory (CAM). See Section 37.5, “Address Match
Parameters (AM1–AM5),” for more information about the configuration of these
fields.

0x56 AM2 Hword

0x58 AM3 Hword

0x5A AM4 Hword

0x5C AM5 Hword

0x5E ECSIZE Hword Expanded cell size/unassigned cell data. Specifies the size of the expanded
cells. ECSIZE is valid only if SxSTATE[EC] is set. The expanded header can be
from 0 to 12 octets and can optionally include the HEC as shown in the
following table:

0x60 — Word Reserved.

Table 37-1. Serial ATM and UTOPIA Interface Parameter RAM Map (continued)

Offset 1 Name Width Description

ECSIZE bits (binary) Number of Octets

11
(HECI)

12:13
(bytes

)

14:15
(word

s)

Expanded
Cell

Header

ATM
Cell

Header

HEC/U
DF

Payload

0 00 00 0 4 0 48

01 1

10 2

11 3

00 01 4

01 5

10 6

11 7

00 10 8

01 9

10 10

11 11

00 11 12

1 any combination as above 1

Chapter 37. ATM Parameter RAM

Table 37-2 describes additional parameters needed to configure the SCC for serial ATM
operation.

0x64 R_PTR Word Receiver internal data pointer. Points to the next data location in the receive
buffer during cell reception. For internal use.

0x68 RTEMP2 Word Receiver temporary data storage.

0x6C T_PTR Word Transmitter internal data pointer. Points to the next data location in the transmit
buffer during cell transmission. For internal use.

0x70 TTEMP2 Word Transmitter temporary data storage.

0x74 to
0x7F

— 12 Bytes Reserved

Notes: Parameters shown shaded are used for serial ATM only. Non-shaded parameters are used for both serial ATM
and UTOPIA operations.

Parameters shown in boldface type must be initialized by the user before enabling ATM operations. Parameters not
specified as user-initialized are configured by the CP and should not be modified by the user.

1 From SCC base. SCC base = IMMR + 0x3C00 (SCC1) or 0x3F00 (UTOPIA)
2 During transfers, the CP uses SRCHNUM, STCHNUM, OLDLEN, RTEMP, TTEMP, RSTUFF, RHECTEMP,

THECTEMP, RSCRAM, RSCRAM1, TSCRAM, TSCRAM1, RCHAN, TCHAN, RCRC and TCRC to store temporary
data for internal use.

Table 37-2. Serial ATM Parameter RAM Map

Offset 1 Name Width Description

0xC0 ALPHA Hword Receiver delineation alpha/delta counters. The ATM controller applies
the HEC delineation mechanism described in ITU specification I.432
where ALPHA and DELTA are initialized by the user to a value from 0 to
63. (The ITU specification I.432 recommendation is 0x7 for alpha and
0x6 for delta.)
The receiver updates ALPHA and DELTA; the user should not write to
these locations during receive operations.

0xC2 DELTA Hword

0xC4 RSTUFF 2 Word Receive data stuffing location (for 53 to 52 byte conversion).

0xC8 SHUFFLESTATE Hword Receiver data shuffling internal state.
Should be cleared during initialization.

0xCA RHECTEMP2 Hword Receiver temporary HEC storage area

0xCC THECTEMP2 Hword Transmitter temporary HEC storage area

0xCE ASTATUS Hword Cell synchronization status register. See Section 37.7, “Serial Cell
Synchronization Status Register (ASTATUS).”
Should be cleared during initialization.

0xD0 HEC_ERR Hword HEC error counter. Contains a 16-bit counter for incoming cells with
HEC errors. HEC_ERR may be read by the user at any time. Should be
cleared during initialization.

0xD2 — Hword Reserved

0xD4 RSCRAM2 Word Receiver scrambling storage. Should be cleared during initialization.

0xD8 RSCRAM12 Word

Table 37-1. Serial ATM and UTOPIA Interface Parameter RAM Map (continued)

Offset 1 Name Width Description

MPC855T User’s Manual

SAR Receive Function Code Register (SRFCR)

37.1 SAR Receive Function Code Register (SRFCR)
The SAR receive function code register (SRFCR), shown in Figure 37-1, contains the
user-initialized function codes and byte ordering information for DMA transfers.

The SRFCR fields are described in Table 37-3.

0xDC TSCRAM2 Word Transmitter scrambling storage. Should be cleared during initialization.

0xE0 TSCRAM12 Word

0xE4 RCRC2 Word Receiver temporary CRC

0xE8 TCRC2 Word Transmitter temporary CRC

0xEC RCHAN2 Word Receiver current channel

0xF0 TCHAN2 Word Transmitter current channel

0xF4
to

0xFF

— 12 Bytes Reserved

Note: Parameters in boldface type are initialized by the user before ATM operations. Parameters not specified as
user-initialized are configured by the CP and should not be modified by the user.

1 From SCC base. SCC base = IMMR + 0x3C00 (SCC1)
2 During transfers the CP uses SRCHNUM, STCHNUM, OLDLEN, RTEMP, TTEMP, RSTUFF, RHECTEMP,

THECTEMP, RSCRAM, RSCRAM1, TSCRAM, TSCRAM1, RCHAN, TCHAN, RCRC and TCRC to store
temporary data for internal use.

Bit 0 2 3 4 5 7

FIELD — BO FC

RESET — — — — — — — —

OPER R/W R/W R/W R/W R/W R/W R/W R/W

Figure 37-1. SAR Receive Function Code Register (SRFCR)

Table 37-3. SRFCR Field Descriptions

Bits Name Description

0–2 — Reserved

3–4 BO Byte ordering. Program BO to select the required byte ordering for the SDMA transfers.
00 Reserved
01 Modified little-endian.
1x Big-endian or true little-endian.

5–7 FC Function code. Contains a user-defined value driven on the address type signals AT[1–3] when the
SDMA channel accesses memory.

Table 37-2. Serial ATM Parameter RAM Map (continued)

Offset 1 Name Width Description

Chapter 37. ATM Parameter RAM

SAR Receive State Register (SRSTATE)

37.2 SAR Receive State Register (SRSTATE)
The SAR receive state register (SRSTATE), shown in Figure 37-2, contains user-initialized
global state parameters.

The SRSTATE fields are described in Table 37-4.

Bit 0 1 2 3 4 5 6 7

FIELD EXT ACP EC SNC — DIS SER MPY

RESET — — — — — — — —

OPER R/W R/W R/W R/W R/W R/W R/W R/W

Figure 37-2. SAR Receive State Register (SRSTATE)

Table 37-4. SRSTATE Field Descriptions

Bits Name Description

0 EXT Extended channel mode. EXT and ACP select the address matching mechanism; see Section 37.5,
“Address Match Parameters (AM1–AM5).”
0 Maximum of 31.5 channels available. (Receive channel 0 is reserved for the raw cell queue.)

Channel mapping and connection tables are supported internally. Internal look-up table channel
mapping mechanism is used.

1 Maximum of 65534.5 channels available. (Channel 65535 and receive channel 0 are reserved.)
Channel mapping and connection tables are supported externally. CAM or address compression is
used for channel mapping.

1 ACP Address compression. Valid only if EXT = 1. EXT and ACP select the address matching mechanism;
see Section 37.5, “Address Match Parameters (AM1–AM5).”
0 CAM is used for channel mapping.
1 Address compression mechanism is used for channel mapping.

2 EC Expanded cell. This option is valid only in UTOPIA mode.
0 Standard 53-byte ATM cell is used.
1 Expanded cells are used on all ATM cells. Cell length can be 52, 56, 60 or 6452 to 65 bytes, as

defined by ECSIZE in the parameter RAM.

3 SNC Synchronization status. Valid only in UTOPIA mode (PDPAR[UT] =1).
0 SOC sync is lost. Also reported via an interrupt in the UTOPIA event register (IDSR1[SYNC]).
1 SOC is in sync.
Should be cleared during initialization.

4 — Reserved

5 DIS Disable. Used to disable all receive processes in UTOPIA mode. This function is used only when
initializing the UTOPIA port. It must not be written to while the UTOPIA port is operating.
0 Receive enabled.
1 Receive disabled. Reserved

6 SER ATM physical interface type
0 UTOPIA PHY
1 Serial PHY

7 MPY Enable multi-PHY mode. Valid only for the page 4 parameter RAM when in UTOPIA mode.
0 Single PHY mode
1 Multiple PHY mode

MPC855T User’s Manual

SAR Transmit Function Code Register (STFCR)

37.3 SAR Transmit Function Code Register (STFCR)
The SAR transmit function code register (STFCR), shown in Figure 37-3, contains the
user-initialized function codes and byte ordering information for DMA transfers.

The STFCR fields are described in Table 37-5.

37.4 SAR Transmit State Register (STSTATE)
The SAR transmit state register (STSATE), shown in Figure 37-4, contains user-initialized
global state parameters.

The STSTATE fields are described in Table 37-6.

Bit 0 1 2 3 4 5 6 7

FIELD — BO FC

RESET — — — — — — — —

OPER R/W R/W R/W R/W R/W R/W R/W R/W

Figure 37-3. SAR Transmit Function Code Register (STFCR)

Table 37-5. STFCR Field Descriptions

Bits Name Description

0–2 — Reserved

3–4 BO Byte ordering. Program BO to select the required byte ordering for the SDMA transfers.
00 Reserved
01 Modified little-endian.
1x Big-endian or true little-endian.

5–7 FC Function code. Contains a user-defined value driven on the address type signals AT[1–3] when
the SDMA channel accesses memory.

Bit 0 1 2 3 4 5 6 7

FIELD EXT TQF EC PBF — — SER MPY

RESET — — — — — — — —

OPER R/W R/W R/W R/W R/W R/W R/W R/W

Figure 37-4. SAR Transmit State Register (STSTATE)

Chapter 37. ATM Parameter RAM

Address Match Parameters (AM1–AM5)

37.5 Address Match Parameters (AM1–AM5)
The ATM controller uses one of the three following methods for address matching.

• An internal look-up mechanism—See Table 37-7 for the AM1–AM5 configuration
for operation with an address look-up table.

• Address compression—See Table 37-9 for the AM1–AM5 configuration for
operation with address compression.

• Content-addressable memory (CAM)—See Table 37-11 for the AM1–AM5
configuration for CAM operation.

The address match parameter configuration when using the internal address look-up table

Table 37-6. STSTATE Field Descriptions

Bits Name Description

0 EXT Extended channel mode.
0 Maximum of 31.5 channels available. (Receive channel 0 is reserved for the raw cell queue.)

Connection tables are supported internally.
1 Maximum of 65534.5 channels available. (Channel 65535 and receive channel 0 are reserved.)

Connection tables are supported externally.

1 TQF Transmit queue full. This bit is set when the APC bypass command is used to indicate that the
transmit queue is full. The user must ensure that this bit is not set before issuing an APC bypass
command. The transmitter will clear this bit as soon as there is space in the transmit queue. This
bit should be initialized to zero (0).

2 EC Expanded cell. This option is valid only in UTOPIA mode.
0 Standard 53-byte ATM cell is used.
1 Expanded cells are used on all ATM cells. Cell length can be 52, 56, 60 or 64 bytes, as defined

by ECSIZE in the parameter RAM.

3 PBF Port B flag. May be used in multi-PHY mode to coordinate CP and HOST write cycles to their Port
B general-purpose signals (if the host is using different port B general-purpose signals). The host
uses PBF to notify the CP that PORTB general-purpose signals have been modified. In multi-PHY
mode, the CP checks PBF before performing read-modify-write cycles to the Port B multi PHY
address signals. If the PBF bit is set, the CP waits for the host to clear the bit. The CP will then
start the read-modify-write cycle. The host should set PBF before performing read-modify-write
cycles to prevent overwriting the CP configuration of the multi-PHY signals.
0 No-flag. The CP is allowed to perform the read-modify-write cycle.
1 Flag is set. The CP should wait until PBF is clear and then can perform the multi-PHY

read-modify-write cycle from port B. The host should set PBF before its port B write cycle and
ensure that PBF is cleared for at least 10 system clocks following a host read-modify-write
cycle.

4 — Reserved

5 — Reserved

6 SER ATM physical interface type
0 UTOPIA PHY
1 Serial PHY.

7 MPY Enable multi-PHY mode. Valid only for page 4 of the parameter RAM when in UTOPIA mode.
0 Single PHY mode
1 Multiple PHY mode

MPC855T User’s Manual

Address Match Parameters (AM1–AM5)

(EXT = 0) is shown in Table 37-7. See also Section 38.1.1, “Internal Look-up Mechanism
(SRSTATE[EXT] = 0).”

HMASK is shown in Figure 37-5.

The HMASK fields are described in Table 37-8.

The address match parameter configuration for extended channel mode with address
compression (EXT = 1 and ACP = 1) is shown in Table 37-9. See also Section 38.1.2,
“Address Compression (SRSTATE[EXT,ACP] = 11).”

Table 37-7. AM1–AM5 Parameters for the Internal Look-up Table

Field Name Function

AM1 HMASK Header mask. The ATM controller masks the header of each incoming cell with HMASK and uses
the resulting masked header in the address match process. The masking process uses a bitwise
AND function so bits are masked out by clearing the relevant bits in HMASK. The HMASK fields
are shown in Figure 37-5..

AM2

AM3 AMBASE Address matching table base. Used as a pointer to the address lookup table. It is scanned from
the top (AMEND) to the base, so headers for the busiest connections should be at the top of the
table. When a match occurs, the CP uses the location of the match to locate the channel number
in the pointer table.
Initialize AMBASE to point to the last entry of the lookup table. AMBASE must be word-aligned.

AM4 AMEND Address matching end pointer. Contains the address of the top entry in the lookup table. New
connections are added to the table at the location immediately above AMEND. The match process
starts at the top (AMEND) and proceeds to the base (AMBASE).
AMEND is maintained by the user.

AM5 APBASE Address pointing table base. Contains the base address of a table of pointers to the connection
tables.
Initialize APBASE to point to the last pointer of the pointing table, which contains the offset of the
connection table for the global raw cell queue (channel 0). APBASE must be halfword-aligned.

0 3 4 11 12 27 28 30 31

GFC VPI VCI PTI CLP

Figure 37-5. HMASK Cell Header Mask Fields

Table 37-8. HMASK Field Descriptions

Bit(s) Name Description

0–3 GFC Generic flow control. Can be cleared to indicate that GFC
protocol is not enforced.

4–11 VPI Virtual path identifier mask

12–27 VCI Virtual channel identifier mask

28–30 PTI Payload type identifier mask

31 CLP Cell loss priority mask

Chapter 37. ATM Parameter RAM

Address Match Parameters (AM1–AM5)

FLMASK is shown in Figure 37-6.

The FLMASK fields are described in Table 37-10.

The address match parameter configuration for extended channel mode CAM operation
(EXT = 1 and ACP = 0) is shown in Table 37-11. See also the discussion in Section 38.1.3,
“CAM Address Mapping (SRSTATE[EXT,ACP] = 10).”

Table 37-9. AM1–AM5 Parameters for Extended Channel Address Compression

Field Name Function

AM1 FLBASE First-level table base. Contains the word-aligned starting address for the first-level table of the
address compression mechanism.

AM2

AM3 SLBASE Second-level table base. Pointer to the beginning of a 64-Kbyte memory space where the set of
second-level addressing tables are located.

AM4

AM5 FLMASK First-level mask. The ATM controller masks the GFC, VPI, and PTI bits of the header of each
incoming cell with FLMASK[1–15] and uses the resulting masked header in the first-level address
matching process. The masking process uses a bitwise AND function to allow address bits to be
masked out by clearing the relevant bits in FLMASK. The FLMASK fields are shown in
Figure 37-6..
The FLMASK should contain an unbroken sequence of ones. For example, the sequence
0b0000_0011_1111_1110 would be a valid sequence, while the sequence
0b0000_1111_1001_1100 contains a broken sequence of ones and would lead to undefined
behavior during the matching process.

0 1 4 5 12 13 15

CUMB GFC VPI PTI

Figure 37-6. FLMASK

Table 37-10. FLMASK Field Descriptions

Bits Name Description

0 CUMB Check unused mask bits. CUMB allows the user to screen out (pass to the global raw cell queue)
misinserted cells. Setting CUMB signals the receiver to check for non-zero values in the address
bits not used during the address matching. See Section 38.1.2.4, “Preventing Channel Aliasing.”
0 Do not check unused address bits.
1 Check that all unused address bits equal 0.

1–4 GFC Generic flow control mask. Can be cleared when the GFC protocol is not enforced.

5–12 VPI Virtual path identifier mask

13–15 PTI Payload type identifier mask

MPC855T User’s Manual

APC State Register (APCST)

37.6 APC State Register (APCST)
The APC state register (APCST), shown in Figure 37-7, contains state and control
parameters for the APC mechanism.

The APCST fields are described in Table 37-12.

Table 37-11. AM1–AM5 Parameters for Extended Channel CAM Operation

Field Name Function

AM1 HMASK Header mask. The ATM controller masks the header of each incoming cell with HMASK and
uses the resulting masked header for address matching. The masking process uses a bitwise
AND function so bits are masked out by clearing the relevant bits in HMASK. The HMASK fields
are shown in Figure 37-5..

AM2

AM3 CAMADD CAM address. DMA pointer to the CAM’s address in the memory map. The DMA uses the CAM
address for read and write cycles. CAMADD should be divisible by 16.

AM4

AM5 CAMLEN CAM length. Contains the number of entries in the CAM.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIELD — CSER NSER NMPHY CMPHY — — DIS PL2 MPY

RESET 0 UD UD UD UD 0 0 0 UD UD

OPER R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR 0x50 in SCC parameter RAM

Figure 37-7. APC State Register (APCST)

Table 37-12. APCST Field Descriptions

Bits Name Description

0 — Reserved

1–2 CSER Current serial ATM or UTOPIA port. CSER is used by the APC to point to the currently active
serial or UTOPIA interface if multiple physical ATM ports are active. Initialize CSER with the
same value programmed in NSER.

3–4 NSER Next serial ATM or UTOPIA port. NSER points to the next serial ATM or UTOPIA port to be
serviced after the APC completes servicing this ATM port. By programming NSER for each ATM
port, the user builds a linked list of port numbers and thereby determines the order in which the
ports are serviced. (NSER should point only to SCC operating in ATM mode.) See also
Section 39.3, “Using the APC with Multiple ATM Ports,” and Section 39.4, “Using the APC
Without Using UTOPIA.”
00 Serial port 1 (SCC1)
01 Reserved
10 Reserved
11 Page 4 or UTOPIA port (SCC4)
Note that if only one ATM port is used (through either page 4 or UTOPIA), program NSER to
0b11 (so that the port points to itself to be serviced next).

Chapter 37. ATM Parameter RAM

Serial Cell Synchronization Status Register (ASTATUS)

37.7 Serial Cell Synchronization Status Register
(ASTATUS)

The serial ATM cell synchronization status register (ASTATUS) provides status
information concerning FIFO errors and receiver synchronization status. The ASTATUS
register is shown in Figure 37-8.

The ASTATUS fields are described inTable 37-13.

5–7 NMPHY Number of (multiple) PHYs. Valid only for the page 4 parameter RAM when in UTOPIA
multi-PHY mode; in all other parameter RAM pages (SCC1–3), this field should be cleared.
NMPHY specifies the total number of PHY devices connected to the UTOPIA port.
000 1 PHY
001 2 PHYs
010 3 PHYs
011 4 PHYs
1xx Reserved

8–10 CMPHY Current multi-PHY. Valid only for the page 4 parameter RAM when in UTOPIA multi-PHY mode.
CMPHY is used only by the CP and should be initialized with the same value programmed in
NMPHY.

11 — Reserved

12 — Reserved

13 DIS APC disabled status flag. Valid for serial ATM only. Set by the transmitter when a global FIFO
underrun (GUN) exception occurs. Should be cleared during initialization.

14 PL2 Priority level 2. Enables the second APC priority level.
0 Disable the second-level APC scheduling table.
1 Enable the second-level APC scheduling table.

15 MPY Enable multi-PHY mode. Valid only for page 4 of the parameter RAM when in UTOPIA mode.
For additional information about the multi-PHY configuration, see Section 38.2, “Multi-PHY
Configuration (MPHY).”

0 Single PHY mode
1 Multiple PHY mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

— — — — — — ORUN URUN — — — — — — — LOCK

Figure 37-8. Serial Cell Synchronization Status Register (ASTATUS)

Table 37-12. APCST Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Serial Cell Synchronization Status Register (ASTATUS)

Table 37-13. ASTATUS Register Field Descriptions

Bits Name Description

0–5 — Reserved

6 ORUN Receiver FIFO overrun. The CP sets this flag to indicate a receiver overrun event has occurred.
The user can acknowledge the flag by clearing it.
0 No receiver FIFO overrun
1 Receiver FIFO overrun. Note that the SCCE[GOV] bit is also set.

7 URUN Transmitter FIFO underrun. The CP sets this flag to indicate a transmitter underrun event has
occurred. The user can acknowledge the flag by clearing it.
0 No transmitter FIFO underrun
1 Transmitter FIFO underrun. Note that the SCCE[GUN] bit is also set.

8–14 — Reserved

15 LOCK Cell delineation status. Maintained by the CP; should be read-only for the user. Indicates the
current cell delineation status. Should be cleared during initialization.
0 The receiver is out of synchronization and is not receiving cells.
1 The receiver has gained cell delineation and is receiving cells.
Note that the receiver cell delineation status is also indicated by SCCE[SYNC].

Chapter 38. ATM Controller

Chapter 38
ATM Controller
This chapter describes the address mapping mechanisms of the ATM controller to support
connection tables for both single- and multi-PHY interfaces, and the commands provided
to control ATM transmit and receive operations on a channel-by-channel basis.

38.1 Address Mapping
Three methods for mapping incoming cell header addresses to local ATM channel numbers
are available. The first method is based on an internal look-up table and is used when the
maximum number of ATM receive connections can be handled by the internal channels.
When more than 31 receive connections are required (extended channel mode), two
methods for address mapping are supported: address compression and the use of content
addressable memory (CAM).

Only one address mapping method can be used at a time, and it should be selected in the
parameter RAM (see the EXT and ACP field descriptions in Section 37.2, “SAR Receive
State Register (SRSTATE)”) during system start-up. The following sections describe each
address mapping method.

38.1.1 Internal Look-up Mechanism (SRSTATE[EXT] = 0)

The internal look-up mechanism maps the address fields in the header of incoming cells to
internal channel numbers. This mapping mechanism uses two tables: an address matching
table and a pointing table. The matching table contains up to thirty-one 32-bit address
(GFC/VPI/VCI/PTI/CLP) entries and one empty entry at the base of the table reserved for
the raw cell queue. (Generally, channel number 0 is used for the raw cell queue as a
convention.) The pointing table contains thirty-two 16-bit RCT base address pointers
corresponding one-to-one with the address matching table entries.

When a cell is received, the cell header is masked by performing bitwise AND logic with
HMASK in the parameter RAM (see Table 37-8). The resulting masked header is then
compared with each entry in the matching table starting from the top (AMEND). When an
entry matches, the parallel entry in the pointing table is then read to get the RCTn base
address of the local channel n assigned to the incoming cell’s address. If, however, the

MPC855T User’s Manual

Address Mapping

address matching algorithm reaches the bottom of the table (AMBASE) without a match,
the incoming cell is directed to the global raw cell queue; that is, the base address of RCT0
should be placed in the corresponding last entry of the pointing table (APBASE).

Note that the internal look-up mechanism searches the address matching table sequentially
from the top (AMEND) to the base (AMBASE). Therefore, it is recommended to put the
most frequently used connections at the top of the table (near AMEND). Note that AMEND
points to the lowest address and that new channels are added above this pointer.

Figure 38-1. Address Mapping Tables for Internal Channels

38.1.1.1 Adding a New Internal Channel

A new internal channel is added to the internal look-up mechanism on-the-fly in three steps:

1. Add an RCT address pointer at the top of the pointing table.

2. Add an address match entry to the top of the matching table (above AMEND).

3. AMEND is updated to point to the new entry. (This last step allows the CP to begin
using the new address entry for matching.)

38.1.1.2 Removing an Internal Channel

A channel entry is removed from the internal look-up mechanism on-the-fly in three steps.
Note that a channel can be removed only when it has stopped receiving cells (the upstream
ATM channel has stopped sending cells). Remove a channel entry as follows:

1. Copy the top entry of the match table (the address match entry specified by the
AMEND pointer) to the position to be deleted.

2. Copy the top pointer of the pointing table (that is, the pointer parallel to AMEND)
to the position to be deleted.

3. Advance the AMEND pointer one entry toward AMBASE.

AMBASE

AMEND

APBASE

Address Matching Table Pointing Table

Global raw cell
queue RCT offset
(channel 0)

Chapter 38. ATM Controller

Address Mapping

38.1.2 Address Compression (SRSTATE[EXT,ACP] = 11)

The address compression mechanism uses two levels of address translation to help
minimize the memory space needed to cover the available address range. In the first-level
compression, the GFC, VPI, and PTI fields of the received header are masked with
FLMASK to create a pointer (offset from FLBASE) to the first-level addressing table. The
first-level table (FLT) contains an additional mask and table pointer to one of the
second-level tables (SLTs), referred to as the second-level table offset (SLTOFFSET).
(SLTOFFSET is an offset from the base address of the second-level tables (SLBASE). In
the second-level compression, the VCI bits are masked with the SLMASK field from the
first-level table, and the result is used as an index pointer into the particular SLT addressed
by SLTOFFSET. The SLT entry contains the assigned local channel number for the
received cell.

FLBASE, SLBASE and FLMASK are defined in the parameter RAM; see Table 37-10. The
following sections describe the addressing tables and show an example of address
compression.

38.1.2.1 First-Level Addressing Table (FLT)

Each entry in the first-level addressing table (FLT) contains a 16-bit second-level mask
(SLMASK) which is used to mask the incoming cell’s VCI. SLMASK should contain a
contiguous sequence of ones that operates in the same way as the FLMASK bit sequence.
Note also that SLMASK must contain at least one bit set. Failure to do so results in having
the cells associated with the corresponding VP (VPI x FLMASK) routed to the PHY’s raw
cell queue. The FLT entry also contains a 16-bit second-level table offset (SLTOFFSET)
that points to a single SLT.

Unused FLT entries should be cleared (null entry). Cells with a null entry pointer are
received into the global raw cell queue.

The size of the FLT depends on the number of mask bits in the FLMASK. If, for example,
FLMASK contains an unbroken sequence of ten bits set, the index pointer into the FLT will
contain 10 bits, resulting in a table size of 4 Kbytes. The actual address of an FLT entry is
FLBASE + (index_pointer x 4).

38.1.2.2 Second-Level Addressing Tables (SLTs)

An SLT entry contains the 16-bit local channel number (0-65534) assigned to match a
received cell header’s VCI and VPI. The local channel number corresponds to an RCT,
where:

• Channel number 0—Reserved for the global raw cell queue. RCT0 is located in the
dual-port RAM pointed to by CT_BASE.

• Channel number 1–31—RCTs for these connections are in the dual-port RAM. The
address of each RCT is (channel_number x 64 + CT_BASE).

MPC855T User’s Manual

Address Mapping

• Channel numbers greater than 31—RCTs for these connections are in external
memory. The address of each RCT is (channel_number x 64 + ECT_BASE).

The number of entries in each SLT depends on the length of the sequence of ones in
SLMASK. For example, the size of an SLT with a sequence of 10 bits set in the SLMASK
is 2 Kbytes. The actual address of an entry in an SLT is equal to (SLBASE + SLOFFSET
+ index_pointer x 2).

38.1.2.3 Address Compression Example

Figure 38-2 shows an example of address compression. The first-level mask (FLMASK)
selects the third PTI bit and five VPI bits. Bitwise ANDing of the FLMASK with the GFC,
VPI, and PTI bits results in a 6-bit pointer. Pointer1 turns out to equal 0x3, and therefore is
pointing to the fourth entry of the FLT. The entry contains a 16-bit mask (SLMASK) for the
VCI field, and the second-level table offset (SLTOFFSET) pointing to one of the SLTs. The
VCI is masked with SLMASK, resulting in a 7-bit pointer to the assigned channel number
in the SLT.

Figure 38-2. Address Compression

32-bit entries

First-level addressing table (FLT)GFC

0000

Pointer1

FLBASE

SLTOFFSETSLMASK

VCI

00000111 11110000

Pointer2

16-bit entries

ch#

Second-level addressing tables (SLTs)

SLBASE

FLMASK

PHY#

64 Kbyte
memory space

(If in multi-PHY UTOPIA master mode)

 PTI VPI

00011111100

Chapter 38. ATM Controller

Multi-PHY Configuration (MPHY)

38.1.2.4 Preventing Channel Aliasing

Reliable one-to-one mapping of VCs to local channel numbers requires that the address bits
not taken into account during the translation have a fixed value (chosen to be zero).
Otherwise, multiple VCs could translate to a single local channel number. The CUMB
feature (check unused mask bits) can be used to test the reliability of the mapping by
screening out misinserted cells. When FLMASK[CUMB] is set, address header bits not
used in the first- and second-level address masking procedure are checked for non-zero
values. If a non-zero value is found, the cell is passed to the global raw cell queue. See
Table 37-11 for a description of the CUMB bit.

Note that if CUMB is set, the user should also include the PTI bits in FLMASK so that cells
marked as congested (EFCI = 1) or last (PTI[1] =1) in the PTI are not received into the
global raw cell queue.

38.1.2.5 OAM Screening

OAM/management cells are indicated by having their most significant PTI bit set. If
OAM/management cells are not a part of the address mapping process (the most significant
PTI bit in FLMASK is cleared), OAM cells are passed to the global raw cell queue instead
of being routed to the buffer otherwise assigned to this incoming channel. This treatment
keeps the OAM cells of an AAL5 connection from interfering with the SAR process and
allows OAM cells to be processed separately.

38.1.3 CAM Address Mapping (SRSTATE[EXT,ACP] = 10)

The CAM address mapping method uses dual DMA accesses to an external CAM-based
look-up table. When a cell is received, the incoming header is masked with HMASK in the
parameter RAM (see Table 37-12). The CP then performs a DMA write access to the CAM
address (CAMADD) with the address generated from the masked header as its data
operand. The second access is a read DMA access to CAMADD. During the read access,
the CAM should drive a “match successful” indication on the data bus D[0] signal, and the
matched channel number on the data bus D[16–31] signals. The “match successful”
indication driven on data bus D[0] is active low, (a 0 indicates a successful match). If there
is no “match successful” signal driven, the cell is passed to the global raw cell queue.

38.2 Multi-PHY Configuration (MPHY)
The MPC855T can handle up to 4 different PHYs in UTOPIA mode. The interface to the
PHYs is done through the UTOPIA and 4 additional port B signals. The configuration of
parameters for multi-PHY operations is described in this section.

MPC855T User’s Manual

Multi-PHY Configuration (MPHY)

38.2.1 Setting Multi-PHY mode

To initiate multi-PHY mode the user must set the MPY bit in the SRSTATE, STSTATE and
APCST fields in the parameter RAM. The user must also select UTOPIA mode (through
the PDPAR[UT] bit) and set the number of PHYs in the NMPHY field of APCST.

When operating in multi-PHY mode the two least-significant bits of the channel number
entry in the pointing/address tables represent the associated PHY number. The format of
the Pointing Table, Second Level Addressing Table, or CAM entries is shown in
Figure 38-3. This is also the format used when activating a multi-PHY channel. The
transmit queue entries have this format (needed to identify the transmitting channel’s
PHY).

38.2.2 Receive Multi-PHY Operation

A receive operation starts with the PHY address driven on PHREQ[0–1] and the assertion
of RxCav by one of the PHYs. The MPC855T reads the PHY number through
PHREQ[0–1] and writes the selected address to PHSEL[0–1] before to the assertion of
RxEnb.

38.2.2.1 Look-up Table MPHY Support

When performing multi-PHY operations the user must prepare up to 4 separate look-up and
pointing tables (thereby providing a table set for each PHY). The AMBASE, APBASE and
AMEND values used for all PHYs during multi-PHY operations are configured as shown
in the following calculations:

In the preceding calculations, N represents the PHY number. When performing multi-PHY
operations using the internal dual-port RAM, each PHY may use up to 8 channels (as only
32 channels are available in the internal dual-Port RAM). Note that one channel out of each
group of 8 must be reserved for the global raw cell queue. If the extended channel mode
operation is selected, more than 8 channels per PHY are supported. Figure 38-4 shows the
configuration of the address mapping tables for multi-PHY operations.

0 13 14 15

Channel # PHY #

Figure 38-3. Multi-PHY Pointing Table Entry

AMBASE N{ } AMBASE N 8 4××+=

AMEND N{ } AMEND N 8 4××+=

APBASE N{ } APBASE N 8 2××+=

Chapter 38. ATM Controller

Multi-PHY Configuration (MPHY)

Figure 38-4. Address Mapping Tables for Multi-PHY Operations

Note that the address in the AMEND field is common to the four look-up tables. AMEND
points to the highest valid channel number in any one of the four tables. For example, if
PHY3 handles 5 channels and the other PHYs handle only 2 channels, the address in
AMEND should be set to point to the fifth channel of PHY3. The unused address pointers
in PHY0, PHY1, and PHY2 should point to the raw cell queue.

38.2.2.2 Address Compression Multi-PHY Support

During multi-PHY operations the 2-bit PHY address is appended as the least significant bits
of the first-level address pointer.

38.2.2.3 CAM Multi-PHY Support

When performing CAM addressing the PHY address is added to the CAMADD address.
The user must configure the CAMADD field with the last 5 address bits cleared. The PHY
address is driven on the ADDR[28–31] signals during the CAM access. This allows the user
to use either 4 separate CAMs with each mapped to its own address, or to have a single
unified CAM with the ADDR[28–31] signals used as part of the match data for the CAM.

38.2.3 Transmit Multi-PHY Operation

A transmit operation starts with the assertion of the TxCav signal. This signal signals the
ability of all PHY interfaces to load a cell in their transmit FIFOs. The MPC855T indicates
the PHY selected for transmission by writing the PHY number on PHSEL[0–1] prior to
assertion of TxEnb.

AMBASE2
AMEND2

APBASE2

Address Matching Table Pointing Table

AMBASE1
AMEND1

APBASE1

AMBASE(AMBASE0)
AMEND(AMEND0)

APBASE(APBASE0) Global raw cell

AMBASE3
AMEND3

APBASE3

queue offset

Global raw cell
queue offset

Global raw cell
queue offset

Global raw cell
queue offset

MPC855T User’s Manual

ATM Commands

38.2.4 APC Multi-PHY Parameters

Each PHY in multi-PHY mode has a dedicated APC. The APC parameter table is extended
to include the parameters for each APC. The APCPTR field in the parameter RAM points
to the first table (MPHY0), and the parameter tables for the remaining PHYs are attached
to the bottom of the first table. For example, the address (APCPTR+32) will point to
MPHY1 parameter table, (APCPTR+64) will point to MPHY2 parameter table, and
(APCPTR+96) will point to MPHY3 parameter table.

38.3 ATM Commands
The host application issues commands to the ATM controller by writing to the CP
command register (CPCR). The ATM commands are similar to the CP commands provided
for other protocols (see Section 18.5.3, “CP Command Register (CPCR)”). A unique CP
opcode is assigned for all ATM commands, and a separate ATM opcode selects the specific
ATM command. The CPCR format for ATM commands is shown in Figure 38-5.

Note that the worst case ATM command execution latency is 480 clocks, and the typical
command execution latency is 40 clocks for serial ATM and 180 clocks for UTOPIA.

Table 38-1 describes the configuration of the CPCR for ATM operations.

BITS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIELD RST ATM OPCODE OPCODE = 11111 CH_NUM 2 APCLEV FLG

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

ADDR 9C0

Notes:

1. Opcode for all ATM commands = 1111.

2. The ATM commands have a channel (communications controller) number associated with them. The specific
ATM channel number should be written by the user in the COMM_CH field in the controller’s parameter RAM
before writing the command into the CPCR.

Figure 38-5. CP Command Register (CPCR) (ATM-Specific)

Chapter 38. ATM Controller

ATM Commands

Table 38-1. CPCR ATM-Specific Field Descriptions

Bits Name Description

0 RST CP reset command. Set by the core and cleared by the CP. Executing this command clears RST
and FLG within two general system clocks. The CPM reset routine takes approximately 60
clocks, but CPM initialization can start immediately after this command is issued. Use RST to
reset the registers and parameters for all the controllers, as well as the CPM and RISC timer
table. RST does not, however, affect the serial interface or parallel I/O registers.
0 No reset issued.
1 Reset issued.

1–3 ATM OPCODE ATM opcode. Contains the 3-bit opcode of the channel command. See Table 38-2.
000 Transmit channel activate
001 Transmit channel deactivate
010 Stop transmit (abort)
011 Restart transmit
100 Stop receive
101 Restart receive
110 APC bypass

4–7 OPCODE Opcode. Should contain 0b1111 for ATM operation.

8–11 CH_NUM Channel (communications controller) number. Specifies the SCC for a command issued to a
serial ATM channel. For a UTOPIA channel, CH_NUM should specify UTOPIA.
0000 SCC1
0100 Reserved
1000 Reserved
1100 UTOPIA
All others are reserved.

12 — Reserved

13–14 APCLEV APC Level. This field is valid only for the transmit activate command. APCLEV specifies which
level of the APC table the current channel should be inserted.
00 Insert the channel to first-level APC table.
01 Insert the channel to second-level APC table.
1x Reserved

15 FLG Command semaphore flag. Set by the core and cleared by the CP.
0 CP is ready for a new command.
1 CP is currently processing a command—cleared when the command is done or after reset.

MPC855T User’s Manual

ATM Commands

The ATM commands are described in Table 38-2.
Table 38-2. ATM Commands

Command
ATM

Opcode
Description

transmit activate
channel

000 Activates the channel specified in COMM_CH by inserting its channel number into the
APC scheduling table at the location indicated by the service pointer. The channel most
recently inserted is the first to be chosen by the APC. This command can be issued
only after initializing the channel by preparing valid BDs and a TCT.

transmit deactivate
channel

001 Deactivates the channel specified in COMM_CH by extracting its assigned channel
number from its APC scheduling table. This command should not be issued before the
CP completes sending all the BDs associated with the current channel number. The
channel number’s TCT can be assigned to a different ATM channel only after this
command has taken effect.

STOP TRANSMIT
(Abort)

010 Instructs the transmitter to stop the channel specified in COMM_CH. Channels are
stopped on cell boundaries.

Transmission stops after the channel’s current cell is next scheduled by the APC. After
the current cell is sent, the BD is closed, a new entry to the interrupt queue is optionally
added for the channel, the BD pointer is advanced to the next BD, and the
channel-disabled flag TCT[CDIS] is set. For AAL5 channels, instead of the current cell,
an abort cell (a last cell with PTI[0] = 1 and zero length) is sent to terminate the current
frame.

After the STOP TRANSMIT command is completed, the stopped channel is still scheduled
by the APC, but the channel number is not forwarded to the transmit queue, effectively
leaving a hole in the transmit cell stream.

Issue a RESTART TRANSMIT command to restart the channel.

restart transmit 011 Restarts transmissions following a STOP TRANSMIT command. This command is used to
restart the channel number specified in COMM_CH at the current BD.

stop receive 100 Stops the receiver from receiving cells for the channel specified in COMM_CH. The
channel-disabled flag RCT[CDIS] is set, and the in-frame flag RCT[INF] is cleared. The
current buffer remains empty; that is, RBD_PTR (or PTP_BD_PTR for PTP
connections) is not advanced to the next BD.

Cells received for this channel number after the STOP RECEIVE command executes are
discarded.

restart receive 101 Restarts the receiver for the channel specified in COMM_CH. RCT[CDIS] is cleared,
and the receiver begins receiving cells into the data buffer pointed to by RBD_PTR (or
PTP_BD_PTR for PTP connections).

apc bypass 110 Inserts the channel number specified in COMM_CH directly into the transmit queue.
Enables out-of-rate cell transmission with cell pacing determined by the user. Make
sure that the combined bit rate of all transmitted channels (APC-scheduled and
out-of-rate channels) does not exceed the maximum allowed by the PHY.

The channel number inserted by the APC_BYPASS command is placed at the front of
the transmit queue and therefore becomes the next channel sent.

Before activating this command, make sure the TQF bit in the STFCR is not set. The
transmit queue should contain at least 2 entries when this command is issued.

Chapter 38. ATM Controller

ATM Commands

MPC855T User’s Manual

ATM Commands

Chapter 39. ATM Pace Control

Chapter 39
ATM Pace Control
The ATM layer performs cell multiplexing and demultiplexing. The ATM pace control unit
(APC) is part of the ATM cell multiplexing process. The APC processes the traffic
parameters of each channel and defines the multiplex timing for all the channels. Cell
multiplexing is done by the transmitter according to the traffic control function
implemented by the APC.

39.1 APC Algorithm
The APC consists of the following major parts:

• APC timer (CPM timer 4), supplying a global tick to the APC process

• APC scheduling tables, data structures used by the APC algorithm for scheduling
channels at programmed intervals

• APC pace parameters (APC_Pace), defined in the TCT for each channel

• Transmit queue to hold the scheduled channels (output of the APC algorithm)

The APC is a CPM process that dynamically reads the traffic shaping parameters of each
active transmit channel from the TCTs and uses a periodic table-scanning algorithm to
determine the next channels to be scheduled. Having identified the next channels, it then
places the channel numbers of the selected channels into the transmit queue. The order in
which the APC places channel numbers in the transmit queue is the order in which cells are
multiplexed onto the line.

The transmit process is separate from the APC algorithm, which exchanges information
with the APC via the transmit queue. When the transmit process receives a request from the
physical layer (either the SCC or the UTOPIA interface), the transmitter reads the next
channel number scheduled in the transmit queue. The transmitter sends one cell for every
channel number appearing in the transmit queue. If the transmit queue is empty, the
transmitter does nothing for UTOPIA or sends idle cells for serial ATM.

Figure 39-1 shows the APC process and transmit flow in UTOPIA mode. The APC obtains
a channel’s pacing information from its TCT so that it can be re-scheduled, and writes the
channel number to the transmit queue. For AAL5 channels, the transmitter implements
AAL and SAR functions on the external memory for the chosen channel. The transmitter

MPC855T User’s Manual

APC Algorithm

then sends the cell through the UTOPIA interface to the PHY. The PHY implements the
transmission convergence (TC) layer and the physical media-dependent (PMD) layer.

Figure 39-1. APC in UTOPIA Mode—Transmit Flow

39.1.1 APC Implementation

The APC is based on a dynamic scheduling table that contains pointers (implemented as
channel numbers) to the active channels. The rate at which the table scan encounters a
channel number in the scheduling table determines the transmit rate for that particular
channel.

Each APC priority level’s scheduling table consists of an array of half-word channel
numbers, and two scan pointers (APCT_PTRx and APCT_SPTRx). Each table entry
represents a time slot in which the number of cells specified by the parameter NCITS are
sent. During initialization, each entry of the APC scheduling table should be programmed
with 0xFFFF, which is reserved as the invalid channel number. Issuing the TRANSMIT
ACTIVATE CHANNEL command to the CPM causes a channel’s number to be inserted into
the APC scheduling table at the entry pointed to by the table scan pointer (APCT_PTRx).

Periodic timeouts of the APC timer activate the APC algorithm and cause the real-time
scheduling table scan pointer (APCT_PTRx) to advance one entry. Each time APCT_PTRx
steps to the next entry in the table, the APC reads each new channel number and schedules
it again for a future time slot, according to the APC pace parameter in each channel’s TCT.

The entries of an APC scheduling table are actually the heads of linked lists. That is, if more
than one channel is scheduled to the same time slot, the first channel points to the next
channel using the APC link field (APCL) in its TCT, and so on.

Having scheduled the channels at the current table entry (APCT_PTRx), the APC then
inserts up to NCITS channel numbers into the transmit queue using the service pointer
(APCT_SPTRx). If more than NCITS channel numbers are scheduled for the same time
slot, the leftover channel numbers remain pending until the next time the APC is activated.

Transmit
queue

APC
control

Transmit
control

TCT

External
memory
(frames)

UTOPIAreq.

Timer
APC Line

MPC855T

(Timer 4)

PHY

Chapter 39. ATM Pace Control

APC Algorithm

The lagging APCT_SPTRx service pointer keeps track of the pending channels so that cells
are only deferred, not dropped.

If the highest priority APC level cannot provide NCITS cells, the APC begins traversing the
lower priority APC levels hunting for additional channels (advancing each APC level’s
service pointer in turn) until a total of NCITS cells are found or until no APC levels remain.
However, because traversing the APC levels could potentially cause too much delay, the
APC_MI (maximum iteration) parameter is provided to limit the total number of times the
APC advances a service pointer.

If a channel scheduled for transmission has no buffer descriptors ready, nothing is inserted
into the transmit queue. This results in one or more idle cells in the cell stream.

39.1.2 APC Parameters

The APC mechanism can be programmed to provide a wide variety of transmit rates and
support a large number of channels. There are several important parameters which define
its capabilities. These include:

• Cell scheduling rate. This is determined by the timeout rate of the APC timer (CPM
timer 4), which defines the period of the scheduling time slots, and the number of
cells transmitted in a time slot (NCITS). The maximum of this rate is the bit rate of
the physical medium. However, it could also be any amount less than that, if the user
desires to use only a certain percentage of the bandwidth.

• Maximum and minimum bit rates supported for particular channels. A channel
number can appear only once in a time slot, but must appear at least once during each
table scan. The maximum bit rate for a particular channel is achieved when it is
scheduled for transmission in every APC scheduling table entry (i.e. APC Pace = 1).
The minimum bit rate for a particular channel is achieved when it is scheduled for
transmission only once in a table scan (i.e. APC Pace = APC_table_size - 1). These
constraints define the upper and lower bounds at which the transmit rate of a
particular channel can be scheduled.

• APC scheduling table size and CPM performance. If the NCITS parameter is
increased, the APC scheduling table size will decrease (thereby conserving dual-port
RAM space) and the APC timer will make fewer requests to the CPM (thereby
decreasing CPM processing overhead). However, increasing NCITS decreases the
maximum bit rate supported per channel and increases cell delay variation.

Trade-off decisions must be made when programming these parameters. The following
subsections provide examples of the analysis required to make these determinations.

39.1.3 Programming APC Scheduling Table Size and NCITS

The size of the APC scheduling table is defined by the minimum bit rate desired for a single
connection and the number of cells transmitted in a time slot.

MPC855T User’s Manual

APC Algorithm

Defining:

P = cell scheduling bit rate (usually equal to the PHY bit rate)

min_rate = minimum data rate at which a channel can be scheduled

max_rate = maximum data rate at which a channel can be scheduled

M = minimum APC scheduling table size allowable for a particular configuration

The maximum transmit data rate for a single channel supported by the APC is:

The minimum transmit data rate for a single channel supported by the APC is:

For example, assuming a PHY transceiver with a transmit data rate of 51.84 Mbps, and
assuming that the APC is to be configured to use all of this transmit bandwidth, then P =
51.84Mbps. Also assume that no single ATM channel (virtual connection) will ever require
more than 25% of this bandwidth. By this assumption, (P / max_rate) is 4, and therefore
NCITS is chosen to be 4. Also, because the application has no single connection requiring
a bandwidth less than 32kbps (i.e. min_rate = 32kbps), the minimum APC scheduling table
size is therefore equal to:

This example deals entirely in integers; however, note that while M must be an integer,
NCITS may include an integer and a fraction. In any other application of this analysis,
NCITS may be tuned in order to achieve an exact integer value M.

Note that a fractional value of NCITS does not mean that a fractional number of channel
numbers will be written to the transmit queue. It means that the number of cells scheduled
per APC timeout will vary around the average defined by NCITS. For example, if NCITS
were programmed to 2.5, then 2 cells would be scheduled during one iteration of the APC
algorithm, followed by 3 cells the next time, followed by 2, and so on.

39.1.4 Defining APC Slot Time

The APC defines the maximum bit rate of the cell scheduler through the period of the APC
timer tick and the number of cells scheduled per APC timer tick (NCITS). The period of the
APC timer is referred to as an APC time slot.

max_rate P
NCITS
------------------=

min_rate P
M 1–()NCITS

--------------------------------------=

M

51.84Mbps
32kbps

4
---------------------------- 1+ 406= =

Chapter 39. ATM Pace Control

APC Algorithm

Defining:

P = cell scheduling bit rate (usually equal to the PHY bit rate)

APC_timer_per = CPM timer 4 period, programmed in TRR4 and TMR4

Then:

Using the previous example, if CLKOUT=50MHz, P=51.84Mbps, and NCITS=4, then
APC_timer_per is approximately 1635.8. The closest value available using TMR4 only
(TRR4 is programmed to 0x1) is 103*16 = 1648, by programming TMR4[PS] = 0x67 and
TMR4[ICLK]=0b10. Be sure to choose the next largest period value from that which was
calculated; otherwise, the transmit queue would eventually overrun as the APC scheduler
would provide slightly more traffic than the physical layer can transmit.

39.1.5 Programming Rates for Channels

The bit rate for a particular ATM channel is defined by that channel’s APC pace parameter
in its TCT. The APC pace value (APCP + (APCPF/65536)) for any channel must fall
between 1 and (APC scheduling table size -1). Values outside this range result in erratic
pace and/or scheduling table overflows (APCO interrupts). The maximum rate for
transmission of a particular channel is achieved when the APC pace is equal to one.

Defining:
P = cell scheduling bit rate (usually equal to the PHY bit rate)
des_rate = desired bit rate for this channel

Then:

For example, again using the previous example with P=51.84Mbps and NCIST=4, assume
that a channel with a bit rate of 100kbps is desired. APC_Pace should therefore be
programmed to 51.84Mbps / (4 * 100kbps) = 129.6. This can be approximated by
programming APCP=129 and APCPF=39322.

For another example, assume the desired bit rate is 10Mbps. Then APC_Pace should be
programmed to 51.84Mbps / (4 * 10Mbps) = 1.296. This can be approximated by
programming APCP=1 and APCPF = 19399.

Note that APC_Pace consists of an integer and a fraction. A channel with a non-integer
APC_Pace will be scheduled such that its average pace will be as defined by APCP and
APCPF. For example, if APCP and APCPF were programmed to define a pace of 1.5, then

P
CLKOUT

APC_timer_per()
-- NCITS() number_of_bits_per_cell()=

APC_Pace P
(NCIST)(des_rate)
---=

MPC855T User’s Manual

Direct Scheduling of Cells

after transmission the channel would be alternately rescheduled either one time slot
following or two time slots following, averaging to 1.5.

39.1.6 APC Initialization and Operating Considerations

As long as the APC timer (CPM timer 4) is not active, the APC parameters may be
initialized in any order. The APC timer must be initialized last, following the initialization
of the APC priority levels of all the ATM ports in the system. Failure to initialize the APC
timer last will allow the scheduling algorithm to start prematurely, resulting in
unpredictable behavior.

Furthermore, the APC scheduling table parameters must be initialized before any
TRANSMIT CHANNEL ACTIVATE commands are issued. However, these commands may be
issued at any time, whether the APC timer is active or inactive. For more information, see
the description of the TRANSMIT CHANNEL ACTIVATE command.

Also, note that the physical interface (serial or UTOPIA) must be enabled and its associated
clocks and synchronization signals must be active before the APC timer is activated.
Otherwise, the transmit queue will simply overflow (causing an APCO interrupt).

39.1.7 Modifying Channel Transmit Pace
The APC pace parameter in the TCT of any channel can be manipulated at any time.
Software can use this capability to support various dynamic traffic types, such as ABR.

39.1.8 Minimizing Cell Delay Variation
The number of cells sent in each time slot (determined by NCITS) has an effect on the
maximum cell delay variation (CDV) since the order of the cells in a given time slot is not
controlled. Therefore, the CDV increases as NCITS increases.

Also, as described before, the entries in the APC scheduling table are actually the heads of
linked lists, which allows the APC to schedule multiple channels for the same time slot.
These linked lists can be of unlimited depth, and although only NCITS cells are actually
written to the transmit queue each time the APCT_PTRx advances, no cells are lost because
the lagging APCT_SPTRx service pointer keeps track of the pending channels for next
time. However, deeper linked lists result in more cell delay variation. Therefore, if cell
delay variation is a concern, schedule channels such that they are distributed as uniformly
as possible throughout the APC scheduling table. This can effectively be implemented by
activating channels (using the TRANSMIT CHANNEL ACTIVATE command) at random
intervals, such that they are not all written to the same APC scheduling table entry.

39.2 Direct Scheduling of Cells
The ATM controller implements an APC BYPASS command to allow the user to insert a
channel number directly into the transmit queue on a cell-by-cell basis. This command can
be used at any time in either serial mode or UTOPIA mode to insert a single cell for a

Chapter 39. ATM Pace Control

Using the APC with Multiple ATM Ports

channel into the transmit queue, with no direct transmit queue pointer manipulation
required.

If the APC is programmed to never schedule cells (either by disabling the APC timer or by
removing all channels from the APC scheduling table with TRANSMIT CHANNEL
DEACTIVATE commands), then groups of cells can be directly scheduled for back-to-back
transmission. To send n cells back-to-back in serial mode, the user would write n channel
numbers to the transmit queue and then advance TQAPTR by n entries. To send n cells
back-to-back in UTOPIA mode the user would write (n - 1) channels numbers to the
transmit queue, advance TQAPTR by (n - 1) entries, and then issue an APC BYPASS
command for the nth cell.

39.3 Using the APC with Multiple ATM Ports
The APC algorithm always begins in page 4 of the dual-port RAM. For applications
running only a single serial ATM port in either UTOPIA or serial mode, the page-4 APCST
parameter should define the APC of page 4 as ‘inactive’ but still point to the next active
APC, which is SCC1. The following discussion assumes that the APC for page 4 (the
UTOPIA port) is active; however, the same general concepts apply to a system in which the
APC for page 4 is inactive.

All the APCs are strobed by the same the APC timer request, which provides the common
basic pace from which all the APCs (one for each ATM port configured) are scheduled. The
APC timer activates several independent sub-timers in each APC implemented in the
APCNT field of the APC parameters. Scheduling of cells from a particular APC will occur
only when APCNT exceeds one. The APC timer should be programmed to supply an
optimized common pace for all the APCs. This pace can then be divided or multiplied by
setting NCITS appropriately for each APC.

For example, for a 50-MHz system implementing two SARs one of which is a 25-Mbps
SAR and the other is a T1 serial SAR, the APC timer is programmed to generate an APC
request every 4 cell times of the 25-Mbps SAR (CPM timer 4 should be programmed to 50
MHz/25 Mbps*53*8*4 = 3392). An NCITS value of 4 is selected for the 25-Mbps SAR and
an NCITS value of 0.24 for the 1.544-Mbps SAR so that the 25-Mbps APC will schedule
4 cells per APC timer timeout, and the T1 APC will schedule one cell per 4.166 APC timer
timeout (an average of 0.24) for the T1 SAR.

In the example shown in Figure 39-2, the APCST[NSER] field in page 4 points to page 1,
APCST[NSER] of page 1 points to page 4. When an APC timer timeout occurs, the NCITS
timer of page 1 is updated. Once per 4.166 requests the APCNT timer exceeds one, and
APC1 schedules a channel for transmission. After the APCNT timer of page 1 is updated,
APC2 is selected and schedules up to four (NCITS=4) channels.

MPC855T User’s Manual

Using the APC Without Using UTOPIA

Figure 39-2. Example of Single PHY and Single Serial APC Configuration

Multi-PHY scheduling works in the same way as the scheduling process described above.
Each PHY can support a different bit rate which is derived from the same APC timer basic
rate. In this way, up to five different APCs (four multi-PHY and one serial mode SAR) can
be supported. Upon an APC timer timeout, the CP begins servicing the serial APC and then
services multi-PHY3 through multi-PHY0. The servicing order for the serial APC is
defined by APCST[NSER]. Figure 39-3 shows the MPC855T configured with four
multi-PHY SARs and one serial mode SAR

Figure 39-3. Example of Maximum Multi-PHY and Single-Serial APC Configuration

39.4 Using the APC Without Using UTOPIA
As described in Section 39.3, “Using the APC with Multiple ATM Ports,” the APC
algorithm begins and terminates by referring to the APCST parameter on parameter page
4. Therefore, the APCST parameter on parameter page 4 must always be valid, even if the
controller associated with parameter page 4 for the UTOPIA port, is not used in ATM mode.

APC Timer

NSER4

APC1

NSER1

Page1
N timer

Page4
N timer

timeout

expire
request

APC2

expire
request

APC Timer

APC1

NSER1

APC4

APC5

APC6

APC7
Page1
N timer

Page4

N timer
MPHY 0

Page4

N timer
MPHY 1

Page4

N timer
MPHY 2

Page4

N timer
MPHY 3

timeout

expire
request

expire
request

expire
request

expire
request

expire
request

Chapter 39. ATM Pace Control

APC Scheduling Tables

If the UTOPIA port is not used, the APCST parameter on parameter page 4 must indicate
that the APC on page 4 is disabled and must also point to the active APC page(s). This is
accomplished using the APCST[NSER,CSER] mechanism described in Section 39.3,
“Using the APC with Multiple ATM Ports.” The APC on parameter page 4 can be disabled
by setting APCST[DIS].

39.5 APC Scheduling Tables
An APC scheduling table is a memory space located in the dual-port RAM. The user
determines the number of entries in the APC scheduling table based on the required traffic
parameters. The APC can be configured to handle two levels of priority through the
configuration of APCST[PL2]. The APC first schedules channels from the first priority
table, scheduling up to NCITS channels from the APCT_PTR1 slot. If there are fewer than
NCITS channels in this slot and the PL2 bit is set, the APC tries to select the rest of the
channels from the second priority table. The total number of channels selected from the
tables is always NCITS or less. On each APC timeout, the APC advances the real-time
pointers of both tables by one slot.

Note that during initialization all entries in the APC scheduling tables (from APCT_BASEx
to APCT_ENDx) must be loaded with 0xFFFF (invalid channel number) to indicate an
empty slot. The first- and second-priority APC scheduling tables are shown in Figure 39-4.

.

Figure 39-4. APC Scheduling Tables

APCT_BASE1

APCT_PTR1

First Priority Table
APCT_BASE2

Second Priority Table

Half word Half word

APCT_PTR2

APCT_END1 APCT_END2

Note: APCT_END points to one position after
the last entry in the table

MPC855T User’s Manual

PHY Transmit Queues

Note that the scheduling tables need not be the same length; the length of the table affects
only the minimum programmable transmit rate, which might be different for high-priority
or low-priority channels.

39.6 PHY Transmit Queues
The APC schedules up the NCITS channels in a time slot. It writes each channel number
into a dedicated PHY transmit queue in the position indicated by TQAPTR. The
transmitter’s pointer TQTPTR, lagging behind the APC pointer, is used to read channel
numbers. For each channel number read, the transmitter sends a single cell. The channels
waiting to be sent lie between TQTPTR and TQAPTR. Figure 39-5 shows the organization
of a PHY transmit queue.

Figure 39-5. PHY Transmit Queue

A transmit queue never overflows because the TQAPTR pointer never wraps to point to the
TQTPTR pointer. If the transmit queue is full, the APC does not insert more channels, and
the APCT_SPTR stalls until space is available in the transmit queue. The depth of the
transmit queue is equal to the number of entries minus 1.

39.7 APC Priority Levels
Table 39-1 describes the memory location and size of the user configurable parameters of
the ATM pace controller.

Table 39-1. APC Priority Levels

Offset Name Width Description User Writes

0x00 APCT_BASE1 Half Word APC scheduling table—First priority
base pointer. See Table 39-2..

User defined

0x02 APCT_END1 Half Word First APC scheduling
table—Length. See Table 39-2..

User defined

0x04 APCT_PTR1 Half Word First APC scheduling table pointer.
See Table 39-2..

APCT_BASE1 value

0x06 APCT_SPTR1 Half Word APC scheduling table first priority
service pointer. See Table 39-2..

APCT_BASE1 value

Half word

TQBASE

TQEND

TQTPTR

TQAPTR

Scheduled channels

Chapter 39. ATM Pace Control

APC Priority Levels

Table 39-2 describes the operation of the user-configurable APC priority level parameters.

0x08–0x0F — Reserved -

0x10 APC_MI Half Word APC—Max iteration User defined

0x12 NCITS Half Word Number of cells in time slot. See
Table 39-2.

User defined

0x14 APCNT Half Word APC—N timer 0000

0x16-ox1F — Reserved -

(n * 0x20) + 0x0 APCT_BASEn Half Word APC scheduling table base pointer
for the N’th priority APC level

User defined

(n * 0x20) + 0x2 APCT_ENDn Half Word N’th table —Length User defined

(n * 0x20) + 0x4 APCT_PTRn Half Word N’th APC scheduling table pointer APCT_BASEn value

(n * 0x20) + 0x6 APCT_SPTRn Half Word N’th table APC service pointer APCT_BASEn value‘

(n * 0x20) + 0x8 -
(n * 0x20) + 0x3F

Reserved — — —

 Notes:
1. The offset is from APCPTR.
2. For single-PHY operation, the base address of the APC priority levels must be divisible by 32 (APCPTR must

end with 0b00000).
3. Shaded area - Optional: Only used if APCST[PL2] bit is set.

Table 39-2. APC Priority Level Parameter Descriptions

Name Description

APCT_BASEn APC scheduling table base for the N’th priority APC level. Holds the pointer to the first entry in the
APC scheduling table. The pointers should be half-word aligned (even address).
APCPTR + (n * 0x20)

APCT_ENDn APC scheduling table end for the N’th priority APC level. Holds the end pointer of the APC scheduling
table, and is set to the address of the last entry in the APC scheduling table + 2 (APCT_ENDn =
Last_Entryn+2).

APCT_PTRn APC scheduling table pointer for the N’th priority APC level. Holds the location of the current APC time
slot in the APC scheduling table. The APC advances the pointer on every APC N timer timeout. The
APC scheduling table pointer should be initialized by the user to the APCT_BASEn value.

APCT_SPTRn APC scheduling table service pointer for the N’th priority APC level. Used internally by the APC. The
APCT_SPTRn parameter should be initialized by the user to the APCT_BASEn value.

Table 39-1. APC Priority Levels (continued)

Offset Name Width Description User Writes

MPC855T User’s Manual

APC Priority Levels

NCITS Number of cells in time slot. Parameter set by the user. It holds the number of cells which are
transmitted in a time slot. This number can include fractions of a cell. The NCITS field is defined as
follows:

The NCITS bit fields are described below.

APCNT APC N timer. Used internally by the APC. It should be initialized by the user to zero. The APC adds
NCITS to this timer on every APC Timer request. This timer holds the APC N parameter and additional
cell fraction remainder which is used by the APC. The APCNT field is defined as follows:

The APCNT bit fields are described below.

APC_MI Max iteration. Number of times/steps that the APC advances the service pointer. This parameter limits
the time spent in a single APC routine, thereby avoiding excessive APC latency. The recommended
value for APC_MI is equal to the minimum value of TCT[APCP] (APC pace) of all channels, and should
not exceed 32.

Table 39-2. APC Priority Level Parameter Descriptions (continued)

Name Description

0 7 8 15
NOC FOC

Bits Name Description

0–7 NOC Number of cells. This field contains the integer value for
the number of cells.

8–15 FOC Fraction of cell. This field holds the fraction of cell where:

NCITS NOC FOC
256

------------+=

0 7 8 15
CF N

Bits Name Description

0–7 CF Cell fraction used by the APC.

8–15 N APC N parameter.

Chapter 40. ATM Exceptions

Chapter 40
ATM Exceptions
Interrupt handling for ATM channels involves two principle data structures: an event
register (SCCE or IDSR1) and a circular ATM interrupt queue. The interrupt queue (one per
controller) is shown in Figure 40-1.

Figure 40-1. ATM Interrupt Queue

The INTBASE and INTPTR pointers are host-initialized global ATM parameters that
respectively point to the starting location of the queue structure in external memory and to
the current empty position available to the CP. The end of the queue is defined by the entry
containing the wrap (W) bit set.

When an ATM channel generates an interrupt request, the CP writes a new entry to the
queue consisting of the channel’s code number and a description of the exception. The valid
(V) bit is then set and INTPTR is advanced. After the CP writes the last entry in the queue
(W bit set), it re-initializes INTPTR to point to the base of the queue (INTBASE).

For each event sent to an interrupt queue, the CP decrements a down counter which has
been initialized to a threshold number of interrupts. When the counter reaches zero, the
controller’s global interrupt (SCCE[GINT] or IDSR1[GINT]) is set. The user controls how

Service Pointer

XV = 0 W = 0

XV = 0 W = 0

XV = 0 W = 0

Interrupt FlagsV = 1 W = 0

Interrupt FlagsV = 1 W = 0

Interrupt FlagsV = 1 W = 0

Interrupt FlagsV = 1 W = 0

XV = 0 W = 0

XV = 0 W = 0

XV = 0 W = 1

32 Bits

INTBASE

INTPTR

(maintained by host software)
CHNUM_INDEX

CHNUM_INDEX

CHNUM_INDEX

CHNUM_INDEX

X

X

X

X

X

X

MPC855T User’s Manual

ATM Event Registers

often the host application is interrupted to service new entries in the queue by programming
the interrupt threshold (INT_ICNT) in the parameter RAM; see Table 37-1.

After an interrupt request, the host’s interrupt service routine polls the controllers’ event
registers (SCCE[GINT] and/or IDSR1[GINT]) to determine which controller is requesting
service. After clearing GINT, the host processes each valid queue entry in turn, clearing
each V bit and all flagged event bits so that the entry can be reused by the CP. The host
continues servicing entries until it reaches an invalid entry (whose V bit is already cleared).

40.1 ATM Event Registers
The ATM event registers generate interrupts to the host and report on events that are
common to all channels of a controller. The global interrupt (GINT) bit indicates that at
least one channel-specific interrupt has been added to the interrupt queue. In UTOPIA
mode, the IDSR1 register is used as an exception event register; in serial ATM mode the
SCC event register (SCCE) is used for events.

40.1.1 UTOPIA Event Register (IDSR1)

The IDSR1 register is the ATM event register when operating in UTOPIA mode. IDSR1 is
used to report events and generate interrupt requests for the UTOPIA interface. Note that
in UTOPIA mode, interrupts from the ATM port are reported with an IDMA1 vector in the
CIVR, and the IDMA1 bit is set in the CIPR. Setting the corresponding bit in the mask
register IDMR1 enables the actual generation of the interrupt request. Event bits are cleared
by writing ones; writing zeros has no effect. The UTOPIA event and mask registers are
shown in Figure 40-2.

Table 40-1 describes the UTOPIA event register fields.

Bits 0 1 2 3 4 5 6 7

FIELD — SYNC IQOV GINT — —

Figure 40-2. UTOPIA Event Register (IDSR1) and Mask Register (IDMR1)

Table 40-1. UTOPIA Event Register (IDSR1) Field Descriptions

Bits Name Description

0–2 — Reserved

3 SYNC When this occurs the receiver stops receiving cells until it regains SOC synchronization.
SRSTATE[SNC] indicates that the receiver is waiting for resynchronization. Note that the SYNC
interrupt can be issued multiple times during the synchronization process until full
synchronization is achieved.

4 IQOV Interrupt queue overflow. Set by the CP whenever an overflow condition in the interrupt queue
occurs. This condition occurs if the CP attempts to write a new interrupt entry into a valid entry
(V = 1) not yet handled by the host.

Chapter 40. ATM Exceptions

ATM Event Registers

40.1.2 Serial ATM Event Register (SCCE)

The SCCE acts as the ATM event register for serial mode and is used to report events and
generate interrupt requests. Note that in serial ATM mode, interrupts from the ATM port are
reported with the SCC vector in the CIVR, and the SCC bit is set in the CIPR. Setting the
corresponding bit in the mask register SCCM enables the actual generation of the interrupt
request. Event bits are cleared by writing ones; writing zeros has no effect. Figure 40-3
shows the serial ATM event and mask registers.

Table 40-2 describes the serial ATM event register fields.

5 GINT Global interrupt. Indicates that at least one new entry has been added to the interrupt queue.
After clearing the GINT event flag, the host begins processing the entries using the service
pointer. The host returns from the interrupt handler when it reaches an invalid queue entry (V
= 0).

6–7 — Reserved

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIELD — GLR GLT DCC — SYNC IQOV GINT GUN GOV

Figure 40-3. Serial ATM Event Register (SCCE) and Mask Register (SCCM)

Table 40-2. Serial ATM Event Register (SCCE) Field Descriptions

Bits Name Description

0–2 — Reserved

3 GLR Glitch on receive. A clock glitch has been detected by the SCC on the receive clock.

4 GLT Glitch on transmit. A clock glitch has been detected by the SCC on the transmit clock.

5 DCC DPLL carrier sense status change. Indicates carrier sense status generated by the DPLL has changed
state. The value of the DCC bit is valid only when the DPLL is enabled.

6–10 — Reserved

11 SYNC Cell synchronization changed status. Indicates that the receiver has lost or gained cell delineation. The
SYNC interrupt is signaled whenever the receiver changes lock status (refer to the ASTATUS lock bit
in Section 37.7, “Serial Cell Synchronization Status Register (ASTATUS).”
If synchronization is lost (lock bit is cleared), the SYNC interrupt indicates a fatal ATM reassembly error
because the affected channels are unknown. When this happens, the receiver stops receiving data
from all channels and all data transfers to memory halt. After re-initializing the channels, the host may
resume receiving cells by executing the RESTART RECEIVE command (see Section 38.3, “ATM
Commands”) for each channel.

12 IQOV Interrupt queue overflow. Set by the CP whenever an overflow condition in the interrupt queue occurs.
This condition occurs if the CP attempts to write a new interrupt entry into a valid entry (V = 1) not yet
handled by the host.

Table 40-1. UTOPIA Event Register (IDSR1) Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Interrupt Queue Entry

40.2 Interrupt Queue Entry
Each entry in the ATM interrupt queue contains event information for a specific ATM
channel. During initialization, the host software should clear all queue entries and set the
wrap bit (W) only for the last entry. The format of an interrupt queue entry is shown in
Figure 40-4.

Table 40-3 describes the fields of an interrupt queue entry.

13 GINT Global interrupt. Indicates that at least one new entry has been added to the interrupt queue. After
clearing the GINT event flag, the host begins processing the entries using the service pointer. The host
returns from the interrupt handler when it reaches an invalid queue entry (V = 0).

14 GUN Global transmitter underrun. Indicates that an underrun occurred in the SCC’s transmitter FIFO. A
GUN error is fatal because the affected channels are unknown. After GUN is set, the transmitter stops
data transmission from all channels and sets the APC disabled status flag APCST[DIS]. The transmit
line enters an idle state (logic high). After re-initializing the channels, the host may resume
transmission by issuing a RESTART TRANSMIT command (see Section 38.3, “ATM Commands”) for each
channel.
For a faster recovery from a GUN error, re-initialize TSTATE by writing STFCR to the first byte, clearing
the second byte, and leaving the third and fourth bytes as is. Then the APC can be restarted by clearing
APCST[DIS]. This procedure results in corrupted transmit frames initially. (TSTATE should normally be
modified only during system initialization.) Note also that clearing APCST[DIS] may be overwritten by
the APC scheduling process; therefore, the user should verify that APCST[DIS] has indeed been
cleared after a minimum of 50 system clocks.

15 GOV Global receiver overrun. Indicates that an overrun occurred in the SCC’s receiver FIFO. A GOV error
is fatal because the affected channels are unknown. After GOV is set, the receiver stops receiving data
from all channels and halts all data transfers to memory. After re-initializing the channels the host may
resume receiving by issuing a RESTART RECEIVE command (see Section 38.3, “ATM Commands”) for
each channel.
For a faster recovery from a GOV error, re-initialize RSTATE by writing SRFCR to the first byte, clearing
the second byte, and leaving the third and fourth bytes as is. This procedure initially results in corrupted
receive frames which should be disposed of by software. (RSTATE should normally be modified only
during system initialization.)

0 1 2 3 4 7 8 9 10 11 12 13 14 15 16–31

v w — CNG — APCO — UN RXF BSY TXB RXB CHNUM_INDEX

Figure 40-4. Interrupt Queue Entry

Table 40-2. Serial ATM Event Register (SCCE) Field Descriptions (continued)

Bits Name Description

Chapter 40. ATM Exceptions

Interrupt Queue Entry

Table 40-3. Interrupt Queue Entry Field Descriptions

Bit Name Description

0 V Valid bit. Indicates that this entry contains valid interrupt information. The CP sets this bit when
generating a new entry. The V bit and all event bits should be cleared by the host service routine
immediately after reading the entry.

1 W Wrap bit. Indicates the last entry in the interrupt queue. After the CP writes to this entry, it moves to the
beginning of the queue for the next event; that is, INTPTR is re-initialized to INTBASE. After the host
services this entry, it should move to the beginning of the queue for the next entry to be processed; that
is, the service pointer should be re-initialized to INTBASE. During initialization, the host should set the
W bit only for the last entry of the queue.

2 — Reserved

3 CNG Congestion. Set by the CP when a congestion indication on a received cell (the middle bit of the PTI
field is set). This interrupt applies only to channels whose RCT[CNGI] is set.

4–7 — Reserved

8 APCO APC overrun. Set by the CP if an APC scheduling table overruns. The address of the affected APC
scheduling table is placed in the CHNUM_INDEX field. Indicates that the total programmed cell rate for
this APC priority level is greater than the maximum cell rate capability of the transmitter. That is, the
real-time scheduling pointer APCT_PTR has wrapped around to the service pointer APCT_SPTR
position, causing an entire APC scheduling pass to be lost because the scheduling pointer begins
overwriting the time slots with new channel numbers. Note however that no cells are lost, only the cell
rates of the channels belonging to this scheduling table have been diminished.
A scheduling table overrun occurs when (1) the programmed pace is greater than NCITS (that is, if
NCITS = 1, and 1/APCP1 + 1/APCP2 + 1/APCPn > 1), (2) the APCT_SPTR has stalled for some
reason, such as a full transmit queue, or (3) this level’s APC_MI is too low relative to higher APC priority
levels.

9 –10 — Reserved

11 UN Transmit underrun. Occurs for both AAL0 and AAL5 channels when scheduled to transmit without
sufficient data to form a complete cell.
No other action is taken and the channel remains enabled. If more data is not supplied, another UN
exception is generated the next time the channel is scheduled. When an underrun occurs, an idle cell
is sent, either generated by the MPC855T(in serial mode) or by the UTOPIA PHY (in UTOPIA mode).

12 RXF Receive frame. Indicates that a complete AAL5 frame has been received.

13 BSY Busy. Indicates that a cell was received but discarded due to lack of empty buffers.
For AAL0, the receiver attempts again to open the same BD when the next cell for this channel arrives.
For AAL5, the remaining cells of the current frame are discarded. After the last cell of the frame
(PTI[1]=1) is received (but not stored), the receiver attempts again to open the same BD when the first
cell of the next frame arrives.

14 TXB Transmit buffer. Indicates the transmitter has sent the last cell of a buffer to the UTOPIA interface (when
operating in UTOPIA mode) or to the serial FIFO (when operating in serial mode). This exception is
enabled through the I bit in the TxBD.

MPC855T User’s Manual

Interrupt Queue Mask (IMASK)

40.3 Interrupt Queue Mask (IMASK)
IMASK is the interrupt mask for both the receive and transmit sides of a channel and is
located in the RCT; see Section 36.2.1, “Receive Connection Table (RCT). Shown in
Figure 40-5, it allows the user to enable or disable interrupt generation. If a bit in IMASK
is cleared, the corresponding event does not cause an entry to be added to the interrupt
queue, and the GINT global interrupt counter is not incremented.

Note that because the masking is performed in microcode, approximately 40 system clocks
must elapse for a change in IMASK to take effect.

15 RXB Receive buffer. Indicates a buffer has been received. For AAL5, the buffer is not the last buffer in the
frame (indicated by RXF). The RXB interrupt is also generated by other errors that occur when
receiving; in this case, the error condition is reported in the RxBD. This exception is enabled through
the I bit in the RxBD.

16–31 CHNUM
_INDEX

Channel number index. This field represents the CH_CODE of the channel associated with this
interrupt entry or the APC scheduling table base address experiencing overrun.
When not operating in extended channel mode, the CHNUM_INDEX field contains the channel’s RCT
or TCT address in dual-port RAM. In extended channel mode, CHNUM_INDEX is the channel number.
If the interrupt is an APC overrun (APCO is set), the CHNUM_INDEX field contains the dual-port RAM
offset of the APC priority level experiencing the overrun.

0 2 3 4 9 10 11 12 13 14 15

— CNG — UN RXF BSY TXB RXB

Figure 40-5. Interrupt Queue Mask (IMASK)

Table 40-3. Interrupt Queue Entry Field Descriptions (continued)

Bit Name Description

Chapter 41. Interface Configuration

Chapter 41
Interface Configuration
The following sections describe the programming of registers and parameters for ATM
operations through both the UTOPIA and serial interfaces.

41.1 General ATM Registers
This section describes the general ATM registers.

41.1.1 Port D Pin Assignment Register (PDPAR)

The ATM and UT bits have been added to the PDPAR register, shown in Figure 41-1. The
PDPAR register is cleared at system reset.

The fields in the PDPAR register are described in Table 41-1.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field ATM UT — DD3 DD4 DD5 DD6 DD7 DD8 DD9 DD10 DD11 DD12 DD13 DD14 DD15

Reset 00 0_0000_0000_0000

Oper R/W

ADDR Offset to IMMR: 0x972 (PDPAR)

Figure 41-1. Port D Pin Assignment Register (PDPAR)

Table 41-1. PDPAR Field Descriptions

Bits Name Description

0 ATM ATM global enable.
0 =Disable ATM SAR functionality
1 =Enable ATM SAR functionality

1 UT UTOPIA enable. Determines whether the parameter RAM’s page 4 (SCC4) operates in
serial or UTOPIA mode.
0 =Serial mode using page 4
1 = UTOPIA mode

MPC855T User’s Manual

UTOPIA Mode Registers

41.1.2 APC Timer (CPM Timer 4)

The CPM general-purpose timer number 4 is used internally by the ATM pace controller as
the APC timer for both serial ATM and UTOPIA modes. The APC timer should be
programmed to run in active-low pulse and restart mode (see Section 17.2, “CPM
General-Purpose Timers”). The APC timer period should be programmed according the
required APC rate, which is discussed in Section 39.1, “APC Algorithm.”

41.1.3 RISC Timer

A dedicated RISC timer programmed by host software with the desired time-out interval
can be used to implement a receiver time-out error check. The RISC timer is specified in
TSTA (time-stamp timer address) in the ATM parameter RAM. See Section 18.7, “The
RISC Timer Table,” for additional information.

41.2 UTOPIA Mode Registers
When operating in UTOPIA mode the PHY layer is connected to the MPC855T UTOPIA
interface. The UTOPIA data signals and some of the control signals are connected to port
D. The remaining UTOPIA control signals are connected to ports B and C. The UTOPIA
mode requires several registers to be configured as described in the following sections.

41.2.1 System Clock Control Register (SCCR)

The system clock control register is described in Section 14.6.1, “System Clock and Reset
Control Register (SCCR).” SCCR[27–31] control the UTOPIA clock (UTPCLK).

The frequency of the UTPCLK defaults to system frequency. The frequency ratio between
the system clock and UTPCLK is an integer value (freqsys/frequtopia = integer > 0). The
UTOPIA clock has a 50% duty cycle and is derived from the system frequency divided by
two dividers. Note that the UTOPIA clock must be programmed to operate at a frequency
less than or equal to 25 MHz. The SCCR[DFUTP] and SCCR[DFAUTP] fields should be
programmed such that the total UTOPIA clock division factor never exceeds 5 (that is, the

2 — Reserved

3–15 DDx Signal assignment. Determines whether the signal is a general-purpose I/O signal or
performs a dedicated function.
0 =General-purpose I/O. The peripheral functions of the signal are not used.
1 =Dedicated peripheral function. The signal performs the function assigned by the

internal module.

Table 41-1. PDPAR Field Descriptions (continued)

Bits Name Description

Chapter 41. Interface Configuration

UTOPIA Mode Registers

bounds of UTPCLK are 25 MHz > UTPCLK > SYSCLK/5). The UTOPIA clock frequency
can be determined using the following formula:

For example, to achieve a 25-MHz UTOPIA clock with a 50-MHz system clock, DFUTP
should be programmed to 0b001, and DFAUTP should be cleared. The SCCR is shown in
Figure 41-2.

The fields related to the UTOPIA clock in the SCCR register are described in Table 41-2.

41.2.2 Port B—TxClav

Port B includes the TxClav input signal. PB15 is configured to support the TxClav signal
when PBPAR[15] is set and PBDIR[15] is cleared.

UTOPIA MPHY operations use the port B PHREQ[0–1] and PHSEL[0–1] signals. These
signals are configured by clearing PBPAR[16–21] and PBDIR[16–17], and setting
PBDIR[20–21].

BIT 0 1–26 27 28 29 30 31

FIELD
as described in

Section 14.6.1, “System Clock and Reset Control Register (SCCR).”
DFUTP DFAUTP

RESET 0_0000

OPER R/w

ADDR Offset to IMMR: 0x280 (SCCR)

Figure 41-2. System Clock Control Register (SCCR)

Table 41-2. SCCR Field Descriptions for the UTOPIA Clock

Bits Name Description

27–29 DFUTP Division factor for UTPCLK. Divide the system clock by 2DFUTP.
The system clock division factor is limited to 4.

30–31 DFAUTP Additional division factor for UTPCLK. Divide the system clock by
(2 x DFAUTP + 1)
00 =Divide by 1
01 =Divide by 3
10 =Divide by 5
11=Reserved

FREQutopia FREQsys

2
DFUTP() 2 DFAUTP× 1+()×

--=

MPC855T User’s Manual

UTOPIA Mode Registers

41.2.3 Port C—RxClav Signal

In UTOPIA mode (PDPAR[UT] = 1), the port C PC15 pin provides the UTOPIA RxClav
input signal. The PCPAR and PCDIR fields must be cleared and the PCSO field must be set
to enable the RxClav signal input.

41.2.4 Port D—UTOPIA Data and Control Signals

Port D includes the UTOPIA data and control signals. When PDPAR[UT] is set, most of
the port D signals are configured to support UTOPIA signals as shown in Table 41-3. The
UTOPIA interface is described in Chapter 42, “UTOPIA Interface.”

NOTE
Port D must be initialized before Port C to prevent the CPM
from trying to use IDMA functionality.

41.2.5 RISC Controller Configuration Register (RCCR)
The RCCR[DR1M,DR0M] bits must be set (level-sensitive IDMA request signals) to
enable UTOPIA operation. Also, program RCCR[DRQP] to 0b01 to give SCC transfers
higher priority.

Signal PDPAR = 0

PDPAR=1
Input to On-Chip

Peripherals
UT=0

UT=1
PDDIR=0 PDDIR=1

PD15 Port D15 L1TSYNCA MII-RXD3 (I) UTPB[0] L1TSYNCA=GND

PD14 Port D14 L1RSYNCA MII-RXD2 (I) UTPB[1] L1RSYNCA=GND

PD13 Port D13 — MII-RXD1 (I) UTPB[2] —

PD12 Port D12 — MII-MDC (O) UTPB[3] —

PD11 Port D11 — MII-TX-ERR (O) RxEnb —

PD10 Port D10 — MII-RXD0 (I) TxEnb —

PD9 Port D9 — MII-TXD0 (O) UtpClk —

PD8 Port D8 — MII-RX_CLK (I) — —

PD7 Port D7 — MII-RX-ERR(I) UTPB[4] —

PD6 Port D6 — MII-RXDV (I) UTPB[5] —

PD5 Port D5 — MII-TXD3 (O) UTPB[6] —

PD4 Port D4 — MII-TXD2 (O) UTPB[7] —

PD3 Port D3 — MII-TXD1 (O) SOC —

Table 41-3. Port D Pin Assignment

Chapter 41. Interface Configuration

Serial ATM Configuration

41.2.6 UTOPIA Mode Initialization
The following procedure is required for proper initialization of the UTOPIA interface:

1. Because the UTOPIA port activates immediately upon initialization, configure the
ATM parameters and data structures first.

1. Set SRFCR[DIS] to 1 to mask the RxClav signal.

2. Program PBPAR and PBDIR to enable TxClav.
3. Program PCPAR, PCDIR, and PCSO to enable RxClav.
4. Program PBPAR and PBDIR to enable TxClav.

5. Clear SRFCR[DIS] to unmask the RxCav signal, thereby enabling the UTOPIA
interface. At least 20 system clocks must elapse between the configuration of the
PDPAR and clearing SRFCR[DIS].

The ATM controller starts searching for SOC and sets SRSTATE[SNC] as soon as the first
SOC is found.

41.3 Serial ATM Configuration
This section describes the configuration of registers for serial ATM operation.

41.3.1 RISC Controller Configuration Register (RCCR)

The RCCR[DR1M] bit must be set, and the RCCR[DRQP] field must be programmed to
0b01 to allow a higher priority for SCC transfers.

41.3.2 SCC Configuration for Serial ATM

To enable the SCC to operate in serial ATM mode, configure the SCC for transparent
operation (because GSMR_L[MODE] has no explicit ATM option) and clear MRBLR in
the SCC’s parameter RAM. If MRBLR is programmed with a non-zero value, the SCC
operates in transparent mode.

Be sure to initialize the ATM parameters and data structures before enabling serial ATM
operation because transfers begin as soon as the SCC is enabled in the GSMR.

The following sections describe the programming of the SCC registers for serial ATM
operation.

41.3.2.1 General SCC Mode Register (GSMR)

To configure the SCC as an ATM controller, program GSMR_H[TRX, TTX, CDP, CTSP,
CDS, CTSS] (see Section 21.2.1, “General SCC Mode Register (GSMR)”). When the
initialization sequence has been completed, GMSR_L[ENR, ENT] must be set to enable
receive and transmit functions (see Section 21.4.3, “SCC Initialization”).

MPC855T User’s Manual

Serial ATM Configuration

The SCC running serial ATM does not support mixed mode operation (in which the SCC
transmitter is configured for ATM transmissions and the receiver is in transparent mode, or
vice versa).

41.3.2.2 Serial ATM Mode Register (PSMR)

The protocol-specific mode register (PSMR), shown in Figure 41-3, functions as the serial
ATM mode register and controls both the scrambling and the HEC coset functions for the
transmitter and receiver.

Table 41-4 describes the PMSR serial ATM fields.

41.3.3 SI Configuration for Serial ATM

The serial interface (SI) can be configured to support the SCC running serial ATM using
either the dedicated SCC pins (non-multiplexed serial interface—NMSI) or time-division
multiplexing (TDM) through the time-slot assigner (TSA). (See Section 20.2, “The
Time-Slot Assigner (TSA),” or Section 20.3, “NMSI Configuration.”)

Note that a serial ATM port using the TSA can be connected to E1, T1, and xDSL line
interface devices.

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIELD — — SCRAM — — — — COSET — — — — — — — —

RESET 0000_0000_0000_0000

OPER R/W

ADDR

Figure 41-3. Serial ATM Mode Register (PSMR)

Table 41-4. PSMR Serial ATM Field Descriptions

Bits Name Description

0–1 — Reserved

2 SCRAM Scrambling function during sending and receiving
0 = Disable cell payload scrambling.
1 = Enable cell payload scrambling.

3–6 — Reserved

7 COSET HEC coset function
0 = Do not apply the HEC coset rules.
1 = Apply the HEC coset to all cells sent and received.

8–15 — Reserved

Chapter 42. UTOPIA Interface

Chapter 42
UTOPIA Interface
The MPC855T supports single- and multi-PHY ATM operations through an
industry-standard UTOPIA interface. The sections below describe the signals provided for
UTOPIA support, and signal timing for single- and multi-PHY ATM operations.

42.1 UTOPIA Single-PHY
The MPC855T acts as an ATM layer UTOPIA master per the ATM Forum UTOPIA level
1 specification for an ATM single-PHY configuration. The MPC855T implements the
UTOPIA interface as an 8-bit wide bidirectional data bus using a cell-level handshake, and
operates at frequencies up to 25 MHz. The UTOPIA controller controls all interface signals.

Assertion of transmit cell available (TxCav) or receive cell available (RxCav) issues a
request to the CP to handle a receive or transmit operation. During the cell transfer, the
UTOPIA controller controls the enable signals (TxEnb or RxEnb) and the transmit start of
cell signal (TxSOC). It also samples the RxSOC signal during the cell transfer.

Most of the UTOPIA signals are multiplexed on MPC855T port D pins as shown in Figure
42-1. The IDMA request connected to the DREQ0 signal is replaced with RxClav. TxClav
signal is connected to the port C[12] signal.

MPC855T User’s Manual

UTOPIA Single-PHY

Figure 42-1. MPC855T UTOPIA Interface

The MPC855T implements a cell level interface. The cell level handshake is identical to the
octet level handshake except that once the TxClav or RxClav signals are asserted the PHY
must be capable of receiving or transmitting a whole cell. The MPC855T transmits or
receives a whole cell directly to or from system memory during a receive or transmit
operation.

42.1.1 Receive Cell Transfer Operation

Assertion of RxClav generates a request to receive a cell transfer. The MPC855T UTOPIA
provides the cell level handshake, and as soon as RxClav is asserted, the PHY must be able
to transfer a whole cell upon RxEnb. The MPC855T’s UTOPIA controller divides the cell
transfers into 1 to 4 byte groups and uses RxEnb to control the transfer. For example, a
53-byte cell transfer sequence is divided into the following UTOPIA transfers:

• Header transfer (4 octets)

• UDF (HEC) transfer (1 octet)

• 12 cell body transfers (12 x 4 octets)

The MPC855T asserts RxEnb for each transfer. The following cycle the MPC855T starts
sampling the UTOPIA bus (through the UTPB signals) and RxSOC. During the UDF
tenure only one octet is transferred; all other sections are four octets long.

The receive start of cell timing sequence is shown in Figure 42-2. The circles shown during
the data tenure represent the sampling points of the MPC855T. Note that RxClav is not
sampled during the transfer.

RxClav

RxEnb

TxClk

TxData

TxSOC

TxClav

TxEnb

PHY

RxSOC

RxData

RxClk

MPC855T

PD10

PC12

UTPClk(PD)

UTPB(PD12–15; 4–7

SOC(PD3)

DREQ0(PC15)

PD11

Tx

Rx

Up to 25 MHz

Chapter 42. UTOPIA Interface

UTOPIA Single-PHY

Figure 42-2. UTOPIA Receiver Start of Cell

The end-of-cell transfer timing sequence is shown in Figure 42-3. In this example the PHY
was not ready with additional data and therefore deasserted RxClav. A few clocks later the
PHY asserted RxClav again to indicate that data was available. If the PHY is ready to send
additional data at the end of the current data tenure, the PHY can assert RxClav at any time
during the data transfer and hold RxClav asserted until the first transfer the following data
tenure.

Figure 42-3. UTOPIA Receiver End of Cell

42.1.2 Transmit Cell Transfer Operation

Assertion of the TxClav signal generates a request for a cell to transmit. The MPC855T’s
UTOPIA interface implements the cell level handshake, and the PHY must be able to
receive a whole cell upon assertion of the TxEnb signal. Note that a RxClav signal assertion
generates a request that has higher priority than those caused by the assertion of the TxClav
signal; transmit cell requests are granted by the CP when it has completed all the cell

UTPB

SOC

RxEnb

RxClav

TPClk

H4H3H2H1 UDF

UTPB

SOC

RxEnb

RxClav

TPClk

P48P47P46P45

MPC855T User’s Manual

UTOPIA Single-PHY

receive requests. The MPC855T’s UTOPIA controller divides the cell transfers into 1- to
4-byte groups and uses the TxEnb signal to control the transfer. For example, a 53-byte cell
transfer sequence is divided into the following UTOPIA transfers:

• Header transfer (4 octets)

• UDF (HEC) transfer (1 octet)

• Cell payload transfers (total of 48 octets)

The MPC855T asserts TxEnb, TxSOC, and TxPrty signals, and drives the UTOPIA bus
(through the UTPB signals) with data for each transfer. The cell header is transferred in a
4-octet group. The UDF is transferred as a single octet. The cell payload is transferred in
groups of 1 to 4 octets. The UDF (HEC) is not generated by the MPC855T; during the UDF
transfer, the UTPB signals will be driven with 0x00.

42.1.2.1 UTOPIA Bus and SOC Drive

The UTOPIA bus (through the UTPB signals) and SOC signal are driven by the MPC855T
only when TxEnb is asserted during transmit transfers; UTPB and SOC are three-stated
when TxEnb is not asserted.

The transmit start-of-cell sequence is shown in Figure 42-4. Note that the TxClav signal is
not sampled during the cell transfer.

Figure 42-4. UTOPIA Transmitter Start of Cell

The transmit end-of-cell sequence is shown in Figure 42-5. In this example the PHY is
ready for the next cell transfer and has asserted TxClav immediately at the end of the cell
transfer. The TxClav signal should be kept asserted until the TxEnb signal is asserted by the
MPC855T to indicate the transfer start of a new cell.

UTPB

SOC

TxEnb

xClav

TPClk

H4H3H2 UDFH1

Chapter 42. UTOPIA Interface

UTOPIA Multi-PHY Operations

Figure 42-5. UTOPIA Transmitter End of Cell

42.2 UTOPIA Multi-PHY Operations
The MPC855T supports a multi-PHY interface through the use of PHY addressing signals.
The following are guidelines for Multi-PHY operation:

• Up to 4 PHYS may be supported.

• Supports using additional PHY addressing signals - PHREQ and PHSEL.

• PHREQ indicates the receive requesting (available) PHY (i.e., PHREQ identifies the
PHY requesting that the MPC855T receive its data). PHSEL is used to select the PHY
that is to receive or transmit data.

• For the transmit side, Upon TxClav the MPC855T may chose to deliver the next cell
to any of the available PHYs. Therefore, TxClav should be asserted only when all the
PHYs are available.

¥ If additional port B pins are used as a general purpose output pins, a dedicated
semaphore (PBF) should be used to prevent collision between Host and CP writes. (see
PBF bit in STSTATE parameter ram field).

¥ PHSEL and PHREQ timing is with reference to the system clock.

42.2.1 Setting up PHSEL and PHREQ Pins

To drive a MPHY address, PHREQ (driven through the PB16 and PB17 signals) and
PHSEL (driven through the PB20 and PB21 signals) must be set by the user to be general
purpose signals. PHREQ should be programmed as input signals and PHSEL programmed
as output signals through the associated bits in the PBPAR and PBDIR registers. Both
PHSEL and PHREQ are read or written directly through port B synchronously with the

UTPB

SOC

TxEnb

xClav

TPClk

P48P47P46P45

MPC855T User’s Manual

UTOPIA Multi-PHY Operations

system clock; refer to Section 33.3, “Port B” for additional information about system
clocking and port read and write operations.

Program PBPAR pins PB16, PB17, PB20 and PB21 to zero, that is, as general purpose I/O
pins. Then program PBDIR pins PB16 and PB17 to zero (as inputs) and PBDIR pins PB20
and PB21 to one (as outputs). PB16 and PB17 will be used for PHREQ where PB16 is the
most significant bit, PB20 and PB21 will be used for PHSEL where PB19 is the most
significant bit.

42.2.2 Receive Cell Transfer Operation

The multi-PHY UTOPIA cell transfer protocol is basically the same as that used for
single-PHY transfers, except that prior to the assertion of RxEnb the MPC855T reads the
PHY address through PHREQ. The PHY address is then written to PHSEL for use during
the address match process.

The MPC855T RxClav input pin may be asserted together with a valid PHY number on the
PHSEL pins. The assertion of RxClav will generate a request to the CP. As soon as the
request is accepted by the CP (after at least several UTOPIA clocks) PHREQ will be read
by the CP. If PBF bit is 0, the MPC855T will write the selected PHY# to the PHSEL pins
and only after several UTOPIA clocks the RxEnb will be asserted and cell reception will
start. If PBF is set, the CP will keep reading PHREQ, waiting for PBF to be cleared by the
HOST (see PBF bit in STSTATE parameter ram field).

PHREQ must remain valid from the assertion of RxClav until RxEnb is asserted. PHSEL
is driven by the MPC855T and remains valid from the cycle the MPC855T has selected a
PHY until the end of the cell transfer through the UTOPIA interface, as shown in
Figure 42-6.

NOTE
During RxCav assertion, PHSEL still may be changed
dynamically if a higher priority PHY asserted its cell available
pin. The MPC855T PHSEL will be sampled at the rising edge
of the system clock.

42.2.3 Transmit Cell Transfer Operation

When transmitting, the MPC855T writes the PHY address to PHSEL to select the currently
addressed PHY prior to the assertion of TxEnb. The MPC855T TxCav input pin may be
asserted only when all the PHYs are ready to accept a cell. The assertion of TxClav will
generate a request to the CP. As soon as the request is accepted by the CP, PHSEL will be
updated to select the current PHY and only after several UTOPIA clocks the TxEnb will be
asserted and cell transfer will start.

Chapter 42. UTOPIA Interface

UTOPIA Multi-PHY Operations

Note that requiring TxCav to be asserted only when all PHYs are ready to receive a cell
does not mean that the transmission rate is governed by the slowest PHY. The scheduler
(APC using PHY programmed transmission rate) will place more cells in the transmit
queue for faster PHYs. The transfers and subsequent assertions of TxClav by the PHYs are
essentially instantaneous because the UTOPIA interface transfer is faster compared to the
line rate and the use of cell FIFOs by the PHYs. If any of the PHYs malfunction (die) all
transmission of cells is halted since TxClav will not be asserted. External logic is needed to
detected and correct this condition and deactivation of the impacted channels should be
carried out by the application software.

PHSEL is driven by the MPC855T and remains valid starting from the cycle the MPC855T
has selected a PHY until the end of the cell transfer through the UTOPIA interface, as
shown in Figure 42-8.

42.2.4 Example MPHY Implementation

Figure 42-6 is an overview example for implementing a Multi PHY system using the
MPC855T. The TxClav will be asserted when all PHYS are ready to accept a cell. PhSel
decode is used to select the PHY several clocks before TxEnb or RxEnb are asserted. The
priority mux (Priority encode) is a “box” which prioritizes the PHYs in the Rx direction.
RxClav should be asserted when at least one of the PHYs is ready to deliver a cell.

MPC855T User’s Manual

UTOPIA Multi-PHY Operations

Figure 42-6. Multi-PHY Implementation Example

TxClav1
TxClav2
TxClav3
TxClav4

Phy1

MPC855T

DATA[0:7]

CLK

SOC

TxEnb#

TxClav

RxClav

RxEnb#

Phy2

RxClav1
RxClav2
RxClav3
RxClav4

PhReq

PhSel

Priority
encode 2

2
Decode

Sel1
Sel2
Sel3
Sel4

TxEnb#

RxEnb#

TxEnb#

RxEnb#

Rx,Tx Data

Rx,Tx SOC

Rx,Tx Clk

Rx,Tx Data

Rx,Tx SOC

Rx,Tx Clk

TxClav

RxClav

TxClav

RxClav

Chapter 42. UTOPIA Interface

UTOPIA Interface Transfer Timing

Figure 42-7. UTOPIA Receiver Multi-PHY Example

Figure 42-8. UTOPIA Transmitter Multi-PHY Example

42.3 UTOPIA Interface Transfer Timing
Table 42-1 describes the UTOPIA interface timing for data transfers and receive and
transmit transitions.

UTPB

SOC

RxEnb

RxCav

TPClk

H3H1 H2

PHY#

PHY#

HREQ

PHSEL

UTPB

SOC

TxEnb

TxCav

TPClk

H4H3H2H1 UDF

PHY#PHSEL

MPC855T User’s Manual

UTOPIA Interface Transfer Timing

Table 42-1. UTOPIA Interface Transfer Timing

UTOPIA Transfer Type Clock Ratio Transition Time

Interval between RxEnb negation and RxEnb
assertion, or TxEnb negation and TxEnb
assertion for successive data blocks (payload
bytes 5-8 and 9-12).

UTPCLK/SYSCLK = 1 8 UTPCLKs minimum

UTPCLK/SYSCLK = 1/2 4 UTPCLKs minimum

1/3 < UTPCLK/SYSCLK < 1/5 0-3 UTPCLKs minimum

Interval between RxEnb negation and TxEnb
assertion.

— 50 SYSCLKs minimum

Interval between TxEnb negation and RxEnb
assertion.

— 20 SYSCLKs minimum

Interval between RxEnb negation and
subsequent RxEnb assertion for header
transfers.

— 6 SYSCLKs minimum

Interval between TxEnb negation and
subsequent TxEnb assertion for header
transfers.

— 4 SYSCLKs minimum

Part VII. Fast Ethernet Controller (FEC)

Part VII
Fast Ethernet Controller (FEC)

Intended Audience
Part VII is intended for system designers who need to use the MPC855T fast ethernet
capabilities. It assumes a basic understanding of the PowerPC exception model, the
MPC855T interrupt structure, as well a working knowledge of 10/100 base-T Ethernet. A
complete discussion of fast ethernet is beyond the scope of this book.

Contents
Part VII contains the following chapter:

• Chapter 43, “Fast Ethernet Controller (FEC),” describes the Fast Ethernet controller.
It provides general descriptions of supported operations, full descriptions of the
supporting registers, and initialization information.

Conventions
This document uses the following notational conventions:

Bold entries in figures and tables showing registers and parameter
RAM should be initialized by the user.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

REG[FIELD] Abbreviations or acronyms for registers or buffer descriptors are
shown in uppercase text. Specific bits, fields, or numerical ranges

Bold

MPC855T User’s Manual

appear in brackets. For example, MSR[LE] refers to the little-endian
mode enable bit in the machine state register.

x In certain contexts, such as in a signal encoding or a bit field,
indicates a don’t care.

n Indicates an undefined numerical value

¬ NOT logical operator

& AND logical operator

| OR logical operator

Acronyms and Abbreviations
Table i contains acronyms and abbreviations used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning

BD Buffer descriptor

CPM Communication processor module

CRC Cyclic redundancy checking

DMA Direct memory access

FEC Fast Ethernet Controller

FIFO First-in/first-out (buffer)

MAC Media access control

MII Media-independent interface

Rx Receive

SFD Start frame delimiter

SIU System interface unit

Tx Transmit

Chapter 43. Fast Ethernet Controller (FEC)

Chapter 43
Fast Ethernet Controller (FEC)
This chapter describes the FEC as specifically implemented on the MPC855T. The 10/100
Fast Ethernet controller with integrated FIFOs and bursting DMA is implemented
independently, so high-performance Fast Ethernet connectivity can be achieved without
affecting the CPM performance.

43.1 Features
The following sections summarize key FEC features.

• 10/100 base-T support

— Full compliance with the IEEE 802.3u standard for 10/100 base-T

— Support for three different physical interfaces: 100-Mbps 802.3
media-independent interface (MII), 10-Mbps 802.3 MII, and 10-Mbps 7-wire
interface

— Large on-chip transmit and receive FIFOs to support a variety of bus latencies

— Retransmission from the transmit FIFO after a collision

— Automatic internal flushing of the receive FIFO for runts and collisions

— External BD tables of user-definable size allow nearly unlimited flexibility in
management of transmit and receive buffer memory

• 10/100 base-T media access control (MAC) features

— Address recognition for broadcast, single station address, promiscuous mode,
and multicast hashing

— Full MII support

— Interrupts supported per frame or per buffer (selectable buffer interrupt
functionality using the I bit is not supported however.)

— Automatic interrupt vector generation for receive and transmit events (Tx
interrupts, Rx interrupts, and non-time critical interrupts)

— Ethernet channel uses DMA burst transactions to transfer data to and from
external memory

MPC855T User’s Manual

Fast Ethernet Controller Operation

43.1.1 FEC Block Diagram

The FEC, the embedded MPC8xx core, the system interface unit (SIU), and the CPM all
use the 32-bit internal bus. Figure 43-1 is a block diagram of the FEC.

Figure 43-1. FEC Block Diagram

The FEC complies with the IEEE 802.3 specification for 10- and 100-Mbps connectivity.
Full-duplex 100-Mbps operation is supported at system clock rates of 40 MHz and higher.
A 25-MHz system clock supports 10-Mbps operation or half-duplex 100-Mbps operation.

The implementation of bursting DMA reduces bus usage. Independent DMA channels for
accessing BDs and transmit and receive data minimize latency and FIFO depth
requirements.

Transmit and receive FIFOs further reduce bus usage by localizing all collisions to the FEC.
Transmit FIFOs maintain a full collision window of transmit frame data, eliminating the
need for repeated DMA over the system bus when collisions occur. On the receive side, a
full collision window of data is received before any receive data is transferred into system
memory, allowing the FIFO to be flushed in the event of a runt or collided frame, with no
DMA activity. However, external memory for buffers and BDs is required; on-chip FIFOs
are designed only to compensate for collisions and for system bus latency.

Independent TxBD and RxBD rings in external memory allow nearly unlimited flexibility
in memory management of transmit and receive data frames. External memory is
inexpensive, and because BD rings in external memory have no inherent size limitations,
memory management can be easily optimized to system needs.

43.2 Fast Ethernet Controller Operation
This section discusses the operation of the FEC.

DMAs

FIFOs

10/100

MII

Base-T
Media Access

Control

Fast
Ethernet

Controller

Chapter 43. Fast Ethernet Controller (FEC)

Fast Ethernet Controller Operation

43.2.1 Transceiver Connection

The FEC supports both an MII interface for 10/100 Mbps Ethernet and a seven-wire serial
interface for 10-Mbps Ethernet. The interface mode is selected by
R_CNTRL[MII_MODE], described in Section 43.4.1.20, “Receive Control Register
(R_CNTRL).” Table 43-1 shows the 18 MII interface signals that are defined by the 802.3
standard.

 Serial-mode connections to the external transceiver are shown in Table 43-2.

Table 43-1. MII Signals

Signal Description FEC Signal Name

Transmit clock TX_CLK

Transmit enable TX_EN

Transmit data TXD[3:0]

Transmit error TX_ER

Collision COL

Carrier sense CRS

Receive clock RX_CLK

Receive enable RX_DV

Receive data RXD[3:0]

Receive error RX_ER

Management channel clock MDC

Management channel serial data MDIO

Table 43-2. Serial Mode Connections to the External Transceiver

Signal Description FEC Signal Name

Transmit clock TX_CLK

Transmit enable TX_EN

Transmit data TXD0

Collision COL

Receive clock RX_CLK

Receive enable RX_DV

Receive data RXD0

Unused MPC855T inputs—Tie to ground RX_ER, CRS, RXD[3:1]

Unused MPC855T outputs—Ignore TX_ER, TXD[3:1], MDC, MDIO

MPC855T User’s Manual

Fast Ethernet Controller Operation

43.2.2 FEC Frame Transmission
FEC transmissions require almost no host intervention. When the software driver sets the
ETHER_EN bit in the Ethernet control register (ECNTRL) and the X_DES_ACTIVE bit
in the CSR TxBD active register (X_DES_ACTIVE), the FEC is enabled and fetches the
first TxBD. If the user has a frame ready to transmit, a DMA transfer of the transmit data
buffers begins immediately.

A 512-bit collision window of transmit data is sent to the transmit FIFO before transmission
begins. If the line is not busy, the MAC transmit logic asserts TX_EN and sends the
preamble sequence, the start frame delimiter (SFD), and then the frame information. If the
line is busy, the controller waits for the carrier sense signal, CRS, to remain inactive for 60
bit times. Transmission begins after an additional 36 bit times (96 bit times after CRS
became inactive).

If a collision occurs during the transmit frame, the FEC follows the specified backoff
procedures and tries retransmitting the frame until the retry limit threshold is reached. The
FEC stores the first 64 bytes of the transmit frame in internal RAM so that they do not have
to be retrieved from system memory in case of a collision. This improves bus usage and
latency in case the backoff timer output causes a need for an immediate retransmission.

When the end of the current BD is reached and TxBD[L] is set, the frame check sequence
(32-bit CRC) is appended (if TxBD[TC] = 1) and TX_EN is negated. After the frame check
sequence is sent, the FEC writes the frame status bits into the BD and clears the R bit. When
the end of the current BD is reached and the L bit is not set (a frame consists of multiple
buffers), only the R bit is cleared. Short frames are automatically padded by the transmit
logic.

A transmit frame length exceeding the value set for MAX_FRAME_LENGTH in the
receive hash register (R_HASH) generates a babbling transmit interrupt
(I_EVENT[BABT] = 1); however, the entire frame is sent (no truncation). Whether buffer
or frame interrupts can be generated is determined by I_MASK settings.

To pause transmission, set the graceful transmit stop bit, X_CNTRL[GTS]. When GTS is
set, the FEC transmitter stops immediately if no transmission is in progress or continues
transmission until the current frame either finishes or terminates with a collision. The GRA
interrupt occurs when the graceful transmit stop operation completes. When GTS is
cleared, the FEC resumes transmission with the next frame.

The FEC transmits bytes lsb first.

43.2.3 FEC Frame Reception
FEC reception requires almost no host intervention. The FEC can perform address
recognition, CRC checking, short-frame checking, and maximum frame-length checking.

When the software driver sets ECNTRL[ETHER_EN] and R_DES_ACTIVE in the CSR
RxBD active register (R_DES_ACTIVE), the FEC receiver is enabled and immediately
starts processing receive frames. When RX_DV is asserted, the receiver first checks for a
valid preamble/SFD (start frame delimiter) header, which is stripped and the frame is
processed by the receiver. If a valid header is not found, the frame is ignored.

Chapter 43. Fast Ethernet Controller (FEC)

Fast Ethernet Controller Operation

When in serial mode and after RX_DV (RENA) is asserted, the first 16 bit times of RX_D0
are ignored. Following the first 16 bit times the data sequence is checked for alternating
ones and zeros.

• If a 11 or 00 sequence is detected during bit times 17 to 21, the rest of the frame is
ignored.

• After bit time 21, the data sequence is monitored for a valid SFD (11). If a 00 is
detected, the frame is rejected. If a 11 is detected, the preamble/SFD sequence is
complete.

In MII mode, the receiver checks for at least one byte matching the SFD. Zero or more
preamble bytes may occur, but if a 00 sequence is detected before the SFD byte, the frame
is ignored.

After the first eight bytes of the frame are passed to the receive FIFO, the FEC performs
address recognition on the frame.

As soon as a collision window (64 bytes) of data is received and if address recognition has
not rejected the frame, the FEC starts transferring the incoming frame to the RxBD’s
associated buffer. If the frame is a too short (due to collision) or is rejected by address
recognition, no receive buffers are filled. Thus, no collision frames are presented to the user,
except for any late collisions, which indicate serious LAN problems. When the data buffer
has been filled, the FEC clears RxBD[E] and generates an RXB interrupt (if
I_MASK[RBIEN] is set). If the incoming frame exceeds the length of the data buffer, the
FEC fetches the next RxBD in the table. If it is empty, the FEC continues transferring the
rest of the frame to the associated data buffer.

R_BUFF_SIZE[R_BUFF_SIZE] determines buffer length, which should be at least 128
bytes. R_BUFF_SIZE must be quad-word (16-byte) aligned.

During reception, the FEC checks for a frame that is either too short or too long. When the
frame ends (CRS is negated), the receive CRC field is checked and written to the data
buffer. The data length written to the last BD in the Ethernet frame is the length of the entire
frame. Frames smaller than 64 bytes are not accessed and are rejected in hardware with no
impact on system bus usage.

Receive frames are not truncated if they exceed MAX_FRAME_LENGTH bytes, however
the babbling receive error interrupt occurs (I_EVENT[BABR] = 1) and RxBD[LG] is set.

When the receive frame is complete, the FEC sets RxBD[L], writes the other frame status
bits into the RxBD, and clears the E bit. The FEC next generates a maskable interrupt
(I_EVENT[RFINT] maskable by I_MASK[RFIEN]), indicating that a frame has been
received and is in memory. The FEC then waits for a new frame.

The FEC receives serial data lsb first.

MPC855T User’s Manual

Fast Ethernet Controller Operation

43.2.4 CAM Interface

In addition to the FEC address recognition logic, an external CAM may be used for frame
reject with no additional pins other than the MII interface pins. For more information on
the CAM interface refer to Using Motorola’s Fast Static RAM CAMs with the MPC860T’s
Media Independent Interface application note.

43.2.5 FEC Command Set

The FEC does not support commands as found in the CPM channels. After the FEC is
initialized and enabled, it operates autonomously. Typically, aside from initialization, the
driver only writes to R_DES_ACTIVE, X_DES_ACTIVE, and I_EVENT during
operation.

43.2.6 Ethernet Address Recognition

The FEC filters the received frames based on destination address (DA) type—individual
(unicast), group (multicast), or broadcast (all-ones group address). The difference between
an individual address and a group address is determined by the I/G bit in the destination
address field.

If the DA is the individual (unicast) type of address, the FEC compares the destination
address field of the received frame with the 48-bit address that the user programs in the
ADDR_LOW and ADDR_HIGH.

If the DA is the group type of address, the FEC determines whether the group address is a
broadcast address. If it is, the frame is accepted unconditionally; otherwise (multicast
address) a hash table lookup is performed using the 64-entry hash table defined in the hash
table registers.

In promiscuous mode (R_CNTRL[PROM] = 1), the FEC receives all the incoming frames
regardless of their address. In this mode the DA lookup is still performed and the MISS bit
in the RxBD is set accordingly. If address recognition did not achieve a match, the frame is
received with RxBD[MISS] set. If address recognition achieves a match, the frame is
received without the MISS bit being set.

Figure 43-1 shows a flowchart for address recognition on received frames.

Chapter 43. Fast Ethernet Controller (FEC)

Fast Ethernet Controller Operation

Figure 43-2. Ethernet Address Recognition Flowchart

43.2.7 Hash Table Algorithm

This section discusses the hash table process used in group hash filtering. When the FEC
receives a frame with the destination address I/G bit set, the 48-bit address is mapped into
one of 64 bins, represented by the 64 bits in the two hash table registers. This is performed
by passing the 48-bit address through the on-chip 32-bit CRC generator and selecting 6 bits
of the CRC-encoded result to generate a number between 0 and 63.

Bit 31 of the CRC result selects HASH_TABLE_HIGH (bit 31 = 1) or
HASH_TABLE_LOW (bit 31 = 0). Bits 30–26 of the CRC result select the bit in the
selected register. If that bit is set in the hash table, the frame is accepted; otherwise, it is
rejected. The result is that if eight group addresses are stored in the hash table and random
group addresses are received, the hash table prevents roughly 56/64 (or 87.5%) of the group

Check Address

Receive Frame
Set Miss Bit

I/G Address
?

Receive Frame

Hash Match
?

Receive Frame

Receive Frame

Promiscuous

Discard Frame

Perfect Match
?

Broadcast
Address

?

G

I

False

True

False

True

False

True (R_CNTRL[PROM] = 1)

TrueFalse

Mode
?

(R_CNTRL[PROM] = 1)

MPC855T User’s Manual

Fast Ethernet Controller Operation

address frames from reaching memory. The processor must further filter those that reach
memory to determine if they truly contain one of the eight preferred addresses.

The effectiveness of the hash table declines as the number of addresses increases.

The user must initialize the hash table registers. The FEC does not support the SET GROUP

ADDRESS command, which can be used in CPM ethernet controllers. The user may compute
the hash for a particular address in software or use the SET GROUP ADDRESS command in an
off-line CPM channel, retrieve the result, and use it to program the FEC hash table registers.
The CRC32 polynomial to use in computing the hash is as follows:

43.2.8 Inter-Packet Gap Time

The minimum inter-packet gap time for back-to-back transmission is 96 bit times. After
completing a transmission or after the backoff algorithm completes, the transmitter waits
for the carrier sense signal (CRS) to be negated before starting its 96 bit time IPG counter.
Frame transmission may begin 96 bit times after CRS is negated if it stays negated for at
least 60 bit times. If CRS asserts during the last 36 bit times, it is ignored and a collision
occurs.

The receiver receives back-to-back frames with a minimum spacing of at least 28 bit times.
If an interrupted gap between receive frames is less than 28 bit times, the receiver may
discard the next frame.

43.2.9 Collision Handling

If a collision occurs during frame transmission, the FEC continues transmitting for at least
32 bit times, sending a JAM pattern of 32 ones. If the collision occurs during the preamble
sequence, the JAM pattern is sent after the preamble sequence.

If a collision occurs within 64 byte times, the retry process is initiated. The transmitter waits
a random number of slot times. A slot time is 512 bit times. If a collision occurs after 64
byte times, no retransmission is performed and the end of frame buffer is closed with an LC
error indication.

43.2.10Internal and External Loopback

The FEC supports both internal and external loopback. In loopback mode, both FIFOs are
used and the FEC operates in full-duplex fashion. Both internal and external loopback are
configured through R_CNTRL[LOOP, DRT].

For internal loopback, set LOOP = 1 and DRT = 0. TX_EN and TX_ER are not asserted
during internal loopback.

X32 X26 X23 X22 X16 X12 X11 X10 X8 X7 X5 X4 X2 X 1+ + + + + + + + + + + + + +

Chapter 43. Fast Ethernet Controller (FEC)

Fast Ethernet Controller Operation

For external loopback, set LOOP = 0 and DRT = 0. Configure the external transceiver for
loopback.

43.2.11Ethernet Error-Handling Procedure

The FEC reports frame reception and transmission error conditions using the FEC BDs and
the I_EVENT register.

43.2.11.1Transmission Errors

Table 43-3 describes transmission errors.

43.2.11.2Reception Errors

Table 43-4 describes reception errors.

Table 43-3. Transmission Errors

Error Description

Transmitter
Underrun

If this error occurs, the FEC sends 32 bits that ensure a CRC error and stops transmitting. All
remaining buffers for that frame are then flushed and closed, with the UN bit set in the last TxBD for
that frame. The FEC continues to the next TxBD and begins transmitting the next frame.

Carrier Sense
Lost during

Frame
Transmission

When this error occurs and no collision is detected in the frame, the FEC sets the CSL bit in the last
TxBD for this frame. The frame is sent normally. No retries are performed as a result of this error.
The CSL bit is not set if X_CNTRL[FDEN] = 1, regardless of the state of CRS.

Retransmission
Attempts Limit

Expired

When this error occurs, the FEC terminates transmission. All remaining buffers for that frame are
then flushed and closed, with the RL bit set in the last TxBD for that frame. The FEC then continues
to the next TxBD and begins sending the next frame.

Late Collision When this error occurs, the FEC stops sending. All remaining buffers for that frame are then flushed
and closed, with the LC bit set in the last TxBD for that frame. The FEC then continues to the next
TxBD and begins sending the next frame.
Note: The definition of what constitutes a late collision is hard-wired in the FEC.

Heartbeat Some transceivers have a self-test feature called heartbeat or signal-quality error. To signify a good
self-test, the transceiver indicates a collision within 20 clocks after the FEC sends a frame. This
heartbeat condition does not imply a real collision, but that the transceiver seems to work properly.
If X_CNTRL[HBC] = 1, X_CNTRL[FDEN]=0, and a heartbeat condition is not detected after a frame
transmission, a heartbeat error occurs—the FEC closes the buffer, sets TxBD[HB], and generates
the HBERR interrupt if it is enabled.

Table 43-4. Reception Errors

Error Description

Overrun Error The FEC maintains an internal FIFO for receiving data. If a receiver FIFO overrun occurs, the FEC
closes the buffer and sets RxBD[OV].

Non-Octet
Error

(Dribbling Bits)

The FEC handles up to seven dribbling bits when the receive frame terminates nonoctet aligned and
it checks the CRC of the frame on the last octet boundary. If there is a CRC error, the frame nonoctet
aligned (NO) error is reported in the RxBD. If there is no CRC error, no error is reported.

MPC855T User’s Manual

Fast Ethernet Controller Operation

43.2.12SDMA Bus Arbitration and Transfers

There are two arbitration levels to consider—accesses to the SDMA hardware and accesses
to the 60x bus. As shown in Figure 43-3, if the CPM and the 100BASE-T module attempt
to access the SDMA simultaneously, the CPM wins the first access. If both continue to
request the SDMA hardware, control alternates between the two.

Figure 43-3. SDMA Bus Arbitration

The priority of the SDMA on the 60x bus is programmed in SDCR[RAID], described in
Section 43.2.13.1, “SDMA Configuration Register (SDCR).”

43.2.13The SDMA Registers

The SDMA channels share a configuration register, address register, and status register, and
are controlled by the configuration of the SCC, SMCs, SPI, and I2C controllers.

43.2.13.1SDMA Configuration Register (SDCR)

The SDMA configuration register (SDCR) interacts with the DMA controllers in the FEC,
see Section 19.2.1, “SDMA Configuration Register (SDCR).

CRC Error When a CRC error occurs with no dribbling bits, the FEC closes the buffer and sets RxBD[CR]. CRC
checking cannot be disabled, but the CRC error can be ignored if checking is not required.

Frame Length
Violation

When the receive frame length exceeds R_HASH[MAX_FRAME_LENGTH], I_EVENT[BABR] is set
indicating babbling receive error, and the LG bit in the end of frame RxBD is set.
Note: Receive frames exceeding 2047 bytes are truncated.

Table 43-4. Reception Errors

Error Description

CLK

TS

TA

Other cycle SDMA cycle Other cycle

SDMA internally
requests the bus

Chapter 43. Fast Ethernet Controller (FEC)

Signal Descriptions

43.3 Signal Descriptions
TheMPC855T system bus signals consist of all the lines that interface with the external bus.
Many of these lines perform different functions, depending on how the user assigns them.
The input and output signals, shown in Table 43-5, are identified by their abbreviated
names. There may be other multiplexed functionality on some of these pins. Refer to
Chapter 12, “External Signals.

Table 43-5. FEC Signal Descriptions

 Name
Pin

Number
Description

IRQ7
MII_TX_CLK

W15 Interrupt request 7—This input is one of the eight external lines that can request (by means of
the internal Interrupt Controller) a service routine from the core.
MII transmit clock—Input clock that provides the timing reference for TX_EN, TXD, and
TX_ER. Note that MII_TXCLK becomes active as soon as ECNTRL[ETHER_EN] is set. IRQ7
must be masked in the SIU, see Section 10.5.4.2, “SIU Interrupt Mask Register (SIMASK).

PD[15]
L1TSYNCA
MII_RXD[3]

U17 General-purpose I/O port D bit 15—This is bit 15 of the general-purpose I/O port D.

Transmit data sync signal for TDM channel A

MII receive data 3—Input signal RXD[3] represents bit 3 of the nibble of data to be transferred
from the PHY to the MAC when RX_DV is asserted.

PD[14]
L1RSYNCA
MII_RXD[2]

V19 General-purpose I/O port D bit 14—This is bit 14 of the general-purpose I/O port D.

Input receive data sync signal to the TDM channel A

MII receive data 2—Input signal RXD[2] represents bit 2 of the nibble of data to be transferred
from the PHY to the MAC when RX_DV is asserted.

PD[13]

MII_RXD[1]

V18 General-purpose I/O port D bit 13—This is bit 13 of the general-purpose I/O port D.

MII receive data 1—Input signal RXD[1] represents bit 1 of the nibble of data to be transferred
from the PHY to the MAC when RX_DV is asserted.

PD[12]

MII_MDC

R16 General-purpose I/O port D bit 12—This is bit 12 of the general-purpose I/O port D.

MII management data clock—Output clock provides a timing reference to the PHY for data
transfers on the MDIO signal.

PD[11]
MII_TX_ER

T16 General-purpose I/O port D bit 11—This is bit 11 of the general-purpose I/O port D.

MII transmit error—Output signal when asserted for one or more clock cycles while TX_EN is
asserted shall cause the PHY to transmit one or more illegal symbols. Asserting TX_ER has
no effect when operating at 10 Mbps or when TX_EN is negated.

PD[10]
MII_RXD[0]

W18 General-purpose I/O port D bit 10—This is bit 10 of the general-purpose I/O port D.

MII receive data 0—Input signal RXD[0] represents bit 0 of the nibble of data to be transferred
from the PHY to the MAC when RX_DV is asserted. In 10 Mbps serial mode, RXD[0] is used
and RXD[1–3] are ignored.

PD[9]
MII_TXD[0]

V17 General-purpose I/O port D bit 9—This is bit 9 of the general-purpose I/O port D.

MII transmit data 0—Output signal TXD[0] represents bit 0 of the nibble of data when TX_EN
is asserted and has no meaning when TX_EN is negated. In 10Mbps serial mode, TXD[0] is
used and TXD[1–3] are ignored.

MPC855T User’s Manual

Signal Descriptions

PD[8]
MII_RX_CLK

W17 General-purpose I/O port D bit 8—This is bit 8 of the general-purpose I/O port D.

MII receive clock—Input clock which provides a timing reference for RX_DV, RXD, and
RX_ER.

PD[7]
MII_RX_ER

T15 General-purpose I/O port D bit 7—This is bit 7 of the general-purpose I/O port D.

MII receive error—When Input signal RX_ER and RX_DV are asserted, the PHY has detected
an error in the current frame. When RX_DV is not asserted, RX_ER has no effect.

PD[6]
MII_RX_DV

V16 General-purpose I/O port D bit 6—This is bit 6 of the general-purpose I/O port D.

MII receive data valid—When input signal RX_DV is asserted, the PHY is indicating that a
valid nibble is present on the MII. This signal shall remain asserted from the first recovered
nibble of the frame through the last nibble. Assertion of RX_DV must start no later than the
SFD and exclude any EOF.

PD[5]
MII_TXD[3]

U15 General-purpose I/O port D bit 5—This is bit 5 of the general-purpose I/O port D.

MII transmit data 3—Output signal TXD[3] represents bit 3 of the nibble of data when TX_EN
is asserted and has no meaning when TX_EN is negated.

PD[4]
MII_TXD[2]

U16 General-purpose I/O port D bit 4—This is bit 4 of the general-purpose I/O port D.

MII transmit data 2—Output signal TXD[2] represents bit 2 of the nibble of data when TX_EN
is asserted and has no meaning when TX_EN is negated.

PD[3]
MII_TXD[1]

W16 General-purpose I/O port D bit 3—This is bit 3 of the general-purpose I/O port D.

MII transmit data 1—Output signal TXD[1] represents bit 1 of the nibble of data when TX_EN
is asserted and has no meaning when TX_EN is negated.

MII_TX_EN V15 MII transmit enable—Output signal TX_EN indicates when there are valid nibbles being
presented on the MII. This signal is asserted with the first nibble of preamble and is negated
prior to the first TX_CLK following the final nibble of the frame. This signal resets to
three-state with a weak internal pull-down to ensure compatibility with 860 applications that
may have tied SPARE3 (V15) to VCC or GND. This pin will be 3-V only and must not be pulled
up to +5 V.

MII_CRS B7 MII carrier receive sense—When input signal CRS is asserted the transmit or receive medium
is not idle. In the event of a collision, CRS will remain asserted through the duration of the
collision.

MII_COL H4 MII collision—Input signal COL is asserted upon detection of a collision, and will remain
asserted while the collision persists. The behavior of this signal is not specified for full-duplex
mode.

MII_MDIO H18 MII management data—Bidirectional signal, MDIO transfers control information between the
PHY and MAC. Transitions synchronously to MDC.

Table 43-5. FEC Signal Descriptions (continued)

 Name
Pin

Number
Description

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

43.4 Programming Model
The FEC software model is similar to that used by the 10-Mbps Ethernet implemented on
the CPM. To support higher data rates, the FEC has a different internal architecture, which
changes the programming model slightly. However, efforts have been taken to minimize the
differences required by the interrupt handlers. The FEC’s registers are very different from
those of the CPM-based internal Ethernet controller.

The FEC is programmed by a combination of control/status registers (CSRs) and BDs. The
CSRs are used for mode control and to extract global status information. The BDs are used
to pass data buffers and related buffer information between hardware and software.

Some registers are located in on-chip RAM. All on-chip registers, whether located in RAM
or in hardware, must be accessed using big-endian mode. Therefore, descriptions in this
chapter assume big-endian byte ordering. There is no support for little-endian in the FEC.

43.4.1 Parameter RAM

Table 43-6 describes each entry in the FEC parameter RAM.

Table 43-6. FEC Parameter RAM Memory Map

Address Name Description Section

0xE00 ADDR_LOW Lower 32 bits of address Section 43.4.1.1, “RAM Perfect
Match Address Low Register
(ADDR_LOW)”

0xE04 ADDR_HIGH Upper 16 bits of address Section 43.4.1.2, “RAM Perfect
Match Address High
(ADDR_HIGH)”

0xE08 HASH_TABLE_HIGH Upper 32 bits of hash table Section 43.4.1.3, “RAM Hash Table
High (HASH_TABLE_HIGH)

0xE0C HASH_TABLE_LOW Lower 32 bits of hash table Section 43.4.1.4, “RAM Hash Table
Low (HASH_TABLE_LOW)

0xE10 R_DES_START Pointer to beginning of RxBD ring Section 43.4.1.5, “Beginning of
RxBD Ring (R_DES_START)

0xE14 X_DES_START Pointer to beginning of TxBD ring Section 43.4.1.6, “Beginning of
TxBD Ring (X_DES_START)

0xE18 R_BUFF_SIZE Receive buffer size Section 43.4.1.7, “Receive Buffer
Size Register (R_BUFF_SIZE)

0xE40 ECNTRL Ethernet control register Section 43.4.1.8, “Ethernet Control
Register (ECNTRL)

0xE44 IEVENT Interrupt event register Section 43.4.1.9, “Interrupt Event
(I_EVENT)/Interrupt Mask Register
(I_MASK)

MPC855T User’s Manual

Programming Model

0xE48 IMASK Interrupt mask register Section 43.4.1.9, “Interrupt Event
(I_EVENT)/Interrupt Mask Register
(I_MASK)

0xE4C IVEC Interrupt level and vector status Section 43.4.1.10, “Ethernet
Interrupt Vector Register (IVEC)

0xE50 R_DES_ACTIVE Receive ring updated flag Section 43.4.1.11, “RxBD Active
Register (R_DES_ACTIVE)

0xE54 X_DES_ACTIVE Transmit ring updated flag Section 43.4.1.12, “TxBD Active
Register (X_DES_ACTIVE)

0xE80 MII_DATA MII data register Section , “

0xE84 MII_SPEED MII speed register Section 43.4.1.14, “MII Speed
Control Register (MII_SPEED)

0xECC R_BOUND End of FIFO RAM (read-only) Section 43.4.1.15, “FIFO Receive
Bound Register (R_BOUND)

0xED0 R_FSTART Receive FIFO start address Section 43.4.1.16, “FIFO Receive
Start Register (R_FSTART)

0xEE4 X_WMRK Transmit watermark Section 43.4.1.17, “Transmit
Watermark Register (X_WMRK)

0xEEC X_FSTART Transmit FIFO start address Section 43.4.1.18, “FIFO Transmit
Start Register (X_FSTART)

0xF34 FUN_CODE Function code to SDMA Section 43.4.1.19, “DMA Function
Code Register (FUN_CODE)

0xF44 R_CNTRL Receive control register Section 43.4.1.20, “Receive Control
Register (R_CNTRL)

0xF48 R_HASH Receive hash register Section 43.4.1.21, “Receive Hash
Register (R_HASH)

0xF84 X_CNTRL Transmit control register Section 43.4.1.22, “Transmit Control
Register (X_CNTRL)

Table 43-6. FEC Parameter RAM Memory Map (continued)

Address Name Description Section

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

43.4.1.1 RAM Perfect Match Address Low Register (ADDR_LOW)

The ADDR_LOW register, shown in Figure 43-4, is written by and must be initialized by
the user. It contains the lower 32 bits of the 48-bit address used in the address recognition
process to compare with the destination address field of the receive frames.

Table 43-7 describes the ADDR_LOW fields.

43.4.1.2 RAM Perfect Match Address High (ADDR_HIGH)

The ADDR_HIGH register, shown in Figure 43-5, is written by and must be initialized by
the user. It contains bytes 4 and 5 of the 6-byte address used to compare with the destination
address field of the receive frames. Byte 0 is the first byte sent at the start of the frame.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field ADDR_LOW BYTE 0 ADDR_LOW BYTE 1

Reset Undefined

R/W Read/write

Addr 0xE00

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field ADDR_LOW BYTE 2 ADDR_LOW BYTE 3

Reset Undefined

R/W Read/write

Addr 0xE02

Figure 43-4. ADDR_LOW Register

Table 43-7. ADDR_LOW Field Descriptions

Bits Name Description

0–31 ADDR_LOW Bytes in the 6-byte address: 0 (bits 0–7), 1 (bits 8–15), 2 (bits 16–23) and 3 (bits 24–31)

MPC855T User’s Manual

Programming Model

Table 43-8 describes the ADDR_HIGH fields.

43.4.1.3 RAM Hash Table High (HASH_TABLE_HIGH)

The HASH_TABLE_HIGH register, shown in Figure 43-6, contains the upper 32 bits of the
64-bit hash table used in address recognition for receive frames with a multicast address. It
is written by and must be initialized by the user

Table 43-9 describes HASH_TABLE_HIGH fields.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field ADDR_HIGH BYTE 4 ADDR_HIGH BYTE 5

Reset Undefined

R/W Read/write

Addr 0xE04

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Reset Undefined

R/W Read/write

Addr 0xE06

Figure 43-5. ADDR_HIGH Register

Table 43-8. ADDR_HIGH Field Descriptions

Bits Name Description

0–15 ADDR_HIGH Bytes of the 6-byte address: 4 (bits 0–7) and 5 (bits 8–15)

16–31 — Reserved. Should be cleared.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field HASH_HIGH

Reset Undefined

R/W Read/write

Addr 0xE08

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field HASH_HIGH

Reset Undefined

R/W Read/write

Addr 0xE0A

Figure 43-6. HASH_TABLE_HIGH Register

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

43.4.1.4 RAM Hash Table Low (HASH_TABLE_LOW)

The HASH_TABLE_LOW register, shown in Figure 43-7, contains the lower 32 bits of the
64-bit hash table used in the address recognition process for receive frames with a multicast
address. It is written by and must be initialized by the user.

Table 43-10 describes HASH_TABLE_LOW fields.

43.4.1.5 Beginning of RxBD Ring (R_DES_START)

The R_DES_START register, shown in Figure 43-8, is like the RBASE register used by
other protocols. It provides a pointer to the start of the circular RxBD queue in external
memory.

Table 43-9. HASH_TABLE_HIGH Field Descriptions

Bits Name Description

0–31 HASH_HIGH Contains the upper 32 bits of the 64-bit hash table used in address recognition for receive
frames with a multicast address. HASH_HIGH[0] contains hash index bit 63.
HASH_HIGH[31] contains hash index bit 32.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field HASH_LOW

Reset Undefined

R/W Read/write

Addr 0xE0C

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field HASH_LOW

Reset Undefined

R/W Read/write

Addr 0xE0E

Figure 43-7. HASH_TABLE_LOW Register

Table 43-10. HASH_TABLE_LOW Field Descriptions

Bits Name Description

0–31 HASH_LOW Contains the lower 32 bits of the 64-bit hash table used in address recognition for receive
frames with a multicast address. HASH_LOW[0] contains hash index bit 31. HASH_LOW[31]
contains hash index bit 0.

MPC855T User’s Manual

Programming Model

Table 43-11 describes R_DES_START fields.

43.4.1.6 Beginning of TxBD Ring (X_DES_START)

The X_DES_START register, shown in Figure 43-9, is like the TBASE register used by
other protocols. It provides a pointer to the start of the circular TxBD queue in external
memory.

Table 43-12 describes X_DES_START fields.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field R_DES_START

Reset Undefined

R/W Read/write

Addr 0xE10

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field R_DES_START 00

Reset Undefined

R/W Read/write

Addr 0xE12

Figure 43-8. R_DES_START Register

Table 43-11. R_DES_START Field Descriptions

Bits Name Description

0–29 R_DES_START Pointer to start of RxBD queue.

30–31 — Reserved. Should be written to zero by the host processor.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field X_DES_START

Reset Undefined

R/W Read/write

Addr 0xE14

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field X_DES_START 00

Reset Undefined

R/W Read/write

Addr 0xE16

Figure 43-9. X_DES_START Register

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

43.4.1.7 Receive Buffer Size Register (R_BUFF_SIZE)

The R_BUFF_SIZE register, shown in Figure 43-10, is like the MRBLR register used by
other protocols. It specifies the maximum size of all receive buffers. It does not reset and
must be initialized by the user. Because the maximum frame is 2047 bytes, only bits 21–27
are used. The user should take into consideration that the receive CRC is always written into
the last receive buffer. To support frame lengths up to 1520 bytes, R_BUFF_SIZE must be
at least 0x0000_05F0. To ensure that R_BUFF_SIZE is a multiple of 16, bits 28–31 are
forced to zeros. Using buffers smaller than the recommended minimum 256 bytes increases
the risk of receive FIFO overflow due to the overhead of opening and closing buffers.

Table 43-13 describes R_BUFF_SIZE fields.

43.4.1.8 Ethernet Control Register (ECNTRL)

The Ethernet control register (ECNTRL), shown in Figure 43-11, is used to enable and
disable the FEC. It is written by the user and cleared at system reset.

Table 43-12. X_DES_START Field Descriptions

Bits Name Description

0–29 X_DES_START Pointer to start of TxBD queue.

30–31 — Reserved. Should be written to zero by the host processor.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset Undefined

R/W Read/write

Addr 0xE18

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — R_BUFF_SIZE —

Reset Undefined

R/W Read/write

Addr 0xE1A

Figure 43-10. R_BUFF_SIZE Register

Table 43-13. R_BUFF_SIZE Field Descriptions

Bits Name Description

0–20 — Reserved. Should be written to zero by the host processor.

21–27 R_BUFF_SIZE Receive buffer size.

28–31 — Reserved. Should be written to zero by the host processor.

MPC855T User’s Manual

Programming Model

Table 43-14 describes ECNTRL fields.

43.4.1.9 Interrupt Event (I_EVENT)/Interrupt Mask Register (I_MASK)

When an event sets a bit in the interrupt event register (I_EVENT), shown in Figure 43-12,
an interrupt is generated if the corresponding interrupt mask register (I_MASK) bit is set.
I_EVENT bits are cleared by writing ones; writing zeros has no effect.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xE40

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field SPARE FEC_PIN
MUX

ETHER_EN RESET

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xE42

Figure 43-11. ECNTRL Register

Table 43-14. ECNTRL Field Descriptions

Bits Name Description

0–28 — Reserved. These fields may return unpredictable values and should be masked on a read.
Users should always write these fields to zero.

29 FEC_PINMUX FEC enable. Read/write. The user must set this bit to enable the FEC function in the 860 in
conjunction with 860 pin multiplexing control.

30 ETHER_EN Ethernet enable.
0 A transfer is stopped after a bad CRC is appended to any frame being sent.
1 The FEC is enabled, and reception and transmission are possible.
The BDs for an aborted transmit frame are not updated after ETHER_EN is cleared. When
ETHER_EN is cleared, the DMA, BD, and FIFO control logic are reset including BD and FIFO
pointers. See Section 43.4.2.2, “User Initialization (before Setting ECNTRL[ETHER_EN]).”

31 RESET Ethernet controller reset. When RESET = 1, the equivalent of a hardware or software reset is
performed but it is local to the FEC. ETHER_EN is cleared and all other FEC registers take
their reset values. Also, any transfers are abruptly aborted. Hardware automatically clears
RESET once the hardware reset is complete (approximately 16 clock cycles).

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

Table 43-15 describes I_EVENT and I_MASK fields. Note that neither the RxBD or TxBD
has an I bit to enable/disable an interrupt on the receive or transmit buffer. As events occur,
they are always reported in I_EVENT, but only those not masked in I_MASK cause an
interrupt. From a system resources and software performance standpoint, it is advisable to
minimize the number of interrupts per frame by masking TXB and RXB in favor of TFINT
and RFINT to notify at the end of frame.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field HBERR BABR BABT GRA TFINT TXB RFINT RXB MII EBERR —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xE44 (I_EVENT); 0xE48 (I_MASK)

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xE46(I_EVENT); 0xE4A (I_MASK)

Figure 43-12. I_EVENT/I_MASK Registers

Table 43-15. I_EVENT/I_MASK Field Descriptions

Bits Name Description

0 HBERR Heartbeat error. When I_EVENT[HBC] is set, this interrupt indicates that heartbeat was not
detected within the heartbeat window following a transmission.

1 BABR Babbling receive error. Indicates a received frame exceeded MAX_FRAME_LENGTH bytes. The
hardware truncates receive frames exceeding 2047 bytes so as not to overflow receive buffers.

2 BABT Babbling transmit error. Indicates that the transmitted frame exceeded MAX_FRAME_LENGTH
bytes. This condition is usually caused by too large a a frame being placed into the transmit data
buffers. The transmit frame is not truncated.

3 GRA Graceful stop complete. A graceful stop initiated by the setting of GTS is complete. GRA is set when
the transmitter finishes sending any frame that was in progress when GTS was set.

4 TFINT Transmit frame interrupt. Indicates that a frame was sent and that the last corresponding BD was
updated.

5 TXB Transmit buffer interrupt. Indicates that a TxBD was updated.

6 RFINT Receive frame interrupt. Indicates that a frame was received and that the last corresponding BD
was updated.

7 RXB Receive buffer interrupt. Indicates that a RxBD was updated.

8 MII MII interrupt. Indicates that the MII completed the requested data transfer.

9 EBERR Ethernet bus error occurred. Indicates that a bus error occurred when the FEC was accessing the
U bus.

10–31 — Reserved. Should written to zero by the host processor.

MPC855T User’s Manual

Programming Model

43.4.1.10Ethernet Interrupt Vector Register (IVEC)

The Ethernet interrupt vector register (IVEC), shown in Table 43-16, indicates the class of
interrupt generated by the FEC (IVEC) and provides control of the interrupt level
(ILEVEL).

Table 43-16 describes IVEC fields.

43.4.1.11RxBD Active Register (R_DES_ACTIVE)

The RxBD active register (R_DES_ACTIVE), shown in Figure 43-14, is a command
register that should be written by the user to indicate that the RxBD ring was updated
(empty receive buffers have been produced by the software driver with the E bit set).

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field ILEVEL —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xE4C

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — IVEC —

Reset 0000_0000_0000_0000

R/W — Read only —

Addr 0xE4E

Figure 43-13. IVEC Register

Table 43-16. IVEC Field Descriptions

Bits Name Description

0–2 ILEVEL Interrupt level. The ILEVEL is used to define the interrupt level (0–7) associated with the FEC
interrupt (one of the SIU internal interrupt sources).

3 — Reserved. Should be written to zero by the host processor.

4–5 — Reserved. Should be written to zero by the host processor.This field may return unpredictable
values and should be masked on a read

6–27 — Reserved. Should be written to zero by the host processor.

28–29 IVEC Interrupt vector, read only. IVEC gives the highest outstanding priority Fast Ethernet interrupt. The
bit field meanings (from low priority to high priority) are as follows:
00 No pending FEC interrupt
01 Non-time-critical interrupt
10 Transmit interrupt
11 Receive interrupt

30–31 — Reserved. Should be written to zero by the host processor.

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

Whenever the register is written, the R_DES_ACTIVE bit is set, regardless of the data
written by the user. While the bit is set, the RxBD ring is polled and receive frames
(provided ECNTRL[ETHER_EN] is also set) are processed. Once an RxBD whose
ownership bit is not set is polled, the R_DES_ACTIVE bit is cleared and polling stops until
the user sets the bit again, signifying additional BDs have been placed into the RxBD ring.

R_DES_ACTIVE is cleared at reset and by clearing ECNTRL[ETHER_EN].

Table 43-17 describes R_DES_ACTIVE fields.

43.4.1.12TxBD Active Register (X_DES_ACTIVE)

The TxBD active register, shown in Figure 43-15, is a command register that the user
should write to indicate that the TxBD ring was updated (transmit buffers have been
produced by the software driver with TxBD[R] set).

Whenever the register is written, X_DES_ACTIVE is set, regardless of the data written by
the user. When the bit is set, the TxBD ring is polled and transmit frames (provided
ECNTRL[ETHER_EN] is also set) are processed. Once a TxBD whose ownership bit is not
set is polled, X_DES_ACTIVE is cleared and polling stops until the bit is set, signifying
additional BDs have been placed into the TxBD ring.

X_DES_ACTIVE is cleared at reset and by clearing ECNTRL[ETHER_EN].

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — R_DES_ACTIVE —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xE50

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xE52

Figure 43-14. R_DES_ACTIVE Register

Table 43-17. R_DES_ACTIVE Field Descriptions

Bits Name Description

0–6 — Reserved.

7 R_DES_ACTIVE Signals the FEC that empty buffers are available. Set when this register is written,
regardless of the value written. Cleared by the FEC whenever no additional BDs are
ready in the RxBD ring.

8–31 — Reserved.

MPC855T User’s Manual

Programming Model

43.4.1.13MII Management Frame Register (MII_DATA)

Table 43-18 describes X_DES_ACTIVE fields.

The MII_DATA register, shown in Figure 43-16, is used to communicate with the attached
MII-compatible PHY device, providing read/write access to their MII registers. Writing to
MII_DATA causes a management frame to be sourced unless MII_SPEED was cleared; in
this case, if MII_SPEED is then written to a non-zero value and an MII frame is generated
with the data previously written to MII_DATA. This allows MII_DATA and MII_SPEED
to be programmed in either order if MII_SPEED is currently zero. MII_DATA is accessed
by the user and does not reset to a defined value.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — X_DES_ACTIVE —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xE54

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xE56

Figure 43-15. X_DES_ACTIVE Register

Table 43-18. X_DES_ACTIVE Field Descriptions

Bits Name Description

0–6 — Reserved.

7 X_DES_ACTIVE Set when this register is written, regardless of the value written. Cleared whenever no
additional ready descriptors remain in the transmit ring.

8–31 — Reserved.

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

Table 43-19 describes MII_DATA fields.

To read or write on the MII management interface, MII_DATA is written by the user. To
generate a valid read or write management frame, ST must be 01, OP must be 01
(management register write frame) or 10 (management register read frame), and TA must
be 10.

To generate an 802.3-compliant MII management interface write frame (write to a PHY
register) the user must write {01 01 PHYAD REGAD 10 DATA} to MII_DATA. Writing
this pattern causes the control logic to shift data out of MII_DATA following a preamble
generated by the control state machine. When the write management frame operation
completes, the MII_DATAIO_COMPL interrupt is generated. At this time the contents of
MII_DATA match the original value written.

To generate an MII management interface read frame (read a PHY register), the user must
write {01 10 PHYAD REGAD 10 XXXX} to MII_DATA, (the content of the DATA field
is a don’t care). Writing this pattern causes the control logic to shift data out of MII_DATA
following a preamble generated by the control state machine. During this time, the contents
of MII_DATA are serially shifted and are unpredictable if read by the user. An
MII_DATAIO_COMPL interrupt is generated when the read management frame operation
completes. At this time the contents of MII_DATA match the original value written except

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field ST OP PA RA TA

Reset Undefined

R/W Read/write

Addr 0xE80

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field DATA

Reset Undefined

R/W Read/write

Addr 0xE82

Figure 43-16. MII_DATA Register

Table 43-19. MII_DATA Field Descriptions

Bits Name Description

0–1 ST Start of frame delimiter. Must be programmed to 01 for a valid MII management frame.

2–3 OP Operation code. Must be 10 (read) or 01(write) to generate a valid MII management frame.

4–8 PA PHY address. Specifies one of up to 32 attached PHY devices.

9–13 RA Register address. Specifies one of up to 32 registers within the specified PHY device.

14–15 TA Turnaround. Must be programmed to 10 to generate a valid MII management frame.

16–31 DATA Management frame data. Field for data to be written to or read from PHY register.

MPC855T User’s Manual

Programming Model

for the DATA field, whose contents have been replaced by the value read from the PHY
register.

Writing to MII_DATA during frame generation alters the frame contents. Software should
use the MII_DATAIO_COMPL interrupt to avoid writing to the MII_DATA register during
frame generation.

43.4.1.14MII Speed Control Register (MII_SPEED)

The MII_SPEED register, shown in Figure 43-17, provides control of the MII clock (MDC
pin) frequency and allows the MII management frame preamble to be dropped.
MII_SPEED is written by the user.

Table 43-20 describes MII_SPEED fields.

The MII_SPEED field must be programmed with a value to provide an MDC frequency of
less than or equal to 2.5 MHz to comply with the IEEE MII specification. MII_SPEED must
be non-zero to source a read or write management frame. After the management frame is

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xE84

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — DIS_PREAMBLE MII_SPEED —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xE86

Figure 43-17. MII_SPEED Register

Table 43-20. MII_SPEED Field Descriptions

Bits Name Description

0–23 — Reserved. Should be written to zero by the host processor.

24 DIS_PREAMBLE Discard preamble. The MII standard allows the preamble to be dropped if the attached
PHY devices does not require it.
0 Preamble is not discarded.
1 Preamble (32 1s) is not prepended to the MII management frame.

25–30 MII_SPEED MII_SPEED controls the frequency of the MII management interface clock (MDC) relative
to system clock. Clearing MII_SPEED, turns off the MDC and leaves it in low-voltage
state. Any non-zero value generates an MDC frequency of 1/(MII_SPEED*2) of the
system clock frequency.

31 — Reserved. Should be written to zero by the host processor.

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

complete, MII_SPEED may optionally cleared to turn off the MDC. The MDC generated
has a 50% duty cycle except when MII_SPEED is changed during operation (changes take
effect following either a rising or falling edge of MDC).

If the system clock is 25 MHz, programming this register to 0x0000_000A generates an
MDC frequency of 25 MHz * 1/10 = 2.5 MHz.

Table 43-21 shows optimum values for MII_SPEED as a function of system clock
frequency.

43.4.1.15FIFO Receive Bound Register (R_BOUND)

The R_BOUND register, Figure 43-18, is a read-only register the user can read to
determine the upper address bound of the FIFO RAM. Drivers can use this value, along
with the R_FSTART and X_FSTART to appropriately divide the available FIFO RAM
between the transmit and receive data paths.

Table describes R_BOUND fields.

Table 43-21. Programming Examples for MII_SPEED Register

System Clock Frequency MII_SPEED[MII_SPEED] MDC frequency

25 MHz 0x05 2.5 MHz

33 MHz 0x07 2.36 MHz

40 MHz 0x08 2.5 MHz

50 MHz 0x0A 2.5 MHz

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0000_0000_0000_0000

R/W Read only

Addr 0xECC

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — 1 R_BOUND —

Reset 0000_0100_0000_0000

R/W Read only

Addr 0xECE

Figure 43-18. R_BOUND Register

MPC855T User’s Manual

Programming Model

43.4.1.16FIFO Receive Start Register (R_FSTART)

The R_FSTART register, shown in Figure 43-19, is programmed by the user to indicate the
starting address of the receive FIFO. R_FSTART marks the boundary between the transmit
and receive FIFOs. The transmit FIFO uses addresses from X_FSTART to R_FSTART - 4.
The receive FIFO uses addresses from R_FSTART to R_BOUND, inclusive.

Hardware initializes R_FSTART with a value that is microcode-dependent after
ECNTRL[ETHER_EN] is set. R_FSTART only needs to be written to change the default
value.

Table 43-22. R_BOUND Field Descriptions

Bits Name Description

0–21 — Reserved. Note all bits read back as 0 except for 21 which returns a 1.

22–29 R_BOUND Read-only. Highest valid FIFO RAM address.

30–31 — Reserved. Should be written to zero by the host processor.

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

Table 43-23 describes R—FSTART fields.

43.4.1.17Transmit Watermark Register (X_WMRK)

The X_WMRK register, shown in Figure 43-20, is used to control the amount of data
required in the transmit FIFO before transmission of a frame can begin. This allows the user
to minimize transmit latency (X_WMRK = 0x) or allow larger bus access latency
(X_WMRK = 11) due to contention for the system bus. Setting the watermark to a high
value lowers the risk of a transmit FIFO underrun due to system bus contention.

Figure 43-19. R_FSTART Register

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xED0

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — 1 R_FSTART —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xED2

Table 43-23. R_FSTART Field Descriptions

Bits Name Description

0–21 — Reserved. Note all bits read back as 0 except for 21 which returns a 1.

22–29 R_FSTART Address of first receive FIFO location. Acts as a delimiter between receive and transmit FIFOs.

30–31 — Reserved. Should be written to zero by the host processor.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xEE4

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — X_WMRK

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xEE6

Figure 43-20. X_WMRK Register

MPC855T User’s Manual

Programming Model

Table 43-24 bit field descriptions for X_WMRK.

43.4.1.18FIFO Transmit Start Register (X_FSTART)

The X_FSTART register, shown in Figure 43-21, can be programmed by the user to
indicate the starting address of the transmit FIFO. X_FSTART is reset to the first available
RAM address. The specific reset value is microcode-dependent. Users do not normally
need to program X_FSTART. If users want to reserve RAM locations for other purposes,
X_FSTART should never be set to value less than reset value.

Table 43-25 describes X_FSTART fields.

Table 43-24. X_WMRK Field Descriptions

Bits Name Description

0–29 — Reserved. Should be written to zero by the host processor.

30–31 X_WMRK Transmit FIFO watermark. Frame transmission begins when the number of bytes selected by this
field have been written into the transmit FIFO or if an end of frame has been written to the FIFO
or if the FIFO is full before the selected number of bytes have been written.
0x 64 bytes written to the transmit FIFO
10 128 bytes written to the transmit FIFO
11 192 bytes written to the transmit FIFO

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xEEC

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — 1 X_FSTART —

Reset 0000_0 1 Microcode dependent 00

R/W Read/write

Addr 0xEEE

Figure 43-21. X_FSTART Register

Table 43-25. X_FSTART Field Descriptions

Bits Name Description

0–21 — Reserved. Note that all bits read back as 0 except for 21 which returns a 1.

22–29 X_FSTART Address of first transmit FIFO location.

30–31 — Reserved. Should be written to zero by the host processor.

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

43.4.1.19DMA Function Code Register (FUN_CODE)

The FUN_CODE register, shown in Figure 43-22, contains the function code and byte
order fields to be used during each transfer between the DMA and the SDMA interface.
These bits can be written/read by the user.

Table 43-26 describes FUN_CODE fields.

43.4.1.20Receive Control Register (R_CNTRL)

The R_CNTRL register, shown in Figure 43-23, is programmed by the user to control the
operational mode of the receive block.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — DATA_BO0 DATA_BO1 DESC_BO0 DESC_BO1 FC1 FC2 FC3 —

Reset Undefined

R/W Read/write

Addr 0xF34

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field —

Reset Undefined

R/W Read/write

Addr 0xF36

Figure 43-22. FUN_CODE Register

Table 43-26. FUN_CODE Field Descriptions

Bits Name Description

0 — Reserved. This bit reads as zero.

1–2 DATA_BO Byte order. Supplied to the SDMA interface during receive and transmit data DMA transfers.
0x Reserved
1x Big-endian (Motorola) or true little-endian (DEC or Intel) byte ordering. Considering each

word in the buffer, data bytes are received or transmitted from address 0b00 to 0b11. This is
because communication is byte-oriented, and byte reads and writes are identical in big- and
little-endian modes

3–4 DESC_BO The byte order field supplied to the SDMA interface during receive and transmit open descriptor
DMA transfers, and during close descriptor DMA transfers.
0x Reserved
1x Big-endian (Motorola) or true little-endian (DEC or Intel) byte ordering. Considering each

word in the buffer, data bytes are received or transmitted from address 0b00 to 0b11. [This
is because reception or transmission in communications is byte-oriented and byte reads
and writes are identical in big-endian and little-endian modes].

5–7 FC The function code field supplied to the SDMA interface during all DMA transfers.

8–31 — Reserved. These bits read as zero.

MPC855T User’s Manual

Programming Model

Table 43-27 describes R_CNTRL fields.

43.4.1.21Receive Hash Register (R_HASH)

R_HASH[MAX_FRAME_LENGTH], shown in Figure 43-24, is programmable. This
field lets the user set the frame length (in bytes) at which the BABR and BABT interrupts
and RxBD[LG] should be set.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xF44

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — BC_REJ PROM MII_MODE DRT LOOP

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xF46

Figure 43-23. R_CNTRL Register

Table 43-27. R_CNTRL Field Descriptions

Bits Name Description

0–26 — Reserved. This bit reads as zero.

27 BC_REJ Broadcast frame reject.
If set, frames with DA + 0xFFFF_FFFF_FFFF are rejected unless the PROM bit set. If both
BC_REJ and PROM = 1, frames with broadcast DA are accepted and RxBD[M] is set.

28 PROM Promiscuous mode.
0 Promiscuous mode disabled
1 Promiscuous mode enabled. All frames are accepted regardless of address matching.

29 MII_MODE Selects external interface mode for both transmit and receive blocks.
0 Selects seven-wire mode (used only for serial 10 Mbps)
1 Selects MII mode.

30 DRT Disable receive on transmit.
0 Receive path operates independently of transmit (use for full duplex or to monitor transmit

Selects seven-wire mode (used only for serial 10 Mbps)
1 Disable reception of frames while transmitting (normally used for half-duplex mode)

31 LOOP Internal loopback. If set, transmitted frames are looped back internal to the device and the transmit
output signals are not asserted. The system clock is substituted for the TX_CLK when LOOP is
asserted. DRT must be 0 when asserting LOOP.

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

Table 43-27 describes R_HASH fields.

43.4.1.22Transmit Control Register (X_CNTRL)

The transmit control register (X_CNTRL), shown in Figure 43-25, is written by the user to
configure the transmit block.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xF48

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — MAX_FRAME LENGTH

Reset 0000_0101_1110_1110

R/W Read/write

Addr 0xF4A

Figure 43-24. R_HASH Register

Table 43-28. R_HASH Field Descriptions

Bits Name Description

0–7 — Reserved for internal use. When read, these bits are unpredictable.

8–20 — Reserved. These bits are read as zeros.

21–31 MAX_FRAME_LENGTH User read/write field. Resets to decimal 1518. Length is measured starting at DA
and includes the CRC at the end of the frame. Transmit frames longer than
MAX_FRAME_LENGTH cause an BABT interrupt. Receive frames longer than
MAX_FRAME_LENGTH cause a BABR interrupt and set the LG bit in the
end-of-frame BD. The recommended value to be programmed by the user is 1518
or 1522 (if VLAN tags are supported).

MPC855T User’s Manual

Programming Model

Table 43-29 describes X_CNTRL fields.

43.4.2 Initialization Sequence

This section describes which registers and RAM locations are reset due to hardware reset,
which are reset due to the microcontroller, and which locations the user must initialize
before enabling the FEC.

43.4.2.1 Hardware Initialization

In the FEC, only registers that generate interrupts to the MPC8xx processor or cause
conflict on bidirectional buses are reset by hardware. The registers shown in Table 43-30
are reset due to a hardware reset.

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field —

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xF84

Bits 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — FDEN HBC GTS

Reset 0000_0000_0000_0000

R/W Read/write

Addr 0xF86

Figure 43-25. X_CNTRL Register

Table 43-29. X_CNTRL Field Descriptions

Bits Name Description

0–28 — Reserved. These bits read as zero.

29 FDEN Full-duplex enable. If set, frames are transmitted independently of carrier sense and collision inputs.
This bit should be modified only when ECNTRL[ETHER_EN] is cleared.

30 HBC Heartbeat control. If HBC = 1 and FDEN = 0, the heartbeat check is performed after transmission
and TxBD[HB] and IEVENT[HBERR] are set, if the collision input does not assert within the
heartbeat window. HBC should be modified only when ECNTRL[ETHER_EN] is cleared.

31 GTS Graceful transmit stop. When GTS is set, the MAC stops transmission after any frame being
transmitted is complete and INTR_EVENT[GRA] is set. If frame transmission is not underway, the
GRA interrupt is asserted immediately. When transmission completes, clearing GTS causes the
next frame in the transmit FIFO to be sent. If an early collision occurs during transmission when
GTS = 1, transmission stops after the collision. The frame is sent again once GTS is cleared. Note
that there may be old frames in the transmit FIFO that are sent when GTS is reasserted. To avoid
this, clear ECNTRL[ETHER_EN] after the GRA interrupt.

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

Other registers are reset whenever ECNTRL[ETHER_EN] is cleared. Clearing
ETHER_EN immediately stops all DMA accesses and stops transmit activity after a bad
CRC is sent; refer to Table 43-31.

43.4.2.2 User Initialization (before Setting ECNTRL[ETHER_EN])

The user must initialize portions of the FEC before setting ECNTRL[ETHER_EN]. The
exact values depend on the application. The sequence resembles that shown in Table 43-32.

Table 43-30. Hardware Initialization

User/System Register/Machine Reset Value

User ECNTRL Cleared

User IEVENT Cleared

User IMASK Cleared

User MII.SPEED Cleared

User PORT DPAR Cleared

User PORT DIR Cleared

Table 43-31. ECNTRL[ETHER_EN] Deassertion Initialization

User/System Register/Machine Reset Value

User R_DES_ACTIVE Cleared

User X_DES_ACTIVE Cleared

Table 43-32. User Initialization (before Setting ECNTRL[ETHER_EN])

Step Description

1 Set IMASK

2 Clear IEVENT

3 Set IVEC (define ILEVEL)

4 Set R_FSTART (optional)

5 Set X_FSTART (optional)

6 Set ADDR_HIGH and ADDR_LOW

7 Set HASH_TABLE_HIGH and HASH_TABLE_LOW

8 Set R_BUFF_SIZE

9 Set R_DES_START

10 Set X_DES_START

11 Set R_CNTRL

12 Set X_CNTRL

13 Set FUN_CODE

MPC855T User’s Manual

Programming Model

43.4.2.2.1 Descriptor Controller Initialization

In the FEC, the descriptor control machine initializes a few registers whenever
ECNTRL[ETHER_EN] is set. The transmit and receive FIFO pointers are reset, the
transmit backoff random number is initialized and the transmit and receive blocks are
activated. After the descriptor controller initialization sequence, hardware is ready for
operation, waiting for R_DES_ACTIVE and X_DES_ACTIVE to be asserted by the user.

43.4.2.2.2 User Initialization (after Setting ECNTRL[ETHER_EN])

The user must initialize portions of the FEC after setting ECNTRL[ETHER_EN]. The
exact values depend on the application. The sequence resembles that shown in Table 43-33.
(though these steps could also be done before setting ETHER_EN).

43.4.3 Buffer Descriptors (BDs)

Data for Fast Ethernet frames must reside in external memory. Frame data is placed in one
or more buffers, each of which is pointed to by a BD, which also contains the current state
of the buffer. For maximum user flexibility, BDs are also located in external memory.

A buffer is produced by setting TxBD[R] or RxBD[E]. Writing to either X_DES_ACTIVE
or R_DES_ACTIVE indicates that a buffer is in external memory for the transmit or receive
data traffic, respectively. The hardware reads the BDs and processes the buffers. After the
DMA transfer of the data and the updating of the BD status bits, hardware clears TxBD[R]
or RxBD[E] to signal that the buffer was processed. Software can poll the BDs or may rely
on the buffer/frame interrupts to detect when buffers have been processed.

ECNTRL[ETHER_EN] operates as a reset to the BD/DMA logic. When ETHER_EN is
cleared, the DMA engine BD pointers are reset to point to the starting TxBDs and RxBDs.

14 Set MII_SPEED (optional)

15 Initialize (empty) TxBD ring

16 Initialize (empty) RxBD ring

17 Set Port D PDPAR register

18 Set Port D PDDIR register

Table 43-33. User Initialization (after Setting ECNTRL[ETHER_EN])

Step Description

1 Fill RxBD ring with empty buffers

2 Set R_DES_ACTIVE

Table 43-32. User Initialization (before Setting ECNTRL[ETHER_EN]) (continued)

Step Description

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

The BDs are not initialized by hardware during reset. At least one TxBD and one RxBD
must be initialized by software (write 0x0000_0000 to the most significant word of the BD)
before ETHER_EN is set.

The BDs operate as a ring. R_DES_START defines the starting address for the RxBD ring
and X_DES_START defines the starting address for TxBD ring. The last BD in each ring
is indicated by the wrap (W) bit. When set, W indicates that the next BD in the ring is at the
location pointed to by R_DES_START and X_DES_START for the receive and transmit
rings, respectively. BD rings must start on a double-word boundary.

43.4.3.1 Ethernet Receive Buffer Descriptor (RxBD)

Figure 43-26 shows the RxBD. The first word of the RxBD contains control and status bits.
The user initializes RxBD[E,W] and the Rx buffer pointer. When the buffer has been
accessed by a DMA, the FEC modifies RxBD[E,L,M,BC,MC,LG,NO,SH,CR,OV,TR] and
writes the length of the used portion of the buffer in the first word. The FEC modifies
RxBD[M,BC,MC,LG,NO,SH,CR,TR,OV] only if L = 1.

The RxBD format is shown in Table 43-34.

Figure 43-26. Receive Buffer Descriptor (RxBD)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+0 E RO1 W RO2 L 0 0 M BC MC LG NO SH CR OV TR

+2 DATA LENGTH

+4 RX BUFFER POINTER A[0–15]

+6 RX BUFFER POINTER A[16–31]

Table 43-34. Receive Buffer Descriptor (RxBD) Field Description

Bits Name Description

0 E Empty. Written by the FEC and user. Note that if the software driver sets RxBD[E], it should then
write to R_DES_ACTIVE.
0 The buffer associated with this BD is filled with received data, or reception was aborted due

to an error. The status and length fields have been updated as required.
1 The buffer associated with this BD is empty, or reception is in progress.

1 RO1 Receive software ownership bit. Software use. This read/write bit is modified by hardware and
does not affect hardware.

2 W Wrap, written by user.
0 The next BD is found in the consecutive location
1 The next BD is found at the location defined in RAM.R_DES_START.

3 RO2 Receive software ownership bit. Software use. This read/write bit is not modified by hardware
and does not affect hardware.

4 L Last in frame, written by FEC.
0 The buffer is not the last in a frame.
1 The buffer is the last in a frame.

5–6 — Reserved.

MPC855T User’s Manual

Programming Model

43.4.3.2 Ethernet Transmit Buffer Descriptor (TxBD)

Data is presented to the FEC for transmission by arranging it in buffers referenced by the
channel’s TxBDs. The FEC confirms transmission or indicates error conditions using BDs
to inform the host that the buffers have been serviced. The user initializes
TxBD[R,W,L,TC], the length (in bytes), and the buffer pointer.

• If L = 0, the FEC clears the R bit when the buffer is accessed. Status bits are not
modified.

• If L = 1, the FEC clears the R bit and modifies the DEF, HB, LC, RL, RC, UN, and
CSL status bits after the buffer is accessed and frame transmission completes.

The TxBD is shown in Figure 43-27.

Table 43-35 describes TxBD fields.

7 M Miss, written by FEC.Set by the FEC for frames that were accepted in promiscuous mode but
were flagged as a miss by the internal address recognition. Thus, while promiscuous mode is
being used, the user can use the M bit to quickly determine whether the frame was destined to
this station. This bit is valid only if both the L bit and PROM bit are set.
0 The frame was received because of an address recognition hit.
1 The frame was received because of promiscuous mode.

8 BC Set if the DA is broadcast.

9 MC Set if the DA is multicast and not broadcast.

10 LG Rx frame length violation, written by FEC. The frame length exceeds the value of
MAX_FRAME_LENGTH in the bytes. The hardware truncates frames exceeding 2047 bytes so
as not to overflow receive buffers This bit is valid only if the L bit is set.

11 NO Rx nonoctet-aligned frame, written by FEC. A frame that contained a number of bits not divisible
by 8 was received and the CRC check that occurred at the preceding byte boundary generated
an error. NO is valid only if the L bit is set. If this bit is set the CR bit is not set.

12 SH Short frame, written by FEC. A frame length that was less than the minimum defined for this
channel was recognized.Note that the MPC860T does not support SH, which is always zero.

13 CR Rx CRC error, written by FEC. This frame contains a CRC error and is an integral number of
octets in length. This bit is valid only if the L bit is set.

14 OV Overrun, written by FEC. A receive FIFO overrun occurred during frame reception. If OV = 1, the
other status bits, M, LG, NO, SH, CR, and CL lose their normal meaning and are cleared. This
bit is valid only if the L bit is set.

15 TR Truncate. Set if the receive frame is truncated (≥ 2 Kbytes).

Offset+2 Data
length

Data length, written by FEC. Data length is the number of octets written by the FEC into this BD’s
buffer if L = 0 (the value = R_BUFF_SIZE), or the length of the frame including CRC if L = 1. It
is written by the FEC once as the BD is closed.

Offset+4 Rx buffer
pointer

Rx buffer pointer A[0–31], written by user. The receive buffer pointer, which always points to the
first location of the associated buffer, must always be a multiple of 16. The buffer must reside in
memory external to the FEC.

Table 43-34. Receive Buffer Descriptor (RxBD) Field Description (continued)

Bits Name Description

Chapter 43. Fast Ethernet Controller (FEC)

Programming Model

Figure 43-27. Transmit Buffer Descriptor (TxBD)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+0 R TO1 W TO2 L TC DEF HB LC RL RC UN CSL
+2 DATA LENGTH
+4 Tx Data Buffer Pointer A[0–15]
+6 Tx Data Buffer Pointer A[16–31]

Table 43-35. Transmit Buffer Descriptor (TxBD) Field Descriptions

Bits Name Description

0 R Ready, written by FEC and user.
0 The buffer associated with this BD is not ready for transmission. The user can manipulate this

BD or its associated buffer. The FEC clears R after the buffer is sent or an error occurs.
1 The user-prepared buffer has not been sent or is being sent. The user cannot update the BD

while R = 1.

1 TO1 Transmit software ownership bit. This field is available for use by software. This read/write bit is not
modified by hardware and its value does not affect hardware.

2 W Wrap, written by user.
0 The next BD is found in the consecutive location
1 The next BD is found at the location defined in X_DES_START.

3 TO2 Transmit software ownership bit
This field is available for use by software. This read/write bit is not modified by hardware and its
value does not affect hardware.

4 L Last in frame, written by user.
0 The buffer is not the last in the transmit frame.
1 The buffer is the last in the transmit frame.

5 TC Tx CRC, written by user (valid if L = 1).
0 End transmission immediately after the last data byte.
1 Transmit the CRC sequence after the last data byte.

6 DEF Defer indication, written by FEC (valid if L = 1). Set when the FEC had to defer while trying to
transmit a frame. This bit is not set if a collision occurs during transmission.

7 HB Heartbeat error, written by FEC (valid if L = 1). Set to indicate that the collision input was not
asserted within the heartbeat window after transmission completed. HB can be set only if
X_CNTRL[HBC] = 1.

8 LC Late collision, written by FEC (valid if L = 1). Set to indicate that a collision occurred after 56 data
bytes were transmitted. The FEC terminates the transmission.

9 RL Retransmission limit, written by FEC (valid if L = 1). Set to indicate that the transmitter failed retry
limit + 1 attempts to send a message due to repeated collisions.

10–13 RC Retry count, written by FEC (valid if L = 1). Counts retries needed to successfully send this frame.
If RC = 0, the frame was sent correctly the first time. If RC = 15, the frame was sent successfully
while the retry count was at its maximum value. If RL = 1, RC has no meaning.

14 UN Underrun, written by FEC (valid if L = 1). If set, the FEC encountered a transmit FIFO underrun
while sending one or more buffers associated with this frame. When a Tx FIFO underrun occurs,
transmission of the frame stops and an incorrect CRC is appended. Any remaining buffers
associated with this frame are accessed and dumped by the transmit logic.

15 CSL Carrier sense lost, written by FEC (valid if L = 1). Carrier sense dropped out or never asserted
during transmission of a frame without collision.

MPC855T User’s Manual

Programming Model

On transmit, an underrun occurs if the transmit FIFO empties of data before the end of the
frame. In this case, a bad CRC is appended to the partially transmitted data. In addition, the
UN bit is set in the last BD in the current frame. This situation can occur if the FEC cannot
access the 60x bus or if the next BD in the frame is unavailable.

NOTE
A software driver that sets TxBD[R] should then write to
X_DES_ACTIVE.

Offset+2 Data
length

Data length, written by user and never by the FEC. Indicates the number of octets the FEC should
send from this BD’s buffer. The DMA engine uses bits 21–31. Bits 16–20 are ignored.

Offset+4 Tx
buffer

pointer

Tx buffer pointer A[0–31], written by user and never by the FEC. The transmit buffer pointer, which
contains the address of the associated buffer, may be even or odd. The buffer must reside in
external memory.

Table 43-35. Transmit Buffer Descriptor (TxBD) Field Descriptions (continued)

Bits Name Description

Part VIII. System Debugging and Testing Support

Part VIII
System Debugging and Testing Support

Intended Audience
Part VIII is intended for system designers who need to test and debug their MPC855T
design.

Contents
Part VIII describes how to use the MPC855T facilities for debugging and system testing. It
contains the following chapters:

• Chapter 44, “System Development and Debugging,” describes support provided for
program flow tracking, internal watchpoint and breakpoint generation, and
emulation systems control.

• Chapter 45, “IEEE 1149.1 Test Access Port,” describes the dedicated user-accessible
test access port (TAP), which is fully compatible with the IEEE 1149.1 Standard
Test Access Port and Boundary Scan Architecture.

Suggested Reading
This section lists additional reading that provides background for the information in this
manual.

MPC8xx Documentation

Supporting documentation for the MPC855T can be accessed through the world-wide web
at http://www.motorola.com. This documentation includes technical specifications,
reference materials, and detailed application notes.

Conventions
This document uses the following notational conventions:

Bold entries in figures and tables showing registers and parameter
RAM should be initialized by the user.

Bold

MPC855T User’s Manual

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

REG[FIELD] Abbreviations or acronyms for registers or buffer descriptors are
shown in uppercase text. Specific bits, fields, or numerical ranges
appear in brackets. For example, MSR[LE] refers to the little-endian
mode enable bit in the machine state register.

x In certain contexts, such as in a signal encoding or a bit field,
indicates a don’t care.

n Indicates an undefined numerical value

Acronyms and Abbreviations
Table i contains acronyms and abbreviations used in this document. Note that the meanings
for some acronyms (such as SDR1 and DSISR) are historical, and the words for which an
acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

BIST Built-in self test

CPM Communication processor module

IEEE Institute of Electrical and Electronics Engineers

JTAG Joint Test Action Group

LSB Least-significant byte

lsb Least-significant bit

LSU Load/store unit

MSB Most-significant byte

msb Most-significant bit

Rx Receive

SPR Special-purpose register

TAP Test access port

Tx Transmit

Chapter 44. System Development and Debugging

Chapter 44
System Development and Debugging
Emulators require a level of control and observation that is in sharp contrast to the trend of
modern microcomputers and microprocessors in which many bus cycles are directed to
internal resources and are not externally visible. The same is true for bus analyzers. To help
development tools support, some development support functions are implemented in the
silicon. Program flow tracking, internal watchpoint and breakpoint generation, and
emulation systems control over the activity of the core (debug mode) are some of the
features that allow the user to efficiently debug MPC855T-based systems.

44.1 Tracking Program Flow
The MPC855T provides many options for tracking program flows that impact performance
in varying degrees.

• In one mode, signals provided for tracking code flow can be captured externally and
then parsed by a post-processing program. This mode is described more fully in
subsequent sections.

• In another, slower mode, instruction flow is visible on the external bus when the
MPC855T is programmed to operate in serialized mode with all fetch cycles shown
on the external bus. Although instruction flow tracking is simpler, performance is
much lower than in regular mode. Section 44.5.1.3, “Instruction Support Control
Register (ICTRL),” describes programming of the core to operate in this mode.

The MPC855T implements a prefetch queue combined with parallel, out-of-order, and
pipelined execution. These features, plus the fact that most fetch cycles are performed
internally (from the I-cache), increase performance but make it very difficult to provide the
user with the real program trace. Instructions progress inside the core from fetch to
retirement. An instruction retires from the machine only after it and all preceding
instructions finish execution with no exception. Therefore, only retired instructions can be
considered architecturally executed.

To reconstruct program trace, the program code, combined with additional MPC855T
information, is required. Reporting program trace during retirement significantly
complicates the implementation in two ways: more than one instruction can retire in a clock
cycle; and, it is harder to report on indirect branches during retirement. Because of this,

MPC855T User’s Manual

Tracking Program Flow

program trace is deciphered by monitoring fetched code and instruction queue flushes, and
using this information to reconstruct which instructions actually reach retirement.
Instructions are fetched sequentially until branches (direct or indirect), exceptions or
interrupts appear in the program flow or until a stall in execution forces the machine to
avoid fetching the next address. These instructions may be architecturally executed or they
may be canceled in some stage of the machine pipeline.

The information required to enable reconstruction of program trace includes:

• A description of the last fetched instruction (stall, sequential, branch not taken,
branch direct taken, branch indirect taken, interrupt/exception taken).

• The addresses of the targets of all indirect flow changes. Indirect flow changes
include all branches using the link and count registers as the target address, all
interrupts/exceptions, and rfi and mtmsr (because they may cause context
switches).

• The number of instructions canceled on each clock.

The following sections define how this information is generated and how it should be used
to reconstruct the program trace.

44.1.1 Program Trace Functional Description

To make the events that occur in the machine visible, a few dedicated pins are used. Also,
a special bus cycle attribute called program trace cycle is defined. The program trace cycle
attribute is attached to all fetch cycles resulting from indirect flow changes. When program
trace recording is required, the user can ensure these cycles are visible on the external bus.

The core can be forced to show all fetch cycles marked with the program trace cycle
attribute either by setting TECR[VSYNC] of the development port or by programming
ISCT_SER in the instruction support control register (ICTRL). For more information on
VSYNC see Section 44.3.2, “Development Port Communication.” Both states described
here are subsequently referred to as VSYNC state.

The VSYNC state forces all fetch cycles marked with the program trace cycle attribute to
be visible on the external bus, even if their data is found in one of the internal devices. To
enable the external hardware to properly synchronize with the internal activity of the core,
entering VSYNC state forces the machine to synchronize and the first fetch after this
synchronization to be marked as a program trace cycle and be seen on the external bus.

In VSYNC state, fetch cycles marked with the program trace cycle attribute become visible
on the external bus. These cycles generate regular bus cycles when the instructions reside
in an external device or generate address-only cycles when instructions are in internal
devices (I-cache and internal memory). In VSYNC state, performance degrades because of
the additional external bus cycles. However, this degradation is very small.

Chapter 44. System Development and Debugging

Tracking Program Flow

Note that program trace functions are not available when operating the MPC855T in
half-speed bus mode (when SCCR[EBDF] = 0b01). The VFLS[0–1] signals are not valid
in half-speed bus mode.

44.1.2 Instruction Fetch Show Cycle Control

Instruction fetch show cycles are controlled by ICTRL[ISCT_SER] and the state of
VSYNC. Table 44-1 defines the level of fetch show cycles generated by the core.

A cycle marked with the program trace cycle attribute is generated when entering and
exiting VSYNC state by setting TECR[VSYNC].

44.1.3 Program Trace Signals
Note that if the MPC855T is in half-speed bus mode (SCCR[EBDF] = 0b01), the VF and
VFLS pins do not report fetch and flush information for the program trace capability.
However, the internal freeze state of the processor is reported in the VFLS pins as it does
in full-speed bus mode. The status pins are divided into two groups, shown in Table 44-2.

Table 44-1. Fetch Show Cycles Control

VSYNC ICTRL[ISCT_SER] Instruction Fetch Show Cycle Control Bits Show Cycles Generated

X 000 All fetch cycles

X X01 All change of flow (direct and
indirect)

X X10—Enable STS functionality of OP2/MODCK1/STS by writing 10
or 11 to SIUMCR[DBGC]. The external bus address should be
sampled only when STS is asserted.

All indirect change of flow

0 X11 No show cycles are performed

1 X11 All indirect change of flow

Table 44-2. Status Pin Groupings

Pins Description

VF [0–2] Instruction queue status. Denotes the type of the last fetched instruction or how many instructions were
flushed from the instruction queue. VF [0–2] are used for both functions because queue flushes occur
only in clocks in which no fetch type information is reported. Table 44-3 defines instruction queue flushes
and Table 44-4 defines instruction fetch types.

VFLS [0–1] History buffer flushes status: indicates the number of instructions that are flushed from the history buffer
on this clock. Possible values are as follows:
00 None
01 1 instruction was flushed from the history buffer
10 2 instructions were flushed from the history buffer
11 Used for debug mode indication. Should be ignored by the program trace external hardware. See

Section 44.3.1, “Debug Mode Operation.”

MPC855T User’s Manual

Tracking Program Flow

Table 44-3 describes possible instruction queue flushes as they are identified by VF
encodings.

Table 44-4 describes instruction types as they are identified by VF encodings.

44.1.4 Program Trace Special Cases

The following sections describe special cases of program trace implemented on the
MPC855T.

44.1.4.1 Queue Flush Information Special Case

There is one special case where the queue flush information is expected on the VF pins after
an instruction fetch encoding of VF = 0b1xx. This case is where an instruction-type VF
indications of b1xx is followed by an indication of VF = 0b111. THis indication of

Table 44-3. VF Pins Encoding: Instruction Queue Flushes

VF Instructions Flushed VF Next Cycle Holds

000 None Instruction type information

001 One instruction was flushed from the instruction queue Instruction type information

010 Two instructions were flushed from the instruction queue Instruction type information

011 Three instructions were flushed from the instruction queue Instruction type information

100 Four instructions were flushed from the instruction queue Instruction type information

101 Five instructions were flushed from the instruction queue Instruction type information

110 Reserved Instruction type information

111 See VF = 0b111 entry in Table 44-4 —

Table 44-4. VF Pins Encoding: Instruction Fetch Types

VF Instruction Type VF Next Clock Holds

000 None More instruction type
information

001 Sequential 1

1 See Section 44.1.4.3, “Sequential Instructions Marked as Indirect Branch.”

010 Branch (direct or indirect) not taken

011 This instruction is marked with the program trace cycle attribute in response to changing
the state of TECR[VSYNC] in the development port.

100 Interrupt/exception taken, the target is marked with the program trace cycle attribute Queue flush
information 2

2 Unless the next clock VF = 111, see Section 44.1.4.1, “Queue Flush Information Special Case.”

101 Branch indirect taken, rfi, mtmsr, isync and in some cases mtspr, the target is marked
with the program trace cycle attribute1

110 Branch direct taken

111 Branch (direct or indirect) not taken

Chapter 44. System Development and Debugging

Tracking Program Flow

VF = 0b111 should be interpreted as an instruction fetch type encoding, as described by
Table 44-4. This is easily monitored since the only case where this can happen is when
VF = 111 and the maximum number of possible queue flushes is five.

44.1.4.2 Program Trace When In Debug Mode

When entering debug mode an interrupt/exception taken is reported on the VF pins
(VF = 0b100) and a cycle marked with the program trace cycle is made externally visible.
When the core is in debug mode, VF = 0b000 and VFLS = 0b11. For more information on
debug mode, see Section 44.3, “Development System Interface.”

If TECR[VSYNC] is set or cleared while the core is in debug mode, this information is
reported when the first VF pins report as the core returns to regular mode. If VSYNC was
not changed while in debug mode, the first VF pins report will be encoded as VF = 0b101
(indirect branch) due to the rfi instruction that is being issued. In both cases, the first
instruction fetch after debug mode is marked with the program trace cycle attribute and is
externally visible.

44.1.4.3 Sequential Instructions Marked as Indirect Branch

There are instances where non-branch (sequential) instructions can affect the machine in a
manner similar to indirect branch instructions. These instructions include rfi, mtmsr, isync,
and mtspr to registers CMPA–CMPF, ICTRL, ICR, and DER.

The core marks these instructions are marked as indirect branch instructions (VF = 0b101).
The next instruction address is marked with the program trace cycle attribute, as if it were
an indirect branch target. Therefore, when one of these special instructions is detected in
the core, the address of the next instruction is externally visible. The reconstructing
software can now correctly evaluate the effect of these instructions.

44.1.5 Reconstructing Program Trace

When program trace is needed, external hardware must sample the status pins (VF and
VFLS) of every clock and mark the address of all cycles with the program trace cycle
attribute. Although program trace can be used in various ways, the following describes only
back trace and window trace.

44.1.5.1 Back Trace

Back trace is useful when a record of the program trace before an event occurred is needed.
An example of such an event is a system failure. If back trace is needed, external hardware
should start sampling VF and VFLS and the address of all cycles marked with the program
trace cycle attribute immediately after reset is negated.

At reset, cycles marked with the program trace cycle attribute are visible on the external bus
(that is, the instruction fetch show cycle/core serialize control field (ICTRL[ISCT_SER])

MPC855T User’s Manual

Tracking Program Flow

is cleared at reset). To avoid this slower default mode, it is recommended that the user enters
VSYNC state as described in Section 44.1.1, “Program Trace Functional Description.” To
exit VSYNC state after a particular event, either trap in debug mode and trigger the freeze
indication or follow the method described in Section 44.1.1, “Program Trace Functional
Description.” After exiting VSYNC state, the trace buffer holds the trace of the program
executed before the pertinent event occurred.

44.1.5.2 Window Trace

Window trace is useful when a record of the program trace between two events is needed,
in which case, VSYNC state should be entered between these two events. After exiting
VSYNC state, the trace buffer holds trace information for the program executed between
the two events.

44.1.5.2.1 Synchronizing the Trace Window to Internal Core Events

The assertion/ negation of VSYNC is accomplished using the serial interface implemented
in the development port. To synchronize the assertion/negation of VSYNC to an internal
event of the core, it is possible to use the internal breakpoints hardware with the debug
mode. This method is available only when debug mode is enabled. For more information
on debug mode, see Section 44.3, “Development System Interface.”

The following is a possible set of steps that enable the user to synchronize the trace window
to the internal core events:

1. Enter debug mode, either immediately out of reset or using the debug mode request.

2. Program hardware to break on the event that marks the start of the trace window
using the registers defined in Section 44.2, “Watchpoints and Breakpoints
Support.”

3. Enable debug mode entry for the breakpoint programmed in the DER (see
Table 44-25).

4. Return to the regular code run (refer to Section 44.3.1.7, “Exiting Debug Mode”).

5. The hardware generates a breakpoint when the event in question is detected and the
machine enters debug mode (refer to Section 44.3.1.2, “Entering Debug Mode”).

6. Program the hardware to break on the event that marks the end of the trace window.

7. Assert VSYNC.

8. Return to the regular code run. The first report on the VF pins is VSYNC (VF =
0b011).

9. The external hardware starts sampling the program trace information after the VF
pins indicate VSYNC.

10. The hardware generates a breakpoint when the event in question is detected and the
machine enters debug mode.

Chapter 44. System Development and Debugging

Tracking Program Flow

11. Negate VSYNC.

12. Return to the regular code run (issue an rfi). The first encoding on the VF pins is
VSYNC (VF = 0b011).

13. External hardware stops sampling the program trace information after recognizing
VSYNC on the VF pins.

44.1.5.3 Detecting the Trace Window Start Address

When using back trace, latching of VF, VFLS, and the address of the cycles marked
program trace cycle should all start immediately after the negation of reset. The start
address is the first address in the program trace cycle buffer. When using window trace,
latching of VF, VFLS, and the address of the cycles marked as program trace cycle should
all start immediately after the first VSYNC is recognized on the VF pins. The start address
of the trace window should be calculated according to the first two VF pin reports. Assume
VF1 and VF2 are the first two VF pin reports and T1 and T2 are the two addresses of the
first two cycles marked with the program trace cycle attribute that were latched in the trace
buffer. Use Table 44-5 to calculate the trace window start address.

44.1.5.4 Detecting the Assertion/Negation of VSYNC

Since the VF pins are used for reporting both instruction type and queue flush information,
the external hardware must take special care when trying to detect entry and exit of the
VSYNC state. When VF = 0b011, it is a VSYNC entry or exit report only if the prior value
of VF was 0b000, 0b001, or 0b010.

44.1.5.5 Detecting the Trace Window End Address

The information on the status pins that describes the last fetched instruction and last
queue/history buffer flush, changes every clock. Cycles marked as program trace cycle are
generated on the external bus only when the system interface unit (SIU) arbitrates over the
external bus. Therefore, there is a delay between when a program trace cycle is reported as
performed and the time that this cycle can be detected on the external bus.

When the user exits VSYNC state (through the serial interface of the development port), the
core delays the report of VSYNC occurring on the VF pins until all addresses marked with

Table 44-5. Detecting the Trace Buffer Start Point

VF1 VF2 Starting Point Description

011
VSYNC

001
Sequential

T1 VSYNC asserted. Followed by a sequential instruction.
The start address is T1.

011
VSYNC

110
Branch direct taken

T1 - 4 +
Offset(T1 - 4)

VSYNC asserted. Followed by a taken direct branch.
The start address is the target of the direct branch.

011
VSYNC

101
Branch indirect taken

T2 VSYNC asserted. Followed by a taken indirect branch.
The start address is the target of the indirect branch.

MPC855T User’s Manual

Watchpoints and Breakpoints Support

the program trace cycle attribute are externally visible. Therefore, the external hardware
should stop sampling VF, VFLS, and the address of the cycles marked as program trace
cycle immediately after VF = VSYNC. The last two instructions reported on the VF pins
are not always valid and should be ignored.

44.1.5.6 Efficient Trace Information Capture

To store all information generated on the pins during program trace (5 bits per clock + 30
bits per show cycle) a large memory buffer is required. However, because this information
includes events that were canceled, some of this information can be discarded. External
hardware can be added to eliminate all canceled instructions and report only on taken/not
taken branches, indirect flow change, and the number of sequential instructions after the
last flow change.

44.2 Watchpoints and Breakpoints Support
Watchpoints, when detected, are reported to the external world (on dedicated pins), but do
not change the timing and flow of the machine. Breakpoints, when detected, force the
machine to branch to the appropriate exception handler. The core supports watchpoints
generated inside the core and breakpoints generated inside and outside the core.

Internal watchpoints are generated when a user-programmable set of conditions are met.
Internal breakpoints can be programmed to be generated either as an immediate result of
the assertion of one of the internal watchpoints or after an internal watchpoint is asserted
for user-programmable times. Programming a certain internal watchpoint to generate an
internal breakpoint can be done either in software, by setting the corresponding software
trap enable bit or on-the-fly using the serial interface implemented in the development port
to set the corresponding trap enable bit. External breakpoints can be generated by
peripherals of the system outside of the MPC855T such as an external development system.
Peripherals on the external bus use the serial interface of the development port to assert the
external breakpoint.

In the core, as in other RISC processors, software saves and restores machine state as part
of exception handling. As software saves/restores the machine state, MSR[RI] is cleared.
Exceptions that occur are handled by the core when MSR[RI] is clear and they result in a
nonrestartable machine state. See Section 6.1.5, “Recoverability after an Exception.”

In general, the core recognizes breakpoints only if MSR[RI] = 1, which guarantees machine
restartability after a breakpoint. In this working mode, breakpoints are said to be masked.
Sometimes it is preferable to enable breakpoints when MSR[RI] is clear, despite the risk of
a nonrestartable machine state. Internal breakpoints also have a programmable nonmasked
mode, and an external development system can choose to assert a nonmaskable external
breakpoint. Watchpoints are not masked and are always reported on external pins,
regardless of the value of MSR[RI]. Although they count watchpoints, counters are part of

Chapter 44. System Development and Debugging

Watchpoints and Breakpoints Support

the internal breakpoint logic and are not decremented when the core operates in masked
mode and MSR[RI] = 0. Figure 44-1 shows the core’s watchpoint and breakpoint support.

Figure 44-1. Watchpoints and Breakpoint Support in the Core

44.2.1 Key Features

The following list summarizes features of the internal watchpoints and breakpoints support.

• Four I-address comparators supporting equal, not equal, greater than, and less than.

• Two L-address comparators supporting equal, not equal, greater than, and less than.
Includes lsb masking, according to the size of the bus cycle for the byte and
half-word working modes. See Section 44.2.4.2, “Byte and Half Word Working
Modes.”

• Two L-data comparators supporting equal, not equal, greater than, and less than.
Includes byte, half-word, and word operating modes, and four byte mask bits for
each comparator. It can be used for integer data. A match is detected only on the
valid part of the data bus (according to the cycle’s size and the two address lsbs).

• No internal breakpoint/watchpoint support for unaligned words and half words.

INTERNAL
PERIPHERALS

X

X

X
X

DEVELOPMENT
SYSTEM OR
EXTERNAL

PERIPHERALS

DEVELOPMENT
PORT

LCTRL2

MSR

INTERNAL
WATCHPOINTS

LOGIC

WATCHPOINTS

MSRRI

NONMASKED CONTROL BIT

SOFTWARE TRAP ENABLE BITS

DEVELOPMENT PORT TRAP ENABLE BITS

NONMASKABLE BREAKPOINT

MASKABLE BREAKPOINT

CPM µCODE
DEVELOPMENT

ACCESSIBLE

BIT WISE AND

BIT WISE OR

COUNTERS

BREAKPOINT
TO CPU

TO
WATCHPOINT

PINS

MPC855T User’s Manual

Watchpoints and Breakpoints Support

• L-data comparators can be programmed to treat integers as signed or unsigned.

• Combined comparator pairs to detect in and out of range conditions, including either
signed or unsigned values on the L-data.

• A programmable AND-OR logic structure between the four instruction comparators
results in five outputs, four instruction watchpoints, and one instruction breakpoint.

• A programmable AND-OR logic structure between the four instruction watchpoints
and the four load/store comparators results in three outputs, two load/store
watchpoints, and one load/store breakpoint.

• Five watchpoint pins, three for instructions and two for loads/stores.

• Two dedicated 16-bit down counters. Each can count either an instruction
watchpoint or load/store watchpoint. Only architecturally executed events are
counted (count up is performed in case of recovery).

• On-the-fly trap enable programming of the different internal breakpoints using the
development port serial interface (see Section 44.3.2, “Development Port
Communication”). Software control is also available.

• Watchpoints do not change the timing of the machine.

• Internal breakpoints and watchpoints are detected on the instruction during fetch.

• Internal breakpoints and watchpoints are detected on the load/store during load/store
bus cycles.

• Instruction and load/store breakpoints and watchpoints are handled on retirement
and then reported.

• Breakpoints and watchpoints on recovered instructions (due to exceptions or missed
predictions) are not reported and do not change the machine’s timing.

• Instructions with instruction breakpoints are not executed. The machine branches to
the breakpoint exception routine before it executes the instruction.

• Instructions with load/store breakpoints are executed. The machine branches to the
breakpoint exception routine after it executes the instruction. The address of the
access is placed in the BAR.

• Load/store multiple/string instructions with load/store breakpoints finish execution
before the machine branches to the breakpoint exception routine.

• Load/store data compare is accomplished on the load/store, after swap in store
accesses and before swap in load accesses (as the data appears on the bus).

• Internal breakpoints may operate either in masked mode or in nonmasked mode.

• “Go to x” and “continue” working modes are supported for instruction breakpoints.

44.2.2 Internal Watchpoints and Breakpoints Logic

Internal breakpoint and watchpoint support is based on the following:

Chapter 44. System Development and Debugging

Watchpoints and Breakpoints Support

• Eight comparators comparing information on instruction and load/store cycles

• Two counters

• Two AND-OR logic structures

Comparators perform compare on the instruction address (I-address), the load/store address
(L-address), and the load/store data (L-data) and can detect the following conditions:

• Equal to
• Not equal to
• Greater than
• Less than

Greater-than-or-equal-to and less-than-or-equal-to are easily obtained from these four
conditions. See Section 44.2.4.5, “Generating Six Compare Types.” Using the AND-OR
logic structures “in range” and “out of range” detections (on address and data) are
supported. The counters can be used to program a breakpoint to be recognized after an event
is detected a predefined number of times.

The L-data comparators operate on load or store integer data. When operating on integer
data, L-data comparators perform comparisons on bytes, half-words, and words, treating
numbers as signed or unsigned. Comparators generate match events, then instruction match
events enter the instruction AND-OR logic where instruction watchpoints and breakpoints
are generated. An asserted instruction watchpoint can generate an instruction breakpoint.
Two different events can decrement one counter. When a counter on an instruction
watchpoint expires, the instruction breakpoint is asserted.

Instruction watchpoints and load/store match events on address/data enter the load/store
AND-OR logic where load/store watchpoints and breakpoints are generated. Load/store
watchpoints (when asserted) can generate the load/store breakpoint or decrement a counter.
When a counter on one load/store watchpoint expires, the load/store breakpoint is asserted.

Watchpoints progress in the machine and are reported on retirement. Internal breakpoints
progress in the machine until they reach the top of the history buffer, at which point the
machine branches to the breakpoint exception vector. To allow use of breakpoint features
without restricting software, the address of the load/store cycle that generated the load/store
breakpoint is not stored in the data address register (DAR). In a load/store breakpoint, the
address of the load/store cycle that generated the breakpoint is stored in the breakpoint
address register (BAR).

For more information, see Section 44.3, “Development System Interface.”

44.2.3 Functional Description

The following sections describe instruction and load/store watchpoint generation in detail.

MPC855T User’s Manual

Watchpoints and Breakpoints Support

44.2.3.1 Instruction Support Detailed Description

Each of the four instruction address comparators (A–D), shown in Figure 44-2, is 30 bits
long and generates two output signals—equal and less than. These signals generate one of
four events—equal, not equal, greater than, or less than. The instruction watchpoints and
breakpoint are generated using these events according to the user programming. Using the
OR option enables “out of range” detection.

Figure 44-2. Instruction Support General Structure

Table 44-6 shows instruction watchpoint programming options.

44.2.3.2 Load/Store Support Detailed Description

Each of the two load/store address comparators (E and F) compares the 32 address bits and
the cycle’s attributes (read/write). The two lsbs are masked when a word is accessed; the

Table 44-6. Instruction Watchpoints Programming Options

Name Description Programming Options

IW0 First instruction watchpoint Comparator A
Comparators (A & B)

IW1 Second instruction watchpoint Comparator B
Comparator (A | B)

IW2 Third instruction watchpoint Comparator C
Comparators (C & D)

IW3 Fourth instruction watchpoint Comparator D
Comparator (C | D)

Compare
Type
Logic

Compare
Type
Logic

Compare
Type
Logic

Comparator A
Eq

Lt

Compare Type

Comparator B
Eq

Lt

Comparator C
Eq

Lt

Comparator D
Eq

Lt

E
ve

nt
s

G
en

er
at

or

AND-OR
Logic

Control Bits

A

B

(A&B)

(A | B)

C

D

(C&D)

(C | D)

I - Watchpoint 0

I - Watchpoint 1

I - Breakpoint

I - Watchpoint 2

I - Watchpoint 3

Compare
Type
Logic

Chapter 44. System Development and Debugging

Watchpoints and Breakpoints Support

lsb is masked when a half word is accessed. As shown in Figure 44-3, each comparator
generates two output signals—equal and less than. These signals generate one of four
events from each comparator—equal, not equal, greater than, or less than. See
Section 44.2.4.2, “Byte and Half Word Working Modes.”

Figure 44-3. Load/Store Support General Structure

Each of the two load/store data comparators (G and H) is 32 bits wide and can be
programmed to treat numbers as signed or unsigned. Each data comparator operates as four
independent byte comparators. Each byte comparator has a mask bit and generates two
output signals—equal and less than (if the mask bit is not set.) Therefore, each 32-bit
comparator has eight output signals. These signals generate the equal and less-than signals
according to the compare size programmed by the user (byte, half-word, word). All signals
are significant in byte mode. In half-word mode, only four signals from each 32-bit
comparator are significant; when operating in word mode, only two signals are significant.

One of the next four match events is generated by the equal and less-than signals—equal,
not equal, greater than, or less than, depending on the compare type programmed.
Therefore, from the two 32-bit comparators, eight match indications are
generated—Gmatch[0–3] and Hmatch[0–3]. According to the lower bits of the address and
the size of the cycle, only match indications detected on bytes with valid information are
validated. The rest are negated. If the executed cycle has a smaller size than the compare

Comparator G

Byte 0
Eq
Lt

Compare Compare

A
dd(30:31)

Data

C
om

pare

V
alid 0

V
alid 1

V
alid 2

V
alid 3 G

H

(G&H)

(G|H)

Instruction

L-watchpoint 0

L-watchpoint 1

L-breakpoint

Size
Logic

Compare Byte
Qualifier

Logic

E
vents G

enerator

AND-OR Logic

C
ontrol B

its

E F

(E
 &

 F
)

(E
 | F

)
Comparator E

Type Logic

Events
Generator

Lt Eq

Comparator F

Type Logic

Lt Eq
Compare

Type
Logic

Byte Mask

Byte 1

Byte 2

Byte 3

Eq
Lt
Eq
Lt
Eq
Lt

Eq
Lt
Eq
Lt
Eq
Lt
Eq
Lt

Size Type

Comparator H

Byte 0
Eq
Lt

Size
Logic

Compare Byte
Qualifier

Logic
Type
Logic

Byte Mask

Byte 1

Byte 2

Byte 3

Eq
Lt
Eq
Lt
Eq
Lt

Eq
Lt
Eq
Lt
Eq
Lt
Eq
Lt

Type

Cycle Size

W
atchpoints

S
ize

MPC855T User’s Manual

Watchpoints and Breakpoints Support

size (a byte access when the compare size is word or half-word), no match indication is
asserted. The match indication signals generate four load/store data events as shown in
Table 44-7.

The four load/store data events, combined with the match events of the load/store address
comparators and the instruction watchpoints, are used to generate the load/store
watchpoints and breakpoint according to the user’s programming.

When programming load/store watchpoints to ignore L-addr events and L-data events, the
instruction must be a load/store instruction for the load/store watchpoint event to trigger.

44.2.3.3 The Counters

Each of the two 16-bit down counters can count an instruction watchpoint or a load/store
watchpoint. Both generate the corresponding breakpoint when they reach zero. In masked
mode, counters do not count detected watchpoints when MSR[RI] = 0. See
Section 44.2.4.3, “Context Dependent Filter.” Counter values are not predictable if they
count watchpoints programmed on instructions that alter counters directly. Readings from
the counters when active must be synchronized by inserting a sync instruction before the
read.

Note that when programmed to count instruction watchpoints, the last instruction that
decrements the counter to zero is treated like any other instruction breakpoint in that it is

Table 44-7. Load/Store Data Events

Event Name Event Function (see note)

G (Gmatch0 | Gmatch1 | Gmatch2 | Gmatch3)

H (Hmatch0 | Hmatch1 | Hmatch2 | Hmatch3)

(G & H) 1

1 & denotes a logical AND. | denotes a logical OR.

((Gmatch0 & Hmatch0) | (Gmatch1 & Hmatch1) | (Gmatch2 & Hmatch2) | (Gmatch3 & Hmatch3))

(G | H) 1 ((Gmatch0 | Hmatch0) | (Gmatch1 | Hmatch1) | (Gmatch2 | Hmatch2) | (Gmatch3 | Hmatch3))

Table 44-8. Load/Store Watchpoints Programming Options

Name Description
Instruction Events

Programming Options
L-Address Events

Programming Options
L-Data Events

Programming Options

LW0 First load/store
watchpoint

IW0, IW1, IW2, IW3,
ignore instruction events

Comparator E
Comparator F
Comparators (E & F)
Comparators (E | F)
Ignore L-address events

Comparator G
Comparator H
Comparators (G & H)
Comparators (G | H)
Ignore L-data events

LW1 Second load/store
watchpoint

IW0, IW1, IW2, IW3,
ignore instruction events

Comparator E
Comparator F
Comparators (E & F)
Comparators (E | F)
Ignore I-address events

Comparator G
Comparator H
Comparators (G & H)
Comparators (G | H)
Ignore L-data events

Chapter 44. System Development and Debugging

Watchpoints and Breakpoints Support

not executed before the machine branches to the breakpoint exception routine. As a side
effect of this behavior, the value of the counter inside the breakpoint exception routine
equals one and not zero, as one might expect. When programmed to count load/store
watchpoints, the last instruction that decrements the counter to zero is treated like any other
load/store breakpoint in that it executes before the machine branches to the breakpoint
exception routine. Therefore, the value of the counter inside the breakpoint exception
routine equals zero.

44.2.3.4 Trap Enable Programming

The trap enable bits can be programmed by regular software (only if MSR[PR] = 0) using
the mtspr instruction or on-the-fly using the special development port interface. See
Section 44.3.2.4, “Development Port Serial Communications–Trap Enable Mode.” The
value used by the breakpoint generation logic is the bit-wise OR of the software trap enable
bits written using the mtspr instruction, and the development port trap enable bits that are
serially shifted using the development port. The software trap enable bits and development
port trap enable bits can be read from ICTRL and the LCTRL2 using the mtspr instruction.
Table 44-20 and Table 44-22 show the exact bit placement.

44.2.4 Operation Details

The following sections describe various operating details of watchpoint and breakpoint.

44.2.4.1 Restrictions

The same watchpoint can be detected more than once during execution of an instruction.
For example, a load/store watchpoint can be detected on more than one transfer when
executing load/store multiple/string instructions or a load/store watchpoint can be detected
on more than one byte in byte mode. In such cases only one watchpoint of a given type is
reported for the instruction. Similarly, only one watchpoint of the same type can be counted
for a single instruction. Watchpoint events are reported when the instruction that caused the
event retires; because more than one instruction can retire in a single clock, ensuing events
may be reported in the same clock. Moreover, an event detected on more than one
instruction (tight loops or range detection) can only be reported once. Internal counters
count correctly in these cases.

44.2.4.2 Byte and Half Word Working Modes

The user can use watchpoints and breakpoints to detect matches on bytes and half words
when the byte/half word is accessed in a load/store instruction of larger data widths. For
example, when loading a table of bytes using a series of load word instructions.) To use this
feature in word mode, write the required match value to the correct half word of the data
comparator and the mask in the L-data comparator. To break on bytes, the byte mask for
each L-comparator and the bytes to be matched must be written in the data comparator.

MPC855T User’s Manual

Watchpoints and Breakpoints Support

Because bytes and half words can be accessed using a larger data width instruction, the user
cannot predict the exact value of the L-address lines when the requested byte/half-word is
accessed. If the matched byte is byte 2 of the word and accessed using a load word
instruction, the L-address value will be of the word (byte 0). Therefore, the core masks the
two lsbs of the L-address comparators for word accesses and the lsb for half-word accesses.
Address range is supported only when aligned according to access size.

44.2.4.2.1 Examples

The following examples show programming options for several search criteria:

• Example 1

Looking for:
Data size: Byte.
Address: 0x00000003.
Data value: Greater than 0x07 and less than 0x0C.

Programming options:

One L-address comparator = 0x00000003 and program for equal.
One L-data comparator = 0x00000007 and program for greater than.
One L-data comparator = 0x0000000C and program for less than.
Both byte masks = 0xE.
Both L-data comparators program to byte mode.
Result: The event will be correctly detected, regardless of the load/store instruction
the compiler chooses for this access.

• Example 2

Looking for:
Data size: Half-word.
Address: Greater than 0x00000000 and less than 0x0000000C.
Data value: Greater than 0x4E204E20 and less than 0x9C409C40.

Programming option:
One L-address comparator = 0x00000000 and program for greater than.
One L-address comparator = 0x0000000C and program for less than.
One L-data comparator = 0x4E204E20 and program for greater than.
One L-data comparator = 0x9C409C40 and program for less than.
Both byte masks = 0x0.
Both L-data comparators program to half-word mode.
Result: The event will be correctly detected as long as the compiler does not use a
load/store instruction with data size of byte.

• Example 3

Looking for:
Data size: Half-word.

Chapter 44. System Development and Debugging

Watchpoints and Breakpoints Support

Address: Greater than or equal to 0x00000002 and less than 0x0000000E.
Data value: Greater than 0x4E204E20 and less than 0x9C409C40.

Programming option:
One L-address comparator = 0x00000001 and program for greater than.
One L-address comparator = 0x0000000E and program for less than.
One L-data comparator = 0x4E204E20 and program for greater than.
One L-data comparator = 0x9C409C40 and program for less than.
Both byte masks = 0x0.
Both L-data comparators program to half-word or word mode.
Result: An event is correctly detected if the compiler chooses a load/store instruction
with data size of half-word. If the compiler chooses load/store instructions with data
size greater than half-word (word, multiple), false detections may occur.

• These can only be ignored by the software that handles the breakpoints. Figure 44-4
shows this partially supported scenario:

Figure 44-4. Partially Supported Watchpoints/Breakpoint Example

44.2.4.3 Context Dependent Filter

The core can be programmed to recognize only internal breakpoints when MSR[RI] = 1
(maskable mode) or to always recognize internal breakpoints (nonmaskable mode).

In maskable mode, when the core is programmed only to recognize internal breakpoints
(when MSR[RI] =1), it is possible to debug all parts of the code, except when SRR0 and
SRR1, DAR, and DSISR are busy as indicated by MSR[RI] = 0 (in the prologues and
epilogues of exception handlers). Internal breakpoints detected when MSR[RI] = 0 are lost
and debug counters do not count detected watchpoints. Detected watchpoints are always
reported on the external pins, regardless of the value of MSR[RI].

In nonmaskable mode, when the core is programmed to recognize internal breakpoints, all
parts of the code can be debugged. However, if an internal breakpoint is recognized when
MSR[RI] = 0 (SRR0 and SRR1 are busy), the machine enters a nonrestartable state. See
Section 6.1.5, “Recoverability after an Exception.”

The core defaults to maskable mode after reset. The core is put in nonmaskable mode by
setting LCTRL2[BRKNOMSK], which controls all internal I- and L-breakpoints. See
Section 44.5.1.5, “Load/Store Support AND-OR Control Register (LCTRL2).”

0x00000000

0x00000004

0x00000008

0x0000000c

0x00000010

Possible false detect on these half-words when using word/multiple

MPC855T User’s Manual

Watchpoints and Breakpoints Support

44.2.4.4 Ignore First Match

The ignore first match bit, ICTRL[IFM], facilitates the debugger’s “continue” and “go from
x” utilities for instruction breakpoints. When an instruction breakpoint is first enabled, the
first instruction cannot cause an instruction breakpoint if ICTRL[IFM] = 1. This is used for
“continue” utilities. If IFM = 0, every matched instruction causes an instruction breakpoint.
This is used for “go from x”. IFM is set by software and cleared by hardware; after the first
instruction breakpoint, the match is ignored. Load/store breakpoints and all
counter-generated breakpoints (instruction and load/store) are unaffected by this mode.

44.2.4.5 Generating Six Compare Types

The four compare types (equal, not equal, greater than, and less than) can be used to
generate two additional compare types—greater than or equal to and less than or equal to.
The greater-than-or-equal compare type can be generated by using the greater-than
compare type and programming the comparator to the value in question minus 1. Likewise,
the less-than-or-equal compare type can be generated by using the less-than compare type
and programming the comparator to the value in question plus 1. This does not work for the
following boundary cases:

• Less than or equal of the largest unsigned number (1111...1).

• Greater than or equal of the smallest unsigned number (0000...0).

• Less than or equal of the maximum positive number in signed mode (0111...1).

• Greater than or equal of the maximum negative number in signed mode (1000...).

These boundary cases do not require special support because they are considered always
true. They can be programmed using the ignore option of the load/store watchpoint
programming. See Section 44.5.1.5, “Load/Store Support AND-OR Control Register
(LCTRL2).”

44.2.5 Load/Store Breakpoint Example

CMPE and CMPF are used for load/store addresses while CMPG and CMPH are used for
load/store data.

The procedure is as follows:

1. Write the value in the appropriate comparator register, CMPE, CMPF, CMPG, or
CMPH.

2. For load/store data, program the operand size in LCTRL1[CSx] and the byte mask
in LCTRL1[CxBMSK].

3. Write the comparison type in LCTRL1[CTx]. For load/store data, program whether
the operand is signed or unsigned LCTRL1[SUSx].

4. Select a watchpoint enable event:

Chapter 44. System Development and Debugging

Development System Interface

— Define the load/store watchpoint event in LCTRL2[LWxLA] or
LCTRL2[LWxLD]

— Enable the address or data event in LCTRL2[LWxLADC] or
LCTRL2[LWxLDDC]

5. Disable instruction events affecting load/store watchpoints—Clear LWxIADC
(LWxIA is a don’t care).

6. Enable the watchpoint in LCTRL2[LWxEN].

7. Enable a trap on every watchpoint or every N watchpoints.

Option: Enable trap on every load/store watchpoint in LCTRL2[SLWxEN] or on
every N watchpoints in COUNTx. (Set CNTV to n and select the load/store
watchpoint in CNTC).

8. Select whether breakpoints are maskable or nonmaskable in
LCTRL2[BRKNOMSK].

9. Optionally select whether a load/store trap causes the debug mode to be entered in
DER[LBRKE].

44.3 Development System Interface
It is often useful to debug a target system without making changes. However, sometimes it
is impossible to add load to the lines connected to the existing system without disrupting
its operation. The development system interface of the core enables debug of a target
system with minimal cost and intrusiveness.

The development system interface of the core uses the development port, which is a
dedicated serial port and, therefore, does not need any of the regular system interfaces.

The development port is a relatively inexpensive interface that allows a development
system to operate in a lower frequency than the core’s frequency and controls system
activity when the core is in debug mode. It is also possible to debug the core using monitor
debugger software, described in Section 44.4, “Software Monitor Debugger Support.”

In debug mode the core fetches all instructions from the development port; data can be read
from the development port and written to the development port. This allows memory and
registers to be read and modified by a development tool (emulator) connected to the
development port. For protection, two possible working modes are defined—debug mode
enable and debug mode disable, described in Section 44.3.1.1, “Debug Mode Enable vs.
Debug Mode Disable,” are selected only during reset.

The user can work in debug mode directly out of reset or the core can be programmed to
enter debug mode as a result of a predefined sequence of events. These events can be any
interrupt or exception in the core system, including the internal breakpoints, in combination
with two levels of development port requests generated externally. Each of these can be
programmed to be treated as a regular interrupt that causes the machine to branch to its

MPC855T User’s Manual

Development System Interface

interrupt vector or as a special interrupt that causes debug mode entry. In debug mode, the
rfi instruction returns the machine to its regular work mode. Figure 44-5 shows the
relationship between debug mode logic and the rest of the core.

Figure 44-5. Functional Diagram of the MPC855T Debug Mode Support

The development port provides a full duplex serial interface for communications between
the internal development support logic of the core and an external development tool. The
development port can operate in two working modes–trap enable mode and debug mode.

Trap enable mode shifts the following control signals into the core internal development
support logic.

• Instruction trap enable bits for programming the instruction breakpoint dynamically.

• Load/store trap enable bits for programming the load/store breakpoint dynamically.

• Nonmaskable breakpoint is used to assert the nonmaskable external breakpoint.

• Maskable breakpoint is used to assert the maskable external breakpoint.

• VSYNC control code is used to assert and negate VSYNC operation.

In debug mode, the development port also controls the debug mode features of the core. See
Section 44.3.2, “Development Port Communication.”

Development Port

Development Port

ICR

DER

CORE

9 Control Logic

Shift Register

BKPT, TE,
VSYNC

DPIR

DSCK

DSDI

TECR DPDR

35

32

32 Internal
Bus

Development
Port Support

Logic

DSDO

VFLS,
FRZ

External
Bus

SIU / EBI

Chapter 44. System Development and Debugging

Development System Interface

44.3.1 Debug Mode Operation

Figure 44-6 shows the debug mode logic implemented in the core.

Figure 44-6. Debug Mode Logic Diagram

The debug mode of the core provides the development system with the following functions:

• Controls and maintains execution of the processor in all circumstances. The
development port can force the core to enter debug mode even when external
interrupts are disabled.

• Debug mode can be entered immediately out of reset, allowing the user to debug a
system without using ROM.

• The debug enable register (DER) can be used to selectively enable events that cause
the machine to enter debug mode.

• The interrupt cause register (ICR) indicates why debug mode is entered.

• After entry into debug mode, program execution continues from the where debug
mode was entered.

Debug Enable Register (DER)

Interrupt Cause Register (ICR)

Event (Core Interrupt

SetReset

ICR_OR

Freeze

RFI

Decoder

Q

Debug Mode Enable
Internal Debug

5

Event Valid

Mode Signal

Or Exception)

MPC855T User’s Manual

Development System Interface

• All instructions are fetched from the development port, while load/store accesses are
performed on the real system memory in debug.

• A simple method is provided for memory dump and load via the data register of the
development port that is accessed with mtspr and mfspr.

• The processor enters privileged state (MSR[PR] = 0) in debug mode, allowing
execution of any instruction and access to any memory location.

• An OR signal of all interrupt cause register (ICR) bits enables the development port
to detect pending events while already in debug mode. For example, the
development port can detect a debug mode access to a nonexisting memory space.

• Caches and MMUs are frozen in debug mode. All accesses made during debug mode
will be to the memory. Cache contents can only be accessed via SPRs.

44.3.1.1 Debug Mode Enable vs. Debug Mode Disable

For protection purposes, there are two working modes, debug mode enable and debug mode
disable, which are selected once at reset. Debug mode is enabled by asserting DSCK during
reset. The state of this pin is sampled three clocks before the negation of SRESET. If DSCK
is sampled negated, debug mode is disabled until a subsequent reset when DSCK is
asserted. When debug mode is disabled, the internal watchpoint/breakpoint hardware
remains operational and can be used for debugging by a software monitor program.
Figure 44-7 is a timing diagram for the enabling debug mode.

Figure 44-7. Debug Mode Reset Configuration Timing Diagram

Note that because SRESET negation time depends on an external pull-up resistor, any
reference to SRESET negation time in this chapter refers to the time the MPC855T releases
SRESET. If SRESET rise time is long because of a large resistor, the setup time for debug
port signals should be adjusted accordingly.

When debug mode is disabled, all development support registers are accessible when
MSR[PR] = 0 and can be used by monitor debugger software. However, the processor never
enters debug mode and the ICR and DER are used only for asserting and negating the freeze
signal. For more information on the software monitor debugger support, see Section 44.4,

DSCK

CLKOUT

SRESET

DSCK asserts high while SRESET asserted to enable debug mode operation.

0 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17

DSCK asserts high after SRESET negation to enter debug mode immediately (without fetching reset vector).

Chapter 44. System Development and Debugging

Development System Interface

“Software Monitor Debugger Support.” All development support registers accessible only
when the core is in debug mode; therefore, the development system has full control of the
core’s development support features. For more information, see Table 44-15. If debug
mode is enabled as described in this section, debug mode can be entered by the methods
described in Section 44.3.1.2, “Entering Debug Mode.”

44.3.1.2 Entering Debug Mode

By appropriately programming the development port during reset, debug mode can be
entered immediately out of reset, thus allowing the user to debug a ROM-less system. If
DSCK is asserted throughout SRESET assertion and then past SRESET negation, the
processor takes a breakpoint exception and goes directly to debug mode instead of fetching
the reset vector.

To avoid entering debug mode after reset, DSCK must be negated no later than seven clock
cycles after SRESET negates, allowing the processor to jump to the reset vector and begin
normal execution. If debug mode is entered immediately after reset, as shown in
Figure 44-7, ICR[DPI] is set.

The user can enable events that can initiate debug mode and determine which events require
regular interrupt handling.

The following events can cause the core to enter debug mode. Each event results in debug
mode entry if debug mode is enabled and the corresponding enable bit is set in the DER.
The reset values of the enable bits allow use of the debug mode features without
programming the DER in most cases. See Table 44-25.

• System reset, as a result of the assertion of SRESET, as described in Section 6.1.2.1,
“System Reset Interrupt (0x00100)”

• Checkstop, as described in Table 44-9

• Machine check interrupt

• Implementation-specific ITLB miss

• Implementation-specific ITLB error

• Implementation-specific DTLB miss

• Implementation-specific DTLB error

• External interrupt, recognized when MSR[EE] = 1

• Alignment exception

• Program exception

• Floating-point unavailable exception

• Decrementer interrupt, recognized when MSR[EE] = 1

• System call exception

MPC855T User’s Manual

Development System Interface

• Trace, asserted when in single or branch trace mode, as described in
Section 6.1.2.10, “Trace Exception (0x00D00)”

• Implementation-dependent software emulation exception

• Instruction breakpoint. Recognized only when MSR[RI] = 1, when breakpoints are
maskable. Nonmaskable breakpoints are always recognized.

• Load/store breakpoint. Recognized only when MSR[RI] = 1, when breakpoints are
maskable. Nonmaskable breakpoints are always recognized.

• Maskable breakpoint from the development port generated by external modules are
recognized only when MSR[RI] = 1

• Development port nonmaskable interrupt resulting from a debug station request.
Useful in some catastrophic events like an endless loop when MSR[RI] = 0. This
may cause the machine to enter a nonrestartable state. See Section 6.1.5,
“Recoverability after an Exception.”

The processor enters debug mode when at least one ICR bit is set, the corresponding DER
bit is enabled, and debug mode is enabled. When debug mode is enabled and an enabled
event occurs, the processor waits until its pipeline is empty before fetching instructions
from the development port. Section Chapter 6, “Exceptions,” gives the exact SRR0 and
SRR1 values. If the core is in debug mode, the freeze indication is asserted, causing any
properly programmed peripheral to stop. The development port should read the value of the
ICR to get the cause of the debug mode entry. Reading the ICR clears all of its bits.

44.3.1.3 Debug Mode Indication

The fact that the core is in debug mode is broadcast to the external world using the value
0b11 on the VFLS pins. Debug mode indication will also be given on the FRZ pin. Note,
however, that the FRZ indication can also be used by software monitors, as described in
Section 44.4, “Software Monitor Debugger Support.”

44.3.1.4 Checkstop State and Debug Mode

The core enters checkstop state if the machine check interrupt is disabled (MSR[ME] = 0)
and a machine check interrupt is detected. However, if DER[CKSTPE] is also set, the core
enters debug mode rather then the checkstop state. Table 44-9 shows the various actions the
core can take when a machine check interrupt is detected.

Table 44-9. Checkstop State and Debug Mode

MSR[ME]
Debug Mode

Enable
DER[CHSTPE] DER[MCIE]

Core Response to Machine Check
Interrupt

ICR Value

0 0 X X Enter the checkstop state 0x20000000

1 0 X X Branch to machine check interrupt 0x10000000

0 1 0 X Enter checkstop state 0x20000000

Chapter 44. System Development and Debugging

Development System Interface

44.3.1.5 Saving Machine State when Entering Debug Mode

If any load/store-type exception causes the store to enter debug mode, the critical
information in DAR and DSISR must be saved before any other operation is performed.
Failing to do so can cause information loss if the development software encounters another
load/store-type exception. Because exceptions are treated differently in debug mode, there
is no need to save SRR0 and SRR1.

44.3.1.6 Running in Debug Mode

When running in debug mode, all fetch cycles access the development port, regardless of
the cycle’s actual address. All load/store cycles access the real memory system according
to the cycle’s address. The data register of the development port is mapped as an SPR and
is accessed using mtspr and mfspr via special load/store cycles (see Table 44-14).

Exceptions are treated differently in debug mode; the ICR is updated on recognition of an
exception according to the event that caused it. A special error indication (ICR_OR) is
asserted for one clock cycle to notify the development port when an exception occurs.
Execution continues in debug mode without changing SRR0 and SRR1. To allow the
development system to detect the excepting instruction, ICR_OR is asserted before the next
fetch. Not all exceptions are recognized in debug mode. Hardware does not generate
breakpoints and watchpoints in debug mode, regardless of the value of MSR[RI]. On
entering debug mode, MSR[EE] is cleared, forcing hardware to ignore external and
decrementer interrupts.

Note that debug software must not set MSR[EE] in debug mode because the external
interrupt event is a level signal. Because the core only reports and does not handle
exceptions in debug mode, core hardware does not clear MSR[EE]. This event, if enabled,
is recognized on every clock. When ICR_OR is asserted the development station should
read the ICR to find what event caused the exception. Because SRR0 and SRR1 do not
change, if an exception is recognized in debug mode, they change only once when entering
debug mode. However, saving SRR0 and SRR1 when entering debug mode is unnecessary.

44.3.1.7 Exiting Debug Mode

The rfi instruction is used to exit from debug mode to return to the normal processor
operation and to negate the freeze indication. The development system may monitor the

0 1 1 X Enter debug mode 0x20000000

1 1 X 0 Branch to machine check interrupt 0x10000000

1 1 X 1 Enter debug mode 0x10000000

Table 44-9. Checkstop State and Debug Mode (continued)

MSR[ME]
Debug Mode

Enable
DER[CHSTPE] DER[MCIE]

Core Response to Machine Check
Interrupt

ICR Value

MPC855T User’s Manual

Development System Interface

FRZ or FLS pins to make sure the MPC855T is out of debug mode. It is the responsibility
of the debugger to read the ICR before performing the rfi instruction. Failing to do so forces
the core to immediately reenter debug mode and to reassert the freeze indication if an
asserted ICR bit has a corresponding enable bit set in the DER.

44.3.2 Development Port Communication

The development port provides a full duplex serial interface for communications between
the internal development support logic and an external development tool. Figure 44-5
shows the relationship of the development support logic to the rest of the core. For clarity,
the development port support logic is shown as a separate block.

44.3.2.1 Development Port Pins

The following development port pin functions are provided:

• Development serial clock

• Development serial data in

• Development serial data out

• Freeze

44.3.2.1.1 Development Serial Clock (DSCK)

DSCK is used at reset to enable debug mode, which can be entered either immediately
following reset or for event-driven entry into debug mode as described in Section 44.3.1.2,
“Entering Debug Mode.” The DSCK input must be driven either high or low at all times and
must not be allowed to float. A typical target environment would pull this input low with a
resistor. When the development port is in asynchronous clocked mode, the development
serial clock (DSCK) is used to shift data into and out of the development port shift register.
At the same time, the new msb of the shift register is presented at the DSDO pin.

The clock may be implemented as a free-running or gated clock. As discussed in
Section 44.3.2.4, “Development Port Serial Communications–Trap Enable Mode,” and
Section 44.3.2.5, “Development Port Serial Communications–Debug Mode,” data shifting
is controlled by the ready and start signals, so the clock does not need to be gated with the
serial transmissions.

44.3.2.1.2 Development Serial Data In (DSDI)

External logic presents data to be transferred into the development port shift register at the
development serial data in pin (DSDI). When driven asynchronously with the system clock,
data presented to DSDI must be stable at setup time before the rising edge of DSCK and at
hold time after the rising edge of DSCK. When driven synchronously to the system clock,
data must be stable on DSDI or a setup time before system clock output (CLKOUT) rising

Chapter 44. System Development and Debugging

Development System Interface

edge and a hold time after the rising edge of CLKOUT. DSDI is also used at reset to select
the development port clock mode. See Section 44.3.2.3, “Development Port Serial
Communications–Clock Mode.”

44.3.2.1.3 Development Serial Data Out (DSDO)

Debug mode logic uses the development serial data out pin (DSDO) to shift data out of the
development port shift register. DSDO transitions are synchronous with DSCK or
CLKOUT, depending on the clock mode.

44.3.2.1.4 Freeze

The freeze indication means that the processor is in debug mode (normal processor
execution of user code is frozen). Freeze state is indicated on FRZ and is generated
synchronously to the system clock. This indication can be used to halt any off-chip device
while in debug mode and is a handshake between the debug tool and port. In addition to
FRZ, the freeze state is indicated by the value 0b11 on VFLS[0–1], shown in Figure 44-8.

Internal freeze status can also be monitored through status in the data shifted out of the
debug port.

44.3.2.2 Development Port Registers

 The development port consists logically of three registers:

• The trap enable control register (TECR)

• The development port instruction register (DPIR)

• Development port data register (DPDR)

DPIR and DPDR are both implemented as the development port shift register, which also
acts as a temporary holding register for data to be stored in the TECR.

44.3.2.2.1 Development Port Shift Register

Instructions and data are serially shifted into the 35-bit development port shift register from
the DSDI. DSCK or CLKOUT is the shift clock, depending on the debug port clock mode.
See Section 44.3.2.3, “Development Port Serial Communications–Clock Mode.”

VFLS0 • 1 2 • SRESET FRZ • 1 2 • SRESET

GND • 3 4 • DSCK GND • 3 4 • DSCK

GND • 5 6 • VFLS1 GND • 5 6 • FRZ

HRESET • 7 8 • DSDI HRESET • 7 8 • DSDI

VDD • 9 10 • DSDO VDD • 9 10 • DSDO

Figure 44-8. Development Port/BDM Connector Pinout Options

MPC855T User’s Manual

Development System Interface

The instructions or data are then transferred in parallel to the core and TECR. When the
processor enters debug mode it fetches instructions from DPIR that cause an access to the
development port shift register. These instructions are serially loaded into the shift register
from DSDI using DSCK or CLKOUT as the shift clock. Similarly, data is transferred to the
core. Data is shifted into the shift register and read by the processor by executing
mfspr[DPDR]. Data is also parallel loaded into the development port shift register from
the core by executing mtspr[DPDR]. It is then serially shifted out to DSDO using DSCK
or CLKOUT as the shift clock.

44.3.2.2.2 Trap Enable Control Register (TECR)

The TECR is a 9-bit register that is loaded from the development port shift register. The
contents of TECR drives the six trap enable signals, two breakpoint signals, and VSYNC
signal to the core. The transfer data to TECR commands send the appropriate bits to the
TECR. The TECR is not accessed by the core, but supplies signals to the core. The trap
enable bits, VSYNC bit, and the breakpoint bits of this register are loaded from the
development port shift register as the result of trap enable mode transmissions. The trap
enable bits are reflected in ICTRL and LCTRL2. Section 44.5.1.1, “Comparator A–H Value
Registers (CMPA–CMPH),” describes support registers.

44.3.2.2.3 Development Port Registers Decode

The development port shift register is selected when the core accesses DPIR or DPDR.
Accesses to either register occur in debug mode and appears on the internal bus as an
address and the assertion of an address attribute signal indicating that an SPR is being
accessed. In debug mode, the core reads the DPIR to fetch all instructions; it reads and
writes to the DPDR to transfer data between the core and external development tools. DPIR
and DPDR are pseudo-registers; decoding either causes the development port shift register
to be accessed. Debug mode logic knows whether the core is fetching instructions or
reading or writing data. A sequence error is signaled to the external development tool when
the core expected result and the GPR results do not match, for example if an instruction is
received when data is expected.

44.3.2.3 Development Port Serial Communications–Clock Mode

All development port serial transmissions are synchronous communications. The
development port supports two ways to clock serial transmissions.

44.3.2.3.1 Asynchronous Clocked Mode—Using DSCK

The first clock mode is called asynchronous clocked since the input clock DSCK is
asynchronous with CLKOUT. To ensure that data on DSDI is sampled correctly, transitions
on DSDI must meet all setup and hold times with respect to the rising edge of DSCK. This
clock mode allows communications with the port from a development tool which does not

Chapter 44. System Development and Debugging

Development System Interface

have access to CLKOUT or where CLKOUT has been delayed or skewed. Figure 44-9
shows the serial communications asynchronous clocked timing.

Figure 44-9. Asynchronous Clocked Serial Communications

44.3.2.3.2 Synchronous Self-Clocked Mode—Using CLKOUT

The second clock mode is called synchronous self-clocked and does not require an input
clock. Instead, the port is clocked by the system clock. The DSDI input is required to meet
setup and hold time requirements with respect to CLKOUT rising edge. The data rate for
this mode is always the same as the system clock. The timing diagram in Figure 44-10
shows the serial communications synchronous self-clocked timing.

DSCK

DSDI MODE CNTRL DI<0>

S<0> S<1> DO<0>

START

READYDSDO

Debug port drives the “ready” bit onto DSDO when ready for a new transmission.

NOTE: DSCK and DSDI transitions are not required to be synchronous with CLKOUT.

DI<N-2> DI<N-1> DI<N>

DO<N-2>DO<N-1> DO<N>

Debug Port detects the “start” bit on DSDI and follows the
 “ready” bit with two status bits and 7 or 32 output data bits.

Development Tool drives the “start” bit on DSDI (after detecting the “ready” bit
on DSDO when in debug mode). The “start bit is immediately followed by a
mode bit and a control bit and then 7 or 32 input data bits.

MPC855T User’s Manual

Development System Interface

Figure 44-10. Synchronous Self-Clocked Serial Communications

44.3.2.3.3 Selection of Development Port Clock Mode

The selection of clocked or self-clocked mode is made at reset. The state of the DSDI input
is latched eight clocks after negation of SRESET. If it is latched low, asynchronous clocked
mode is enabled. If it is latched high, then synchronous self-clocked mode is enabled. The
timing diagram in Figure 44-11 shows the clock mode selection after reset.

Figure 44-11. Enabling Clock Mode after Reset

Since DSDI is used to select the development port clock scheme, it is necessary to prevent
any transitions on DSDI during clock mode select. The port will not begin scanning for the
start bit of a serial transmission until 16 clocks after the negation of SRESET. If DSDI is

CLKOUT

Debug port drives the ready bit onto DSDO when the core starts a read of DPIR or DPDR.

DSDI MODE CNTRL DI<0>START DI<1>

S<0> S<1> DO<0>READYDSDO DO<1>

DO<N>
DO<N-1>

DO<N-2>
DO<N-3>

DI<N>
DI<N-1>

DI<N-2>
DI<N-3>

Debug port detects the start bit on DSDI and follows the ready
bit with two status bits and 7 or 32 output data bits.

Development tool drives the start bit onto DSDI (after detecting the ready bit on
DSDO when in debug mode). The start bit is immediately followed by a mode bit
and a control bit and then 7 or 32 input data bits.

DSDI

CLKOUT

SRESET

 DSDI is used after SRESET negation to select clock mode.

CLKEN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If DSDI is high, self-clocked mode is selected first start bit detected after DSDI negation.

If DSDI is slow, the internal asynchronous clock enable signal asserts 8 clocks after SRESET negation.
This enables asynchronous clock mode.

Chapter 44. System Development and Debugging

Development System Interface

asserted 16 clocks after SRESET negates, the port waits until DSDI is negated to begin
scanning for the start bit.

44.3.2.4 Development Port Serial Communications–Trap Enable
 Mode

When not in debug mode, the development port begins communicating by setting DSDO
(the msb of the 35-bit development port shift register) low to indicate that all activity related
to the previous transmission is complete and that a new transmission can begin. The start
of a serial transmission from an external development tool to the development port is
signaled by a start bit. A mode bit in the transmission defines it as either a trap enable mode
transmission or a debug mode transmission. If the mode bit is set, the transmission will be
10 bits long and only seven data bits will be shifted into the shift register. These seven bits
will be latched into the TECR. A control bit determines whether the data is latched into the
trap enable and VSYNC bits of the TECR or into the breakpoints bits of the TECR.

44.3.2.4.1 Serial Data Into Development Port

The development port shift register is 35 bits wide, but trap enable mode transmissions only
use 10 of the 35 bits as the following—the start/ready bit, a mode/status bit, a control/status
bit, and the 7 least-significant data bits.

Table 44-10 shows the encoding of trap data shifted into the (through DSDI).
Table 44-10. Trap Enable Data Shifted into Development Port Shift Register

Start Mode Control

1st 2nd 3rd 4th 1st 2nd

VSYNC FunctionInstruction Data

Watchpoint Trap Enables

1 1 0 0 = Disabled
1 = Enabled

Transfer data to trap enable
control register

MPC855T User’s Manual

Development System Interface

Table 44-11 shows the encoding of debug port command data shifted into the development
port shift register.

The watchpoint trap enables and VSYNC functions are described in Section 44.2,
“Watchpoints and Breakpoints Support,” and Section 44.1, “Tracking Program Flow.” The
debug port command function allows the development tool to either assert or negate
breakpoint requests, reset the processor, activate or deactivate the fast download procedure.

44.3.2.4.2 Serial Data Out of Development Port

In trap enable mode there is no data from the core out of the development port. Data out of
the development port in the trap enable mode is shown in Table 44-12.

The “Valid Data from Core” and “Core Interrupt” functions cannot occur in trap enable
mode. When not in debug mode, the sequencing error encoding indicates that the

Table 44-11. Debug Port Command Shifted Into Development Port Shift Register

Start Mode Control Extended Opcode Major Opcode Function

1 1 1 x x 00000 NOP

00001 HRESET request

00010 SRESET request

0 x 00011 Reserved

1 0 00011 End download procedure

1 1 00011 Start download procedure

x x 00100–11110 Reserved

x 0 11111 Negate maskable breakpoint

x 1 11111 Assert maskable breakpoint

0 x 11111 Negate nonmaskable breakpoint

1 x 11111 Assert nonmaskable breakpoint

Table 44-12. Status/Data Shifted Out of Development Port Shift Register

Ready
Status
[0–1]

Data
Function

Bit 0 Bit 1 Bits 2–31 or 2–6 Depending on Input Mode

(0) 0 0 Data Valid data from core

(0) 0 1 Freeze
status 1

1 The freeze status is 1 when the core is in debug mode. Otherwise it is 0.

Download
procedure in
progress 2

2 The “Download Procedure In Progress” status is asserted (0) when the debug port in the download procedure is
negated. Otherwise it is set to 1.

1s Sequencing error

(0) 1 0 1s Core interrupt

(0) 1 1 1s Null

Chapter 44. System Development and Debugging

Development System Interface

transmission from the external development tool was a debug mode transmission. When a
sequencing error occurs the development port ignores the data shifted in while the
sequencing error is shifting out and is treated as a no-op function. The null output encoding
is used to indicate that the previous transmission had no associated errors. When not in
debug mode, ready is asserted at the end of each transmission. If debug mode is not enabled
and transmission errors can be guaranteed not to occur, the status output is not needed.

44.3.2.5 Development Port Serial Communications–Debug Mode

Debug mode is a superset of trap enable mode. All of the trap enable mode functionality is
available, with the following additions.

• In debug mode, the development port starts communications by setting DSDO low
to indicate that the core is trying to read an instruction from DPIR or data from
DPDR.

• When the core writes data to the port to be shifted out, the ready bit is not set.
Instead, the port waits for the core to read the next instruction before asserting ready.
This allows duplex operation of the serial port and lets the port control all
transmissions from the external development tool. After detecting this ready status
the external development tool begins transmitting to the development port with a
start bit (logic high) on DSDI.

44.3.2.5.1 Serial Data Into Development Port

In debug mode the 35 bits of the development port shift register are interpreted as a
start/ready bit, a mode/status bit, a control/status bit, and 32 bits of data. All instructions
and data for the core are sent with the mode bit cleared indicating a 32-bit data field.
Table 44-13 shows the encoding of data shifted into the development port shift register
through DSDI. Data values in the last two functions other than those specified are reserved.

Transmissions from the debug port on DSDO begin with a zero or ready bit, indicating that
the core is trying to read an instruction or data from the port. The external development tool

Table 44-13. Debug Instructions/Data Shifted Into Development Port Shift Register

Start Mode Control
Instruction/Data (32 Bits)

Function
Bits 0–6 Bits 7–31

1 0 0 Core instruction Transfer instruction to core

1 0 1 Core data Transfer data to core

1 1 0 Trap enable bits Not exist Transfer data to trap enable control register

1 1 1 0b001_1111 Not exist Negate breakpoint requests to core

1 1 1 0 Not exist NOP

Note: See Table 44-10 for details on trap enable bits.

MPC855T User’s Manual

Development System Interface

must wait until it sees DSDO go low before sending the next transmission. The control bit
distinguishes instructions from data, allowing the development port to detect that an
instruction was entered when the core was expecting data and vice versa. If this occurs, a
sequence error indication is shifted out in the next serial transmission. The trap enable
function allows the development port to transfer data to the trap enable control register. The
debug port command function allows the development tool to either negate breakpoint
requests, reset the processor, activate, or deactivate the fast download procedure. The NOP
function provides a null operation for use when there is data or a response to be shifted out
of the data register. The appropriate next instruction or command will be determined by the
value of the response or data shifted out.

44.3.2.5.2 Serial Data Out of Development Port

The encoding of data shifted out of the development port shift register in debug mode is the
same as for trap enable mode, as shown in Table 44-12. The valid data encoding is used
when data has been transferred from the core to the development port shift register as the
result of an instruction to move the contents of a GPR to the DPDR. The valid data encoding
has the highest priority of all status outputs and is reported even if an interrupt occurs at the
same time. Because a sequencing error cannot occur when data is valid, there is no priority
conflict with the sequencing error status. Also, an interrupt recognized when there is valid
data is not related to the execution of an instruction, therefore, a valid data status is output
and the interrupt status is saved for the next transmission.

The sequencing error encoding indicates that the inputs from the external development tool
are not what the development port and/or the core was expecting. There are two possible
causes for this error:

• The processor was trying to read instructions and data was shifted into the
development port.

• The processor was trying to read data and an instruction was shifted into the
development port.

Nonetheless, the port terminates the read cycle with a bus error. In turn, this bus error causes
the core to signal that an interrupt exception occurred. Because a status of sequencing error
is of higher priority than an exception, the port reports the sequencing error first and the
core interrupt on the next transmission. The development port ignores the command,
instruction, or data shifted in while the sequencing error or core interrupt is shifted out. The
next transmission, after all error status is reported to the port, should be a new instruction,
trap enable, or command.

The interrupt occurred encoding indicates that the core encountered an interrupt during the
execution of the previous instruction in debug mode. Interrupts may occur as the result of
instruction execution (such as unimplemented opcode or arithmetic error), because of a
memory access fault, or from an unmasked external interrupt. When an interrupt occurs the
development port ignores the command, instruction, or data shifted in while the interrupt

Chapter 44. System Development and Debugging

Development System Interface

encoding was shifting out. The next transmission to the port should be a new instruction,
trap enable, or debug port command. Finally, the null encoding indicates that no data was
transferred from the core to the development port shift register.

44.3.2.5.3 Fast Download Procedure

The fast download procedure downloads a block of data from the debug tool into the system
memory by repeating the sequence of transactions shown in Figure 44-12 from the
development tool to the debug port for the number of data words to be downloaded.

Figure 44-12. Download Procedure Code Example

In this example, RX = r31 and RY = r30. The sequence is repeated until the end download
procedure command is issued to the debug port. GPR31 temporarily stores the data value.
Before issuing the start download procedure command, the value of the first memory block
address -4 must be written into GPR30. To end the download, an end download procedure
command should be issued to the debug port and an additional data transaction should be
sent by the development tool. This data word is not placed into system memory, but it is
needed to stop the procedure.

For large blocks of data this sequence may take a long time to complete. The fast download
procedure can reduce this time by eliminating the need to transfer instructions in the loop
to the debug port. The only transactions needed are those that transfer the data to be placed
in the system memory. Figure 44-13 shows the time benefit of the fast download procedure.

Figure 44-13. Fast and Slow Download Procedure Loops

INIT: Save RX, RY
RY <- Memory Block address- 4

•••
repeat: mfspr RX, DPDR

DATA word to be moved to memory
stwu RX, 0x4(RY)

until here
•••
Restore RX,RY

External
DATATransaction

Internal
Activity

External
MFSPR DATA STWUTransaction

Internal
Activity

Slow Download Procedure LoopSlow Download Procedure Loop

Fast Download Procedure Loop

MPC855T User’s Manual

Software Monitor Debugger Support

44.4 Software Monitor Debugger Support
With debug mode disabled, a software monitor debugger can use the development support
features defined in the core; all events result in regular exception handling (the processor
resumes execution in the corresponding interrupt handler). The ICR and DER influence
only the assertion and negation of the freeze signal.

44.4.1 Freeze Indication

The internal freeze signal connects to all relevant internal modules, which can be
programmed to stop all operations in response to the assertion of the freeze signal. To
enable a software monitor debugger to broadcast the fact that debug software has executed,
it is possible to assert and negate the internal freeze signal when debug mode is disabled.

The assertion of the freeze signal is broadcast externally over FRZ. As shown in
Figure 44-6, the ICR and DER control assertion and negation of the freeze signal when
debug mode is disabled. To assert the freeze signal, software must program the relevant
DER bits, but to negate the freeze line, the software must read the ICR to clear it and
execute an rfi. If the ICR is not cleared before the rfi is executed, the freeze signal is not
negated. Therefore, it is possible to nest inside a software monitor debugger without
affecting the value of the freeze line, even though rfi may execute a few times. Only before
the last rfi instruction does software need to clear the ICR. The above mechanism allows
software to accurately control the assertion and negation of the freeze line.

44.5 Development Support Programming Model
The MPC855T implements a set of SPRs, shown in Table 44-14, that support debugging
and reside in the control registers space. They can be accessed using mtspr and mfspr.

Table 44-14. MPC855T-Specific Development Support and Debug SPRs

SPR Number
Name Serialization Performed in Response to Access

Decimal SPR [5–9] SPR [0–4]

Development Support Registers

144 00100 10000 CMPA Fetch sync on write

145 00100 10001 CMPB Fetch sync on write

146 00100 10010 CMPC Fetch sync on write

147 00100 10011 CMPD Fetch sync on write

150 00100 10110 COUNTA Fetch sync on write

151 00100 10111 COUNTB Fetch sync on write

152 00100 11000 CMPE Write: Fetch sync
Read: Sync relative to load/store operations

Chapter 44. System Development and Debugging

Development Support Programming Model

The development support/debug registers are protected as described in Table 44-15. Note
the special behavior of the ICR and DPDR.

153 00100 11001 CMPF Write: Fetch sync
Read: Sync relative to load/store operations

154 00100 11010 CMPG Write: Fetch sync
Read: Sync relative to load/store operations

155 00100 11011 CMPH Write: Fetch sync
Read: Sync relative to load/store operations

156 00100 11100 LCTRL1 Write: Fetch sync
Read: Sync relative to load/store operations

157 00100 11101 LCTRL2 Write: Fetch sync
Read: Sync relative to load/store operations

158 00100 11110 ICTRL Fetch sync on write

159 00100 11111 BAR Write: Fetch sync
Read: Sync relative to load/store operations. See
Section 4.1.2.1, “DAR, DSISR, and BAR Operation.”

Debug Registers

148 00100 10100 ICR Fetch sync on write

149 00100 10101 DER Fetch sync on write

630 10011 10110 DPDR Read and Write

Table 44-15. Development Support/Debug Registers Protection

Operation MSR[PR]
Debug Mode

Enable
In Debug

Mode
Result

Read
register

0 0 X Read is performed. (When reading ICR, it is also cleared.)

0 1 0 Read is performed. (When reading ICR, it is not cleared.)

0 1 1 Read is performed. (When reading ICR, it is also cleared.)

1 X X Read is not performed, program interrupt is generated. (When
reading ICR, it is not cleared.)

Write
register

0 0 X Write is performed. (Write to ICR or DPDR is ignored, the
register is not modified and no interrupt is generated.)

0 1 0 Write is ignored.

0 1 1 Write is performed. (Write to ICR is ignored, the register is not
modified and no interrupt is generated.)

1 X X Write is not performed, program interrupt is generated.

Table 44-14. MPC855T-Specific Development Support and Debug SPRs (continued)

SPR Number
Name Serialization Performed in Response to Access

Decimal SPR [5–9] SPR [0–4]

MPC855T User’s Manual

Development Support Programming Model

44.5.1 Development Support Registers

The following sections describe the development support registers.

44.5.1.1 Comparator A–H Value Registers (CMPA–CMPH)

The comparator value registers (CMPA–CMPH) hold the instruction and data to be used in
comparisons. Figure 44-14 shows CMPA–CMPD, which are used for instruction address
bus comparisons. Because instructions are 32 bits wide (word), bits 30–31 are not used.

Table 44-16 describes CMPA–CMPD fields.

Figure 44-15 shows CMPE–CMPF, which are used for load/store address bus comparisons.

Table 44-17 describes CMPE–CMPF fields.

Bit 0 1 2 3 4 5 6 … 29 30 31

Field CMPV —

Reset Undefined

R/W R/W

SPR 144 (CMPA), 145 (CMPB), 146 (CMPC), 147 (CMPD)

Figure 44-14. Comparator A–D Value Register (CMPA–CMPD)

Table 44-16. CMPA–CMPD Field Descriptions

Bits Name Description

0–29 CMPV Address bits to be compared.

30–31 — Reserved.

Bit 0 1 2 3 4 5 6 7 8 9 … 31

Field CMPV

Reset Undefined

R/W R/W

SPR 152 (CMPE),153 (CMPF)

Figure 44-15. Comparator E–F Value Registers (CMPE–CMPF)

Table 44-17. CMPE–CMPF Field Descriptions

Bits Name Description

0–31 CMPV Address bits to be compared.

Chapter 44. System Development and Debugging

Development Support Programming Model

Figure 44-15 shows CMPG–CMPH, which are used for load/store data bus comparisons.

Table 44-18 describes CMPG–CMPH fields.

44.5.1.2 Breakpoint Address Register (BAR)

The breakpoint address register (BAR), shown in Figure 44-17, is used to hold the address
of the load/store cycle that generated a breakpoint.

Table 44-19 describes BAR fields,

Bit 0 1 2 3 4 5 6 7 8 9 … 31

Field CMPV

Reset Undefined

R/W R/W

SPR 154 (CMPG),155 (CMPH)

Figure 44-16. Comparator G–H Value Registers (CMPG–CMPH)

Table 44-18. CMPG–CMPH Field Descriptions

Bits Name Description

0–31 CMPV Data bits to be compared.

Bit 0 1 2 3 4 5 6 7 8 9 … 31

Field BARV

Reset Undefined

R/W R/W

SPR 159

Figure 44-17. Breakpoint Address Register (BAR)

Table 44-19. BAR Field Descriptions

Bits Name Description

0–31 BARV The address of the load/store cycle that generated the breakpoint.

MPC855T User’s Manual

Development Support Programming Model

44.5.1.3 Instruction Support Control Register (ICTRL)

The instruction support control register (ICTRL), shown in Figure 44-18, is used to
configure instruction breakpoint operations.

Table 44-20 describes ICTRL fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field CTA CTB CTC CTD IW0 IW1

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field IW2 IW3 SIW0EN SIW1EN SIW2EN SIW3EN DIW0EN DIW1EN DIW2EN DIW3EN IFM ISCT_SER

Reset 0000_0000_0000_0000

R/W R/W

SPR 158

Figure 44-18. Instruction Support Control Register (ICTRL)

Table 44-20. ICTRL Field Descriptions

Bits Name Description

0–2 CTA Compare type of comparator A–D
0xx Not active (reset value)
100 Equal
101 Less than
110 Greater than
111 Not equal

3–5 CTB

6–8 CTC

9–11 CTD

12–13 IW0 Instruction first watchpoint programming.
0x Not active (reset value)
10 Match from comparator A
11 Match from comparators (A & B)

14–15 IW1 Instruction second watchpoint programming.
0x Not active (reset value)
10 Match from comparator B
11 Match from comparators (A | B)

16–17 IW2 Instruction third watchpoint programming.
0x Not active (reset value)
10 Match from comparator C
11 Match from comparators (C & D)

18–19 IW3 Instruction fourth watchpoint programming.
0x Not active (reset value)
10 Match from comparator D
11 Match from comparators (C | D)

20 SIW0EN Software trap enable selection of instruction watchpoints 0–3.
0 Trap disabled (reset value)
1 Trap enabled21 SIW1EN

22 SIW2EN

23 SIW3EN

Chapter 44. System Development and Debugging

Development Support Programming Model

44.5.1.4 Load/Store Support Comparators Control Register
 (LCTRL1)

The load/store support comparators control register (LCTRL1), shown in Figure 44-19, is
used to configure load/store address breakpoint operations.

24 DIW0EN Development port trap enable selection of the instruction watchpoints 0–3 (read-only bit).
0 Trap disabled (reset value)
1 Trap enabled25 DIW1EN

26 DIW2EN

27 DIW3EN

28 IFM Ignore first match, only for instruction breakpoints.
0 Do not ignore first match, used for “go to x” (reset value).
1 Ignore first match (used for “continue”).

29–31 ISCT_SER Instruction fetch show cycle/core serialize control. Changing the instruction show cycle
programming takes effect only from the second instruction after the mtspr[ICTRL].
000 Core is fully serialized; show cycle is performed for all fetched instructions (reset value).
001 Core is fully serialized; show cycle is performed for all changes in program flow.
010 Core is fully serialized; show cycle is performed for all indirect changes in program flow.
011 Core is fully serialized; no show cycles is performed for fetched instructions.
100 Illegal.
101 Core is not serialized (normal mode); show cycle is performed for all changes in the

program flow. If the fetch of the target of a direct branch is aborted by the core (because
of an exception), the target is not always visible on the external pins. Program trace is not
affected by this phenomenon.

110 Core is not serialized (normal mode; show cycle is performed for all indirect changes in
program flow.

111 Core is not serialized (normal mode); no show cycle is performed for fetched instructions.
When ISCT_SER = 010 or 110, the STS functionality of OP2/MODCK1/STS must be enabled
by writing 10 or 11 to SIUMCR[DBGC]. The address on the external bus should be sampled
only when STS is asserted.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field CTE CTF CTG CTH CRWE CRWF

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field CSG CSH SUSG SUSH CGBMSK CHBMSK —

Reset 0000_0000_0000_0000

R/W R/W

SPR 156

Figure 44-19. Load/Store Support Comparators Control Register (LCTRL1)

Table 44-20. ICTRL Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Development Support Programming Model

Table 44-21 describes LCTRL1 fields.

44.5.1.5 Load/Store Support AND-OR Control Register (LCTRL2)

The load/store support AND-OR control register (LCTRL2), shown in Figure 44-21, is
used to configure load/store watchpoint operations.

Table 44-21. LCTRL1 Field Descriptions

Bits Name Description

0–2 CTE Compare type, comparators E–H. 0xxNot active (reset value)
100 Equal
101 Less than
110 Greater than
111 Not equal

3–5 CTF

6–8 CTG

9–11 CTH

12–13 CRWE Select match on read/write of comparators E and F.
0x Don’t care (reset value)
10 Match on read
11 Match on write

14–15 CRWF

16–17 CSG Compare size, comparator G and H.
00 Reserved
01 Word
10 Half-word
11 Byte

18–19 CSH

20 SUSG Signed/unsigned operating mode for comparator G and H.
0 Unsigned
1 Signed21 SUSH

22–25 CGBMSK Byte mask for comparator G and H.
0000 All bytes are not masked
0001 Last byte of the word is masked
…
1111 All bytes are masked

26–29 CHBMSK

30–31 — Reserved

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field LW0EN LW0IA LW0IADC LW0LA LW0LADC LW0LD LW0LDDC LW1EN LW1IA LW1IADC LW1LA

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field LW1LADC LW1LD LW1LDDC BRKNOMSK — DLW0EN DLW1EN SLW0EN SLW1EN

Reset 0000_0000_0000_0000

R/W R/W

SPR 157

Figure 44-20. Load/Store Support AND-OR Control Register (LCTRL2)

Chapter 44. System Development and Debugging

Development Support Programming Model

Table 44-22 describes LCTRL2 fields.
Table 44-22. LCTRL2 Field Descriptions

Bits Name Description

0 LW0EN First load/store watchpoint enable bit.
0 Watchpoint not enabled (reset value)
1 Watchpoint enabled

1–2 LW0IA First load/store watchpoint instruction watchpoint selection.
00 First instruction watchpoint
01 Second Instruction watchpoint
10 Third instruction watchpoint
11 Fourth Instruction watchpoint

3 LW0IADC First load/store watchpoint care/don’t care instruction events.
0 Don’t care
1 Care

4–5 LW0LA First load/store watchpoint load/store address events selection.
00 Match from comparator E
01 Match from comparator F
10 Match from comparators (E & F)
11 Match from comparators (E | F)

6 LW0LADC First load/store watchpoint care/don’t care load/store address events.
0 Don’t care
1 Care

7–8 LW0LD First load/store watchpoint load/store data events selection.
00 Match from comparator G
01 Match from comparator H
10 Match from comparators (G & H)
11 Match from comparators (G | H)

9 LW0LDDC First load/store watchpoint care/don’t care load/store data events.
0 Don’t care
1 Care

10 LW1EN Second load/store watchpoint enable bit.
0 Watchpoint not enabled (reset value)
1 Watchpoint enabled

11–12 LW1IA Second load/store watchpoint load/store address watchpoint selection.
00 First instruction watchpoint
01 Second instruction watchpoint
10 Third instruction watchpoint
11 Fourth instruction watchpoint

13 LW1IADC Second load/store watchpoint care/don’t care load/store address events.
0 Don’t care
1 Care

14–15 LW1LA Second load/store watchpoint load/store address events selection.
00 Match from comparator E
01 Match from comparator F
10 Match from comparators (E & F)
11 Match from comparators (E | F)

16 LW1LADC Second load/store watchpoint care/don’t care load/store address events.
0 Don’t care
1 Care

MPC855T User’s Manual

Development Support Programming Model

Programming each watchpoint consists of three control register fields—LWxIA, LWxLA,
and LWxLD. All three conditions must be detected to assert a watchpoint.

17–18 LW1LD Second load/store watchpoint load/store data events selection.
00 Match from comparator G
01 Match from comparator H
10 Match from comparators (G & H)
11 Match from comparator (G | H)

19 LW1LDDC Second load/store watchpoint care/don’t care load/store data events.
0 Don’t care
1 Care

20 BRKNOMSK Internal breakpoints nonmask bit (controls both instruction and load/store breakpoints).
0 Masked mode, breakpoints are recognized only when MSR[RI] =1 (reset value).
1 Nonmasked mode, breakpoints are always recognized.

21–27 — Reserved

28 DLW0EN Development port trap enable selection of the first load/store watchpoint (read-only bit).
0 Trap disabled (reset value)
1 Trap enabled

29 DLW1EN Development port trap enable selection of the second load/store watchpoint (read-only bit).

30 SLW0EN Software trap enable selection of the first load/store watchpoint.
0 Trap disabled (reset value)
1 Trap enabled

31 SLW1EN Software trap enable selection of the second load/store watchpoint.
0 Trap disabled (reset value)
1 Trap enabled

Table 44-22. LCTRL2 Field Descriptions (continued)

Bits Name Description

Chapter 44. System Development and Debugging

Development Support Programming Model

44.5.1.6 Breakpoint Counter Value and Control Registers
 (COUNTA/COUNTB)

The breakpoint counter value and control registers (COUNTA/COUNTB), shown in
Figure 44-21, can be programmed with the preset count value and counter source.

Table 44-23 describes COUNTA and COUNTB fields.

44.5.2 Debug Mode Registers

The debug registers are described in the following sections.

44.5.2.1 Interrupt Cause Register (ICR)
The ICR indicates the reason that debug mode was entered. ICR bits are set by the hardware and cleared when the
register is read. Attempts to write to ICR are ignored. All bits are cleared when exiting reset.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field CNTCV

Reset Undefined

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — CNTC

Reset 0000_0000_0000_0000

R/W R/W

SPR 150 (COUNTA), 151 (COUNTB)

Figure 44-21. Breakpoint Counter Value and Control Registers (COUNTA/COUNTB)

Table 44-23. COUNTA/COUNTB Field Descriptions

Bits Name Description

0–15 CNTV Counter preset value

16–29 — Reserved

30–31 CNTC Counter source select
00 Not active (reset value)
01 Instruction first (COUNTA)/second (COUNTB) watchpoint
10 Load/store first (COUNTA)/second (COUNTB) watchpoint
11 Reserved

MPC855T User’s Manual

Development Support Programming Model

ICR protection is described in Table 44-15. Table 44-24 describes ICR fields.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — RST CHSTP MCI — EXTI ALI PRI FPUVI DECI — SYSI TR —

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — SEI ITLBMS DTLBMS ITLBER DTLBER — LBRK IBRK EBRK DPI

Reset 0000_0000_0000_0000

R/W R/W

SPR 148

Figure 44-22. Interrupt Cause Register (ICR)

Table 44-24. ICR Field Descriptions

Bits Name Description

0 — Reserved

1 RST Reset interrupt bit. Set when the SRESET is asserted.

2 CHSTP Check stop bit. Set when the machine check interrupt is asserted and MSR[ME] = 0. Results in
debug mode entry if debug mode is enabled and the corresponding enable bit is set. Otherwise,
the processor enters checkstop state.

3 MCI Machine check interrupt bit. Set when the machine check interrupt is asserted and MSR[ME] =1.
Causes debug mode entry if debug mode is enabled and the corresponding enable bit is set.

4–5 — Reserved

6 EXTI External interrupt bit. Set when the external interrupt is asserted. Causes debug mode entry if
debug mode is enabled and the corresponding enable bit is set.

7 ALI Alignment interrupt bit. Set when the alignment interrupt is asserted. Causes debug mode entry if
debug mode is enabled and the corresponding enable bit is set.

8 PRI Program interrupt bit. Set when the program interrupt is asserted. Causes debug mode entry if
debug mode is enabled and the corresponding enable bit is set.

9 FPUVI Floating-point unavailable interrupt bit. Set when the floating-point unavailable interrupt is
asserted. Causes debug mode entry if debug mode is enabled and the corresponding enable bit
is set.

10 DECI Decrementer interrupt bit. Set when the decrementer interrupt is asserted. Causes debug mode
entry if debug mode is enabled and the corresponding enable bit is set.

11–12 — Reserved

13 SYSI System call interrupt bit. Set when the system call interrupt is asserted. Causes debug mode entry
if debug mode is enabled and the corresponding enable bit is set.

14 TR Trace interrupt bit. Set when in single-step mode or when in branch trace mode. Causes debug
mode entry if debug mode is enabled and the corresponding enable bit is set.

15–16 — Reserved

17 SEI Implementation-dependent software emulation interrupt. Set when the floating-point assist
interrupt is asserted. Causes debug mode entry if debug mode is enabled and the corresponding
enable bit is set.

Chapter 44. System Development and Debugging

Development Support Programming Model

44.5.2.2 Debug Enable Register (DER)

The DER, shown in Figure 44-23, lets the user selectively enable events that can cause the
processor to enter debug mode. Its reset value is 0x0200_2000.

18 ITLBMS Implementation-specific ITLB miss. Set as a result of an ITLB miss. Causes debug mode entry if
debug mode is enabled and the corresponding enable bit is set.

19 DTLBMS Implementation-specific DTLB miss. Set as a result of an DTLB miss. Causes debug mode entry
if debug mode is enabled and the corresponding enable bit is set.

20 ITLBER Implementation-specific ITLB error. Set as a result of an ITLB error. Causes debug mode entry if
debug mode is enabled and the corresponding enable bit is set.

21 DTLBER Implementation-specific DTLB error. Set as a result of an DTLB error. results in debug mode entry
if debug mode is enabled and the corresponding enable bit is set.

22–27 — Reserved

28 LBRK Load/store breakpoint interrupt bit. Set as a result of the assertion of an load/store breakpoint.
Causes debug mode entry if debug mode is enabled and the corresponding enable bit is set.

29 IBRK Instruction breakpoint interrupt bit. Set as a result of the assertion of an instruction breakpoint.
Causes debug mode entry if debug mode is enabled and the corresponding enable bit is set.

30 EBRK External breakpoint interrupt bit (development port, internal or external modules). Set as a result
of the assertion of an external breakpoint. Causes debug mode entry if debug mode is enabled
and the corresponding enable bit is set.

31 DPI Development port interrupt bit. Set by the development port as a result of a debug station
nonmaskable request or when entering debug mode immediately out of reset. Causes debug
mode entry if debug mode is enabled and the corresponding enable bit is set.

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field — RSTE CHSTPE MCIE — EXTIE ALIE PRIE FPUVIE DECIE — SYSIE TRE —

Reset 0 0 0 0 00 1 0 0 0 0 0_0 0 0 0

R/W R/W

Bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field — SEIE ITLBMSE DTLBMSE ITLBERE DTLBERE — IBRKE EBRKE DPIE

Reset 0 0 1 0 0 0 00_0000_0 0 0 0

R/W R/W

SPR 149

Figure 44-23. Debug Enable Register (DER)

Table 44-24. ICR Field Descriptions (continued)

Bits Name Description

MPC855T User’s Manual

Development Support Programming Model

DER protection is described in Table 44-15.
Table 44-25. DER Field Descriptions

Bits Name Description

0 — Reserved

1 RSTE Reset interrupt enable bit
0 Debug mode entry is disabled (reset value)
1 Debug mode entry is enabled

2 CHSTPE Checkstop enable bit
0 Debug mode entry is disabled
1 Debug mode entry is enabled (reset value)

3 MCIE Machine check interrupt enable bit
0 Debug mode entry is disabled (reset value)
1 Debug mode entry is enabled

4–5 — Reserved

6 EXTIE External interrupt enable bit

7 ALIE Alignment interrupt enable bit

8 PRIE Program interrupt enable bit

9 FPUVIE Floating-point unavailable interrupt enable bit

10 DECIE Decrementer interrupt enable bit

11–12 — Reserved

13 SYSIE System call interrupt enable bit

14 TRE Trace interrupt enable bit
0 Debug mode entry is disabled
1 Debug mode entry is enabled (reset value)

15–16 — Reserved

17 SEIE Software emulation interrupt enable bit
0 Debug mode entry is disabled (reset value)
1 Debug mode entry is enabled

18 ITLBMSE Implementation-specific ITLB miss enable bit

19 DTLBMSE Implementation-specific DTLB miss enable bit

20 ITLBERE Implementation-specific ITLB error enable bit

21 DTLBERE Implementation-specific DTLB error enable bit

22–27 — Reserved

28 LBRKE Load/store breakpoint interrupt enable bit
0 Debug mode entry is disabled
1 Debug mode entry is enabled (reset value)

29 IBRKE Instruction breakpoint interrupt enable bit

30 EBRKE External breakpoint interrupt enable bit

31 DPIE Development port nonmaskable request enable bit

Chapter 44. System Development and Debugging

Development Support Programming Model

44.5.2.3 Development Port Data Register (DPDR)

The 32-bit development port data register (DPDR), SPR 630, resides in the development
port logic. It is used for data interchange between the core and the development system. The
DPDR is accessed by using mtspr and mfspr and implemented using a special bus cycle
on the internal bus. See Section 44.3.2.2.1, “Development Port Shift Register.”

MPC855T User’s Manual

Development Support Programming Model

Chapter 45. IEEE 1149.1 Test Access Port

Chapter 45
IEEE 1149.1 Test Access Port
The MPC855T provides a dedicated user-accessible test access port (TAP) that is fully
compatible with the IEEE 1149.1 Standard Test Access Port and Boundary Scan
Architecture. Problems associated with testing high-density circuit boards have led to
development of this standard under the sponsorship of the Test Technology Committee of
IEEE and the Joint Test Action Group (JTAG). The MPC855T implementation supports
circuit-board test strategies based on this standard.

The TAP consists of five dedicated signals, a 16-state TAP controller, and two test data
registers. A boundary scan register links all device signals into a single shift register. The
test logic, implemented using static logic design, operates independently of the device
system logic. The MPC855T TAP implementation provides the capability to:

• Perform boundary scan operations to check circuit-board electrical continuity.

• Bypass the MPC855T for a given circuit-board test by effectively reducing the
boundary scan register to a single cell.

• Sample the MPC855T system signals during operation and transparently shift out
the result in the boundary scan register.

• Disable the output drive to signals during circuit-board testing.

45.1 Overview
The MPC855T TAP implementation includes a TAP controller, a 4-bit instruction register,
and two test registers (a 1-bit bypass register and a 475-bit boundary scan register). The
TAP interface consists of the following signals:

• TCK—A test clock input to synchronize the test logic.
• TMS—A test mode select input (with an internal pull-up resistor) that is sampled on

the rising edge of TCK to sequence the TAP controller’s state machine.
• TDI—A test data input (with an internal pull-up resistor) that is sampled on the

rising edge of TCK.
• TDO—A three-statable test data output that is actively driven in the shift-IR and

shift-DR controller states. TDO changes on the falling edge of TCK.

MPC855T User’s Manual

TAP Controller

• TRST—An asynchronous reset with an internal pull-up resistor that provides
initialization of the TAP controller and other logic required by the standard.

The MPC855T TAP logic is shown in Figure 45-1 below.

Figure 45-1. Test Logic Block Diagram

45.2 TAP Controller
The TAP controller is responsible for interpreting the sequence of logical values on the
TMS signal. It is a synchronous state machine that controls the operation of the JTAG logic.
The value shown adjacent to each bubble represents the value of the TMS signal sampled
on the rising edge of TCK. Figure 45-2 shows the MPC855T TAP controller state machine.

Boundary scan register

Bypass

M
U
X

Instruction apply & decode register

4—bit Instruction register
M
U
X

TDO

TDI

TMS

TCK

TRST

012

TAP CONTROLLER

3

Chapter 45. IEEE 1149.1 Test Access Port

Boundary Scan Register

Figure 45-2. TAP Controller State Machine

45.3 Boundary Scan Register
The MPC855T scan chain consists of a 475-bit boundary scan register that contains bits for
all signals, with the exception of the XTAL, EXTAL, and XFC pins, which are analog
signals. An IEEE-1149.1 compliant boundary scan register has been included on the
MPC855T. This 475-bit boundary scan register can be connected between TDI and TDO
when EXTEST or SAMPLE/PRELOAD instructions are selected. The boundary scan
register is used for capturing data on the input signals, forcing fixed values on the output
signals, and selecting the direction and drive characteristics (a logic value or high
impedance) of the bidirectional and three-state signals.

TEST LOGIC
RESET

RUN—TEST/IDLE SELECT—DR_SCAN

CAPTURE—DR

SHIFT—DR

EXIT1—DR

PAUSE—DR

EXIT2—DR

UPDATE—DR

SELECT—IR_SCAN

CAPTURE—IR

SHIFT—IR

EXIT1—IR

PAUSE—IR

EXIT2—IR

UPDATE—IR

0 0

0

0

1

1

1

0 0

0

0

1

111

1

0

0

1

1

11

MPC855T User’s Manual

Boundary Scan Register

Figure 45-3 shows the logic configuration for an output signal boundary scan cell.

Figure 45-3. Output Signal Boundary Scan Cell (Output Cell)

Figure 45-4 shows the logic configuration for an observe-only input signal boundary scan
cell.

Figure 45-4. Observe-Only Input Signal Boundary Scan Cell (Input Cell)

Figure 45-5 shows the logic configuration for an output control boundary scan cell.

1

1
Mux

G1

1

1
Mux

G1

C

D

C
D

FROM last cell CLOCK DR UPDATE DR

SHIFT DR1 — EXTEST | CLAMP

DATA FROM
TO OUTPUT

Buffer

0 — OTHERWISE

LOGIC
SYSTEM

TO NEXT cell

1

1
Mux

G1

C
D

FROM last cell

CLOCK DR

DATA TO
SYSTEM
LOGIC

INPUT
PIN

SHIFT DR

TO NEXT CELL

Chapter 45. IEEE 1149.1 Test Access Port

Instruction Register

Figure 45-5. Input/Output Control Boundary Scan Cell (I/O Control Cell)

Figure 45-6 shows the logic configuration of bidirectional signal boundary scan cells.

Figure 45-6. Bidirectional (I/O) Signal Boundary Scan Cell

The value of the control bit controls the output function of the bidirectional signal. One or
more bidirectional data cells can be serially connected to a control cell. Bidirectional
signals include two scan cells for data (input and output buffers) and an I/O control block.

It is important to know the boundary scan bit order and the signals that are associated with
them. The bit order of the boundary scan chain (described in the MPC855T BSDL file)
starts with the TDO output and ends with the TDI input. The shift register cell nearest TDO
(first to be shifted in) is defined as bit 1 and the last bit to be shifted in is bit 475.

45.4 Instruction Register

The MPC855T TAP implementation includes the public instructions EXTEST,
SAMPLE/PRELOAD, BYPASS and CLAMP. An optional public instruction (HI-Z)

MUX

G1

1

1

To Next Cell

G1

1

1

D

C
D

C

From Last Cell Clock DR
Update DR

Shift DR

Output Control
from System

1 – Extest | Clamp
0 – Otherwise

MUX

To Output
Buffer

Logic

To Next Cell

O.PIN

Output Enable
from System

From Last Cell

I/O
Pin

I.OBS

I/O Control

To Next Pin Pair

EN
Output Data

Input Data

Logic

MPC855T User’s Manual

Instruction Register

provides the capability for disabling all device output drivers. The MPC855T TAP
implements a 4-bit instruction register (no parity). The 4-bit TAP instructions are executed
during the update-IR controller state. The four instruction bits select the five unique
instructions listed in Table 45-1.

The instruction register is reset to all ones in the test-logic-reset controller state. During the
capture-IR controller state, the inputs to the instruction shift register are loaded with the
CLAMP command code.

45.4.1 EXTEST

The external test (EXTEST) instruction enables the 475-bit boundary scan register.
EXTEST also asserts an internal soft reset for the MPC855T system logic to force a known
beginning internal state while performing external boundary scan operations. Through the
TAP, the user is capable of scanning user-defined values into the output buffers, capturing
values presented to input pins, and controlling the output drive of three-statable output or
bidirectional pins. For more details on the function and use of EXTEST, refer to the IEEE
1149.1 standard.

45.4.2 SAMPLE/PRELOAD

The SAMPLE/PRELOAD instruction initializes the boundary scan register output cells
before the boundary scan register is enabled by the EXTEST command. This initialization
ensures that known data will appear on the outputs when entering the EXTEST instruction.
If the SAMPLE/PRELOAD command was not issued prior to the EXTEST command the
output signals will go to a random state when the boundary scan register is enabled and
takes control of the output buffer. The SAMPLE/PRELOAD command ensures that the
boundary scan register samples the current state of the output signal before it takes control
of the associated output buffer. The SAMPLE/PRELOAD instruction also provides an
opportunity to obtain a snapshot of system data and control signals.

Table 45-1. Instruction Register Decoding

Code
Instruction

B3 B2 B1 B0

0 0 0 0 EXTEST

0 0 0 1 SAMPLE/PRELOAD

0 X 1 X BYPASS

0 1 0 0 HI—Z

0 1 0 1 CLAMP and BYPASS

Note: B0 (lsb) is shifted first.

Chapter 45. IEEE 1149.1 Test Access Port

TAP Usage Considerations

Note that there is no internal synchronization between the TCK and CLKOUT; the user
must provide some form of external synchronization between the JTAG operation at TCK
frequency and the system operation CLKOUT frequency to achieve meaningful results.

45.4.3 BYPASS

The BYPASS instruction creates a shift register path from TDI through the bypass register
to TDO, circumventing the 475-bit boundary scan register. This instruction is used to
enhance test efficiency when a component other than the MPC855T becomes the device
under test. The BYPASS instruction selects the single-bit bypass register as shown in
Figure 45-7.

Figure 45-7. Bypass Register

When the bypass register is selected by the current instruction, the shift register stage is set
to a logic zero on the rising edge of TCK in the capture-DR controller state. Therefore, the
first bit to be shifted out after selecting the bypass register is always a logic zero.

45.4.4 CLAMP

The CLAMP instruction selects the single-bit bypass register as shown in Figure 45-7
above, and the state of all signals driven from the system output pins is defined by the data
currently contained in the boundary scan register.

45.4.5 HI–Z

The HI-Z instruction is provided as a manufacturer’s optional public instruction to avoid
back driving the output pins during circuit-board testing. When the HI-Z instruction is
invoked all output drivers, including the two-state drivers, are placed in a high impedance
state. The HI-Z instruction also selects the bypass register.

45.5 TAP Usage Considerations

The control afforded by the output enable signals using the boundary scan register and the
EXTEST instruction requires a compatible circuit-board test environment to avoid
device-destructive configurations. The user must avoid situations in which the MPC855T
output drivers are enabled into actively driven networks.

1

1
Mux

G1

C

D
TO TDO

FROM TDI

0

SHIFT DR

CLOCK DR

MPC855T User’s Manual

Recommended TAP Configuration

45.6 Recommended TAP Configuration

To ensure that the scan chain test logic is kept transparent to the system logic during normal
operation, the TAP should be forced into the test-logic-reset controller state by keeping
TRST or TMS continuously asserted.

The TAP signals must be configured as follows to reset the scan chain logic:

• If both the TAP and low power mode are never used, connect TRST to ground.

• If the TAP or low power mode is used, connect TRST to PORESET.

• If power down mode (the lowest power mode, where V

DDH

 is disabled) is used,
connect TRST to PORESET through a diode (anode to TRST, cathode to
PORESET).

The TMS, TDI, and TRST signals include on-chip pull-up resistors. TCK, however, does
not have an on-chip pull-up or pull-down resistor; it should be pulled down through a
resistor.

To use the TAP to perform test operations, select the TAP functions in the hard reset
configuration word for the signals TCK/DSCK, TDI/DSDI, TDO/DSDO; see
Section 11.1.3.1, “PLL Loss of Lock.”

45.7 Motorola MPC855T BSDL Description

The most current revision of the BSDL file for the MPC855T PowerQUICC is available at
the Motorola web site (www.motorola.com).

Appendix A. Byte Ordering

Appendix A
Byte Ordering

This microprocessor supports three byte-ordering conventions—big-endian (BE), true
little-endian (TLE), and modified little-endian (MOD-LE). This chapter describes each of
the three endian modes. Chapter 3, “Operand Conventions,” in

Programming Environments
Manual for 32-bit Implementations of the PowerPC Architecture

, provides a general
overview of byte ordering.

A.1 Byte Ordering Overview

For big-endian byte ordering, the most-significant byte (MSB) is stored at the lowest
address while the least-significant byte (LSB) is stored at the highest address. This is called
big-endian because the big end of the scalar comes first in memory.

For true little-endian byte ordering, the LSB is stored at the lowest address while the MSB
is stored at the highest address. This is called true little-endian because the little end of the
scalar comes first in memory.

For modified little-endian byte ordering (also referred to as ‘munged little-endian’), the
address of data is modified so that the memory structure appears little-endian to the
executing processor, when in fact, the byte ordering is big-endian. The address modification
is called ‘munging’. Note that the term ‘munging’ is not defined or used in the PowerPC
architecture specification.

A.2 Byte-Ordering Mechanisms

There are several byte-ordering mechanisms that are controlled by programmable
parameters. The MSR[LE] and MSR[ILE] bits control a 3-bit address modifier in the
MPC8xx core. The DC_CST[LES] bit controls a 2-bit address modifier in the core and a
2-bit address modifier and byte lane swapper in the SIU. The FCR[BO] field of each
peripheral (SCC, SMCs, SPI, I

2

C, PIP, or IDMA) controls a 3-bit address modifier in the
SDMA. Table A-1 correlates the programmable parameters with the byte-ordering modes
of operation.

MPC855T User’s Manual

BE Mode

A.3 BE Mode

As shown in Table A-1, the MPC855Tpowers up in BE mode. In BE mode, the caches,
internal registers, the U-bus, and the external bus, all use big-endian byte ordering. In BE
mode, no address modification nor data-byte-lane swapping is performed by any of the
byte-ordering mechanisms of theMPC855T.

The PowerPC architecture defines two bits in the MSR for specifying byte ordering—LE
(little-endian mode) and ILE (exception little-endian mode). In this microprocessor, these
bits only control the addresses generated by the MPC8xx core. The LE bit specifies the
endian mode for normal core operation and ILE specifies the mode to be used when an
exception handler is invoked. That is, when an exception occurs, the ILE bit (as set for the
interrupted process) is copied into MSR[LE] to select the endian mode for the context
established by the exception. For both bits, a value of 0 specifies BE mode (or TLE mode,
depending on DC_CST[LES]), and a value of 1 specifies MOD-LE mode.

A.4 TLE Mode

When operating in TLE mode, the external bus uses little-endian byte ordering, so any
external agents should use little-endian byte ordering to access memory. Note however, that
internal to the microprocessor, the caches and internal registers use big-endian byte
ordering. The byte-ordering mechanisms for TLE mode are shown in Figure A-1.

Table A-1. Byte-Ordering Parameters

 Byte-Ordering Mode

Parameter

MSR[LE] or
MSR[ILE]

DC_CST[LES] FCR[BO]

BE 0 0 1x

TLE 0 1 1x

MOD-LE 1 0 01

Note:

 The powers up in BE mode.

Appendix A. Byte Ordering

TLE Mode

Figure A-1. TLE Mode Mechanisms

For TLE mode, MSR[LE] and MSR[ILE] should be cleared as in BE mode. (This disables
the 3-bit address munging used in MOD-LE mode. See Section A.5, “MOD-LE Mode,” for
more information.)

For TLE mode, DC_CST[LES] should be set. When DC_CST[LES] is set, the physical
address is modified before the data cache or load/store unit accesses the internal U-bus. The
two low-order address bits of the effective address are exclusive-ORed (XOR) with a
two-bit value that depends on the length of the operand (1, 2, or 4 bytes), as shown in
Table A-2. This process is called 2-bit munging.

Since all instructions are 4 byte words, no address modifications by the instruction cache
are necessary.

Table A-2. TLE 2-bit Munging

Data Width (Bytes) Address Modification

4 No change

2 XOR with 0b10

1 XOR with 0b11

2-Bit Munge

I-Cache D-Cache

External bus

MPC8xx Core

 MSR[LE]=0

DC_CST[LES]=1

MSR[ILE]=0

DC_CST[LES]=1

SIU

CPM

SDMA

FCR[BO]=1x

U-Bus

2-Bit UnMunge
and Byte Swap
for Accesses

Initiated by the
MPC8xx Core

 MPC855T

MPC855T User’s Manual

TLE Mode

The munged physical address is passed to the internal U-bus, and the specified width of data
is transferred. Only the address is modified, not the byte order. Munging makes it appear to
the core that individual aligned scalars on the U-bus are in little-endian order, when in fact,
they are actually in big-endian order. This allows the core to access data in the inherently
big-endian internal registers with apparent little-endian byte-ordering. However, when
DC_CST[LES] is set, for any access originating from the MPC8xx core, the SIU unmunges
the address and swaps the bytes of data within each word at the external bus/U-bus
boundary. The byte swapping is shown in Figure A-2.

Figure A-2. Byte Swapping

The unmunging and byte swapping places all external accesses by the MPC8xx core into
true little-endian byte order. Note that the bit ordering remains unchanged—that is, bit 0 is
always the msb, and bit 31 is always the lsb.

The communication peripherals (SCCs, SMCs, SPI, I

2

C, PIP, or IDMA) transfer data as
bytes (bytes are received one at a time and transmitted one at a time). Byte transfers have
no inherent endianess—they are neither big- nor little-endian. For TLE-mode, the
FCR[BO] parameter of each peripheral should be programmed to 0b1

x

 (that is, either 0b10
or 0b11). Note that the SIU does nothing (no unmunging, no byte-swapping) to accesses
originating from the SDMA controller.

A.4.1 TLE Mode System Examples

The following tables describe how to handle the little-endian program or data in the
little-endian system that is built around the MPC855T for various port sizes.

11 12 13 14

0 7 8 15 16 23 24 31

14 13 12 11

0 7 8 15 16 23 24 31

Appendix A. Byte Ordering

TLE Mode

Table A-3. Little-Endian Program/Data Path Between the
Register and 32-Bit Memory

Fetch/
Load
Store
Type

Little-
Endian
Addr

U-bus
and

Cache
Addr

External
Bus
Addr

Data in the
Register

U-bus and
Cache Format

External Bus
Format

Little-Endian
Program/Data

M
S
B

L
S
B

0 1 2 3 0 1 2 3 3 2 1 0

Word 0 0 0 11 12 13 14 11 12 13 14 14 13 12 11 11 12 13 14

Half-word 0 2 0 21 22 21 22 22 21 21 22

Half-word 2 0 2 31 32 31 32 32 31 31 32

Byte 0 3 0 ‘a’ ‘a’ ‘a’ ‘a’

Byte 1 2 1 ‘b’ ‘b’ ‘b’ ‘b’

Byte 2 1 2 ‘c’ ‘c’ ‘c’ ‘c’

Byte 3 0 3 ‘d’ ‘d’ ‘d’ ‘d’

Table A-4. Little-Endian Program/Data Path Between the
Register and 16-Bit Memory

Fetch/
Load
Store
Type

Little-
Endian
Addr

U-bus
and

Cache
Addr

External
Bus
Addr

Data in the
Register

U-bus and
Cache format

External Bus
Format

Little-Endian
Program/Data

M
S
B

L
S
B

0 1 2 3 0 1 2 3 3 2 1 0

Word 0 0 0 11 12 13 14 11 12 13 14 14 13 13 14

2 12 11 11 12

Half-word 0 2 0 21 22 21 22 22 21 21 22

Half-word 2 0 2 31 32 31 32 32 31 31 32

Byte 0 3 0 ‘a’ ‘a’ ‘a’ ‘a’

Byte 1 2 1 ‘b’ ‘b’ ‘b’ ‘b’

Byte 2 1 2 ‘c’ ‘c’ ‘c’ ‘c’

Byte 3 0 3 ‘d’ ‘d’ ‘d’ ‘d’

MPC855T User’s Manual

MOD-LE Mode

A.5 MOD-LE Mode

For modified little-endian (MOD-LE) mode, the caches, the U-bus, and the external bus use
big-endian byte ordering with munged addresses. The byte-ordering mechanisms for
MOD-LE mode are shown in Figure A-3.

Table A-5. Little-Endian Program/Data Path between the Register and
8-Bit Memory

Fetch/
Load
Store
Type

Little-
Endian
Addr

U-bus
and

Cache
Addr

External
Bus
Addr

Data in the
Register

U-bus and
Cache Format

External Bus
Format

Little-Endian
Program/Data

M
S
B

L
S
B

0 1 2 3 0 1 2 3 3 2 1 0

Word 0 0 0 11 12 13 14 11 12 13 14 14 14

1 13 13

2 12 12

3 11 11

Half-word 0 2 0 21 22 21 22 22 22

1 21 21

Half-word 2 0 2 31 32 31 32 32 32

3 31 31

Byte 0 3 0 ‘a’ ‘a’ ‘a’ ‘a’

Byte 1 2 1 ‘b’ ‘b’ ‘b’ ‘b’

Byte 2 1 2 ‘c’ ‘c’ ‘c’ ‘c’

Byte 3 0 3 ‘d’ ‘d’ ‘d’ ‘d’

Appendix A. Byte Ordering

MOD-LE Mode

Figure A-3. MOD-LE Mode Mechanisms

For MOD-LE mode, MSR[LE] and MSR[ILE] should be set. When the MSR[LE] is set,
the effective address is modified (munged) by the core before being used to access the
caches (or memory for caching-inhibited accesses). The three low-order address bits of the
effective address are exclusive-ORed (XOR) with a three-bit value that depends on the
length of the operand (1, 2, or 4 bytes), as shown in Table A-6 This process is called ‘3-bit
munging.’

The munged physical address is passed to the cache or to external memory, and the
specified width of data is transferred (in big-endian order—that is, MSB at the lowest
address, LSB at the highest address). In MOD-LE mode, only the address is modified, not
the byte order. Munging makes it appear to the core that individual aligned scalars are
stored in little-endian order, when in fact, they are stored in big-endian order, but at

Table A-6. MOD-LE 3-bit Munging

Data Width (Bytes) EA Modification

4 XOR with 0b100

2 XOR with 0b110

1 XOR with 0b111

Note that theMPC855T does not support 8-byte scalars

3-Bit Munge

I-Cache

External bus

D-Cache

MPC8xx Core
MSR[LE]=1

DC_CST[LES]=0

MSR[ILE]=1

DC_CST[LES]=0

SIU

3-Bit Munge

CPM

SDMA

FCR[BD]=01

U-Bus

 MPC855T

MPC855T User’s Manual

Setting the Endian Mode Of Operation

different byte addresses within double words. Note that the instruction and data caches
operate less efficiently when address munging is performed on cache accesses. Some
performance degradation should be expected when the MPC855T is operating in MOD-LE
mode

MSR[ILE] is used to set the endian mode of the core during exception handling. When an
exception occurs, MSR[ILE] is copied into MSR[LE] to select the endian mode for the
context established by the exception.

For MOD-LE-mode, the FCR[BO] parameter of each peripheral (SCCs, SMCs, SPI, I

2

C,
PIP, or IDMA) should be set to 0b01. The SDMA controller examines the BO parameter
and, if set to 0b01, performs a 3-bit munge (XOR with 0b111) on every byte address of
transmitted or received data as in Table A-6.

A.5.1 I/O Addressing in MOD-LE Mode

For a system running in BE or TLE mode, both the MPC855T and the memory subsystem
recognize the same byte as byte 0. However, this is not true for a system running in
MOD-LE mode because of the munged address bits when theMPC855T accesses external
memory.

For I/O transfers in MOD-LE mode to transfer bytes properly, they must be performed as
if the bytes transferred were accessed one at a time, using the little-endian address
modification appropriate for the single-byte transfers (that is, the lowest order address bits
must be XORed with 0b111). This does not mean that I/O operations in MOD-LE systems
must be performed using only one-byte-wide transfers. Data transfers can be as wide as
desired, but the order of the bytes within double words must be as if they were fetched or
stored one at a time. That is, for a true little-endian I/O device, the system must provide a
mechanism to munge and unmunge the addresses and reverse the bytes within a
doubleword (MSB to LSB).

A load or store that maps to a control register on an external device may require the bytes
of the register data to be reversed. If this reversal is required, the load and store with
byte-reverse instructions (

lhbrx

,

lwbrx

,

sthbrx

, and

stwbrx

) may be used.

A.6 Setting the Endian Mode Of Operation

As shown in Table A-1, the MPC855T powers up in BE mode. The endian mode should be
set early in the initialization routine and remain unchanged for the duration of system
operation. To switch between the different endian modes of operation, the core must run in
serialized mode and the caches should be disabled. It is not recommended that you switch
back and forth between modes.

To switch the system from BE to MOD-LE mode, the MSR[LE] and MSR[ILE] bits should
be set using an

mtmsr

 instruction that resides on an odd word boundary (A[29] = 1). The
instruction that is executed next will be fetched from this address plus 8. If the

mtmsr

Appendix A. Byte Ordering

Setting the Endian Mode Of Operation

instruction resides on an even word boundary (A[29] = 0), then the instruction will be
executed twice due to the address munging of MOD-LE mode.

To switch the system from MOD-LE to BE mode, the MSR[LE] and MSR[ILE] bits should
be cleared using an

mtmsr

 instruction that resides on an even word boundary (A[29] = 0).

The instruction that is executed next will be fetched from this address plus 12.

To switch the system to TLE mode, DC_CST[LES] should be set using an

mtspr

instruction that resides on an even word boundary (A[29] = 0). Further instructions should
reside in the little-endian format of the external system memory or in the big-endian format
of the internal memory (if it exists).

The buffer descriptors for the peripherals contain the FCR[BO] parameters for the SDMA
controller. The BO parameter should be set to the required endian format prior to activating
the associated peripheral.

MPC855T User’s Manual

Setting the Endian Mode Of Operation

Appendix B. Serial Communications Performance

Appendix B
Serial Communications Performance

Due to the architecture of the MPC855T, the overall performance of the serial channels
cannot be stated in absolute terms. The serial channels of the MPC855T can be
programmed in many different modes, which require different degrees of processing. There
may be several individual bottlenecks in the system, with their own specific considerations.
These are described in the following sections.

Note that since the MPC855T has only one SCC, CPM overloading may not be a problem.
ATM, receiver, and transmitter data is therefore given as it applies to the MPC860. This
appendix is provided as an example to check overall system design.

B.1 Serial Clocking (Peak Rate Limitation)

The maximum rate at which a serial channel can be clocked is governed by the
synchronization hardware of the serial channels. The rate at which the serial channel can be
clocked depends on the physical interface of the channel. Examples include:

• maximum clocking rate for an SCC connected to a dedicated set of pins (NMSI
mode)=SYNCCLK/2

• maximum clocking rate for the TDM channel=SYNCCLK/2.5

For limitations of other channels, refer to the appropriate chapter of the manual.

SYNCCLK is a programmable clock rate which is derived from the system frequency; see
Chapter 14, “Clocks and Power Control.” At its maximum rate, it is equal to the system
frequency.

The maximum serial clock rate is a limitation on the peak data rate. This is the maximum
rate at which the receiver or transmitter hardware can transfer data between its internal
FIFO and the serial line. However, this rate is higher than the rate at which data in these
internal FIFOs can be processed by the CPM and transferred to system memory. Therefore,
this peak rate can only be maintained for short bursts which do not exceed the internal FIFO
depth. The serial clocks must also be turned off between these bursts. The FIFOs of SCC1
is 32 bytes. The SMCs and SPI are double-buffered, and thus have an effective FIFO depth
of two characters.

MPC855T User’s Manual

Bus Utilization

To summarize, the architecture of the MPC855T allows the serial channels to handle
high-speed bursts of data for short periods of time subject to their internal FIFO sizes. If
transfers are sufficiently short, and if serial clocks are turned off between the transfers, then
these individual transfers can be performed at up to the peak rate. Over time, however, the
average amount of data transferred must not exceed the average CPM processing rate.

If any of the conditions outlined above are not satisfied, then the rate at which the serial
channels are clocked must not exceed the rate at which the CPM can process data from
them. In other words, the average rate limitation must also be treated as the peak rate
limitation.

The I2C channel is the only exception to these rules. Its maximum serial transfer rate is
limited by its hardware, not by the rate at which the CPM services it. At its maximum
transfer rate, it will only consume 25% of the CPM bandwidth.

B.2 Bus Utilization
Given the width and clock speed of the system bus of the MPC855T, bus utilization is not
a critical system limitation, considering the data rates supported by the MPC855T.
Specifically, the peak system bus transfer rate of a 50MHz MPC855T (using single-beat
transfers to zero wait-state memory) is 800Mbps, whereas the maximum aggregate serial
data rate supported at that frequency is usually less than 50Mbps.

However, whereas bus utilization is not a major consideration, bus latency can be. Extreme
periods of bus latency could potentially cause a FIFO to overrun or underrun. Where this is
a more critical issue, some specific recommendations are made. For example,
recommendations for system bus latency are made for an MPC860MH operating in QMC
mode; see the QMC Supplement to MC68360 and MPC860 User's Manuals.

B.3 CPM Bandwidth (Average Rate Limitation)
The communications processor module (CPM) is a single shared resource used by all of the
serial channels. It handles low-level protocol processing tasks and manages DMA for all of
them. In the architecture of the MPC855T, the CPM is the central communications
processing engine, to which the individual serial controllers (SCC, SMC, SPI, I2C, and PIP)
make requests for service. Therefore, the serial channels must not request more service than
the CPM can provide; else, FIFO underrun or overrun errors will result.

The amount of processing required by a particular serial channel depends on the mode in
which the channel is configured, and the maximum rate at which the channel requests
service. [While this rate is usually equivalent to the serial clocking rate, under certain
conditions the serial clocking rate could be higher; this is because the FIFOs of the serial
channels can provide a ‘local averaging’ effect on the data rate, and thus can handle short
bursts. See Section B.1, “Serial Clocking (Peak Rate Limitation).”]

Appendix B. Serial Communications Performance

CPM Bandwidth (Average Rate Limitation)

B.3.1 Performance of Serial Channels

The table provided in this section lists the data rates supported by the CPM for particular
channels in different modes. These figures assume that the serial channel in question is the
only channel in operation. Individual channels operating at the data rate quoted would
consume 100% of the CPM bandwidth.

The performance available from different serial channels in different protocols varies
greatly. This is due to the amount of overall processing required by the protocol and by the
split between hardware-assist provided in the serial channel and processing performed in
the CPM by microcode. For example:

• An SCC in UART mode provides more processing in the SCC hardware, whereas an
SMC in UART mode is more reliant on the CPM. Therefore, the performance of an
SCC in UART mode is greater.

An SCC in HDLC mode performs most of the processing (e.g. bit manipulation, deframing)
in hardware, whereas HDLC processing for QMC channels falls on the communications
processor module (CPM). Thus, an SCC in HDLC mode can process more data than an
SCC in QMC mode, even if all QMC time slots are concatenated into one logical
channel.Maximum data rates are given for most channels as full duplex. Channels
operating in half duplex will require only half the CPM service, and thus the maximum data
rates supported for these channels doubles.

Managing DMA for the serial channels is a significant portion of the CPM processing.
Therefore, because channels with larger frame sizes require the CPM to access the buffer
descriptors less often, these channels experience higher performance. An example of this
shown in the table below is an SCC in HDLC mode; a channel with a minimum frame size
of 64 bytes has better performance than one with a minimum frame size of 5 bytes.

The performance figures listed in Table B-1. are for a 25 MHz system clock only. In
general, performance scales linearly with frequency; an MPC855T with a 50 MHz system
clock would support twice the quoted data rate. Thus, a combination of serial channels and
protocols which are beyond the MPC8’s performance scope at 25 MHz may be possible at
50 MHz.

Performance figures quoted in Table B-1 assume worst-case conditions. Worst-case
conditions are a steady stream of minimum-size frames.Furthermore, for the SCC in QMC
mode, it assumes that all virtual channels simultaneously reach end-of-frame, and thus all
must close and open buffers simultaneously.

Table B-1. MPC855T Serial Performance at 25 MHz

Protocol Speed [see note 2]

SCC in transparent 8 Mbps FD

SCC in HDLC (5 byte minimum frame size) 8 Mbps FD

SCC in HDLC (64 byte minimum frame size) 11 Mbps FD

MPC855T User’s Manual

CPM Bandwidth (Average Rate Limitation)

B.3.2 IDMA Considerations

Although the IDMA channels are implemented in microcode by the CPM, they need not
necessarily be calculated into the CPM bandwidth. If IDMA is not a time-critical task, then
its priority can be programmed to be the lowest of the CPM tasks. If this is done, IDMA is
treated as a background task and serviced only when other channels do not require service.

If IDMA is configured to be a higher-priority task, then its transfers must be considered
when calculating demands on the CPM bandwidth. Table B-2 provides performance

SCC in UART 2.4 Mbps FD

SCC in Ethernet 22 Mbps HD

SCC in Ethernet 11 Mbps FD

SCC in QMC mode 2.1 Mbps FD

SCC in BISYNC 1.5 Mbps FD

SCC in asynchronous HDLC/IrDA 3 Mbps FD

SMC in transparent 1.5 Mbps FD

SMC in UART 220 Kbps FD

I2C 520 Kbps [see note 1]

SPI (16 bit) 3.125 Mbps

SPI (8 bit) 500 Kbps

PIP (8 bit width) 625 Kbyte/s

PIP (16 bit width) 1250 Kbyte/s

SCC in Profibus [optional RAM microcode] 2.4 Kbps FD

SCC in SS#7 [optional RAM microcode] 6 Mbps FD

SCC in SS#7 [optional RAM microcode]
[without scrambling]

8 Mbps FD

SCC in SS#7 [optional RAM microcode]
[with scrambling]

5.5 Mbps FD

Note:

1. I2C is a special case. Its performance is limited by its hardware, not by the CPM. An I2C port operating
at 520 Kbps would consume only 25% of the CPM bandwidth of an MPC855T operating at 25 MHz.

2. Performance scales linearly with system frequency.

3. FD indicates full-duplex; HD indicates half-duplex.

4. Ethernet full and half duplex modes are quoted separately merely to highlight the feature.

5. SPI is inherently full-duplex, and it is therefore not necessary to mark it as so.

Table B-1. MPC855T Serial Performance at 25 MHz

Protocol Speed [see note 2]

Appendix B. Serial Communications Performance

CPM Bandwidth (Average Rate Limitation)

information for the IDMA channels in their different modes. Its use is similar to the table
provided for the serial channels (Table B-1.).

B.3.3 Performance Calculations

Special configurations verified by experiment.

The performance figures quoted in Table B-1. can be used to estimate the overall CPM
bandwidth required in a particular system configuration. To calculate the total system load,
add the CPM utilization from every channel together. Assuming approximately linear
performance versus frequency, the general problem reduces to taking simple ratios:

For example, since a 25-MHz MPC855T running Ethernet (theoretically) at 22 Mbps
consumes approximately 100% of the CPM bandwidth, what bandwidth does a (practical)
10-Mbps channel require?

The above equation shows the 10-Mbps channel requiring 45% of the CPM bandwidth of
a 25-MHz MPC855T.

A spreadsheet tool for performing serial performance calculations has been developed and
is available on the world-wide web site at http://www.motorola.com. It is entitled “CPM
Performance Spreadsheet.”

Please note that CPM load estimation is a linear approximation to a somewhat nonlinear
phenomenon, and cannot be relied upon to be exact. When performance estimations

Table B-2. IDMA Performance at 25 MHz

Protocol Speed

IDMA memory to memory 5.7 MByte/s

IDMA memory to memory with burst aligned source/dest address 10.4 MByte/s

IDMA dual address, peripheral to memory 2.2 MByte/s

IDMA dual address, memory to peripheral 1.6 MByte/s

IDMA single address, peripheral to memory 5 MByte/s

IDMA single address, memory to peripheral 5 MByte/s

Note:

1. Performance scales linearly with device operating frequency.

2. IDMA transfer rates are independent of bus cycle length.

CPM Utilization
serial rate1

max serial rate1

 serial rate2

max serial rate2

 … +=

CPM Utilization serial rate
max serial rate
----------------------------------- 10

22
------ 0.45= = =

MPC855T User’s Manual

CPM Bandwidth (Average Rate Limitation)

approach the maximum loading (i.e. greater than approximately 95%), the user should test
the system on target hardware to determine the exact load. Conversely, some system
configurations that calculate to greater than 100% by these equations have been verified by
experiment. These include the following:

•

— A 25 MHz MPC860MH with one half-duplex Ethernet and 24 QMC channels
(i.e. 24 x 64 kbps QMC) [if and only if SCC1 is Ethernet and QMC channels are
spread over two SCCs, e.g. SCC1=Ethernet, SCC2=QMC channels 0-11,
SCC3=QMC channels 12-23].

— A 33 MHz MPC860MH with one half-duplex Ethernet and 32 QMC channels
(i.e. 32 x 64 kbps QMC) [if and only if SCC1 is Ethernet QMC channels are
spread over two SCCs, e.g. SCC1=Ethernet, SCC2=QMC channels 0-15,
SCC3=QMC channels 16-31].

— A 40 MHz MPC860EN with four half-duplex Ethernet channels.

More examples of CPM bandwidth calculations follow:

Example #1:

MPC860 (at 25 MHz) operating 1 × 10 Mbps Ethernet in half duplex, 1 × 2 Mbps HDLC,
1 × 64 Kbps HDLC, 1 × 9.6 Kbps UART and 1 × 38 Kbps SMC UART. The following
equation applies:

This yields a percentage CPM utilization of 89% meaning the device can handle these
protocols at this frequency. Note the 9.6-Kbps UART link only requires 0.4% of the CPM
bandwidth, implying that in any configuration where there is free bandwidth that it will be
possible to run a low-rate UART link.

Example #2:

MPC860MH (at 25 MHz) running 24 QMC channels with an additional 2 HDLC channels
operating at 128 Kbps each. The following equation applies:

Example #3:

MPC860MH (at 25 MHz) running 32 QMC channels and one additional 2 Mbps HDLC
channel. The following equation applies:

10
22

 2
8

 0.064
2.4

 0.0096

2.4

 0.038
0.22

 + + + + 0.89 (<1)=

2 0.128×
8

 24 0.064×

2.1

 + 0.76 (<1)=

Appendix B. Serial Communications Performance

CPM Bandwidth (Average Rate Limitation)

2
8

 32 0.064×
2.1

 + 1.22 (will not work)=

MPC855T User’s Manual

ATM Performance

Since the result above is greater than one, this will not work with a 25-MHz MPC860MH.
However, if the system clock is increased to 33 MHz, CPM utilization drops below 1,
allowing example #3 to be supported. The following equation applies:

Example #4:

MPC860 (at 25 MHz) with a block of data transferred by IDMA at 512 Kbytes/s to a 32-bit
peripheral, one asynchronous HDLC at 1Mbps, one UART at 9,600 baud, and one
transparent channel at 2 Mbps.

In the case of IDMA, this process calculates the peak CPM utilization, not the sustained
rate. By nature, IDMA transfers occur at random intervals and are not consistent bit rates
when compared to the serial channel operation.

Example #5:

MPC860 (at 40 MHz) with three Ethernet channels at 10 Mbps and one UART at 9,600
baud.

B.4 ATM Performance
This appendix provides receiver and transmitter performance information for the
MPC855T.

The information was gathered under the following conditions:

• System clock = 50MHz

• AAL5 - Buffer (data) size > 200 bytes

• AAL0 - Interrupt per BD

• Average load on external bus

• System memory is DRAM with 5-2-2-2 performance at 50MHz.

1.22
25
33

 × 0.92 (<1)=

0.512 1 0.0096 2

5 3 2.4 8
0.69

3*10
22

0.0096
2.4 X

25
401.37 0.85

Appendix B. Serial Communications Performance

Receiver

NOTE
CPM performance is theoretically linear to the system clock.
However, a slow external memory or an overloaded PPC bus
can degrade the performance figures.

ATM performance is also influenced by the number of PHYs
and the timer 4 rate for the APC. The more PHYs are serviced
with the APC or the higher the timer 4 rate is configured, the
less the maximum bit rate for ATM can be. Please contact your
Motorola representative for more information.

B.5 Receiver
Table B-3 shows the UTOPIA and serial ATM receiver performance of the MPC855T when
configured with internal and external connection tables.

1. Cell header located in the middle of the look-up table (16th place), AAL0 RCT[NCRC] is set.
2. Address compression with FLMASK and SLMASK containing 4 lsb zeros.
3. No scrambler / With Scrambler and coset

The following table allows for calculating the impact of several modes on performance.

Table B-3. Receiver Performance (with 50MHz System Clock)

Mode Condition
Performance (in Mbps)

UTOPIA Serial (3)

Internal Channels AAL5, middle frame, look-up table (1) 89 27/19

AAL0, no CRC10, look-up table (1) 68 24/17.5

AAL5, middle frame, address comp (2) 84 26/18

AAL0, no CRC10, address comp (2) 65 23/17

External Channels AAL5, middle frame, address compression 69 23/18

AAL0, Address compression 50 21/17

AAL5, middle frame, CAM 84 27/19

AAL0, CAM 57 24/17.5

External AAL5 + MPHY AAL5, middle frame, Address compression 66 NA

Table B-4. Additional Features Load

Mode Numerator
Denominator

(CPM Load in Mbps)

MCF set Total RX bit rate 1678

CRC-10 (in AAL0 channel) Total bit rate of AAL0 channels with
CRC10

457

MPC855T User’s Manual

Receiver

Example:

The following load exists:

10 AAL0 internal channel, each receives 5Mbps.

2 AAL5 internal channels, 10Mbps each, and one of the channels has PM on.

What is the overall CPM load?

the load caused by the AAL0 channels = total_AAL0_rate/max_AAL0_rate = (10*5)/68 =
50/68

the load caused by the AAL5 channels = total_ALL5_rate/max_AAL5_rate = (2*10)/89

the load caused by the PM processing = 10/694

overall load = 50/68 + 20/89 + 10/694 = 0.97 < 1

We see that in the PM load, the numerator contains only the bit rate that carries PM (only
1 AAL5 channel performs PM hence only 10 Mbps).

The overall bit rate came out less than one. This means that the CPM is able to handle the
calculated load.

If in addition to the previous channels configuration, MCF is also activated, the new CPM
load would yield:

the load caused by MCF = total_channel_rate/MCF_max_rate = (10*5+2*10)/1678

And the overall load is 0.97 + 70/1678 = 1.01

This time the overall load is higher than one. This means that we have exceeded the CPM
capacity. This can be resolved by various ways: raising the system clock, improving
external memory, or cancelling some of the traffic.

PM on internal channel Total bit rate of internal channels
with PM

694

PM on external channel Total bit rate of external channels
with PM

419

Statistics mode activated, single PHY Total RX bit rate 2870

Statistics mode activated, multy PHY Total RX bit rate 1340

Table B-4. Additional Features Load (continued)

Mode Numerator
Denominator

(CPM Load in Mbps)

Appendix B. Serial Communications Performance

Transmitter

B.6 Transmitter
Table B-5 shows the UTOPIA and serial mode transmitter performance of the MPC855T
when configured with internal and external connection tables.

1. In case of one 25Mbit PHY and 1 XDSL 1Mbit. This example is for N=4 for the first PHY and N=0.16 for the second.

2. In case of one 25Mbit PHY and 1 XDSL 500 Kbit. This example is for N=1 for the first PHY and N=0.02 for the second.

3. In case of one 25Mbit PHY and 3 XDSL 500 Kbit. This example is for N=1 for the first PHY and N=0.02 for the second.

4. APC(N=1)/APC(N=4). In case of N=4, UTOPIA mode, the numbers represent the CP load, but a 100% load cannot
be achieved if the CP works solely on transmit. For example if an AAL0 internal channel operates at 30Mbps and
APC(N=4) this means that the CP is half loaded. A full CP load that would yield a 60Mbps is not reachable. This is
because of the UTOPIA TX implementation which requires the CP to wait for the UTOPIA to finish transmitting a cell
before it passes it a new cell.

5. No scrambler / With Scrambler and coset

The following table allows for calculating the impact of several modes, on performance.

Table B-5. Transmitter (Including 1 Priority APC) Performance (with 50MHz System
Clock)

Mode Condition
Mbit

UTOPIA(4) Serial(5)

INTERNAL CHANNELS
AAL5, middle frame + APC 57/69 32/23

AAL0 +APC 51/60 28/20.5

EXTERNAL
CHANNELS

AAL5, middle frame + APC 47/51 27/20

AAL0 + APC 43/47 24/19

EXTERNAL AAL5 +
MPHY

2 MPHYs with similar bitrate 44/48 NA

1 fast MPHY and 1 slow (1) 43 NA

1 fast MPHY and 1 slow (2) 41 NA

1 fast MPHY and 3 slow (3) 38 NA

Table B-6. Performance Calculation

Mode Numerator
Denominator

(CPM Load in Mbps)

PM on internal channel Total bit rate of internal channels with PM
activated

575

PM on external channel Total bit rate of external channels with PM
activated

457

CRC-10 on AAL0 Tx channel Total bit rate of CRC-10 AAL0 channels 207

Statistics mode set, single PHY Total transmitted bit rate 2237

Statistics mode set, multy PHY Total transmitted bit rate 1342

MPC855T User’s Manual

Transmitter

Example of mixed transmit receive CPM load calculation:

2 transmit external AAL5 channels, each of them is 6Mbps.

One of the two TX AAL5 channels has PM activated.

5 receive, internal channels, address compression, AAL0, each of them is 4Mbps.

MCF is on.

2 Tx AAL5 load = (2*6)/47

PM load = 6/457

5 Rx AAL0 channels = (5*4)/65

MCF load = (5*4)/1678

overall CPM load = 12/47 + 6/457 + 20/65 + 20/1678 = 0.6

Appendix C. Register Quick Reference Guide

Appendix C
Register Quick Reference Guide
This section provides a brief guide to the core registers.

C.1 User Registers
The MPC855T implements the user-level registers defined by the PowerPC architecture
except those required for supporting floating-point operations (the floating-point register
file (FPRs) and the floating-point status and control register (FPSCR)). User-level registers
are listed in Table C-1 and Table C-2. Table C-2 lists user-level special-purpose registers
(SPRs).

Table C-2 lists SPRs defined by the PowerPC architecture implemented on the MPC855T.

Table C-1. User-Level Registers

Description Name Comments Access Level Serialize Access

General-purpose
registers

GPRs The thirty-two 32-bit (GPRs) are used for source
and destination operands.

User —

Condition register CR See Section 4.1.1.1.1, “Condition Register (CR).” User Only mtcrf

Table C-2. User-Level SPRs

SPR Number
Name Comments Serialize Access

Decimal SPR [5–9] SPR [0–4]

1 00000 00001 XER See Section 4.1.1.1.3,
“XER.”

Write: Full sync
Read: Sync relative to load/store operations

8 00000 01000 LR See the Programming
Environments Manual

No

9 00000 01001 CTR See the Programming
Environments Manual

No

268 01000 01100 TBL read 1

1 Extended opcode for mftb, 371 rather than 339.

Section 10.9, “The
Timebase.”

Write (as a store)

269 01000 01101 TBU read 2

2 Any write (mtspr) to this address causes an implementation-dependent software emulation exception.

MPC855T User’s Manual

Supervisor Registers

C.2 Supervisor Registers
All supervisor-level registers implemented on the MPC855T are SPRs, except for the machine
state register (MSR), described in Table C-3.

Table C-4 lists supervisor-level SPRs defined by the PowerPC architecture.

Table C-3. Supervisor-Level Registers

Description Name Comments Serialize Access

Machine state register MSR See Section 4.1.2.3.1, “Machine State Register
(MSR).”

Write fetch sync

Table C-4. Supervisor-Level SPRs

SPR Number
Name Comments Serialize Access

Decimal SPR[5–9] SPR[0–4]

18 00000 10010 DSISR See the Programming Environments
Manual and Section 4.1.2.1, “DAR,
DSISR, and BAR Operation.”

Write: Full sync
Read: Sync relative to
load/store operations

19 00000 10011 DAR See the Programming Environments
Manual and Section 4.1.2.1, “DAR,
DSISR, and BAR Operation.”

Write: Full sync
Read: Sync relative to load/
store operations

22 00000 10110 DEC See Section 10.8.1, “Decrementer
Register (DEC),” and in Chapter 14,
“Clocks and Power Control”

Write

26 00000 11010 SRR0 See SRR0 settings for individual
exceptions in Chapter 6, “Exceptions.”

Write

27 00000 11011 SRR1 See SRR1 settings for individual
exceptions in Chapter 6, “Exceptions.”

Write

272 01000 10000 SPRG0 See the Programming Environments
Manual.

Write

273 01000 10001 SPRG1

274 01000 10010 SPRG2

275 01000 10011 SPRG3

284 01000 11100 TBL write 1

1 Any read (mftb) to this address causes an implementation-dependent software emulation exception.

See Section 10.9, “The Timebase,”
and Chapter 14, “Clocks and Power
Control.”

Write (as a store)

285 01000 11101 TBU write1

287 01000 11111 PVR Section 4.1.2.3.2, “Processor Version
Register.”

No (read-only register)

Appendix C. Register Quick Reference Guide

MPC855T-Specific SPRs

C.3 MPC855T-Specific SPRs
Table C-2 and Table C-5 list SPRs specific to the MPC855T. Debug registers, which have
additional protection, are described in Chapter 44, “System Development and Debugging.”
Supervisor-level registers are described in Table C-5.

Table C-5. MPC855T-Specific Supervisor-Level SPRs

SPR Number
Name Comments Serialize Access

Decimal SPR[5–9] SPR[0–4]

80 00010 10000 EIE See Section 6.1.5, “Recoverability
after an Exception.”

Write

81 00010 10001 EID Write

82 00010 10010 NRI Write

631 10011 10111 DPIR 1 Fetch-only

638 10011 11110 IMMR Section 10.4.1, “Internal Memory Map
Register (IMMR).”

Write (as a store)

560 10001 10000 IC_CST Section 7.3.1, “Instruction Cache
Control Registers”

Write (as a store)

561 10001 10001 IC_ADR Section 7.3.1, “Instruction Cache
Control Registers”

Write (as a store)

562 10001 10010 IC_DAT Section 7.3.1, “Instruction Cache
Control Registers”

Write (as a store)

568 10001 11000 DC_CST Section 7.3.2, “Data Cache Control
Registers”

Write (as a store)

569 10001 11001 DC_ADR Section 7.3.2, “Data Cache Control
Registers”

Write (as a store)

570 10001 11010 DC_DAT Section 7.3.2, “Data Cache Control
Registers”

Write (as a store)

784 11000 10000 MI_CTR Section 8.8.1, “IMMU Control Register
(MI_CTR)”

Write (as a store)

786 11000 10010 MI_AP Section 8.8.10, “MMU Access
Protection Registers
(MI_AP/MD_AP)”

Write (as a store)

787 11000 10011 MI_EPN Section 8.8.3, “IMMU/DMMU Effective
Page Number Register (Mx_EPN)”

Write (as a store)

789 11000 10101 MI_TWC
(MI_L1DL2P)

Section 8.8.4, “IMMU Tablewalk
Control Register (MI_TWC)

Write (as a store)

790 11000 10110 MI_RPN Section 8.8.6, “IMMU Real Page
Number Register (MI_RPN)”

Write (as a store)

816 11001 10000 MI_CAM Section 8.8.12.1, “IMMU CAM Entry
Read Register (MI_CAM)”

Write (as a store)

817 11001 10001 MI_RAM0 Section 8.8.12.2, “IMMU RAM Entry
Read Register 0 (MI_RAM0)”

Write (as a store)

MPC855T User’s Manual

MPC855T-Specific SPRs

Debug-level registers are described in Table C-6. These registers are described in
Section 44.5.1, “Development Support Registers.”

818 11001 10010 MI_RAM1 Section 8.8.13, “DMMU RAM Entry
Read Register 1 (MD_RAM1)”

Write (as a store)

792 11000 11000 MD_CTR Section 8.8.2, “DMMU Control
Register (MD_CTR).”

Write (as a store)

793 11000 11001 M_CASID Section 8.8.9, “MMU Current Address
Space ID Register (M_CASID)”

Write (as a store)

794 11000 11010 MD_AP Section 8.8.10, “MMU Access
Protection Registers
(MI_AP/MD_AP)”

Write (as a store)

795 11000 11011 MD_EPN Section 8.8.3, “IMMU/DMMU Effective
Page Number Register (Mx_EPN)”

Write (as a store)

796 11000 11100 M_TWB
(MD_L1P)

Section 8.8.8, “MMU Tablewalk Base
Register (M_TWB)”

Write (as a store)

797 11000 11101 MD_TWC
(MD_L1DL2P)

Section 8.8.5, “DMMU Tablewalk
Control Register (MD_TWC)”

Write (as a store)

798 11000 11110 MD_RPN Section 8.8.7, “DMMU Real Page
Number Register (MD_RPN)”

Write (as a store)

799 11000 11111 M_TW (M_SAVE) Section 8.8.11, “MMU Tablewalk
Special Register (M_TW)”

Write (as a store)

824 11001 11000 MD_CAM Section 8.8.12.4, “DMMU CAM Entry
Read Register (MD_CAM)”

Write (as a store)

825 11001 11001 MD_RAM0 Section 8.8.12.5, “DMMU RAM Entry
Read Register 0 (MD_RAM0)”

Write (as a store)

826 11001 11010 MD_RAM1 Section 8.8.13, “DMMU RAM Entry
Read Register 1 (MD_RAM1)”

Write (as a store)

1 Fetch-only register; mtspr is ignored; using mfspr gives an undefined value.

Table C-6. MPC855T-Specific Debug-Level SPRs

SPR Number
Name Serialize Access

Decimal SPR[5–9] SPR[0–4]

144 00100 10000 CMPA Fetch sync on write

145 00100 10001 CMPB Fetch sync on write

146 00100 10010 CMPC Fetch sync on write

147 00100 10011 CMPD Fetch sync on write

148 00100 10100 ICR Fetch sync on write

Table C-5. MPC855T-Specific Supervisor-Level SPRs (continued)

SPR Number
Name Comments Serialize Access

Decimal SPR[5–9] SPR[0–4]

Appendix C. Register Quick Reference Guide

MPC855T-Specific SPRs

149 00100 10101 DER Fetch sync on write

150 00100 10110 COUNTA Fetch sync on write

151 00100 10111 COUNTB Fetch sync on write

152 00100 11000 CMPE Write: Fetch sync
Read: Sync relative to load/store operations

153 00100 11001 CMPF Write: Fetch sync
Read: Sync relative to load/store operations

154 00100 11010 CMPG Write: Fetch sync
Read: Sync relative to load/store operations

155 00100 11011 CMPH Write: Fetch sync
Read: Sync relative to load/store operations

156 00100 11100 LCTRL1 Write: Fetch sync
Read: Sync relative to load/store operations

157 00100 11101 LCTRL2 Write: Fetch sync
Read: Sync relative to load/store operations

158 00100 11110 ICTRL Fetch sync on write

159 00100 11111 BAR Write: Fetch sync
Read: Sync relative to load/store operations. See
Section 4.1.2.1, “DAR, DSISR, and BAR Operation.”

630 10011 10110 DPDR Read and Write

Table C-6. MPC855T-Specific Debug-Level SPRs (continued)

SPR Number
Name Serialize Access

Decimal SPR[5–9] SPR[0–4]

MPC855T User’s Manual

MPC855T-Specific SPRs

Appendix D. Instruction Set Listings

Appendix D
Instruction Set Listings
This appendix lists the MPC855T’s instruction set as well as the additional PowerPC
instructions not implemented in the MPC855T. Instructions are sorted by mnemonic,
opcode, function, and form. Also included in this appendix is a quick reference table that
contains general information, such as the architecture level, privilege level, and form, and
indicates if the instruction is 64-bit and optional.

Note that split fields, that represent the concatenation of sequences from left to right, are
shown in lowercase. For more information refer to Chapter 8, “Instruction Set,” in The
Programming Environments Manual.

D.1 Instructions Sorted by Mnemonic
Table D-1 lists the instructions implemented in the MPC855T’s in alphabetical order by
mnemonic.

Table D-1. Complete Instruction List Sorted by Mnemonic

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

Reserved bits

Key:

Instruction not implemented in the MPC855T

MPC855T User’s Manual

Instructions Sorted by Mnemonic

andi. 28 S A UIMM

andis. 29 S A UIMM

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

cmp 31 crfD 0 L A B 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

cntlzdx 4 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 1 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

divdx 4 31 D A B OE 489 Rc

divdux 4 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix D. Instruction Set Listings

Instructions Sorted by Mnemonic

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 4 31 S A 0 0 0 0 0 986 Rc

fabsx6 63 D 0 0 0 0 0 B 264 Rc

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx6 59 D A B 0 0 0 0 0 21 Rc

fcfidx 4,6 63 D 0 0 0 0 0 B 846 Rc

fcmpo6 63 crfD 0 0 A B 32 0

fcmpu 6 63 crfD 0 0 A B 0 0

fctidx 4,6 63 D 0 0 0 0 0 B 814 Rc

fctidzx 4,6 63 D 0 0 0 0 0 B 815 Rc

fctiwx6 63 D 0 0 0 0 0 B 14 Rc

fctiwzx6 63 D 0 0 0 0 0 B 15 Rc

fdivx6 63 D A B 0 0 0 0 0 18 Rc

fdivsx6 59 D A B 0 0 0 0 0 18 Rc

fmaddx6 63 D A B C 29 Rc

fmaddsx6 59 D A B C 29 Rc

fmrx6 63 D 0 0 0 0 0 B 72 Rc

fmsubx6 63 D A B C 28 Rc

fmsubsx6 59 D A B C 28 Rc

fmulx6 63 D A 0 0 0 0 0 C 25 Rc

fmulsx6 59 D A 0 0 0 0 0 C 25 Rc

fnabsx6 63 D 0 0 0 0 0 B 136 Rc

fnegx6 63 D 0 0 0 0 0 B 40 Rc

fnmaddx 6 63 D A B C 31 Rc

fnmaddsx6 59 D A B C 31 Rc

fnmsubx6 63 D A B C 30 Rc

fnmsubsx6 59 D A B C 30 Rc

fresx 5,6 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frspx6 63 D 0 0 0 0 0 B 12 Rc

frsqrtex 5,6 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx 5,6 63 D A B C 23 Rc

fsqrtx 5,6 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 5,6 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC855T User’s Manual

Instructions Sorted by Mnemonic

fsubx6 63 D A B 0 0 0 0 0 20 Rc

fsubsx6 59 D A B 0 0 0 0 0 20 Rc

icbi 31 0 0 0 0 0 A B 982 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 4 58 D A ds 0

ldarx 4 31 D A B 84 0

ldu 4 58 D A ds 1

ldux 4 31 D A B 53 0

ldx 4 31 D A B 21 0

lfd6 50 D A d

lfdu6 51 D A d

lfdux6 31 D A B 631 0

lfdx6 31 D A B 599 0

lfs6 48 D A d

lfsu6 49 D A d

lfsux6 31 D A B 567 0

lfsx6 31 D A B 535 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lmw 3 46 D A d

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

lwa 4 58 D A ds 2

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix D. Instruction Set Listings

Instructions Sorted by Mnemonic

lwarx 31 D A B 20 0

lwaux 4 31 D A B 373 0

lwax 4 31 D A B 341 0

lwbrx 31 D A B 534 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

mcrfs6 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx6 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2 31 D spr 339 0

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtfsb0x6 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 6 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx6 63 0 FM 0 B 711 Rc

mtfsfix6 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 2 31 S spr 467 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

mulhdx 4 31 D A B 0 73 Rc

mulhdux4 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulldx 4 31 D A B OE 233 Rc

mulli 7 D A SIMM

mullwx 31 D A B OE 235 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC855T User’s Manual

Instructions Sorted by Mnemonic

nandx 31 S A B 476 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

rldclx 4 30 S A B mb 8 Rc

rldcrx 4 30 S A B me 9 Rc

rldicx 4 30 S A sh mb 2 sh Rc

rldiclx 4 30 S A sh mb 0 sh Rc

rldicrx 4 30 S A sh me 1 sh Rc

rldimix 4 30 S A sh mb 3 sh Rc

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

sc 17 0 1 0

slbia 1,4,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,4,5 31 0 0 0 0 0 0 0 0 0 0 B 434 0

sldx 4 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 4 31 S A B 794 Rc

sradix 4 31 S A sh 413 sh Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 4 31 S A B 539 Rc

srwx 31 S A B 536 Rc

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 4 62 S A ds 0

stdcx. 4 31 S A B 214 1

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix D. Instruction Set Listings

Instructions Sorted by Mnemonic

stdu 4 62 S A ds 1

stdux 4 31 S A B 181 0

stdx 4 31 S A B 149 0

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 5 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sth 44 S A d

sthbrx 31 S A B 918 0

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stmw 3 47 S A d

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

stw 36 S A d

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfic 08 D A SIMM

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

td 4 31 TO A B 68 0

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC855T User’s Manual

Instructions Sorted by Mnemonic

tdi 4 02 TO A SIMM

tlbia 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,5 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

twi 03 TO A SIMM

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional in the PowerPC architecture
6 Floating-point instructions are not supported by the MPC855T.

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix D. Instruction Set Listings

Instructions Sorted by Opcode

D.2 Instructions Sorted by Opcode
Table D-2 lists the instructions defined in the MPC855T in numeric order by opcode.

Table D-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tdi 4 0 0 0 0 1 0 TO A SIMM

twi 0 0 0 0 1 1 TO A SIMM

mulli 0 0 0 1 1 1 D A SIMM

subfic 0 0 1 0 0 0 D A SIMM

cmpli 0 0 1 0 1 0 crfD 0 L A UIMM

cmpi 0 0 1 0 1 1 crfD 0 L A SIMM

addic 0 0 1 1 0 0 D A SIMM

addic. 0 0 1 1 0 1 D A SIMM

addi 0 0 1 1 1 0 D A SIMM

addis 0 0 1 1 1 1 D A SIMM

bcx 0 1 0 0 0 0 BO BI BD AA LK

sc 0 1 0 0 0 1 0 1 0

bx 0 1 0 0 1 0 LI AA LK

mcrf 0 1 0 0 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bclrx 0 1 0 0 1 1 BO BI 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 LK

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 0

rfi 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 0

isync 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 0

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 0

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 0

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 0

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 0

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 0

bcctrx 0 1 0 0 1 1 BO BI 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 LK

rlwimix 0 1 0 1 0 0 S A SH MB ME Rc

rlwinmx 0 1 0 1 0 1 S A SH MB ME Rc

Reserved bits

Key:

Instruction not implemented in the MPC855T

MPC855T User’s Manual

Instructions Sorted by Opcode

rlwnmx 0 1 0 1 1 1 S A B MB ME Rc

ori 0 1 1 0 0 0 S A UIMM

oris 0 1 1 0 0 1 S A UIMM

xori 0 1 1 0 1 0 S A UIMM

xoris 0 1 1 0 1 1 S A UIMM

andi. 0 1 1 1 0 0 S A UIMM

andis. 0 1 1 1 0 1 S A UIMM

rldiclx 4 0 1 1 1 1 0 S A sh mb 0 0 0 sh Rc

rldicrx 4 0 1 1 1 1 0 S A sh me 0 0 1 sh Rc

rldicx 4 0 1 1 1 1 0 S A sh mb 0 1 0 sh Rc

rldimix 4 0 1 1 1 1 0 S A sh mb 0 1 1 sh Rc

rldclx 4 0 1 1 1 1 0 S A B mb 0 1 0 0 0 Rc

rldcrx 4 0 1 1 1 1 0 S A B me 0 1 0 0 1 Rc

cmp 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

tw 0 1 1 1 1 1 TO A B 0 0 0 0 0 0 0 1 0 0 0

subfcx 0 1 1 1 1 1 D A B OE 0 0 0 0 0 1 0 0 0 Rc

mulhdux 4 0 1 1 1 1 1 D A B 0 0 0 0 0 0 1 0 0 1 Rc

addcx 0 1 1 1 1 1 D A B OE 0 0 0 0 0 1 0 1 0 Rc

mulhwux 0 1 1 1 1 1 D A B 0 0 0 0 0 0 1 0 1 1 Rc

mfcr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

lwarx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 0

ldx 4 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 0

lwzx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 1 1 0

slwx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 0 0 Rc

cntlzwx 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Rc

sldx 4 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 1 1 Rc

andx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 1 0 0 Rc

cmpl 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 1 0 0 0 0 0 0

subfx 0 1 1 1 1 1 D A B OE 0 0 0 1 0 1 0 0 0 Rc

ldux 4 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 0 1 0

dcbst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 0 1 1 0 1 1 0 0

lwzux 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 1 1 0

cntlzdx 4 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 Rc

andcx 0 1 1 1 1 1 S A B 0 0 0 0 1 1 1 1 0 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix D. Instruction Set Listings

Instructions Sorted by Opcode

td 4 0 1 1 1 1 1 TO A B 0 0 0 1 0 0 0 1 0 0 0

mulhdx 4 0 1 1 1 1 1 D A B 0 0 0 1 0 0 1 0 0 1 Rc

mulhwx 0 1 1 1 1 1 D A B 0 0 0 1 0 0 1 0 1 1 Rc

mfmsr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

ldarx 4 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 0 0 0

dcbf 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 1 0 1 0 1 1 0 0

lbzx 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 1 1 0

negx 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 1 0 0 0 Rc

lbzux 0 1 1 1 1 1 D A B 0 0 0 1 1 1 0 1 1 1 0

norx 0 1 1 1 1 1 S A B 0 0 0 1 1 1 1 1 0 0 Rc

subfex 0 1 1 1 1 1 D A B OE 0 1 0 0 0 1 0 0 0 Rc

addex 0 1 1 1 1 1 D A B OE 0 1 0 0 0 1 0 1 0 Rc

mtcrf 0 1 1 1 1 1 S 0 CRM 0 0 0 1 0 0 1 0 0 0 0 0

mtmsr 0 1 1 1 1 1 S 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

stdx 4 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 0 1 0

stwcx. 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 0 1

stwx 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 1 0

stdux 4 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 0 1 0

stwux 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 1 1 0

subfzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 1 1 0 0 1 0 0 0 Rc

addzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 1 1 0 0 1 0 1 0 Rc

mtsr 0 1 1 1 1 1 S 0 SR 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0

stdcx. 4 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 0 1

stbx 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 1 0

subfmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 1 1 1 0 1 0 0 0 Rc

mulld 4 0 1 1 1 1 1 D A B OE 0 1 1 1 0 1 0 0 1 Rc

addmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 1 1 1 0 1 0 1 0 Rc

mullwx 0 1 1 1 1 1 D A B OE 0 1 1 1 0 1 0 1 1 Rc

mtsrin 0 1 1 1 1 1 S 0 0 0 0 0 B 0 0 1 1 1 1 0 0 1 0 0

dcbtst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 1 1 1 1 0 1 1 0 0

stbux 0 1 1 1 1 1 S A B 0 0 1 1 1 1 0 1 1 1 0

addx 0 1 1 1 1 1 D A B OE 1 0 0 0 0 1 0 1 0 Rc

dcbt 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 0 0 0 1 0 1 1 0 0

lhzx 0 1 1 1 1 1 D A B 0 1 0 0 0 1 0 1 1 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC855T User’s Manual

Instructions Sorted by Opcode

eqvx 0 1 1 1 1 1 S A B 0 1 0 0 0 1 1 1 0 0 Rc

tlbie 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 0 0 1 1 0 0 1 0 0

eciwx 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 0 0

lhzux 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 1 0

xorx 0 1 1 1 1 1 S A B 0 1 0 0 1 1 1 1 0 0 Rc

mfspr 2 0 1 1 1 1 1 D spr 0 1 0 1 0 1 0 0 1 1 0

lwax 4 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 0 1 0

lhax 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 1 1 0

tlbia 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0

mftb 0 1 1 1 1 1 D tbr 0 1 0 1 1 1 0 0 1 1 0

lwaux 4 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 0 1 0

lhaux 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 1 1 0

sthx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 0 1 1 1 0

orcx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 1 1 0 0 Rc

sradix 4 0 1 1 1 1 1 S A sh 1 1 0 0 1 1 1 0 1 1 sh Rc

slbie 1,4,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 1 0 1 1 0 0 1 0 0

ecowx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 0 0

sthux 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 1 0

orx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 1 1 0 0 Rc

divdux 4 0 1 1 1 1 1 D A B OE 1 1 1 0 0 1 0 0 1 Rc

divwux 0 1 1 1 1 1 D A B OE 1 1 1 0 0 1 0 1 1 Rc

mtspr 2 0 1 1 1 1 1 S spr 0 1 1 1 0 1 0 0 1 1 0

dcbi 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 1 1 0 1 0 1 1 0 0

nandx 0 1 1 1 1 1 S A B 0 1 1 1 0 1 1 1 0 0 Rc

divdx 4 0 1 1 1 1 1 D A B OE 1 1 1 1 0 1 0 0 1 Rc

divwx 0 1 1 1 1 1 D A B OE 1 1 1 1 0 1 0 1 1 Rc

slbia 1,4,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0

 mcrxr 0 1 1 1 1 1 crfD 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

lswx 3 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 0 1 0

lwbrx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 0 0

lfsx6 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 1 0

srwx 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 0 0 Rc

srdx 4 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 1 1 Rc

tlbsync 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix D. Instruction Set Listings

Instructions Sorted by Opcode

lfsux6 0 1 1 1 1 1 D A B 1 0 0 0 1 1 0 1 1 1 0

mfsr 0 1 1 1 1 1 D 0 SR 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0

lswi 3 0 1 1 1 1 1 D A NB 1 0 0 1 0 1 0 1 0 1 0

sync 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0

lfdx6 0 1 1 1 1 1 D A B 1 0 0 1 0 1 0 1 1 1 0

lfdux6 0 1 1 1 1 1 D A B 1 0 0 1 1 1 0 1 1 1 0

mfsrin 1 0 1 1 1 1 1 D 0 0 0 0 0 B 1 0 1 0 0 1 0 0 1 1 0

stswx 3 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 0 1 0

stwbrx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 0 0

stfsx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 1 0

stfsux 0 1 1 1 1 1 S A B 1 0 1 0 1 1 0 1 1 1 0

stswi 3 0 1 1 1 1 1 S A NB 1 0 1 1 0 1 0 1 0 1 0

stfdx6 0 1 1 1 1 1 S A B 1 0 1 1 0 1 0 1 1 1 0

stfdux6 0 1 1 1 1 1 S A B 1 0 1 1 1 1 0 1 1 1 0

lhbrx 0 1 1 1 1 1 D A B 1 1 0 0 0 1 0 1 1 0 0

srawx 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 0 0 Rc

sradx 4 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 1 0 Rc

srawix 0 1 1 1 1 1 S A SH 1 1 0 0 1 1 1 0 0 0 Rc

eieio 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

sthbrx 0 1 1 1 1 1 S A B 1 1 1 0 0 1 0 1 1 0 0

extshx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 Rc

extsbx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 Rc

icbi 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 0 1 0 1 1 0 0

stfiwx 5 0 1 1 1 1 1 S A B 1 1 1 1 0 1 0 1 1 1 0

extsw 4 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 Rc

dcbz 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 1 1 0 1 1 0 0

lwz 1 0 0 0 0 0 D A d

lwzu 1 0 0 0 0 1 D A d

lbz 1 0 0 0 1 0 D A d

lbzu 1 0 0 0 1 1 D A d

stw 1 0 0 1 0 0 S A d

stwu 1 0 0 1 0 1 S A d

stb 1 0 0 1 1 0 S A d

stbu 1 0 0 1 1 1 S A d

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC855T User’s Manual

Instructions Sorted by Opcode

lhz 1 0 1 0 0 0 D A d

lhzu 1 0 1 0 0 1 D A d

lha 1 0 1 0 1 0 D A d

lhau 1 0 1 0 1 1 D A d

sth 1 0 1 1 0 0 S A d

sthu 1 0 1 1 0 1 S A d

lmw 3 1 0 1 1 1 0 D A d

stmw 3 1 0 1 1 1 1 S A d

lfs6 1 1 0 0 0 0 D A d

lfsu6 1 1 0 0 0 1 D A d

lfd6 1 1 0 0 1 0 D A d

lfdu6 1 1 0 0 1 1 D A d

 stfs6 1 1 0 1 0 0 S A d

stfsu6 1 1 0 1 0 1 S A d

stfd6 1 1 0 1 1 0 S A d

stfdu6 1 1 0 1 1 1 S A d

ld 4 1 1 1 0 1 0 D A ds 0 0

ldu 4 1 1 1 0 1 0 D A ds 0 1

lwa 4 1 1 1 0 1 0 D A ds 1 0

fdivsx6 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubsx6 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

faddsx6 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrtsx 5,6 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fresx 5,6 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 0 0 Rc

fmulsx6 1 1 1 0 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

fmsubsx6 1 1 1 0 1 1 D A B C 1 1 1 0 0 Rc

fmaddsx6 1 1 1 0 1 1 D A B C 1 1 1 0 1 Rc

fnmsubsx6 1 1 1 0 1 1 D A B C 1 1 1 1 0 Rc

fnmaddsx6 1 1 1 0 1 1 D A B C 1 1 1 1 1 Rc

std 4 1 1 1 1 1 0 S A ds 0 0

stdu 4 1 1 1 1 1 0 S A ds 0 1

fcmpu6 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 0 0 0 0 0 0 0

frspx6 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 0 0 Rc

fctiwx6 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix D. Instruction Set Listings

Instructions Sorted by Opcode

fctiwzx6 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 1 Rc

fdivx6 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubx6 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

faddx6 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrtx 5,6 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fselx 5,6 1 1 1 1 1 1 D A B C 1 0 1 1 1 Rc

fmulx6 1 1 1 1 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

frsqrtex 5,6 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 1 0 Rc

fmsubx6 1 1 1 1 1 1 D A B C 1 1 1 0 0 Rc

fmaddx6 1 1 1 1 1 1 D A B C 1 1 1 0 1 Rc

fnmsubx6 1 1 1 1 1 1 D A B C 1 1 1 1 0 Rc

fnmaddx 6 1 1 1 1 1 1 D A B C 1 1 1 1 1 Rc

fcmpo 6 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 1 0 0 0 0 0 0

mtfsb1x 6 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 Rc

fnegx6 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 1 0 1 0 0 0 Rc

mcrfs6 1 1 1 1 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

mtfsb0x6 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 Rc

fmrx6 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 1 0 0 1 0 0 0 Rc

mtfsfix6 1 1 1 1 1 1 crfD 0 0 0 0 0 0 0 IMM 0 0 0 1 0 0 0 0 1 1 0 Rc

fnabsx6 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 1 0 0 0 1 0 0 0 Rc

fabsx6 1 1 1 1 1 1 D 0 0 0 0 0 B 0 1 0 0 0 0 1 0 0 0 Rc

mffsx6 1 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 Rc

mtfsfx6 1 1 1 1 1 1 0 FM 0 B 1 0 1 1 0 0 0 1 1 1 Rc

fctidx 4,6 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 0 Rc

fctidzx 4,6 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 1 Rc

fcfidx 4,6 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 1 0 0 1 1 1 0 Rc

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional in the PowerPC architecture
6 Floating-point instructions are not supported by the MPC855T.

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MPC855T User’s Manual

Instructions Grouped by Functional Categories

D.3 Instructions Grouped by Functional Categories
Table D-3 through Table D-30 list the PowerPC instructions defined by the MPC855T
grouped by function.

Table D-3. Integer Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divdx 4 31 D A B OE 489 Rc

divdux 4 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhdx 4 31 D A B 0 73 Rc

mulhdux4 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulld 4 31 D A B OE 233 Rc

mulli 07 D A SIMM

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subficx 08 D A SIMM

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

Reserved bits

Key:

Instruction not implemented in the MPC855T

Appendix D. Instruction Set Listings

Instructions Grouped by Functional Categories

Table D-4. Integer Compare Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

Table D-5. Integer Logical Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

cntlzdx 4 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 4 31 S A 0 0 0 0 0 986 Rc

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Table D-6. Integer Rotate Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldclx 4 30 S A B mb 8 Rc

rldcrx 4 30 S A B me 9 Rc

rldicx 4 30 S A sh mb 2 sh Rc

rldiclx 4 30 S A sh mb 0 sh Rc

MPC855T User’s Manual

Instructions Grouped by Functional Categories

rldicrx 4 30 S A sh me 1 sh Rc

rldimix 4 30 S A sh mb 3 sh Rc

rlwimix 22 S A SH MB ME Rc

rlwinmx 20 S A SH MB ME Rc

rlwnmx 21 S A SH MB ME Rc

Table D-7. Integer Shift Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sldx 4 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 4 31 S A B 794 Rc

sradix 4 31 S A sh 413 sh Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 4 31 S A B 539 Rc

srwx 31 S A B 536 Rc

Table D-8. Floating-Point Arithmetic Instructions6

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fresx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 5 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

fselx 5 63 D A B C 23 Rc

fsqrtx 5 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

Table D-6. Integer Rotate Instructions (continued)

Appendix D. Instruction Set Listings

Instructions Grouped by Functional Categories

Table D-9. Floating-Point Multiply-Add Instructions6

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

Table D-10. Floating-Point Rounding and Conversion Instructions6

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcfidx 4 63 D 0 0 0 0 0 B 846 Rc

fctidx 4 63 D 0 0 0 0 0 B 814 Rc

fctidzx 4 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

Table D-11. Floating-Point Compare Instructions6

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

Table D-12. Floating-Point Status and Control Register Instructions6

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx 63 0 FM 0 B 711 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

MPC855T User’s Manual

Instructions Grouped by Functional Categories

Table D-13. Integer Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 4 58 D A ds 0

ldu 4 58 D A ds 1

ldux 4 31 D A B 53 0

ldx 4 31 D A B 21 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lwa 4 58 D A ds 2

lwaux 4 31 D A B 373 0

lwax 4 31 D A B 341 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

Table D-14. Integer Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 4 62 S A ds 0

stdu 4 62 S A ds 1

stdux 4 31 S A B 181 0

Appendix D. Instruction Set Listings

Instructions Grouped by Functional Categories

stdx 4 31 S A B 149 0

sth 44 S A d

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stw 36 S A d

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

Table D-15. Integer Load and Store with Byte-Reverse Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lhbrx 31 D A B 790 0

lwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

Table D-16. Integer Load and Store Multiple Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw 3 46 D A d

stmw 3 47 S A d

Table D-17. Integer Load and Store String Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

Table D-18. Memory Synchronization Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

ldarx 4 31 D A B 84 0

lwarx 31 D A B 20 0

Table D-14. Integer Store Instructions (continued)

MPC855T User’s Manual

Instructions Grouped by Functional Categories

stdcx.4 31 S A B 214 1

stwcx. 31 S A B 150 1

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

Table D-19. Floating-Point Load Instructions6

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

Table D-20. Floating-Point Store Instructions6

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 5 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

Table D-21. Floating-Point Move Instructions6

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fabsx 63 D 0 0 0 0 0 B 264 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

Table D-18. Memory Synchronization Instructions

Appendix D. Instruction Set Listings

Instructions Grouped by Functional Categories

Table D-22. Branch Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

Table D-23. Condition Register Logical Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table D-24. System Linkage Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

sc 17 0 1 0

Table D-25. Trap Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

td 4 31 TO A B 68 0

tdi 4 03 TO A SIMM

tw 31 TO A B 4 0

twi 03 TO A SIMM

Table D-26. Processor Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 mcrxr 31 crfS 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

MPC855T User’s Manual

Instructions Grouped by Functional Categories

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2 31 D spr 339 0

mftb 31 D tpr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 2 31 D spr 467 0

Table D-27. Cache Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 1 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

icbi 31 0 0 0 0 0 A B 982 0

Table D-28. Segment Register Manipulation Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

Table D-29. Lookaside Buffer Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slbia 1,4,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,4,5 31 0 0 0 0 0 0 0 0 0 0 B 434 0

tlbia 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,5 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Table D-26. Processor Control Instructions

Appendix D. Instruction Set Listings

Instructions Grouped by Functional Categories

Table D-30. External Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional in the PowerPC architecture
6 Floating-point instructions are not supported by the MPC855T.

MPC855T User’s Manual

Instructions Sorted by Form

D.4 Instructions Sorted by Form
Table D-31 through Table D-45 list the PowerPC instructions defined by the MPC855T
grouped by form.

Table D-31. I-Form

Table D-32. B-Form

Table D-33. SC-Form

Table D-34. D-Form

OPCD LI AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

OPCD BO BI BD AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcx 16 BO BI BD AA LK

OPCD 0 1 0

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sc 17 0 1 0

OPCD D A d

OPCD D A SIMM

OPCD S A d

OPCD S A UIMM

OPCD crfD 0 L A SIMM

OPCD crfD 0 L A UIMM

OPCD TO A SIMM

Reserved bits

Key:

Instruction not implemented in the MPC855T

Appendix D. Instruction Set Listings

Instructions Sorted by Form

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

andi. 28 S A UIMM

andis. 29 S A UIMM

cmpi 11 crfD 0 L A SIMM

cmpli 10 crfD 0 L A UIMM

lbz 34 D A d

lbzu 35 D A d

lfd6 50 D A d

lfdu 6 51 D A d

lfs6 48 D A d

lfsu6 49 D A d

lha 42 D A d

lhau 43 D A d

lhz 40 D A d

lhzu 41 D A d

lmw 3 46 D A d

lwz 32 D A d

lwzu 33 D A d

mulli 7 D A SIMM

ori 24 S A UIMM

oris 25 S A UIMM

stb 38 S A d

stbu 39 S A d

stfd6 54 S A d

stfdu6 55 S A d

 stfs6 52 S A d

stfsu6 53 S A d

sth 44 S A d

sthu 45 S A d

stmw 3 47 S A d

MPC855T User’s Manual

Instructions Sorted by Form

Table D-35. DS-Form

Table D-36. X-Form

stw 36 S A d

stwu 37 S A d

subfic 08 D A SIMM

tdi 4 02 TO A SIMM

twi 03 TO A SIMM

xori 26 S A UIMM

xoris 27 S A UIMM

OPCD D A ds XO

OPCD S A ds XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ld 4 58 D A ds 0

ldu 4 58 D A ds 1

lwa 4 58 D A ds 2

std 4 62 S A ds 0

stdu 4 62 S A ds 1

OPCD D A B XO 0

OPCD D A NB XO 0

OPCD D 0 0 0 0 0 B XO 0

OPCD D 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD D 0 SR 0 0 0 0 0 XO 0

OPCD S A B XO Rc

OPCD S A B XO 1

OPCD S A B XO 0

OPCD S A NB XO 0

OPCD S A 0 0 0 0 0 XO Rc

OPCD S 0 0 0 0 0 B XO 0

OPCD S 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD S 0 SR 0 0 0 0 0 XO 0

OPCD S A SH XO Rc

OPCD crfD 0 L A B XO 0

Appendix D. Instruction Set Listings

Instructions Sorted by Form

OPCD crfD 0 0 A B XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 IMM 0 XO Rc

OPCD TO A B XO 0

OPCD D 0 0 0 0 0 B XO Rc

OPCD D 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD crbD 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD 0 0 0 0 0 A B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

cmp 31 crfD 0 L A B 0 0

cmpl 31 crfD 0 L A B 32 0

cntlzdx 4 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 1 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 4 31 S A 0 0 0 0 0 986 Rc

fabsx6 63 D 0 0 0 0 0 B 264 Rc

fcfidx 4,6 63 D 0 0 0 0 0 B 846 Rc

fcmpo 6 63 crfD 0 0 A B 32 0

fcmpu6 63 crfD 0 0 A B 0 0

MPC855T User’s Manual

Instructions Sorted by Form

fctidx 4,6 63 D 0 0 0 0 0 B 814 Rc

fctidzx 4,6 63 D 0 0 0 0 0 B 815 Rc

fctiwx6 63 D 0 0 0 0 0 B 14 Rc

fctiwzx6 63 D 0 0 0 0 0 B 15 Rc

fmrx6 63 D 0 0 0 0 0 B 72 Rc

fnabsx6 63 D 0 0 0 0 0 B 136 Rc

fnegx6 63 D 0 0 0 0 0 B 40 Rc

frspx6 63 D 0 0 0 0 0 B 12 Rc

icbi 31 0 0 0 0 0 A B 982 0

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ldarx 4 31 D A B 84 0

ldux 4 31 D A B 53 0

ldx 4 31 D A B 21 0

lfdux6 31 D A B 631 0

lfdx6 31 D A B 599 0

lfsux6 31 D A B 567 0

lfsx6 31 D A B 535 0

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

lwarx 31 D A B 20 0

lwaux 4 31 D A B 373 0

lwax 4 31 D A B 341 0

lwbrx 31 D A B 534 0

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx6 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

Appendix D. Instruction Set Listings

Instructions Sorted by Form

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mtfsb0x6 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 6 63 crfD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfix6 63 crbD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

slbia 1,4,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,4,5 31 0 0 0 0 0 0 0 0 0 0 B 434 0

sldx 4 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 4 31 S A B 794 Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 4 31 S A B 539 Rc

srwx 31 S A B 536 Rc

stbux 31 S A B 247 0

stbx 31 S A B 215 0

stdcx. 4 31 S A B 214 1

stdux 4 31 S A B 181 0

stdx 4 31 S A B 149 0

stfdux6 31 S A B 759 0

stfdx6 31 S A B 727 0

stfiwx5,6 31 S A B 983 0

stfsux6 31 S A B 695 0

stfsx6 31 S A B 663 0

sthbrx 31 S A B 918 0

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

MPC855T User’s Manual

Instructions Sorted by Form

Table D-37. XL-Form

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwux 31 S A B 183 0

stwx 31 S A B 151 0

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

td 4 31 TO A B 68 0

tlbia 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,5 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

xorx 31 S A B 316 Rc

OPCD BO BI 0 0 0 0 0 XO LK

OPCD crbD crbA crbB XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

Appendix D. Instruction Set Listings

Instructions Sorted by Form

Table D-38. XFX-Form

Table D-39. XFL-Form

Table D-40. XS-Form

Table D-41. XO-Form

OPCD D spr XO 0

OPCD D 0 CRM 0 XO 0

OPCD S spr XO 0

OPCD D tbr XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfspr 2 31 D spr 339 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtspr 2 31 D spr 467 0

OPCD 0 FM 0 B XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mtfsfx6 63 0 FM 0 B 711 Rc

OPCD S A sh XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sradix 4 31 S A sh 413 sh Rc

OPCD D A B OE XO Rc

OPCD D A B 0 XO Rc

OPCD D A 0 0 0 0 0 OE XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

MPC855T User’s Manual

Instructions Sorted by Form

Table D-42. A-Form

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divdx 4 31 D A B OE 489 Rc

divdux 4 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhdx 4 31 D A B 0 73 Rc

mulhdux 4 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulldx 4 31 D A B OE 233 Rc

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

OPCD D A B 0 0 0 0 0 XO Rc

OPCD D A B C XO Rc

OPCD D A 0 0 0 0 0 C XO Rc

OPCD D 0 0 0 0 0 B 0 0 0 0 0 XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx6 63 D A B 0 0 0 0 0 21 Rc

faddsx6 59 D A B 0 0 0 0 0 21 Rc

fdivx6 63 D A B 0 0 0 0 0 18 Rc

fdivsx6 59 D A B 0 0 0 0 0 18 Rc

fmaddx6 63 D A B C 29 Rc

fmaddsx6 59 D A B C 29 Rc

fmsubx6 63 D A B C 28 Rc

fmsubsx6 59 D A B C 28 Rc

fmulx6 63 D A 0 0 0 0 0 C 25 Rc

Appendix D. Instruction Set Listings

Instructions Sorted by Form

Table D-43. M-Form

Table D-44. MD-Form

Table D-45. MDS-Form

fmulsx6 59 D A 0 0 0 0 0 C 25 Rc

fnmaddx 6 63 D A B C 31 Rc

fnmaddsx6 59 D A B C 31 Rc

fnmsubx6 63 D A B C 30 Rc

fnmsubsx6 59 D A B C 30 Rc

fresx 5,6 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 5,6 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx 5.6 63 D A B C 23 Rc

fsqrtx 5,6 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 5,6 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsubx6 63 D A B 0 0 0 0 0 20 Rc

fsubsx6 59 D A B 0 0 0 0 0 20 Rc

OPCD S A SH MB ME Rc

OPCD S A B MB ME Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

OPCD S A sh mb XO sh Rc

OPCD S A sh me XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldicx 4 30 S A sh mb 2 sh Rc

rldiclx 4 30 S A sh mb 0 sh Rc

rldicrx 4 30 S A sh me 1 sh Rc

rldimix 4 30 S A sh mb 3 sh Rc

OPCD S A B mb XO Rc

OPCD S A B me XO Rc

MPC855T User’s Manual

Instructions Sorted by Form

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldclx 4 30 S A B mb 8 Rc

rldcrx 4 30 S A B me 9 Rc

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional in the PowerPC architecture
6 Floating-point instructions are not supported by the MPC855T

Appendix D. Instruction Set Listings

Instruction Set Legend

D.5 Instruction Set Legend
Table D-46 provides general information on the PowerPC instruction set defined by the
MPC855T (such as the architectural level, privilege level, and form).

Table D-46. Instruction Set Legend

UISA VEA OEA Supervisor Level 64-Bit Optional Form

addx √ XO

addcx √ XO

addex √ XO

addi √ D

addic √ D

addic. √ D

addis √ D

addmex √ XO

addzex √ XO

andx √ X

andcx √ X

andi. √ D

andis. √ D

bx √ I

bcx √ B

bcctrx √ XL

bclrx √ XL

cmp √ X

cmpi √ D

cmpl √ X

cmpli √ D

cntlzdx 4 √ √ X

cntlzwx √ X

crand √ XL

crandc √ XL

creqv √ XL

crnand √ XL

Reserved bits

Key:

Instruction not implemented in the MPC855T

MPC855T User’s Manual

Instruction Set Legend

crnor √ XL

cror √ XL

crorc √ XL

crxor √ XL

dcbf √ X

dcbi 1 √ √ X

dcbst √ X

dcbt √ X

dcbtst √ X

dcbz √ X

divdx 4 √ √ XO

divdux 4 √ √ XO

divwx √ XO

divwux √ XO

eciwx √ √ X

ecowx √ √ X

eieio √ X

eqvx √ X

extsbx √ X

extshx √ X

extswx 4 √ √ X

fabsx6 √ X

faddx6 √ A

faddsx6 √ A

fcfidx 4,6 √ √ X

fcmpo6 √ X

fcmpu6 √ X

fctidx 4,6 √ √ X

fctidzx 4,6 √ √ X

fctiwx6 √ X

fctiwzx6 √ X

fdivx6 √ A

fdivsx6 √ A

fmaddx6 √ A

UISA VEA OEA Supervisor Level 64-Bit Optional Form

Appendix D. Instruction Set Listings

Instruction Set Legend

fmaddsx6 √ A

fmrx6 √ X

fmsubx6 √ A

fmsubsx6 √ A

fmulx6 √ A

fmulsx6 √ A

fnabsx6 √ X

fnegx6 √ X

fnmaddx 6 √ A

fnmaddsx6 √ A

fnmsubx6 √ A

fnmsubsx6 √ A

fresx 5,6 √ √ A

frspx6 √ X

frsqrtex 5,6 √ √ A

fselx 5,6 √ √ A

fsqrtx 5,6 √ √ A

fsqrtsx 5,6 √ √ A

fsubx6 √ A

fsubsx6 √ A

icbi √ X

isync √ XL

lbz √ D

lbzu √ D

lbzux √ X

lbzx √ X

ld 4 √ √ DS

ldarx 4 √ √ X

ldu 4 √ √ DS

ldux 4 √ √ X

ldx 4 √ √ X

lfd6 √ D

lfdu 6 √ D

lfdux6 √ X

UISA VEA OEA Supervisor Level 64-Bit Optional Form

MPC855T User’s Manual

Instruction Set Legend

lfdx6 √ X

lfs6 √ D

lfsu6 √ D

lfsux6 √ X

lfsx6 √ X

lha √ D

lhau √ D

lhaux √ X

lhax √ X

lhbrx √ X

lhz √ D

lhzu √ D

lhzux √ X

lhzx √ X

lmw 3 √ D

lswi 3 √ X

lswx 3 √ X

lwa 4 √ √ DS

lwarx √ X

lwaux 4 √ √ X

lwax 4 √ √ X

lwbrx √ X

lwz √ D

lwzu √ D

lwzux √ X

lwzx √ X

mcrf √ XL

mcrfs6 √ X

 mcrxr √ X

mfcr √ X

mffsx6 √ X

mfmsr 1 √ √ X

mfspr 2 √ √ √ XFX

mfsr 1 √ √ X

UISA VEA OEA Supervisor Level 64-Bit Optional Form

Appendix D. Instruction Set Listings

Instruction Set Legend

mfsrin 1 √ √ X

mftb √ XFX

mtcrf √ XFX

mtfsb0x6 √ X

mtfsb1x 6 √ X

mtfsfx6 √ XFL

mtfsfix6 √ X

mtmsr 1 √ √ X

mtspr 2 √ √ √ XFX

mtsr 1 √ √ X

mtsrin 1 √ √ X

mulhdx 4 √ √ XO

mulhdux 4 √ √ XO

mulhwx √ XO

mulhwux √ XO

mulldx 4 √ √ XO

mulli √ D

mullwx √ XO

nandx √ X

negx √ XO

norx √ X

orx √ X

orcx √ X

ori √ D

oris √ D

rfi 1 √ √ XL

rldclx 4 √ √ MDS

rldcrx 4 √ √ MDS

rldicx 4 √ √ MD

rldiclx 4 √ √ MD

rldicrx 4 √ √ MD

rldimix 4 √ √ MD

rlwimix √ M

rlwinmx √ M

UISA VEA OEA Supervisor Level 64-Bit Optional Form

MPC855T User’s Manual

Instruction Set Legend

rlwnmx √ M

sc √ √ SC

slbia 1,4,5 √ √ √ √ X

slbie 1,4,5 √ √ √ √ X

sldx 4 √ √ X

slwx √ X

sradx 4 √ √ X

sradix 4 √ √ XS

srawx √ X

srawix √ X

srdx 4 √ √ X

srwx √ X

stb √ D

stbu √ D

stbux √ X

stbx √ X

std 4 √ √ DS

stdcx. 4 √ √ X

stdu 4 √ √ DS

stdux 4 √ √ X

stdx 4 √ √ X

stfd6 √ D

stfdu6 √ D

stfdux6 √ X

stfdx6 √ X

stfiwx 5,6 √ √ X

 stfs6 √ D

stfsu6 √ D

stfsux6 √ X

stfsx6 √ X

sth √ D

sthbrx √ X

sthu √ D

sthux √ X

UISA VEA OEA Supervisor Level 64-Bit Optional Form

Appendix D. Instruction Set Listings

Instruction Set Legend

sthx √ X

stmw 3 √ D

stswi 3 √ X

stswx 3 √ X

stw √ D

stwbrx √ X

stwcx. √ X

stwu √ D

stwux √ X

stwx √ X

subfx √ XO

subfcx √ XO

subfex √ XO

subfic √ D

subfmex √ XO

subfzex √ XO

sync √ X

td 4 √ √ X

tdi 4 √ √ D

tlbia 1,5 √ √ √ X

tlbie 1,5 √ √ √ X

tlbsync 1,5 √ √ X

tw √ X

twi √ D

xorx √ X

xori √ D

xoris √ D

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional in the PowerPC architecture
6 Floating-point instructions are not supported by the MPC855T.

UISA VEA OEA Supervisor Level 64-Bit Optional Form

MPC855T User’s Manual

Instruction Set Legend

Appendix E. Serial ATM Scrambling, Reception, and SI Programming

Appendix E
Serial ATM Scrambling, Reception, and SI
Programming

E.1 ATM Cell Payload Scrambling
The ATM controller provides a scrambling option on a per line basis for cell payload bytes
using the polynomial X43+1. Figure E-1 shows the payload transmitter and receiver
scrambling mechanism.

Figure E-1. ATM Cell Payload Scrambling Mechanism

The context of the transmit and receive scrambling mechanism is independent of the cell’s
virtual connection. The seed value for the scrambling algorithm for a particular cell is
obtained from the 43 cell payload bits transmitted or received immediately prior to the
current cell. Even though two consecutive cells may be from different connections, the
scrambling mechanism ignores this.

E.2 Receiving Serial ATM Cells
The following figure shows the serial ATM receive procedure. After start-up when MRBLR
is zero, the HEC delineation procedure begins (see below). Once complete, cell reception
commences.

For each cell received, the HEC is checked. If the HEC is incorrect, the cell is still received
unless the receiver loses cell delineation. If the cell is an empty cell, the payload is
discarded. If there is a header match using the lookup table then the cell payload is received.
When the external CAM option is enabled, the cell is received before the CAM match is
checked.

43-Bit Delay

Transmit Data
Scrambled Data Receive Data

43-Bit Delay

Transmitter Receiver

Descrambled Data

MPC855T User’s Manual

Receiving Serial ATM Cells

Operation continues in this manner until the RESTART RECEIVE (ATM Opcode = 101)
command or a FIFO overrun error occurs or the user disables the SCC receiver. Received
cells may have their payloads descrambled as described earlier.

Figure E-2. Serial ATM Receive Procedure

ATM
Rx Start

Receive Cell
Header

Receive and
Store Cell
Payload

MRBLR = 0?

Yes

No Goto Transparent
Mode ROM Microcode

Cell Delineated?

Yes

No

HEC Correct?

Yes

No

Empty Cell?

No

Header Match?

Yes

No

Buffer Available?

Yes

Close Buffer
and Update BD

Apply HEC
Delineation
Mechanism

Loss of
Delineation?

Yes

No

Discard Cell
Payload

No

Yes

Appendix E. Serial ATM Scrambling, Reception, and SI Programming

Receiving Serial ATM Cells

E.2.1 HEC Delineation Mechanism

The ATM controller applies the cell delineation mechanism specified in I.432 and shown in
the following figure to synchronize to the incoming cell stream. The SDH-based physical
layer values for alpha and delta, 7 and 6 respectively, are used by the ATM controller.

At start-up, the hunt mode is entered where the CRC-8 value is calculated on each incoming
longword. When this matches the next received byte, it is assumed that the HEC is found
and the state machine advances to the presync state. Because the hunt state only finds a
HEC field that is aligned to the start of reception, it can take up to four correct cells to leave
the hunt state.

Figure E-3. Cell Delineation State Diagram

In the presync state, the ATM controller has detected cell boundaries and is verifying that
they are correct. The ATM controller leaves the presync state after a single cell with an
incorrect HEC is received or the RESTART RECEIVE command is given. When six
consecutive cells with valid HECs are received, the ATM controller jumps to the sync state
and begins reception. The state machine advances immediately after reception of the sixth
correct HEC and is not delayed until the end of the cell. This means that five cells with valid
HECs are discarded and the sixth is received into a data buffer.

In the synch state, the ATM controller receives data and control cells and discards incoming
empty cells. When a stream of cells with incorrect HECs are received, the first six
consecutive cells are received and on reception of the seventh incorrect HEC, the ATM
controller immediately jumps to the hunt state and does not receive the cell with the seventh

PRESYNC

Single Correct
HEC

SYNCH

Cell by Cell
Search for

Correct HECs

Cell by Cell
Verification of

HECs

Single
Incorrect

HEC

Delta (6) Consecutive
Correct HECs

Alpha (7)
Consecutive

Incorrect HECs

Initial Entry
Point HUNT

4 Byte by 4 Byte
Search for

Correct HEC

Restart
Reception
Command

Restart
Reception
Command

MPC855T User’s Manual

Serial Interface Programming Example for Serial ATM

incorrect HEC. The ATM controller also jumps to the hunt state after the RESTART RECEIVE

command.

When cell payload scrambling is enabled, the descrambler will self-synchronize with the
incoming data after 43 bits. Hence, after starting the receiver, the descrambler will attain
synchronization during reception of the first cell in the presync state.

E.3 Serial Interface Programming Example for Serial
ATM

This section provides an example of programming the SI registers for connection to a line
interface device with common transmit and receive clocks.

Note: the timeslot assigner TSA must not be enabled in SIGMR until the SI RAM and other
registers have been configured.

E.3.1 Serial Interface RAM

An example of programming the TSA with independent receiver and transmitter routing
RAM tables for back-to-back ATM cell transmission and reception is given in the following
table. TDM A is used and data is routed to SCC1. Other SCCs and TDM B may be used.
For debug purposes, all four SI strobes are asserted during various timeslots: L1ST1 during
cell header transmission, L1ST2 on HEC transmission, L1ST3 during cell header reception
and L1ST4 on HEC reception.

Table E-1. Serial Interface Register Programming Example for Serial ATM

Register User Writes (hex)

SIMODE Serial Interface Mode Register 0000 0058

SIGMR Serial Interface Global Mode Register 04

SICR Serial Interface Clock Route Register 0000 0040

Table E-2. ATM Cell Transmission and Reception Programming Example

SI RAM Entry User Writes (hex) Strobe Asserted Remarks

Rx A 0 104E L1ST3 Receive four bytes of cell header

Rx A 1 2042 L1ST4 Receive one byte HEC field

Rx A 2 007E - Receive first sixteen bytes of cell payload

Rx A 3 007E - Receive second sixteen bytes of cell payload

Rx A 4 007F - Receive final sixteen bytes of cell payload

Tx A 0 044E L1ST1 Transmit four bytes of cell header

Tx A 1 0842 L1ST2 Transmit one byte HEC field

Tx A 2 007E - Transmit first sixteen bytes of cell payload

Appendix E. Serial ATM Scrambling, Reception, and SI Programming

Serial Interface Programming Example for Serial ATM

E.3.2 Parallel Port Registers

For serial ATM operation over TDMA, the parallel port pins should be set up to interface
to external signals as shown in the following table. The TSA strobes and SDMA
acknowledge signals are shown, and common receive and transmit clocks are used.

To achieve this, the following table shows an example of how the port registers may be
programmed.

Tx A 3 007E - Transmit second sixteen bytes of cell payload

Tx A 4 007F - Transmit final sixteen bytes of cell payload

Table E-3. TDMA Port Pin Requirements

Signal Pin Direction

L1TXDA PA9 Output

L1RXDA PA8 Input

L1RSYNCA PC4 Input

L1RCLKA PA7 Input

L1ST1 PB19 Output

L1ST2 PB18 Output

L1ST3 PB17 Output

L1ST4 PB16 Output

SDACK1 PC5 Output

SDACK2 PC7 Output

Table E-4. Port Register Programming Example

Register User Writes (hex)

PIPC PIP Configuration Register 0000

PADIR Port A Data Direction Register 00C0

PAPAR Port A Pin Assignment Register 01C0

PAODR Port A Open Drain Register 0000

PBDIR Port B Data Direction Register 0000 0000

PBPAR Port B Pin Assignment Register 0000 F000

PBODR Port B Open Drain Register 0000

PCDIR Port C Data Direction Register 0500

Table E-2. ATM Cell Transmission and Reception Programming Example

SI RAM Entry User Writes (hex) Strobe Asserted Remarks

MPC855T User’s Manual

Serial Interface Programming Example for Serial ATM

PCPAR Port C Pin Assignment Register 0D00

PCSO Port C Special Option Register 0000

PCINT Port C Interrupt Control Register 0000

PDDIR Port D Data Direction Register 0000

PDPAR Port D Pin Assignment Register 8000

Table E-4. Port Register Programming Example

Register User Writes (hex)

Glossary Glossar

Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted from IEEE
Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

Note that some terms are defined in the context of how they are used in this book.

Architecture. A detailed specification of requirements for a processor or
computer system. It does not specify details of how the processor or
computer system must be implemented; instead it provides a
template for a family of compatible implementations.

Asynchronous exception. Exceptions that are caused by events external to
the processor’s execution. In this document, the term ‘asynchronous
exception’ is used interchangeably with the word interrupt.

Atomic access. A bus access that attempts to be part of a read-write operation
to the same address uninterrupted by any other access to that address
(the term refers to the fact that the transactions are indivisible). The
PowerPC architecture implements atomic accesses through the
lwarx/stwcx. (ldarx/stdcx. in 64-bit implementations) instruction
pair.

Autobaud. The process of determining a serial data rate by timing the width
of a single bit.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most-significant byte. See Little-endian.

Blockage. A pipeline stall that occurs when an instruction occupies an
execution unit and prevents a subsequent instruction from being
dispatched.

Boundedly undefined. A characteristic of results of certain operations that
are not rigidly prescribed by the PowerPC architecture. Boundedly-

A

B

MPC855T User’s Manual

undefined results for a given operation may vary among
implementations, and between execution attempts in the same
implementation.

Although the architecture does not prescribe the exact behavior for
when results are allowed to be boundedly undefined, the results of
executing instructions in contexts where results are allowed to be
boundedly undefined are constrained to ones that could have been
achieved by executing an arbitrary sequence of defined instructions,
in valid form, starting in the state the machine was in before
attempting to execute the given instruction.

Breakpoint. A programmable event that forces the core to take a breakpoint
exception.

Burst. A bus transfer whose data phase consists of a sequence of transfers.
For example, on a 64-bit bus, a four-beat burst can transfer four,
64-bit double words.

Bus parking. A feature that optimizes the use of the bus by allowing a device
to retain bus mastership without having to rearbitrate.

Cache. High-speed memory component containing recently-accessed data
and/or instructions (subset of main memory).

Cache coherency. An attribute in which an accurate and common view of
memory is provided to all devices that share the a memory system.
Caches are coherent if a processor performing a read from its cache
is supplied with data corresponding to the most recent value written
to memory or to another processor’s cache.

Cache flush. An operation that removes from a cache any data from a
specified address range. This operation ensures that any modified
data within the specified address range is written back to main
memory. This operation is generated typically by a Data Cache
Block Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which the cache is bypassed
and the load or store is performed to or from main memory.

Cast-outs. Cache blocks that must be written to memory when a cache miss
causes a cache block to be replaced.

C

Glossary Glossar

Changed bit. One of two page history bits found in each page table entry
(PTE). The processor sets the changed bit if any store is performed
into the page. See also Page access history bits and Referenced bit.

Clear. To cause a bit or bit field to register a value of zero. The opposite of set.

Context synchronization. An operation that ensures that all instructions in
execution complete past the point where they can produce an
exception, that all instructions in execution complete in the context
in which they began execution, and that all subsequent instructions
are fetched and executed in the new context. Context synchronization
may result from executing specific instructions (such as isync or rfi)
or when certain events occur (such as an exception).

Copy-back. An operation in which modified data in a cache block is copied
back to memory.

Critical-data first. An aspect of burst accesses that allow the requested data
(typically a word or double word) in a cache block to be transferred
first.

Denormalized number. A nonzero floating-point number whose exponent
has a reserved value, usually the format's minimum, and whose
explicit or implicit leading significand bit is zero.

Direct-mapped cache. A cache in which each main memory address can
appear in only one location within the cache, operates more quickly
when the memory request is a cache hit.

Direct-store. Interface available on implementations of PowerPC
architecture only to support direct-store devices. When the T bit of a
segment descriptor is set, the descriptor defines the region of
memory that is to be used as a direct-store segment. Note that this
facility is being phased out of the architecture and will not likely be
supported in future devices. Therefore, software should not depend
on it and new software should not use it.

Effective address (EA). The 32- or 64-bit address specified for a load, store,
or an instruction fetch. This address is then submitted to the MMU
for translation to either a physical memory address or an I/O address.

Exception. A condition encountered by the processor that requires special,
supervisor-level processing.

D

E

MPC855T User’s Manual

Exception handler. A software routine that executes when an exception is
taken. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (that
may include aborting the program that caused the exception). The
address for each exception handler is identified by an exception
vector offset defined by the architecture and a prefix selected via the
MSR.

Extended opcode. A secondary opcode field generally located in instruction
bits 21–30, that further defines the instruction type. All MPC8xx
instructions are one word in length. The most significant 6 bits of the
instruction are the primary opcode, identifying the type of
instruction. See also Primary opcode.

Execution synchronization. A mechanism by which all instructions in
execution are architecturally complete before beginning execution
(appearing to begin execution) of the next instruction. Similar to
context synchronization but doesn't force the contents of the
instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a floating-point number, the
exponent is the component that normally signifies the integer power
to which the value two is raised in determining the value of the
represented number. See also Biased exponent.

Fetch. Retrieving instructions from either the cache or main memory and
placing them into the instruction queue.

Fully-associative. Addressing scheme where every cache location (every
byte) can have any possible address.

General-purpose register (GPR). Any of the 32 registers in the
general-purpose register file. These registers provide the source
operands and destination results for all integer data manipulation
instructions. Integer load instructions move data from memory to
GPRs and store instructions move data from GPRs to memory.

Harvard architecture. An architectural model featuring separate caches for
instruction and data.

IEEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations and representations of binary
floating-point arithmetic.

F

G

H

HI

Glossary Glossar

Illegal instructions. A class of instructions that are not implemented for a
particular MPC8xx processor. These include instructions not defined
by the architecture. In addition, for 32-bit implementations,
instructions that are defined only for 64-bit implementations are
considered to be illegal instructions. For 64-bit implementations
instructions that are defined only for 32-bit implementations are
considered to be illegal instructions.

Implementation. A particular processor that conforms to the PowerPC
architecture, but may differ from other architecture-compliant
implementations for example in design, feature set, and
implementation of optional features.

Implementation-dependent. An aspect of a feature in a processor’s design
that is defined by a processor’s design specifications rather than by
the PowerPC architecture.

Implementation-specific. An aspect of a feature in a processor’s design that
is not required by the PowerPC architecture, but for which the
PowerPC architecture may provide concessions to ensure that
processors that implement the feature do so consistently.

Imprecise exception. A type of synchronous exception that is allowed not to
adhere to the precise exception model (see Precise exception). The
PowerPC architecture allows only floating-point exceptions to be
handled imprecisely.

Internal bus. The bus connecting the core and system interface unit (SIU).

Instruction latency. The total number of clock cycles necessary to execute
an instruction and make ready the results of that instruction.

Interrupt. An asynchronous exception. On MPC8xx processors, interrupts
are a special case of exceptions. See also asynchronous exception.

Latency. The time an operation requires. For example, execution latency is
the number of processor clocks an instruction takes to execute.
Memory latency is the number of bus clocks needed to perform a
memory operation.

Least-significant bit (lsb). The bit of least value in an address, register, data
element, or instruction encoding.

Least-significant byte (LSB). The byte of least value in an address, register,
data element, or instruction encoding.

L

MPC855T User’s Manual

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most-significant byte. See Big-endian.

Master, The name given to a bus device that has been granted control, or
mastership, of the bus.

Memory access ordering. The specific order in which the processor
performs load and store memory accesses and the order in which
those accesses complete.

Memory controller. A unit whose primary function is to control the external
bus memories and I/O devices.

Memory coherency. An aspect of caching in which it is ensured that an
accurate view of memory is provided to all devices that share system
memory.

Memory consistency. Refers to agreement of levels of memory with respect
to a single processor and system memory (for example, on-chip
cache, secondary cache, and system memory).

Memory management unit (MMU). The functional unit that is capable of
translating an effective (logical) address to a physical address,
providing protection mechanisms, and defining caching methods.

Microarchitecture. The hardware details of a microprocessor’s design.

Mnemonic. The abbreviated name of an instruction used for coding.

Modified state. When a cache block is in the modified state, it has been
modified by the processor since it was copied from memory. See
MESI.

Munging. A modification performed on an effective address that allows it to
appear to the processor that individual aligned scalars are stored as
little-endian values, when in fact it is stored in big-endian order, but
at different byte addresses within double words. Note that munging
affects only the effective address and not the byte order.

Most-significant bit (msb). The highest-order bit in an address, registers,
data element, or instruction encoding.

Most-significant byte (MSB). The highest-order byte in an address,
registers, data element, or instruction encoding.

M

Glossary Glossar

No-op. No-operation. A single-cycle operation that does not affect registers
or generate bus activity.

OEA (operating environment architecture). The level of the architecture
that describes the memory management model, supervisor-level
registers, synchronization requirements, and the exception model. It
also defines the time-base feature from a supervisor-level
perspective. Implementations that conform to the PowerPC OEA
also conform to the PowerPC UISA and VEA.

Optional. A feature, such as an instruction, a register, or an exception, that is
defined by the PowerPC architecture but not required to be
implemented.

Out-of-order. An aspect of an operation that allows it to be performed ahead
of one that may have preceded it in the sequential model, for
example, speculative operations. An operation is said to be
performed out-of-order if, at the time that it is performed, it is not
known to be required by the sequential execution model. See
In-order.

Out-of-order execution. A technique that allows instructions to be issued
and completed in an order that differs from their sequence in the
instruction stream.

Overflow. An error condition that occurs during arithmetic operations when
the result cannot be stored accurately in the destination register(s).
For example, if two 32-bit numbers are multiplied, the result may not
be representable in 32 bits.

Pace control. Controls the rate of the data flow between a master and slave.

Page. A region in memory. The OEA defines a page as a 4-Kbyte area of
memory, aligned on a 4-Kbyte boundary.

Page fault. A page fault is a condition that occurs when the processor
attempts to access a memory location that does not reside within a
page not currently resident in physical memory. On MPC8xx
processors, a page fault exception condition occurs when a
matching, valid page table entry (PTE[V] = 1) cannot be located.

Physical memory. The actual memory that can be accessed through the
system’s memory bus.

N

O

P

MPC855T User’s Manual

Pipelining. A technique that breaks operations, such as instruction
processing or bus transactions, into smaller distinct stages or tenures
(respectively) so that a subsequent operation can begin before the
previous one has completed.

Precise exceptions. A category of exception for which the pipeline can be
stopped so instructions that preceded the faulting instruction can
complete, and subsequent instructions can be flushed and
redispatched after exception handling has completed. See Imprecise
exceptions.

Primary opcode. The most-significant 6 bits (bits 0–5) of the instruction
encoding that identifies the type of instruction. See Secondary
opcode.

Protection boundary. A boundary between protection domains.

Protection domain. A protection domain is a segment, a virtual page, a BAT
area, or a range of unmapped effective addresses. It is defined only
when the appropriate relocate bit in the MSR (IR or DR) is 1.

Quad word. A group of 16 contiguous locations starting at an address
divisible by 16.

rA. The rA instruction field is used to specify a GPR to be used as a source
or destination.

rB. The rB instruction field is used to specify a GPR to be used as a source.

rD. The rD instruction field is used to specify a GPR to be used as a
destination.

rS. The rS instruction field is used to specify a GPR to be used as a source.

Real address mode. An MMU mode when no address translation is
performed and the effective address specified is the same as the
physical address. The processor’s MMU is operating in real address
mode if its ability to perform address translation has been disabled
through the MSR registers IR and/or DR bits.

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set,
updates the condition register (CR) to reflect the result of the
operation.

Q

R

Glossary Glossar

Register indirect addressing. A form of addressing that specifies one GPR
that contains the address for the load or store.

Register indirect with immediate index addressing. A form of addressing
that specifies an immediate value to be added to the contents of a
specified GPR to form the target address for the load or store.

Register indirect with index addressing. A form of addressing that specifies
that the contents of two GPRs be added together to yield the target
address for the load or store.

Reservation. The processor establishes a reservation on a cache block of
memory space when it executes an lwarx or ldarx instruction to read
a memory semaphore into a GPR.

Reserved field. In a register, a reserved field is one that is not assigned a
function. A reserved field may be a single bit. The handling of
reserved bits is implementation-dependent. Software is permitted to
write any value to such a bit. A subsequent reading of the bit returns
0 if the value last written to the bit was 0 and returns an undefined
value (0 or 1) otherwise.

RISC (reduced instruction set computing). An architecture characterized
by fixed-length instructions with nonoverlapping functionality and
by a separate set of load and store instructions that perform memory
accesses.

SLB (segment lookaside buffer). An optional cache that holds recently-used
segment table entries.Scalability. The capability of an architecture
to generate implementations specific for a wide range of purposes,
and in particular implementations of significantly greater
performance and/or functionality than at present, while maintaining
compatibility with current implementations.

Scan chain. The peripheral buffers of a device, linked in JTAG test mode, that
are addressed in a shift-register fashion.

Segment table. A 4-Kbyte (1-page) data structure that defines the mapping
between effective segments and virtual segments for a process.
Segment tables are implemented on 64-bit processors only.

Segment table entry (STE). Data structures containing information used to
translate effective address to physical address in a 64-bit
implementation. STEs are implemented on 64-bit processors only.

S

MPC855T User’s Manual

Set (v). To write a nonzero value to a bit or bit field; the opposite of clear. The
term ‘set’ may also be used to generally describe the updating of a
bit or bit field.

Set (n). A subdivision of a cache. Cacheable data can be stored in a given
location in any one of the sets, typically corresponding to its
lower-order address bits. Because several memory locations can map
to the same location, cached data is typically placed in the set whose
cache block corresponding to that address was used least recently.
See Set-associative.

Set-associative. Aspect of cache organization in which the cache space is
divided into sections, called sets. The cache controller associates a
particular main memory address with the contents of a particular set,
or region, within the cache.

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction field to the right.

Slave. A device that responds to the master’s address. A slave receives data
on a write cycle and gives data to the master on a read cycle.

Static branch prediction. Mechanism by which software (for example,
compilers) can give a hint to the machine hardware about the
direction a branch is likely to take.

Sticky bit. A bit that when set must be cleared explicitly.

Superscalar machine. A machine that can issue multiple instructions
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of a processor. In
supervisor mode, software, typically the operating system, can
access all control registers and can access the supervisor memory
space, among other privileged operations.

Synchronization. A process to ensure that operations occur strictly in order.
See Context synchronization and Execution synchronization.

Synchronous exception. An exception that is generated by the execution of
a particular instruction or instruction sequence. There are two types
of synchronous exceptions, precise and imprecise.

System memory. The physical memory available to a processor.

Glossary Glossar

Time-division multiplex (TDM). A single serial channel used by several
channels taking turns.

TLB (translation lookaside buffer) A cache that holds recently-used page
table entries.

Throughput. The measure of the number of instructions that are processed
per clock cycle.

UISA (user instruction set architecture). The level of the architecture to
which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types,
floating-point memory conventions and exception model as seen by
user programs, and the memory and programming models.

User mode. The unprivileged operating state of a processor used typically by
application software. In user mode, software can only access certain
control registers and can access only user memory space. No
privileged operations can be performed. Also referred to as problem
state.

VEA (virtual environment architecture). The level of the architecture that
describes the memory model for an environment in which multiple
devices can access memory, defines aspects of the cache model,
defines cache control instructions, and defines the time-base facility
from a user-level perspective. Implementations that conform to the
PowerPC VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

Virtual address. An intermediate address used in the translation of an
effective address to a physical address.

Virtual memory. The address space created using the memory management
facilities of the processor. Program access to virtual memory is
possible only when it coincides with physical memory.

Watchpoint. An event that is reported, but does not change the timing of the
machine.

Word. A 32-bit data element. Note that on other processors a word may be a
different size.

T

U

V

VW

MPC855T User’s Manual

Write-back. A cache memory update policy in which processor write cycles
are directly written only to the cache. External memory is updated
only indirectly, for example, when a modified cache block is cast out
to make room for newer data.

Write-through. A cache memory update policy in which all processor write
cycles are written to both the cache and memory.

Index

Index 1

Numerics
855T, see MPC855T

A
Acronyms and abbreviated terms, list, cviii, 2, 3, 2, 3,

4, 2
address map, 38–1

ATM, 38–1
address mapping

CAM method, 38–5
OAM screening, 38–5

Address maps
channel entries (adding/removing), 38–2
VCI/VPI look-up table, 38–1

Address match parameters
HMASK field, 37–10

Address multiplexing, 15–47
addressing

ATM
first-level, 38–3
second-level, 38–3

Alignment
aligned accesses, 5–1
alignment on transfers, 13–24

An (address bus) signals, 12–5, 13–3, 13–32
APC

transmit
UTOPIA mode, 39–1

APC bypass command, 38–10
APC pace control

additional SARs, 39–7
APC parameters, 39–10
initialization and operation, 39–6
programming rates

CBR channels, 39–5
slot time, 39–4
transmit pace, 39–6

APC pace control (APC)
tables, adjusting, 39–3

APC pace controller
use without SCC4 or UTOPIA, 39–8

APC status register (APCST), 37–12
AS (address strobe) signal, 12–14
Asynchronous HDLC mode

channel implementation, 25–5

decoding the receiver transparency, 25–3
DSR configuration, 25–6
encoding the transmitter transparency, 25–3
error handling, 25–8
features, 25–1
frame reception processing, 25–2
frame transmission processing, 25–1
GSMR configuration, 25–6
HDLC mode, differences, 25–14
overview, 25–1
programming example, 25–15
programming the controller, 25–7
receive commands, 25–8
RxBD, 25–12
transmit commands, 25–8
TxBD, 25–13

ATM, 38–1
address compression

addressing compression
ATM, 38–4

addressing
first-level, 38–3
second-level, 38–3

APC
implementation, 39–2
parameters, 39–3

APC pace control
additional SARs, 39–7
APC parameters, 39–10
initialization and operation, 39–6
PHY

transmit queues, 39–10
programming rates

CBR channels, 39–5
slot time, 39–4
transmit pace, 39–6

APC pace control (APC)
tables, adjusting, 39–3

APC pace controller
RISC timer, 41–2
scheduling of cells

APC pace controller
scheduling of cells, 39–6

timer 4, 41–2
use without SCC4 or UTOPIA, 39–8

buffer descriptions

MPC855T User’s Manual

overview, 36–1-36–7
channel aliasing

prevention, 38–5
commands, 38–8
connection tables

receive and transmit, 36–8
transmit, 36–12

features, 35–2
interface with UTOPIA parameter RAM map, 37–1
interrupt queue entry, 40–4
interrupt queue mask (IMASK), 40–6
operation, 35–5
pace control

transmit in UTOPIA mode, 39–1
pace control (APC), 39–1
pace controller, 35–2
serial mode

cell delineation, 35–9
cell payload scrambling, 35–10

serial, parameter RAM map, 37–5
ATM (asynchronous transfer mode)

capabilities, 35–1, 35–2, 35–4, 35–5, 35–7
ATM controller

address compression, 38–3
address maps, 38–1
UTOPIA mode, 35–5

ATM pace control (APC)
APC status register (APCST), 37–12
operation, 35–7
overview, cv, 1, 35–10
receive, 35–9
transmitter serial mode, 35–8

ATn (address type) signals, 13–4, 13–33

B
BADDRn (burst address) signal, 12–14
BAR (breakpoint address register), 44–39
Baud rate generator clock (BRGCLK), 14–14
Baud rate generator configuration (BRGC) register,

20–25
Baud rate generators

autobaud operation on a UART, 20–27
block diagram, 20–25
overview, 20–24
registers, 20–25
UART baud rate examples, 20–28

BB (bus busy) signal, 12–8, 13–6, 13–28
BDIP (burst data in progress) signal, 12–5, 13–4,

13–35
BDLE (SCC BISYNC DLE) register, 26–8
BG (bus grant) signal, 12–8, 13–6, 13–28
BI (burst inhibit) signal, 12–6, 13–5, 13–35
Big-endian (BE) mode, A–2
BISYNC mode

commands, 26–5

control character recognition, 26–6
error handling, 26–9
frame reception, 26–3
frame transmission, 26–2
frames, classes, 26–1
memory map, 26–4
overview, 26–1
parameter RAM, 26–4
programming example, 26–18
programming the controller, 26–17
receiving synchronization sequence, 26–9
RxBD, 26–12
sending synchronization sequence, 26–9
TxBD, 26–14

Block diagram
Fast Ethernet controller, 43–2

Block diagram, 855T, 3–5
Block diagrams

baud rate generators, 20–25
CPM timer, 17–5
I2C controller, 31–1
parallel I/O ports

port A block diagrams, 33–6
serial interface, 20–1
serial peripheral interface, 30–1
software watchdog timer, 10–21

Boot chip-select operation, 15–30
Boundedly undefined, definition, 5–4
BR (bus request) signal, 12–7, 13–6, 13–28
Branch folding timing, 9–5
Branch instructions

branch instructions, D-23
condition register logical, D-23
system linkage, D-23
trap, D-23

Branch prediction timing, 9–5
Breakpoint

counters, 44–14
debug support, 44–8
features list, 44–9
load/store example, 44–18
operation details, 44–15

BRn (base registers), 15–9
BS_An (byte select) signals, 12–9
BSYNC (BISYNC SYNC) register, 26–7
Buffer descriptors

BISYNC mode, 26–12
communications processor, 18–11
definition, 36–1
Ethernet mode, 27–21
example, 36–2
GCI mode, 29–37, 29–38
HDLC mode, 23–9
I2C controller, 31–12
IDMA channels, 19–9
overview, 21–11

Index 3

receive buffer descriptor, 36–3
serial management controllers (SMCs), 29–5
serial peripheral interface (SPI), 30–14
transparent mode

serial communications controllers (SCCs), 28–9
serial management controllers (SMCs), 29–28

UART mode
serial communications controllers (SCCs), 22–16
serial management controllers (SMCs), 29–15

buffer descriptors
ATM

overview, 36–1-36–7
Fast Ethernet controller

Fast ethernet controller
buffer descriptors, 43–36

BURST (burst transfer) signal, 12–5, 13–4, 13–32
Burst bus operations, 13–15
Burst transfer bus operation, 13–14
Bus arbitration, 13–27
Bus exception control cycles, 13–39
Bus interface

bus utilization, B–2
hierarchical bus interface example, 15–56
system bus performance, B–2

Bus interface, external
address bus, 13–32
address type, 13–33
arbitration phase, 13–27
burst data in progress, 13–35
burst indicator, 13–32
burst inhibit, 13–35
bus busy, 13–28
bus exception control cycles, 13–39
bus grant, 13–28
bus operations, 13–6
bus request, 13–28
control signals, 13–2
features summary, 13–1
program trace, 13–33
read/write, 13–32
reservation transfer, 13–33
retry, 13–40
signal descriptions, 13–2
transfer acknowledge, 13–35
transfer error acknowledge, 13–35
transfer signals, 13–1
transfer size, 13–32
transfer start, 13–31

Bus operations
burst operations, 13–15
burst transfer, 13–14
single-beat read flow, 13–7
single-beat transfer, 13–7
single-beat write flow, 13–10
transfer protocol, 13–7

BYPASS instruction, 45–7

Byte ordering
BE (big-endian) mode, A–2
mechanisms, A–1
overview, A–1
PPC-LE (PowerPC little-endian) mode, A–6
TLE (true little-endian) mode, A–2

Byte stuffing, 26–1
Byte-reverse instructions, D-21
Byte-select signals, 15–44

C
Cache

cache block
memory control instructions, 5–22

cache block, definition, 7-1
cache blocks, locked, 7-10
cache control instructions, 7-18
cache control registers, 7-6
cache line, definition, 7-1
data cache

atomic memory references, 7-28
caching-inhibited data accesses, 7-27
copyback buffer, 7-14
DC_CST commands, 7-15
debug mode, 7-29
debugger, software monitor, 7-30
disable command, 7-15
enable command, 7-15
flush cache block command, 7-17
invalidate all command, 7-17
load & lock cache block command, 7-16
load hit, 7-25
memory coherency, 7-6
operations, 7-24
organization, 7-5
read miss, 7-25
reading tags, 7-14
registers, 7-11
snooping, 7-6
store hit (write-back mode), 7-26
store hit (write-through mode), 7-26
store miss (write-back mode), 7-26
store miss (write-through mode), 7-26
unlock all commands, 7-17
unlock cache block command, 7-16
write-back mode, 7-26
write-through mode, 7-26

debug support, 7-29
initialization after reset, 7-29
instruction cache

block buffer, 7-21
burst buffer, 7-21
cache hit, 7-22
cache miss, 7-22
caching-inhibited instruction fetch, 7-23

MPC855T User’s Manual

data path, 7-21
debug mode, 7-29
debugger, software monitor, 7-30
disable commands, 7-9
enable commands, 7-9
IC_CST commands, 7-9
instruction fetching, 7-23
instruction sequencer, 7-2, 7-20
invalidate all command, 7-11
load & lock cache block commands, 7-10
memory coherency, 7-4
operations, 7-20
organization, 7-2
read command, 7-9
reading data, 7-8
reading tags, 7-9
registers, 7-6
snooping, 7-4, 7-23
stream hits, 7-21
unlock all command, 7-11
unlock cache block command, 7-11
updating code, 7-23

instructions, D-24
intruction cache

hits under misses, 7-22
locked cache blocks, 7-10
memory/cache access attributes, 7-18
write-back mode, 7-26
write-through mode, 7-26

Cache management instructions, D-24
CAM interface, 43–6
CAM method

address mapping, 38–5
Cascaded mode, 17–7
Cell delineation

ATM
serial mode, 35–9

Cell payload scrambling, 35–10
Centronics interface, seeParallel interface port
channel aliasing

prevention
ATM

first-level, 38–5
Checkstop reset, 11–4
Chip-select machine, 15–18
Chip-select signals, 15–43
CICR (CPM interrupt configuration register), 34–7
CIMR (CPM interrupt mask register), 34–8
CIPR (CPM interrupt pending register), 34–7
CISR (CPM interrupt in-service register), 34–8
CIVR (CPM interrupt vector register), 34–9
CLAMP instruction, 45–7
Clock dividers, low-power, 14–10
Clock glitch detection, 21–26
Clocks, 14–9

baud rate generator, 14–14

development port serial communications clock
mode, 44–28

I2C controller clocking, 31–2
overview, 14–1
SCC clock glitch detection, 21–26
serial clocking (peak rate limitation), B–1
serial peripheral interface

SPI clocking functions, 30–2
SPI transfers with different clocking modes, 30–8

synchronization clocks, 14–14
Collision handling, 43–8
Commands

CPCR register, 38–8
FEC command set, 43–6

commands
ATM, 38–8

Communication processor module (CPM)
parallel interface port

Centronics interface, implementation, 32–20
Centronics transmit errors, 32–22
Centronics transmitter, 32–21
control character table, 32–6
CP commands, 32–14
features, 32–1
handshaking I/O modes, 32–15
interlocked handshake mode, 32–15
overview, 32–1
parameter RAM, 32–3
pulsed handshake mode, 32–16
RCCM/RCCR, 32–6
registers, 32–4, 32–8
transparent transfers, 32–20

Communications processor (CP)
communicating with peripherals, 18–2
communicating with the core, 18–2
CP command execution latency, 18–8
dual-port RAM, 18–8
features list, 18–1
microcode revision number, 18–3
overview, 18–1
parameter RAM, 18–11
PWM mode, 18–16
registers, 18–4
RISC timer initialization, 18–17
RISC timer tables, 18–12
SET TIMER command, 18–13
tracking CP loading, 18–18

Communications processor module (CPM)
ATM controller

address compression, 38–3
average rate limitation, B–2
CPM bandwidth, B–2
CPM interrupt controller

calculating interrupt vectors, 34–5
features, 34–1
generating interrupt vectors, 34–5

Index 5

highest priority interrupt, 34–3
interrupt handler examples, 34–10
masking interrupt sources, 34–4
nested interrupts, 34–4
overview, 34–1
registers, 34–6
source priorities, 34–3

features list, 17–2
parallel interface port

block diagram, 32–2
buffer descriptors, 32–11
BUSY signal (Centronics interface), 32–18
Centronics receive errors, 32–23
Centronics receiver, 32–23

performance calculations, B–5
timers

block diagram, 17–5
features list, 17–5
general-purpose timers, 17–4
initialization examples, 17–13
operation, 17–6
registers, 17–8

Comparator value (CMPA–CMPH) registers, 44–38
Compare instructions, D-17
Completion queue timing, full, 9–4
compliant with the Book 1 specification for the

PowerPC architecture. The PowerPC core is a
fully static design that consist, 1–5

connection tables
ATM

receive and transmit, 36–8
transmit, 36–12

Context synchronization, 5–6
Conventions

notational conventions, cviii, 1, 2, 3, 2, 1
terminology, cxii, 5

copyback buffer, 7-15
COUNTA/COUNTB (breakpoint counter value and

control) registers, 44–45
CP controller configuration register (RCCR), 41–4
CP timer, 41–2
CPCR (CP command register), 18–6
CPIC, see CPM interrupt controller
CPM command register (CPCR), 38–8
CPM interrupt controller (CPIC)

calculating interrupt vectors, 34–5
features, 34–1
generating interrupt vectors, 34–5
highest priority interrupt, 34–3
interrupt handler examples, 34–10
masking interrupt sources, 34–4
nested interrupts, 34–4
overview, 34–1
registers, 34–6
source priorities, 34–3

CPM see Communications processor module (CPM)

CR (cancel reservation) signal, 12–6
CR (condition register), 4–3
CSn (chip select) signals, 12–8

D
data and control signals

UTOPIA, 41–4
Data bus

contents for write cycles, 13–26
requirements for read cycles, 13–26

Data cache miss timing, 9–3
DC_ADR (data cache address) register, 7-13
DC_CST (data cache control and status) register, 7-12
DC_CST commands, 7-15
DC_DAT (data cache data port) register, 7-14
DCMR (DMA channel mode register), 19–7
DCMR (IDMA1 channel mode register), 19–20
Debug mode

development support, 44–33
operation, 44–21

Debug port hard/soft reset, 11–4
Debug support, 7-29
DEC (decrementer) register, 10–22
Decrementer, 10–22
DER (debug enable register), 44–47
descriptor controller intialization

Fast Ethernet controller, 43–36
Development port shift register, 44–27
Development system interface

checkstop state and debug mode, 44–24
debug mode operation, 44–21
development port communication, 44–26
fast download procedure, 44–35
freeze indication, 44–27
overview, 44–19
programming model, 44–36
registers, 44–27
signals, 44–26

DFCR (destination function code registers), 19–12
Digital phase-locked loop (DPLL) operation, 21–22
DMA module, 16–7
Dn (data bus) signals, 12–7, 13–5
DPDR (development port data register), 44–49
DPn (parity bus) signals, 12–7, 13–5
DSR (data synchronization register)

asynchronous HDLC mode, 25–7
overview, 21–10
UART mode, 22–11

E
ECNTRL (ethernet control) register, 43–19
Effective address calculation, 5–6
Endian modes

BE mode, A–2
PPC-LE mode, A–6

MPC855T User’s Manual

setting endian modes, A–8
TLE mode, A–2

Errors
Ethernet error-handling procedure, 43–9
reception errors, 43–9
transmission errors, 43–9

ETHER_EN initialization, 43–35
Ethernet mode

address recognition, 27–16
collision handling, 27–18
commands, 27–15
connecting to Ethernet, 27–5
error handling, 27–19
external loopback, 27–18
frame reception, 27–7
frame structure, 27–1
frame transmission, 27–6
full-duplex support, 27–18
hash table algorithm, 27–17
internal loopback, 27–18
interpacket gap time, 27–18
learning Ethernet, 27–4
overview, 27–1
programming example, 27–27
programming the controller, 27–14
RxBD, 27–21
TxBD, 27–24

Exceptions
alignment exception, 6–7
asynchronous exceptions, 6–3
breakpoint detection, 44–8
bus exception control cycles, 13–39
debug exceptions, 6–15
decrementer exception, 6–10
DSI exception, 6–6
DTLB error, 6–14, 8–33
DTLB miss, 6–13, 8–33
exception handling, 6–1, 15–47
exception latency, 6–18
exception priority, 6–4
external interrupt, 6–6
external reset exception, 19–23
floating-point assist, 6–12
instruction offset, 6–2
instruction-related exceptions, 5–7
integer alignment, 6–8
ISI exception, 6–6
ITLB error, 6–14, 8–33
ITLB miss, 6–13, 8–33
list of exceptions, 6–2
machine check interrupt, 6–5
MMU exceptions, 8–33
ordering, 6–3
overview, 40–1
partially completed instructions, 6–20
PCMCIA interrupts, 16–7

PowerPC defined, 6–4
precise exception model, implementing, 6–16
program exception, 6–9
recoverability after an exception, 6–17
registers, 40–2
RISC timer interrupt handling, 18–18
SCC interrupt handling, 21–16
software emulation, 6–12
synchronous exceptions, 6–3
system call, 6–11
system reset interrupt, 6–5
trace exception, 6–11

Execution synchronization, 5–7
Extended channel mode, 35–10
External bus interface, see Bus interface, external
External control instructions, D-25
External load timing, 9–3
External loopback, 43–8
External test (EXTEST) instruction, 45–6

F
Fast Ethernet Controller

collision handling, 43–8
Fast Ethernet controller

block diagram, 43–2
CAM interface, 43–6
connections

serial mode to external transceiver, 43–3
descriptor controller initialization, 43–36
ethernet address recognition, 43–6
FEC command set, 43–6
frame reception, 43–4
frame transmission, 43–4
hardware initialization, 43–34
interpacket gap time, 43–8
loopback (internal/external), 43–8
memory map

parameter RAM, 43–13
operation, 43–2
overview, 43–2
reception errors, 43–9
serial mode connections, 43–3
signals

IMII_TX_CLK, 43–11
IRQ7, 43–11
L1RSYNCA, 43–11
L1TSYNCA, 43–11
MII_CRS, 43–12
MII_MDC, 43–11
MII_MDIO, 43–12
MII_RX_CLK, 43–12
MII_RX_ER, 43–12
MII_RXD0, 43–11
MII_RXD1, 43–11
MII_TX_EN, 43–12

Index 7

MII_TX_ER signals
Fast Ethernet controller

MII_TX_ER, 43–11
MII_TXD0, 43–11
MII_TXD1, 43–12
MII_TXD2, 43–12
MII_TXD3, 43–12
PD10, 43–11
PD11, 43–11
PD13, 43–11
PD15, 43–11
PD3, 43–12
PD4, 43–12
PD5, 43–12
PD6, 43–12
PD7, 43–12
PD8, 43–12
PD9, 43–11

singals, 43–11
transmission errors, 43–9

Features
features list, 43–1

features
MPC862, 1–1-??

Features (lists)
data cache operation, 7-24
instruction cache operation, 7-21

Features lists, 35–2
breakpoint debug support, 44–9
clocks and power control, 14–1
communications processor (CP), 18–1
communications processor module (CPM), 17–2
CPM interrupt controller, 34–1
CPM timers, 17–5
external bus interface, 13–1
HDLC bus controller, 23–20
I2C controller, 31–2
IDMA channels, 19–6
memory controller, 15–1
MMU, 8–1
MPC855T-specific features, 3–4
non-multiplexed serial interface (NMSI), 20–3
parallel I/O ports, 33–2
parallel interface port, 32–1
PowerPC architecture-defined, 3–2
serial communications controllers (SCCs)

AppleTalk mode, 24–2
asynchronous HDLC mode, 25–1
BISYNC mode, 26–2
Ethernet mode, 27–3
general list, 21–2
HDLC mode, 23–2
transparent mode, 28–1
UART mode, 22–2

serial interface (SI), 20–2
serial management controllers (SMCs)

general list, 29–2
transparent mode, 29–23
UART mode, 29–11
UART mode, features not supported, 29–11

serial peripheral interface (SPI), 30–2
system interface unit, 10–1
watchpoint debug support, 44–9

Frame
reception, 43–4
transmission, 43–4

Freeze operation, 10–33
FRZ (freeze) signal, 12–8
Full completion queue timing, 9–4

G
General-purpose chip-select machine (GPCM), 15–18
General-purpose signals, 15–45
GPL_Xn (general-purpose line) signal, 12–9
GSMR, 41–5
GSMR (general SCC mode register)

AppleTalk mode, 24–3
asynchronous HDLC mode, 25–7
HDLC bus protocol, programming, 23–24
overview, 21–3

H
Hard reset configuration word, 11–10
hardware initialization

Fast Ethernet controller, 43–34
Hash table algorithm, 43–7
HDLC mode

accessing the bus, 23–20
bus controller, 23–17
collision detection, 23–17, 23–21
commands, 23–5
delayed RTS mode, 23–22
error handling, 23–6
features, 23–2
GSMR, HDLC bus protocol programming, 23–24
multi-master bus configuration, 23–19
overview, 23–1
parameter RAM, 23–4
performance, increasing, 23–21
programming example, 23–16, 23–24
programming the controller, 23–5
PSMR, 23–7
RxBD, 23–9
single-master bus configuration, 23–20
TxBD, 23–12
using the TSA, 23–23

Header mask (HMASK) field, 37–10
HI-Z instruction, 45–7
HRESET

external, 11–2
hard reset configuration word, 11–10

MPC855T User’s Manual

internal, 11–3
reset configuration, 11–7
reset sequence, 11–4
settings at power-on, 14–7

HRESET (hard reset) signal, 12–10

I
I_EVENT (interrupt event)/I_MASK (interrupt mask)

register, 43–20
I_VEC (ethernet intrrupt vector) register, 43–22
I2ADD (I2C address) register, 31–7
I2BRG (I2C baud rate generator) register, 31–8
I2C controller

buffer descriptors, 31–12
clocking, 31–2
commands, 31–11
loopback testing, 31–4
master read (slave write), 31–4
master write (slave read), 31–4
multi-master considerations, 31–6
parameter RAM, 31–9
registers, 31–6
RxBD, 31–13
signal functions, 31–2
slave read (master write), 31–4
slave write (master read), 31–4
transfers, 31–3
TxBD, 31–14

I2CER (I2C event register), 31–8
I2CMR (I2C mask register), 31–8
I2COM (I2C command) register, 31–9
I2MOD (I2C mode) register, 31–6
IC_ADR (instruction cache address) register, 7-8
IC_CST (instruction cache control and status) register,

7-6
IC_CST commands, 7-9
IC_DAT (instruction cache data port) register, 7-8
ICTRL (instruction support control) register, 44–40
IDMA

serial performance considerations, B–4
IDMA channels

activating a channel, 19–13
auto-buffering, 19–12
buffer-chaining, 19–12
channel operation, 19–13
emulation, 19–5
features list, 19–6
host commands, 19–13
IDMA1 burst timing, single-buffer mode, 19–21
memory map, 19–7
parameter RAM, 19–6
registers, 19–7
single-buffer mode, 19–19
suspending a channel, 19–14
TEA signal, 19–23

transfers
dual address, 19–15
external recognition, 19–22
IDMA request for peripheral to memory transfers,

19–15
IDMA requests for memory to memory transfers,

19–14
interrupts during a bus transfer, 19–23
single address, 19–15

IDMR1 (IDMA1 mask register), 19–9, 19–21
IDMR2 (IDMA2 mask register), 19–9
IDSR1, 40–2
IDSR1 (IDMA1 status register), 19–8, 19–21
IDSR2 (IDMA2 status register), 19–8
IEEE 1149.1 test access port

boundary scan register, 45–3
BSDL description, 45–8
overview, 45–1
recommended configuration, 45–8
TAP controller, 45–2
usage considerations, 45–7

IMASK
ATM, 40–6

IMMR (internal memory map register), 10–4
Initialization

descriptor controller, 43–36
ETHER_EN deassertion, 43–35
hardware initialization, 43–34

initialization
UTOPIA mode, 41–5

initialization and operation
APC pace control

CBR channels, 39–6
Instruction fetch show cycle, 44–3
Instruction timing, 9–1

list of instructions, 9–6
Instructions

branch and flow control
branch instruction address calculation, 5–17
branch instructions, 5–17
condition register logical instructions, 5–17

branch instructions, D-23
BYPASS, 45–7
cache management instructions, D-24
CLAMP, 45–7
classes of instructions, 5–3
condition register logical, D-23
dcbf, 7-19
dcbi, 7-20
dcbst, 7-19
dcbt, 7-18
dcbtst, 7-18
dcbz, 7-19
external control, D-25
EXTEST, 45–6
floating-point

Index 9

arithmetic, D-18
compare, D-19
FP load instructions, D-22
FP move instructions, D-22
FP store instructions, D-22
FPSCR isntructions, D-19
multiply-add, D-19
rounding and conversion, D-19

functional categories, D-16
HI-Z, 45–7
icbi, 7-18
illegal instructions, 5–4
instruction field conventions, cxii, 6
instruction timing, 9–1
integer

arithmetic, 5–8, D-16
byte-reverse instructions, 5–14
compare, 5–9, D-17
load, D-20
load instructions, 5–12
load/store address generation, 5–12
load/store multiple instructions, 5–15
load/store string instructions, 5–15
logical, 5–10, D-17
multiple, D-21
rotate and shift, 5–11, D-17-D-18
store, D-20
store instructions, 5–14

isync, 7-9
load and store

byte-reverse instructions, D-21
integer multiple instructions, D-21
string instructions, D-21

load/store
byte- reverse instructions, 5–14
integer load/store address generation, 5–12
load instructions, 5–12
multiple instructions, 5–15
store instructions, 5–14
string instructions, 5–15

lwarx, 7-28
memory control, D-24

OEA, 5–24
VEA, 5–22

memory synchronization, D-21
UISA, 5–19
VEA, 5–21

mfspr, 7-6, 7-12
mtspr, 7-6, 7-12
optional instructions, D-37
processor control, D-23

OEA, 5–23
UISA, 5–18
VEA, 5–21

quick reference list
general information legend, D-37

sorted by form (format), D-26
sorted by function, D-16
sorted by mnemonic, D-1

reserved instructions, 5–5
SAMPLE/PRELOAD, 45–6
segment register manipulation, D-24
stwcx., 7-28
summary of instructions, 5–2
system linkage, 5–23, D-23
TAP instructions, 45–5
TLB management instructions, D-24
trap instructions, 5–18, D-23
UISA instructions, 5–8

Integer arithmetic instructions, D-16
Integer compare instructions, D-17
Integer load instructions, D-20
Integer logical instructions, D-17
Integer multiple instructions, D-21
Integer rotate and shift instructions, D-17-D-18
Integer store instructions, D-20
Integer unit

overview, 3–11
Internal loopback, 43–8
Interpacket gap time, 43–8
Interrupt cause (ICR) register, 44–45
Interrupt controller, SIU, 10–15
interrupt queue entry

ATM, 40–4
interrupt queue mask (IMASK), 40–6
Interrupts

programming the SIU interrupt controller, 10–15
SIU interrupt priority, 10–13
SIU interrupt processing, 10–13
SIU interrupt structure, 10–11, 10–12

Interrupts, see Exceptions
IRQ0 operation, 10–14
IRQ7, 43–11
IRQn (interrupt request) signals, 12–8

J
JTAG reset, 11–4
JTAG signals, 12–20

K
KR/RETRY (kill reservation/retry) signal, 12–6, 13–4

L
L1RSYNCA, 43–11
L1TSYNCA, 43–11
LCTRL1 (load/store support comparators control)

register, 44–41
LCTRL2 (load/store support AND-OR control)

register, 44–42
Load/store

MPC855T User’s Manual

byte-reverse instructions, D-21
floating-point load instructions, D-22
floating-point move instructions, D-22
floating-point store instructions, D-22
integer load instructions, D-20
integer store instructions, D-20
load/store multiple instructions, D-21
memory synchronization instructions, D-21
string instructions, D-21

Load/store unit
BAR updates, 4–6
DAR updates, 4–6
DSISR updates, 4–6
load/store instruction timing, 9–8
overview, 3–11

Lock/key registers, 10–10
Loop control, 15–46
Loopback (internal/external), 43–8
Low-power stop operation, 10–33

M
M_CASID (MMU current address space ID) register,

8–24
M_TW (MMU tablewalk special) register, 8–25
M_TWB (MMU tablewalk base) register, 8–24
MAR (memory address register), 15–17
MC68360 quad integrated communications controller

(QUICC),, 1–1
MCR (memory command) register, 15–15
MD_CAM (DMMU CAM entry read) register, 8–29
MD_CTR (DMMU control) register, 8–17
MD_RAM (DMMU RAM entry read 0) register, 8–30
MD_RAM (DMMU RAM entry read 1) register, 8–31
MD_RPN (DMMU real page number) register, 8–22
MD_TWC (DMMU tablewalk control) register, 8–20
MDR (memory data register), 15–17
Memory controller

basic architecture, 15–4
block diagram (single UPM), 15–3
external master support, 15–56
features summary, 15–1
memory system interface, 15–65
overview, 15–1
page mode extended data-out interface, 15–77
registers, 15–8

memory map
FEC parameter RAM, 43–13
PIP,, 2–9
SCC1,, 2–7

Memory map reference, 2–1
Memory maps

CP dual-port RAM, 18–10
IDMA channel, 19–7
RISC timer table, 18–14
serial communications controllers (SCCs)

BISYNC mode, 26–4
Ethernet mode, 27–12
HDLC mode, 23–4
UART mode, 22–4

serial management controllers (SMCs)
GCI mode, 29–35
transparent mode, 29–7
UART mode, 29–7

Memory synchronization
instructions, D-21

Memory system interface, 15–65
MI_CAM (IMMU CAM entry read) register, 8–26
MI_CTR (IMMU control) register, 8–16
MI_RAM (IMMU RAM entry read 1) register, 8–28
MI_RAM0 (IMMU RAM entry read 0) register, 8–27
MI_RPN (IMMU real page number) register, 8–21
MI_TWC (IMMU tablewalk control) register, 8–19
MII

signals, 43–3
MII_COL Fast Ethernet controller

signals
MII_COL, 43–12

MII_CRS, 43–12
MII_DATA (MII management frame) register, 43–24
MII_MDC, 43–11
MII_MDIO, 43–12
MII_RX_CLK, 43–12
MII_RX_DV Fast Ethernet controller

signals
MII_RX_DV, 43–12

MII_RX_ER, 43–12
MII_RXD0, 43–11
MII_RXD1, 43–11
MII_RXD2

Fast Ethernet controller
signals

MII_RXD2, 43–11
MII_RXD3, 43–11
MII_TX_CLK, 43–11
MII_TX_EN, 43–12
MII_TX_ER, 43–11
MII_TXD0, 43–11
MII_TXD1, 43–12
MII_TXD2, 43–12
MII_TXD3, 43–12
Misalignment

misaligned accesses, 5–1
MMU (memory management unit)

access protection groups, 8–6
address translation, 8–3
debug registers, 8–26
exceptions, 8–33
features, 8–1
memory attributes, 8–8
overview, 8–1
programming model, 8–15

Index 11

protection resolution modes, 8–7
TLB invalidation, 8–36
TLB operation, 8–5
TLB reload, 8–33
translation table structure, 8–9

Modes
asynchronous HDLC mode, 25–1
BE (big-endian) mode byte ordering, A–2
BISYNC mode, 26–1
cascaded mode, 17–7
clock mode, development port, 44–28
debug mode

development support, 44–33
operation, 44–21

echo mode, 29–1
Ethernet mode, 27–1
extended channel mode, 35–10
HDLC mode, 23–1
hunt mode, 22–9
IDMA single-buffer mode, 19–19
interlocked handshake mode, 32–15
loopback mode, 29–1
munged little-endian byte ordering, A–1
PPC-LE (PowerPC little-endian) mode byte order-

ing, A–6
pulsed handshake mode, 32–16
PWM mode, 18–16
restart gate mode, 17–7
SCC AppleTalk mode, 24–1
setting the endian operation mode, A–8
slow go mode, 17–6
TLE (true little-endian) mode byte ordering, A–2
transparent mode

serial communications controllers (SCCs), 28–1
serial management controllers (SMCs), 29–22

trap enable, development port, 44–31
UART mode

serial communications controllers (SCCs), 22–1
serial management controllers (SMCs), 29–11

UTOPIA mode, 35–5
MPC855T, 1–1

basic core structure, 3–6
block diagram, 3–5
commands

ATM, 38–8
configuration supporting both serial and UTOPIA

ATM transmissions, and Fast Ethernet
, 35–4

execution units, 3–10
features, 1–1-??
features lists, 35–2
features summary, 3–4
PowerPC architecture adherence, 3–1, 3–15

MPC855T PowerPC quad integrated communications
controller (PowerQUICC),, 1–1, 1–7

MPC855T, comparison with MPC860, 35–1

MPC860 PowerPC quad integrated communications
controller (PowerQUICC),, 1–7

MPC860T
programming model, 43–13

MPC862 PowerPC quad integrated communications
controller (PowerQUICC),, 1–1, 1–4, 1–7, 1–8

MPTPR (memory periodic timer prescaler register),
15–18

MSR (machine state register)
additional SPRs, 6–18
description, 4–7

MSTAT (memory status) register, 15–13
Multi-PHY

configuration, 38–5
operations, 42–5

Munged little endian mode, see PowerPC little-endian
(PPC-LE) mode

Munging, definition, A–1
Mx_AP (IMMU/DMMU access protection) register,

8–25
Mx_EPN (IMMU/DMMU effective page number)

register, 8–18
MxMR (machine x mode registers), 15–13

N
NMI (nonmaskable interrupt)

IRQ0, 10–14
software watchdog timer, 10–2
SWT, 10–14

NMSI (non-multiplexed serial interface)
configuration, 20–22
features list, 20–3
overview, 20–22
SMC NMSI connection, receive and transmit, 29–2

O
OAM screening

address mapping, 38–5
OE (output enable) signal, 12–10
On-chip oscillators, 14–4
Operand conventions, 5–1
Operating environment architecture (OEA)

description, 3–3
operation

ATM, 35–5
UTOPIA, 35–5

Operations
CPM timer operation, 17–6
digital phase-locked loop (DPLL), 21–22
Freeze, 10–33
IDMA channels, 19–13
low-power stop, 10–33

ORn (option registers), 15–10
Oscillators on-chip, 14–4
Output clocks, 14–9

MPC855T User’s Manual

overview (MPC862), 1–1

P
pace control (APC)

ATM, 39–1
implementation, 39–2
parameters, 39–3

Packaging on transfers, 13–24
PADAT (port A data) register, 33–4
PADIR (port A data direction) register, 33–4
Page mode extended data-out interface, 15–77
PAn (general-purpose port A bits) signals, 12–14
PAODR (port A open-drain register), 33–3
PAPAR (port A signal assignment register), 33–5
Parallel I/O ports

port A
block diagrams, 33–6
configuration examples, 33–5
overview, 33–2
PADAT, 33–4
PADIR, 33–4
PAODR, 33–3
PAPAR, 33–5
pin assignments, 33–2

port B
overview, 33–7
PBDAT, 33–9
PBDIR, 33–10
PBODR, 33–9
PBPAR, 33–11
pin assigments, 33–8

port C
overview, 33–11
PCDAT, 33–14
PCDIR, 33–15
PCINT, 33–16
PCPAR, 33–15
PCSO, 33–16
pin assignments, 33–12

port D
overview, 33–17
PDDAT, 33–18
PDDIR, 33–18

Parallel interface port
block diagram, 32–2
buffer descriptors, 32–11
BUSY signal (Centronics interface), 32–18
Centronics interface, implementation, 32–20
Centronics receive errors, 32–23
Centronics receiver, 32–23
Centronics transmit errors, 32–22
Centronics transmitter, 32–21
control character table, 32–6
core control vs. CP control, 32–2
CP commands, 32–14

features, 32–1
handshaking I/O modes, 32–15
interlocked handshake mode, 32–15
overview, 32–1
parameter RAM, 32–3
pulsed handshake mode, 32–16
RCCM/RCCR, 32–6
registers, 32–4, 32–8
transparent transfers, 32–20

Parameter RAM
communications processor (CP), 18–11
HDLC mode, 23–4
IDMA channels, 19–6
RISC timer table, 18–13
serial communications controllers (SCCs)

all protocols, 21–14
BISYNC mode, 26–4
Ethernet mode, 27–12
overview, 21–14
UART mode, 22–4

serial management controllers (SMCs)
GCI mode, 29–35
transparent mode, 29–7, 29–23
UART mode, 29–7, 29–12

serial peripheral interface, 30–11
Parameters

parameter RAM configuration, 37–1
parameter RAM map, 37–1
SAR

address match (AM1–AM5), 37–9
parameters

APC parameters, 39–10
ATM

APC, 39–3
PBDAT (port B data) register, 33–9
PBDIR (port B data direction) register, 33–10
PBn(general-purpose port B bits) signals, 12–16
PBODR (port B open-drain register), 33–9
PBPAR (port B signal assignment register), 33–11
PBRn (PCMCIA base register), 16–14
PCDAT (port C data) register, 33–14
PCDIR (port C data direction) register, 33–15
PCINT (port C interrupt controller) register, 33–16
PCMCIA interface

DMA module, 16–7
operation description, 16–6
overview, 16–1
Power control, 16–7
registers, 16–8
signal definitions, 16–1
timing examples, 16–17

PCn (general-purpose port C bits) signals, 12–18
PCPAR (port C signal assignment register), 33–15
PCSO (port C special options) register, 33–16
PD10, 43–11
PD11, 43–11

Index 13

PD12
Fast Ethernet controller

signals
PD12, 43–11

PD13, 43–11
PD14

Fast Ethernet controller
signals

PD14, 43–11
PD15, 43–11
PD3, 43–12
PD4, 43–12
PD5, 43–12
PD6, 43–12
PD7, 43–12
PD8, 43–12
PD9, 43–11
PDDAT (port D data) register, 33–18
PDDIR (port D data direction) register, 33–18
PDn (general-purpose port D bits) signals, 12–19
PER (PCMCIA interface enable register), 16–11
Performance

tracking program flow, 44–1
Periodic interrupt timer (PIT), 10–2, 10–30
PGCRB (PCMCIA interface general control register

B), 16–13
PGCRx (PCMCIA interface general control registers),

16–13
PHY configuration, see Multi-PHY configuration
PIP configuration (PIPC) register, 32–8
PIP event (PIPE) register, 32–9
PIP function code register (PFCR), 32–4
PIP mask (PIPM) register, 32–10
PIP memory map,, 2–9
PIP timing parameters register (PTPR), 32–10
PISCR (periodic interrupt status and control) register,

10–31
PIT, see Periodic interrupt timer
PITC (periodic count) register, 10–32
PITR (periodic interrupt timer register), 10–32
PLL loss of lock, 11–3
PLPRCR (PLL, low-power, and reset control register),

14–31
PORESET (power-on reset) signal, 12–10
PORn (PCMCIA option register), 16–14
Port D pin assignment register (PDPAR), 33–19, 41–1
Power control

disabling SCC, 21–28
low-power modes, 14–18
overview, 14–1

Power supply signals, 12–20
Power-on reset

description, 11–2
reset sequence, 11–4

Power-on reset settings, 14–7
PowerPC architectural specifications,, 1–1

PowerPC architecture
decrementer, 10–22
exceptions, 6–4
execution units, 3–10
features summary, 3–2
instruction list, D-1, D-16, D-26, D-37
integer unit, 3–11
levels of the architecture, 3–3
load/store unit, 3–11
MMU compliance, 8–2
MPC855T

implementation, 3–15
MPC855T implementation, 3–1
overview, 3–1
programming levels, 3–3
timebase, 10–23

PowerPC little-endian (PPC-LE) mode, A–6
PowerPC quad integrated communications controller

(PowerQUICC), 1–4, 1–5, 1–6, 1–7, 1–8
PowerPC quad integrated communications controller

(PowerQUICC),, 1–1
Processor control instructions, D-23
Program flow, tracking, 44–1
Program trace

back trace, 44–5
debug mode, 44–5
description, 44–2
indirect branch instructions, 44–5
queue flush information, 44–4
reconstruction, 44–5
sequential instructions, 44–5
signals, 44–3
special cases, 44–4
window trace, 44–6

programming
APC pace control

CBR channels, 39–5
Programming examples

SCCs
asynchronous HDLC mode, 25–15
Ethernet mode, 27–27
HDLC bus protocol, 23–24
transparent mode, 28–14
UART mode, 22–23

Programming model, 43–13
Programming the SIU, 10–4
Promiscuous mode, seeTransparent mode
PSCR (PCMCIA interface status changed register),

16–10
PSMR, 41–6
PSMR (protocol-specific mode register)

AppleTalk mode, 24–4
asynchronous HDLC mode, 25–11
BISYNC mode, 26–10
Ethernet mode, 27–19
HDLC bus protocol, programming, 23–24

MPC855T User’s Manual

HDLC mode, 23–7
overview, 21–10
transparent mode, 28–9
UART mode, 22–13

PTR (program trace) signal, 13–4, 13–33
PVR (processor version register), 4–8

R
R_BUFF_SIZE (receive buffer size) register, 43–19
R_DES_ACTIVE (RxBD Active) register, 43–22
RAM word, 15–39
RCCR, 41–5
RCCR (RISC controller configuration register), 18–4
RD/WR (read/write) signal, 12–5, 13–3, 13–32
Real-time clock, 10–26
Receiver

ASTATUS register, 37–13
single-PHY receive cell transfer operation, 42–2
synchronization status, 37–13
UTOPIA mode, 35–6

Reception
FEC frame reception, 43–4
reception errors, 43–9

Registers
APCST, 37–12
AppleTalk mode

GSMR, 24–3
PSMR, 24–4
TODR, 24–4

ASTATUS, 37–13
asynchronous HDLC mode

DSR, 25–7
GSMR, 25–7
PSMR, 25–11
SCCE, 25–9
SCCM, 25–9
SCCS, 25–10

BAR, 44–39
BISYNC mode

BDLE, 26–8
BSYNC, 26–7
PSMR, 26–10
SCCE, 26–15
SCCM, 26–15
SCCS, 26–16

boundary scan register, 45–3
cache control, 7-6
clock/power control

PLPRCR, 14–31
SCCR, 14–29

CMPA–CMPH, 44–38
communications processor (CP)

CPCR, 18–6
RCCR, 18–4
RMDS, 18–5

RTER, 18–15
RTMR, 18–15
TM_CMD, 18–15

communications processor module (CPM)
TCNn, 17–11
TCRn, 17–10
TERn, 17–11
TGCR, 17–8
TMRn, 17–9
TRRn, 17–10

configuration, 41–1
COUNTA/COUNTB, 44–45
CPCR, 38–8
CPM interrupt controller

CICR, 34–7
CIMR, 34–8
CIPR, 34–7
CISR, 34–8
CIVR, 34–9

CSR.ECNTRL, 43–19
CSR.I_EVENT, 43–20
CSR.IVEC, 43–22
CSR.R_DES_ACTIVE, 43–22
CSR.X_DES_ACTIVE, 43–23
DC_ADR, 7-13
DC_CST, 7-12
DC_DAT, 7-14
debug, 44–37
debug mode, 44–45
DER, 44–47
development port, 44–27
development port shift, 44–27
development support, 44–36
DMA.FUN_CODE, 43–31
DPDR, 44–49
DSR

overview, 21–10
UART mode, 22–11

ECNTRL (ethernet control), 43–19
Ethernet mode

PSMR, 27–19
SCCE, 27–25
SCCM, 27–25

FIFO.R_BOUND, 43–27
FIFO.R_FSTART, 43–28
FIFO.X_FSTART, 43–30
general descriptions, 43–13
GSMR

asynchronous HDLC mode, 25–7
overview, 21–3

HDLC mode
PSMR, 23–7
SCCE, 23–13
SCCM, 23–13
SCCS, 23–15

I_EVENT (interrupt event)/I_MASK (interrupt

Index 15

mask), 43–20
I_VEC (ethernet intrrupt vector), 43–22
I2C controller

I2ADD, 31–7
I2BRG, 31–8
I2CER, 31–8
I2CMR, 31–8
I2COM, 31–9
I2MOD, 31–6

IC_ADR, 7-8
IC_CST, 7-6, 7-9
IC_DAT, 7-8
ICR, 44–45
ICTRL, 44–40
IDMA channels

DCMR, 19–7, 19–20
DFCR, 19–12
IDMR1, 19–9, 19–21
IDMR2, 19–9
IDSR1, 19–8, 19–21
IDSR2, 19–8
SFCR, 19–12

IDSR1, 40–2
instruction register, 45–5
key registers, 10–10
LCTRL1, 44–41
LCTRL2, 44–42
M_CASID, 8–24
M_TW, 8–25
M_TWB, 8–24
MD_CAM, 8–29
MD_CTR, 8–17
MD_RAM, 8–30, 8–31
MD_RPN, 8–22
MD_TWC, 8–20
memory controller

BRn, 15–9
MAR, 15–17
MCR, 15–15
MDR, 15–17
MPTPR, 15–18
MSTAT, 15–13
MxMR, 15–13
ORn, 15–10

memory controller register model
MSTAT, 15–8

memory map, 43–13
MI_CAM, 8–26
MI_CTR, 8–16
MI_RAM, 8–28
MI_RAM0, 8–27
MI_RPN, 8–21
MI_TWC, 8–19
MII_DATA (MII management frame), 43–24
MII_SPEED, 43–26
MMU debug, 8–26

Mx_AP, 8–25
Mx_EPN, 8–18
parallel I/O ports

PADAT, 33–4
PADIR, 33–4
PAODR, 33–3
PAPAR, 33–5
PBDAT, 33–9
PBDIR, 33–10
PBODR, 33–9
PBPAR, 33–11
PCDAT, 33–14
PCDIR, 33–15
PCINT, 33–16
PCPAR, 33–15
PCSO, 33–16
PDDAT, 33–18
PDDIR, 33–18

parallel interface port
PFCR, 32–4
PIPC, 32–8
PIPE, 32–9
PIPM, 32–10
port B, 32–11
PTPR, 32–10
SMASK, 32–4

PCMCIA interface
PBRn, 16–14
PER, 16–11
PGCRB, 16–13
PGCRx, 16–13
PORn, 16–14
PSCR, 16–10

PDPAR, 33–19, 41–1
PowerPC

accessing SPRs, 4–11
DEC, 10–22
not supported, 4–6
overview, 4–1
PISCR, 10–31
PITC, 10–32
PITR, 10–32
RTC, 10–28
RTCAL, 10–28
RTCSC, 10–27
RTSEC, 10–29
supervisor-level

MSR, 4–7
PVR, 4–8
summary, 4–5, 4–9, C–2, C–3

TBREFU/TBREFL, 10–24
TBSCR, 10–25
TBU/TBL, 10–23
user-level

CR, 4–3
summary, 4–2, C–1

MPC855T User’s Manual

TBU/TBL, 4–5
XER, 4–4

PSMR
asynchronous HDLC mode, 25–11
BISYNC mode, 26–10
Ethernet mode, 27–19
overview, 21–10
transparent mode, 28–9
UART mode, 22–13

quick reference guide, C–1
R_BUFF_SIZE (receive buffer size), 43–19
R_DES_ACTIVE (RxBD Active), 43–22
RAM.ADDR_HIGH, 43–15
RAM.ADDR_LOW, 43–15
RAM.HASH_TABLE_HIGH, 43–16
RAM.HASH_TABLE_LOW, 43–17
RAM.R_DES_START, 43–17
RAM.X_DES_START, 43–18
RCCR, 41–4
RECV.R_CNTRL, 43–31, 43–32
RECV.R_HASH, 43–33
register lock (KAPWR powered), 10–10, 14–28
RFCR

overview, 21–16
RSR, 11–5
SAR receive function code and status (SRFCR),

37–6
SAR receive function code and status (SRSTATE),

37–7
SAR transmit function code and status, 37–8
SCCE, 40–3

asynchronous HDLC mode, 25–9
BISYNC mode, 26–15
Ethernet mode, 27–25
UART mode, 22–20

SCCM
asynchronous HDLC mode, 25–9
BISYNC mode, 26–15
Ethernet mode, 27–25
UART mode, 22–20

SCCS
asynchronous HDLC mode, 25–10
BISYNC mode, 26–16
UART mode, 22–22

SDCR, 43–10
SDMA channels

SDAR, 19–5
SDCR, 19–3
SDMR, 19–5
SDSR, 19–4

serial communications controllers
SCCE, 28–12
SCCM, 28–12
SCCS, 28–13
transparent mode

PSMR, 28–9

serial interface
BRGCn, 20–25
SICMR, 20–19
SICR, 20–18
SIGMR, 20–12
SIMODE, 20–13
SIRP, 20–21
SISTR, 20–20

serial management controllers
GCI mode

C/I channel RxBD, 29–38
C/I channel TxBD, 29–38
SMCE, 29–39
SMCM, 29–39

SMCMRs, 29–3
transparent mode

SMCE, 29–31
SMCM, 29–31

UART mode
RxBD, 29–15
SMCE, 29–20
SMCM, 29–20
TxBD, 29–19

serial peripheral interface
RFCR, 30–13
SPCOM, 30–11
SPIE, 30–10
SPIM, 30–10
SPMODE, 30–7
TFCR, 30–13

settings after
alignment exception, 6–8
debug exception, 6–15
decrementer exception, 6–10
DTLB error exception, 6–15
DTLB miss exception, 6–13
external interrupt, 6–7
ITLB error exception, 6–14
ITLB miss exception, 6–13
program exception, 6–9
software emulation exception, 6–12
system call exception, 6–11
trace exception, 6–11

system interface unit
IMMR, 10–4
SIEL, 10–17
SIMASK, 10–16
SIUMCR, 10–5
SIVEC, 10–18
SWSR, 10–21
SYPCR, 10–7
TESR, 10–8

TECR, 44–28
TFCR

overview, 21–16
TODR

Index 17

overview, 21–10
UART mode

DSR, 22–11
PSMR, 22–13
SCCE, 22–20
SCCM, 22–20
SCCS, 22–22
TOSEQ, 22–9

UTOPIA mode registers, 41–2
X_DES_ACTIVE (TxBD Active), 43–23
X_DES_START, 43–18
X_WMRK (Transmit Watermark), 43–29
XMIT.X_CNTRL, 43–33

registers
general SCC mode (GSMR), 41–5
RISC controller configuration (RCCR), 41–5
serial ATM mode (PSMR), 41–6

reservation, 7-28
Reset

cache initialization, 7-29
checkstop reset, 11–4
debug port hard/soft reset, 11–4
external HRESET, 11–2
external SRESET, 11–2, 11–5
internal HRESET, 11–3
internal SRESET, 11–5
JTAG reset, 11–4
power-on reset, 11–2
receiver reset sequence, SCC, 21–27
reset clock source configuration, 14–16
reset configuration, 11–7
settings at power-on, 14–7
software watchdog reset, 11–3
transmitter reset sequence, SCC, 21–27

Restart gate mode, 17–7
Restart receive command, 38–10
Restart transmit command, 38–10
RETRY (retry) signal, 13–40
RFC1549 exceptions, 25–4
RFCR (receive function code register)

serial peripheral interface, 30–13
RFCR (Rx buffer function code register)

overview, 21–16
RISC timer table, 18–12
RMDS (RISC microcode development support

control) register, 18–5
Rotate and shift instructions, D-17-D-18
RSR (reset status register), 11–5
RSTCONF (reset configuration) signal, 12–10
RSV (reservation transfer) signal, 12–6, 13–4, 13–33
RTC (real-time clock) register, 10–28
RTCAL (real-time clock alarm) register, 10–28
RTCSC (real-time clock status and control) register,

10–27
RTER (RISC timer event register), 18–15
RTMR (RISC timer mask register), 18–15

RTSEC (real-time clock alarm seconds) register,
10–29

S
SAMPLE/PRELOAD instruction, 45–6
SAR

address match parameters (AM1–AM5), 37–9
Receive function and status register (SRFCR), 37–6
receive function and status register (SRSTATE),

37–7
SAR Transmit function code and status register, 37–8
SAR transmit function code and status register, 37–8
SCC1 memory map,, 2–7
SCCE, 40–3
SCCE (SCC event register)

asynchronous HDLC, 25–9
HDLC mode, 23–13

SCCE (SCC event) register
BISYNC mode, 26–15
Ethernet mode, 27–25
transparent mode, 28–12
UART mode, 22–20

SCCM (SCC mask) register
asynchronous HDLC, 25–9
BISYNC mode, 26–15
Ethernet mode, 27–25
HDLC mode, 23–13
transparent mode, 28–12
UART mode, 22–20

SCCR (system clock and reset control register), 14–29
SCCS (SCC status) register

asynchronous HDLC mode, 25–10
BISYNC mode, 26–16
HDLC mode, 23–15
transparent mode, 28–13
UART mode, 22–22

SCCs, see Serial communications controllers (SCCs)
SDAR (SDMA address register), 19–5
SDCR (SDMA configuration register), 19–3
SDMA

registers, 43–10
SDCR register, 43–10

SDMA channels
data paths, 19–1
overview, 19–1
registers, 19–3
tranfers, 19–2
U-bus arbitration, 19–2

SDMR (SDMA mask register), 19–5
SDSR (SDMA status register), 19–4
Segment registers

SR manipulation instructions, D-24
serial ATM

<i>see ATM pace control (APC), 35–7
parameter RAM map, 37–5

MPC855T User’s Manual

serial interface
configuration with, 41–6

Serial cell synchronization status (ASTATUS)
register, 37–13

Serial communications controllers (SCCs)
AppleTalk mode

connecting to AppleTalk, 24–3
operating LocalTalk frame, 24–1
overview, 24–1
programming example, 24–4
programming in AppleTalk, 24–3

asynchronous HDLC mode
channel implementation, 25–5
decoding the receiver transparency, 25–3
DSR configuration, 25–6
encoding the transmitter transparency, 25–3
error handling, 25–8
features, 25–1
frame reception processing, 25–2
frame transmission processing, 25–1
GSMR configuration, 25–6
HDLC mode, differences, 25–14
overview, 25–1
programming example, 25–15
programming the controller, 25–7
receive commands, 25–8
RxBD, 25–12
transmit commands, 25–8
TxBD, 25–13

BISYNC mode
commands, 26–5
control character recognition, 26–6
error handling, 26–9
frame reception, 26–3
frame transmission, 26–2
frames, classes, 26–1
memory map, 26–4
overview, 26–1
parameter RAM, 26–4
programming example, 26–18
programming the controller, 26–17
receiving synchronization sequence, 26–9
RxBD, 26–12
sending synchronization sequence, 26–9
TxBD, 26–14

Ethernet mode
address recognition, 27–16
collision handling, 27–18
commands, 27–15
connecting to Ethernet, 27–5
error handling, 27–19
external loopback, 27–18
frame reception, 27–7
frame structure, 27–1
frame transmission, 27–6
full-duplex support, 27–18

hash table algorithm, 27–17
internal loopback, 27–18
interpacket gap time, 27–18
learning Ethernet, 27–4
memory map, 27–12
overview, 27–1
programming example, 27–27
programming the controller, 27–14
RxBD, 27–21
TxBD, 27–24

HDLC mode
accessing the bus, 23–20
asynchronous HDLC mode, differences, 25–14
bus controller, 23–17
collision detection, 23–17, 23–21
commands, 23–5
delayed RTS mode, 23–22
error handling, 23–6
features, 23–2
GSMR, HDLC bus protocol programming, 23–24
interrupts, 23–14
memory map, 23–4
multi-master bus configuration, 23–19
overview, 23–1
parameter RAM, 23–4
performance, increasing, 23–21
programming example, 23–16, 23–24
programming the controller, 23–5
PSMR, 23–7
RxBD, 23–9
single-master bus configuration, 23–20
TxBD, 23–12
using the TSA, 23–23

overview
buffer descriptors, 21–11
controlling SCC timing, 21–18
DPLL operation, 21–22
features, 21–2
parameter RAM, 21–14
reconfiguration, 21–26
reset sequence, 21–27
switching protocols, 21–27

transparent mode
achieving synchronization, 28–3
commands, 28–7
error handling, 28–8
frame reception, 28–2
frame transmission, 28–2
overview, 28–1
programming example, 28–14
RxBD, 28–9
TxBD, 28–11

UART mode
commands, 22–6
control character insertion, 22–9
data handling, character and message-based, 22–5

Index 19

error reporting, 22–6
features list, 22–2
handling errors, 22–12
hunt mode, 22–9
memory map, 22–4
normal asynchronous mode, 22–3
overview, 22–1
parameter RAM, 22–4
programming example, 22–23
RxBD, 22–16
S-records loader application, 22–24
status reporting, 22–6
synchronous mode, 22–3
TxBD, 22–19

Serial communications performance
bus utilization, B–2
clocking, B–1
IDMA considerations, B–4
overview, B–1
performance considerations, B–5
serial channel performance, B–3

serial interface
serial ATM

configuration with, 41–6
Serial interface (SI)

autobaud operation on a UART, 20–27
baud rate generators

autobaud operation on a UART, 20–27
block diagram, 20–25
overview, 20–24
registers, 20–25
UART baud rate examples, 20–28

block diagram, 20–1
connections to TSA, 20–6
disabling TSA, 20–7
enabling TSA, 20–7
NMSI configuration

features list, 20–3
overview, 20–22

overview, 20–1
registers, 20–12
SI RAM

dynamic changes, 20–7
overview, 20–6
partitioning SI RAM, 20–7, 20–10
programming SI RAM, 20–10

TDM channel configuration, 20–5
time-division multiplexing (TDM)

TSA implementation, 20–3
TSA signals, 20–6
UART baud rate examples, 20–28

Serial management controllers (SMCs)
buffer descriptors, overview, 29–5
configurations, 29–3
disable receiver, 29–9
disable transmitter, 29–9

disabling SMCs on-the-fly, 29–9
enable receiver, 29–9
enable transmitter, 29–9
error handling, 29–15
features list, 29–2
GCI mode

C/I channel receive buffer, 29–38
C/I channel transmit buffer, 29–38
commands, 29–36
handling SMC C/I channel, 29–36
overview, 29–34
parameter RAM, 29–35
RxBD, 29–37, 29–38
TxBD, 29–37

interrupt handling, 29–10
memory structure, 29–6
mode selection, 29–3
NMSI connection, receive and transmit, 29–2
overview, 29–1
parameter RAM

GCI mode, 29–35
overview, 29–6
transparent mode, 29–7, 29–23
UART mode, 29–7, 29–12

power saving, 29–10
programming the controller, 29–13
protocol changes, 29–10
reinitialize receiver, 29–10
reinitialize transmitter, 29–9
selecting modes, 29–3
sending a break, 29–14
sending a preamble, 29–14
settings, 29–3
transparent mode, 29–22

commands, 29–27
error handling, 29–28
parameter RAM, 29–7, 29–23
programming example, 29–32
RxBD, 29–28
synchronization

using SMSYN, 29–24
using TSA, 29–25

TSA programming example, 29–33
TxBD, 29–29

UART mode
character mode, 29–13
commands, 29–14
data handling, 29–13
features list, 29–11
features not supported by SMCs, 29–11
message-oriented mode, 29–13
overview, 29–11
parameter RAM, 29–7, 29–12
programming example, 29–21
reception process, 29–13
RxBD, 29–15

MPC855T User’s Manual

transmission process, 29–12
TxBD, 29–19

Serial mode
cell payload scrambling, 35–10
parameter RAM configuration, 37–1, 37–5
SCCE register, 40–3

Serial mode event register (SCCE), 40–3
Serial peripheral interface (SPI)

block diagram, 30–1
buffer descriptors, 30–14
clocking functions, 30–2
commands, 30–13
configuring the controller, 30–3
examples using SPMODE, 30–9
features list, 30–2
interrupt handling, 30–19
master mode

overview, 30–3
programming example, 30–17

memory structure, 30–14
multi-master operation, 30–5
overview, 30–1
parameter RAM, 30–11
registers, 30–7
RxBD, 30–15
signal functions, 30–2
slave mode

overview, 30–5
programming example, 30–18

TxBD, 30–16
SFCR (source function code registers), 19–12
SICMR (SI command register), 20–19
SICR (SI clock route register), 20–18
SIEL (SIU interrupt edge/level) register, 10–17
SIGMR (SI global mode register), 20–12
Signals

An, 12–5, 13–3, 13–32
AS, 12–14
ATn, 13–4, 13–33
BADDRn, 12–14
BB, 12–8, 13–6, 13–28
BDIP, 12–5, 13–4, 13–35
BG, 12–8, 13–6, 13–28
BI, 12–6, 13–5, 13–35
BR, 12–7, 13–6, 13–28
BS_A, 12–9
BURST, 12–5, 13–4, 13–32
bus control signals, 13–2
bus transfer signals, 13–1
byte-select signals, 15–44
CEn_x, 12–11
chip-select signals, 15–43
CLKOUT, 12–11
CR, 12–6
CS, 12–8
development port, 44–26

Dn, 12–7, 13–5
DPn, 12–7, 13–5
DSCK, 44–26
DSDI, 44–26
DSDO, 44–27
Ethernet mode

connecting to Ethernet, 27–5
EXTAL, 12–11
EXTCLK, 12–11
FRZ, 12–8
general-purpose signals, 15–45
GPL_X, 12–9
HRESET, 12–10
I2C controller signal functions, 31–2
IDMA channels

DREQ, 19–14
SDACK, 19–14
TEA, 19–23

internal clock signals, 14–9
IRQ0, 4–12
IRQn, 12–8
KR/RETRY, 12–6, 13–4
MII signals, 43–3
NMSI mode

modem control signals, 20–23
OE, 12–10
OPn, 12–13
PAn, 12–14
PBn, 12–16
PCMCIA signals, 16–1
PCn, 12–18
PDn, 12–19
PORESET, 12–10
power supply signals, 12–20
program trace signals, 44–3
PTR, 13–4, 13–33
RD/WR, 12–5, 13–3, 13–32
RETRY, 13–40
RSTCONF, 12–10
RSV, 12–6, 13–4, 13–33
serial interface (SI)

TSA signals, 20–6
serial peripheral interface

SPI signal functions, 30–2
SPICLK, 30–5
SPIMISO, 30–5
SPIMOSI, 30–5
SPISEL, 30–5

SIU signals
multiplexing SIU signals, 10–3

SMSYN, 29–24
SOC, 42–4
SPLL, 14–8
SRESET, 12–10
STS, 13–4
SYNCCLK, 14–14

Index 21

TA, 12–6, 13–5, 13–35
TCK, 12–20
TDI, 12–20
TDO, 12–20
TEA, 12–6, 13–5, 13–35
termination signals protocol, 13–35
TEXP, 12–11
TMS, 12–20
TRST, 12–20
TS, 12–5, 13–4, 13–31
TSA, 29–25
TSIZn, 12–5, 13–4, 13–32
UPWAITx, 12–10
VF, 44–3
VFLS, 44–3
WAIT_x, 12–11
WEn, 12–9
XFC, 12–11, 14–8
XTAL, 12–10

signals
Fast Ethernet controller

IRQ7, 43–11
L1RSYNCA, 43–11
MII_COL, 43–12
MII_CRS, 43–12
MII_MDC, 43–11
MII_MDIO, 43–12
MII_RX_CLK, 43–12
MII_RX_DV, 43–12
MII_RX_ER, 43–12
MII_RXD0, 43–11
MII_RXD1, 43–11
MII_RXD2, 43–11
MII_RXD3, 43–11
MII_TX_CLK, 43–11
MII_TX_EN, 43–12
MII_TXD0, 43–11
MII_TXD1, 43–12
MII_TXD2, 43–12
MII_TXD3, 43–12
PD10, 43–11
PD11, 43–11
PD12, 43–11
PD13, 43–11
PD14, 43–11
PD15, 43–11
PD3, 43–12
PD4, 43–12
PD5, 43–12
PD6, 43–12
PD7, 43–12
PD8, 43–12
PD9, 43–11

Utopia
data and control, 41–4

SIMASK (SIU interrupt mask) register, 10–16

SIMODE (SI mode) register, 20–13
singals

Fast Ethernet controller
L1TSYNCA, 43–11

Single-beat read flow bus operation, 13–7
Single-beat transfer bus operation, 13–7
Single-beat write flow bus operation, 13–10
Single-PHY configuration

overview, 42–1
receive cell transfer operation, 42–2
transfer cell transfer operation, 42–3
see also Multi-PHY

SIRP (SI RAM pointer) register, 20–21
SISTR (SI status register), 20–20
SIU interrupt vector (SIVEC) register, 10–18
SIU, see System interface unit
SIUMCR (SIU module configuration register), 10–5
slot time

APC
ATM, 39–4

Slow go mode, 17–6
SMCE (SMC event) register

GCI mode, 29–39
transparent mode, 29–31
UART mode, 29–20

SMCM (SMC mask) register
GCI mode, 29–39
transparent mode, 29–31
UART mode, 29–20

SMCMRs (SMC mode registers), 29–3
SMSYN signal, 29–24
Snooping

external bus activity, 7-28
Software monitor debug support

freeze indication, 44–36
overview, 44–36

Software watchdog reset, 11–3
Software watchdog timer (SWT), 10–2, 10–20
SPCOM (SPI command) register, 30–11
SPIE (SPI event) register, 30–10
SPIM (SPI mask) register, 30–10
SPLL (system phase-locked loop) signals, 14–8
SPMODE (SPI mode) register, 30–7
SPRs

accessing off-core SPRs, 9–8
SRAM interface, 15–18
SRESET

external, 11–2, 11–5
internal, 11–5
reset configuration, 11–12
reset sequence, 11–5

SRESET (soft reset) signal, 12–10
SRSTATE

SAR receive function and status register, 37–7
Status mask (SMASK) register, 32–4
Stop receive command, 38–10

MPC855T User’s Manual

Stop transmit (ABORT) command, 38–10
String instruction timing, 9–8
String instructions, D-21
STS (special transfer start) signal, 13–4
SWSR (software service register), 10–21
SWT, see Software watchdog timer, 10–20
Synchronization, 5–6

memory synchronization instructions, D-21
Synchronization clock (SYNCCLK) signal, 14–14
SYPCR (system protection control register), 10–7
System clock, 14–9
System configuration

interrupt structure, 10–11
overview, 10–2

System development functions, 44–1
System interface unit (SIU)

bus monitor, 10–19
features summary, 10–1
overview, 10–1
programming the interrupt controller, 10–15
programming the SIU, 10–4

System linkage instructions, D-23
System protection

overview, 10–2
System reset interrupt, 4–12

T
TA (transfer acknowledge) signal, 12–6, 13–5, 13–35
TAP (test access port), see IEEE 1149.1 test access

port
TBREFU/TBREFL (timebase reference upper/lower)

registers, 10–24
TBSCR (timebase status and control) registers, 10–25
TBU/TBL (time base upper/lower) registers, 4–5
TBU/TBL (timebase upper/lower) registers, 10–23
TEA (transfer error acknowledge) signal, 12–6, 13–5,

13–35
IDMA channels, 19–23

TECR (trap enable control register), 44–28
Terminology conventions, cxii, 5
TESR (transfer error status register), 10–8
Test access port (TAP), see IEEE 1149.1 test access

port
TFCR (transmit function code register)

serial peripheral interface, 30–13
TFCR (Tx buffer function code register)

overview, 21–16
Timebase, PowerPC, 10–23
Time-division multiplexing (TDM)

channel configurations, 20–5
SI RAM

availability, 20–5
dynamic changes, 20–7
overview, 20–6
partitioning SI RAM, 20–7, 20–10

programming SI RAM, 20–10
TDMa with dynamic frames, 20–10
TDMa with static frames, 20–7, 20–10
TSA implementation, 20–3

Timer 4, 41–2
Timer capture registers (TCR), 17–10
Timer counter registers (TCN), 17–11
Timer event registers (TER), 17–11
Timer global configuration register (TGCR), 17–8
Timer mode register (TMR), 17–9
Timer reference registers (TRR), 17–10
Timers

CP timer, 41–2
RISC, 41–2
timer 4, 41–2

Time-slot assigner (TSA)
connecting to the TSA, 20–6
disabling TSA, 20–7
enabling TSA, 20–7
overview, 20–3
programming protocols relative to SCC and SMC,

20–3
SI RAM

availability, 20–5, 20–6
dynamic changes, 20–7
overview, 20–6
partitioning SI RAM, 20–7, 20–10
programming SI RAM, 20–10

TSA signal, 20–6
Timing

IDMA1 burst timing, single-buffer mode, 19–21
SCC timing, controlling, 21–18

Timing examples, 9–1
TLB

invalidate, D-24
TLB management instructions, D-24

TLB (translation lookaside buffer)
TLB error exception, 7-18
TLB invalidation, 8–36
TLB manipulation, 8–33
TLB miss exception, 7-18
TLB operation, MMU, 8–5
TLB reload, 8–33

TM_CMD (RISC timer command) register, 18–15
TODR (transmit-on-demand register)

overview, 21–10
TODR (transmit-on-demand) register

AppleTalk mode, 24–4
TOSEQ (transmit out-of-sequence) register, 22–9
Transceiver connections, 43–3
Transfer protocol bus operation, 13–7
Transfers

alignment and packaging, 13–24
Transmission

FEC frame transmission, 43–4
interpacket gap time, 43–8

Index 23

transmission errors, 43–9
Transmit

ATM pace control
transmitter serial mode, 35–8

commands, 38–10
SAR transmit function code and status register, 37–8
single-PHY transmit cell transfer operation, 42–3
transmit buffer

example, 36–2
transmitter UTOPIA mode, 35–5

transmit
APC in UTOPIA mode, 39–1
pace

APC pace control
, 39–6

PHY
APC

PHY
APC pace control

transmit, 39–10
Transmit activate channel command, 38–10
Transmit buffer descriptor, 43–38
Transmit deactivate channel command, 38–10
Transparent mode

achieving synchronization, 28–3
commands, 28–7
error handling, 28–8
frame reception, 28–2
frame transmission, 28–2
overview, 28–1
programming example, 28–14
RxBD, 28–9
serial management controllers

overview, 29–22
parameter RAM, 29–7, 29–23

TxBD, 28–11
Trap enable programming, 44–15
True little-endian (TLE) mode, A–2
TS (transfer start) signal, 12–5, 13–4, 13–31
TSA signal, 29–25
TSIZn (transfer size) signals, 12–5, 13–4, 13–32
TxBD ring<i>seeX_DES_START, 43–18

U
UART mode

autobaud operation, 20–27
baud rate examples, 20–28
commands, 22–6
control character insertion, 22–9
data handling, character and message-based, 22–5
error reporting, 22–6
features list, 22–2
handling errors, 22–12
hunt mode, 22–9
memory map, 22–4

normal asynchronous mode, 22–3
overview, 22–1
parameter RAM, 22–4
programming example, 22–23
RxBD, 22–16
serial management controllers

overview, 29–11
parameter RAM, 29–7, 29–12

S-records loader application, 22–24
status reporting, 22–6
synchronous mode, 22–3
TxBD, 22–19

U-bus arbitration and SDMA channels, 19–2
UPM

programming the UPM, 15–36
RAM array, 15–39
RAM word, 15–39
user-programmable machines (UPMs), 15–33

UPWAITx (user programmable machine wait)
signals, 12–10

User instruction set architecture (UISA)
description, 3–3
instructions, 5–8
MPC862 adherence, 3–16

UTOPIA
interface with ATM parameter RAM map, 37–1
operation, 35–5

receive, 35–6
supporting expanded cells, 35–7
transmit, 35–5

signals
data and control, 41–4

UTOPIA mode
bus and SOC signal, 42–4
IDSR1 register, 40–2
initialization, 41–5
multi-PHY operations, 42–5
overview, 35–5, 42–1
parameter RAM configuration, 37–1
registers, 41–2
signals, 42–4
single-PHY, 42–1

UTOPIA mode event register (IDSR1), 40–2

V
Virtual environment architecture (VEA)

description, 3–3
MPC862 adherence, 3–17

W
WAIT mechanism, 15–54
Watchpoint

counters, 44–14
debug support, 44–8
features list, 44–9

MPC855T User’s Manual

instruction generation, 44–11
instruction programming options, 44–12
load/store generation, 44–12
load/store programming options, 44–14
operation details, 44–15

WEn (write enable) signals, 12–9
Writeback arbitration timing, 9–2

X
X_DES_ACTIVE (TxBD Active) register, 43–23
X_DES_START (TxBD ring) register, 43–18
X_WMRK (Transmit Watermark) register, 43–29
XER register, 4–4

III

II
2

3
4
5
6
7

9

10
11

12
13
14

8

15
16

1
I

IV

Part I—Overview
MPC855T Overview

Memory Map
Part II—PowerPC Microprocessor Module

PowerPC Core
PowerPC Core Register Set

MPC855T Instruction Set
Exceptions

Instruction and Data Caches
Memory Management Unit

Instruction Execution Timing
Part III—PowerPC Microprocessor Module

System Interface Unit
Reset

Part IV—Hardware Interface
External Signals

External Bus Interface
Clocks and Power Control

Memory Controller
PCMCIA Interface

III

II
2

3
4
5
6
7

9

10
11

12
13
14

8

15
16

1
I

IV

Part I—Overview
MPC855T Overview
Memory Map
Part II—PowerPC Microprocessor Module
PowerPC Core
PowerPC Core Register Set
MPC855T Instruction Set
Exceptions
Instruction and Data Caches
Memory Management Unit
Instruction Execution Timing
Part III—PowerPC Microprocessor Module
System Interface Unit
Reset
PartIV—Hardware Interface
External Signals
External Bus Interface
Clocks and Power Control
Memory Controller
PCMCIA Interface

V
17
18
19
20
21
22
23
24

26
27
28
29
30
31

25

32
33
34

35
36
37
38
39
40
41
42

VI

A
B
C

E

I

D

4344
45

VIII

F

43GLO
IND

VII
43

Part V—Communications Processor Module
Communications Processor Module and Timers

Communications Processor
SDMA Channels and IDMA Emulation

Serial Interface
SCC Introduction
SCC UART Mode
SCC HDLC Mode

SCC AppleTalk Mode
SCC Asynchronous HDLC Mode and IrDA

SCC BISYNC Mode
SCC Ethernet Mode

SCC Transparent Mode
Serial Management Controllers

Serial Peripheral Interface

Parallel Interface Port
Parallel I/O Ports

CPM Interrupt Controller
Part VI—Asynchronous Transfer Mode

ATM Overview
Buffer Descriptors and Connection Tables

ATM Parameter RAM
ATM Controller

ATM Pace Control
ATM Exceptions

Interface Configuration
UTOPIA Interface

Fast Ethernet Controller
Fast Ethernet Controller

Part VII—System Debugging and Testing Support
System Development and Debugging

IEEE 1149.1 Test Access Port
Byte Ordering

Serial Communication Performance
Register Quick Reference Guide

Instruction Set Listings

Glossary
Index

 I2C Controller

 Serial ATM

V
17
18
19
20
21
22
23
24

26
27
28
29
30
31

25

32
33
34

35
36
37
38
39
40
41
42

VI

A
B
C

E

I

D

4344
45

VIII

F

43GLO
IND

VII
43

Part V—Communications Processor Module
Communications Processor Module and Timers
Communications Processor
SDMA Channels and IDMA Emulation
Serial Interface
SCC Introduction
SCC UART Mode
SCC HDLC Mode
SCC AppleTalk Mode
SCC Asynchronous HDLC Mode and IrDA
SCC BISYNC Mode
SCC Ethernet Mode
SCC Transparent Mode
Serial Management Controllers
Serial Peripheral Interface
I2C Controller
Parallel Interface Ports
Parallel I/O Ports
CPM Interrupt Controller
Part VI—Asynchronous Transfer Mode
ATM Overview
Buffer Descriptors and Connection Tables
ATM Parameter RAM
ATM Controller
ATM Pace Controller
ATM Exceptions
Interface Configuration
UTOPIA Interface
Fast Ethernet Controller
Fast Ethernet Controller
Part VIII – System Debugging and Testing Support
System Development and Debugging
IEEE 1149.1 Test Access Port

Byte Ordering
Serial Communication Performance
Register Quick Reference Guide
Instruction Set Listings
Serial ATM
Glossary
Index

	MPC855TUM/D
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Part�I Overview
	Chapter�1 MPC855T Overview
	1.1 Features
	Figure�1-1. MPC855T Block Diagram

	1.2 Embedded MPC8xx Core
	1.3 System Interface Unit (SIU)
	1.4 PCMCIA Controller
	1.5 Power Management
	1.6 Communications Processor Module (CPM)
	1.7 ATM Capabilities

	Chapter�2 Memory Map
	Table�2-1. MPC855T Internal Memory Map�

	Part�II MPC8xx Microprocessor Module
	Chapter�3 The MPC8xx Core
	3.1 The MPC855T Core as a PowerPC Implementation
	3.2 PowerPC Architecture Overview
	3.2.1 Levels of the PowerPC Architecture

	3.3 Features
	Figure�3-1. Block Diagram of the Core

	3.4 Basic Structure of the Core
	3.4.1 Instruction Flow
	Figure�3-2. Instruction Flow Conceptual Diagram

	3.4.2 Basic Instruction Pipeline
	Figure�3-3. Basic Instruction Pipeline Timing

	3.4.3 Instruction Unit
	3.4.3.1 Branch Operations
	Figure�3-4. Sequencer Data Path
	Table�3-1. Static Branch Prediction�

	3.4.3.2 Dispatching Instructions

	3.5 Register Set
	3.6 Execution Units
	3.6.1 Branch Processing Unit
	3.6.2 Integer Unit
	3.6.3 Load/Store Unit
	Figure�3-5. LSU Functional Block Diagram
	3.6.3.1 Executing Load/Store Instructions
	3.6.3.2 Serializing Load/Store Instructions
	3.6.3.3 Store Accesses
	3.6.3.4 Nonspeculative Load Instructions
	3.6.3.5 Unaligned Accesses
	Table�3-2. Bus Cycles Needed for Single-Register Load/Store Accesses�

	3.6.3.6 Atomic Update Primitives

	3.7 The MPC855T and Implementation of the PowerPC Architecture
	Table�3-3. UISA-Level Features�
	Table�3-4. VEA-Level Features�
	Table�3-5. OEA-Level Features�

	Chapter�4 MPC8xx Core Register Set
	4.1 MPC855T Register Implementation
	4.1.1 PowerPC Registers—User Registers
	Table�4-1. User-Level PowerPC Registers�
	Table�4-2. User-Level PowerPC SPRs�
	4.1.1.1 PowerPC User-Level Register Bit Assignments
	4.1.1.1.1 Condition Register (CR)
	Figure�4-1. Condition Register (CR)

	4.1.1.1.2 Condition Register CR0 Field Definition
	Table�4-3. Bit Settings for CR0 Field of CR�

	4.1.1.1.3 XER
	Figure�4-2. XER Register
	Table�4-4. XER Field Definitions�

	4.1.1.1.4 Time Base Registers

	4.1.2 PowerPC Registers—Supervisor Registers
	Table�4-5. Supervisor-Level PowerPC Registers�
	Table�4-6. Supervisor-Level PowerPC SPRs�
	4.1.2.1 DAR, DSISR, and BAR Operation
	Table�4-7. Value Summary of the DAR, BAR, and DSISR Registers�

	4.1.2.2 Unsupported Registers
	4.1.2.3 PowerPC Supervisor-Level Register Bit Assignments
	4.1.2.3.1 Machine State Register (MSR)
	Figure�4-3. Machine State Register (MSR)
	Table�4-8. MSR Field Descriptions��

	4.1.2.3.2 Processor Version Register

	4.1.3 MPC855T-Specific SPRs
	Table�4-9. MPC855T-Specific Supervisor-Level SPRs�
	Table�4-10. MPC855T-Specific Debug-Level SPRs�
	4.1.3.1 Accessing SPRs
	Table�4-11. Addresses of SPRs Located Outside of the Core�

	4.2 Register Initialization at Reset

	Chapter�5 MPC855T Instruction Set
	5.1 Operand Conventions
	5.1.1 Data Organization in Memory and Data Transfers
	5.1.2 Aligned and Misaligned Accesses
	Table�5-1. Memory Operands�

	5.2 Instruction Set Summary
	5.2.1 Classes of Instructions
	5.2.1.1 Definition of Boundedly Undefined
	5.2.1.2 Defined Instruction Class
	5.2.1.3 Illegal Instruction Class
	5.2.1.4 Reserved Instruction Class

	5.2.2 Addressing Modes
	5.2.2.1 Memory Addressing
	5.2.2.2 Effective Address Calculation
	5.2.2.3 Synchronization
	5.2.2.3.1 Context Synchronization
	5.2.2.3.2 Execution Synchronization
	5.2.2.3.3 Instruction-Related Exceptions

	5.2.3 Instruction Set Overview
	5.2.4 PowerPC UISA Instructions
	5.2.4.1 Integer Instructions
	5.2.4.1.1 Integer Arithmetic Instructions
	Table�5-2. Integer Arithmetic Instructions�

	5.2.4.1.2 Integer Compare Instructions
	Table�5-3. Integer Compare Instructions�

	5.2.4.1.3 Integer Logical Instructions
	Table�5-4. Integer Logical Instructions�

	5.2.4.1.4 Integer Rotate and Shift Instructions
	Table�5-5. Integer Rotate Instructions�
	Table�5-6. Integer Shift Instructions�

	5.2.4.2 Load and Store Instructions
	5.2.4.2.1 Integer Load and Store Address Generation
	5.2.4.2.2 Register Indirect Integer Load Instructions
	Table�5-7. Integer Load Instructions�

	5.2.4.2.3 Integer Store Instructions
	Table�5-8. Integer Store Instructions�

	5.2.4.2.4 Integer Load and Store with Byte-Reverse Instructions
	Table�5-9. Integer Load and Store with Byte-Reverse Instructions�

	5.2.4.2.5 Integer Load and Store Multiple Instructions
	Table�5-10. Integer Load and Store Multiple Instructions�

	5.2.4.2.6 Integer Load and Store String Instructions
	Table�5-11. Integer Load and Store String Instructions�

	5.2.4.3 Branch and Flow Control Instructions
	5.2.4.3.1 Branch Instruction Address Calculation
	5.2.4.3.2 Branch Instructions
	Table�5-12. Branch Instructions�

	5.2.4.3.3 Condition Register Logical Instructions
	Table�5-13. Condition Register Logical Instructions�

	5.2.4.4 Trap Instructions
	Table�5-14. Trap Instructions�

	5.2.4.5 Processor Control Instructions
	5.2.4.5.1 Move to/from Condition Register Instructions
	Table�5-15. Move to/from Condition Register Instructions�

	5.2.4.6 Memory Synchronization Instructions—UISA
	Table�5-16. Memory Synchronization Instructions—UISA�

	5.2.5 PowerPC VEA Instructions
	5.2.5.1 Processor Control Instructions
	Table�5-17. Move from Time Base Instruction�

	5.2.5.2 Memory Synchronization Instructions—VEA
	Table�5-18. Memory Synchronization Instructions—VEA�
	5.2.5.2.1 eieio Behavior
	5.2.5.2.2 isync Behavior

	5.2.5.3 Memory Control Instructions—VEA
	Table�5-19. User-Level Cache Instructions�

	5.2.6 PowerPC OEA Instructions
	5.2.6.1 System Linkage Instructions
	Table�5-20. System Linkage Instructions�

	5.2.6.2 Processor Control Instructions—OEA
	5.2.6.2.1 Move to/from Machine State Register Instructions
	Table�5-21. Move to/from Machine State Register Instructions�

	5.2.6.2.2 Move to/from Special-Purpose Register Instructions
	Table�5-22. Move to/from Special-Purpose Register Instructions�

	5.2.6.3 Memory Control Instructions—OEA

	Chapter�6 Exceptions
	6.1 Exceptions
	Table�6-1. Offset of First Instruction by Exception Type��
	6.1.1 Exception Ordering
	Table�6-2. Instruction-Related Exception Detection Order�
	Table�6-3. Exception Priority �

	6.1.2 PowerPC-Defined Exceptions
	6.1.2.1 System Reset Interrupt (0x00100)
	Table�6-4. Register Settings after a System Reset Interrupt Exception

	6.1.2.2 Machine Check Interrupt (0x00200)
	Table�6-5. Register Settings after a Machine Check Interrupt Exception�

	6.1.2.3 DSI Exception (0x00300)
	6.1.2.4 ISI Exception (0x00400)
	6.1.2.5 External Interrupt Exception (0x00500)
	Table�6-6. Register Settings after an External Interrupt

	6.1.2.6 Alignment Exception (0x00600)
	Table�6-7. Register Settings after an Alignment Exception
	6.1.2.6.1 Integer Alignment Exceptions

	6.1.2.7 Program Exception (0x00700)
	Table�6-8. Register Settings after a Program Exception

	6.1.2.8 Decrementer Exception (0x00900)
	Table�6-9. Register Settings after a Decrementer Exception

	6.1.2.9 System Call Exception (0x00C00)
	Table�6-10. Register Settings after a System Call Exception

	6.1.2.10 Trace Exception (0x00D00)
	Table�6-11. Register Settings after a Trace Exception

	6.1.2.11 Floating-Point Assist Exception

	6.1.3 Implementation-Specific Exceptions
	6.1.3.1 Software Emulation Exception (0x01000)
	Table�6-12. Register Settings after a Software Emulation Exception

	6.1.3.2 Instruction TLB Miss Exception (0x01100)
	Table�6-13. Register Settings after an Instruction TLB Miss Exception

	6.1.3.3 Data TLB Miss Exception (0x01200)
	Table�6-14. Register Settings after a Data TLB Miss Exception�

	6.1.3.4 Instruction TLB Error Exception (0x01300)
	Table�6-15. Register Settings after an Instruction TLB Error Exception

	6.1.3.5 Data TLB Error Exception (0x014000)
	Table�6-16. Register Settings after a Data TLB Error Exception�

	6.1.3.6 Debug Exceptions (0x01C00–0x01F00)
	Table�6-17. Register Settings after a Debug Exception

	6.1.4 Implementing the Precise Exception Model
	6.1.5 Recoverability after an Exception
	Table�6-18. Additional SPRs that Affect MSR Bits�

	6.1.6 Exception Latency
	Figure�6-1. Exception Latency
	Table�6-19. Exception Latency��

	6.1.7 Partially Completed Instructions
	Table�6-20. Before and After Exceptions�

	Chapter�7 Instruction and Data Caches
	7.1 Instruction Cache Organization
	Figure�7-1. Instruction Cache Organization

	7.2 Data Cache Organization
	Figure�7-2. Data Cache Organization

	7.3 Cache Control Registers
	7.3.1 Instruction Cache Control Registers
	Figure�7-3. Instruction Cache Control and Status Register (IC_CST)
	Table�7-1. Instruction Cache Control and Status Register—IC_CST �
	Figure�7-4. Instruction Cache Address Register (IC_ADR)
	Table�7-2. Instruction Cache Address Register—IC_ADR �
	Figure�7-5. Instruction Cache Data Port Register (IC_DAT)
	Table�7-3. Instruction Cache Data Port Register—IC_DAT �
	7.3.1.1 Reading Data and Tags in the Instruction Cache
	Table�7-4. IC_ADR Fields for Cache Read Commands�
	Table�7-5. IC_DAT Format for a Tag� Read (IC_ADR[18] = 0)

	7.3.1.2 IC_CST Commands
	7.3.1.2.1 Instruction Cache Enable/Disable Commands
	7.3.1.2.2 Instruction Cache Load & Lock Cache Block Command
	7.3.1.2.3 Instruction Cache Unlock Cache Block Command
	7.3.1.2.4 Instruction Cache Unlock All Command
	7.3.1.2.5 Instruction Cache Invalidate All Command

	7.3.2 Data Cache Control Registers
	Figure�7-6. Data Cache Control and Status Register (DC_CST)
	Table�7-6. Data Cache Control and Status Register—DC_CST �
	Figure�7-7. Data Cache Address Register (DC_ADR)
	Table�7-7. Data Cache Address Register—DC_ADR �
	Figure�7-8. Data Cache Data Port Register (DC_DAT)
	Table�7-8. Data Cache Data Port Register—DC_DAT �
	7.3.2.1 Reading Data Cache Tags and Copyback Buffer
	Table�7-9. DC_ADR Fields for Cache Read Commands�
	Table�7-10. DC_DAT Format for a Tag� Read (DC_ADR[18] = 0)
	Table�7-11. Copyback Buffer Select Field (DC_ADR[21–27]) Encoding�

	7.3.2.2 DC_CST Commands
	7.3.2.2.1 Data Cache Enable/Disable Commands
	7.3.2.2.2 Data Cache Load & Lock Cache Block Command
	7.3.2.2.3 Data Cache Unlock Cache Block Command
	7.3.2.2.4 Data Cache Unlock All Command
	7.3.2.2.5 Data Cache Invalidate All Command
	7.3.2.2.6 Data Cache Flush Cache Block Command

	7.4 PowerPC Cache Control Instructions
	7.4.1 Instruction Cache Block Invalidate (icbi)
	7.4.2 Data Cache Block Touch (dcbt) and ��Data Cache Block Touch for Store (dcbtst)
	7.4.3 Data Cache Block Zero (dcbz)
	7.4.4 Data Cache Block Store (dcbst)
	7.4.5 Data Cache Block Flush (dcbf)
	7.4.6 Data Cache Block Invalidate (dcbi)

	7.5 Instruction Cache Operations
	Figure�7-9. Instruction Cache Data Path
	7.5.1 Instruction Cache Hit
	7.5.2 Instruction Cache Miss
	7.5.3 Instruction Fetching on a Predicted Path
	7.5.4 Fetching Instructions from Caching-Inhibited Regions
	7.5.5 Updating Code and Memory Region Attributes

	7.6 Data Cache Operation
	7.6.1 Data Cache Load Hit
	7.6.2 Data Cache Read Miss
	7.6.3 Write-Through Mode
	7.6.3.1 Data Cache Store Hit in Write-Through Mode
	7.6.3.2 Data Cache Store Miss in Write-Through Mode

	7.6.4 Write-Back Mode
	7.6.4.1 Data Cache Store Hit in Write-Back Mode
	7.6.4.2 Data Cache Store Miss in Write-Back Mode

	7.6.5 Data Accesses to Caching-Inhibited Memory Regions
	7.6.6 Atomic Memory References

	7.7 Cache Initialization after Reset
	7.8 Debug Support
	7.8.1 Instruction and Data Cache Operation in Debug Mode
	7.8.2 Instruction and Data Cache Operation with a Software �Monitor Debugger

	Chapter�8 Memory Management Unit
	8.1 Features
	8.2 PowerPC Architecture Compliance
	8.3 Address Translation
	8.3.1 Translation Disabled
	8.3.2 Translation Enabled
	Figure�8-1. Read/Instruction Fetch Flow Diagram
	Figure�8-2. Flow of Load/Store Access

	8.3.3 TLB Operation
	Figure�8-3. Effective-to-Physical Address Translation for 4-Kbyte Pages Block Diagram

	8.4 Using Access Protection Groups
	8.5 Protection Resolution Modes
	8.6 Memory Attributes
	8.7 Translation Table Structure
	Figure�8-4. Two-Level Translation Table (MD_CTR[TWAM] = 1)
	Table�8-1. Identical Entries Required in Level-One/Level-Two Tables �
	Figure�8-5. Two-Level Translation Table (MD_CTR[TWAM] = 0)
	Table�8-2. Number of Replaced EA Bits per Page Size�
	8.7.1 Level-One Descriptor
	Table�8-3. Level-One Segment Descriptor Format �

	8.7.2 Level-Two Descriptor
	Table�8-4. Level-Two (Page) Descriptor Format �

	8.7.3 Page Size
	Table�8-5. Page Size Selection

	8.8 Programming Model
	Table�8-6. MPC855T-Specific MMU SPRs �
	8.8.1 IMMU Control Register (MI_CTR)
	Figure�8-6. IMMU Control Register (MI_CTR)
	Table�8-7. MI_CTR Field Descriptions �

	8.8.2 DMMU Control Register (MD_CTR)
	Figure�8-7. DMMU Control Register (MD_CTR)
	Table�8-8. MD_CTR Field Descriptions �

	8.8.3 IMMU/DMMU Effective Page Number Register (Mx_EPN)
	Figure�8-8. IMMU/DMMU Effective Page Number Register (Mx_EPN)
	Table�8-9. Mx_EPN Field Descriptions �

	8.8.4 IMMU Tablewalk Control Register (MI_TWC)
	Figure�8-9. IMMU Tablewalk Control Register (MI_TWC)
	Table�8-10. MI_TWC Field Descriptions �

	8.8.5 DMMU Tablewalk Control Register (MD_TWC)
	Figure�8-10. DMMU Tablewalk Control Register (MD_TWC)
	Table�8-11. MD_TWC Field Descriptions ��

	8.8.6 IMMU Real Page Number Register (MI_RPN)
	Figure�8-11. IMMU Real Page Number Register (MI_RPN)
	Table�8-12. MI_RPN Field Descriptions �

	8.8.7 DMMU Real Page Number Register (MD_RPN)
	Figure�8-12. DMMU Real Page Number Register (MD_RPN)
	Table�8-13. MD_RPN Field Descriptions �

	8.8.8 MMU Tablewalk Base Register (M_TWB)
	Figure�8-13. MMU Tablewalk Base Register (M_TWB)
	Table�8-14. M_TWB Field Descriptions �

	8.8.9 MMU Current Address Space ID Register (M_CASID)
	Figure�8-14. MMU Current Address Space ID Register (M_CASID)
	Table�8-15. M_CASID Field Descriptions �

	8.8.10 MMU Access Protection Registers (MI_AP/MD_AP)
	Figure�8-15. MMU Access Protection Registers (MI_AP/MD_AP)
	Table�8-16. MI_AP/MD_AP Field Descriptions �

	8.8.11 MMU Tablewalk Special Register (M_TW)
	Figure�8-16. MMU Tablewalk Special Register (M_TW)

	8.8.12 MMU Debug Registers
	8.8.12.1 IMMU CAM Entry Read Register (MI_CAM)
	Figure�8-17. IMMU CAM Entry Read Register (MI_CAM)
	Table�8-17. MI_CAM Field Descriptions �

	8.8.12.2 IMMU RAM Entry Read Register 0 (MI_RAM0)
	Figure�8-18. IMMU RAM Entry Read Register 0 (MI_RAM0)
	Table�8-18. MI_RAM0 Field Descriptions �

	8.8.12.3 IMMU RAM Entry Read Register 1 (MI_RAM1)
	Figure�8-19. IMMU RAM Entry Read Register 1 (MI_RAM1)
	Table�8-19. MI_RAM1 Field Descriptions �

	8.8.12.4 DMMU CAM Entry Read Register (MD_CAM)
	Figure�8-20. DMMU CAM Entry Read Register (MD_CAM)
	Table�8-20. MD_CAM Field Descriptions �

	8.8.12.5 DMMU RAM Entry Read Register 0 (MD_RAM0)
	Figure�8-21. DMMU RAM Entry Read Register 0 (MD_RAM0)
	Table�8-21. MD_RAM0 Field Descriptions �

	8.8.13 DMMU RAM Entry Read Register 1 (MD_RAM1)
	Figure�8-22. DMMU RAM Entry Read Register 1 (MD_RAM1)
	Table�8-22. MD_RAM1 Field Descriptions �

	8.9 Memory Management Unit Exceptions
	Table�8-23. MPC855T-Specific MMU Exceptions �

	8.10 TLB Manipulation
	8.10.1 TLB Reload
	8.10.1.1 Translation Reload Examples
	Figure�8-23. DTLB Reload Code Example
	Figure�8-24. ITLB Reload Code Example

	8.10.2 Locking TLB Entries
	Figure�8-25. Configuring the TLB Replacement Counter

	8.10.3 Loading Locked TLB Entries
	8.10.4 TLB Invalidation

	Chapter�9 Instruction Execution Timing
	9.1 Instruction Execution Timing Examples
	9.1.1 Data Cache Load with a Data Dependency
	Figure�9-1. Data Cache Load Timing

	9.1.2 Writeback Arbitration
	Figure�9-2. Writeback Arbitration Timing—Example 1
	Figure�9-3. Writeback Arbitration Timing—Example 2

	9.1.3 Private Writeback Bus Load
	Figure�9-4. Private Writeback Bus Load Timing

	9.1.4 Fastest External Load (Data Cache Miss)
	Figure�9-5. External Load Timing

	9.1.5 A Full Completion Queue
	Figure�9-6. Full Completion Queue Timing

	9.1.6 Branch Instruction Handling
	Figure�9-7. Branch Folding Timing

	9.1.7 Branch Prediction
	Figure�9-8. Branch Prediction Timing

	9.2 Instruction Timing List
	Table�9-1. Instruction Execution Timing�
	9.2.1 Load/Store Instruction Timing
	Table�9-2. Load/Store Instructions Timing�

	9.2.2 String Instruction Latency
	Figure�9-9. Bus Latency for String Instructions

	9.2.3 Accessing Off-Core SPRs

	Part�III Configuration and Reset
	Chapter�10 System Interface Unit
	10.1 Features
	10.2 System Configuration and Protection
	Figure�10-1. System Configuration and Protection Logic

	10.3 Multiplexing SIU Pins
	Table�10-1. Multiplexing Control�

	10.4 Programming the SIU
	10.4.1 Internal Memory Map Register (IMMR)
	Figure�10-2. Internal Memory Map Register (IMMR)
	Table�10-2. MMR Field Descriptions�

	10.4.2 SIU Module Configuration Register (SIUMCR)
	Figure�10-3. SIU Module Configuration Register (SIUMCR)
	Table�10-3. SIUMCR Field Descriptions�

	10.4.3 System Protection Control Register (SYPCR)
	Figure�10-4. System Protection Control Register (SYPCR)
	Table�10-4. SYPCR Field Descriptions�

	10.4.4 Transfer Error Status Register (TESR)
	Figure�10-5. Transfer Error Status Register (TESR)
	Table�10-5. TESR Field Descriptions�

	10.4.5 Register Lock Mechanism
	Table�10-6. Key Registers�
	Figure�10-6. Register Lock Mechanism

	10.5 System Configuration
	10.5.1 Interrupt Structure
	Figure�10-7. MPC855T Interrupt Structure

	10.5.2 Priority of Interrupt Sources
	Table�10-7. Priority of SIU Interrupt Sources�

	10.5.3 SIU Interrupt Processing
	Figure�10-8. SIU Interrupt Processing
	10.5.3.1 Nonmaskable Interrupts—IRQ0 and SWT
	Figure�10-9. IRQ0 Logical Representation
	Table�10-8. IRQ0 Versus IRQx Operation�

	10.5.4 Programming the SIU Interrupt Controller
	10.5.4.1 SIU Interrupt Pending Register (SIPEND)
	Figure�10-10. SIU Interrupt Pending Register (SIPEND)
	Table�10-9. SIPEND Field Descriptions�

	10.5.4.2 SIU Interrupt Mask Register (SIMASK)
	Figure�10-11. SIU Interrupt Mask Register (SIMASK)
	Table�10-10. SIMASK Field Descriptions�

	10.5.4.3 SIU Interrupt Edge/Level Register (SIEL)
	Figure�10-12. SIU Interrupt Edge/Level Register (SIEL)
	Table�10-11. SIEL Field Descriptions�

	10.5.4.4 SIU Interrupt Vector Register (SIVEC)
	Figure�10-13. SIU Interrupt Vector Register (SIVEC)
	Table�10-12. SIVEC Field Descriptions�
	Figure�10-14. Interrupt Table Handling Example

	10.6 The Bus Monitor
	10.7 Software Watchdog Timer
	Figure�10-15. Software Watchdog Timer Service State Diagram
	Figure�10-16. Software Watchdog Timer Block Diagram
	10.7.1 Software Service Register (SWSR)
	Figure�10-17. Software Service Register (SWSR)
	Table�10-13. SWSR Field Descriptions�

	10.8 The Decrementer
	Table�10-14. Decrementer Timeout Values�
	10.8.1 Decrementer Register (DEC)
	Figure�10-18. Decrementer Register (DEC)
	Table�10-15. DEC Field Descriptions�

	10.9 The Timebase
	10.9.1 Timebase Register (TBU and TBL)
	Figure�10-19. Timebase Upper Register (TBU)
	Table�10-16. TBU Field Descriptions�
	Figure�10-20. Timebase Lower Register (TBL)
	Table�10-17. TBL Field Descriptions�

	10.9.2 Timebase Reference Registers (TBREFA and TBREFB)
	Figure�10-21. Timebase Reference Registers (TBREFA and TBREFB)
	Table�10-18. TBREFA/TBREFB Field Descriptions�

	10.9.3 Timebase Status and Control Register (TBSCR)
	Figure�10-22. Timebase Status and Control Register (TBSCR)
	Table�10-19. TBSCR Field Descriptions�

	10.10 The Real-Time Clock
	Figure�10-23. Real-Time Clock Block Diagram
	10.10.1 Real-Time Clock Status and Control Register �����(RTCSC)
	Figure�10-24. Real-Time Clock Status and Control Register (RTCSC)
	Table�10-20. RTCSC Field Descriptions�

	10.10.2 Real-Time Clock Register (RTC)
	Figure�10-25. Real-Time Clock Register (RTC)
	Table�10-21. RTC Field Description�

	10.10.3 Real-Time Clock Alarm Register (RTCAL)
	Figure�10-26. Real-Time Clock Alarm Register (RTCAL)
	Table�10-22. RTCAL Field Descriptions�

	10.10.4 Real-Time Clock Alarm Seconds Register (RTSEC)
	Figure�10-27. Real-Time Clock Alarm Seconds Register (RTSEC)
	Table�10-23. RTSEC Field Descriptions�

	10.11 Periodic Interrupt Timer (PIT)
	Figure�10-28. Periodic Interrupt Timer Block Diagram
	10.11.1 Periodic Interrupt Status and Control Register �����(PISCR)
	Figure�10-29. Periodic Interrupt Status and Control Register (PISCR)
	Table�10-24. PISCR Field Descriptions�

	10.11.2 PIT Count Register (PITC)
	Figure�10-30. PIT Count Register (PITC)
	Table�10-25. PITC Field Descriptions�

	10.11.3 PIT Register (PITR)
	Figure�10-31. PIT Register (PITR)
	Table�10-26. PITR Field Descriptions�

	10.12 General SIU Timers Operation
	10.12.1 Freeze Operation
	10.12.2 Low-Power Stop Operation

	Chapter�11 Reset
	Table�11-1. MPC855T Reset Responses�
	11.1 Types of Reset
	11.1.1 Power-On Reset
	11.1.2 External Hard Reset
	11.1.3 Internal Hard Reset
	11.1.3.1 PLL Loss of Lock
	11.1.3.2 Software Watchdog Reset
	11.1.3.3 Checkstop Reset

	11.1.4 Debug Port Hard or Soft Reset
	11.1.5 JTAG Reset
	11.1.6 Power-On and Hard Reset Sequence
	Figure�11-1. Power-On and Hard Reset Sequence

	11.1.7 External Soft Reset
	11.1.8 Internal Soft Reset
	11.1.9 Soft Reset Sequence
	Figure�11-2. Soft Reset Sequence

	11.2 Reset Status Register (RSR)
	Figure�11-3. Reset Status Register (RSR)
	Table�11-2. Reset Status Register Bit Settings�

	11.3 MPC855T Reset Configuration
	11.3.1 Hard Reset
	Figure�11-4. Data Bus Configuration Input Circuit
	Figure�11-5. Reset Configuration Sampling for Short PORESET Assertion
	Figure�11-6. Reset Configuration Sampling for Long PORESET Assertion
	Figure�11-7. Reset Configuration Sampling Timing Requirements
	11.3.1.1 Hard Reset Configuration Word
	Figure�11-8. Hard Reset Configuration Word
	Table�11-3. Hard Reset Configuration Word Field Descriptions�

	11.3.2 Soft Reset

	11.4 TRST and Power Mode Considerations

	Part�IV Hardware Interface
	Chapter�12 External Signals
	Figure�12-1. MPC855T External Signals
	Figure�12-2. Signals and Pin Numbers (Part 1)
	Figure�12-3. Signals and Pin Numbers (Part 2)
	12.1 System Bus Signals
	Table�12-1. Signal Descriptions�
	Table�12-2. Configuration-Dependent Signal Behavior during Reset

	12.2 Active Pull-Up Buffers
	Figure�12-4. Three-State Buffers and Active Pull-Up Buffers
	Table�12-3. Active Pull-Up Resistors Enabled as Outputs

	12.3 Internal Pull-Up and Pull-Down Resistors
	12.4 Recommended Basic Pin Connections
	12.4.1 Reset Configuration
	12.4.1.1 Bus Control Signals and Interrupts

	12.4.2 JTAG and Debug Ports
	Table�12-4. TCK/DSCK and TDI/DSDI Connection Based on MPC860 Revision

	12.4.3 Unused Inputs
	12.4.4 Unused Outputs

	12.5 Signal States during Reset
	Table�12-5. General Signal Behavior during Reset�

	Chapter�13 External Bus Interface
	13.1 Features
	13.2 Bus Transfer Overview
	Figure�13-1. Input Sample Window

	13.3 Bus Interface Signal Descriptions
	Figure�13-2. MPC855T Bus Signals
	Table�13-1. MPC855T Signal Overview�

	13.4 Bus Operations
	13.4.1 Basic Transfer Protocol
	Figure�13-3. Basic Transfer Protocol

	13.4.2 Single-Beat Transfer
	13.4.2.1 Single-Beat Read Flow
	Figure�13-4. Basic Flow Diagram of a Single-Beat Read Cycle
	Figure�13-5. Basic Timing: Single-Beat Read Cycle, Zero Wait States
	Figure�13-6. Basic Timing: Single-Beat Read Cycle, One Wait State

	13.4.2.2 Single-Beat Write Flow
	Figure�13-7. Basic Flow of a Single-Beat Write Cycle
	Figure�13-8. Basic Timing: Single-Beat Write Cycle, Zero Wait States
	Figure�13-9. Basic Timing: Single-Beat Write Cycle, One Wait State
	Figure�13-10. Basic Timing: Single-Beat, 32-Bit Data Write Cycle, 16-Bit Port Size

	13.4.3 Burst Transfers
	13.4.4 Burst Operations
	Figure�13-11. Basic Flow of a Burst-Read Cycle
	Figure�13-12. Burst-Read Cycle: 32-Bit Port Size, Zero Wait State
	Figure�13-13. Burst-Read Cycle: 32-Bit Port Size, One Wait State
	Figure�13-14. Burst-Read Cycle: 32-Bit Port Size, Wait States between Beats
	Figure�13-15. Burst-Read Cycle: 16-Bit Port Size, One Wait State between Beats
	Figure�13-16. Basic Flow of a Burst Write Cycle
	Figure�13-17. Burst-Write Cycle: 32-Bit Port Size, Zero Wait States
	Figure�13-18. Burst-Inhibit Cycle: 32-Bit Port Size

	13.4.5 Alignment and Data Packing on Transfers
	Figure�13-19. Internal Operand Representation
	Figure�13-20. Interface to Different Port Size Devices
	Table�13-2. Data Bus Requirements for Read Cycles�
	Table�13-3. Data Bus Contents for Write Cycles�

	13.4.6 Arbitration Phase
	Figure�13-21. Basic Bus Arbitration Protocol
	13.4.6.1 Bus Request (BR)
	13.4.6.2 Bus Grant (BG)
	13.4.6.3 Bus Busy (BB)
	Figure�13-22. Bus Busy (BB) and Transfer Start (TS) Connection Example
	Figure�13-23. Bus Arbitration Timing Diagram
	Figure�13-24. Internal Bus Arbitration State Machine

	13.4.6.4 External Bus Parking

	13.4.7 Address Transfer Phase-Related Signals
	13.4.7.1 Transfer Start (TS)
	13.4.7.2 Address Bus
	13.4.7.3 Transfer Attributes
	13.4.7.3.1 Read/Write (RD/WR)
	13.4.7.3.2 Burst Indicator (BURST)
	13.4.7.3.3 Transfer Size (TSIZ)
	Table�13-4. BURST/TSIZ Encoding�

	13.4.7.3.4 Address Types (AT)
	Table�13-5. Address Types Definition�

	13.4.7.3.5 Burst Data in Progress (BDIP)

	13.4.8 Termination Signals
	13.4.8.1 Transfer Acknowledge (TA)
	13.4.8.2 Burst Inhibit (BI)
	13.4.8.3 Transfer Error Acknowledge (TEA)
	13.4.8.4 Termination Signals Protocol
	Figure�13-25. Termination Signals Protocol Basic Connection
	Figure�13-26. Termination Signals Protocol Timing Diagram

	13.4.9 Memory Reservation
	13.4.9.1 Cancel Reservation (CR)
	Figure�13-27. Reservation On Local Bus

	13.4.9.2 Kill Reservation (KR)
	Figure�13-28. Reservation on Multilevel Bus Hierarchy

	13.4.10 Bus Exception Control Cycles
	13.4.10.1 RETRY
	Figure�13-29. Retry Transfer Timing–Internal Arbiter
	Figure�13-30. Retry Transfer Timing–External Arbiter
	Figure�13-31. Retry on Burst Cycle
	Table�13-6. Termination Signals Protocol�

	Chapter�14 Clocks and Power Control
	14.1 Features
	Figure�14-1. Clock Source and Distribution

	14.2 The Clock Module
	Figure�14-2. Clock Module Components
	14.2.1 External Reference Clocks
	14.2.1.1 Off-Chip Oscillator Input (EXTCLK)
	14.2.1.2 Crystal Oscillator Support (EXTAL and XTAL)
	Figure�14-3. Crystal Circuit Examples

	14.2.2 System PLL
	Figure�14-4. SPLL Block Diagram
	14.2.2.1 SPLL Reset Configuration
	Table�14-1. Power-On Reset SPLL Configuration

	14.2.2.2 SPLL Output Characteristics and Stability
	14.2.2.3 System Phase-Locked Loop Pins (VDDSYN, VSSSYN, VSSSYN1, XFC)
	Table�14-2. XFC Capacitor Values Based on PLPRCR[MF]

	14.2.2.4 Disabling the SPLL

	14.3 Clock Signals
	Table�14-3. Functionality Summary of the Clocks
	14.3.1 Clocks Derived from the SPLL Output
	Figure�14-5. Clock Dividers
	14.3.1.1 The Internal General System Clocks (GCLK1C, GCLK2C, GCLK1, GCLK2)
	Figure�14-6. Low-power dividers for GCLKx
	Figure�14-7. Divided System Clocks (GCLKx) Timing Diagram

	14.3.1.2 Memory Controller and External Bus Clocks (GCLK1_50, GCLK2_50, CLKOUT)
	Figure�14-8. Memory Controller and External Bus Clocks Timing Diagram for EBDF=0 and EBDF=1
	Figure�14-9. Memory Controller and External Bus Clocks Timing Diagram for (CSRC=0 and DFNH=1) or ...

	14.3.1.3 CLKOUT Special Considerations: 1:2:1 Mode
	14.3.1.4 The Baud Rate Generator Clock (BRGCLK)
	Figure�14-10. BRGCLK Divider

	14.3.1.5 The Synchronization Clock (SYNCCLK, SYNCCLKS)
	Figure�14-11. SYNCCLK Divider

	14.3.2 The PIT and RTC Clock (PITRTCLK)
	Table�14-4. PITRTCLK Configuration at PORESET

	14.3.3 The Time Base and Decrementer Clock (TMBCLK)
	Table�14-5. TMBCLK Configuration

	14.4 Power Distribution
	Figure�14-12. MPC855T Power Rails
	Table�14-6. MPC855T Modules vs. Power Rails
	14.4.1 I/O Buffer Power (VDDH)
	14.4.2 Internal Logic Power (VDDL)
	14.4.3 Clock Synthesizer Power (VDDSYN, VSSSYN, ����VSSYN1)
	14.4.4 Keep-Alive Power (KAPWR)

	14.5 Power Control (Low-Power Modes)
	Table�14-7. MPC855T Low-Power Modes�
	Figure�14-13. MPC855T Low-Power Mode Flowchart
	14.5.1 Normal High Mode
	14.5.2 Normal Low Mode
	14.5.3 Doze High Mode
	14.5.4 Doze Low Mode
	14.5.5 Sleep Mode
	14.5.6 Deep-Sleep Mode
	14.5.7 Power-Down Mode
	14.5.7.1 Software Initiation of Power-Down Mode, with Automatic ��Wake-up
	Figure�14-14. Software-Initiated Power-Down Configuration

	14.5.7.2 Maintaining the Real-Time Clock (RTC) During Shutdown or ��Power Failure
	14.5.7.3 Register Lock Mechanism: Protecting SIU Registers in ��Power-Down Mode

	14.5.8 TMIST: Facilitating Nesting of SIU Timer Interrupts

	14.6 Clock and Power Control Registers
	14.6.1 System Clock and Reset Control Register (SCCR)
	Figure�14-15. System Clock and Reset Control Register (SCCR)
	Table�14-8. SCCR Field Descriptions�

	14.6.2 PLL, Low-Power, and Reset Control Register (PLPRCR)
	Figure�14-16. PLL, Low-Power, and Reset Control Register (PLPRCR)
	Table�14-9. PLPRCR Field Descriptions�
	Table�14-10. PLPRCR[CSR] and DER[CHSTPE] Bit Combinations

	Chapter�15 Memory Controller
	15.1 Features
	Figure�15-1. Memory Controller Block Diagram

	15.2 Basic Architecture
	Figure�15-2. Memory Controller Machine Selection
	Figure�15-3. Simple System Configuration
	Figure�15-4. Basic Memory Controller Operation

	15.3 Chip-Select Programming Common to the ��GPCM and UPM
	Table�15-1. Memory Controller Register Usage�
	15.3.1 Address Space Programming
	15.3.2 Register Programming Order
	15.3.3 Memory Bank Write Protection
	15.3.4 Address Type Protection
	15.3.5 8-, 16-, and 32-Bit Port Size Configuration
	Table�15-2. Access Granularities for Predefined Port Sizes�

	15.3.6 Parity Configuration
	15.3.7 Memory Bank Protection Status
	15.3.8 UPM-Specific Registers
	15.3.9 GPCM-Specific Registers

	15.4 Register Descriptions
	15.4.1 Base Registers (BRx)
	Figure�15-5. Base Registers (BRx)
	Figure�15-6. BR0 Reset Defaults
	Table�15-3. BRx Field Descriptions�

	15.4.2 Option Registers (ORx)
	Figure�15-7. Option Registers (ORx)
	Figure�15-8. OR0 Reset Defaults
	Table�15-4. ORx Field Descriptions�

	15.4.3 Memory Status Register (MSTAT)
	Figure�15-9. Memory Status Register (MSTAT)
	Table�15-5. MSTAT Field Descriptions�

	15.4.4 Machine A Mode Register/Machine B Mode Registers ���(MxMR)
	Figure�15-10. Machine A Mode Register/Machine B Mode Register (MxMR)
	Table�15-6. MxMR Field Descriptions�

	15.4.5 Memory Command Register (MCR)
	Figure�15-11. Memory Command Register (MCR)
	Table�15-7. MCR Field Descriptions�

	15.4.6 Memory Data Register (MDR)
	Figure�15-12. Memory Data Register (MDR)
	Table�15-8. MDR Field Descriptions�

	15.4.7 Memory Address Register (MAR)
	Figure�15-13. Memory Address Register (MAR)
	Table�15-9. MAR Field Description�

	15.4.8 Memory Periodic Timer Prescaler Register (MPTPR)
	Figure�15-14. Memory Periodic Timer Prescaler Register (MPTPR)
	Table�15-10. MPTPR Field Descriptions�

	15.5 General-Purpose Chip-Select Machine (GPCM)
	Figure�15-15. GPCM-to-SRAM Configuration
	15.5.1 Timing Configuration
	Table�15-11. GPCM Strobe Signal Behavior�
	15.5.1.1 Chip-Select Assertion Timing
	Figure�15-16. GPCM Peripheral Device Interface
	Figure�15-17. GPCM Peripheral Device Basic Timing (ACS = 1x and TRLX = 0)

	15.5.1.2 Chip-Select and Write Enable Deassertion Timing
	Figure�15-18. GPCM Memory Device Interface
	Figure�15-19. GPCM Memory Device Basic Timing (ACS = 00, CSNT = 1, TRLX = 0)
	Figure�15-20. GPCM Memory Device Basic Timing (ACS ¹ 00, CSNT = 1, TRLX = 0)

	15.5.1.3 Relaxed Timing
	Figure�15-21. GPCM Relaxed Timing Read (ACS = 1x, SCY = 1, CSNT = 0, and TRLX = 1)
	Figure�15-22. GPCM Relaxed-Timing Write (ACS = 1x, SCY = 0, CSNT = 0, TRLX = 1)
	Figure�15-23. GPCM Relaxed-Timing Write (ACS = 1x, SCY = 0, CSNT = 1, TRLX =1)
	Figure�15-24. GPCM Relaxed-Timing Write (ACS = 00, SCY = 0, CSNT = 1, TRLX =1)

	15.5.1.4 Output Enable (OE) Timing
	15.5.1.5 Programmable Wait State Configuration
	15.5.1.6 Extended Hold Time on Read Accesses
	Figure�15-25. GPCM Read Followed by Write (EHTR = 0)
	Figure�15-26. GPCM Read Followed by Write (EHTR = 1)
	Figure�15-27. GPCM Read Followed by Read from Different Banks (EHTR = 1)
	Figure�15-28. GPCM Read Followed by Read from Same Bank (EHTR = 1)

	15.5.2 Boot Chip-Select Operation
	Table�15-12. Boot Bank Field Values after Reset�

	15.5.3 External Asynchronous Master Support
	Figure�15-29. Asynchronous External Master Configuration for GPCM-Handled Memory Devices
	Figure�15-30. Asynchronous External Master, GPCM-Handled Memory Access Timing (TRLX = 0)

	15.5.4 Special Case: Bursting with External Transfer ���Acknowledge:

	15.6 User-Programmable Machines (UPMs)
	Figure�15-31. User-Programmable Machine Block Diagram
	15.6.1 Requests
	Figure�15-32. RAM Array Indexing
	15.6.1.1 Internal/External Memory Access Requests
	15.6.1.2 UPM Periodic Timer Requests
	Figure�15-33. Memory Periodic Timer Request Block Diagram

	15.6.1.3 Software Requests—MCR run Command
	15.6.1.4 Exception Requests

	15.6.2 Programming the UPM
	15.6.3 Control Signal Generation Timing
	Figure�15-34. UPM Clock Scheme One (Division Factor = 1)
	Figure�15-35. UPM Clock Scheme Two (Division Factor = 2)
	Figure�15-36. UPM Signals Timing Example One (Division Factor = 1, EBDF = 00)
	Figure�15-37. UPM Signals Timing Example Two (Division Factor = 2, EBDF = 01)

	15.6.4 The RAM Array
	Figure�15-38. RAM Array and Signal Generation
	Table�15-13. UPM Start Address Locations
	15.6.4.1 RAM Words
	Figure�15-39. The RAM Word
	Table�15-14. RAM Word Bit Settings�

	15.6.4.2 Chip-Select Signals (CSTx)
	Figure�15-40. CSx Signal Selection

	15.6.4.3 Byte-Select Signals (BSTx)
	Figure�15-41. BSx Signal Selection
	Table�15-15. Enabling Byte-Selects�

	15.6.4.4 General-Purpose Signals (GxTx, G0x)
	Figure�15-42. Early GPL5 Control
	Table�15-16. GPL_X5 Signal Behavior�

	15.6.4.5 Loop Control (LOOP)
	Table�15-17. MxMR Loop Field Usage�

	15.6.4.6 Exception Pattern Entry (EXEN)
	15.6.4.7 Address Multiplexing (AMX)
	Figure�15-43. Address Multiplex Timing
	Table�15-18. Address Multiplexing�
	Table�15-19. AMA/AMB Definition for DRAM Interface�

	15.6.4.8 Transfer Acknowledge and Data Sample Control (UTA, DLT3)
	Figure�15-44. UPM Read Access Data Sampling

	15.6.4.9 Disable Timer Mechanism (TODT)
	15.6.4.10 The Last Word (LAST)
	15.6.4.11 The Wait Mechanism (WAEN)
	15.6.4.11.1 Internal and External Synchronous Masters
	Figure�15-45. Wait Mechanism Timing for Internal and External Synchronous Masters

	15.6.4.11.2 External Asynchronous Masters
	Figure�15-46. Wait Mechanism Timing for an External Asynchronous Master

	15.7 Handling Devices with Slow or Variable Access ���Times
	15.7.1 Hierarchical Bus Interface Example
	15.7.2 Slow Devices Example

	15.8 External Master Support
	15.8.1 Synchronous External Masters
	15.8.2 Asynchronous External Masters
	15.8.3 Special Case: Address Type Signals for External ���Masters
	15.8.4 UPM Features Supporting External Masters
	15.8.4.1 Address Incrementing for External Synchronous Bursting ��Masters
	15.8.4.2 Handshake Mechanism for Asynchronous External Masters
	15.8.4.3 Special Signal for External Address Multiplexer Control

	15.8.5 External Master Examples
	15.8.5.1 External Masters and the GPCM
	Figure�15-47. Synchronous External Master Access
	Figure�15-48. Asynchronous External Master Access

	15.8.5.2 External Masters and the UPM
	Figure�15-49. Synchronous External Master Interconnect Example
	Figure�15-50. Synchronous External Master: Burst Read Access to Page Mode DRAM
	Figure�15-51. Asynchronous External Master Interconnect Example
	Figure�15-52. Asynchronous External Master Timing Example

	15.9 Memory System Interface Examples
	15.9.1 Page-Mode DRAM Interface Example
	Figure�15-53. Page-Mode DRAM Interface Connection
	Table�15-20. UPMA Register Settings�
	Figure�15-54. Single-Beat Read Access to Page-Mode DRAM
	Figure�15-55. Single-Beat Write Access to Page Mode DRAM
	Figure�15-56. Burst Read Access to Page-Mode DRAM (No LOOP)
	Figure�15-57. Burst Read Access to Page-Mode DRAM (LOOP)
	Figure�15-58. Burst Write Access to Page-Mode DRAM (No LOOP)
	Figure�15-59. Burst Write Access to Page-Mode DRAM (LOOP)
	Figure�15-60. Refresh Cycle (CAS before RAS) to Page-Mode DRAM
	Figure�15-61. Exception Cycle
	Figure�15-62. Optimized DRAM Burst Read Access

	15.9.2 Page Mode Extended Data-Out Interface Example
	Figure�15-63. EDO DRAM Interface Connection
	Table�15-21. UPMB Register Settings�
	Figure�15-64. EDO DRAM Single-Beat Read Access
	Figure�15-65. EDO DRAM Single-Beat Write Access
	Figure�15-66. EDO DRAM Burst Read Access
	Figure�15-67. EDO DRAM Burst Write Access
	Figure�15-68. EDO DRAM Refresh Cycle (CAS before RAS)
	Figure�15-69. EDO DRAM Exception Cycle
	Figure�15-70. Blank Work Sheet for a UPM

	Chapter�16 PCMCIA Interface
	16.1 System Configuration
	16.2 PCMCIA Module Signal Definitions
	Figure�16-1. System with Two PCMCIA Sockets
	16.2.1 PCMCIA Cycle Control Signals
	Table�16-1. PCMCIA Cycle Control Signals�

	16.2.2 PCMCIA Input Port Signals
	Table�16-2. PCMCIA Input Port Signals�

	16.2.3 PCMCIA Output Port Signals (OP[0–4])
	Table�16-3. PCMCIA Output Port Signals�

	16.2.4 Other PCMCIA Signals
	Table�16-4. Other PCMCIA Signals�

	16.3 Operation Description
	16.3.1 Memory-Only Cards
	Table�16-5. Host Programming for Memory Cards�

	16.3.2 I/O Cards
	Table�16-6. Host Programming For I/O Cards�

	16.3.3 Interrupts
	16.3.4 Power Control
	16.3.5 Reset and Three-State Control
	16.3.6 DMA
	Figure�16-2. Internal DMA Request Logic

	16.4 Programming Model
	Table�16-7. PCMCIA Registers�
	16.4.1 PCMCIA Interface Input Pins Register (PIPR)
	Figure�16-3. PCMCIA Interface Input Pins Register (PIPR)
	Table�16-8. PIPR Field Descriptions�

	16.4.2 PCMCIA Interface Status Changed Register (PSCR)
	Figure�16-4. PCMCIA Interface Status Changed Register (PSCR)
	Table�16-9. PSCR Field Descriptions�

	16.4.3 PCMCIA Interface Enable Register (PER)
	Figure�16-5. PCMCIA Interface Enable Register (PER)
	Table�16-10. PER Field Descriptions�

	16.4.4 PCMCIA Interface General Control Register (PGCRx)
	Figure�16-6. PCMCIA Interface General Control Register (PGCRx)
	Table�16-11. PGCRx Field Descriptions�

	16.4.5 PCMCIA Base Registers 0–7 (PBR0–PBR7)
	Figure�16-7. PCMCIA Base Register (PBR)
	Table�16-12. PBR Field Descriptions�

	16.4.6 PCMCIA Option Register 0–7 (POR0–POR7)
	Figure�16-8. PCMCIA Option Register 0–7 (POR0–POR7)
	Table�16-13. POR Field Descriptions�

	16.5 PCMCIA Controller Timing Examples
	Figure�16-9. PCMCIA Single-Beat Read Cycle PRS = 0 PSST = 1 PSL = 3 PSHT = 1
	Figure�16-10. PCMCIA Single-Beat Read Cycle PRS = 0 PSST = 2 PSL = 4 PSHT = 1
	Figure�16-11. PCMCIA Single-Beat Read Cycle PRS = 0 PSST = 1 PSL = 3 PSHT = 0
	Figure�16-12. PCMCIA Single-Beat Write Cycle PRS = 2 PSST = 1 PSL = 3 PSHT = 1
	Figure�16-13. PCMCIA Single-Beat Write Cycle PRS = 3 PSST = 1 PSL = 4 PSHT = 3
	Figure�16-14. PCMCIA Single-Beat Write with Wait PRS = 3 PSST = 1 PSL = 3 PSHT = 0
	Figure�16-15. PCMCIA Single-Beat Read with Wait PRS = 3 PSST = 1 PSL = 3 PSHT =1
	Figure�16-16. PCMCIA I/O Read PPS = 1 PRS = 3 PSST = 1 PSL = 2 PSHT = 0
	Figure�16-17. PCMCIA I/O Read PPS = 1 PRS = 3 PSST = 1 PSL = 2 PSHT = 0
	Figure�16-18. PCMCIA DMA Read Cycle PRS = 4 PSST = 1 PSL = 3 PSHT = 0

	Part�V Communications Processor Module
	Chapter�17 Communications Processor Module and CPM Timers
	17.1 Features
	Figure�17-1. CPM Block Diagram
	Figure�17-2. MPC855TApplication Design Example

	17.2 CPM General-Purpose Timers
	Figure�17-3. CPM Timer Block Diagram
	17.2.1 Features
	17.2.2 CPM Timer Operation
	17.2.2.1 Timer Clock Source
	17.2.2.2 Timer Reference Count
	17.2.2.3 Timer Capture
	17.2.2.4 Timer Gating
	17.2.2.5 Cascaded Mode
	Figure�17-4. Timer Cascaded Mode Block Diagram

	17.2.2.6 Timer 1 and SPKROUT

	17.2.3 CPM Timer Register Set
	17.2.3.1 Timer Global Configuration Register (TGCR)
	Figure�17-5. Timer Global Configuration Register (TGCR)
	Table�17-1. TGCR Field Descriptions�

	17.2.4 Timer Mode Registers (TMR1–TMR4)
	Figure�17-6. Timer Mode Registers (TMR1–TMR4)
	Table�17-2. TMR1–TMR4 Field Descriptions�
	17.2.4.1 Timer Reference Registers (TRR1–TRR4)
	Figure�17-7. Timer Reference Registers (TRR1–TRR4)

	17.2.4.2 Timer Capture Registers (TCR1–TCR4)
	Figure�17-8. Timer Capture Registers (TCR1–TCR4)

	17.2.4.3 Timer Counter Registers (TCN1–TCN4)
	Figure�17-9. Timer Counter Registers (TCN1–TCN4)

	17.2.4.4 Timer Event Registers (TER1–TER4)
	Figure�17-10. Timer Event Registers (TER1–TER4)
	Table�17-3. TER Field Descriptions

	17.2.5 Timer Initialization Examples

	Chapter�18 Communications Processor
	18.1 Features
	Figure�18-1. Communications Processor (CP) Block Diagram

	18.2 Communicating with the Core
	18.3 Communicating with the Peripherals
	Table�18-1. Peripheral Prioritization�

	18.4 CP Microcode Revision Number
	Table�18-2. CP Microcode Revision Number�

	18.5 CP Register Set and CP Commands
	18.5.1 RISC Controller Configuration Register (RCCR)
	Figure�18-2. RISC Controller Configuration Register (RCCR)
	Table�18-3. RCCR Field Descriptions�

	18.5.2 RISC Microcode Development Support Control ���Register (RMDS)
	Figure�18-3. RISC Microcode Development Support Control Register (RMDS)
	Table�18-4. RMDS Field Descriptions�

	18.5.3 CP Command Register (CPCR)
	Figure�18-4. CP Command Register (CPCR)
	Table�18-5. CPCR Field Descriptions�

	18.5.4 CP Commands
	Table�18-6. CP Commands�
	18.5.4.1 CP Command Examples
	18.5.4.2 CP Command Execution Latency

	18.6 Dual-Port RAM
	Figure�18-5. Dual-Port RAM Block Diagram
	Figure�18-6. Dual-Port RAM Memory Map
	18.6.1 System RAM and Microcode Packages
	18.6.2 The Buffer Descriptor (BD)
	Table�18-7. General BD Structure�

	18.6.3 Parameter RAM
	Table�18-8. Parameter RAM Memory Map�
	Table�18-9. I2C and SPI Parameter RAM Relocation

	18.7 The RISC Timer Table
	18.7.1 RISC Timer Table Scan Algorithm
	18.7.2 The set timer Command
	18.7.3 RISC Timer Table Parameter RAM and Timer Table ���Entries
	Figure�18-7. RISC Timer Table RAM Usage
	Table�18-10. RISC Timer Table Parameter RAM Memory Map�
	18.7.3.1 RISC Timer Command Register (TM_CMD)
	Figure�18-8. RISC Timer Command Register (TM_CMD)
	Table�18-11. TM_CMD Field Descriptions�

	18.7.3.2 RISC Timer Table Entries

	18.7.4 RISC Timer Event Register (RTER)/Mask Register ���(RTMR)
	Figure�18-9. RISC Timer Event Register (RTER)/Mask Register (RTMR)

	18.7.5 PWM Mode
	Table�18-12. PWM Channel Pin Assignments�

	18.7.6 RISC Timer Initialization
	18.7.7 RISC Timer Interrupt Handling
	18.7.8 Using the RISC Timers to Track CP Loading

	Chapter�19 SDMA Channels and IDMA Emulation
	19.1 SDMA Channels
	Figure�19-1. MPC855T SDMA Data Paths
	19.1.1 SDMA Transfers
	19.1.2 U-Bus Arbitration and the SDMA Channels
	Table�19-1. U-Bus Arbitration IDs
	Figure�19-2. SDMA U-Bus Arbitration (Cycle Steal)

	19.2 SDMA Registers
	19.2.1 SDMA Configuration Register (SDCR)
	Figure�19-3. SDMA Configuration Register (SDCR)
	Table�19-2. SDCR Bit Settings�

	19.2.2 SDMA Status Register (SDSR)
	Figure�19-4. SDMA Status Register (SDSR)
	Table�19-3. SDSR Field Descriptions�

	19.2.3 SDMA Mask Register (SDMR)
	19.2.4 SDMA Address Register (SDAR)

	19.3 IDMA Emulation
	19.3.1 IDMA Features
	19.3.2 IDMA Parameter RAM
	Table�19-4. IDMA Parameter RAM Memory Map�

	19.3.3 IDMA Registers
	19.3.3.1 DMA Channel Mode Registers (DCMR)
	Figure�19-5. DMA Channel Mode Register (DCMR)
	Table�19-5. DCMR Field Descriptions�

	19.3.3.2 IDMA Status Registers (IDSR1 and IDSR2)
	Figure�19-6. IDMA Status Registers (IDSR1/IDSR2)
	Table�19-6. IDSR1/IDSR2 Field Descriptions�

	19.3.3.3 IDMA Mask Registers (IDMR1 and IDMR2)

	19.3.4 IDMA Buffer Descriptors (BD)
	Figure�19-7. IDMAx Channel’s BD Table
	Figure�19-8. IDMA Buffer Descriptor Structure
	Table�19-7. IDMA BD Status and Control Bits�
	19.3.4.1 Function Code Registers—SFCR and DFCR
	Figure�19-9. Function Code Registers—SFCR and DFCR
	Table�19-8. SFCR and DFCR� Field Descriptions�

	19.3.4.2 Auto-Buffering and Buffer-Chaining

	19.3.5 IDMA CP Commands
	19.3.6 IDMA Channel Operation
	19.3.6.1 Activating an IDMA Channel
	19.3.6.2 Suspending an IDMA Channel

	19.3.7 IDMA Interface Signals—DREQ and SDACK
	19.3.7.1 IDMA Requests for Memory/Memory Transfers
	19.3.7.2 IDMA Requests for Peripheral/Memory Transfers
	19.3.7.2.1 Level-Sensitive Requests
	19.3.7.2.2 Edge-Sensitive Requests

	19.3.8 IDMA Transfers—Dual-Address and Single-Address
	19.3.8.1 Dual-Address (Dual-Cycle) Transfer
	19.3.8.2 Single-Address (Single-Cycle) Transfer (Fly-By)
	Figure�19-10. SDACK Timing Diagram: Single-Address Peripheral Write, Externally-Generated TA
	Figure�19-11. SDACK Timing Diagram: Single-Address Peripheral Write, Internally-Generated TA
	Figure�19-12. SDACK Timing Diagram: Single-Address Peripheral Read, Internally-Generated TA

	19.3.9 Single-Buffer Mode on IDMA1—A Special Case
	Table�19-9. Single-Buffer Mode IDMA1 Parameter RAM Map
	19.3.9.1 IDMA1 Channel Mode Register (DCMR) (Single-Buffer Mode)
	Figure�19-13. IDMA Channel Mode Register (DCMR) (Single-Buffer Mode)
	Table�19-10. DCMR Field Descriptions (Single-Buffer Mode)�

	19.3.9.2 IDMA1 Status Register (IDSR1) (Single-Buffer Mode)
	Figure�19-14. IDMA1 Status Register (IDSR1) (Single-Buffer Mode)

	19.3.9.3 IDMA1 Mask Register (IDMR1) (Single-Buffer Mode)
	19.3.9.4 Burst Timing (Single-Buffer Mode)
	Figure�19-15. Single-Address IDMA1 Burst Timing (Single-Buffer Mode)

	19.3.10 External Recognition of an IDMA Transfer
	19.3.11 Interrupts During an IDMA Bus Transfer

	Chapter�20 Serial Interface
	Figure�20-1. MPC855T SI Block Diagram
	20.1 SI Features
	20.2 The Time-Slot Assigner (TSA)
	Figure�20-2. Various Configurations of a TDM Channel
	20.2.1 TSA Signals
	Table�20-1. TSA Signals

	20.2.2 Enabling Connections to the TSA
	Figure�20-3. Enabling Connections through the SI

	20.2.3 SI RAM
	20.2.3.1 Disabling and Reenabling the TSA
	20.2.3.2 TDMa Channel with Static Frames
	Figure�20-4. SI RAM Partitioning Using TDMa with Static Frames

	20.2.3.3 SI RAM Dynamic Changes
	Figure�20-5. SI RAM Dynamic Changes with TDMa

	20.2.3.4 TDMa Channel with Dynamic Frames
	Figure�20-6. SI RAM Partitioning Using TDMa with Dynamic Frames

	20.2.3.5 Programming the SI RAM
	Figure�20-7. SIRAM Entry
	Table�20-2. SIRAM Field Descriptions�
	Figure�20-8. Example Using SI RAMn[SWTR]

	20.2.4 The SI Registers
	20.2.4.1 SI Global Mode Register (SIGMR)
	Figure�20-9. SI Global Mode Register (SIGMR)
	Table�20-3. SIGMR Field Descriptions�

	20.2.4.2 SI Mode Register (SIMODE)
	Figure�20-10. SI Mode Register (SIMODE)
	Table�20-4. SIMODE Field Descriptions�
	Figure�20-11. One Clock Delay from Sync to Data (xFSD = 01)
	Figure�20-12. No Delay from Sync to Data (xFSD = 00)
	Figure�20-13. Falling Edge (FE) Effect When CE = 1 and xFSD = 01
	Figure�20-14. Falling Edge (FE) Effect When CE = 0 and xFSD = 01
	Figure�20-15. Falling Edge (FE) Effect When CE = 1 and xFSD = 00
	Figure�20-16. Falling Edge (FE) Effect When CE = 0 and xFSD = 00

	20.2.4.3 SI Clock Route Register (SICR)
	Figure�20-17. SI Clock Route Register (SICR)
	Table�20-5. SICR Field Descriptions�

	20.2.4.4 SI Command Register (SICMR)
	Figure�20-18. SI Command Register (SICMR)
	Table�20-6. SICMR Field Descriptions�

	20.2.4.5 SI Status Register (SISTR)
	Figure�20-19. SI Status Register (SISTR)
	Table�20-7. SISTR Field Descriptions�

	20.2.4.6 SI RAM Pointer Register (SIRP)
	Figure�20-20. SI RAM Pointer Register (SIRP)
	Table�20-8. SIRP Field Descriptions�
	Table�20-9. SIRP Pointer Values�

	20.3 NMSI Configuration
	Figure�20-21. Bank-of-Clocks Selection Logic for NMSI

	20.4 Baud Rate Generators (BRGs)
	Figure�20-22. Baud Rate Generator (BRG) Block Diagram
	20.4.1 Baud Rate Generator Configuration Registers (BRGCn)
	Figure�20-23. Baud Rate Generator Configuration Registers (BRGCn)
	Table�20-10. BRGCn Field Descriptions�

	20.4.2 Autobaud Operation on the SCC UART
	20.4.3 UART Baud Rate Examples
	Table�20-11. Typical Baud Rates for Asynchronous Communication�

	Chapter�21 Serial Communications Controller
	Figure�21-1. SCC Block Diagram
	21.1 Features
	21.2 SCC Registers
	21.2.1 General SCC Mode Register (GSMR)
	Figure�21-2. GSMR_H—General SCC Mode Register (High Order)
	Table�21-1. GSMR_H Field Descriptions�
	Figure�21-3. GSMR_L—General SCC Mode Register (Low Order)
	Table�21-2. GSMR_L Field Descriptions�

	21.2.2 Protocol-Specific Mode Register (PSMR)
	21.2.3 Data Synchronization Register (DSR)
	Figure�21-4. Data Synchronization Register (DSR)

	21.2.4 Transmit-on-Demand Register (TODR)
	Figure�21-5. Transmit-on-Demand Register (TODR)
	Table�21-3. TODR Field Descriptions�

	21.3 SCC Buffer Descriptors (BDs)
	Figure�21-6. SCC Buffer Descriptors (BDs)
	Figure�21-7. SCC Buffer Descriptor and Buffer Structure

	21.4 SCC Parameter RAM
	Table�21-4. SCC Parameter RAM Map for All Protocols �
	21.4.1 Function Code Registers (RFCR and TFCR)
	Figure�21-8. Function Code Registers (RFCR and TFCR)
	Table�21-5. RFCR /TFCR Field Descriptions�

	21.4.2 Handling SCC Interrupts
	Table�21-6. SCCx Event, Mask, and Status Registers�

	21.4.3 SCC Initialization
	21.4.4 Controlling SCC Timing with RTS, CTS, and CD
	21.4.4.1 Synchronous Protocols
	Figure�21-9. Output Delay from RTS Asserted for Synchronous Protocols
	Figure�21-10. Output Delay from CTS Asserted for Synchronous Protocols
	Figure�21-11. CTS Lost in Synchronous Protocols
	Figure�21-12. Using CD to Control Synchronous Protocol Reception

	21.4.4.2 Asynchronous Protocols

	21.4.5 Digital Phase-Locked Loop (DPLL) Operation
	Figure�21-13. DPLL Receiver Block Diagram
	Figure�21-14. DPLL Transmitter Block Diagram
	Table�21-7. Preamble Requirements�
	21.4.5.1 Encoding Data with a DPLL
	Figure�21-15. DPLL Encoding Examples
	Table�21-8. DPLL Codings�

	21.4.6 Clock Glitch Detection
	21.4.7 Reconfiguring the SCC
	21.4.7.1 General Reconfiguration Sequence for the SCC Transmitter
	21.4.7.2 Reset Sequence for the SCC Transmitter
	21.4.7.3 General Reconfiguration Sequence for the SCC Receiver
	21.4.7.4 Reset Sequence for the SCC Receiver
	21.4.7.5 Switching Protocols

	21.4.8 Saving Power

	Chapter�22 SCC UART Mode
	Figure�22-1. UART Character Format
	22.1 Features
	22.2 Normal Asynchronous Mode
	22.3 Synchronous Mode
	22.4 SCC UART Parameter RAM
	Table�22-1. UART-Specific SCC Parameter RAM Memory Map�

	22.5 Data-Handling Methods: Character- or Message-Based
	22.6 Error and Status Reporting
	22.7 SCC UART Commands
	Table�22-2. Transmit Commands�
	Table�22-3. Receive Commands�

	22.8 Multidrop Systems and Address Recognition
	Figure�22-2. Two UART Multidrop Configurations

	22.9 Receiving Control Characters
	Figure�22-3. Control Character Table, RCCM, and RCCR
	Table�22-4. Control Character Table, RCCM, and RCCR Descriptions�

	22.10 Hunt Mode (Receiver)
	22.11 Inserting Control Characters into the Transmit Data Stream
	Figure�22-4. Transmit Out-of-Sequence Register (TOSEQ)
	Table�22-5. TOSEQ Field Descriptions�

	22.12 Sending a Break (Transmitter)
	22.13 Sending a Preamble (Transmitter)
	22.14 Fractional Stop Bits (Transmitter)
	Figure�22-5. Data Synchronization Register (DSR)
	Table�22-6. DSR Fields Descriptions�

	22.15 Handling Errors in the SCC UART Controller
	Table�22-7. Transmission Errors�
	Table�22-8. Reception Errors�

	22.16 UART Mode Register (PSMR)
	Figure�22-6. Protocol-Specific Mode Register for UART (PSMR)
	Table�22-9. PSMR UART Field Descriptions�

	22.17 SCC UART Receive Buffer Descriptor (RxBD)
	Figure�22-7. SCC UART Receiving using RxBDs
	Figure�22-8. SCC UART RxBD
	Table�22-10. SCC UART RxBD Status and Control Field Descriptions�

	22.18 SCC UART Transmit Buffer Descriptor (TxBD)
	Figure�22-9. SCC UART Transmit Buffer Descriptor (TxBD)
	Table�22-11. SCC UART TxBD Status and Control Field Descriptions�

	22.19 SCC UART Event Register (SCCE) and Mask Register (SCCM)
	Figure�22-10. SCC UART Interrupt Event Example
	Figure�22-11. SCC UART Event Register (SCCE) and Mask Register (SCCM)
	Table�22-12. SCCE/SCCM Field Descriptions for UART Mode�

	22.20 SCC UART Status Register (SCCS)
	Figure�22-12. SCC Status Register for UART Mode (SCCS)
	Table�22-13. UART SCCS Field Descriptions�

	22.21 SCC UART Programming Example
	22.22 S-Records Loader Application
	Table�22-14. UART Control Characters for S-Records Example�

	Chapter�23 SCC HDLC Mode
	23.1 SCC HDLC Features
	23.2 SCC HDLC Channel Frame Transmission
	Figure�23-1. HDLC Framing Structure

	23.3 SCC HDLC Channel Frame Reception
	23.4 SCC HDLC Parameter RAM
	Table�23-1. HDLC-Specific SCC Parameter RAM Memory Map�
	Figure�23-2. HDLC Address Recognition

	23.5 Programming the SCC HDLC Controller
	23.6 SCC HDLC Commands
	Table�23-2. Transmit Commands�
	Table�23-3. Receive Commands�

	23.7 Handling Errors in the SCC HDLC Controller
	Table�23-4. Transmit Errors �
	Table�23-5. Receive Errors�

	23.8 HDLC Mode Register (PSMR)
	Figure�23-3. HDLC Mode Register (PSMR)
	Table�23-6. PSMR HDLC Field Descriptions �

	23.9 SCC HDLC Receive Buffer Descriptor (RxBD)
	Figure�23-4. SCC HDLC Receive Buffer Descriptor (RxBD)
	Table�23-7. SCC HDLC RxBD Status and Control Field Descriptions�
	Figure�23-5. SCC HDLC Receiving using RxBDs

	23.10 SCC HDLC Transmit Buffer Descriptor (TxBD)
	Figure�23-6. SCC HDLC Transmit Buffer Descriptor (TxBD)
	Table�23-8. SCC HDLC TxBD Status and Control Field Descriptions�

	23.11 HDLC Event Register (SCCE)/HDLC Mask �Register (SCCM)
	Figure�23-7. HDLC Event Register (SCCE)/HDLC Mask Register (SCCM)
	Table�23-9. SCCE/SCCM Field Descriptions�
	Figure�23-8. SCC HDLC Interrupt Event Example

	23.12 SCC HDLC Status Register (SCCS)
	Figure�23-9. SCC HDLC Status Register (SCCS)
	Table�23-10. HDLC SCCS Field Descriptions�

	23.13 SCC HDLC Programming Examples
	23.13.1 SCC HDLC Programming Example #1
	23.13.2 SCC HDLC Programming Example #2

	23.14 HDLC Bus Mode with Collision Detection
	Figure�23-10. Typical HDLC Bus Multimaster Configuration
	Figure�23-11. Typical HDLC Bus Single-Master Configuration
	23.14.1 HDLC Bus Features
	23.14.2 Accessing the HDLC Bus
	Figure�23-12. Detecting an HDLC Bus Collision

	23.14.3 Increasing Performance
	Figure�23-13. Nonsymmetrical Tx Clock Duty Cycle for Increased Performance

	23.14.4 Delayed RTS Mode
	Figure�23-14. HDLC Bus Transmission Line Configuration
	Figure�23-15. Delayed RTS Mode

	23.14.5 Using the Time-Slot Assigner (TSA)
	Figure�23-16. HDLC Bus TDM Transmission Line Configuration

	23.14.6 HDLC Bus Protocol Programming
	23.14.6.1 Programming GSMR and PSMR for the HDLC Bus Protocol
	23.14.6.2 HDLC Bus Controller Programming Example

	Chapter�24 SCC AppleTalk Mode
	24.1 Operating the LocalTalk Bus
	Figure�24-1. LocalTalk Frame Format

	24.2 Features
	24.3 Connecting to AppleTalk
	Figure�24-2. Connecting the MPC855T to LocalTalk

	24.4 Programming the SCC in AppleTalk Mode
	24.4.1 Programming the GSMR
	24.4.2 Programming the PSMR
	24.4.3 Programming the TODR
	24.4.4 SCC AppleTalk Programming Example

	Chapter�25 SCC Asynchronous HDLC Mode and IrDA
	25.1 Asynchronous HDLC Features
	25.2 Asynchronous HDLC Frame Transmission Processing
	Figure�25-1. Asynchronous HDLC Frame Structure

	25.3 Asynchronous HDLC Frame Reception Processing
	25.4 Transmitter Transparency Encoding
	25.5 Receiver Transparency Decoding
	Figure�25-2. Receive Flowchart

	25.6 Exceptions to RFC 1549
	25.7 Asynchronous HDLC Channel Implementation
	25.8 Asynchronous HDLC Mode Parameter RAM
	Table�25-1. Asynchronous HDLC-Specific SCC Parameter RAM Memory Map�
	Figure�25-3. TXCTL_TBL/RXCTL_TBL

	25.9 Configuring GSMR and DSR for Asynchronous HDLC
	25.9.1 General SCC Mode Register (GSMR)
	Table�25-2. Asynchronous HDLC-Specific GSMR Field Descriptions�

	25.9.2 Data Synchronization Register (DSR)

	25.10 Programming the Asynchronous HDLC Controller
	25.11 Asynchronous HDLC Commands
	Table�25-3. Transmit Commands�
	Table�25-4. Receive Commands�

	25.12 Handling Errors in the Asynchronous HDLC Controller
	Table�25-5. Transmit Errors�
	Table�25-6. Receive Errors�

	25.13 SCC Asynchronous HDLC Registers
	25.13.1 Asynchronous HDLC Event Register ��(SCCE)/Asynchronous HDLC Mask Register (SCCM)
	Figure�25-4. Asynchronous HDLC Event Register (SCCE)/Asynchronous HDLC Mask Register (SCCM)
	Table�25-7. SCCE/SCCM Field Descriptions�

	25.13.2 SCC Asynchronous HDLC Status Register (SCCS)
	Figure�25-5. SCC Status Register for Asynchronous HDLC Mode (SCCS)
	Table�25-8. Asynchronous HDLC SCCS Field Descriptions�

	25.13.3 Asynchronous HDLC Mode Register (PSMR)
	Figure�25-6. Asynchronous HDLC Mode Register (PSMR)
	Table�25-9. PSMR Field Descriptions�

	25.14 SCC Asynchronous HDLC RxBDs
	Figure�25-7. SCC Asynchronous HDLC RxBDs
	Table�25-10. Asynchronous HDLC RxBD Status and Control Field Descriptions�

	25.15 SCC Asynchronous HDLC TxBDs
	Figure�25-8. SCC Asynchronous HDLC TxBDs
	Table�25-11. Asynchronous HDLC TxBD Status and Control Field Descriptions�

	25.16 Differences between HDLC and Asynchronous HDLC
	25.17 SCC Asynchronous HDLC Programming Example

	Chapter�26 SCC BISYNC Mode
	Figure�26-1. Classes of BISYNC Frames
	26.1 Features
	26.2 SCC BISYNC Channel Frame Transmission
	26.3 SCC BISYNC Channel Frame Reception
	26.4 SCC BISYNC Parameter RAM
	Table�26-1. SCC BISYNC Parameter RAM Memory Map�

	26.5 SCC BISYNC Commands
	Table�26-2. Transmit Commands
	Table�26-3. Receive Commands

	26.6 SCC BISYNC Control Character Recognition
	Figure�26-2. Control Character Table and RCCM
	Table�26-4. Control Character Table and RCCM Field Descriptions

	26.7 BISYNC SYNC Register (BSYNC)
	Figure�26-3. BISYNC SYNC (BSYNC)
	Table�26-5. BSYNC Field Descriptions

	26.8 SCC BISYNC DLE Register (BDLE)
	Figure�26-4. BISYNC DLE (BDLE)
	Table�26-6. BDLE Field Descriptions

	26.9 Sending and Receiving the Synchronization Sequence
	Table�26-7. Receiver SYNC Pattern Lengths of the DSR

	26.10 Handling Errors in the SCC BISYNC
	Table�26-8. Transmit Errors
	Table�26-9. Receive Errors

	26.11 BISYNC Mode Register (PSMR)
	Figure�26-5. Protocol-Specific Mode Register for BISYNC (PSMR)
	Table�26-10. PSMR Field Descriptions�

	26.12 SCC BISYNC Receive BD (RxBD)
	Figure�26-6. SCC BISYNC RxBD
	Table�26-11. SCC BISYNC RxBD Status and Control Field Descriptions�

	26.13 SCC BISYNC Transmit BD (TxBD)
	Figure�26-7. SCC BISYNC TxBD
	Table�26-12. SCC BISYNC TxBD Status and Control Field Descriptions

	26.14 BISYNC Event Register (SCCE)/BISYNC Mask �Register (SCCM)
	Figure�26-8. BISYNC Event Register (SCCE)/BISYNC Mask Register (SCCM)
	Table�26-13. SCCE/SCCM Field Descriptions

	26.15 SCC Status Registers (SCCS)
	Figure�26-9. SCC Status Registers (SCCS)
	Table�26-14. SCCS Field Descriptions

	26.16 Programming the SCC BISYNC Controller
	Table�26-15. Control Characters

	26.17 SCC BISYNC Programming Example

	Chapter�27 SCC Ethernet Mode
	Figure�27-1. Ethernet Frame Structure
	27.1 Ethernet on the MPC855T
	Figure�27-2. Ethernet Block Diagram

	27.2 Features
	27.3 Learning Ethernet on the MPC855T
	27.4 Connecting the MPC855T to Ethernet
	Figure�27-3. Connecting the MPC855T to Ethernet

	27.5 SCC Ethernet Channel Frame Transmission
	27.6 SCC Ethernet Channel Frame Reception
	27.7 Content-Addressable Memory (CAM) Interface
	27.7.1 Serial CAM Interface
	Figure�27-4. MPC855T Ethernet Serial CAM Interface

	27.7.2 Parallel CAM Interface
	Figure�27-5. MPC855T Ethernet Parallel CAM Interface

	27.8 SCC Ethernet Parameter RAM
	Table�27-1. SCC Ethernet Parameter RAM Memory Map�

	27.9 Programming the Ethernet Controller
	27.10 SCC Ethernet Commands
	Table�27-2. Transmit Commands�
	Table�27-3. Receive Commands�

	27.11 SCC Ethernet Address Recognition
	Figure�27-6. Ethernet Address Recognition Flowchart

	27.12 Hash Table Algorithm
	27.13 Interpacket Gap Time
	27.14 Handling Collisions
	27.15 Internal and External Loopback
	27.16 Full-Duplex Ethernet Support
	27.17 Handling Errors in the Ethernet Controller
	Table�27-4. Transmission Errors�
	Table�27-5. Reception Errors

	27.18 Ethernet Mode Register (PSMR)
	Figure�27-7. Ethernet Mode Register (PSMR)
	Table�27-6. PSMR Field Descriptions�

	27.19 SCC Ethernet Receive Buffer Descriptor
	Figure�27-8. SCC Ethernet RxBD
	Table�27-7. SCC Ethernet RxBD Status and Control Field Descriptions�
	Figure�27-9. Ethernet Receiving using RxBDs

	27.20 SCC Ethernet Transmit Buffer Descriptor
	Figure�27-10. SCC Ethernet TxBD
	Table�27-8. SCC Ethernet TxBD Status and Control Field Descriptions�

	27.21 SCC Ethernet Event Register (SCCE)/Mask �Register (SCCM)
	Figure�27-11. SCC Ethernet Event Register (SCCE)/Mask Register (SCCM)
	Table�27-9. SCCE/SCCM Field Descriptions�
	Figure�27-12. Ethernet Interrupt Events Example

	27.22 SCC Ethernet Programming Example

	Chapter�28 SCC Transparent Mode
	28.1 Features
	28.2 SCC Transparent Channel Frame Transmission Process
	28.3 SCC Transparent Channel Frame Reception Process
	28.4 Achieving Synchronization in Transparent Mode
	28.4.1 Synchronization in NMSI Mode
	28.4.1.1 In-Line Synchronization Pattern
	Table�28-1. Receiver SYNC Pattern Lengths of the DSR�

	28.4.1.2 External Synchronization Signals
	28.4.1.2.1 External Synchronization Example
	Figure�28-1. Sending Transparent Frames between MPC855T

	28.4.1.3 Transparent Mode without Explicit Synchronization
	28.4.1.4 End of Frame Detection

	28.4.2 Synchronization and the TSA
	28.4.2.1 In-line Synchronization Pattern
	28.4.2.2 Inherent Synchronization

	28.5 CRC Calculation in Transparent Mode
	28.6 SCC Transparent Parameter RAM
	Table�28-2. SCC Transparent Parameter RAM Memory Map�

	28.7 SCC Transparent Commands
	Table�28-3. Transmit Commands�
	Table�28-4. Receive Commands�

	28.8 Handling Errors in the Transparent Controller
	Table�28-5. Transmit Errors�
	Table�28-6. Receive Errors�

	28.9 Transparent Mode and the PSMR
	28.10 SCC Transparent Receive Buffer Descriptor (RxBD)
	Figure�28-2. SCC Transparent Receive Buffer Descriptor (RxBD)
	Table�28-7. SCC Transparent RxBD Status and Control Field Descriptions�

	28.11 SCC Transparent Transmit Buffer Descriptor (TxBD)
	Figure�28-3. SCC Transparent Transmit Buffer Descriptor (TxBD)
	Table�28-8. SCC Transparent Tx BD Status and Control Field Descriptions�

	28.12 SCC Transparent Event Register (SCCE)/ Mask Register (SCCM)
	Figure�28-4. SCC Transparent Event Register (SCCE)/Mask Register (SCCM)
	Table�28-9. SCCE/SCCM Field Descriptions�

	28.13 SCC Status Register in Transparent Mode (SCCS)
	Figure�28-5. SCC Status Register in Transparent Mode (SCCS)
	Table�28-10. SCCS Field Descriptions�

	28.14 SCC1 Transparent Programming Example

	Chapter�29 Serial Management Controllers (SMCs)
	Figure�29-1. SMC Block Diagram
	29.1 SMC Features
	29.2 Common SMC Settings and Configurations
	29.2.1 SMC Mode Registers (SMCMRn)
	Figure�29-2. SMC Mode Registers (SMCMRn)
	Table�29-1. SMCMR Field Descriptions�

	29.2.2 SMC Buffer Descriptors (BDs)
	Figure�29-3. SMC Memory Structure

	29.2.3 SMC Parameter RAM
	Table�29-2. SMC UART and Transparent Parameter RAM Memory Map�
	29.2.3.1 SMC Function Code Registers (RFCR/TFCR)
	Figure�29-4. SMC Function Code Registers (RFCR/TFCR)
	Table�29-3. RFCR/TFCR Field Descriptions�

	29.2.4 Disabling SMCs On-the-Fly
	29.2.4.1 SMC Transmitter Full Sequence
	29.2.4.2 SMC Transmitter Shortcut Sequence
	29.2.4.3 SMC Receiver Full Sequence
	29.2.4.4 SMC Receiver Shortcut Sequence
	29.2.4.5 Changing SMC Protocols

	29.2.5 Saving Power
	29.2.6 Handling Interrupts in the SMC

	29.3 SMC in UART Mode
	Figure�29-5. SMC UART Frame Format
	29.3.1 SMC UART Features
	29.3.2 SMC UART-Specific Parameter RAM
	Table�29-4. SMC UART-Specific Parameter RAM Memory Map �

	29.3.3 SMC UART Channel Transmission Process
	29.3.4 SMC UART Channel Reception Process
	29.3.5 Data Handling Modes: Character- and Message-Oriented
	29.3.6 SMC UART Commands
	Table�29-5. Transmit Commands�
	Table�29-6. Receive Commands�

	29.3.7 Sending a Break
	29.3.8 Sending a Preamble
	29.3.9 Handling Errors in the SMC UART Controller
	Table�29-7. SMC UART Errors�

	29.3.10 SMC UART Receive BD (RxBD)
	Figure�29-6. SMC UART Receive BD (RxBD)
	Table�29-8. SMC UART RxBD Status and Control Field Descriptions�
	Figure�29-7. SMC UART Receiving using RxBDs

	29.3.11 SMC UART Transmit BD (TxBD)
	Figure�29-8. SMC UART Transmit BD (TxBD)
	Table�29-9. SMC UART TxBD Status and Control Field Descriptions�

	29.3.12 SMC UART Event Register (SMCE)/Mask Register (SMCM)
	Figure�29-9. SMC UART Event Register (SMCE)/Mask Register (SMCM)
	Table�29-10. SMCE/SMCM Field Descriptions�
	Figure�29-10. SMC UART Interrupts Example

	29.3.13 SMC UART Controller Programming Example

	29.4 SMC in Transparent Mode
	29.4.1 SMC Transparent Mode Features
	29.4.2 SMC Transparent-Specific Parameter RAM
	29.4.3 SMC Transparent Channel Transmission Process
	29.4.4 SMC Transparent Channel Reception Process
	29.4.5 Using SMSYN for Synchronization
	Figure�29-11. Synchronization with SMSYNx

	29.4.6 Using TSA for Synchronization
	Figure�29-12. Synchronization with the TSA

	29.4.7 SMC Transparent Commands
	Table�29-11. SMC Transparent Transmit Commands�
	Table�29-12. SMC Transparent Receive Commands�

	29.4.8 Handling Errors in the SMC Transparent Controller
	Table�29-13. SMC Transparent Error Conditions �

	29.4.9 SMC Transparent Receive BD (RxBD)
	Figure�29-13. SMC Transparent Receive BD (RxBD)
	Table�29-14. SMC Transparent RxBD Field Descriptions�

	29.4.10 SMC Transparent Transmit BD (TxBD)
	Figure�29-14. SMC Transparent Transmit BD (TxBD)
	Table�29-15. SMC Transparent TxBD Field Descriptions�

	29.4.11 SMC Transparent Event Register (SMCE)/ Mask Register (SMCM)
	Figure�29-15. SMC Transparent Event Register (SMCE)/Mask Register (SMCM)
	Table�29-16. SMCE/SMCM Field Descriptions�

	29.4.12 SMC Transparent NMSI Programming Example
	29.4.13 SMC Transparent TSA Programming Example

	29.5 SMC in GCI Mode
	29.5.1 SMC GCI Parameter RAM
	Table�29-17. SMC GCI Parameter RAM Memory Map�

	29.5.2 Handling the GCI Monitor Channel
	29.5.2.1 SMC GCI Monitor Channel Transmission Process
	29.5.2.1.1 SMC GCI Monitor Channel Reception Process

	29.5.3 Handling the GCI C/I Channel
	29.5.3.1 SMC GCI C/I Channel Transmission Process
	29.5.3.2 SMC GCI C/I Channel Reception Process

	29.5.4 SMC GCI Commands
	Table�29-18. SMC GCI Commands�

	29.5.5 SMC GCI Monitor Channel RxBD
	Figure�29-16. SMC GCI Monitor Channel RxBD
	Table�29-19. SMC Monitor Channel RxBD Field Descriptions�

	29.5.6 SMC GCI Monitor Channel TxBD
	Figure�29-17. SMC GCI Monitor Channel TxBD
	Table�29-20. SMC Monitor Channel TxBD Field Descriptions�

	29.5.7 SMC GCI C/I Channel RxBD
	Figure�29-18. SMC C/I Channel RxBD
	Table�29-21. SMC C/I Channel RxBD Field Descriptions�

	29.5.8 SMC GCI C/I Channel TxBD
	Figure�29-19. SMC C/I Channel TxBD
	Table�29-22. SMC C/I Channel TxBD Field Descriptions�

	29.5.9 SMC GCI Event Register (SMCE)/ Mask Register (SMCM)
	Figure�29-20. SMC GCI Event Register (SMCE)/Mask Register (SMCM)
	Table�29-23. SMCE/SMCM Field Descriptions�

	Chapter�30 Serial Peripheral Interface (SPI)
	Figure�30-1. SPI Block Diagram
	30.1 Features
	30.2 SPI Clocking and Signal Functions
	30.3 Configuring the SPI Controller
	30.3.1 The SPI as a Master Device
	Figure�30-2. Single-Master/Multi-Slave Configuration

	30.3.2 The SPI as a Slave Device
	30.3.3 The SPI in Multi-master Operation
	Figure�30-3. Multimaster Configuration

	30.4 SPI Registers
	30.4.1 SPI Mode Register (SPMODE)
	Figure�30-4. SPI Mode Register (SPMODE)
	Table�30-1. SPMODE Field Descriptions�
	30.4.1.1 SPI Transfers with Different Clocking Modes
	Figure�30-5. SPI Transfer Format with SPMODE[CP] = 0
	Figure�30-6. SPI Transfer Format with SPMODE[CP] = 1

	30.4.1.2 SPI Examples with Different SPMODE[LEN] Values
	Table�30-2. Example Conventions�

	30.4.2 SPI Event/Mask Registers (SPIE/SPIM)
	Figure�30-7. SPI Event/Mask Registers (SPIE/SPIM)
	Table�30-3. SPIE/SPIM Field Descriptions�

	30.4.3 SPI Command Register (SPCOM)
	Figure�30-8. SPI Command Register (SPCOM)
	Table�30-4. SPCOM Field Descriptions�

	30.5 SPI Parameter RAM
	Table�30-5. SPI Parameter RAM Memory Map�
	30.5.1 Receive/Transmit Function Code Registers �(RFCR/TFCR)
	Figure�30-9. Receive/Transmit Function Code Registers (RFCR/TFCR)
	Table�30-6. RFCR/TFCR Field Descriptions�

	30.6 SPI Commands
	Table�30-7. SPI Commands�

	30.7 The SPI Buffer Descriptor (BD) Table
	Figure�30-10. SPI Memory Structure
	30.7.1 SPI Buffer Descriptors (BDs)
	30.7.1.1 SPI Receive BD (RxBD)
	Figure�30-11. SPI Receive BD (RxBD)
	Table�30-8. SPI RxBD Status and Control Field Descriptions�

	30.7.1.2 SPI Transmit BD (TxBD)
	Figure�30-12. SPI Transmit BD (TxBD)
	Table�30-9. SPI TxBD Status and Control Field Descriptions�

	30.8 SPI Master Programming Example
	30.9 SPI Slave Programming Example
	30.10 Handling Interrupts in the SPI

	Chapter�31 I2C Controller
	Figure�31-1. I2C Controller Block Diagram
	31.1 I2C Features
	31.2 I2C Controller Clocking and Signal Functions
	Figure�31-2. I2C Master/Slave General Configuration

	31.3 I2C Controller Transfers
	Figure�31-3. I2C Transfer Timing
	31.3.1 I2C Master Write (Slave Read)
	Figure�31-4. I2C Master Write Timing

	31.3.2 I2C Loopback Testing
	31.3.3 I2C Master Read (Slave Write)
	Figure�31-5. I2C Master Read Timing

	31.3.4 I2C Multi-Master Considerations

	31.4 I2C Registers
	31.4.1 I2C Mode Register (I2MOD)
	Figure�31-6. I2C Mode Register (I2MOD)
	Table�31-1. I2MOD Field Descriptions�

	31.4.2 I2C Address Register (I2ADD)
	Figure�31-7. I2C Address Register (I2ADD)
	Table�31-2. I2ADD Field Descriptions�

	31.4.3 I2C Baud Rate Generator Register (I2BRG)
	Figure�31-8. I2C Baud Rate Generator Register (I2BRG)
	Table�31-3. I2BRG Field Descriptions�

	31.4.4 I2C Event/Mask Registers (I2CER/I2CMR)
	Figure�31-9. I2C Event/Mask Registers (I2CER/I2CMR)
	Table�31-4. I2CER/I2CMR Field Descriptions�

	31.4.5 I2C Command Register (I2COM)
	Figure�31-10. I2C Command Register (I2COM)
	Table�31-5. I2COM Field Descriptions�

	31.5 I2C Parameter RAM
	Table�31-6. I2C Parameter RAM Memory Map�
	Figure�31-11. I2C Function Code Registers (RFCR/TFCR)
	Table�31-7. RFCR/TFCR Field Descriptions�

	31.6 I2C Commands
	Table�31-8. I2C Transmit/Receive Commands�

	31.7 I2C Buffer Descriptor (BD) Tables
	Figure�31-12. I2C Memory Structure
	31.7.1 I2C Buffer Descriptors (BDs)
	31.7.1.1 I2C Receive Buffer Descriptor (RxBD)
	Figure�31-13. I2C Receive Buffer Descriptor (RxBD)
	Table�31-9. I2C RxBD Status and Control Bits�

	31.7.1.2 I2C Transmit Buffer Descriptor (TxBD)
	Figure�31-14. I2C Transmit Buffer Descriptor (TxBD)
	Table�31-10. I2C TxBD Status and Control Bits�

	Chapter�32 Parallel Interface Port (PIP)
	32.1 Features
	Figure�32-1. PIP Block Diagram

	32.2 Core Control vs. CP Control
	32.2.1 Core Control
	32.2.2 CP Control

	32.3 The PIP Parameter RAM
	32.3.1 PIP Transmitter Parameter RAM
	Table�32-1. PIP Transmitter Parameter RAM Memory Map�
	32.3.1.1 PIP Function Code Register (PFCR)
	Figure�32-2. PIP Function Code Register (PFCR)
	Table�32-2. PFCR Field Descriptions�

	32.3.1.2 Status Mask Register (SMASK)
	Figure�32-3. Status Mask Register (SMASK)
	Table�32-3. SMASK Field Descriptions�

	32.3.2 PIP Receiver Parameter RAM
	Table�32-4. PIP Receiver Parameter RAM Memory Map�
	32.3.2.1 Control Character Table, RCCM, and RCCR
	Figure�32-4. Control Character Table, RCCM, and RCCR
	Table�32-5. Control Character Table, RCCM, and RCCR Descriptions�

	32.4 The PIP Registers
	32.4.1 PIP Configuration Register (PIPC)
	Figure�32-5. PIP Configuration Register (PIPC)
	Table�32-6. PIPC Field Descriptions�

	32.4.2 PIP Event Register (PIPE)
	Figure�32-6. PIP Event Register (PIPE)
	Table�32-7. PIPE Field Descriptions�

	32.4.3 PIP Mask Register
	32.4.4 PIP Timing Parameters Register (PTPR)
	Figure�32-7. PIP Timing Parameters Register (PTPR)
	Table�32-8. PTPR Field Descriptions�

	32.4.5 The Port B Registers
	Figure�32-8. Port B General-Purpose I/O

	32.5 PIP Buffer Descriptors
	32.5.1 The PIP Tx Buffer Descriptor (TxBD)
	Figure�32-9. PIP Tx Buffer Descriptor (TxBD)
	Table�32-9. PIP TxBD Status and Control Field Descriptions�

	32.5.2 The PIP Rx Buffer Descriptor (RxBD)
	Figure�32-10. PIP Rx Buffer Descriptor (RxBD)
	Table�32-10. PIP RxBD Status and Control Field Descriptions�

	32.6 PIP CP Commands
	Table�32-11. PIP Transmit CP Commands�
	Table�32-12. PIP Receive CP Commands�

	32.7 Handshaking I/O Modes
	32.7.1 Interlocked Handshake Mode
	Figure�32-11. Interlocked Handshake Mode Timing

	32.7.2 Pulsed Handshake Mode
	Figure�32-12. Pulsed Handshake Full Cycle
	32.7.2.1 The BUSY Signal
	Figure�32-13. Pulsed Handshake BUSY Signal

	32.7.2.2 Pulsed Handshake Timing
	Figure�32-14. PIP Transmitter Timing Diagram
	Figure�32-15. PIP Receiver Timing—Mode 0
	Figure�32-16. PIP Receiver Timing—Mode 1
	Figure�32-17. PIP Receiver Timing—Mode 2
	Figure�32-18. PIP Receiver Timing—Mode 3

	32.8 Transparent Transfers
	Figure�32-19. PIP Transparent Transfers

	32.9 Implementing Centronics
	Figure�32-20. The PIP Centronics Interface Signals
	32.9.1 PIP as a Centronics Transmitter
	Figure�32-21. PIP as a Centronics Transmitter
	32.9.1.1 Centronics Tx Errors and the PIPE
	Table�32-13. Centronics Tx Errors�

	32.9.2 PIP as a Centronics Receiver
	Figure�32-22. PIP as a Centronics Receiver
	32.9.2.1 Centronics Rx Errors and the PIPE
	Table�32-14. Centronics Rx Error�

	Chapter�33 Parallel I/O Ports
	33.1 Features
	33.2 Port A
	Table�33-1. Port A Pin Assignment�
	33.2.1 Port A Registers
	33.2.1.1 Port A Open-Drain Register (PAODR)
	Figure�33-1. Port A Open-Drain Register (PAODR)
	Table�33-2. PAODR Bit Descriptions�

	33.2.1.2 Port A Data Register (PADAT)
	Figure�33-2. Port A Data Register (PADAT)
	Table�33-3. PADAT Bit Descriptions�

	33.2.1.3 Port A Data Direction Register (PADIR)
	Figure�33-3. Port A Data Direction Register (PADIR)
	Table�33-4. PADIR Bit Descriptions�

	33.2.1.4 Port A Pin Assignment Register (PAPAR)
	Figure�33-4. Port A Pin Assignment Register (PAPAR)
	Table�33-5. PAPAR Bit Descriptions�

	33.2.2 Port A Configuration Examples
	33.2.3 Port A Functional Block Diagrams
	Figure�33-5. Block Diagram for PA15 (True for all Non-Open-Drain Port Signals)
	Figure�33-6. Block Diagram for PA14 (True for all Open-Drain Port Signals)

	33.3 Port B
	Table�33-6. Port B Pin Assignment�
	33.3.1 The Port B Registers
	33.3.1.1 Port B Open-Drain Register (PBODR)
	Figure�33-7. Port B Open-Drain Register (PBODR)
	Table�33-7. PBODR Bit Descriptions�

	33.3.1.2 Port B Data Register (PBDAT)
	Figure�33-8. Port B Data Register (PBDAT)
	Table�33-8. PBDAT Bit Descriptions�

	33.3.1.3 Port B Data Direction Register (PBDIR)
	Figure�33-9. Port B Data Direction Register (PBDIR)
	Table�33-9. PBDIR Bit Descriptions�

	33.3.1.4 Port B Pin Assignment Register (PBPAR)
	Figure�33-10. Port B Pin Assignment Register (PBPAR)
	Table�33-10. PBPAR Bit Descriptions�

	33.3.2 Port B Configuration Example

	33.4 Port C
	Table�33-11. Port C Pin Assignment�
	33.4.1 Port C—RxClav Signal
	33.4.2 Port C Registers
	33.4.2.1 Port C Data Register (PCDAT)
	Figure�33-11. Port C Data Register (PCDAT)
	Table�33-12. PCDAT Bit Descriptions�

	33.4.2.2 Port C Data Direction Register (PCDIR)
	Figure�33-12. Port C Data Direction Register (PCDIR)
	Table�33-13. PCDIR Bit Descriptions�

	33.4.2.3 Port C Pin Assignment Register (PCPAR)
	Figure�33-13. Port C Pin Assignment Register (PCPAR)
	Table�33-14. PCPAR Bit Descriptions�

	33.4.2.4 Port C Special Options Register (PCSO)
	Figure�33-14. Port C Special Options Register (PCSO)
	Table�33-15. PCSO Bit Descriptions�

	33.4.2.5 Port C Interrupt Control Register (PCINT)
	Figure�33-15. Port C Interrupt Control Register (PCINT)
	Table�33-16. PCINT Bit Descriptions�

	33.5 Port D
	Table�33-17. Port D Pin Assignment�
	33.5.1 Port D Registers
	33.5.1.1 Port D Data Register
	Figure�33-16. Port D Data Register (PDDAT)
	Table�33-18. PDDAT Bit Descriptions�

	33.5.1.2 Port D Data Direction Register (PDDIR)
	Figure�33-17. Port D Data Direction Register (PDDIR)
	Table�33-19. PDDIR Bit Descriptions�

	33.5.2 Port D Pin Assignment Register (PDPAR)
	Figure�33-18. Port D Pin Assignment Register (PDPAR)
	Table�33-20. PDPAR Field Descriptions�

	Chapter�34 CPM Interrupt Controller
	34.1 Features
	Figure�34-1. MPC855T Interrupt Structure

	34.2 CPM Interrupt Source Priorities
	Table�34-1. Prioritization of CPM Interrupt Sources�
	34.2.1 Highest Priority Interrupt
	34.2.2 Nested Interrupts

	34.3 Masking Interrupt Sources in the CPM
	Figure�34-2. Interrupt Request Masking

	34.4 Generating and Calculating Interrupt Vectors
	Table�34-2. Interrupt Vector Encodings�

	34.5 CPIC Registers
	34.5.1 CPM Interrupt Configuration Register (CICR)
	Figure�34-3. CPM Interrupt Configuration Register (CICR)
	Table�34-3. CICR Field Descriptions�

	34.5.2 CPM Interrupt Pending Register (CIPR)
	Figure�34-4. CPM Interrupt Pending/Mask/In-Service Registers (CIPR/CIMR/CISR)

	34.5.3 CPM Interrupt Mask Register
	34.5.4 CPM Interrupt In-Service Register (CISR)
	34.5.5 CPM Interrupt Vector Register (CIVR)
	Figure�34-5. CPM Interrupt Vector Register (CIVR)
	Table�34-4. CIVR Field Descriptions�

	34.6 Interrupt Handler Example—Single-Event Interrupt Source
	34.7 Interrupt Handler Example—Multiple-Event Interrupt Source

	Part�VI Asynchronous Transfer Mode (ATM)
	Chapter�35 ATM Overview
	35.1 ATM Capabilities
	35.2 MPC855T and MPC860 Differences
	35.2.1 Parameter RAM Conflicts
	35.2.2 IDMA2 Restriction
	35.2.3 UTOPIA Conflicts
	35.2.4 The ATM Pace Controller (APC) and APC Timer

	35.3 ATM Features
	35.4 MPC855T Application Example
	Figure�35-1. MPC855T Application Example

	35.5 Overview of ATM Operation
	35.6 UTOPIA Operation
	35.6.1 UTOPIA Transmit Overview
	35.6.2 UTOPIA Receive Overview
	35.6.3 Expanded Cells
	Figure�35-2. Expanded Cell Structure

	35.7 Serial ATM Operation
	35.7.1 Serial ATM Transmit Overview
	35.7.2 Serial ATM Receive Overview
	35.7.2.1 Cell Delineation

	35.7.3 Cell Payload Scrambling/Descrambling

	35.8 ATM Pace Control (APC)
	35.9 Internal and External Channels (Extended Channel Mode)

	Chapter�36 Buffer Descriptors and Connection Tables
	36.1 ATM Buffer Descriptors (BDs)
	Figure�36-1. Transmit Buffer and TxBD Table Example
	36.1.1 AAL5 Buffers
	36.1.2 AAL0 Buffers
	Figure�36-2. AAL0 Buffer Structure

	36.1.3 ATM Receive Buffer Descriptors (RxBDs)
	Figure�36-3. ATM RxBD
	Figure�36-4. ATM RxBD in Expanded Cell Mode (UTOPIA Only)
	Table�36-1. ATM RxBD Field Descriptions�

	36.1.4 ATM Transmit Buffer Descriptors (TxBDs)
	Figure�36-5. ATM TxBD
	Figure�36-6. ATM TxBD in Expanded Cell Mode (UTOPIA Only)
	Table�36-2. ATM TxBD Field Descriptions�

	36.2 Receive and Transmit Connection Tables (RCTs and TCTs)
	Figure�36-7. Connection Tables in Dual-port RAM and External Memory
	36.2.1 Receive Connection Table (RCT)
	Figure�36-8. Receive Connection Table (RCT)
	Table�36-3. RCT Field Descriptions�

	36.2.2 Transmit Connection Table (TCT)
	Figure�36-9. Transmit Connection Table (TCT)
	Table�36-4. TCT Field Descriptions�

	Chapter�37 ATM Parameter RAM
	Table�37-1. Serial ATM and UTOPIA Interface Parameter RAM Map�
	Table�37-2. Serial ATM Parameter RAM Map�
	37.1 SAR Receive Function Code Register (SRFCR)
	Figure�37-1. SAR Receive Function Code Register (SRFCR)
	Table�37-3. SRFCR Field Descriptions

	37.2 SAR Receive State Register (SRSTATE)
	Figure�37-2. SAR Receive State Register (SRSTATE)
	Table�37-4. SRSTATE Field Descriptions

	37.3 SAR Transmit Function Code Register (STFCR)
	Figure�37-3. SAR Transmit Function Code Register (STFCR)
	Table�37-5. STFCR Field Descriptions�

	37.4 SAR Transmit State Register (STSTATE)
	Figure�37-4. SAR Transmit State Register (STSTATE)
	Table�37-6. STSTATE Field Descriptions�

	37.5 Address Match Parameters (AM1–AM5)
	Table�37-7. AM1–AM5 Parameters for the Internal Look-up Table
	Figure�37-5. HMASK Cell Header Mask Fields
	Table�37-8. HMASK Field Descriptions�
	Table�37-9. AM1–AM5 Parameters for Extended Channel Address Compression
	Figure�37-6. FLMASK
	Table�37-10. FLMASK Field Descriptions�
	Table�37-11. AM1–AM5 Parameters for Extended Channel CAM Operation

	37.6 APC State Register (APCST)
	Figure�37-7. APC State Register (APCST)
	Table�37-12. APCST Field Descriptions�

	37.7 Serial Cell Synchronization Status Register (ASTATUS)
	Figure�37-8. Serial Cell Synchronization Status Register (ASTATUS)
	Table�37-13. ASTATUS Register Field Descriptions

	Chapter�38 ATM Controller
	38.1 Address Mapping
	38.1.1 Internal Look-up Mechanism (SRSTATE[EXT] = 0)
	Figure�38-1. Address Mapping Tables for Internal Channels
	38.1.1.1 Adding a New Internal Channel
	38.1.1.2 Removing an Internal Channel

	38.1.2 Address Compression (SRSTATE[EXT,ACP] = 11)
	38.1.2.1 First-Level Addressing Table (FLT)
	38.1.2.2 Second-Level Addressing Tables (SLTs)
	38.1.2.3 Address Compression Example
	Figure�38-2. Address Compression

	38.1.2.4 Preventing Channel Aliasing
	38.1.2.5 OAM Screening

	38.1.3 CAM Address Mapping (SRSTATE[EXT,ACP] = 10)

	38.2 Multi-PHY Configuration (MPHY)
	38.2.1 Setting Multi-PHY mode
	Figure�38-3. Multi-PHY Pointing Table Entry

	38.2.2 Receive Multi-PHY Operation
	38.2.2.1 Look-up Table MPHY Support
	Figure�38-4. Address Mapping Tables for Multi-PHY Operations

	38.2.2.2 Address Compression Multi-PHY Support
	38.2.2.3 CAM Multi-PHY Support

	38.2.3 Transmit Multi-PHY Operation
	38.2.4 APC Multi-PHY Parameters

	38.3 ATM Commands
	Figure�38-5. CP Command Register (CPCR) (ATM-Specific)
	Table�38-1. CPCR ATM-Specific Field Descriptions
	Table�38-2. ATM Commands

	Chapter�39 ATM Pace Control
	39.1 APC Algorithm
	Figure�39-1. APC in UTOPIA Mode—Transmit Flow
	39.1.1 APC Implementation
	39.1.2 APC Parameters
	39.1.3 Programming APC Scheduling Table Size and NCITS
	39.1.4 Defining APC Slot Time
	39.1.5 Programming Rates for Channels
	39.1.6 APC Initialization and Operating Considerations
	39.1.7 Modifying Channel Transmit Pace
	39.1.8 Minimizing Cell Delay Variation

	39.2 Direct Scheduling of Cells
	39.3 Using the APC with Multiple ATM Ports
	Figure�39-2. Example of Single PHY and Single Serial APC Configuration
	Figure�39-3. Example of Maximum Multi-PHY and Single-Serial APC Configuration

	39.4 Using the APC Without Using UTOPIA
	39.5 APC Scheduling Tables
	Figure�39-4. APC Scheduling Tables

	39.6 PHY Transmit Queues
	Figure�39-5. PHY Transmit Queue

	39.7 APC Priority Levels
	Table�39-1. APC Priority Levels�
	Table�39-2. APC Priority Level Parameter Descriptions�

	Chapter�40 ATM Exceptions
	Figure�40-1. ATM Interrupt Queue
	40.1 ATM Event Registers
	40.1.1 UTOPIA Event Register (IDSR1)
	Figure�40-2. UTOPIA Event Register (IDSR1) and Mask Register (IDMR1)
	Table�40-1. UTOPIA Event Register (IDSR1) Field Descriptions�

	40.1.2 Serial ATM Event Register (SCCE)
	Figure�40-3. Serial ATM Event Register (SCCE) and Mask Register (SCCM)
	Table�40-2. Serial ATM Event Register (SCCE) Field Descriptions�

	40.2 Interrupt Queue Entry
	Figure�40-4. Interrupt Queue Entry
	Table�40-3. Interrupt Queue Entry Field Descriptions�

	40.3 Interrupt Queue Mask (IMASK)
	Figure�40-5. Interrupt Queue Mask (IMASK)

	Chapter�41 Interface Configuration
	41.1 General ATM Registers
	41.1.1 Port D Pin Assignment Register (PDPAR)
	Figure�41-1. Port D Pin Assignment Register (PDPAR)
	Table�41-1. PDPAR Field Descriptions�

	41.1.2 APC Timer (CPM Timer 4)
	41.1.3 RISC Timer

	41.2 UTOPIA Mode Registers
	41.2.1 System Clock Control Register (SCCR)
	Figure�41-2. System Clock Control Register (SCCR)
	Table�41-2. SCCR Field Descriptions for the UTOPIA Clock

	41.2.2 Port B—TxClav
	41.2.3 Port C—RxClav Signal
	41.2.4 Port D—UTOPIA Data and Control Signals
	Table�41-3. Port D Pin Assignment

	41.2.5 RISC Controller Configuration Register (RCCR)
	41.2.6 UTOPIA Mode Initialization

	41.3 Serial ATM Configuration
	41.3.1 RISC Controller Configuration Register (RCCR)
	41.3.2 SCC Configuration for Serial ATM
	41.3.2.1 General SCC Mode Register (GSMR)
	41.3.2.2 Serial ATM Mode Register (PSMR)
	Figure�41-3. Serial ATM Mode Register (PSMR)
	Table�41-4. PSMR Serial ATM Field Descriptions

	41.3.3 SI Configuration for Serial ATM

	Chapter�42 UTOPIA Interface
	42.1 UTOPIA Single-PHY
	Figure�42-1. MPC855T UTOPIA Interface
	42.1.1 Receive Cell Transfer Operation
	Figure�42-2. UTOPIA Receiver Start of Cell
	Figure�42-3. UTOPIA Receiver End of Cell

	42.1.2 Transmit Cell Transfer Operation
	42.1.2.1 UTOPIA Bus and SOC Drive
	Figure�42-4. UTOPIA Transmitter Start of Cell
	Figure�42-5. UTOPIA Transmitter End of Cell

	42.2 UTOPIA Multi-PHY Operations
	42.2.1 Setting up PHSEL and PHREQ Pins
	42.2.2 Receive Cell Transfer Operation
	42.2.3 Transmit Cell Transfer Operation
	42.2.4 Example MPHY Implementation
	Figure�42-6. Multi-PHY Implementation Example
	Figure�42-7. UTOPIA Receiver Multi-PHY Example
	Figure�42-8. UTOPIA Transmitter Multi-PHY Example

	42.3 UTOPIA Interface Transfer Timing
	Table�42-1. UTOPIA Interface Transfer Timing

	Part�VII Fast Ethernet Controller (FEC)
	Chapter�43 Fast Ethernet Controller (FEC)
	43.1 Features
	43.1.1 FEC Block Diagram
	Figure�43-1. FEC Block Diagram

	43.2 Fast Ethernet Controller Operation
	43.2.1 Transceiver Connection
	Table�43-1. MII Signals
	Table�43-2. Serial Mode Connections to the External Transceiver�

	43.2.2 FEC Frame Transmission
	43.2.3 FEC Frame Reception
	43.2.4 CAM Interface
	43.2.5 FEC Command Set
	43.2.6 Ethernet Address Recognition
	Figure�43-2. Ethernet Address Recognition Flowchart

	43.2.7 Hash Table Algorithm
	43.2.8 Inter-Packet Gap Time
	43.2.9 Collision Handling
	43.2.10 Internal and External Loopback
	43.2.11 Ethernet Error-Handling Procedure
	43.2.11.1 Transmission Errors
	Table�43-3. Transmission Errors�

	43.2.11.2 Reception Errors
	Table�43-4. Reception Errors

	43.2.12 SDMA Bus Arbitration and Transfers
	Figure�43-3. SDMA Bus Arbitration

	43.2.13 The SDMA Registers
	43.2.13.1 SDMA Configuration Register (SDCR)

	43.3 Signal Descriptions
	Table�43-5. FEC Signal Descriptions�

	43.4 Programming Model
	43.4.1 Parameter RAM
	Table�43-6. FEC Parameter RAM Memory Map�
	43.4.1.1 RAM Perfect Match Address Low Register (ADDR_LOW)
	Figure�43-4. ADDR_LOW Register
	Table�43-7. ADDR_LOW Field Descriptions

	43.4.1.2 RAM Perfect Match Address High (ADDR_HIGH)
	Figure�43-5. ADDR_HIGH Register
	Table�43-8. ADDR_HIGH Field Descriptions

	43.4.1.3 RAM Hash Table High (HASH_TABLE_HIGH)
	Figure�43-6. HASH_TABLE_HIGH Register
	Table�43-9. HASH_TABLE_HIGH Field Descriptions

	43.4.1.4 RAM Hash Table Low (HASH_TABLE_LOW)
	Figure�43-7. HASH_TABLE_LOW Register
	Table�43-10. HASH_TABLE_LOW Field Descriptions

	43.4.1.5 Beginning of RxBD Ring (R_DES_START)
	Figure�43-8. R_DES_START Register
	Table�43-11. R_DES_START Field Descriptions

	43.4.1.6 Beginning of TxBD Ring (X_DES_START)
	Figure�43-9. X_DES_START Register
	Table�43-12. X_DES_START Field Descriptions

	43.4.1.7 Receive Buffer Size Register (R_BUFF_SIZE)
	Figure�43-10. R_BUFF_SIZE Register
	Table�43-13. R_BUFF_SIZE Field Descriptions

	43.4.1.8 Ethernet Control Register (ECNTRL)
	Figure�43-11. ECNTRL Register
	Table�43-14. ECNTRL Field Descriptions�

	43.4.1.9 Interrupt Event (I_EVENT)/Interrupt Mask Register (I_MASK)
	Figure�43-12. I_EVENT/I_MASK Registers
	Table�43-15. I_EVENT/I_MASK Field Descriptions�

	43.4.1.10 Ethernet Interrupt Vector Register (IVEC)
	Figure�43-13. IVEC Register
	Table�43-16. IVEC Field Descriptions

	43.4.1.11 RxBD Active Register (R_DES_ACTIVE)
	Figure�43-14. R_DES_ACTIVE Register
	Table�43-17. R_DES_ACTIVE Field Descriptions

	43.4.1.12 TxBD Active Register (X_DES_ACTIVE)
	Figure�43-15. X_DES_ACTIVE Register

	43.4.1.13 MII Management Frame Register (MII_DATA)
	Table�43-18. X_DES_ACTIVE Field Descriptions
	Figure�43-16. MII_DATA Register
	Table�43-19. MII_DATA Field Descriptions�

	43.4.1.14 MII Speed Control Register (MII_SPEED)
	Figure�43-17. MII_SPEED Register
	Table�43-20. MII_SPEED Field Descriptions
	Table�43-21. Programming Examples for MII_SPEED Register

	43.4.1.15 FIFO Receive Bound Register (R_BOUND)
	Figure�43-18. R_BOUND Register
	Table�43-22. R_BOUND Field Descriptions

	43.4.1.16 FIFO Receive Start Register (R_FSTART)
	Figure�43-19. R_FSTART Register
	Table�43-23. R_FSTART Field Descriptions

	43.4.1.17 Transmit Watermark Register (X_WMRK)
	Figure�43-20. X_WMRK Register
	Table�43-24. X_WMRK Field Descriptions

	43.4.1.18 FIFO Transmit Start Register (X_FSTART)
	Figure�43-21. X_FSTART Register
	Table�43-25. X_FSTART Field Descriptions

	43.4.1.19 DMA Function Code Register (FUN_CODE)
	Figure�43-22. FUN_CODE Register
	Table�43-26. FUN_CODE Field Descriptions

	43.4.1.20 Receive Control Register (R_CNTRL)
	Figure�43-23. R_CNTRL Register
	Table�43-27. R_CNTRL Field Descriptions

	43.4.1.21 Receive Hash Register (R_HASH)
	Figure�43-24. R_HASH Register
	Table�43-28. R_HASH Field Descriptions

	43.4.1.22 Transmit Control Register (X_CNTRL)
	Figure�43-25. X_CNTRL Register
	Table�43-29. X_CNTRL Field Descriptions

	43.4.2 Initialization Sequence
	43.4.2.1 Hardware Initialization
	Table�43-30. Hardware Initialization
	Table�43-31. ECNTRL[ETHER_EN] Deassertion Initialization

	43.4.2.2 User Initialization (before Setting ECNTRL[ETHER_EN])
	Table�43-32. User Initialization (before Setting ECNTRL[ETHER_EN])�
	43.4.2.2.1 Descriptor Controller Initialization
	43.4.2.2.2 User Initialization (after Setting ECNTRL[ETHER_EN])
	Table�43-33. User Initialization (after Setting ECNTRL[ETHER_EN])

	43.4.3 Buffer Descriptors (BDs)
	43.4.3.1 Ethernet Receive Buffer Descriptor (RxBD)
	Figure�43-26. Receive Buffer Descriptor (RxBD)
	Table�43-34. Receive Buffer Descriptor (RxBD) Field Description�

	43.4.3.2 Ethernet Transmit Buffer Descriptor (TxBD)
	Figure�43-27. Transmit Buffer Descriptor (TxBD)
	Table�43-35. Transmit Buffer Descriptor (TxBD) Field Descriptions�

	Part�VIII System Debugging and Testing Support
	Chapter�44 System Development and Debugging
	44.1 Tracking Program Flow
	44.1.1 Program Trace Functional Description
	44.1.2 Instruction Fetch Show Cycle Control
	Table�44-1. Fetch Show Cycles Control�

	44.1.3 Program Trace Signals
	Table�44-2. Status Pin Groupings�
	Table�44-3. VF Pins Encoding: Instruction Queue Flushes�
	Table�44-4. VF Pins Encoding: Instruction Fetch Types�

	44.1.4 Program Trace Special Cases
	44.1.4.1 Queue Flush Information Special Case
	44.1.4.2 Program Trace When In Debug Mode
	44.1.4.3 Sequential Instructions Marked as Indirect Branch

	44.1.5 Reconstructing Program Trace
	44.1.5.1 Back Trace
	44.1.5.2 Window Trace
	44.1.5.2.1 Synchronizing the Trace Window to Internal Core Events

	44.1.5.3 Detecting the Trace Window Start Address
	Table�44-5. Detecting the Trace Buffer Start Point�

	44.1.5.4 Detecting the Assertion/Negation of VSYNC
	44.1.5.5 Detecting the Trace Window End Address
	44.1.5.6 Efficient Trace Information Capture

	44.2 Watchpoints and Breakpoints Support
	Figure�44-1. Watchpoints and Breakpoint Support in the Core
	44.2.1 Key Features
	44.2.2 Internal Watchpoints and Breakpoints Logic
	44.2.3 Functional Description
	44.2.3.1 Instruction Support Detailed Description
	Figure�44-2. Instruction Support General Structure
	Table�44-6. Instruction Watchpoints Programming Options�

	44.2.3.2 Load/Store Support Detailed Description
	Figure�44-3. Load/Store Support General Structure
	Table�44-7. Load/Store Data Events�
	Table�44-8. Load/Store Watchpoints Programming Options�

	44.2.3.3 The Counters
	44.2.3.4 Trap Enable Programming

	44.2.4 Operation Details
	44.2.4.1 Restrictions
	44.2.4.2 Byte and Half Word Working Modes
	44.2.4.2.1 Examples
	Figure�44-4. Partially Supported Watchpoints/Breakpoint Example

	44.2.4.3 Context Dependent Filter
	44.2.4.4 Ignore First Match
	44.2.4.5 Generating Six Compare Types

	44.2.5 Load/Store Breakpoint Example

	44.3 Development System Interface
	Figure�44-5. Functional Diagram of the MPC855T Debug Mode Support
	44.3.1 Debug Mode Operation
	Figure�44-6. Debug Mode Logic Diagram
	44.3.1.1 Debug Mode Enable vs. Debug Mode Disable
	Figure�44-7. Debug Mode Reset Configuration Timing Diagram

	44.3.1.2 Entering Debug Mode
	44.3.1.3 Debug Mode Indication
	44.3.1.4 Checkstop State and Debug Mode
	Table�44-9. Checkstop State and Debug Mode�

	44.3.1.5 Saving Machine State when Entering Debug Mode
	44.3.1.6 Running in Debug Mode
	44.3.1.7 Exiting Debug Mode

	44.3.2 Development Port Communication
	44.3.2.1 Development Port Pins
	44.3.2.1.1 Development Serial Clock (DSCK)
	44.3.2.1.2 Development Serial Data In (DSDI)
	44.3.2.1.3 Development Serial Data Out (DSDO)
	44.3.2.1.4 Freeze
	Figure�44-8. Development Port/BDM Connector Pinout Options

	44.3.2.2 Development Port Registers
	44.3.2.2.1 Development Port Shift Register
	44.3.2.2.2 Trap Enable Control Register (TECR)
	44.3.2.2.3 Development Port Registers Decode

	44.3.2.3 Development Port Serial Communications–Clock Mode
	44.3.2.3.1 Asynchronous Clocked Mode—Using DSCK
	Figure�44-9. Asynchronous Clocked Serial Communications

	44.3.2.3.2 Synchronous Self-Clocked Mode—Using CLKOUT
	Figure�44-10. Synchronous Self-Clocked Serial Communications

	44.3.2.3.3 Selection of Development Port Clock Mode
	Figure�44-11. Enabling Clock Mode after Reset

	44.3.2.4 Development Port Serial Communications–Trap Enable ��Mode
	44.3.2.4.1 Serial Data Into Development Port
	Table�44-10. Trap Enable Data Shifted into Development Port Shift Register�
	Table�44-11. Debug Port Command Shifted Into Development Port Shift Register�

	44.3.2.4.2 Serial Data Out of Development Port
	Table�44-12. Status/Data Shifted Out of Development Port Shift Register�

	44.3.2.5 Development Port Serial Communications–Debug Mode
	44.3.2.5.1 Serial Data Into Development Port
	Table�44-13. Debug Instructions/Data Shifted Into Development Port Shift Register�

	44.3.2.5.2 Serial Data Out of Development Port
	44.3.2.5.3 Fast Download Procedure
	Figure�44-12. Download Procedure Code Example
	Figure�44-13. Fast and Slow Download Procedure Loops

	44.4 Software Monitor Debugger Support
	44.4.1 Freeze Indication

	44.5 Development Support Programming Model
	Table�44-14. MPC855T-Specific Development Support and Debug SPRs�
	Table�44-15. Development Support/Debug Registers Protection�
	44.5.1 Development Support Registers
	44.5.1.1 Comparator A–H Value Registers (CMPA–CMPH)
	Figure�44-14. Comparator A–D Value Register (CMPA–CMPD)
	Table�44-16. CMPA–CMPD Field Descriptions�
	Figure�44-15. Comparator E–F Value Registers (CMPE–CMPF)
	Table�44-17. CMPE–CMPF Field Descriptions�
	Figure�44-16. Comparator G–H Value Registers (CMPG–CMPH)
	Table�44-18. CMPG–CMPH Field Descriptions�

	44.5.1.2 Breakpoint Address Register (BAR)
	Figure�44-17. Breakpoint Address Register (BAR)
	Table�44-19. BAR Field Descriptions�

	44.5.1.3 Instruction Support Control Register (ICTRL)
	Figure�44-18. Instruction Support Control Register (ICTRL)
	Table�44-20. ICTRL Field Descriptions�

	44.5.1.4 Load/Store Support Comparators Control Register ���(LCTRL1)
	Figure�44-19. Load/Store Support Comparators Control Register (LCTRL1)
	Table�44-21. LCTRL1 Field Descriptions�

	44.5.1.5 Load/Store Support AND-OR Control Register (LCTRL2)
	Figure�44-20. Load/Store Support AND-OR Control Register (LCTRL2)�
	Table�44-22. LCTRL2 Field Descriptions�

	44.5.1.6 Breakpoint Counter Value and Control Registers ��(COUNTA/COUNTB)
	Figure�44-21. Breakpoint Counter Value and Control Registers (COUNTA/COUNTB)
	Table�44-23. COUNTA/COUNTB Field Descriptions�

	44.5.2 Debug Mode Registers
	44.5.2.1 Interrupt Cause Register (ICR)
	Figure�44-22. Interrupt Cause Register (ICR)
	Table�44-24. ICR Field Descriptions�

	44.5.2.2 Debug Enable Register (DER)
	Figure�44-23. Debug Enable Register (DER)
	Table�44-25. DER Field Descriptions�

	44.5.2.3 Development Port Data Register (DPDR)

	Chapter�45 IEEE 1149.1 Test Access Port
	45.1 Overview
	Figure�45-1. Test Logic Block Diagram

	45.2 TAP Controller
	Figure�45-2. TAP Controller State Machine

	45.3 Boundary Scan Register
	Figure�45-3. Output Signal Boundary Scan Cell (Output Cell)
	Figure�45-4. Observe-Only Input Signal Boundary Scan Cell (Input Cell)
	Figure�45-5. Input/Output Control Boundary Scan Cell (I/O Control Cell)
	Figure�45-6. Bidirectional (I/O) Signal Boundary Scan Cell

	45.4 Instruction Register
	Table�45-1. Instruction Register Decoding�
	45.4.1 EXTEST
	45.4.2 SAMPLE/PRELOAD
	45.4.3 BYPASS
	Figure�45-7. Bypass Register

	45.4.4 CLAMP
	45.4.5 HI–Z

	45.5 TAP Usage Considerations
	45.6 Recommended TAP Configuration
	45.7 Motorola MPC855T BSDL Description

	Appendix�A Byte Ordering
	A.1 Byte Ordering Overview
	A.2 Byte-Ordering Mechanisms
	Table�A-1. Byte-Ordering Parameters �

	A.3 BE Mode
	A.4 TLE Mode
	Figure�A-1. TLE Mode Mechanisms
	Table�A-2. TLE 2-bit Munging �
	Figure�A-2. Byte Swapping
	A.4.1 TLE Mode System Examples
	Table�A-3. Little-Endian Program/Data Path Between the Register and 32-Bit Memory �
	Table�A-4. Little-Endian Program/Data Path Between the Register and 16-Bit Memory �
	Table�A-5. Little-Endian Program/Data Path between the Register and 8-Bit Memory�

	A.5 MOD-LE Mode
	Figure�A-3. MOD-LE Mode Mechanisms
	Table�A-6. MOD-LE 3-bit Munging �
	A.5.1 I/O Addressing in MOD-LE Mode

	A.6 Setting the Endian Mode Of Operation

	Appendix�B Serial Communications Performance
	B.1 Serial Clocking (Peak Rate Limitation)
	B.2 Bus Utilization
	B.3 CPM Bandwidth (Average Rate Limitation)
	B.3.1 Performance of Serial Channels
	Table�B-1. MPC855T Serial Performance at 25 MHz

	B.3.2 IDMA Considerations
	Table�B-2. IDMA Performance at 25 MHz�

	B.3.3 Performance Calculations

	B.4 ATM Performance
	B.5 Receiver
	Table�B-3. Receiver Performance (with 50MHz System Clock)
	Table�B-4. Additional Features Load�

	B.6 Transmitter
	Table�B-5. Transmitter (Including 1 Priority APC) Performance (with 50MHz System Clock)
	Table�B-6. Performance Calculation

	Appendix�C Register Quick Reference Guide
	C.1 User Registers
	Table�C-1. User-Level Registers�
	Table�C-2. User-Level SPRs�

	C.2 Supervisor Registers
	Table�C-3. Supervisor-Level Registers�
	Table�C-4. Supervisor-Level SPRs�

	C.3 MPC855T-Specific SPRs
	Table�C-5. MPC855T-Specific Supervisor-Level SPRs�
	Table�C-6. MPC855T-Specific Debug-Level SPRs�

	Appendix�D Instruction Set Listings
	D.1 Instructions Sorted by Mnemonic
	Table�D-1. Complete Instruction List Sorted by Mnemonic

	D.2 Instructions Sorted by Opcode
	Table�D-2. Complete Instruction List Sorted by Opcode

	D.3 Instructions Grouped by Functional Categories
	Table�D-3. Integer Arithmetic Instructions�
	Table�D-4. Integer Compare Instructions
	Table�D-5. Integer Logical Instructions
	Table�D-6. Integer Rotate Instructions�
	Table�D-7. Integer Shift Instructions
	Table�D-8. Floating-Point Arithmetic Instructions6
	Table�D-9. Floating-Point Multiply-Add Instructions6
	Table�D-10. Floating-Point Rounding and Conversion Instructions6
	Table�D-11. Floating-Point Compare Instructions6
	Table�D-12. Floating-Point Status and Control Register Instructions6
	Table�D-13. Integer Load Instructions�
	Table�D-14. Integer Store Instructions�
	Table�D-15. Integer Load and Store with Byte-Reverse Instructions
	Table�D-16. Integer Load and Store Multiple Instructions
	Table�D-17. Integer Load and Store String Instructions
	Table�D-18. Memory Synchronization Instructions
	Table�D-19. Floating-Point Load Instructions6
	Table�D-20. Floating-Point Store Instructions6
	Table�D-21. Floating-Point Move Instructions6
	Table�D-22. Branch Instructions
	Table�D-23. Condition Register Logical Instructions�
	Table�D-24. System Linkage Instructions
	Table�D-25. Trap Instructions
	Table�D-26. Processor Control Instructions
	Table�D-27. Cache Management Instructions
	Table�D-28. Segment Register Manipulation Instructions
	Table�D-29. Lookaside Buffer Management Instructions
	Table�D-30. External Control Instructions

	D.4 Instructions Sorted by Form
	Table�D-31. I-Form
	Table�D-32. B-Form
	Table�D-33. SC-Form
	Table�D-34. D-Form
	Table�D-35. DS-Form
	Table�D-36. X-Form
	Table�D-37. XL-Form
	Table�D-38. XFX-Form
	Table�D-39. XFL-Form
	Table�D-40. XS-Form
	Table�D-41. XO-Form
	Table�D-42. A-Form
	Table�D-43. M-Form
	Table�D-44. MD-Form
	Table�D-45. MDS-Form

	D.5 Instruction Set Legend
	Table�D-46. Instruction Set Legend

	Appendix�E Serial ATM Scrambling, Reception, and SI Programming
	E.1 ATM Cell Payload Scrambling
	Figure�E-1. ATM Cell Payload Scrambling Mechanism

	E.2 Receiving Serial ATM Cells
	Figure�E-2. Serial ATM Receive Procedure
	E.2.1 HEC Delineation Mechanism
	Figure�E-3. Cell Delineation State Diagram

	E.3 Serial Interface Programming Example for Serial ATM
	Table�E-1. Serial Interface Register Programming Example for Serial ATM
	E.3.1 Serial Interface RAM
	Table�E-2. ATM Cell Transmission and Reception Programming Example

	E.3.2 Parallel Port Registers
	Table�E-3. TDMA Port Pin Requirements
	Table�E-4. Port Register Programming Example

	Glossary
	Index

