
Xtrinsic
Intelligent Sensing Framework v1.1

Software Reference Manual
on the FXLC95000 Intelligent Motion-Sensing Platform

Document Number: ISF1P195K_SW_REFERENCE_RM
Rev 1.0, 2/2014

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
About This Document

1.1 Purpose...7

1.2 Audience...7

1.3 Terminology and Conventions...7

1.3.1 Technical Terms..7

1.3.2 Abbreviations...9

1.3.3 Notational Conventions...10

1.4 References..11

Chapter 2
Introduction

2.1 FXLC95000 System Overview..13

2.1.1 Development System Requirements..15

2.2 FXLC95000CL Hardware Device..15

Chapter 3
Intelligent Sensing Framework

3.1 ISF Architecture...17

3.2 Application Support..19

3.2.1 Freescale MQX™ RTOS Components...19

3.2.1.1 Component Configuration...20

3.2.1.2 ISF Tasks and Initialization...20

3.2.2 Freescale MQX™ RTOS Port for FXLC95000..22

3.2.2.1 Bootup Reset..22

3.2.2.2 RTOS Timer..22

3.2.2.3 Linker File Memory Map..23

3.2.2.4 Queued SPI Module Configuration...24

3.2.2.5 Task Memory Deallocation...24

3.2.2.6 Servicing Non-Maskable Interrupts...25

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 3

Section number Title Page

3.2.3 Freescale MQX™ RTOS Task Preemption Control Considerations..25

3.3 Communications...26

3.3.1 ISF Command Interpreter..26

3.3.2 Mailbox Interface...27

3.3.3 The Command/Response Paradigm...28

3.3.3.1 Command Response Mailbox Layout...29

3.3.3.2 Command Processing..30

3.3.4 The Quick-Read Paradigm..32

3.3.4.1 Quick-Read Mailbox Layout...34

3.3.4.2 Configuring the Quick-Read Mailboxes..35

3.3.4.3 Mailbox Application Control Config Register..40

3.3.5 Device Messaging..41

3.3.5.1 Device Messaging concepts...42

3.3.5.2 Usage Example..44

3.3.6 Host Proxy...45

3.3.6.1 Host Proxy Concepts and Theory of Operation...45

3.3.6.2 Implementing a Proxy Application using the Host Proxy...47

3.3.7 I2C Master Interfaces..53

3.3.7.1 Theory of Operation..53

3.3.7.2 Bus Locking...53

3.3.7.3 Usage Example..54

3.3.8 Communications Channel Configuration..55

3.3.9 Bus Management...55

3.3.10 Built-in Commands..57

3.3.10.1 Device Info command..57

3.4 Sensor Management...59

3.4.1 Sensor Manager Signal Tap Mechanism...61

3.4.2 Sensor Manager Subscription Tokens...61

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

4 Freescale Semiconductor, Inc.

Section number Title Page

3.4.3 Using the Sensor Management API ..61

3.4.3.1 Sensor Manager Subscription Quality of Service..64

3.4.3.2 Sensor Subscription Compatibility ...65

3.4.4 Digital Sensor Abstraction (DSA)...66

3.4.4.1 Digital Sensor Abstraction Theory of Operation...67

3.4.4.2 Implementing a New Digital Sensor Abstraction Adapter..68

3.4.5 System Configuration..69

3.5 Power Management..70

3.5.1 Power Management Concepts and Theory of Operation...70

3.5.2 Power Management Design...71

3.5.3 Power Level implementations for the FXLC95000...72

3.5.4 Using the Power Management Interfaces..73

3.5.5 Timer Service...73

3.6 Application Integration...74

3.6.1 Interrupt Output Integration...77

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 5

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

6 Freescale Semiconductor, Inc.

Chapter 1
About This Document

1.1 Purpose
This reference manual describes the features, architecture, and programming model of the
FXLC95000 system. The system includes the Xtrinsic FXLC95000CL device, the
Freescale MQXTM firmware, the Xtrinsic Intelligent Sensing Framework (ISF) firmware,
and embedded applications which leverage the ISF. This document focuses on the core
ISF functionality and its use to build user embedded applications. Comprehensive
documents that focus on installation instructions, release notes, application development
and API for ISF are listed in References and are available on the Xtrinsic ISF website.

1.2 Audience
This document is primarily for system architects and software application developers
currently using or considering use of the FXLC95000 platform as the basis for an
intelligent sensor system in an end-user product.

1.3 Terminology and Conventions
This section defines the terminology, abbreviations, and other conventions used
throughout this document.

1.3.1 Technical Terms

application callback ID The identifier used by the Command Interpreter to determine which registered callback function
is invoked by the Command Interpreter on behalf of the embedded application. Depending on
the context, the terms application callback ID or application ID or callback ID may be used.

Table continues on the next page...

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 7

http://www.freescale.com/isf

application ID See application callback ID.

BusHandle A handle identifying the bus to use for I2C transactions.

callback See callback function.

callback ID See application callback ID.

callback function A function registered by a software component, invoked on behalf of the registering
component. The function usually contains instructions to communicate with or call back to the
registering component. Also referred to as callback.

channel A representation of a separate communications pathway to one or more external slave devices.

ChannelDescriptor A descriptor identifying the channel for communications using Device Messaging.

DeviceHandle A handle identifying the device used for Device Messaging transactions.

Digital Sensor Abstraction Abstraction layer in the Sensor Manager to enable communications with multiple types of
sensors.

embedded application A program that executes on the intelligent sensing platform as an independent unit of
functionality. It consists of a set of one or more tasks providing outputs consumed outside the
intelligent sensing platform. Independence means that an application may be added or
removed from a firmware build without interfering with the functionality of other applications.
Applications typically are run on behalf of a user as opposed to a simple support task which is
run as part of the Intelligent Sensing Framework.

end-user product A third-party product that hosts a sensing sub-system.

event group A 32-bit group of event bits used to let tasks synchronize and communicate. There are two
event group types: fast event groups and named event groups.

event number The category number, which could be either configuration or data ready.

firmware The combination of code and data stored in a device's flash memory.

framework The infrastructure code providing the execution environment for embedded applications.

function A portion of code taking a pre-defined set of input parameters that performs a series of
instructions and returns a pre-defined set of output values. A function may be invoked from one
or more points in an executable program.

FXLC95000 FXLC95000 firmware—The combination of code and data stored in the FXLC95000CL device's
flash memory.

FXLC95000 intelligent sensor system—The combination of the FXLC95000 platform and
external sensor hardware that interact together via hardware and software protocols. Also
referred to as FXLC95000 system.

FXLC95000 platform—The combination of the FXLC95000CL device and FXLC95000
firmware. Also referred to as FXLC95000 and platform.

FXLC95000 system—The FXLC95000 platform and external sensor hardware that interact
together via hardware and software protocols. Also referred to as FXLC95000 intelligent sensor
system.

FXLC95000CL The physical packaged part. Also referred to as FXLC95000CL hardware device.

host application A program that executes on the host processor.

host proxy An Intelligent Sensing Framework (ISF) component that allows a host processor to remotely
configure and subscribe to all the managed sensors.

intelligent sensing platform The combination of the device and firmware. Also referred to as platform.

Intelligent Sensing
Framework (ISF)

The Freescale-provided software middleware layer enabling the development of custom
embedded sensor applications with increased portability and ease-of-use, and decreased time-
to-market.

intelligent sensor system The platform and external sensor hardware that interact together via hardware and software
protocols. Also referred to as system.

period The time between successive repetitions of a given phenomena. Period is equal to the inverse
of frequency).

Table continues on the next page...

Terminology and Conventions

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

8 Freescale Semiconductor, Inc.

platform The combination of the device and firmware. Also referred to as intelligent sensing platform.

proxy number A unique number assigned at the time the application is registered with the host proxy.

Sensor Adapter A Sensor Adapter implements the Sensor Manager's Digital Sensor Abstraction interface for a
particular physical sensor and handles the device-specific communications and interactions
with the physical sensor allowing the Sensor Manager to manage sensors at a higher level of
abstraction. ISF requires a Sensor Adapter for each sensor being managed in the system.

sensor ID The enumerated value that indexes into the global sensor configuration array.

service family A logical grouping of software components providing related functionality.

signal tap An access mechanism to sensor data. Also referred to as tap.

SlaveHandle A handle identifying the slave device used for I2C transactions.

system The platform and external sensor hardware that interact together via hardware and software
protocols. Also referred to as intelligent sensor system.

tap An access mechanism to sensor data. Also referred to as signal tap.

task An operating entity within the Intelligent Sensing Framework (ISF) scheduled to execute by the
Freescale MQXTM RTOS. A task may entail the execution of one or more functions.

transport Communications mechanism.

Examples: I2C, Bluetooth©, Ethernet, and USB

token Result of a successful callback function registration with the bus manager used in subsequent
bus management calls to refer to a registered callback function.

vector base register A register in the ColdFire memory map that controls the location of the exception vector table.

1.3.2 Abbreviations

AFE Analog Front End

API Application Programming Interface

BM Bus Manager

BSP Board Support Package

CI Command Interpreter

CMD Command

COCO Conversion Complete (hardware), Command Complete (software)

CRC Cyclic Redundancy Check

CSR Control and Status Register

DFC Data Format Code

DM Device Messaging

DSA Digital Sensor Abstraction

FOPT Flash OPTions register

IIR Infinite Impulse Response

ISF Intelligent Sensing Framework

ISP Intelligent Sensing Platform

ISR Interrupt Service Routine

MB Mailbox

NMI Non-Maskable Interrupt

Table continues on the next page...

Chapter 1 About This Document

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 9

PDB Programmable Delay Block

PM Power Manager

POR Power-On-Reset

PSP Processor Support Package

QR Quick-Read

QSPI Queued SPI

RCSR Reset Control and Status Register

SM Sensor Manager

SOF Start Of Frame

SPI Serial Peripheral Interface

VBR Vector Base Register

1.3.3 Notational Conventions

cleared/set When a bit has the value 0, it is said to be cleared; when it has a value of 1, it is said to be set.

MNEMONICS Mnemonics which may represent command names, defined macros, constants, enumeration
values are shown as, for example, CI_DEV_INFO.

programming domain
entity

Entities such as functions, data structures are shown as, for example device_info_t.

0x Prefix to denote a hexadecimal number

h Suffix to denote a hexadecimal number

nibble A 4-bit data unit

byte An 8-bit data unit

word A 16-bit data unit

longword A 32-bit data unit

CAUTION, Note, and Tip statements may be used in this manual to emphasize critical,
important, and useful information. The statements are defined below.

CAUTION
A CAUTION statement indicates a situation that could have
unexpected or undesirable side effects or could be dangerous to
the deployed application or system.

Note
A Note statement is used to point out important information.

Tip
A Tip statement is used to point out useful information.

Terminology and Conventions

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

10 Freescale Semiconductor, Inc.

1.4 References
1. FXLC95000CL Intelligent, Motion-Sensing Platform Data Sheet: FXLC95000CL,

Freescale Semiconductor, Rev. 1.2, 08/2013 http://www.freescale.com/files/sensors/
doc/data_sheet/FXLC95000CL.pdf

2. FXLC95000CL Intelligent, Motion-Sensing Platform Hardware Reference Manual:
FXLC95000CLHWRM, Rev. 0.6, 05/2013 http://www.freescale.com/files/sensors/
doc/ref_manual/FXLC95000CLHWRM.pdf

3. Release Notes for Intelligent Sensing Framework 1.1 on the FXLC95000 Intelligent
Motion-Sensing Platform: ISF1P1_95K_CORE_LIB_RELEASE_RN, Rev 1.0,
12/2013. http://www.freescale.com/files/sensors/doc/support_info/
ISF1P1_95K_CORE_LIB_RELEASE_RN.pdf

4. Installation Instructions for Intelligent Sensing Framework 1.1 on the FXLC95000
Intelligent Motion-Sensing Platform: ISF1P1_95K_CORE_LIB_INSTALL_INS,
Rev 1.0, 12/2013. http://www.freescale.com/files/sensors/doc/support_info/
ISF1P1_95K_CORE_LIB_INSTALL_INS.pdf

5. API Reference Manual for Intelligent Sensing Framework 1.1 on the FXLC95000
Intelligent Motion-Sensing Platform: ISF1P1_95K_API_REFERENCE_RM, Rev
1.0, 12/2013. http://www.freescale.com/files/sensors/doc/support_info/
ISF1P1_95K_API_REFERENCE_RM.pdf

6. User's Guide for Applications and Templates for Intelligent Sensing Framework 1.1
on the FXLC95000 Intelligent Motion-Sensing Platform:
ISF1P1_95K_APPS_TMPL_PG, Rev 1.0, 12/2013. http://www.freescale.com/files/
sensors/doc/support_info/ISF1P1_95K_APPS_TMPL_PG.pdf

7. User's Guide for Reference Applications for Intelligent Sensing Framework 1.1 on
the FXLC95000 Intelligent Motion-Sensing Platform:
ISF1P1_95K_ELF_INSTALL_INS, Rev 1.0, 12/2013. http://www.freescale.com/
files/sensors/doc/support_info/ISF1P1_95K_ELF_INSTALL_INS.pdf

8. Freescale MQX™ RTOS Reference Manual: MQXRM, Rev. 6 04/2011 http://
www.freescale.com/files/32bit/doc/ref_manual/MQXRM.pdf

9. Freescale MQX™ RTOS User's Guide: MQXUG, Rev. 3 04/2011 http://
www.freescale.com/files/32bit/doc/user_guide/MQXUG.pdf

Chapter 1 About This Document

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 11

http://www.freescale.com/files/sensors/doc/data_sheet/FXLC95000CL.pdf
http://www.freescale.com/files/sensors/doc/data_sheet/FXLC95000CL.pdf
http://www.freescale.com/files/sensors/doc/ref_manual/FXLC95000CLHWRM.pdf
http://www.freescale.com/files/sensors/doc/ref_manual/FXLC95000CLHWRM.pdf
http://www.freescale.com/files/sensors/doc/support_info/ISF1P1_95K_CORE_LIB_RELEASE_RN.pdf
http://www.freescale.com/files/sensors/doc/support_info/ISF1P1_95K_CORE_LIB_RELEASE_RN.pdf
http://www.freescale.com/files/sensors/doc/support_info/ISF1P1_95K_CORE_LIB_INSTALL_INS.pdf
http://www.freescale.com/files/sensors/doc/support_info/ISF1P1_95K_CORE_LIB_INSTALL_INS.pdf
http://www.freescale.com/files/sensors/doc/support_info/ISF1P1_95K_API_REFERENCE_RM.pdf
http://www.freescale.com/files/sensors/doc/support_info/ISF1P1_95K_API_REFERENCE_RM.pdf
http://www.freescale.com/files/sensors/doc/support_info/ISF1P1_95K_APPS_TMPL_PG.pdf
http://www.freescale.com/files/sensors/doc/support_info/ISF1P1_95K_APPS_TMPL_PG.pdf
http://www.freescale.com/files/sensors/doc/support_info/ISF1P1_95K_ELF_INSTALL_INS.pdf
http://www.freescale.com/files/sensors/doc/support_info/ISF1P1_95K_ELF_INSTALL_INS.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/MQXRM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/MQXRM.pdf
http://www.freescale.com/files/32bit/doc/user_guide/MQXUG.pdf
http://www.freescale.com/files/32bit/doc/user_guide/MQXUG.pdf

References

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

12 Freescale Semiconductor, Inc.

Chapter 2
Introduction

2.1 FXLC95000 System Overview
The FXLC95000 system includes one FXLC95000CL device, Freescale MQXTM RTOS
firmware, Intelligent Sensing Framework (ISF) firmware, user embedded applications,
and an optional host application.

The FXLC95000CL device is the second in Freescale’s line of intelligent sensor devices
and integrates a low-g 3-axis MEMS accelerometer, a low-power 32-bit programmable
CPU for digital signal processing as well as several peripheral functional blocks. For
more information on hardware features, refer to the Xtrinsic FXLC95000CL Intelligent
Motion-Sensing Platform data sheet, listed in References.

The presence of the 32-bit CPU transforms the FXLC95000CL device to an intelligent
sensing platform and distinguishes it from an ordinary digital smart sensor. The
FXLC95000CL device offers the ability to offload the signal processing and external
device management functions traditionally performed by the host processor onto the
intelligent sensing platform. Doing so has the potential to reduce the overall power
consumption of the device and/or free some host processor cycles for other tasks.

Unlike sensor devices with fixed firmware images or embedded functions with limited
configurability which severely constrain customization, the FXLC95000CL device
provides users an open programming environment. This environment allows users with
widely varying and growing functional requirements the ability to add user-specific
functionality to the system. A software framework hosted on the FXLC95000CL
provides a common, easy to use interface which empowers users to quickly develop
hardware-independent, portable, real-time application code. This framework is named the
Xtrinsic Intelligent Sensing Framework (ISF).

Supporting this framework is the Freescale real-time operating system, Freescale
MQXTM RTOS.

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 13

Embedded
Services

Embedded
Applications

Context/IntentGestures
Signal

Processing

OS
Services

Hardware
Abstraction

Host
Communications

Sensor
Management

Application
Support

(MQX

Sensor
Fusion

FXLC95000CL Device HardwareHardware

Intelligent Sensing Framework (ISF)

Device

Management

Integrated
Services

TM RTOS)

FXLC95000CL Device Hardware

External
clock
domain

Internal
clock
domain

Analog Front End

SDA1,SCL1

8

BKGD/MS

Temperature
sensor

Drive circuit

C2V

ADC Peripheral
bus interface

Trim

3-axis
accelerometer

transducer

System Integration
Module

Interrupt
controller

16 KB
RAM

ColdFire
V1

16 KB
ROM

128 KB
Flash

memory

RGPIO[15:0]

Flash
controller

I2C master

SPI master

2 x 8 Port
control

16-bit modulo
timer

Programmable
Delay Block

Two-channel
TPM

Clock module
(16 MHz)

Control and
mailbox

register set

SPI slave

I2C slave

16

16

8

16

8

8

16

8

8

16

8

/

/

/

SCLK2. SSB2
MOSI, MISO,

SP_SCR[PS]

SSB

SCLK

MISO

MOSI

SDA0

SCL0

RESETB

INT_I

CPU

/

/ PDB_A,
PDB_B

TPMCH0,
TPMCH1

RGPIO0, ... ,
RGPIO15

Figure 2-1. FXLC95000 system components

See Figure 2-1 for a graphical overview of the FXLC95000 system components. The
FXLC95000 system components providing the functionality required for developing
sensor applications are as follows:

• Device hardware: The FXLC95000CL device hardware incorporates dedicated
accelerometer MEMS transducers, signal conditioning, data conversion, and a 32-bit
microcontroller with 16K ROM, 16K RAM and 128K flash memory, timers, GPIO,
SPI, and I2C.

• ISF: ISF provides the capability to subscribe to external, as well as on-board sensor
data and read such data at various rates. It also supports communication between the
host processor and the FXLC95000 platform via the slave port mailboxes. ISF allows
the FXLC95000 to act as a sensor hub for external sensors and to manage that data
for the host processor.

• MQX: Freescale MQXTM RTOS is a run-time library of functions that provides real-
time multi-tasking capabilities to user applications. It operates as a priority-

FXLC95000 System Overview

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

14 Freescale Semiconductor, Inc.

preemptive operating system. The main features are its scalable size, component-
oriented architecture, and ease of use.

• FXLC95000 support: Freescale's CodeWarrior development tool provides
customers the means to load and run their applications on the FXLC95000 platform.
CodeWarrior versions 10.4 and above are currently supported.

2.1.1 Development System Requirements

For developing applications with the FXLC95000 system, CodeWarrior 10.4 or later
must be installed in a Microsoft® Windows® environment.

2.2 FXLC95000CL Hardware Device
The FXLC95000CL hardware is programmable with user-specific firmware to create an
intelligent high-precision, and highly flexible, motion-sensing platform able to manage
multiple sensor inputs. The user-specific programming flexibility allows the device to be
used for sophisticated applications such as e-compass with tilt compensation and
calibration, pedometer, and gesture recognition, .

Figure 2-2 shows FXLC95000CL hardware blocks and interfaces.

External
clock
domain

Internal
clock
domain

Analog Front End

SDA1,SCL1

8

BKGD/MS

Temperature
sensor

Drive circuit

C2V

ADC Peripheral
bus interface

Trim

3-axis
accelerometer

transducer

System Integration
Module

Interrupt
controller

16 KB
RAM

ColdFire
V1

16 KB
ROM

128 KB
Flash

memory

RGPIO[15:0]

Flash
controller

I2C master

SPI master

2 x 8 Port
control

16-bit modulo
timer

Programmable
Delay Block

Two-channel
TPM

Clock module
(16 MHz)

Control and
mailbox

register set

SPI slave

I2C slave

16

16

8

16

8

8

16

8

8

16

8

/

/

/

SCLK2. SSB2
MOSI, MISO,

SP_SCR[PS]

SSB

SCLK

MISO

MOSI

SDA0

SCL0

RESETB

INT_I

CPU

/

/ PDB_A,
PDB_B

TPMCH0,
TPMCH1

RGPIO0, ... ,
RGPIO15

Figure 2-2. Block diagram of the FXLC95000CL

Chapter 2 Introduction

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 15

FXLC95000CL Hardware Device

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

16 Freescale Semiconductor, Inc.

Chapter 3
Intelligent Sensing Framework
The Intelligent Sensing Framework (ISF) consists of the three service families listed
below. Each service family provides a set of related capabilities exposed through service
family components.

• Application Support provided by Freescale MQXTM RTOS
• Communications
• Sensor Management

3.1 ISF Architecture
The ISF architecture has been developed by taking into account a large set of
requirements from various sensor related application domains (motion sensing,
orientation detection, e-compass, etc.). These requirements are divided into distinct areas
of domain-level functionality.

ISF partitions the domain-level functions into well-defined low-level components or
specific areas within those components. By doing so, ISF separates platform-specific
interfaces from the general domain-level functionality. The low-level components or
specific areas within components are highly portable so as to minimize the impact of
supporting multiple platforms and deployment environments. Closely related components
are organized into a named group referred to as a service family. The ISF architecture can
best be visualized by the block diagram in Figure 3-1.

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 17

Intelligent Sensing Framework (ISF)

Embedded
Services

Embedded
Applications

Context/IntentGestures
Signal

Processing

OS
Services

Hardware
Abstraction

Host
Communications

Sensor
Management

Application
Support

Sensor
Fusion

FXLC95000CL device HardwareHardware

Device

Management

Integrated
Services

(MQXTM RTOS)

Figure 3-1. ISF Architecture

The ISF software stack is built in layers in a bottom up fashion starting with the
Hardware Abstraction layer and by adding progressively advanced services in each layer
above it. The top layer of the stack is the Embedded Services layer which provides
powerful functions for the user to build intelligent sensor applications. The diagram also
shows the service families which span the layers. Note that the service families in gray in
the block diagram represent future functionality and are not present in ISF v1.1. The
functionality grouped together within each ISF service family is briefly described below
and more detailed documentation is available on features, configuration and use of the
functionality provided.

The Host Communications service family provides the ability to pass data into and out
of the Intelligent Sensing Platform via various interfaces such as the Slave port (I2C and
SPI and external interrupt). It provides a common abstraction for these various interfaces
as well as some domain-specific application-layer protocol implementations for use when
operating as a slave device on the Slave I2C and Slave SPI buses.

The Sensor Management service family provides uniform interfaces to applications
running on either the intelligent sensing platform or the external host for accessing
physical data measured by the on-board accelerometer. The ISF Sensor Manager
component (server) provides sensor data to registered applications (clients) that need
sensor data. The Sensor Manager interface allows each application to subscribe to a
sensor's data samples at different rates.

The Application Support service family provides the basic run-time operating
environment and exposes the system functionality necessary to support the execution of
embedded applications on the Intelligent Motion-Sensing Platform. This includes such
things as scheduling of an application’s threads, synchronization mechanisms, memory

ISF Architecture

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

18 Freescale Semiconductor, Inc.

management, and access to timer and clock functionality. In addition, Application
Support provides some higher-level management capabilities for collecting and
publishing application run-time status information.

Software components from the above mentioned service families are packaged into
libraries. The ISF core library packages several software components to form the set of
base functionality. Additional functionality provided by ISF is contained in separately
deployable extension units (libraries) of functionality, each enabling a different capability
or set of related capabilities. These add-on units may make use of functionality provided
in the core and additional functionality from other extensions.

3.2 Application Support
This section provides details of Freescale MQX™ RTOS as configured for the ISF
implementation in FXLC95000, and its usage. The ISF implementation provided for the
FXLC95000 is based upon Freescale's MQX™ RTOS version 3.7. For more information,
refer to the Freescale MQX™ RTOS Reference Manual listed in References.

3.2.1 Freescale MQX™ RTOS Components

The Freescale MQX™ RTOS component configuration is managed by the user via
header file preprocessor macros. Configuration is done in header files that are part of the
FXLC95000 port. When a change to the configuration is made, the Freescale MQX™
RTOS build must be recompiled to incorporate the changes.

The MQX for FXLC95000 software package is configured to use the lightweight
Freescale MQX™ RTOS components. These components provide basic functionality,
require minimal memory, and run quickly. For more information on the lightweight
Freescale MQX™ RTOS components, refer to the Freescale MQX™ RTOS User's Guide
listed in References.

The following Freescale MQX™ RTOS components are included in the MQX for
FXLC95000 software package.

• Lightweight event
• Lightweight memory management
• Lightweight messaging
• Lightweight logs
• Lightweight timer

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 19

In some cases, more functionality may be needed by the user than the lightweight
components provide. Freescale MQX™ RTOS also provides heavyweight components
with more features that could be included in a user embedded application. The following
Freescale MQX™ RTOS heavyweight components are included in the MQX for
FXLC95000 software package.

• Semaphores

The heavyweight semaphore component provides priority inheritance whereas the
lightweight semaphore does not. The heavyweight components do incur more overhead
in terms of memory and latency. Therefore, the following heavyweight Freescale MQX™
RTOS components are not configured in ISF but may be added to a user embedded
application if required.

• Events
• Mutexes
• Memory management
• Messages
• Named objects
• Partitions
• Logs
• Timer
• Software watchdog

3.2.1.1 Component Configuration

The Freescale MQX™ RTOS allows components to be configured through header files.
In the FXLC95000 port, the optional heavyweight components are configured in the
fxlc95000eval_ram_config.h header file. This header file can be found in the following
folder after a default installation:

C:\Program Files\Freescale\Freescale MQX 3.7\lib\Fxlc95000eval.cw10\

Defines are contained within the header file to include or exclude the optional
components by setting a value of 1 to include or 0 to exclude. For more information on
Freescale MQX™ RTOS components and configuration, see the Freescale MQX™
RTOS User's Guide listed in References.

Application Support

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

20 Freescale Semiconductor, Inc.

3.2.1.2 ISF Tasks and Initialization
ISF has several tasks that must be initialized and running to support its services. These
include but are not limited to the Command Interpreter task, the Sensor Manager task,
and the Bus Manager task. ISF makes it easy to declare these tasks under Freescale
MQX™ RTOS by creating a preprocessor macro called ISF_TASKS_ATTRIBUTES. This macro
expands to declare all of the ISF tasks in a form that is usable inside the
TASK_TEMPLATE_STRUCT MQX_template_list required by Freescale MQX™ RTOS.

// Task Template Structure
TASK_TEMPLATE_STRUCT MQX_template_list[] = {
 { 5, main_task, 512, 13, "main", MQX_AUTO_START_TASK },
 ISF_TASKS_ATTRIBUTES
 { 8, user_task1, 2000, 15, "test1", MQX_AUTO_START_TASK },
 { 0, 0, 0, 0, 0, 0 }
};

The ISF_TASKS_ATTRIBUTES macro automatically accounts for the user’s configuration
settings selected in the file isf_user_config.h where additional macros are defined
allowing a user to choose which ISF components are to be enabled in their system. In
addition to declaring the ISF tasks, it is necessary to call initialization functions for some
of these components. ISF provides a top-level initialization function that must be called
prior to using the ISF component functionality. To ensure that this task runs first, ISF
declares a special isf_init_task that is also placed in the task list by the
ISF_TASKS_ATTRIUBUTES macro. This init task is declared with highest priority to guarantee
that it executes first. Once the necessary component initialization routines have been
executed, the init task exits and any memory it consumed is released back to the
operating system.

The isf_init_task also generates a MQX lightweight event called
SYSTEM_READY_EVENT at the completion of the ISF initialization process. In order
to guarantee proper initialization, user-defined tasks must wait for this event prior to
execution of their own initialization. The following code can be inserted at the beginning
of the task to wait for the event:

// Wait for ISF system initialization to complete.
isf_system_sync();

Care should be taken to honor the task priority assignments made by ISF for proper
system operations. User tasks must not be assigned at higher priority levels than ISF
system tasks. As configured, out-of-the-box ISF tasks are at priorities between 9 and 12.
Therefore, user tasks are expected to run at priority numbers of 13 or greater. ISF task
IDs start at 50 and increase. User-defined tasks are expected to be defined with task IDs
less than 50.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 21

In the example, two user tasks are declared in addition to the ISF tasks. The first task
called main has task ID = 5, and entry point main_task(). It is configured for 512 bytes of
stack space, has priority level 13, and is started automatically by Freescale MQX™
RTOS.

The ISF_TASKS_ATTRIBUTES macro expands into task definitions for the ISF tasks, for
example, the Sensor Manager, the Command Interpreter, and the Bus Manager. The
second user task is named test1, has task ID = 8, is configured for 2000 bytes of stack
space, has priority level 15 and is also started automatically by Freescale MQX™ RTOS.

As specified by Freescale MQX™ RTOS, a task definition entry of all zeros marks the
end of the task definition array.

3.2.2 Freescale MQX™ RTOS Port for FXLC95000

The Freescale MQX™ RTOS is ported to run on the FXLC95000CL hardware device.
The porting changes are isolated to the Freescale MQX™ RTOS for FXLC95000.

3.2.2.1 Bootup Reset

As a consequence of the FXLC95000 port changes, the Freescale MQX™ RTOS boot
process has the ability to reset to internal ROM code to avoid a lockup cycle if the
previous reset occurred due to illegal conditions. Forcing a reset to internal ROM code
prevents the CPU from encountering the same illegal instruction or address again and
going into an endless reset cycle. In this situation, the debug port may not be able to stop
the CPU, the debugger may fail, and the user may not be able to download new code.

To detect the cause of the previous reset, the boot code examines the Reset Control and
Status (RCSR) register. The RCSR register contains bits to indicate if the last CPU reset
was due to an illegal instruction or address. If the reset was due to any illegal condition,
then the boot code directs the CPU to boot into the internal ROM code and perform a
software reset. The CPU runs in ROM command interpreter mode when the software
reset is complete, allowing the debugger to download new code.

3.2.2.2 RTOS Timer

Freescale MQX™ RTOS, like many other RTOSes, uses a timer to generate an interrupt
at a predefined interval to run the kernel's scheduler. For the FXLC95000CL device, the
Programmable Delay Block (PDB) timer is reserved for use by the RTOS. The PDB
timer generates an interrupt every 1 millisecond.

Application Support

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

22 Freescale Semiconductor, Inc.

CAUTION

The user should not use the PDB timer and must not modify
any of the PDB registers listed here.

PDB Register Address

Control & Status Register (CSR) 0xFFFFEC00

Delay A Register (DELAYA) 0xFFFFEC02

Delay B Register (DELAYB) 0xFFFFEC04

Modulus Register (MOD) 0xFFFFEC06

3.2.2.3 Linker File Memory Map

A default linker file is provided for the user application to link with the correct flash and
RAM memory space available. The linker file, intflash_mqx.lcf, is included in the
Freescale MQX™ RTOS for FXLC95000 and can be found in the following folder:

C:\Program Files\Freescale\Freescale MQX 3.7\lib\Fxlc95000eval.cw10\bsp\

The FXLC95000 has 128KB of flash memory with address range from 0x0 to 0x20000.
It has 16KB of RAM memory that ranges from 0x800000 to 0x804000. There are small
pockets of memory that are reserved as shown in Table 3-2 and Table 3-3. The supplied
default linker file configures the flash and RAM reserved memory areas to prevent
accidental use by the user application. It targets the user application code and data to the
non-reserved region noted in Table 3-2 and Table 3-3.

Table 3-2. RAM memory space allocation

RAM Memory Range Memory Size (bytes) Description

0x800000 to 0x800023 36 Free for use by applications

0x800024 to 0x8000FB 216 Reserved for internal ROM code

0x8000FC to 0x804000 16,132 Free for use by applications

In the flash memory space, the first part of the memory stores exception vectors.

Table 3-3. Flash memory space allocation

RAM Memory Range Memory Size (bytes) Description

0x00000 to 0x001CF 464 Reserved for exception vectors

0x001D0 to 0x1FFFB 130604 Free for user application

0x1FFFC to 0x1FFFF 4 Reserved for the FOPT register

Most of the FLASH and RAM memory is free for the user application. The user
application consists of the following:

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 23

• Freescale MQX™ RTOS, including board support package (BSP) and processor
support package (PSP)

• additional Freescale MQX™ RTOS and ISF components
• any user-written code

3.2.2.4 Queued SPI Module Configuration

The Queued SPI (QSPI) module in the FXLC95000CL contains signals that are
connected to the FXLC95000CL pins at power up. Some of these signals may be in a
dangling state until the QSPI module is enabled. This condition may cause a small
amount of current to leak and unneccesarily consume power.

To prevent this from happening, the boot code configures the QSPI pin to
FXLC95000CL Rapid General Purpose I/O (RGPIO) input pins. If the QSPI module is
used by an embedded application, then it is necessary to configure these pins to QSPI
functionality. The RGPIO_ENB register at address 0x00C00000 should be modified to
switch between QSPI and RGPIO functionality.

The QSPI signals that have been redirected as RGPIO input functions are shown in Table
3-4.

Table 3-4. QSPI Signals Redirected as RGPIO Input
Functions

Pin # QSPI Pin Description RGPIO Signals

18 Master Clock RGPIO10

19 Master output/Slave input RGPIO11

20 Master input/Slave output RGPIO12

21 Slave select RGPIO13

3.2.2.5 Task Memory Deallocation

At task initialization, the Freescale MQX™ RTOS for FXLC95000 kernel allocates a
dedicated memory area for the task. The size of the memory area is based on the task
descriptor overhead to maintain the task state and the requested stack size. A task is
permitted to allocate private memory “pools” within this dedicated kernel memory block
during execution. If these private memory pools are not deallocated when the task exits,
they continue to be held by the Freescale MQX™ RTOS kernel by default and cannot be
reused. The Freescale MQX™ RTOS specifically modified for the FXLC95000
automatically deallocates private memory pools when the task exits.

Application Support

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

24 Freescale Semiconductor, Inc.

In addition, there is a need for tasks to share persistent data allocated inside a task’s
dedicated memory block even after the original task exits. Thus, there is an additional
modification for the Freescale MQX™ RTOS specifically modified for the FXLC95000
which allows a task’s dedicated memory to persist after the original task exits.

3.2.2.6 Servicing Non-Maskable Interrupts

The ColdFire core in the FXLC95000CL device has seven levels of interrupt priority,
with level 7 being the highest level. The level 7 interrupt is a non-maskable interrupt
(NMI). The FXLC95000CL device has three sources of NMIs:

• INT_I (external interrupt)
• Frame Error
• Software Interrupt Level 7 (SWI7)

NMIs cannot be masked. Therefore, the execution code can be interrupted at any time.
However, the Freescale MQX™ RTOS kernel contains critical sections of code that
should not be interrupted. Such interruptions may cause corruption of the stack pointer.
Because of this limitation, the user cannot use the Freescale MQX™ RTOS API
_int_install_isr() to install an interrupt service routine (ISR) to service NMIs.

In order to properly handle NMIs, the Freescale MQX™ RTOS for FXLC95000 redirects
them to a lower level SWI6 interrupt. The user can use _int_install_isr() to install an ISR
for SWI6 and service the NMI. Three API function calls allow the user to determine the
source(s) of the NMI(s) and clear them.

• _get_nmi_source() returns the source(s) of the NMI interrupt. These predefined mask
values are used to mask out the desired interrupt: INT_NMI_BIT_MASK,
FRAMEERR_NMI_BIT_MASK, and SW7_NMI_BIT_MASK.

• _clear_nmi_source() clears a specific NMI source. Only one interrupt source can be
cleared at a time. This function accepts these parameters to clear the NMI interrupt
source: INT_NMI_BIT, FRAMEERR_NMI_BIT, and SW7_NMI_BIT.

• _clear_all_nmi_source() clears all NMI sources. This API is typically called during
initialization.

A small amount of latency is introduced with the redirection of the NMI to the SWI6
interrupt. This measured latency is 14.5 µs.1 Based on this measurement, the system is
theoretically unable to service NMIs faster than the rate of 1/14.5 µs or 68.97 kHz.

1. Measurement conducted using Freescale MQX™ RTOS v3.7 and CodeWarrior 10.2 with FXLC95000 bus clock running
at 16 MHz.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 25

3.2.3 Freescale MQX™ RTOS Task Preemption Control
Considerations

Freescale MQX™ RTOS provides two functions for controlling preemption. These
functions allow a task to control when it may be preempted by the scheduler.

• _task_start_preemption()

• _task_stop_preemption()

The behavior of these two functions is worth noting.

According to the Freescale MQX™ RTOS scheduler, preemption only occurs when a
running task is removed involuntarily from the run queue due to a higher priority task. A
task may also give up the CPU voluntarily, for example, by blocking or using task
synchronization mechanisms such as events, semaphores, and mutexes.

This means that even when preemption has been disabled by a task (by calling
_task_stop_preemption()), the task may give up the CPU by setting events, posting
semaphores, or otherwise explicitly causing a higher priority task to become ready-to-run.

Put another way, calling task_stop_preemption() will only guarantee that actions taken in an
interrupt service routine will not cause the currently executing task to be swapped out
until preemption is re-enabled, but calls to _lwevent_set(), lwsem_post(), etc. may still cause
the task to be swapped out in favor of a higher-priority task waiting for such an event.

3.3 Communications
The ISF Communications service family enables data passing between the host and the
intelligent sensing platform. This data can include commands, status, results, and sensor
data. Abstractions for communicating between the host and user embedded applications
via the Slave-Port Mailboxes are provided in the Command Interpreter component of the
Communications service family. In addition, ISF provides abstractions for
communicating with external I2C devices via the Device Messaging and Master I2C
components.

3.3.1 ISF Command Interpreter

The ISF Command Interpreter (CI) handles the dispatching of commands received via the
Slave-Port Mailboxes. The CI provides a general mechanism to take commands and data
read from the mailboxes and trigger the execution of callback functions registered by the
application that handles that command.

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

26 Freescale Semiconductor, Inc.

The CI processes commands in the order they are received. Commands can be built-in or
user-registered. Built-in commands are part of the ISF core functionality and cannot be
removed or modified by the user. User-registered commands can be tied to an application
and can register with the CI at run time by adding a command to the ci_callback array.

3.3.2 Mailbox Interface

The FXLC95000CL hardware provides a mailbox abstraction on top of the slave-port
serial interface. The term slave-port is used to refer to the FXLC95000CL’s slave
interface to the host processor, which may be configured to use either the I2C or SPI
protocol. The mailbox abstraction consists of 32 mailboxes, each an addressable register
that is 8 bits wide. For more information about the mailbox abstraction, refer to the
FXLC95000CL Hardware Reference Manual listed in References. The mailboxes are
used in turn to hold both incoming and outgoing data. That is, data sent by the bus master
is placed in these mailboxes by the slave-port peripheral hardware for use by the
firmware. Data written to the mailboxes by the firmware is used by the slave-port
peripheral hardware to satisfy read requests from the bus master.

The ISF Command Interpreter component provides an interface to the mailboxes that
embedded applications may use when communicating with the host processor. The
Command Interpreter interface allows an embedded application to interact with the host
processor using two different paradigms.

The Command/Response paradigm is a synchronous interface paradigm where the bus
master initiates an exchange by writing a command to the Slave-Port Mailboxes and the
firmware responds by placing its response data in the mailboxes. The bus master then
sends a second command to read the data from the mailboxes. A Command Complete
(COCO) bit in MB1 is used as a semaphore for when a command is sent to the Command
Interpreter and when a complete response put into the mailboxes by the Command
Interpreter may be read coherently.

The Quick-Read paradigm is an asynchronous interface paradigm where the firmware
keeps specific mailboxes filled with current data by updating the mailbox contents
whenever new data becomes available. This allows the host to send a single read
command at any time and have the data returned immediately. This Quick-Read
paradigm is most useful for making periodic output data from the embedded application
available to the host.

These two paradigms may be used separately or in combination depending on the
configuration of the mailboxes. By default, the mailboxes are all configured to support
Command/Response interactions, but the Command Interpreter provides the capability to
reconfigure some of the mailboxes to hold Quick-Read data. Characteristics of each

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 27

paradigm are presented next and example applications are supplied with FXLC95000
(documented in the Application Developer's User Guide listed in References) that may be
referred to for additional guidance.

3.3.3 The Command/Response Paradigm

The Command Interpreter (CI) implements the Command/Response mode using a
callback design pattern. The CI is notified whenever the bus master writes to the
mailboxes. It then reads the mailboxes, and uses the contents to identify the correct
recipient for the command written by the bus master and invokes that recipient’s
registered callback function. The CI writes the callback return status, response data if
generated, and a Command Complete (COCO) indication to the mailboxes. When the CI
sets the COCO bit to 1, the mailboxes contain the complete response, which may now be
read coherently. The bus master may choose to poll for this bit or may elect to configure
the device behavior to have an external interrupt sent to the master when the complete
response has been written, provided the interrupt pin has been appropriately wired. For
more information about proper wiring of the interrupt pin, refer to the FXLC95000CL
Hardware Reference Manual listed in References.

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

28 Freescale Semiconductor, Inc.

Callback
Function

FXLC95000CL
Mailboxes

ISF
Command
Interpreter

Write
Command

Packet

Host

Receive
interrupt

Clears
COCO

Initialization

Inspect App
Config data

Invoke
callback
function

Receive
status &
response

packet

Write
Mailboxes

Read
Mailboxes

ci_host_cmd_packet_t

ci_app_resp_packet_t

Check
COCO

ISF core

Sets
COCO

Application

Store
application

config
data

Validate
AppID

Access
Mailboxes

and
process

MB 0

MB 1

MB 2

...

MB 31

MB 3

MB 0 (AppID)

MB 1 (CMD/COCO)

MB 2 (Offset)

...

MB 31

MB 3 (Len)

MB 0 (AppID)

MB 1 (CMD/COCO)

MB 2 (Offset)

...

MB 31

MB 3 (Len)

Figure 3-2. The Command/Response paradigm

3.3.3.1 Command Response Mailbox Layout

To support Command/Response interactions, the Command Interpreter (CI) makes use of
the 32 8-bit mailbox registers as shown in Table 3-5.

Table 3-5. Mailbox Usage for Command/Response

Mailbox Mailbox Use

MB0 Application callback ID used by the CI to determine which registered callback to invoke.

MB1 Bit[6:0] contains the command to be executed. Commands are defined by applications.

Bit[7] is reserved for the command complete (COCO) status. The host writes a zero to this bit when
sending the command. After writing the command packet, the host may then poll this bit. The bit is set by
the CI when the callback completes and the response data has been written to the mailboxes.

MB2 Byte offset of the data requested by the host.

Table continues on the next page...

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 29

Table 3-5. Mailbox Usage for Command/Response (continued)

Mailbox Mailbox Use

To access only the data of interest, the host can specify an offset into the data block. The offset range is
from 0 to 255.

MB3 Requested number of data bytes to be read or written depending on the command.

MB4 - MB31 General data transfer.

NOTE: Any mailbox from MB4 to MB31 may be configured by the host for Quick-Read data. If a mailbox
is configured for Quick-Read data, it is not available for use by the CI for Command/Response
data transfer.

3.3.3.2 Command Processing

To understand the Command/Response mailboxes and their use, it is helpful to think of
each embedded application running on the device as having two logical buffers, one for
input and one for output data. Structurally, the buffers can be thought of as having a fixed
layout such that the value at a specific location within a buffer always contains the same
type of data.

Each application can allocate its own input buffer. The host can send data to a particular
target application by writing data into specific locations within that application's input
buffer. The locations are specified as an offset into the buffer along with the number of
bytes to write followed by the actual data values. To do this, the host writes the data to
the FXLC95000’s mailboxes in the following format:

The application ID of the target application is written in MB0,
the command type is written in MB1,
the offset into the target application’s buffer is written to MB2,
the number of bytes to write is written in MB3, and
the actual data values to write are then written starting with MB4.

As an example, to send a series of four bytes, containing values of 5, 6, 7, and 8
respectively, to the application with application callback ID 5 and place them at, for
instance, offset 2 in the application’s input buffer, the host would send an 8-byte
command sequence as follows:

MB0 MB1 MB2 MB3 MB4 MB5 MB6 MB7

Application
Callback ID

Command Number Offset #Bytes data data data data

5 CI_CMD_WRITE_CONFIG 2 4 5 6 7 8

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

30 Freescale Semiconductor, Inc.

The following command types are defined for use in isf_ci.h:

typedef enum
{
 CI_CMD_READ_VERSION = 0, // Requset to read version information
 CI_CMD_READ_CONFIG = 1, // Request to read an app’s configuration data
 CI_CMD_WRITE_CONFIG = 2, // Request to write an app’s configuration data
 CI_CMD_READ_APP_DATA = 3, // Request to read from an app’s output buffer
 CI_CMD_UPDATE_QUICKREAD = 4, // Request an app to update its Quick-Read data
 CI_CMD_READ_APP_STATUS = 5, // Request to read an application’s status
 CI_CMD_MAX = 128 // Maximum number of possible CI commands
} ci_commands_enum;

Each user-defined application is allowed to define its own commands in the range
between (CI_CMD_READ_APP_STATUS + 1) and CI_CMD_MAX. For example, an application may
define the following new command:

#define CI_CMD_APP_LOCAL_1 (CI_CMD_READ_APP_STATUS + 1)

Then, within the application's CI callback, the following code example could be used to
handle the new command:

// Embedded Application defined command
case CI_CMD_APP_LOCAL_1:
 // Local command processing
 if (ERROR == local_cmd_processing(pHostPacket))
 {
 callbackRet = CI_ERROR_COMMAND;
 }
 break;

Similar to the way that applications may use the mailboxes as input buffers, each
embedded application can utilize mailboxes as a logical buffer of outputs. Output data
within this buffer can be thought of as having a fixed layout such that the value at a
specific location always contains the same type of data.

CAUTION
While it is possible to send data from the host to the
FXLC95000’s mailboxes with a starting mailbox offset other
than zero, e.g., writing data to MB4 through MB9 without
writing to MB0 through MB3, the Command Interpreter
expects MB0 through MB3 to be written for each Command/
Response message. Sending a command without writing MB0-
MB3 will result in undefined behavior.

For example, an application may produce an X, Y, Z output vector where each vector
component is a 16-bit value. The application may place these values in its output buffer
as: X at bytes 12 and 13, Y at bytes 14 and 15, and Z at bytes 16 and 17. To read these
values, the host asks the application for the 6 bytes of data located at an offset of 12 in its
buffer. An application callback ID is used to identify the application whose data is to be
retrieved. The Command Interpreter (CI) uses the application callback ID as an index into

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 31

its table of registered callbacks to determine the callback to invoke. Each application that
exposes data for the host to read has a callback registered with the CI. Each callback
needs to be able to read and write its associated application’s data buffer. Because a
callback is closely associated with an application, the application callback ID can also be
thought of as an application ID, although not all applications will have an associated
application callback ID.

Note
The terms application callback ID, application ID, and callback
ID are used interchangeably throughout this reference manual.

When the callback function completes, it returns the status of the command execution
along with a response packet to the CI. The CI then writes the response status and packet
to the mailboxes and sets the command complete (COCO) bit to notify the host that the
command has been processed. Once the host sees the COCO bit set, it can safely read the
mailboxes to obtain the status and the data from the application.

Continuing the previous example, in order to request 6 bytes at offset 12 from an
application with application callback ID 5, the host would send a 4-byte command
sequence as follows:

MB0 MB1 MB2 MB3

Application
Callback ID

Command Number Offset #Bytes

5 CI_CMD_READ_APP_DATA 12 6

Note

The CI_CMD_READ_APP_DATA command enum should be used when
requesting to read from an application’s output data buffer.

Several command numbers have been defined for general use
and are shown in ci_commands_enum.

3.3.4 The Quick-Read Paradigm

An application may have data that the host wants to read on a regular basis without
sending a command packet and waiting for a response. To reduce the latency of data
access, the application can make its output data available through Quick-Read mailboxes.

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

32 Freescale Semiconductor, Inc.

Figure 3-3 shows how an application could make data available to the host on a regular
basis via Quick-Read in a streaming mode. The application can set up Quick-Read such
that a callback is triggered every time a mailbox is read. The callback function can then
put new data into the Quick-Read registers and the whole process repeats.

Callback
Function

FXLC95000CL
Mailboxes

ISF
Command
Interpreter

Read
QR

Mailbox(es)

Host

Initialization

write_MBs()

ISF core Application

Run
other
tasks

Read
QR

Mailbox(es)

MB app_off0

MB app_off1

MB app_off2

MB app_off3

MB app_off0

MB app_off1

MB app_off2

MB app_off3

Call
callback

write_MBs()
MB app_off0

MB app_off1

MB app_off2

MB app_off3

Call
callback

Stores
callback ID and

QR offset

Figure 3-3. Quick-Read paradigm—streaming mode

Figure 3-4 shows how an application could read Quick-Read mailboxes in an
asynchronous mode without having to set up a callback.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 33

Callback
Function

FXLC95000CL
Mailboxes

ISF
Command
Interpreter

Read
QR

Mailbox(es)

Host

Initialization

write_MBs()

ISF core Application

Run
other
tasks

Read
QR

Mailbox(es)

MB app_off0

MB app_off1

MB app_off2

MB app_off3

MB app_off0

MB app_off1

MB app_off2

MB app_off3

Figure 3-4. Quick-Read paradigm—asynchronous mode

3.3.4.1 Quick-Read Mailbox Layout

To support Quick-Read interactions, the Command Interpreter (CI) allows 28 mailboxes
(MB4 - MB31) to be configured to hold Quick-Read data as shown in Table 3-6.

Table 3-6. Mailbox Usage for Quick-Read

Mailbox Mailbox Use

MB0 - MB3 Dedicated for Command/Response transfers.

MB4 - MB31 Mailboxes in this range can be configured by the host for Quick-Read data, individually or in groups. If a
mailbox is configured for Quick-Read data, the Command Interpreter will not use it for Command/Response
data transfer, and the host should not write to these mailboxes. Quick- Read mailboxes are written by the
application and read by the host.

Note: If not configured for Quick-Read, a mailbox will remain allocated as a Command/Response mailbox.
Note: Once configured, a Quick-Read mailbox should be used exclusively by the application which maps

an output to that mailbox until the application no longer needs to send the data. The QR mailboxes
can be reconfigured by another QR configuration command from the host.

When a mailbox is configured for Quick-Read by the host application, a callback id and
offset are assigned to each Quick-Read mailbox. Each time a Quick-Read mailbox is
read, the CI invokes the associated callback to allow it to place new data in the Quick-
Read mailbox. An embedded application may also update its Quick-Read mailboxes
anytime it has new data to be written to the Quick-Read registers by calling
isf_ci_qr_update().

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

34 Freescale Semiconductor, Inc.

The mapping of data from an application's output buffer to Quick-Read mailbox registers
is specified by the host and managed by the CI. This abstracts the specific mailbox
configuration from the application.

Figure 3-5 illustrates three different applications and how they might be configured to
map different outputs to different mailboxes for Quick-Read.

• The application with AppId 3 maps its 3rd output to MB19.
• The application with AppId 4 maps its 1st output to MB13, its 3rd and 4th outputs to

two contiguous mailboxes, MB20 and MB21 respectively.
• The application with AppId 8 maps its (non-contiguous) 11th and 13th outputs to two

contiguous mailboxes, MB30 and MB31 respectively.

Mailboxes

0

1

2

4

5

3

6

7

8

9

10

11

13

12

14

15

16

17

18

19

20

22

23

21

24

25

26

27

28

29

31

30

Application
Id 8

App8
Inputs

0

1

2

...

n

3

App8
Outputs

0

...

10

12

...

11

.

Application
Id 4

App4
Inputs

0

1

2

...

n

3

App4
Outputs

0

1

2

...

n

3

Application
Id 3

App3
Inputs

0

1

2

...

n

3

App3
Outputs

0

1

2

...

n

3

n

Figure 3-5. Mapping Application Output to the Quick-Read Mailboxes

3.3.4.2 Configuring the Quick-Read Mailboxes

To configure Quick-Read (QR) mailboxes, the configuration data is placed in the
Command Interpreter(CI)'s own input buffer.The CI makes its input buffer available to
the host in the same manner as described in Command Processing. To write to the CI's

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 35

input buffer, a CI_CMD_WRITE_CONFIG command is sent to the CI's application ID
(ISF_APP_ID_MBOX). For each mailbox configured for QR, the CI tracks which application is
associated with that mailbox and which byte from the respective application’s output
buffer is to be copied into it. The CI’s input buffer is laid out as shown in Table 3-7.

Table 3-7. Command Interpreter Input Buffer Layout

Command
Interpreter Input

Buffer Byte Offset

Parameter

0 QR MB 4: APP_ID

1 QR MB 4: OFFSET

2 QR MB 5: APP_ID

3 QR MB 5: OFFSET

4 QR MB 6: APP_ID

5 QR MB 6: OFFSET

6 QR MB 7: APP_ID

7 QR MB 7: OFFSET

8 QR MB 8: APP_ID

9 QR MB 8: OFFSET

10 QR MB 9: APP_ID

11 QR MB 9: OFFSET

12 QR MB 10: APP_ID

13 QR MB 10: OFFSET

14 QR MB 11: APP_ID

15 QR MB 11: OFFSET

16 QR MB 12: APP_IDQR

17 QR MB 12: OFFSET

18 QR MB 13: APP_ID

19 QR MB 13: OFFSET

20 QR MB 14: APP_ID

21 QR MB 14: OFFSET

22 QR MB 15: APP_ID

23 QR MB 15: OFFSET

24 QR MB 16: APP_ID

25 QR MB 16: OFFSET

26 QR MB 17: APP_ID

27 QR MB 17: OFFSET

Command
Interpreter Input

Buffer Byte Offset

Parameter

28 QR MB 18: APP_ID

29 QR MB 18: OFFSET

30 QR MB 19: APP_ID

31 QR MB 19: OFFSET

32 QR MB 20: APP_ID

33 QR MB 20: OFFSET

34 QR MB 21: APP_ID

35 QR MB 21: OFFSET

36 QR MB 22: APP_ID

37 QR MB 22: OFFSET

38 QR MB 23: APP_ID

39 QR MB 23: OFFSET

40 QR MB 24: APP_ID

41 QR MB 24: OFFSET

42 QR MB 25: APP_ID

43 QR MB 25: OFFSET

44 QR MB 26: APP_ID

45 QR MB 26: OFFSET

46 QR MB 27: APP_ID

47 QR MB 27: OFFSET

48 QR MB 28: APP_ID

49 QR MB 28: OFFSET

50 QR MB 29: APP_ID

51 QR MB 29: OFFSET

52 QR MB 30: APP_ID

53 QR MB 30: OFFSET

54 QR MB 31: APP_ID

55 QR MB 31: OFFSET

The CI contains a Mailbox Application (ISF_APP_ID_MBOX) which configures the Mailboxes
as its input buffer as illustrated in Figure 3-6.

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

36 Freescale Semiconductor, Inc.

Mailbox App Inputs

0: AppId MB4

1: Offset MB4

2: AppId MB5

3: Offset MB5

4: AppId MB6

5: Offset MB6

6: AppId MB7

7: Offset MB7

8: AppId MB8

9: Offset MB8

10: AppId MB9

11: Offset MB9

12: AppId MB10

13: Offset MB10

14: AppId MB11

15: Offset MB11

16: AppId MB12

17: Offset MB12

18: AppId MB13

24: AppId MB16

25: Offset MB16

26: AppId MB17

27: Offset MB17

28: AppId MB18

29: Offset MB18

30: AppId MB19

31: Offset MB19

32: AppId MB20

33: Offset MB20

34: AppId MB21

35: Offset MB21

36: AppId MB22

37: Offset MB22

19: Offset MB13

20: AppId MB14

21: Offset MB14

22: AppId MB15

23: Offset MB15

48: AppId MB28

49: Offset MB28

52: AppId MB30

53: Offset MB30

54: AppId MB31

55: Offset MB31

56: Ctrl Reg Cfg

38: AppId MB23

39: Offset MB23

40: AppId MB24

41: Offset MB24

42: AppId MB25

43: Offset MB25

44: AppId MB26

45: Offset MB26

46: AppId MB27

47: Offset MB27

50: AppId MB29

51: Offset MB29

Command Interpreter
Mailbox Application

ISF_APP_ID_MBOX

MB App Outputs

None

Figure 3-6. Command Interpreter Mailbox Application

As found in Table 3-7, the APP_ID specifies the source of the Quick-Read data and the
OFFSET specifies the offset into that application’s output data buffer when retrieving
Quick-Read data. Because there are 28 data mailboxes available for Quick-Read (MB4 -
MB31), the CI’s Quick-Read configuration data totals 56 bytes with 2 bytes of
configuration data per mailbox.

The host can assemble a command to configure a Quick Read register by referring to the
data in Table 3-7. The configuration command itself is a Command/Response type
command sent to the CI shown in Table 3-8. The CI application ID is preconfigured
through the ISF_APP_ID_MBOX enumeration value defined in isf.h.

Table 3-8. Quick-Read Configuration Command Packet

Mailbox Quick-Read Configuration
Command Packet

Description

MB0 ISF_APP_ID_MBOX Application ID (predefined). ISF has predefined applications, one being
ISF_APP_ID_MBOX.

MB1 CI_CMD_WRITE_CONFIG Command to write to the configuration data.

MB2 offset Offset into the 56 byte configuration data.

Table 3-7 shows the offsets for the application ID and Quick-Read
offset for each mailbox of the Quick-Read configuration data.

MB3 length (# bytes) Number of configuration data bytes.

Table continues on the next page...

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 37

Table 3-8. Quick-Read Configuration Command Packet (continued)

Mailbox Quick-Read Configuration
Command Packet

Description

MB4-MBn Configuration data bytes For each Quick Read Mailbox assignment, two consecutive bytes
where the first byte is the application ID and the second byte is the
offset of the application's Quick-Read dataset.

Figure 3-7 shows an example contents of the CI's Mailbox Application's (ISF_APP_ID_MBOX)
input buffer. AppId 0x03 is configured with MB19 as offset 0x02 , AppId 0x04 is
configured with MB20 as offset 0x02 and MB21 as offset 0x03, AppId 0x08 is
configured with MB30 as offset 0x0A and MB31 as offset 0x0B.

Mailbox App Inputs

0: AppId MB4

1: Offset MB4

2: AppId MB5

3: Offset MB5

4: AppId MB6

5: Offset MB6

6: AppId MB7

7: Offset MB7

8: AppId MB8

9: Offset MB8

10: AppId MB9

11: Offset MB9

12: AppId MB10

13: Offset MB10

14: AppId MB11

15: Offset MB11

16: AppId MB12

17: Offset MB12

18: AppId MB13

24: AppId MB16

25: Offset MB16

26: AppId MB17

27: Offset MB17

28: AppId MB18

29: Offset MB18

30: 0x03

31: 0x02

32: 0x04

33: 0x02

34: 0x04

35: 0x03

36: AppId MB22

37: Offset MB22

19: Offset MB13

20: AppId MB14

21: Offset MB14

22: AppId MB15

23: Offset MB15

48: AppId MB28

49: Offset MB28

52: 0x08

53: 0x0A

54: 0x08

55: 0x0B

56: Ctrl Reg Cfg

38: AppId MB23

39: Offset MB23

40: AppId MB24

41: Offset MB24

42: AppId MB25

43: Offset MB25

44: AppId MB26

45: Offset MB26

46: AppId MB27

47: Offset MB27

50: AppId MB29

51: Offset MB29

Command Interpreter
Mailbox Application

ISF_APP_ID_MBOX

MB App Outputs

None

Figure 3-7. Command Interpreter Mailbox Application

The following is an example host command to configure MB30 - MB31 for Quick-Read
taking data from application ID = 8 offsets 10 and 11 with the data from offset 10 being
placed in MB30 and offset 11 being placed in MB31.

Table 3-9. Quick-Read Configuration Command Packet Example

Mailbox Value Description

MB0 ISF_APP_ID_MBOX Application ID (predefined)

Table continues on the next page...

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

38 Freescale Semiconductor, Inc.

Table 3-9. Quick-Read Configuration Command Packet Example (continued)

Mailbox Value Description

MB1 CI_CMD_WRITE_CONFIG Command to write to the configuration data

MB2 52 Offset into Quick-Read config data to access the application ID of
MB30

MB3 4 4 bytes total—2 bytes for MB30 and 2 bytes for MB31

MB4 8 MB30: application ID

MB5 10 MB30: offset

MB6 8 MB31: application ID

MB7 11 MB31: offset

When any byte in the 32 byte mailbox registers is read, the FXLC95000CL hardware
caches the entire 4-byte region in which that byte resides in a 4-byte, line buffer. Reads of
subsequent bytes are done from the buffer, ensuring that consistent data is present in
multiple-byte variables. Whenever feasible, users should consider configuring Quick-
Read mailboxes as groups of four aligned to a mod 4 address boundary.

The host should track which mailboxes it has configured for Quick-Read and how many
data mailboxes remain for general data transfer. For example, if the host configures
MB26 - MB31 (6 mailboxes) for Quick-Read, then 22 mailboxes remain for general
Command/Response transfer (28 – 6 = 22). In this case, if the host sends a command to
read or write data, it must set the requested byte count to less than or equal to 22.
Otherwise, unpredictable results may occur.

The host should also keep the Quick-Read mailboxes contiguous for efficient use of
mailbox resources. The CI Command/Response interactions can only make use of the
data mailboxes that are contiguous starting at MB4. For example, if the host configures
MB20 - MB23 (4 mailboxes) for Quick-Read, two noncontiguous sets of data mailboxes
remain, MB4 - MB19 and MB24 - MB31. In this case, when the CI receives a host
command to read or write data, it will only be able to use MB4 - MB19 for Command/
Response data. It will not use MB24 - MB31.

Note
The recommendation is for the host to configure Quick-Read
mailboxes at the end of the mailbox range with no gaps
between Quick-Read mailboxes. Configuring the Quick- Read
data in this manner leaves the largest contiguous set of data
mailboxes starting at MB4 available for Command/Response
data transfer.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 39

The application is provided an opportunity to update the Quick-Read mailboxes after they
are read by the host. When the host completes reading Quick-Read data, the CI invokes
the associated application’s callback function with the command CI_CMD_UPDATE_QUICKREAD.
The application can then call isf_ci_qr_update() to update the Quick-Read mailboxes.

When an application uses isf_ci_qr_update(), it is not required to specify the data
mailboxes to be updated. The isf_ci_qr_update() call only requires an application ID and a
pointer to the data buffer from which the new data is obtained. The CI tracks which
mailboxes are designated as Quick-Read. With the Quick-Read configuration data, the CI
updates the appropriate mailboxes from the supplied buffer.

Note
The CI requests the application to update its Quick-Read data
when at least one Quick-Read data for that application has been
read. The host does not need to read all of the Quick-Read data
in order for the CI to request that the application update its
Quick-Read data. For example, consider the case where the host
has configured MB24 - MB31 (8 mailboxes) for Quick-Read
data from an application and then sends a command to read
only MB30 - MB31. This read will still cause the CI to invoke
the associated callback function with a CI_CMD_UPDATE_QUICKREAD
command.

Note
The host is able to subscribe to just a portion of the Quick-Read
data that an application offers. For a particular application, the
host may subscribe to a subset of the data by configuring only
the number of Quick-Read mailboxes needed with the desired
offset into the Quick-Read data.

3.3.4.3 Mailbox Application Control Config Register

The Mailbox Application (Mailbox App) contains the Ctrl Cfg register that allows the
user to configure the FXLC9500 INT_O pin functionality and the Quick-Read streaming
mode. The INT_O pin can be configured as an interrupt output allowing it to be used by
the Mailbox App to interrupt the host when new data is available in the mailboxes. Using
an interrupt is often more efficient than having the host poll the mailboxes for new data.
By default, the host interrupt functionality is disabled. An application can enable the host
interrupt function by setting bit 0 of the Mailbox App Ctrl Cfg register to a value of 1.
When enabled, the FXLC95000 device generates an interrupt to the host using the INT_O
pin when any of the mailboxes are written by the application. Note that the INT_O pin is
configured by default as a GPIO pin after reset, but the Mailbox App reconfigures the pin

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

40 Freescale Semiconductor, Inc.

muxing automatically based on its Ctrl Cfg register settings. If the host enables the
INT_O feature, the Mailbox App reconfigures the pin muxing from GPIO to the INT_O
function. If the host disables the INT_O feature, the Mailbox App reconfigures the pin
muxing back to its GPIO function.

The Quick-Read streaming mode allows applications to request Quick-Read data to be
updated in the mailboxes. By default, streaming mode is disabled and any application
update to the Quick-Read mailboxes is ignored and the mailbox contents remains the
same. The application can enable the Quick-Read streaming mode by setting bit 2 of the
Mailbox App Ctrl Cfg register to a value of 1. When enabled, the application calls
isf_ci_qr_update() to update the Quick-Read mailboxes with new data.The Mailbox App
Ctrl Cfg register can be accessed via the Mailbox App's Input Buffer byte offset 56 (see
Figure 3-6). The definition of the register is as follows:

Bit Name and function

0 Pin INT_O enable

0 - Disable pin INT_O from generating interrupt to the host

1 - Enable pin INT_O to generate interrupt to the host

1 Pin INT_O polarity

0 - INT_O is active low

1 - INT_O is active high

2 Streaming mode

0 - Streaming mode is disabled

1 - Streaming mode is enabled

3.3.5 Device Messaging

The Device Messaging component exposes the user-level APIs for communicating with
external slave devices. The goal of Device Messaging is to abstract the communications
protocol so it provides a unified interface for communications regardless of the
underlying transport method being used.

The Device Messaging component is optional in an ISF deployment and is provided as a
linkable library. Because the ISF functionality is linked with the embedded application
code in a single executable image, this library is shared between all embedded application
tasks and ISF tasks that use it.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 41

Figure 3-8 depicts the architecture of the Device Messaging component. The Device
Messaging abstraction depends on the individual protocol libraries used. The protocol
libraries each install their own peripheral interrupt handlers with the RTOS kernel when
they are initialized. ISF v1.1 supports the I2C protocol. SPI and GPIO will be added in a
future release.

GPIO hardware

GPIO protocol
stack

Device Messaging Abstraction

Device Messaging API

Device Messaging driver libraries

 protocol
driver library

GPIO protocol
driver library

SPI hardware

SPI protocol
stack

SPI protocol
driver library

I2C

 protocol
stack

I2C

hardwareI2C

Figure 3-8. Architecture of the Device Messaging component

3.3.5.1 Device Messaging concepts

The Device Messaging component provides a high-level, abstraction layer on top of the
communications protocols supported by the ISF. This allows applications as well as other
ISF component instantiations included in the firmware to communicate with external
devices in the same way regardless of how that device is physically connected.

The Device Messaging interface is loosely modeled after the POSIX file I/O interfaces. A
Device Messaging deviceHandle behaves similarly to a file descriptor. In order to
communicate with an external device, the device must be opened with a dm_device_open()
call which returns a deviceHandle. The deviceHandle is then passed to the dm_read() or
dm_write() functions to designate the desired communications endpoint.

The Device Messaging component depends on the individual protocol implementations
such as I2C to perform the actual communications. The late-binding mechanisms enabled
by the Device Messaging implementation and employed by the Sensor Manager allow the
Sensor Manager to be protocol independent. The Sensor Manager can manage sensors
using any communications transport protocol. Users can define transport protocols other
than those provided by FXLC95000 without needing to recompile the ISF core library.

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

42 Freescale Semiconductor, Inc.

Figure 3-9 shows the relationship between Device Messaging and an underlying transport
protocol, in this case I2C, and two embedded applications each talking to an external I2C
device, one through the Device Messaging and one using the I2C component directly.
The example shows that a magnetometer is present at I2C device address 0x0E.

I2C HW PeripheralI2C Master Transport APIs

Embedded Application
(using I2C APIs directly)

Embedded Application
(using I2C via Device Messaging)

Device Messaging Abstraction APIs

MAG
0x0E

FXLC95000

Configured Names in
isf_sysconf_comms.h

DM Channel:
I2C_CHANNEL1

I2C Bus:
I2C_BUS_ONE

i2c_BusHandle_t hBus1;
i2c_BusHandle_t hMagSlave;
i2c_bus_init(I2C_BUS_ONE, &hBus1, ...);
i2c_get_slave_at(&Bus1, 0x0E, &hMagSlave);
i2c_write(&hMagSlave, &msgData);

dm_ChannelDescriptor_t chanDescr;
dm_DeviceHandle_t hMagDev;

dm_channel_init(I2C_CHANNEL1, &chanDescr);
dm_device_open(&chanDescr, 0x0E, hMagDev);
dm_device_write(&hMagDev, &msgData);

Figure 3-9. Device Messaging abstracts underlying transport protocols

3.3.5.1.1 Channels and Devices

The object types used by Device Messaging are channels and devices. These objects
encapsulate the object types used by the underlying transport protocol in order to provide
a unified Device Messaging interface. For example, when using the ISF I2C transport
protocol, a bus object identifies which one of potentially several different I2C peripherals
are used when talking to a particular external I2C slave.

Using the Device Messaging interfaces, a Device Messaging channel object wraps the
I2C bus object and a Device Messaging device object wraps the I2C slave object. A
global array of the available device messaging channels is declared as part of the ISF
system configuration. System configuration files are provided in source format to allow
developers to modify the files for their own slave devices.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 43

To use a particular channel for communications, the channel must first be initialized.
When a channel is initialized, a channel descriptor is returned to the calling function. The
calling function uses this channel descriptor in subsequent Device Messaging calls to
invoke operations on the channel. In a similar manner, to communicate with a particular
external device on a channel, the device must first be opened for communications. When
a device is opened, a DeviceHandle is returned and used in subsequent calls to
communicate with that device.

3.3.5.1.2 Channel Locking

An explicit channel locking capability allows extended exclusive access to a channel.
When a channel lock is held, no other task may communicate to any devices on the
channel until the lock is released. Calls to device operations without first acquiring an
explicit channel lock cause an implicit channel lock to be acquired but only for the
duration of that call. Channel locks are implemented with priority inversion protection
using a priority inheritance scheme that automatically raises the current lock holder’s
priority to the priority of the highest waiting task until the lock is released.

3.3.5.1.3 Device Handle

The Device Messaging component uses a logical function abstraction table to interact
with multiple transport protocols transparently. The Device Messaging APIs operate on
device handles. Each device handle contains a reference to an internal channel structure
used to communicate with the device. The Device Messaging component, through the
channel reference, determines the protocol used to communicate with the device.

The DeviceMessaging APIs cover channel operations including initialization, locking,
reconfiguration, status query and control, as well as device operations including open/
close, read/write. For details of these APIs and examples of their use, refer to the Xtrinsic
ISF API Reference Manual for the FXLC95000 Intelligent Motion-Sensing Platform
listed in References.

3.3.5.2 Usage Example

In the following example, communication with an I2C slave device using Device
Messaging is demonstrated.

#include <isf_devmsg.h>
#include <isf_sysconf_comms.h>

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

44 Freescale Semiconductor, Inc.

typedef COMM_SIZED_BUFFER(18) ReadBuffer18_t;

const comm_Address_t MAG3110_ADDR = 0x0E; // I2C Bus address of MAG3110

// A command to initialize the magnetometer
static const comm_Command_t mag3110WrReg = {2, 0, {0x10, 0x00}};

// A command to read magnetometer data
static const comm_Command_t mag3110RdReg = { 1, 1, {0x01}};

void get_mag_data()
{
 // Setup a buffer to hold data from the magnetometer
 ReadBuffer18_t readBuffer = { .size=18 };
 comm_MessageBuffer_t *pReadBuf = (comm_MessageBuffer_t *)&readBuffer;

 isf_status_t status;
 isf_duration_t timeout = 0; // zero will mean ‘wait forever’
 dm_ChannelDescriptor_t chanDesc; // holds the returned channel descriptor
 dm_DeviceHandle_t magDeviceHandle; // holds the returned device handle

 // Init creates and initializes data structures required to manage the channel.
 // The channel Id enumeration comes from sysconf_comms.h::sys_channelId_t and
 // identifies the I2C channel to use
 status = dm_channel_init(I2C_MASTER1, &chanDesc);

 // Start Bus (Enables Hardware Peripheral associated with channel)
 status = dm_channel_start(&chanDesc);

 // Open device (Gets device handle)
 status = dm_device_open(&chanDesc, MAG3110_ADDR, &magDeviceHandle);

 // Explicitly Acquire Lock (not strictly necessary)
 status = dm_channel_acquire_lock(&chanDesc, timeout);

 // Write a command to the device
 status = dm_device_write(&magDeviceHandle, &mag3110WrReg);

 // Send command to read data from the device
 status = dm_device_read(&magDeviceHandle, &mag3110RdReg, pReadBuf);

 // Release Lock
 status = dm_channel_release_lock(&chanDesc);

 // <Do something with data in pReadBuf here>

 // When done talking to the mag
 // Stop the channel (Disables hardware peripheral associated with channel)
 status = dm_channel_stop(&chanDesc, timeout);
}

3.3.6 Host Proxy

ISF provides a Host Proxy component that allows a host processor to remotely configure
and subscribe to all the managed sensors, whether internal to the platform or external.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 45

3.3.6.1 Host Proxy Concepts and Theory of Operation

The Host Proxy’s name derives from the fact that it acts as a local proxy for the remote
host processor to facilitate communications with the Sensor Manager and other user
applications.

The Host Proxy defines an interface that must be implemented and registered for each
sensor needing proxy support. Figure 3-10 shows salient classes, data types and tasks that
form the Host Proxy interface for a sensor. For details of the host proxy APIs, refer to the
Xtrinsic ISF API Reference Manual for the FXLC95000 Intelligent Motion-Sensing
Platform listed in References.

 «task»
Host Proxy

SensorProxyApp

+init()
+config()
+getData()

«interface»
hp_Interface_t

«datatype»
proxyConfigTable

«datatype»
hp_Config_t

«datatype»
hp_ApplicationConfig_t

«implementation class»
init

«implementation class»
config

«implementation class»
getData

Physical Sensor manages Sensor Manager

subscribe get sensor data

invokes

«datatype»
SensorDataBuffer

write

«implementation class»
ci_callback

read

«task»
CmdInterpreter

invokes

implements

Figure 3-10. Host Proxy class diagram

The Host Proxy service executes as a single Freescale MQX™ RTOS task containing an
event handling loop that blocks waiting for events from components such as the Sensor
Manager (SM) and the Command Interpreter (CI). This single task design was used to
keep the number of tasks in the system as low as possible.

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

46 Freescale Semiconductor, Inc.

At system startup, the Host Proxy service performs its initialization. During its
initialization, the initialization functions for all registered sensor proxy applications are
invoked. Once initialization is complete, the Host Proxy enters an event loop waiting for
events. The Host Proxy handles two types of events: Configuration events and Data-
Ready events. When the Host Proxy receives an event, it looks up the sensor proxy
application registered for that event and invokes its corresponding registered callback.
Several functions are provided that may be used within the sensor proxy application
callback to interact with the Host Proxy.

3.3.6.2 Implementing a Proxy Application using the Host Proxy

If it is desirable to provide a custom interface for configuring and using a specific sensor
or a specific sensor type, such as a gyroscope, a sensor proxy application can be
developed using the Host Proxy service. The proxy application needs to satisfy certain
minimum requirements as explained herein.

The sensor proxy application must implement the following three functions:
• Configuration interface,
• Host Proxy interface,
• Command Interpreter callback.

In addition, the sensor proxy application must be registered with the Host Proxy so that it
can be initialized and executed properly.

3.3.6.2.1 Implementing the Proxy Application Configuration interface

The proxy application interface consists of some configuration data and a set of function
pointers and is defined in isf_hostproxyconfig.h as:

typedef struct
 {
 /* The Application ID for this sensor proxy */
 uint8 appId;

 /* The sensor ID of the sensor being proxied */
 uint8 sensorId;

 /* The functions implementing the proxy interface */
 hp_Interface_t interface;

 } hp_ApplicationConfig_t;

The appId field contains the application ID used by the host to communicate with the
sensor proxy application. It must be the same as the proxy’s index in the ci_callback array
as discussed in section Application Integration.

The sensorId is the ID of the sensor being proxied. It must be the same as the sensor’s
index in the gSensorList array in isf_sensor_configuration.c.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 47

3.3.6.2.2 Implementing the Host Proxy interface

The interface field of the hp_ApplicationConfig_t structure is itself a structure defined as:

typedef struct
{
/* The proxy initialization function */
isf_status_t (*init)(void);

/* The proxy configuration function. */
isf_status_t (*config)(void);

/* The callback used to retrieve new sample data from the sensor*/
isf_status_t (*getData)(hp_hostUpdate_t *pHostData);

} hp_Interface_t;

The function pointers in this structure contain the specific proxy functionality in the
sensor proxy application being implemented.

The init function is automatically invoked one time by the Host Proxy task during its
initialization cycle at system startup. This is the appropriate place to initialize proxy-
specific variables and data structures. For example, sensor configuration parameters can
be initialized to their desired default settings and other one-time actions, such as
semaphore creation, can be handled in the proxy’s init function.

The sensor proxy application's init config function is invoked by the Host Proxy task
each time it receives a Configuration command for that sensor from the host. Because
new configuration data from the host is written directly into the proxy’s configuration
data buffer, the config function should be designed to re-read the proxy's configuration
data and update accordingly. The Host Proxy itself does not impose any constraints on
the format and contents of a sensor proxy application’s configuration data buffer contents
or layout. However, it is recommended that a uniform buffer layout be established and
followed for consistency. In a typical sensor proxy application implementation, the
configuration buffer should provide a control data structure that allows the host to
subscribe and unsubscribe to the sensor, specify configuration parameters for the sensor
like sample rate, data resolution, data ranges, etc. In general, the proxy application should
enable the host to configure and use the sensor through the proxy with the same amount
of control as it would have if it were accessing the sensor directly via the Sensor Manager
interface.

As an example, the Freescale provided sensor application, ISF1P095K_ACCELMAG_PROJ, uses
the structure shown below for the FXLC95000 internal accelerometer.

/* FXLC95000 Accel sensor proxy configuration structure */
typedef struct
{
 ctrl_reg_t ctrl; // ctrl information
 SM_SensorSetting_t settings; // accel settings

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

48 Freescale Semiconductor, Inc.

} hp_fxlc95000Config_t;

The ctrl_reg_t structure is defined, for ease of reuse, in isf_hostproxy.h as:

typedef union
{
 /* The control byte. */
 uint8 reg;

 struct {
 /* The data streaming bit.
 * When this bit is set, data streaming is enabled.
 * Data streaming is disabled by clearing this bit.
 */
 uint8 startStop :1;

 /* The subscription state bit.
 * Setting this bit enables the subscription.
 * Clearing this bit disables the subscription.
 */
 uint8 subState :1;

 /* The host interrupt bit.
 * Setting this bit enables the host interrupt.
 * Clearing this bit disables the host interrupt.
 */
 uint8 hostIntEn :1;

 /* The quick read bit for the application.
 * Setting this bit enables the quick read.
 * Clearing this bit disables the quick read.
 */
 uint8 quickReadEn :1;

 /* These bits are for future use. */
 uint8 reserved :4;
 } Bits;

} ctrl_reg_t;

The sensor subscription settings are directly exposed to the host using the
SM_SensorSetting_t as defined by the Sensor Manager in isf_sm_api.h. Because the Host
Proxy contains a single event loop for all the sensor proxy applications in the system, and
because it uses the Freescale MQX™ RTOS lwevent facilities for event notifications, all
the events handled by the Host Proxy must belong to the same event group. Therefore,
the Host Proxy is designed to allocate the event group it uses and provides functions for
each sensor proxy application to call to return the event group and event flag it should use
to signal a Data-Ready event for its sensor. In the case where the sensor proxy application
is subscribing to the Sensor Manager for its sensor data, a sensor proxy application can
pass this event group and flag pair to the Sensor Manager in its subscription whereby the
Host Proxy is automatically notified when new data is available for that sensor. Upon
receipt of the event, the Host Proxy invokes the sensor proxy application’s getData()
interface function which can then call the isf_sm_get_sensor_data() function to obtain the
new sample.

When it invokes the getData() callback, the Host Proxy passes a pointer of type
hp_hostUpdate_t as a parameter. hp_hostUpdate_t is defined as:

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 49

typedef struct
{
 /* Status indicating whether or not Quick Read is enabled. */
 uint8 isQuickReadUpdate;

 /* Status indicating whether or not host interrupt is enabled.*/
 uint8 isHostInt;

 /* The size of the buffer holding user application data. */
 uint8 size;

 /* The current application ID for the user application. */
 uint8 AppId;

 /* The buffer containing user application data. */
 uint8 *pDataBuffer;

} hp_hostUpdate_t;

The sensor proxy application's getData() callback is responsible for filling this structure
with valid data which gives the Host Proxy the information necessary for it to handle the
new data appropriately. For example if the sensor proxy application is supporting
mailbox quick read data it should set the isQuickReadUpdate field to 1. This causes the Host
Proxy to invoke isf_ci_qr_update() on behalf of the sensor proxy application.

Likewise, if the host has requested an interrupt from the sensor proxy application when
new data is available, the proxy application should set the isHostInt field to 1. This causes
the Host Proxy to invoke isf_ci_assert_int_o() on behalf of the sensor proxy application.

The sensor proxy application needs to know the event group and event flag to use to
notify the Host Proxy task of Data-Ready events. The isf_hp_get_proxy_event() may be
called to obtain the event flag the sensor proxy application should use. The event group to
use is declared by the Host Proxy as a global variable and may be obtained by referencing
gProxyEvent declared in isf_hostproxy.h. These methods require the proxy number and the
event number as an input. Proxy number is a unique number assigned at the time the
application is registered with the host proxy and the event number is the category
number, which could be either configuration or data ready.

The isf_hp_set_proxy_event() function allows the sensor proxy application to set a
Configuration event which will cause the Host Proxy to invoke the sensor proxy
application's registered config function. This is typically done in the proxy application's
registered Command Interpreter callback function after a CI_CMD_WRITE_CONFIG command
has been processed and it is necessary to allow the sensor proxy application to update to
the newly written configuration.

Once all interface functions have been implemented, a configuration structure can be
defined and initialized with function pointers to these implementations. The
configuration structure is of type hp_ApplicationConfig_t. The configuration structure has
references to the applicable sensor id and application ID. For example, a proxy
configuration for the FXLC95000’s internal accelerometer might be defined as:

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

50 Freescale Semiconductor, Inc.

hp_ApplicationConfig_t fxlc95000Config = {
 .appId = APP_PROXY_INTERNAL_ACCEL,
 .sensorId = DSA_FXLC95000_3D_ACCEL,
 .interface.init = &internal_accel_app_init,
 .interface.config = &internal_accel_app_config,
 .interface.getData = &internal_accel_app_get_data,
};

3.3.6.2.3 Implementing the Command Interpreter callback

To interact with the host, the sensor proxy application must have a callback registered
with the Command Interpreter as described in section Application Integration. An
example callback for the FXLC95000’s accelerometer might look as follows:

ci_response_t fxlc95000_accel_app_callback(
 ci_host_cmd_packet_t *pHostPacket,
 ci_app_resp_packet_t *pAppPacket)
{

 ci_response_enum callbackRet = CI_ERROR_NONE;

 // Each Sensor Proxy App would assign the following data from
 // sources appropriate to its implementation.
 uint8 *pDataBuffer = <a pointer to the app’s data buffer>;
 int8 size = <the size of the app’s data buffer>;

 switch(pHostPacket->cmd)
 {
 case CI_CMD_READ_APP_DATA:
 if(pHostPacket->byte_cnt > size)
 {
 callbackRet = CI_INVALID_COUNT;
 break;
 }
 if(pHostPacket->offset + pHostPacket->byte_cnt > size){
 callbackRet = CI_ERROR_COMMAND;
 break;
 }
 pAppPacket->bytes_xfer = (uint8)isf_ci_app_write
 (
 pHostPacket->appId,
 (uint32)pHostPacket->byte_cnt,
 (uint8*)(pDataBuffer + pHostPacket->offset)
);
 break;
 case CI_CMD_UPDATE_QUICKREAD:
 isf_ci_qr_update
 (
 APP_ID_FXLC95000_ACCEL,
 size,
 pDataBuffer
);
 break;
 case CI_CMD_READ_CONFIG:
 case CI_CMD_WRITE_CONFIG:
 if(pHostPacket->byte_cnt > FXLC95000_ACCEL_APP_NUM_REGS){
 callbackRet = CI_INVALID_COUNT;
 break;
 }

 if(pHostPacket->offset + pHostPacket->byte_cnt >
 FXLC95000_ACCEL_APP_NUM_REGS)
 {

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 51

 callbackRet = CI_ERROR_COMMAND;
 break;
 }

 if (CI_CMD_READ_CONFIG == pHostPacket->cmd)
 {
 pAppPacket->rw = CI_RW_WRITE; // Write the data to host.

 pAppPacket->bytes_xfer = (uint8)isf_ci_app_write
 (
 pHostPacket->appId,
 (uint32)pHostPacket->byte_cnt,
 pDataBuffer
);
 }
 else
 {
 // Read data from the host, which essentially sets
 // the application's configuration register.
 pAppPacket->bytes_xfer = (uint8)isf_ci_app_read
 (
 pHostPacket->appId,
 (uint32)pHostPacket->byte_cnt,
 pDataBuffer
);
 isf_hp_set_proxy_event
 (
 APP_PROXY_NO_FXCL95000_ACCEL,
 EVENT_HOST_CONFIG
);
 }
 break;
 default:
 callbackRet = CI_ERROR_COMMAND;
 break;
 }

 return callbackRet;
}

3.3.6.2.4 Implementing the Proxy Application Registration

Once the sensor proxy application’s Host Proxy interface functions have been
implemented and a proxy configuration struct has been defined, it is necessary to register
them with the Host Proxy. The Host Proxy configuration table array, proxyConfigTable[]
array in file isf_hostproxyconfig.c contains the list of registered applications. Each array
element is a configuration structure containing a unique proxy number to be used for each
application and a pointer to an application configuration structure. To register a new
sensor proxy application, a new entry in the proxyConfigTable array must be added with the
new application’s data. For example, an application that provides a simple interface to the
FXLC95000’s internal accelerometer might be added as follows:

 hp_Config_t proxyConfigTable[] = {
 {
 .proxyNo = A_PREVIOUSLY_EXISTING_PROXY,
 .appConfig = &aPreviouslyExistingConfig
 },
 {
 .proxyNo = APP_PROXY_INTERNAL_ACCEL,
 .appConfig = &fxlc95000Config

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

52 Freescale Semiconductor, Inc.

 }
 };

For convenience, the proxy numbers are defined in isf_hostproxyconfig.h file as an enum
and corresponding additions to the enum list can also be made:

enum hp_AppProxyNO
 {
 A_PREVIOUSLY_EXISTING_PROXY = 0,
 APP_PROXY_INTERNAL_ACCEL = 1
 };

The Host Proxy will initialize and execute all sensor proxy applications it finds in the
proxyConfigTable as discussed above.

3.3.7 I2C Master Interfaces

The Master I2C component is delivered as part of the ISF core library but is optional in
an ISF deployment - that is, the I2C component is only linked into the generated image if
referenced by the application code.

3.3.7.1 Theory of Operation

The main Master I2C objects are buses and slaves. A bus is used to represent each
separate I2C communications pathway to one or more external I2C slave devices. When a
bus is initialized, a BusHandle is also initialized and returned to the calling function. The
calling function uses this BusHandle to invoke operations on the bus. In a similar manner,
a SlaveHandle is initialized and provided for each slave device opened on a bus. The
SlaveHandle is passed to the I2C APIs when operations with that slave device are desired.

The Master I2C component is delivered as part of the ISF core library but is optional in
an ISF deployment - that is, the I2C component is only linked in to the generated image if
referenced by the application code. The Master I2C library installs its own peripheral
interrupt handler with the RTOS kernel when initialized.

The I2C APIs cover bus operations including initialization, locking, reconfiguration,
status query and control, as well as slave operations including open/close, and read/write.
For details of these APIs, refer to the Xtrinsic ISF API Reference Manual for the
FXLC95000 Intelligent Motion-Sensing Platform listed in References.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 53

3.3.7.2 Bus Locking

An explicit bus locking capability allows extended exclusive access to a bus. When a bus
lock is held, no other task may communicate with any slave devices on that bus until the
lock is released. Calls to device operations without first acquiring an explicit bus lock
will cause an implicit bus lock to be acquired but only for the duration of that call. Bus
locks are implemented with priority inversion protection using a priority inheritance
scheme that automatically raises the current lock holder’s priority to the priority of the
highest waiting task until the lock is released.

It should also be noted that holding an explicit bus lock automatically selects the use of
the I2C repeated start capability between sequential bus messages. Care should be taken
to avoid locking the bus because some slave devices do not handle a repeated start
condition gracefully.

3.3.7.3 Usage Example

In the following example, communication with an I2C slave device using the I2C APIs is
demonstrated.

#include <isf_i2c.h>
#include <isf_sysconf_comms.h>

typedef I2C_SIZED_BUFFER(18) ReadBuffer18_t;

const comm_Address_t MAG3110_ADDR = 0x0E; // I2C Bus address of MAG3110

// A command to initialize the magnetometer
static const i2c_Command_t mag3110WrReg = {2, 0, {0x10, 0x00}};

// A command to read magnetometer data
static const i2c_Command_t mag3110RdReg = { 1, 1, {0x01}};

void get_mag_data()
{
// Setup a buffer to hold data from the magnetometer
ReadBuffer18_t readBuffer = { .size=18 };
i2c_MessageBuffer_t *preadBuf = (i2c_MessageBuffer_t *)&readBuffer;
isf_status_t status;
isf_duration_t timeout = 0; // zero will mean ‘wait forever’
i2c_BusHandle_t hBus1; // holds the returned bus handle
i2c_SlaveHandle_t magSlaveHandle; // holds the returned slave handle

// Init creates and initializes data structures required to manage the bus.
// The bus Id enumeration comes from sysconf_comms.h::sys_channelId_t and
// identifies the I2C channel to use
status = i2c_bus_init(I2C_MASTER1, &hBus1);

// Configure the I2C bus
status = i2c_bus_configure(&hBus1, &gSys_I2cBusConfig[I2C_MASTER1]);

// Start Bus (Enables Hardware Peripheral associated with channel)
status = i2c_bus_start(&hBus1);

// Open device (Gets device handle)
status = i2c_get_slave_at(&hBus1, MAG3110_ADDR, &magSlaveHandle);

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

54 Freescale Semiconductor, Inc.

// Explicitly Acquire Lock (not strictly necessary)
status = i2c_bus_acquire_lock(&hBus1, timeout);

// Write a command to the slave
status = i2c_write(&magSlaveHandle, &mag3110WrReg);

// Send command to read data from the slave
status = i2c_read
(
 &magSlaveHandle,
 &mag3110RdReg,
 pReadBuf,
 I2C_READ_FLAGS_DEFAULT
);

// Release Lock
status = i2c_bus_release_lock(&hBus1);

// <Do something with data in pReadBuf here>

// When done talking to the mag
// Stop the bus (Disables hardware peripheral associated with channel)
status = i2c_bus_stop(&hBus1, timeout);
}

For details of these APIs and examples of their use, refer to the Xtrinsic Intelligent
Sensing Framework API Reference Manual for the FXLC95000 Intelligent Sensor listed
in References.

3.3.8 Communications Channel Configuration

The communications channel configuration information is organized in an easy-to-use
component called the Communications System Configuration component.

The available channels for use with Device Messaging are declared in the
isf_sysconf_comms.h file and the corresponding data structure is defined in
isf_sysconf_comms.c. These files are provided as source enabling the user to modify and
compile them according to their particular system configuration.

The typical user only needs to include the isf_sysconf_comms.h file and select the
enumeration values defined in sys_channelId_t to pass to dm_channel_init(). In addition, the
user must ensure that the isf_sysconf_comms.c file is compiled and linked in their
executable image.

3.3.9 Bus Management

The ISF Communications service family provides the capability to schedule periodic bus
communications via the Bus Manager component. This allows a user to design an
application that initializes, registers periodic communications functions with the Bus
Manager and enters an event loop to handle incoming events without explicitly managing
the timing of communications with selected slave devices.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 55

To schedule periodic bus communications using the bus management functionality, users
create and register callback functions with the Bus Manager. A period is the desired time
between successive invocations of the callback and is supplied at the time of registration
as a parameter. A token is returned to the user upon successful registration of the callback
function and is used in subsequent bus management calls when a particular callback
function must be referenced. For example, a token is required when enabling or disabling
callback activation or requesting to unregister the callback.

Once a callback function has been registered with the Bus Manager, it can be activated by
passing its token to bm_start(). The Bus Manager invokes active callbacks periodically at
their registered rates. To temporarily stop a callback function from being invoked, the
callback’s token is passed to bm_stop(). Multiple callbacks may be controlled together by
performing a logical OR of several token values and passing the result to bm_start() or
bm_stop().

In the following example, two callback functions are registered, one at 1000 Hz and one
at 100 Hz. Each callback function simply increments a counter and returns. The counter
values reflect the number of times the callback function was invoked.

/* This is example code intended to demonstrate basic usage of the
** APIs only and does not include all of the error/return-code
** checking typically found in production code. */

#include <bus_management.h>

uint32 func_cnt[2]; /* holds counts of callback invocations */
uint8 idx1 = 0; /* index into func_cnt[] for first callback */
uint8 idx2 = 1; /* index into func_cnt[] for second callback */
isf_status_t st; /* holds return status from isf calls */

/*
** This is the callback that will be registered with Bus Management
*/
void cb_func(void *p)
{

 /* For the example just increment a counter */
 uint8 *idx = (uint8 *)p;
 ++func_cnt[*idx];
}

/* Returns number of microseconds per period for the
** specified frequency
*/
isf_duration_t freq_to_usec_period(uint16 aFreq_hz)
{
 return (1000000 / aFreq);
}

void test_callbacks()
{
 bm_callback_token_t token1; /* returned from bm_register_callback() */
 bm_callback_token_t token2; /* returned from bm_register_callback() */

 token1 = bm_register_callback
 (
 freq_to_usec_period(1000),
 cb_func,

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

56 Freescale Semiconductor, Inc.

 &idx1 /* pointer that will get passed to cb_func() */
);

 token2 = bm_register_callback
 (
 freq_to_usec_period(100),
 cb_func,
 &idx2 /* pointer that will get passed to cb_func() */
);

 /* Callbacks are registered so start the timers */
 bm_start(TRUE, BM_ALL_TOKENS); /* TRUE means synchronize the callback periods */

 /* Wait for 10 seconds and let the callbacks run */
 _time_delay(10 * 1000); /* _time_delay() takes milliseconds */

 /* Stop the callbacks */
 bm_stop(BM_ALL_TOKENS);

 /* And unregister them */
 st = bm_unregister_callback(token1);
 st = bm_unregister_callback(token2);

 // Add call to user-provided function that verifies the counts of callback invocations.
 // For example:
 //
 // verify_counts(func_cnt);
 //
}

3.3.10 Built-in Commands

In addition to the built-in Mailbox Application, ISF provides a Device Information
command that returns hardware, firmware, and software information pertaining to the
device.

3.3.10.1 Device Info command

The Device Info command (DevInfo) is a special Command/Response mode command. It
does not conform to the complete Command/Response protocol described previously.
Instead, it operates the same way as the FXLC95000’s ROM Command Interpreter’s
CI_DEV_INFO Command. The DevInfo command is invoked at runtime by writing two zeros
in MB0 and MB1. This commonality allows a “0x0 0x0” to be sent to the part regardless
of its operating mode , either the ROM or the ISF Command Interpreter, and device
information is returned. It is also possible to determine whether the FXLC95000 is
operating out of ROM or flash by examining the Firmware Version information in MB12
and MB13. This is reported as 0xFF 0xFF only if it is in ROM CI mode.

The DevInfo command is also automatically invoked when initializing out of flash
memory, provided the ISF Command Interpreter component is enabled in the firmware
image loaded on the part. Internally the command executes by invoking the ROM
Command Interpreter’s CI_DEV_INFO command and overlaying its results with the ISF

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 57

specific information. The table below describes the device info data returned in the
mailboxes and whether the information came from the ROM CI or from the ISF
firmware. See the FXLC95000CL Hardware Reference Manual listed in References for
more information about the ROM CI, the commands available and meanings of the
RCSR and FOPT register values.

The DevInfo command places the following data in the mailboxes:

Table 3-11. Mailboxes and fields of the DevInfo command

Mailbox
number

Field Name Source Description

MB00 Command ISF Echoes the Application ID providing the Response (for example, 0)

MB01 Command Status ISF If the DevInfo data is in response to a Command, e.g. “0x0 0x0” is written to
the mailboxes, then a command response is written in MB1, 0x80 indicates
successful completion. If the DevInfo in the mailboxes is due to a reset/
initialization, then no explicit command is sent, and the Command Status
field is set to 0x0.

MB02-05 device_id ROM 32 bit pseudo random part identification value

MB06-07 rom_version ROM 16 bit ROM version code: major.minor (for example, 01 00 = 1.0)

MB08-09 fw_version ISF 16 bit firmware version code: major.minor (for example, 01 2C = 1.44)

MB10-11 hw_version ROM 16 bit hardware version code: major.minor

MB12-13 build_code ISF

16 bit firmware build number and date code. The value is encoded in the
following bit fields:

[15:13] daily build number, 0 to 7
[12: 9] build month, 1 to 12
[8: 4] build day, 1 to 31
[3: 0] build year, 2012 to 2027

E.g., 0x23 0x61 in mailboxes 12-13 would decode as:

Table 3-12. Build code encoding example

Build # Month Day Year

Bit value 001 0001 10110 0001

Decoded 1st build January 22 2013

The device information can also be retrieved programmatically using the
_fw_device_info_get(device_info_t *info_ptr) command. The _fw_device_info_get() command
fills the memory at the passed in pointer location with data according to the following
structure:

typedef struct {
 uint_32 device_id;
 uint_16 rom_version;
 uint_16 fw_version
 uint_16 hw_version;
 uint_16 build_code
 uint_16 part_number
 uint_8 reset_cause;

Communications

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

58 Freescale Semiconductor, Inc.

 uint_8 secure_mode;
} device_info_t;

3.4 Sensor Management
The Sensor Management service family provides the capability to manage the operating
modes and configurations of multiple sensors. It provides uniform interfaces to obtain
sensor data from multiple sensors.

The ISF Sensor Manager (SM) component provides uniform interfaces to applications
running on either the FXLC95000 or the external host for accessing physical data
measured by the on-board accelerometer in FXLC95000CL and other sensors external to
FXLC95000CL. The SM implements the well known client-server model wherein a
server component services one or more clients.

The ISF SM component (acting as server) is architected to provide sensor data to
registered applications (clients) that need sensor data. It is also helpful to think of the
sensor manager architecture as an implementation of the well known publish-subscribe
design pattern. Sensors managed by the SM will have their data published at some
sample rate. The SM interface allows each application to subscribe to a particular sensor's
data at different output data rates. This is accomplished using a signal tap mechanism.
The SM interface allows up to three signal taps for any one sensor. The sample rate for
each signal tap is configurable at the time of subscription.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 59

Embedded
Applications

subscribe

subscription
command

sensor data

ISF Communication

Mailbox
Interface

Command
Interpreter
Task

sensor data

read/write

sensor data

sensor data

subscribe

Accelerometer data
buffer (circular)

populates
FXLC95000CL
accelerometer
data

manages

Host Proxy
Task

Temperature data
buffer (circular)

populates
FXLC95000CL
temperature
data

manages

Data
Aggregator
Task

ISF Sensor Manager

isf_sm_subscribe_sensor_data()
isf_sm_begin_sensor_data()
isf_sm_get_sensor_data()
isf_sm_stop_sensor_data()

Sensor
Manager
Task

Sensor Manager API

Host
Applications

Mailboxes (MB0 - MB31)

Pressure data
buffer (circular)

populatesPressure
data

managesMagnetometer data
buffer (circular)

populatesMagnetometer
data

Gyroscope data
buffer (circular)

populatesGyroscope
data

manages

manages

FXLC95000CL and ISF Functionality

Figure 3-11. Sensor Manager Architecture

Figure 3-11 is a simplified view of the architecture of the ISF SM, ISF related
components, and some example data sources.

The SM exposes sensor sample data via circular data buffers. Applications that run on the
FXLC95000 platform can subscribe to sensor data via calls to the SM API. See Using the
Sensor Management API for details. Host applications, however, need to use the slave
interface to send a subscription command to the ISF Command Interpreter to subscribe to
sensor data of interest. The user writes a host proxy task that fetches the requested data
via the ISF SM API and provides it to the ISF communication component which then
outputs the data via the Mailbox Interface. Alternatively, the ISF Host Proxy component
could be used to do this.

Sensor Management

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

60 Freescale Semiconductor, Inc.

Both embedded and host applications can choose to subscribe to the sensor data of
interest. Each application can specify the number of bits required per sample. The SM
arbitrates between multiple requests from multiple applications for the sensor data and
determines the appropriate configurations to use—it controls the optimal population of
the circular buffers for the sensor data to support all application needs.

By decoupling the production and consumption of sensor data, the SM increases
scalability by removing all explicit dependencies between the interacting applications.
This makes the ISF communication infrastructure well adapted to distributed
environments that are asynchronous by nature, such as mobile environments.

3.4.1 Sensor Manager Signal Tap Mechanism

The Sensor Manager component provides every embedded application an interface to a
particular sensor’s data through a signal tap mechanism. A tap provides any registered
consumer access to sensor data. A tap is configured to accumulate sensor data at a
particular frequency known as the sample rate. A consumer may subscribe to a sensor
data tap to receive data at a particular frequency known as the report rate. The report rate
may be configured to be lower than the sample rate, resulting in more than one sample
available for consumption each time the subscriber is notified that new sensor data is
available. For example, if a sensor tap is configured to accumulate sensor data sampled at
488 Hz with a report rate of 122 Hz, then there are four new 488 Hz samples available
each time a consumer is notified that new data is available.

3.4.2 Sensor Manager Subscription Tokens

When a subscriber successfully registers to receive sensor data, a unique token ID is
returned. The Sensor Manager associates each subscription with its corresponding token
ID. Subsequent Sensor Manager API calls require this token ID to be passed as a
parameter.

3.4.3 Using the Sensor Management API

Sensor Manager (SM) API functions must be called in the correct sequence to
successfully access sensor sample data.

An application must first register for sensor data by calling isf_sm_subscribe_sensor_data()
with the appropriate parameters.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 61

Note
The report rate for the subscription is actually specified in terms
of the report period in microseconds. This allows the
specification of frequencies less than 1 Hz in an integer
representation. The report period in microseconds may be
calculated from frequency according to the formula:

T = 1000000 / F
where:
T = period in microseconds (µs)
F = desired frequency in hertz (Hz)

It must also provide a FIFO depth and an event group for the Sensor Manager to notify
the subscriber whenever new sensor data is available. An event group is a 32-bit group of
event bits used to let tasks synchronize and communicate. There are two event group
types: fast event groups and named event groups. The application is free to define one or
more event groups where each event group may be for an event type, for example, a
single tap event. If the subscription is successful, the Sensor Manager returns a unique
token ID assigned to that subscription.

After successful subscription, the subscriber may request the Sensor Manager to send
sensor data associated with the subscription by calling, isf_sm_begin_sensor_data(), passing
the assigned token ID as a parameter. Event notifications are sent by the Sensor Manager
when new data is available.

The SM places the sensor data into a unique data buffer associated with each subscriber.
When notification is received, the subscriber task should call isf_sm_get_sensor_data() with
the appropriate token ID and a pointer to a memory buffer to receive the data.

In the following example, the Sensor Manager APIs retrieve accelerometer data. This is
example code intended to demonstrate basic usage of the APIs only and does not include
all of the error/return-code checking typically found in production code.

#include <lwevent.h>
#include "isf.h"
#include "isf_types.h"
#include "isf_comm.h"
#include "isf_sm_api.h"

/*
 * Struct to hold the sensor data - filled by Sensor Manager in isf_sm_get_sensor_data()
 typedef struct {
 uint16 sampleNum;
 uint16 data[3]; //[0]=X, [1]=Y, [2]=Z
 } threeAxisData_t;
*/

LWEVENT_STRUCT gSystemEvent;
threeAxisData_t gAccelData;
// data ready event of accelerometer
#define EVENT_FXLC95000_ACCEL_DATA_RDY (1<<1)

void sensor_mgr_example_app(uint_32 param)

Sensor Management

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

62 Freescale Semiconductor, Inc.

{
#pragma unused (param)
 static _mqx_uint signalledEvents;
 _mqx_uint mqxStatus;
 sm_result_t smStatus;
 uint16 accelTokenID;
 SM_SensorSetting_t myAccelSettings;
 uint32 events = 0;
 uint32 currentEventFlag = 0;
 uint32 currentEventID = 0;

 // Set Default Sensor Settings
 myAccelSettings.nSettingsToUse = SM_GIVEN_SETTINGS;
 myAccelSettings.nFifoDepth = 1;
 myAccelSettings.nCurrentReportRate = 10000; // 100 Hz data rate in usecs;
 myAccelSettings.nCurrentResolution = AFE_ACCEL_RESOLUTION_16_BIT;
 myAccelSettings.nRange = AFE_ACCEL_G_RANGE_8G;

 smStatus = isf_sm_subscribe_sensor_data(
 SM_AFE_ACCEL_SENSOR_3D, &myAccelSettings, &gSystemEvent,
EVENT_FXLC95000_ACCEL_DATA_RDY, &accelTokenID);

 smStatus = isf_sm_begin_sensor_data(accelTokenID);

 // Read 1000 samples
 for (i=0; i<1000; i++)
 {

 // _lwevent_wait_for() blocks until the Sensor Manager sets the
 // event indicating new data is available.
 mqxStatus = _lwevent_wait_for(&gSystemEvent, EVENT_FXLC95000_ACCEL_DATA_RDY, FALSE,
0);

 // Get Sensor Data.
 smStatus = isf_sm_get_sensor_data(accelTokenID, (void *)&gAccelData);

 gAccelDataSampleNum++;

 // do something with the data
 my_process_data_function(gAccelData);

 _lwevent_clear(gSystemEvent, EVENT_FXLC95000_ACCEL_DATA_RDY);
 }
 smStatus = isf_sm_end_sensor_data(accelTokenID);
 smStatus = isf_sm_unsubscribe_sensor_data(accelTokenID);
}

NOTE
If a FIFO depth of larger than one is specified when subscribing
to the sensor data, the buffer must be allocated large enough to
hold all data sets returned.

The Sensor Manager may be requested to pause delivery of sensor data by calling
isf_sm_end_sensor_data() with the appropriate token ID. This suspends notifications of new
data availability without ending the subscription. Delivery of sensor data can be resumed
by calling isf_sm_begin_sensor_data()—this will provide current data in the memory buffer
at the next notification.

NOTE
In ISF v1.1, the following conditions must be met.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 63

• There must be three or fewer subscriptions per sensor.
• If there is more than one subscription:

• Sampling frequencies of additional subscriptions must
divide evenly into the highest subscription frequency.

3.4.3.1 Sensor Manager Subscription Quality of Service

Due to power consumption concerns, the Sensor Manager attempts to configure the
physical sensor to run at the lowest possible frequency (longest period) that can fulfill its
current subscriber’s needs. Of course, this corresponds to the lowest CPU power
consumption value. When a new subscription is received, or when an existing subscriber
unsubscribes, the Sensor Manager evaluates its remaining subscriptions to see if the
physical sensor's configured rate can be reduced while still meeting current subscriber
needs.

Subscribers communicate their subscription needs to the Sensor Manager through the
quality of service (QoS) parameter (nSettingsToUse) in the subscription request structure.
The Sensor Manager uses this information to determine how it must configure the
physical sensor in order to support all its current subscribers along with the new one. A
subscription’s QoS setting can be set to one of the following values:

• SM_GIVEN_SETTINGS

• SM_BEST_POSSIBLE_SETTINGS

• SM_CURRENT_SETTINGS

SM_GIVEN_SETTINGS instructs the Sensor Manager that the settings provided in the
subscription must be used exactly as specified in the request. If they are not compatible,
the subscription request fails and an error is returned. By using SM_GIVEN_SETTINGS, the
developer tells the Sensor Manager the expected physical sensor configuration settings to
change to support the new subscription request. For example, if the physical sensor is
currently configured to sample at 100 Hz (period of 10,000 µs) and a new subscription is
received with a QoS specification of SM_GIVEN_SETTINGS and a desired sample rate of 200 Hz
(period of 5000 µs), the Sensor Manager reconfigures the physical sensor to sample at
200 Hz and provides every other sample to the existing subscriber in order to maintain its
requested 100 Hz rate.

A QoS setting of SM_BEST_POSSIBLE_SETTINGS tells the Sensor Manager that the settings
provided in the request are the subscriber’s first choice but if these settings are not
possible, then the closest compatible settings are acceptable. The discussion below
describes how the Sensor Manager determines compatible settings. When
SM_BEST_POSSIBLE_SETTINGS is used, it is possible that the physical sensor configuration
settings are changed to support the new subscription QoS. For example, if the physical

Sensor Management

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

64 Freescale Semiconductor, Inc.

sensor is currently configured to sample at 100 Hz (10,000 µs) and a new subscription is
received with SM_BEST_POSSIBLE_SETTINGS for 90 Hz (11,111 µs), the subscription is adjusted
to receive data at 100 Hz instead with no changes to the physical sensor configuration
settings necessary. But if a new subscription request for 300 Hz (3333 µs) is received, the
physical sensor configuration settings are changed to sample at 300 Hz and the existing
subscriber starts receiving every third sample from the sensor.

A subscription specifying SM_CURRENT_SETTINGS means that the new subscriber should not
affect the current physical sensor configuration settings in any way.The subscription
parameters are adjusted to be compatible with the current physical sensor configuration
settings. Whenever the Sensor Manager adjusts subscription parameters, they are adjusted
in the subscription request structure passed by reference by the subscriber and a return
code indicating that the subscription parameters were modified is returned. As a result,
the subscriber is alerted to the change and can see the updated values.

3.4.3.2 Sensor Subscription Compatibility

It is useful to understand how the Sensor Manager handles subscribers and signal taps
and how that translates to the configuration settings of the physical sensor. This enables
the developer to choose the appropriate subscription settings when designing the
application.

When subscribers request sensor data at different rates, the Sensor Manager configures
the physical sensor at a base rate that can support all subscribers by providing every
sample from the sensor to the highest rate subscriber and satisfying the lower rate
subscriber’s requested rate by skipping some samples. For example, if the physical
sensor is configured to sample at 1000 Hz (1000 µs) to support subscriber A, but
subscriber B wants data at 250 Hz (4000 µs), then subscriber B2 will receive every fourth
sample from the sensor. All subscriptions must have rates that have an integer sample
ratio with the base physical sensor sample rate. The fastest rate subscriber has an integer
sample ratio of 1 and the lower frequency subscribers have integer sample ratios of 2 or
higher.

When the Sensor Manager has no subscribers for a given sensor, the sensor is not
sampled. As subscriptions are received, the Sensor Manager configures the physical
sensor sample rate to accommodate the requested rate. For example, suppose the Sensor
Manager receives its first subscription with a request for samples at 50 Hz (20,000 µs).
The Sensor Manager configures the sensor to sample at 50 Hz and sets the subscriber’s
integer sample ratio to be 1. Subsequently, a second subscription is received for 100 Hz
(10,000 µs) data. The Sensor Manager reconfigures the physical sensor to sample at 100

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 65

Hz and modifies the first subscriber’s integer sample ratio to be 2. If a third subscriber
then requests data at 25 Hz (40,000 µs), no change to the physical sensor configuration is
required. The Sensor Manager simply sets the third subscriber’s integer sample ratio to 4.

Suppose now, that the second subscriber unsubscribes, leaving two active subscriptions
for 50 Hz (20,000 µs) and 25 Hz (40,000 µs) data. The Sensor Manager then evaluates
the remaining subscriptions and determines that it can reduce the physical sample rate to
50 Hz (20,000 µs) and adjusts the subscriber’s integer sample ratios to 1 and 2
respectively.

It is important to understand that when evaluating the compatibility of requests, the
Sensor Manager is designed in the following way. It never raises the physical sensor
sample rate above the highest requested rate from any new or current subscriber in order
to satisfy a subscription request for lower rate data.

For example, even though a physical sensor rate of 100 Hz (10,000 µs) might satisfy a
new request for 20 Hz (50,000 µs) data when the physical sensor is currently configured
at a 50 Hz (20,000 µs) rate, the Sensor Manager does not configure the sensor for faster
than the current rate to support the lower rate request. It still increases the base sensor
rate in order to meet higher frequency requests. If the sensor was configured to sample at
50 Hz (20,000 µs) and a 100 Hz (10,000 µs) request is received, it reconfigures to support
the 100 Hz (10,000 µs) request. At that point, if a request for 20 Hz (50,000 µs) is
received, the request is supported with an integer sample ratio of 5. It should also be
understood that even though the Sensor Manager does not reconfigure the physical sensor
to sample at a rate faster than that of its highest rate subscriber, it is possible for the
sensor to be configured faster than any current subscriber.

Consider the previous example with three subscribers at 50 Hz , 100 Hz, and 20 Hz
(20,000 µs, 10,000 µs, and 50,000 µs) with the physical sensor configured for 100 Hz
(10,000 µs). Now suppose that the 100 Hz subscriber unsubscribes. At this point, the
Sensor Manager evaluates the remaining subscribers to determine if the physical sensor
rate can be reduced, but it determines that there is no lower rate possible than can support
both remaining subscriptions. In this particular case, the physical configuration remains
at 100 Hz. When either the 20 Hz or 50 Hz subscriber unsubscribes, the physical sensor
rate is reduced at that time. Once that reduction occurs, it is no longer possible for either
one to resubscribe at their previous rate because a 50 Hz request is not compatible with
an existing 20 Hz rate nor is a 20 Hz rate compatible with an existing 50 Hz rate. A 100
Hz subscriber also needs to resubscribe before the 20 Hz or 50 Hz subscribers are
compatible.

Sensor Management

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

66 Freescale Semiconductor, Inc.

3.4.4 Digital Sensor Abstraction (DSA)

The Sensor Manager (SM) communicates with its sensors via an abstraction layer called
the Digital Sensor Abstraction (DSA). By design, SM functions are not sensor-specific.
The DSA provides the means to implement sensor-specific functions. The DSA exposes
the ability to initialize, configure, validate settings of, get state of, start, stop, and shut
down a sensor.

These capabilities are exposed as a set of functions conforming to an interface defined by
the SM and the set of functions implementing these functions for a given sensor is known
as a DSA adapter. The architecture of the SM enables the user to write new DSA adapters
and to associate these adapters with existing or new sensors connected to the platform.

For any system, the list of the sensors available is maintained in the System
Configuration component (see System Configuration). This list associates each instance
of a sensor on the system with a system-unique Sensor ID, a DSA adapter, and other
specific instance data needed to uniquely address the sensor. The SM API enables its
users to refer to sensors via their assigned Sensor ID when subscribing. Internally, the
SM uses the provided Sensor ID either to lookup the sensor configuration information
contained in the Sensor Configuration list or to invoke the appropriate DSA adapter
functions.

3.4.4.1 Digital Sensor Abstraction Theory of Operation

The Sensor Manager uses Digital Sensor Abstraction (DSA) adapter functions to interact
and manage its sensors. The DSA adapter functions are designed to allow multiple sensor
instances of a particular type to all reference the same adapter. This means that instance-
data specific to a particular sensor must be kept separate from the adapter code and
passed into each adapter function through a reference pointer. Thus, the adapter may be
thought of as a set of class methods, each taking an explicit this pointer in addition to any
other arguments pertinent to the specific function.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 67

DSA
adapter

ISF
Sensor

Manager

Application
data

Process
subscription

request

Signal New
data

available

Create
buffer

Allocate
event flag

Set data
ready flag

Copy
sensor data to

output data
buffer

event_flag

Sensor Manager
managed

data

Sensor
hardware

Signal
event

Sensor 1 buffer

Sensor 2 buffer

...

data_ready_flag

Sensor 1 buffer

Sensor 2 buffer

... Copy sensor
data to buffer

Configure
sensor

hardware

Respond
to data ready

Store
sensor

configuration

Respond
to new data

Call DSA

Subscribe to
Sensor

data

Application

Read
Sensor

data

output
data buffer

output
data buffer

Figure 3-12. DSA operation

Figure 3-12 helps to understand the interface between the ISF Sensor Manager, the DSA
adapter and the application. To set up receipt of sensor data, the Sensor Manager (SM)
creates a buffer to hold a sample set from each sensor and allocates an event flag that the
DSA adapter uses to signal the SM when new sensor data is available. After creating the
buffer, the Sensor Manager initializes and configures the sensor, passing the instance data
pointer, the event flag, a reference to the sample buffer and any other required sensor
configuration data including the requested sample rate. The DSA configures the sensor
hardware to provide samples at the specified rate, places new samples in the provided
buffer and signals the Sensor Manager via the provided event flag each time a new
sample is available. The application gets informed about the availability of data that it
requested by the SM and may read the appropriate output buffer set up earlier for that
data.

Sensor Management

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

68 Freescale Semiconductor, Inc.

3.4.4.2 Implementing a New Digital Sensor Abstraction Adapter

New DSA adapters may be written by users to support new sensor types. The required
type definitions are found in the file isf_sm_dsa_adapter.h. The source code for the
Freescale MAG3110 I2C DSA adapter implementation is also available as a full working
example.

3.4.5 System Configuration

The ISF Sensor Configuration component maintains a list of all the sensors available on
the platform along with the data structures necessary for the Sensor Manager to initialize,
configure and use the sensors. This list is indexed using Sensor ID enumerations, also
defined in the Sensor Configuration component. The Sensor Configuration component is
provided as source-code to enable the user to add or remove sensors and the
corresponding DSA adapters from the system.

Sensor Configuration component type definitions, structures and enumeration values are
declared in isf_sensor_configuration_extern.h and are defined and initialized statically in
isf_sensor_configuration.c.

To make a new sensor available to the Sensor Manager, the following steps must be
followed:

1. Write or obtain a DSA adapter for the new sensor type. Examples of sensor types are
gyroscope and altimeter.

2. Modify isf_sensor_configuration.h to add a new enumeration value for the new
sensor. This is most easily done by adding the new sensor to the end of the existing
sensor configuration list.

3. Modify isf_sensor_configuration.c to:
• add the new entry in the Sensor Configuration array with values appropriate for

the new sensor.
• update the global gNumSupportedSensors variable with the total number of available

sensors.

The following example sensor configuration file demonstrates the declaration of two
sensors.

// File: isf_sensor_configuration.c
#include <isf_sensor_configuration.h>
#include <fsl_fxlc95000_mmap_3D_accel_config_types.h>
#include <fsl_mag3110_i2c_3D_mag_config_types.h>
static mag3110_Specific_Config_t mag3110SpecificSettings;

SensorConfig_t gSensorList[] =
{
 // The onboard accelerometer
 {

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 69

 &fsl_fxlc95000_mmap_3D_accel_adapter, // adapter code to use
 NULL, // (allocated by SM)
 NULL, // pointer sensor-specific config data
 INTERNAL_CHAN, // channel to use
 0xFFFEC4 // device address
 },

 // An I2C FSL MAG3110 magnetometer
 {
 &fsl_mag3110_i2c_3D_mag_adapter, // adapter code to use
 NULL, // (allocated by SM)
 &mag3110SpecificSettings, // pointer sensor-specific config data
 I2C_MASTER1, // channel to use
 0x0E // device address
 }
};

uint8 gNumSupportedSensors = sizeof(gSensorList)/sizeof(SensorConfig_t);
// (in this case 2)

3.5 Power Management
The Power Manager (PM) exposes simplified functions to set the device behavior with
respect to operating power modes of the device. In addition, it is responsible for
maintaining operational consistency for ISF components as the device power states are
changed.

3.5.1 Power Management Concepts and Theory of Operation

The Power Manager (PM) provides APIs that allow an embedded application to request
changes to the operating power mode of the device.

In general, power savings is expected to be achieved by controlling CPU cycling and the
speed and enable status of the clock(s) driving the device and its peripherals when the
device is idle.

Each port of ISF to a new hardware device maps the ISF-defined power modes to its
available device-specific power modes and must ensure that the total power consumed in
each mode is less than or equal to each higher-powered mode subject to CPU loading
constraints.

There are four high-level abstract power modes defined by the ISF PM component in
isf_pm.h - one normal operating power mode and three reduced power standby modes:

typedef enum
{
 /* Normal operating power level */
 ISF_POWER_NORMAL = 1,

 /* Low power level */
 ISF_POWER_LOW = 2,

Power Management

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

70 Freescale Semiconductor, Inc.

 /* Lowest power */
 ISF_POWER_LOWEST = 3,

 /* Sleep level */
 ISF_POWER_SLEEP = 4

} pm_power_level_enum;

These four power modes are generally expected to conform to the following high-level
behavior:

• The ISF_POWER_NORMAL mode corresponds to the normal full-power operating mode- all
clocks operate at full speed.

• The ISF_POWER_LOW mode is the first lower power mode- The CPU may enter STOP
when finished with computations but all clocks continue to operate at full speed.
Recovery from ISF_POWER_LOW mode back to ISF_POWER_NORMAL occurs when any interrupt
is received.

• The ISF_POWER_LOWEST mode is the lowest power mode supported by a device that is
internally recoverable. The CPU enters STOP when finished with computations and
the clock operates at reduced speed until recovery via any interrupt.

• The ISF_POWER_SLEEP mode is a device sleep mode in which the CPU enters STOP
when finished with computations and the clock is shut off. Recovery from
ISF_POWER_SLEEP mode is only via external activity such as an external interrupt, reset,
host sending messages to CI etc.

The PM is designed to run as the lowest priority task in the system. This ensures it is safe
for the PM to command the device to enter the configured low power mode when the PM
task executes.

3.5.2 Power Management Design

The PM is designed to run as a task with an initialization function, two interface API
functions, and one interrupt service routine (ISR). The initialization function is called at
system startup and performs one-time static initialization. The two interface API
functions are exposed to the application developer to set the desired power level and to
get the current power level setting. The ISR is used internally to keep track of time when
the device is in low power. The PM task implements the low power functionality and is
created along with other Freescale MQX™ RTOS tasks during startup.

At startup, the PM performs a one-time initialization, including creation of Freescale
MQX™ RTOS objects and registration of the Start-Of-Frame (SOF) ISR. It also
initializes the power to the ISF_POWER_NORMAL setting. After initialization has been
completed, the PM idle task is created by Freescale MQX™ RTOS along with all the
other tasks in the system.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 71

The idle task runs at the lowest priority level in the system. This means it will be
executed by the OS only when all other higher priority tasks are inactive, for example by
being blocked on Freescale MQX™ RTOS objects waiting for an event occur. When the
idle task does run, it sets the device to the currently active power level. Thus, for all
power level settings except for ISF_POWER_SLEEP, power management is automatically
implemented whenever all higher priority tasks are inactive.

If the power level is set to ISF_POWER_NORMAL, the isf_power_set() function sets the level and
exits. When the idle task does run, it performs a task block operation on itself, to prevent
it from running to completion. When an application subsequently sets the power level to
something other than ISF_POWER_NORMAL, the idle task is unblocked, allowing it to complete
and initiate the low power modes.

If the power level is set to ISF_POWER_LOW, when the idle task does run, it puts the device
into STOPFC mode. In this mode, any interrupt wakes the CPU. At a minimum, the
Freescale MQX™ RTOS timer is running and wakes up the CPU when its interrupt
occurs on a periodic basis. The application may also have programmed other peripherals
on the device to generate interrupts as well, causing a wake up. After interrupt ISRs are
serviced and when all higher priority tasks are inactive, the idle task runs and returns the
device to STOPFC mode assuming that the power level remains set at ISF_POWER_LOW.

If the power level is set to ISF_POWER_LOWEST, when the idle task runs, it puts the device into
STOPSC mode unless the BM has active callbacks. In this case, the PM behaves in the same
way as the ISF_POWER_LOW power level. For the case when the BM has active callbacks
when the idle task runs, see Timer Service for further details.

If the power level is set to ISF_POWER_SLEEP, when the idle task runs, it immediately puts the
device into STOPNC mode. In this mode, all clocks in the device are stopped. An external
interrupt or slave port access from the host is required to wake the device.

3.5.3 Power Level implementations for the FXLC95000

The PM operating modes are implemented using the FXLC95000 STOP modes. The
STOP modes are briefly described below. For more details see the FXLC95000
Hardware Reference Manual listed in References.

By configuring the hardware for the desired STOP mode behavior and executing the
STOP machine instruction, the FXLC95000 can be taken from normal operational mode
to one of the following modes:

Stop Fast Clock (StopFC) In this mode, the CPU clock is stopped but peripheral clocks
continue to run at normal speed. Any interrupts cause the
CPU clock to resume at normal speed.

Power Management

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

72 Freescale Semiconductor, Inc.

Stop Fast Clock (StopSC) In this mode, the CPU clock is stopped and peripheral clocks
continue to run but at a reduced speed (CLK/256). Any
interrupts cause the CPU and peripheral clocks to resume at
normal speed.

Stop Fast Clock (StopNC) In this mode, the CPU and all peripheral clocks are stopped.
An external interrupt or host slave port access causes the
CPU and peripheral clocks to come out of sleep and resume
processing at normal speed.

The power mode mapping for the FXLC95000 is as follows:

Power Mode

FXLC95000 Specific Mode Mapping

FXLC95000
Operational Mode

CPU Stopped
When Idle

Bus Clock
Speed During

Idle

CPU
Awakened By

Interrupt

Rate-Monotonic
Time-Base

ISF_POWER_NORMAL RUN No Full n/a Yes

ISF_POWER_LOW STOPFC Yes Full All Yes

ISF_POWER_LOWEST STOPSC Yes Slow All Yes

ISF_POWER_SLEEP STOPNC Yes Stop Ext only No

3.5.4 Using the Power Management Interfaces

The PM interface provides a simplified interface for device power control. There are only
two main control API functions in the interface:

power_level_t isf_power_set(
 power_level_t aLevel)

This API is used to set the desired power level. After setting the power level via
this API, the power level is used the next time the idle function is invoked. If the
requested power level cannot be set, the current power level is returned.

power_level_t
 isf_power_get(void)

This API obtains the current power level setting.

3.5.5 Timer Service

One of the functions of the ISF Power Management component is to provide time-
keeping services for the BM because the BM timer resource is affected by the power
settings. In normal operation, the BM uses the FXLC95000 MTIM timer to keep track of
time and invoke active callbacks. The timer runs at normal speed in ISF_POWER_NORMAL and
ISF_POWER_LOW power settings, and for these two power settings, the BM runs normally.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 73

For ISF_POWER_LOWEST, however, using the STOPSC power mode causes the device oscillator to
run at a reduced frequency. This means that the elapsed time per MTIM timer tick is no
longer constant between ISF_POWER_NORMAL and ISF_POWER_LOWEST. In this case, the PM relies
on the FXLC95000 frame timer to track time during STOPSC. The frame timer is designed
to operate correctly during both fast clock and slow clock modes. As a result, the Start-
of-Frame (SOF) interrupt it produces can be reliably used to track time in increments of
the configured frame rate even during periods of slow clock operation.

During slow clock mode, the BM’s MTIM timer must be turned off and the PM’s idle
task is awakened at each SOF interrupt at which point the PM can perform some time-
keeping activities, manipulate the frame timer interval to schedule its next wake-up and
return to STOPSC mode. When the time remaining before the next BM event becomes small,
the BM is re-enabled, the MTIM is reset and STOPFC is used for the remaining period
allowing the BM to service its next scheduled MTIM interrupt.

As noted, the PM uses the frame timer and SOF interrupt for time-keeping in slow clock
mode. In this mode, the PM programs the Frame Control & Status Register (FCSR) and
the AFE Control & Status Register (AFE_CSR). If the AFE is setup for manual
conversion and the FCSR frame control is set for ΦA followed by ΦD, then this
combination inhibits SOF interrupt and causes the PM to enter into an infinite loop
waiting for SOF to occur. More specifically, the register settings that can cause this
problem are: AFE_CSR[0] = 1 (manual AFE conversion) with FCSR[5] = 1 (ΦA
followed by ΦD). This problem can be avoided by not modifying the AFE_CSR and
FCSR registers if the PM is used for power management. For additional details, refer to
the SIM and AFE chapters of the FXLC95000CL HWRM listed in References.

3.6 Application Integration
An embedded application developer must perform these steps to integrate an application
with the Command Interpreter (CI):

1. Create a callback function for each application that needs to communicate with the
host. This function is responsible for handling commands sent from the host. The
callback function prototype is defined in isf_ci.h. The commands that can be sent by
the host are predefined as ci_commands_enum in isf_ci.h. The callback receives a host
command packet (ci_host_cmd_packet_t) and returns a response status and a response
response packet (ci_app_resp_packet_t).

2. Register the callback function with the Command Interpreter. Callback registration is
done statically via the callback array, ci_callback[]. Because the application
developer must modify this array, ISF requires this array to be defined in the user's
code. The callback array contains both registered callbacks for internal ISF

Application Integration

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

74 Freescale Semiconductor, Inc.

applications as well as user applications. The ISF internal callbacks are placed in this
array via the preprocessor macro ISF_APP_CALLBACKS. The user callbacks should be
inserted following this macro. The Command Interpreter can manage a maximum of
31 callbacks in total. Because the ISF registers some callbacks, the first available
callback ID for user applications will not be zero. ISF provides a preprocessor macro
called USER_APP_ID_START which is the first available value for user callbacks. For more
information, refer to source/isf_ci.h.

Note
Because ISF has internally registered callbacks, there will
be fewer than 31 user application callback IDs available. In
ISF 1.1, there are 29 callback IDs available for user
applications starting at USER_APP_ID_START = 2.

The following is an example of user code used to define the callback array,
registering two callback functions with the Command Interpreter.

 // Application ID must start at USER_APP_ID_START.
 enum sys_app_id_enum
 {
 APP_ID_XYZ_MOTION = (USER_APP_ID_START + 0),
 APP_ID_PORTRAIT_LANDSCAPE = (USER_APP_ID_START + 1)
 }

The application can make use of isf_ci_app_read() to read data from the host and
isf_ci_app_write() to write data to the host.

The following example demonstrates a callback function for an application. This
application allows the host to subscribe to the Quick-Read data and, as required,
implements the CI_CMD_UPDATE_QUICKREAD command.

ci_response_t
isf_xyz_motion_callback(
ci_host_cmd_packet_t *pHost_packet,
ci_app_resp_packet_t *pApp_packet)
{

 // In this code example, xyz_array is a hypothetical data array
 // containing XYZ motion data.

 ci_response_t callback_ret = (ci_response_t)ISF_SUCCESS;

 switch(pHost_packet->cmd)
 {

 case CI_CMD_READ_APP_DATA:

 // Host requesting to read data.
 pAppPacket->bytes_xfer = (uint8)isf_ci_app_write(pHostPacket->appId,
 pHostPacket->byte_cnt, xyz_array);

 break;

 case CI_CMD_UPDATE_QUICKREAD:

 // Host has read this application's QR data. Call API to update.

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 75

 // Note that the host has alread configured the QR data for this
 // application. The CI will fill data to mailboxes that have been
 // designated as QR for this application with the specified offset.
 isf_ci_qr_update(pHostPacket->appId, MAX_QR_MOTION_DATA_BYTES, xyz_array);

 break;

 case CI_CMD_READ_CONFIG:

 // Host requesting to read data.
 pAppPacket->bytes_xfer = (uint8)isf_ci_app_write(pHostPacket->appId,
 pHostPacket->byte_cnt, config_array);

 break;

 case CI_CMD_WRITE_CONFIG:

 // Host writing data to application.
 pAppPacket->bytes_xfer = (uint8)isf_ci_app_read(pHostPacket->appId,
 pHostPacket->byte_cnt, config_array);
 break;

 default:

 // Unknown or invalid host command.
 callback_ret = CI_ERROR_COMMAND;
 break;

 }

 return callback_ret;
}

The following example demonstrates the implementation. The enumeration value for
the application is added in the enumerator, sys_app_id_enum. The application's
enumeration value has to be unique. Since ISF reserves values of application ID from
0 to some number, USER_APP_ID_START - 1, the first available application callback ID is
USER_APP_ID_START. In the example, the application ID is APP_ID_XYZ_MOTION and it's
callback function, isf_xyz_motion_callback(), is placed in the ci_callback[] after the
ISF_APP_CALLBACKS macro.

//! Application ID must start at USER_APP_ID_START.
enum sys_app_id_enum
{

 APP_ID_XYZ_MOTION = (USER_APP_ID_START + 0),
 APP_ID_PORTRAIT_LANDSCAPE = (USER_APP_ID_START + 1),
 NUM_ISF_APP = (APP_ID_PORTRAIT_LANDSCAPE)
}

// Command interpreter call backs.
// The array index is the application id.

const ci_funcp_t ci_callback[NUM_ISF_APP] =
{

 // ISF callbacks come first.
 ISF_APP_CALLBACKS,

 // User callbacks come after the ISF callbacks.
 isf_xyz_motion_callback,
 isf_portrait_landscape_callback
};

Application Integration

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

76 Freescale Semiconductor, Inc.

3.6.1 Interrupt Output Integration

The FXLC95000 provides the ability to configure one of its pins as an interrupt output
(INT_O). This may be used to provide the host processor with asynchronous event
notifications. The Intelligent Sensing Framework provides the ability to send interrupt
notifications to the host in conjunction with Command Interpreter events as well as the
APIs to directly send interrupt notifications.

The following APIs are declared in isf_ci.h:

void isf_ci_enable_int_o(uint8 enable);

void isf_ci_set_int_o_polarity(uint8 pol);

void isf_ci_assert_int_o(void);

The ISF Command Interpreter can be configured to automatically send an INT_O event
notification whenever response data from a Command/Response command is placed in
the mailboxes. This is done on a system-wide basis such that the configuration call need
only be called once to enable the functionality for all embedded applications.

isf_ci_enable_int_o(1) enables the automatic INT_O functionality.

To enable the automatic INT_O functionality, an application may call:

isf_ci_enable_int_o(1)

To disable the automatic INT_O functionality, an application may call:

isf_ci_enable_int_o(0)

The polarity of the interrupt signal sent is controlled via:

void isf_ci_set_int_o_polarity(uint8 pol)

where the interrupt is configured to be active high when pol is set to 1, and active low
when pol is 0.

An application can trigger an interrupt immediately by directly calling:

void isf_ci_assert_int_o(void)

Chapter 3 Intelligent Sensing Framework

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 77

Application Integration

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

78 Freescale Semiconductor, Inc.

Appendix A
FXLC95000 Non-Maskable Interrupt (NMI)
Implementation

A.1 Implementation Steps for Handling Non-Maskable
Interrupts (NMIs)

For applications that need to handle NMIs, the general steps are described here. For a
detailed implementation example, see Sample Non-Maskable Interrupt (NMI)
Implementation.

1. Include the bsp.h header file in the source code file.

#include <bsp.h>

2. In the initalization code of the project, clear all the NMI sources.

_clear_all_nmi_source();

3. In the SWI6 interrupt service routine (ISR), use the provided APIs to determine the
source of the NMI and clear it.

// Checking for INT NMI.
 if (_get_nmi_source() & INT_NMI_BIT_MASK)
 {
 // TODO: Handle the INT interrupt.

 _clear_nmi_source(INT_NMI_BIT);
 }

 // Checking for Frame Error NMI.
 if (_get_nmi_source() & FRAMEERR_NMI_BIT_MASK)
 {
 // TODO: Handle the Frame Error interrupt.

 _clear_nmi_source(FRAMEERR_NMI_BIT);
 }

 // Checking for SWI7 NMI.
 if (_get_nmi_source() & SW7_NMI_BIT_MASK)
 {
 // TODO: Handle the SWI7 interrupt.

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 79

 _clear_nmi_source(SW7_NMI_BIT);
 }

A.2 Sample Non-Maskable Interrupt (NMI) Implementation
The following example code demonstrates the handling of an NMI.

1. Main_task() is created by the Freescale MQX™ RTOS kernel and runs. The
initialization process installs a SWI6 ISR.

// Install SWI6 ISR callback "swi6_isr".
 if (_int_install_isr(VectorNumber_VL6swi, (void (_CODE_PTR_)(pointer))swi6_isr, NULL)
== NULL)
 return;

Following intialization, it sets the event flag EVENT_SYS_INIT_DONE.

2. NMI_task() is created and blocks on the EVENT_SYS_INIT_DONE event. When Main_task()
sets the EVENT_SYS_INIT_DONE event flag, it unblocks and then enters a test loop. This
loop generates a SWI7 interrupt and then blocks on any of the following NMI events:

• EVENT_NMI_INT

• EVENT_NMI_FRAMEERR

• EVENT_NMI_SW7

INTC_SFRC = 0x38; // Generate SWI7 interrupt.

// Block until NMI event occurs.
_lwevent_wait_for(&gEvent_nmi, (EVENT_NMI_INT | EVENT_NMI_FRAMEERR | EVENT_NMI_SW7),
FALSE, 0);

3. As a result of the generated SWI7 interrupt, swi6_isr() is called. Each possible NMI
source is checked using _get_nmi_source(). For each NMI source set, the code sets an
NMI event flag and clears that NMI source with _clear_nmi_source(). An example
code segment for the case of SWI7 NMI is given here.

nmi_src = _get_nmi_source(); // Get the source(s) of the NMI interrupt.

if (nmi_src & SW7_NMI_BIT_MASK)
{
 // TODO: Service NMI here and/or block on event in task to do further processing.

 _lwevent_set(&gEvent_nmi, EVENT_NMI_SW7);
 _clear_nmi_source(SW7_NMI_BIT); // Only one source can be cleared at a time.
}

4. When swi6_isr() completes, NMI_task() unblocks, because the NMI event flag is set.
NMI_task() calls _lwevent_get_signalled() to determine which event flag is set, and
processes that event. In this template, for each NMI event, a counter is incremented.

// Get the event(s) flags that unblocked us.
event_signalled = _lwevent_get_signalled();

Sample Non-Maskable Interrupt (NMI) Implementation

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

80 Freescale Semiconductor, Inc.

if (event_signalled & EVENT_NMI_INT)
 ++gIntNmiCnt;

if (event_signalled & EVENT_NMI_FRAMEERR)
 ++gFrameErrCnt;

if (event_signalled & EVENT_NMI_SW7)
 // As a result of the SWI7 generated above, this counter gets incremented
 // as a result.
 ++gSw7Cnt;

A.3 Revision History

Revision
number

Revision
date

Description

1.0 2/2014 Initial release of document for Xtrinsic Intelligent Sensing Framework (ISF) Software version 1.1

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

Freescale Semiconductor, Inc. 81

Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual, Rev. 1.0, 2/2014

82 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and ColdFire are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
MQX and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective
owners.

© 2014 Freescale Semiconductor, Inc.

Document Number
ISF1P1_95K_SW_REFERENCE_RM

Revision 1.0, 2/2014

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Xtrinsic Intelligent Sensing Framework v1.1 Software Reference Manual
	Chapter 1: About This Document
	Purpose
	Audience
	Terminology and Conventions
	Technical Terms
	Abbreviations
	Notational Conventions

	References

	Chapter 2: Introduction
	FXLC95000 System Overview
	FXLC95000CL Hardware Device

	Chapter 3: Intelligent Sensing Framework
	ISF Architecture
	Application Support
	Freescale MQX™ RTOS Components
	Freescale MQX™ RTOS Port for FXLC95000
	Freescale MQX™ RTOS Task Preemption Control Considerations

	Communications
	ISF Command Interpreter
	Mailbox Interface
	The Command/Response Paradigm
	The Quick-Read Paradigm
	Quick-Read Mailbox Layout
	Configuring the Quick-Read Mailboxes
	Mailbox Application Control Config Register

	Device Messaging
	Device Messaging concepts
	Usage Example

	Host Proxy
	Implementing a Proxy Application using the Host Proxy

	I2C Master Interfaces
	Theory of Operation
	Bus Locking
	Usage Example

	Communications Channel Configuration
	Bus Management
	Built-in Commands

	Sensor Management
	Sensor Manager Signal Tap Mechanism
	Sensor Manager Subscription Tokens
	Using the Sensor Management API
	Digital Sensor Abstraction (DSA)
	Digital Sensor Abstraction Theory of Operation
	Implementing a New Digital Sensor Abstraction Adapter

	System Configuration

	Power Management
	Application Integration

	Appendix A: FXLC95000 Non-Maskable Interrupt (NMI) Implementation
	Implementation Steps for Handling Non-Maskable Interrupts (NMIs)
	Sample Non-Maskable Interrupt (NMI) Implementation
	Revision History

