
IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual
Rev. 1.1 — 22 September 2022 Reference manual

Document information
Information Content

Keywords i.MX RT, Vivante VGLite graphics API

Abstract The Vivante VGLite graphics API is a platform-independent API from
VeriSilicon Microelectronics for rendering an interactive graphic user interface
that may include menus, fonts, curves, and images. The API supports 2D
vector-based and 2D raster-based operations. It is aimed to provide maximum
2D vector/raster rendering performance with minimum memory footprint. The
VGLite API can be used as the interface for the 2D GPU driver in NXP i.MX
RT platforms.

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

1 Introduction

The Vivante VGLite graphics API is a platform-independent API from VeriSilicon
Microelectronics for rendering an interactive graphic user interface that may include
menus, fonts, curves, and images. The API supports 2D vector-based and 2D
raster-based operations. It is aimed to provide maximum 2D vector/raster rendering
performance with minimum memory footprint. The VGLite API can be used as the
interface for the 2D GPU driver in NXP i.MX RT platforms.

The following i.MX RT devices support the VGLite API:

• i.MX RT500
• i.MX RT1160
• i.MX RT1170

This document contains copyright material disclosed with permission from VeriSilicon
Microelectronics.

2 Vivante VGLite Graphics API

The Vivante VGLite graphics API is used to control 2D GPU hardware in i.MX RT
platforms. It provides accelerated vector and raster operations. The API supports the
following major features:

• Porter-Duff blending
• Gradient controls
• Fast clear
• Arbitrary rotations
• Path filling rules
• Path painting
• Pattern path filling

2.1 API partitions
The Vivante VGLite graphics API is designed to allow fine granularity in memory usage.
It is appropriate for those cases where the user wants to use only one of the available
rendering classes. The API is partitioned into these independent parts:

• Initialization: Used for initializing hardware and software structures
• Blit API: Used for the raster part of rendering
• Draw API: Used for 2D vector-based draw operations

2.2 API files
The Vivante VGLite graphics API functions are defined in the header file VGLite/inc/
vg_lite.h.

All VGLite enumerations and data types are also defined in VGLite/inc/vg_lite.h.

3 Common parameters and error values

This chapter provides an overview of the common parameter types and the enumeration
used for error reporting.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
2 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

3.1 Common parameter types
The Vivante VGLite graphics API uses a naming convention scheme wherein definitions
are preceded by ‘vg_lite’.

The VGLite API currently uses the data types and structures listed in the table below.

Name Typedef Value

int32_t int A signed 32-bit integer

uint32_t unsigned int An unsigned 32-bit integer

VG_LITE_S8 enum vg_lite_format_t A signed 8-bit integer coordinate

VG_LITE_S16 enum vg_lite_format_t A signed 16-bit integer coordinate

VG_LITE_S32 enum vg_lite_format_t A signed 32-bit integer coordinate

vg_lite_float_t float A single-precision floating-point number

vg_lite_color_t uint32_t A 32-bit color value.
The color value specifies the color used in various functions.
The color is formed using 8-bit RGBA channels. The red
channel is in the lower 8 bits of the color value. It is followed
by the green and blue channels. The alpha channel is in the
upper 8 bits of the color value.
For L8 target formats, the RGB color is converted to L8 by
using the default ITU-R BT.709 conversion rules.

Table 1. Common parameter types

3.2 Enumerations for error reporting
This section describes enumerations used for error reporting.

3.2.1 vg_lite_error_t enumeration

Most functions in the API return an error status via the vg_lite_error_t enumeration.
The table below lists possible error values. The error codes are used in many functions,
including initialization, flush, blit, draw, gradient, and pattern functions.

If an API function completes successfully with no errors, the returned status is
VG_LITE_SUCCESS.

Value Description

VG_LITE_GENERIC_IO Cannot communicate with the kernel driver

VG_LITE_INVALID_ARGUMENT An invalid argument was specified

VG_LITE_MULTI_THREAD_FAIL Multi-thread/tasks fail

VG_LITE_NO_CONTEXT No context specified

VG_LITE_NOT_SUPPORT Function call not supported

VG_LITE_OUT_OF_MEMORY Out of memory (driver heap)

VG_LITE_OUT_OF_RESOURCES Out of resources (OS heap)

VG_LITE_SUCCESS Successful with no errors

VG_LITE_TIMEOUT Timeout

Table 2. vg_lite_error_t enumeration

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
3 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Value Description

VG_LITE_ALREADY_EXISTS Object exists

VG_LITE_NOT_ALIGNED Data alignment error

Table 2. vg_lite_error_t enumeration...continued

4 Hardware product and feature information

These query functions can be used to identify the product and its key features and to get
VGLite driver information.

4.1 Enumerations for product and feature queries
This section describes enumerations used for product and feature queries.

4.1.1 vg_lite_feature_t enumeration

The following feature values may be queried for availability in compatible hardware.

Used in information function: vg_lite_query_feature.

Value Description

gcFEATURE_BIT_VG_IM_INDEX_FORMAT Index format support

gcFEATURE_BIT_VG_PE_PREMULTIPLY Premultiply alpha support for image

gcFEATURE_BIT_VG_RADIAL_GRADIENT Radial gradient support

gcFEATURE_BIT_VG_LINEAR_GRADIENT_EXT Support for extended linear color gradient capabilities

gcFEATURE_BIT_VG_BORDER_CULLING Border culling support

gcFEATURE_BIT_VG_COLOR_KEY Color keying support

gcFEATURE_BIT_VG_DITHER GPU dithering support

gcFEATURE_BIT_VG_RGBA2_FORMAT RGBA2222 format support

gcFEATURE_BIT_VG_QUALITY_8X Vector path 8x anti-aliasing support (VG_LITE_UPPER)

Table 3. vg_lite_feature_t enumeration

4.2 Structures for product and feature queries
This section describes structures used for product and feature queries.

4.2.1 vg_lite_info_t structure

This structure is used to query VGLite driver information.

Used in function: vg_lite_get_info.

vg_lite_info_t member Type Description

api_version uint32_t VGLite API version

header_version uint32_t VGLite header version

release_version uint32_t VGLite driver release version

Table 4. vg_lite_info_t structure

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
4 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

vg_lite_info_t member Type Description

reserved uint32_t Reserved for future use

Table 4. vg_lite_info_t structure...continued

4.3 Functions for product and feature queries
This section describes functions used for product and feature queries.

4.3.1 vg_lite_get_product_info function

Description:

This function is used to identify the VGLite-compatible product.

Syntax:

uint32_t vg_lite_get_product_info (
 char *name,
 uint32_t *chip_id,
 uint32_t *chip_rev
);

Parameters:

name Character array to store the name of the chip

chip_id Stores an ID number for the chip

chip_rev Stores a revision number for the chip

Returns:

The length of the name string, including the ending ‘\0’.

4.3.2 vg_lite_get_info function

Description:

This function is used to query the VGLite driver information.

Syntax:

void vg_lite_get_info (
 vg_lite_info_t *info
);

Parameters:

info Points to the VGLite driver information structure, which includes the API version,
header version, and release version

4.3.3 vg_lite_get_register function

Description:

This function can be used to read a GPU AHB register value given the AHB byte address
of a register. Refer to the appropriate Vivante GPU AHB register specification documents

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
5 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

for register descriptions. The value range of AHB accessible addresses for VGLite cores
is usually 0x0 to 0x1FF and 0xA00 to 0xA7F.

Syntax:

vg_lite_error_t vg_lite_get_register (
 uint32_t address,
 uint32_t *result
);

Parameters:

address Address of the register whose value you want to read

result Value of the register, returned by the function

Returns:

VG_LITE_SUCCESS. The behavior is undefined if a register is outside the range of
VGLite core accessible addresses.

4.3.4 vg_lite_query_feature function

Description:

This function is used to query if a specific feature is available.

Syntax:

uint32_t vg_lite_query_feature (
 vg_lite_feature_t feature
);

Parameters:

feature Feature to be queried, as detailed in enum vg_lite_feature_t

Returns:

The feature is either not supported (0) or supported (1).

4.3.5 vg_lite_mem_avail function

Description:

This function queries the amount of available contiguous video memory.

Syntax:

vg_lite_error_t vg_lite_mem_avail (
 uint32_t *size
);

Parameters:

size Pointer to the variable where the function should return the amount of remaining contiguous video memory

Returns:

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
6 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Returns VG_LITE_SUCCESS if the query was successful. Returns
VG_LITE_NO_CONTEXT if the driver is not initialized, or there is no available memory.

5 API control

Before calling any VGLite API function, each application task/thread must initialize its
VGLite context by calling the vg_lite_init() function. This function fills a features
table, resets the fast-clear buffer, resets the compositing target buffer, and allocates task-
specific command and tessellation buffers.

Note: The vg_lite_init() function does not initialize clocks. Driver users are
responsible for ensuring that all necessary clocks are running and attached before calling
this function.

The VGLite driver supports one context per thread to issue commands to GPU hardware.
Multiple contexts can be used simultaneously by different threads/tasks because each
thread/task can initialize its own context using the vg_lite_init() API.

5.1 Context initialization and control functions
This section provides an overview of the context initialization and control functions.

5.1.1 vg_lite_set_command_buffer_size function

Description:

This function is optional. If used, call it after vg_lite_init() if you want to change the
GPU command buffer size for the current context.

This function is useful for devices where memory is limited and is less than the default
size. The VGLite command buffer size is set to 64 KB by default, so that VGLite
applications can render more complex paths with better performance. This function can
be used to adjust the command buffer size to fit specific application and system/device
requirements.

Syntax:

vg_lite_error_t vg_lite_set_command_buffer_size (
 uint32_t size
);

Parameters:

size Size of the VGLite command buffer to set for the current context. Default is 64 KB.

5.1.2 vg_lite_init function

Description:

This function initializes the memory and data structures for VGLite draw/blit functions. It
allocates memory for the command buffer and a tessellation buffer of the specified size.
The tessellation buffer width and height must be a multiple of 16. The tessellation window
can be specified based on the amount of memory available in the system and the desired
performance. A smaller window can have a lower memory footprint but may result in
lower performance. The minimum window that can be used for tessellation is 16x16. If

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
7 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

the height or width is less than 0, then no tessellation buffer is created and vector path
rendering is disabled (that is, only image blitting is available in the current context).

If the current context is the first context to access the hardware, then the hardware is
turned on and initialized. Multiple parallel contexts are not supported for the same task/
thread; therefore, in the same thread, vg_lite_init() cannot be called multiple times
without calling vg_lite_close() first.

Syntax:

vg_lite_error_t vg_lite_init(
 int32_t tessellation_width,
 int32_t tessellation_height
);

Parameters:

tessellation_width The width of tessellation window. The value should be a multiple of 16; minimum
width is 16 pixels, maximum cannot be greater than the frame width. If less than
or equal to 0, then no tessellation buffer is created, in which case the function is
used for a blit init.

tessellation_height Height of tessellation window. The value should be a multiple of 16; minimum height
is 16 pixels, maximum cannot be greater than frame height. If less than or equal to 0,
then no tessellation buffer is created, in which case the function is used for a blit init.

5.1.3 vg_lite_close function

Description:

The vg_lite_close() function deallocates all the resources and frees up the entire
memory that was initialized earlier by the vg_lite_init() function. If current context
is the only active context, then the vg_lite_close() function also turns OFF the
hardware automatically.

Syntax:

vg_lite_error_t vg_lite_close (void);

5.1.4 vg_lite_finish function

Description:

This function explicitly submits the command buffer to the GPU and waits for it to
complete.

Syntax:

vg_lite_error_t vg_lite_finish (void);

5.1.5 vg_lite_flush function

Description:

This function explicitly submits the command buffer to the GPU without waiting for it to
complete.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
8 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Syntax:

vg_lite_error_t vg_lite_flush (void);

Returns:

Returns VG_LITE_SUCCESS if the flush is successful. See vg_lite_error_t enum for other
return codes.

6 Pixel buffers

This chapter provides an overview of the pixel buffer alignment, cache, internal
representation, enumerations, structures, and functions.

6.1 Pixel buffer alignment
To work correctly, VGLite hardware requires the data address and stride of a pixel buffer
to be aligned according to its pixel format. This requirement applies to all image formats.
The byte alignment requirement for a pixel depends on the specific pixel format. For
more details, see Table 7.

The pixel buffer start address alignment requirement also varies depending on whether
the buffer layout format is tiled or linear (vg_lite_buffer_layout_t enum):

• If the buffer layout is tiled (4x4 tiled), then the start address and stride must be 64 bytes
aligned

• If the buffer layout is linear, then the start address and stride must be aligned according
to the format of the pixel buffer, as described in Table 7

6.2 Pixel cache
The Vivante Imaging Engine (IM) includes two fully associative caches. Each cache has
8 lines, each line has 64 bytes. In this case, one cache line can hold either a 4x4-pixel tile
or a 16x1-pixel row.

6.3 Internal representation
For non 32-bit color formats, each pixel is extended to 32 bits as follows:

• If color format is same for the source and destination formats but they differ in the
number of bits per color channel, then the source channel is multiplied by (2d- 1)/(2s–
1) and is rounded to the nearest integer, where:
– d is the number of bits in the destination channel
– s is the number of bits in the source channel
Example: A b11111 5-bit source channel gets converted to an 8-bit destination
b11111000.

The YUV formats are internally converted to RGB. Pixel selection is unified for all formats
by using the LSB of the coordinate.

6.4 Pixel buffer enumerations
This section provides an overview of the pixel buffer enumerations.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
9 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

6.4.1 vg_lite_buffer_format_t enumeration

This enumeration specifies the color format for a buffer. It applies to both image and
render target.

Note: See Alignment Notes following the value descriptions for alignment requirements
summary for the image formats.

Used in structure: vg_lite_buffer_t.

See also vg_lite_blit, vg_lite_clear, vg_lite_draw.

Value Description Supported
as source

Supported
as
destination

Alignment
(bytes)

VG_LITE_
ABGR8888

32-bit ABGR format with 8 bits per color channel.
Alpha is in bits 7:0, blue in bits 15:8, green in bits 23:16, and
the red channel is in bits 31:24.

31:24 23:16 15:8 7:0

ABGR8888 R G B A

Yes Yes 64

VG_LITE_
ARGB8888

32-bit ARGB format with 8 bits per color channel.
Alpha is in bits 7:0, red in bits 15:8, green in bits 23:16, and the
blue channel is in bits 31:24.

31:24 23:16 15:8 7:0

ARGB8888 B G R A

Yes Yes 64

VG_LITE_
BGRA8888

32-bit BGRA format with 8 bits per color channel.
Blue in bits 7:0, green in bits 15:8, red is in bits 23:16, and the
alpha channel is in bits 31:24.

31:24 23:16 15:8 7:0

BGRA8888 A R G B

Yes Yes 64

VG_LITE_
RGBA8888

32-bit RGBA format with 8 bits per color channel.
Red is in bits 7:0, green in bits 15:8, blue in bits 23:16, and the
alpha channel is in bits 31:24.

31:24 23:16 15:8 7:0

RGBA8888 A B G R

Yes Yes 64

VG_LITE_
BGRX8888

32-bit BGRX format with 8 bits per color channel.
Blue in bits 7:0, green in bits 15:8, red is in bits 23:16, and the
X channel is in bits 31:24.

31:24 23:16 15:8 7:0

BGRX8888 X R G B

Yes Yes 64

Table 5. vg_lite_buffer_format_t enumeration

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
10 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Value Description Supported
as source

Supported
as
destination

Alignment
(bytes)

VG_LITE_
RGBX8888

32-bit RGBX format with 8 bits per color channel.
Red is in bits 7:0, green in bits 15:8, blue in bits 23:16, and the
X channel is in bits 31:24.

31:24 23:16 15:8 7:0

RGBX8888 X B G R

Yes Yes 64

VG_LITE_
XBGR8888

32-bit XBGR format with 8 bits per color channel.
X channel is in bits 7:0, blue in bits 15:8, green in bits 23:16,
and the red channel is in bits 31:24.

31:24 23:16 15:8 7:0

XBGR8888 R G B X

Yes Yes 64

VG_LITE_
XRGB8888

32-bit XRGB format with 8 bits per color channel.
X channel is in bits 7:0, red in bits 15:8, green in bits 23:16,
and the blue channel is in bits 31:24.

31:24 23:16 15:8 7:0

XRGB8888 B G R X

Yes Yes 64

VG_LITE_
ABGR1555

16-bit ABGR format with 5 bits per color channel and one-bit
alpha.
Alpha channel is in bit 0:0, blue in bits 5:1, green in bits 10:6,
and the red channel is in bits 15:11.

15:11 10:6 5:1 0:0

ABGR5551 R G B A

Yes Yes 32

VG_LITE_
ARGB1555

16-bit ARGB format with 5 bits per color channel and one-bit
alpha.
The alpha channel is bit 0:0, red in bits 5:1, green in bits 10:6,
and the blue channel is in bits 15:11.

15:11 10:6 5:1 0:0

ARGB5551 B G R A

Yes Yes 32

VG_LITE_
BGRA5551

16-bit BGRA format with 5 bits per color channel and one-bit
alpha.
Blue is in bit 4:0, green in bits 9:5, red in bits 14:0, and the
alpha channel is bit 15:15.

15:15 14:10 9:5 4:0

BGRA5551 A R G B

Yes Yes 32

Table 5. vg_lite_buffer_format_t enumeration...continued

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
11 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Value Description Supported
as source

Supported
as
destination

Alignment
(bytes)

VG_LITE_
RGBA5551

16-bit RGBA format with 5 bits per color channel and one-bit
alpha.
Red is in bit 4:0, green in bits 9:5, blue in bits 14:0, and the
alpha channel is bit 15:15.

15:15 14:10 9:5 4:0

RGBA5551 A B G R

Yes Yes 32

VG_LITE_BGR565 16-bit BGR format with 5 and 6 bits per color channel.
Blue is in bits 4:0, green in bits 10:5, and the red channel is in
bits 15:11.

15:11 10:5 4:0

BGR565 R G B

Yes Yes 32

VG_LITE_RGB565 16-bit RGB format with 5 and 6 bits per color channel.
Red is in bits 4:0, green in bits 10:5, and the blue channel is in
bits 15:11.

15:11 10:5 4:0

RGB565 B G R

Yes Yes 32

VG_LITE_
ABGR4444

16-bit ABGR format with 4 bits per color channel.
Alpha is in bits 3:0, blue in bits 7:4, green in bits 11:8, and the
red channel is in bits 15:12.

15:12 11:8 7:4 3:0

ABGR4444 R G B A

Yes Yes 32

VG_LITE_
ARGB4444

16-bit ARGB format with 4 bits per color channel.
Alpha is in bits 3:0, red in bits 7:4, green in bits 11:8, and the
blue channel is in bits 15:12.

15:12 11:8 7:4 3:0

ARGB4444 B G R A

Yes Yes 32

VG_LITE_
BGRA4444

16-bit BGRA format with 4 bits per color channel.
Red is in bits 11:8, green in bits 7:4, blue in bits 3:0, and the
alpha channel is in bits 15:12.

15:12 11:8 7:4 3:0

BGRA4444 A R G B

Yes Yes 32

Table 5. vg_lite_buffer_format_t enumeration...continued

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
12 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Value Description Supported
as source

Supported
as
destination

Alignment
(bytes)

VG_LITE_
RGBA4444

16-bit RGBA format with 4 bits per color channel.
Red is in bits 3:0, green in bits 7:4, blue in bits 11:8, and the
alpha channel is in bits 15:12.

15:12 11:8 7:4 3:0

RGBA4444 A B G R

Yes Yes 32

VG_LITE_
ABGR2222

8-bit BGRA format with 2 bits per color channel.
Alpha is in bits 1:0, blue in bits 3:2, green in bits 5:4, and the
red channel is in bits 7:6.
Note: Not all VGLite-compatible i.MX RT platforms support
this feature. For more details, see Table 82.

7:6 5:4 3:2 1:0

ABGR2222 R G B A

Yes Yes 16

VG_LITE_
ARGB2222

8-bit BGRA format with 2 bits per color channel.
Alpha is in bits 1:0, red in bits 3:2, green in bits 5:4, and the
blue channel is in bits 7:6.
Note: Not all VGLite-compatible i.MX RT platforms support
this feature. For more details, see Table 82.

7:6 5:4 3:2 1:0

ARGB2222 B G R A

Yes Yes 16

VG_LITE_
BGRA2222

8-bit BGRA format with 2 bits per color channel.
Blue is in bits 1:0, green in bits 3:2, red in bits 5:4, and the
alpha channel is in bits 7:6.
Note: Not all VGLite-compatible i.MX RT platforms support
this feature. For more details, see Table 82.

7:6 5:4 3:2 1:0

BGRA2222 A R G B

Yes Yes 16

VG_LITE_
RGBA2222

8-bit RGBA format with 2 bits per color channel.
Red is in bits 1:0, green in bits 3:2, blue in bits 5:4, and the
alpha channel is in bits 7:6.
Note: Not all VGLite-compatible i.MX RT platforms support
this feature. For more details, see Table 82.

7:6 5:4 3:2 1:0

RGBA2222 A B G R

Yes Yes 16

VG_LITE_L8 8-bit luminance value. There is no alpha value. Yes Yes 16

Table 5. vg_lite_buffer_format_t enumeration...continued

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
13 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Value Description Supported
as source

Supported
as
destination

Alignment
(bytes)

VG_LITE_YUYV Packed YUV format, 32-bit for 2 pixels.
Y0 is in bits 7:0 and V is in bits 31:23. (available for Source
IMAGE only).

31:24 23:16 15:8 7:0

YUYV V0 Y1 U0 Y0

Yes No 32

VG_LITE_A4 4-bit alpha format. There are no RGB values.

3:0

A4 A

Yes No 8

VG_LITE_A8 8-bit alpha format. There are no RGB values.

7:0

A8 A

Yes Yes 16

Table 5. vg_lite_buffer_format_t enumeration...continued

Hardware-dependent formats for
vg_lite_buffer_format_t Description Supported

as source
Supported as
destination

Alignment
(bytes)

VG_LITE_INDEX_1 1-bit index format. Not all VGLite-
compatible i.MX RT platforms support
this feature. For more details, see
Table 82.

Yes No 8

VG_LITE_INDEX_2 2-bit index format. Not all VGLite-
compatible i.MX RT platforms support
this feature. For more details, see
Table 82.

Yes No 8

VG_LITE_INDEX_4 4-bit index format. Not all VGLite-
compatible i.MX RT platforms support
this feature. For more details, see
Table 82.

Yes No 8

VG_LITE_INDEX_8 8-bit index format. Not all VGLite-
compatible i.MX RT platforms support
this feature. For more details, see
Table 82.

Yes No 16

Table 6. Formats using color lookup tables

6.4.1.1 Alignment notes

Source image alignment requirement

The byte alignment requirement for a pixel depends on the specific pixel format. Both
buffer address and buffer stride must be aligned.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
14 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Image format Bits per
pixel

Alignment
requirement

in bytes

Supported for
source image

Supported for
destination

VG_LITE_INDEX1 1 8 Yes

VG_LITE_INDEX2 2 8 Yes

VG_LITE_INDEX4 4 8 Yes

VG_LITE_INDEX8 8 16 Yes

VG_LITE_A4 4 8 Yes

VG_LITE_A8 8 16 Yes Yes

VG_LITE_L8 8 16 Yes Yes

VG_LITE_ARGB2222 group 8 16 Yes Yes

VG_LITE_RGB565 group 16 32 Yes Yes

VG_LITE_ARGB1555 group 16 32 Yes Yes

VG_LITE_ARGB4444 group 16 32 Yes Yes

VG_LITE_YUY2/UYVY 16 32 Yes

VG_LITE_ARGB8888/XRGB8888 group 32 64 Yes Yes

Table 7. Image source alignment summary

Destination alignment requirement:

• For pixel engine (PE) destination, the alignment should be 64 bytes for all tiled (4x4)
buffer layouts. The pixel engine has no additional alignment requirement for linear
buffer layouts.

• The alignment requirements of backend modules, such as display controller (DC), may
limit the destination alignment.

6.4.2 vg_lite_buffer_image_mode_t enumeration

Specifies how an image is rendered onto a buffer.

Used in structure: vg_lite_buffer_t.

Value Description

VG_LITE_NORMAL_IMAGE_MODE Image drawn with blending mode

VG_LITE_NONE_IMAGE_MODE Image input is ignored

VG_LITE_MULTIPLY_IMAGE_MODE Image is multiplied with paint color

Table 8. vg_lite_buffer_image_mode_t enumeration

6.4.3 vg_lite_buffer_layout_t enumeration

Specifies the buffer data layout in memory.

Used in structure: vg_lite_buffer_t.

Value Description

VG_LITE_LINEAR Linear (scanline) layout

Table 9. vg_lite_buffer_layout_t enumeration

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
15 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Value Description

VG_LITE_TILED Data is organized in 4x4 pixel tiles.
Note: For this layout, the buffer start address and stride must be 64 bytes
aligned.

Table 9. vg_lite_buffer_layout_t enumeration...continued

6.4.4 vg_lite_buffer_transparency_mode_t enumeration

Specifies the transparency mode for a buffer.

Used in structure: vg_lite_buffer_t.

Value Description

VG_LITE_IMAGE_
OPAQUE

Opaque image: all image pixels are copied to the VG PE for rasterization

VG_LITE_IMAGE_
TRANSPARENT

Transparent image: only the non-transparent image pixels are copied to the VG PE.
Note: This mode is only valid when image mode (vg_lite_buffer_image_mode_t) is
either VG_LITE_NORMAL_IMAGE_MODE or VG_LITE_MULTIPLY_IMAGE_MODE.

Table 10. vg_lite_buffer_transparency_mode_t enumeration

6.4.5 vg_lite_swizzle_t enumeration

This enumeration specifies the swizzle for the UV components of YUV data.

Used in structure: vg_lite_yuvinfo_t.

Value Description

VG_LITE_SWIZZLE_UV U in lower bits, V in upper bits

VG_LITE_SWIZZLE_VU V in lower bits, U in upper bits

Table 11. vg_lite_swizzle_t enumeration

6.4.6 vg_lite_yuv2rgb_t enumeration

This enumeration specifies the standard for conversion of YUV data to RGB data.

Used in structure: vg_lite_yuvinfo_t.

Value Description

VG_LITE_YUV601 YUV converting with ITC.BT-601 standard

VG_LITE_YUV709 YUV converting with ITC.BT-709 standard

Table 12. vg_lite_yuv2rgb_t enumeration

6.5 Pixel buffer structures
This section provides an overview on the pixel buffer structures.

6.5.1 vg_lite_buffer_t structure

This structure defines the buffer layout for a VGLite image or memory data.

Used in structures: vg_lite_linear_gradient_t, vg_lite_radial_gradient_t.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
16 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Used in init functions: vg_lite_allocate, vg_lite_free,
vg_lite_buffer_upload, vg_lite_map, vg_lite_unmap.

Used in blit functions: vg_lite_blit, vg_lite_blit_rect, vg_lite_clear.

Used in draw functions: vg_lite_draw, vg_lite_draw_pattern,
vg_lite_draw_gradient, vg_lite_draw_radial_gradient.

vg_lite_buffer_t member Type Description

width int32_t Width of buffer in pixels

height int32_t Height of buffer in pixels

stride int32_t Stride in bytes

tiled vg_lite_buffer_layout_t Linear or tiled format for buffer enum

format vg_lite_buffer_format_t Color format enum

handle void * Memory handle

memory void * Pointer to the start address of the memory

address uint32_t GPU address

yuv vg_lite_yuvinfo_t YUV format info struct

image_mode
vg_lite_buffer_
image_mode_t Blit image mode enum

transparency_mode
vg_lite_buffer_

transparency_mode_t Image transparency mode enum

Table 13. vg_lite_buffer_t structure

6.5.2 vg_lite_yuvinfo_t structure

This structure defines the organization of VGLite YUV data.

Used in structure: vg_lite_buffer_t.

vg_lite_yuvinfo_t member Type Description

swizzle vg_lite_swizzle_t UV swizzle enum

yuv2rgb vg_lite_yuv2rgb_t YUV conversion standard enum

uv_planar uint32_t UV (U) planar address for GPU, generated by driver

v_planar uint32_t V planar address for GPU, generated by driver

alpha_planar uint32_t Alpha planar address for GPU, generated by driver

uv_stride uint32_t UV (U) stride in bytes

v_stride uint32_t V planar stride in bytes

alpha_stride uint32_t Alpha stride in bytes

uv_height uint32_t UV (U) height in pixels

v_height uint32_t V stride in bytes

uv_memory void * Logical pointer to the UV (U) planar memory

v_memory void * Logical pointer to the V planar memory

Table 14. vg_lite_yuvinfo_t structure

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
17 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

vg_lite_yuvinfo_t member Type Description

uv_handle void * Memory handle of the UV (U) planar, generated by
driver

v_handle void * Memory handle of the V planar, generated by driver

Table 14. vg_lite_yuvinfo_t structure...continued

6.6 Pixel buffer functions
This section provides an overview of the pixel buffer functions.

6.6.1 vg_lite_allocate function

Description:

This function is used to allocate a buffer before it is used in either blit or draw functions.

To allow the hardware to access some memory, such as a source image or target buffer,
you must first allocate the memory. The supplied vg_lite_buffer_t structure must be
initialized with the size (width and height) and format of the requested buffer. If the stride
is set to zero, then this function fills it in. The only input parameter to this function is
the pointer to the buffer structure. If the structure has all the information needed, then
appropriate memory is allocated for the buffer.

This function calls the VGLite kernel to allocate the memory. The kernel fills in the
memory handle, logical address, and hardware addresses in the vg_lite_buffer_t
structure.

Alignment note:

Vivante GPUs have an alignment requirement of 64 bytes. However, to meet the
alignment requirements of Vivante display controller, the VGLite driver sets the render
target buffer alignment to 128 bytes. For source image buffer alignment requirement, see
the alignment notes available in Table 7.

Syntax:

vg_lite_error_t vg_lite_allocate (
 vg_lite_buffer_t *buffer
);

Parameters:

buffer Pointer to the buffer that holds the size and format of the buffer being allocated. Either the memory or
address field must be set to a non-zero value to map either a logical or physical address into hardware
accessible memory.

Returns:

• VG_LITE_SUCCESS if the contiguous buffer was allocated successfully
• VG_LITE_OUT_OF_RESOURCES if there is insufficient memory in the host OS heap for

the buffer
• VG_LITE_OUT_OF_MEMORY if allocation of a contiguous buffer failed

6.6.2 vg_lite_free function

Description:
IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
18 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

This function is used to deallocate the buffer that was previously allocated. It frees up the
memory for that buffer.

Syntax:

vg_lite_error_t vg_lite_free (
 vg_lite_buffer_t *buffer
);

Parameters:

buffer Pointer to a buffer structure that was filled in by calling the vg_lite_allocate() function.

6.6.3 vg_lite_buffer_upload function

Description:

The function uploads the pixel data to a GPU memory buffer object. The format of the
data (pixel) to be uploaded must match the format defined for the buffer object. The
input data memory buffer should contain enough data to be uploaded to the GPU buffer
pointed by the input parameter buffer.

Note: Only data[0] and stride[0] arguments are used as planar YUV formats are
not supported.

Syntax:

vg_lite_error_t vg_lite_buffer_upload (
 vg_lite_buffer_t *buffer,
 uint8_t *data[3],
 uint32_t stride[3]
);

Parameters:

buffer Pointer to a buffer structure that was filled in by calling the vg_lite_allocate() function

data[3] Pointer to pixel data. For YUV format, there may be up to 3 pointers.

stride[3] Stride for the pixel data

6.6.4 vg_lite_map function

Description:

This function is used to map the memory appropriately for a particular buffer. For some
operating systems, it is used to get proper translation to physical or logical address of the
buffer needed by the GPU.

To use a frame buffer directly as a target buffer:

• Wrap a vg_lite_buffer_t structure around the buffer
• Call the kernel to map the supplied logical or physical address into hardware accessible

memory

For example, if you know the logical address of the frame buffer, set the memory field of
the vg_lite_buffer_t structure with that address and call this function. If you know
the physical address, set the memory field to NULL and program the address field with
the physical address.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
19 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Syntax:

vg_lite_error_t vg_lite_map (
 vg_lite_buffer_t *buffer
);

Parameters:

buffer Pointer to a buffer structure that was filled in by calling the vg_lite_allocate() function

6.6.5 vg_lite_unmap function

Description:

This function unmaps the buffer and frees any memory resources allocated by a previous
call to the vg_lite_map() function.

Syntax:

vg_lite_error_t vg_lite_unmap (
 vg_lite_buffer_t *buffer
);

Parameters:

buffer Pointer to a buffer structure that was filled in by calling the vg_lite_map() function

6.6.6 vg_lite_set_CLUT function

Description:

This function sets a context state for indexed color images. After the context is set (not
NULL), the color for an indexed image to be rendered is obtained from the color lookup
table (CLUT) according to the pixel indexes of the image.

Note: Not all VGLite-compatible i.MX RT platforms support this feature.

Syntax:

vg_lite_error_t vg_lite_set_CLUT (
 uint32_t count,
 uint32_t *colors
);

Parameters:

count Number of colors in the color lookup table:
• For INDEX_1, up to 2 colors in the table
• For INDEX_2, up to 4 colors in the table
• For INDEX_4, up to 16 colors in the table
• For INDEX_8, up to 256 colors in the table

colors This pointer is directly programmed to the command buffer. It only takes effect after the
command buffer is submitted. The color is in ARGB format with A located in the high bits.
Note: The VGLite driver does not validate the CLUT data.

Returns:
IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
20 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

VG_LITE_SUCCESS as no checking is done.

6.6.7 vg_lite_set_dither

Description:

This function toggles GPU dithering on or off. Dithering is disabled by default. When
dithering is enabled, the driver configures the default dither table on the GPU.

Note: Not all VGLite-compatible i.MX RT platforms support this feature. For more
details, see Table 41.

Syntax:

vg_lite_error_t vg_lite_set dither (
 int enable
);

Parameters:

Parameter Description

enable Zero turns off the dithering function (default).
One (1) turns on the dithering function.

Table 15. Parameters:

Returns:

• VG_LITE_SUCCESS if dithering was successfully enabled and the default dither table
was successfully configured.

• VG_LITE_NOT_SUPPORT if the platform does not support GPU dithering.
• VG_LITE_NO_CONTEXT if no drawing context is available.
• VG_LITE_INVALID_ARGUMENT if the command buffer offset is valid.
• VG_LITE_OUT_OF_RESOURCES if the command buffer size is too small to support

dithering.

7 Matrices

This part of the API provides matrix controls.

Note: All the transformations in the driver/API are actually the final plane/surface
coordinate system. There is no transformation of different coordinate systems with
VGLite.

7.1 Matrix control float parameter type

Name Typedef Value

vg_lite_float_t float A single-precision floating-point number

7.2 Matrix control structures
This section provides an overview of the graphic transformation matrix control structures.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
21 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

7.2.1 vg_lite_matrix_t structure

This structure defines a 3x3 floating point matrix.

Used in structures: vg_lite_linear_gradient_t, vg_lite_radial_gradient_t.

Used in blit functions: vg_lite_blit, vg_lite_blit_rect.

Used in draw functions: vg_lite_draw, vg_lite_draw_gradient,
vg_lite_draw_radial_gradient, vg_lite_draw_pattern,
vg_lite_identity, vg_lite_scale, vg_lite_translate.

vg_lite_matrix_t member Type Description

m[3][3] vg_lite_float_t 3x3 matrix, in [row] [column] order

Table 16. vg_lite_matrix_t structure

7.3 Matrix control functions
This section provides an overview of the matrix control functions.

7.3.1 vg_lite_identity function

Description:

This function resets a vg_lite_matrix_t structure to the identity matrix.

Syntax:

void vg_lite_identity (
 vg_lite_matrix_t *matrix
);

Parameters:

matrix Pointer to the vg_lite_matrix_t structure that has to be set to the identity matrix

7.3.2 vg_lite_rotate function

Description:

This function rotates a matrix a specified number of degrees.

Syntax:

void vg_lite_rotate (
 vg_lite_float_t degrees,
 vg_lite_matrix_t *matrix
);

Parameters:

degrees Number of degrees to rotate the matrix. Positive numbers rotate clockwise.
The coordinates for the transformation are given in the surface coordinate system
(top-to-bottom orientation). Rotations with positive angles are in the clockwise
direction.

matrix Pointer to the vg_lite_matrix_t structure that has to be rotated

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
22 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

7.3.3 vg_lite_scale function

Description:

This function scales a matrix in both horizontal and vertical directions.

Syntax:

void vg_lite_scale (
 vg_lite_float_t scale_x,
 vg_lite_float_t scale_y,
 vg_lite_matrix_t *matrix
);

Parameters:

scale_x Horizontal scale factor

scale_y Vertical scale factor

matrix Pointer to the vg_lite_matrix_t structure that has to be scaled

7.3.4 vg_lite_translate function

Description:

This function translates a matrix to a new location.

Syntax:

void vg_lite_translate (
 vg_lite_float_t x,
 vg_lite_float_t y,
 vg_lite_matrix_t *matrix
);

Parameters:

x X coordinate to translate to

y Y coordinate to translate to

matrix Pointer to the vg_lite_matrix_t structure to be translated

8 Blits for compositing and blending

This part of the API performs the hardware accelerated blit operations.

Compositing rules describe how two images are combined to form a resulting image.
Blending rules describe how the colors of the overlapping areas are combined. VGLite
supports two blending operations and a subset of the Porter-Duff operations [PD84].
For platforms that do not support alpha premultiplication, the Porter-Duff operators
assume that the pixels have the alpha associated (premultiplied). It means, pixels are
premultiplied prior to the blending operation.

Note: Ensure to use the vg_lite_query_feature() function to determine if your
product supports premultiplication.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
23 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

The source image is copied to the destination window with a specified matrix that can
include translation, rotation, scaling, and perspective correction.

• The blit function can be used with or without the blend mode
• The blit function can be used with or without specifying a foreground color value
• The blit function can be used for color conversion with an identity matrix and

appropriate formats specified for the source and the destination buffers. In this case, do
not specify blend mode and foreground color value.

8.1 Blit enumerations

8.1.1 vg_lite_blend_t enumeration

This enumeration defines the blending modes supported by some VGLite API functions.
S and D represent source and destination color channels and Sa and Da represent the
source and destination alpha channels.

Reference: Thomas Porter and Tom Duff. Compositing digital images. SIGGRAPH
Comput. Graph., 18(3):253–259, January 1984.

Sf/Df 0 1 Sa 1 - Sa

0 clear (n/a) dst (n/a)
dst-in
VG_LITE_BLEND_DST_
IN

dst-out
VG_LITE_BLEND_
SUBTRACT

1
src
VG_LITE_BLEND_
NONE

plus
VG_LITE_BLEND_
ADDITIVE

…
src-over
VG_LITE_BLEND_SRC_
OVER

Da
src-in
VG_LITE_BLEND_SRC_
IN

… … src-atop(n/a)

1 - Da src-out (n/a)
dst-over
VG_LITE_BLEND_DST_
OVER

dst-atop (n/a) xor (n/a)

Table 17. Porter-Duff operators and related vg_lite_blend_t enum values

Used in blit functions: vg_lite_blit, vg_lite_blit_rect.

Used in draw functions: vg_lite_draw, vg_lite_draw_gradient,
vg_lite_draw_radial_gradient, vg_lite_draw_pattern.

Colors are shown at 100 % and 50 % opacity.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
24 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Value Description

VG_LITE_BLEND_ADDITIVE

S + D = Result

Plus

50 %

Table 19. Porter-Duff compositing mode: plus

VG_LITE_BLEND_DST_IN

Sa * D = Result

DstIn

DstIn

50 %

Table 20. Porter-Duff compositing mode: dst-in

VG_LITE_BLEND_DST_OVER

(1 – Da) * S + D = Result

DstOver

50 %

Table 21. Porter-Duff compositing mode: dst-over

Table 18. vg_lite_blend_t enumeration

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
25 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Value Description

VG_LITE_BLEND_MULTIPLY

S * (1 – Da) + D * (1 – Sa) + S * D = Result

Multiply

50 %

Table 22. Blending mode: mathematical multiply

See https://www.w3.org/TR/compositing-1/#blendingmultiply) make white
transparent for diagrams/text.

VG_LITE_BLEND_NONE

S = Result

Src

Src

50 %

Table 23. Porter-Duff compositing mode: src

VG_LITE_BLEND_SCREEN

S + D – S * D = Result

Screen

50 %

Table 24. Blending Mode: mathematical screen

See https://www.w3.org/TR/compositing-1/#blendingscreen) make black
transparent for diagrams/text.

Table 18. vg_lite_blend_t enumeration...continued

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
26 / 76

https://www.w3.org/TR/compositing-1/%23blendingmultiply
https://www.w3.org/TR/compositing-1/%23blendingscreen

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Value Description

VG_LITE_BLEND_SRC_IN

Da * S = Result

SrcIn

50 %

Table 25. Porter-Duff compositing mode: src-in, also known as
clipping

VG_LITE_BLEND_SRC_OVER

S + (1 - Sa) * D = Result

SrcOver

50 %

Table 26. Porter-Duff compositing mode: src-over

VG_LITE_BLEND_SUBTRACT

D * (1 – Sa) = Result

DestOut

50 %

Table 27. Porter-Duff compositing mode: dst-out

Table 18. vg_lite_blend_t enumeration...continued

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
27 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

8.1.2 vg_lite_color_t parameter

The common parameter vg_lite_color_t is described in Table 1.

8.1.3 vg_lite_filter_t enumeration

Specifies the sample-filtering mode in VGLite blit and draw APIs.

Used in blit functions: vg_lite_blit, vg_lite_blit_rect.

Used in draw functions: vg_lite_draw_radial_gradient,
vg_lite_draw_pattern.

Value Description

VG_LITE_FILTER_POINT Fetch only the nearest image pixel

VG_LITE_FILTER_LINEAR Use linear interpolation along horizontal line

VG_LITE_FILTER_BI_LINEAR Use a 2x2 box around the image pixel and perform an interpolation

Table 28. vg_lite_filter_t enumeration

8.2 Blit structures

8.2.1 vg_lite_buffer_t structure

Defined under the "Pixel buffer structures" section (see Section 6.5.1).

8.2.2 vg_lite_color_key_t structure

A “color key” contains R,G,B channels which are noted as high_rgb and low_rgb
respectively.

When the enable attribute is true, the specified color key is effective and the alpha
value is used to replace the alpha channel of the destination pixel when its RGB
channels are in range [low_rgb, high_rgb]. The color keying should be disabled by
calling the vg_lite_set_color_key API again when no longer required.

Used in structure: vg_lite_color_key4_t

vg_lite_color_key_t members Type Description

enable uint8_t When set (true), this color key is
enabled

low_r uint8_t The R channel of low_rgb

low_g uint8_t The G channel of low_rgb

low_b uint8_t The B channel of low_rgb

alpha uint8_t The alpha value to replace the
destination pixel alpha channel value
with

high_r uint8_t The R channel of high_rgb

high g uint8_t The G channel of high_rgb

Table 29. vg_lite_color_key_t structure

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
28 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

vg_lite_color_key_t members Type Description

high_b uint8_t The B channel of high_rgb

Table 29. vg_lite_color_key_t structure ...continued

8.2.3 vg_lite_color_key4_t structure

An array of 4 color keying parameters. The priority order is color_key_0 > color_key_1 >
color_key_2 > color_key_3.

Used in function: vg_lite_set_color_key

vg_lite_color_key4_t members Type Description

color_key_0 vg_lite_color_key_t Parameters for color key #0

color_key_1 vg_lite_color_key_t Parameters for color key #1

color_key_2 vg_lite_color_key_t Parameters for color key #2

color_key_3 vg_lite_color_key_t Parameters for color key #3

Table 30. vg_lite_color_key4_t structure

8.2.4 vg_lite_matrix_t structure

Defined under the "Matrix control structures" section (see Section 7.2.1).

8.2.5 vg_lite_path_t structure

Defined under the "Vector path structures" section (see Section 9.2.2).

8.2.6 vg_lite_rectangle_t structure

This structure defines a rectangle by using coordinates.

Used in blit function: vg_lite_clear.

vg_lite_rectangle_t member Type Description

x int32_t X origin of rectangle, left coordinate in pixels

y int32_t Y origin of rectangle, top coordinate in pixels

width int32_t Width of rectangle in pixels

height int32_t Height of rectangle in pixels

Table 31. vg_lite_rectangle_t structure

8.2.7 vg_lite_point_t structure

This structure defines a 2D point.

Used in structure: vg_lite_point4_t.

vg_lite_point_t member Type Description

X int32_t X value of coordinate

Y int32_t Y value of coordinate

Table 32. vg_lite_point_t structure

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
29 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

8.2.8 vg_lite_point4_t structure

This structure defines four 2D points that form a quadrilateral. The points are defined
using the vg_lite_point_t data structure.

Used in blit function: vg_lite_get_transform_matrix.

vg_lite_point4_t member Type Description

vg_lite_point_t[4] int32_t A set of four points designating the vertices of the
quadrilateral

Table 33. vg_lite_point4_t structure

8.3 Blit functions
This section provides an overview on blit functions.

8.3.1 vg_lite_blit function

Description:

This function performs the blit operation using a source buffer and destination buffer. The
source and destination buffer structures are defined using the vg_lite_buffer_t structure.
Blit copies a source image to the destination window with a specified matrix that can
include translation, rotation, scaling, and perspective correction. The vg_lite_blit()
function does not support coverage sample anti-aliasing; therefore, the destination buffer
edge may not be smooth especially with a rotation matrix. VGLite vector path rendering
can be used to achieve high-quality coverage sample anti-aliasing (16X, 4X) rendering
effect.

Note:

• The blit function can be used with or without the blend function (vg_lite_blend_t)
• The blit function can be used with or without specifying a foreground color value

(vg_lite_color_t)
• The blit function can be used for color conversion with an identity matrix and

appropriate formats specified for the source and the destination buffers. In this case, do
not specify blend mode and color value.

• The blit function has a hardware limitation on the i.MX RT500 platform. Because of
the limited capabilities of the math unit in the GPU, the output image quality may be
degraded when blitting images larger than 256x256 pixels. When required to blit larger
images on this platform, it is recommended to split the images in multiple tiles which
are less than the mentioned threshold size and to blit them individually, reassembling
the original image on the target buffer.

Syntax:

vg_lite_error_t vg_lite_blit (
 vg_lite_buffer_t *target,
 vg_lite_buffer_t *source,
 vg_lite_matrix_t *matrix,
 vg_lite_blend_t blend,
 vg_lite_color_t color,
 vg_lite_filter_t filter
);

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
30 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Parameters:

target Points to the vg_lite_buffer_t structure which defines the destination buffer. See
Image Source Alignment Requirement for valid destination color formats for the
blit functions.

source Points to the vg_lite_buffer_t structure for the source buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid source formats for the blit
function.

matrix Points to a vg_lite_matrix_t structure that defines the transformation matrix of
source pixels into the target. If the matrix is NULL, then an identity matrix is
assumed, which means that the source is copied directly at 0,0 location on the
target.

blend Specifies one of the hardware-supported blend modes to be applied to each image
pixel. If no blending is required, set this value to VG_LITE_BLEND_NONE (0).
Note: If the matrix parameter is specified with rotation or perspective, and
the blend parameter is specified as VG_LITE_BLEND_NONE, VG_LITE_BLEND_
SRC_IN, or VG_LITE_BLEND_DST_IN; then, the VGLite driver overwrites the
application setting for the blit operation as follows:
• If gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is supported,

then Transparency mode is always set to TRANSPARENT
• If gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is not supported,

then Blend mode is always set to VG_LITE_BLEND_SRC_OVER
It happens due to some limitations in the VGLite hardware.

color If non-zero, this color value is used as a mix color. The mix color gets multiplied
with each source pixel before blending happens. If you do not need a mix color,
then set the color parameter to 0.

filter Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid
formats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.

8.3.2 vg_lite_blit_rect function

Description:

This function performs a blit rectangle operation using a source buffer and destination
buffer. The source and destination buffer structures are defined using the vg_lite_buffer_t
structure. Blit copies a source image to the destination window with a specified
matrix that can include translation, rotation, scaling, and perspective correction. The
vg_lite_blit_rect() function does not support coverage sample anti-aliasing;
therefore, the destination buffer edge may not be smooth especially with a rotation
matrix. VGLite vector path rendering can be used to achieve high-quality coverage
sample anti-aliasing (16X, 4X) rendering effect.

Note:

• The blit_rect() function can be used with or without the blend function
(vg_lite_blend_t)

• The blit_rect() function can be used with or without specifying a foreground color
value (vg_lite_color_t)

• The blit_rect() function can be used for color conversion with an identity matrix
and appropriate formats specified for the source and destination buffers. In this case,
do not specify blend mode and color value.

• The blit function has a hardware limitation on the i.MX RT500 platform. Because of
the limited capabilities of the math unit in the GPU, the output image quality may be

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
31 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

degraded when blitting images larger than 256x256 pixels. When required to blit larger
images on this platform it is recommended to split the images in multiple tiles which are
less than the mentioned threshold size and to blit them individually, reassembling the
original image on the target buffer.

Syntax:

vg_lite_error_t vg_lite_blit_rect (
 vg_lite_buffer_t *target,
 vg_lite_buffer_t *source,
 uint32_t *rect,
 vg_lite_matrix_t *matrix,
 vg_lite_blend_t *blend,
 vg_lite_color_t color,
 vg_lite_filter_t filter
);

Parameters:

target Points to the vg_lite_buffer_t structure which defines the destination buffer. See
Source Image Alignment Requirement for valid destination color formats for the
blit_rect functions.

source Points to the vg_lite_buffer_t structure for the source buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid source formats for the blit_
rect function.

rect Specifies the rectangle area of the source image to blit. rect[0]/[1]/[2]/[3] are x, y,
width, and height of the source rectangle respectively.

matrix Points to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix
of source pixels into the target. If the matrix is NULL, then an identity matrix is
assumed, which means that the source is copied directly at 0,0 location on the
target.

blend Specifies one of the hardware-supported blend modes to be applied to each image
pixel. If no blending is required, set this value to VG_LITE_BLEND_NONE (0).
Note: If the matrix parameter is specified with rotation or perspective, and
the blend parameter is specified as VG_LITE_BLEND_NONE, VG_LITE_BLEND_
SRC_IN, or VG_LITE_BLEND_DST_IN; then, the VGLite driver overwrites the
application setting for the blit operation as follows:
• If gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is supported,

then Transparency mode is always set to TRANSPARENT
• If gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is not supported,

then Blend mode is always set to VG_LITE_BLEND_SRC_OVER.
It happens due to some limitations in the VGLite hardware.

color If non-zero, this color value is used as a mix color. The mix color gets multiplied
with each source pixel before blending happens. If you do not need a mix color,
then set the color parameter to 0.

filter Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid
formats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.

8.3.3 vg_lite_get_transform_matrix function

Description:

This function calculates a 3x3 homogenous transform matrix for vg_lite_blit and
vg_lite_blit_rect based on source polygon coordinates and target polygon

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
32 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

coordinates. It takes a source quadrilateral and destination quadrilateral as inputs and
calculates a transformation matrix that can be used to transform the source quadrilateral
into the destination quadrilateral. The function is intended to support image perspective
transformations.

Syntax:

vg_lite_error_t vg_lite_get_transform_matrix (
 vg_lite_point4_t src,
 vg_lite_point4_t dst,
 vg_lite_matrix_t *mat
);

Parameters:

src Pointer to the four 2D points that form a source polygon

dst Pointer to the four 2D points that form a destination polygon

mat Pointer to 3*3 homogenous matrix that transforms source polygon to destination polygon. The
matrix can be used as input parameter for vg_lite_blit and vg_lite_blit_rect.

Returns:

Returns the status as defined by vg_lite_error_t.

8.3.4 vg_lite_clear function

Description:

This function performs the clear operation, clearing/filling the specified buffer (entire
buffer or partial rectangle in a buffer) with an explicit color.

Syntax:

vg_lite_error_t vg_lite_clear (
 vg_lite_buffer_t *target,
 vg_lite_rectangle_t *rectangle,
 vg_lite_color_t color
);

Parameters:

target Pointer to the vg_lite_buffer_t structure for the destination buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid destination formats for the
clear function.

rectangle Pointer to a vg_lite_rectangle_t structure that specifies the area to be filled. If the
rectangle is NULL, then the entire target buffer is filled with the specified color.

color Clear color, as specified in the vg_lite_color_t enum which is the color value to use
for filling the buffer. If the buffer is in L8 format, then the RGBA color is converted
into a luminance value.

8.3.5 vg_lite_set_color_key function

Description:

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
33 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

This function enables color keying. Color keying can be used for blit or for draw pattern
operations.

A “color key” contains R, G, B channels which are noted as hign_rgb and low_rgb
respectively. When the vg_lite_color_key_t structure enable attribute is set to true, the
color key is effective and the specified alpha value is used to replace the alpha channel
of the destination pixel when its RGB channels are within range [low_rgb, high_rgb].
The color keying should be disabled when no longer needed.

Note: Not all VGLite-compatible i.MX RT platforms support color keying. For more
details, see Table 41.

Syntax:

vg_lite_error_t vg_lite_set_color_key (
 vg_lite_color_key4_t colorkey,
);

Parameters:

Parameter Description

colorkey Color keying parameters as defined by vg_lite_color_key4_t.
here are 4 groups of color key states:
• color_key_0, high_rgb_0, low_rgb_0, alpha_0, enable_0
• color_key_1, high_rgb_1, low_rgb_1, alpha_1, enable_1
• color_key_2, high_rgb_2, low_rgb_2, alpha_2, enable_2
• color_key_3, high_rgb_3, low_rgb_3, alpha_3, enable_3
The priority order of these states is:
color_key_0 > color_key_1 > color_key_2 > color_key_3.

Table 34. vg_lite_set_color_key function

Returns:

VG_LITE_SUCCESS if successful. Otherwise VG_LITE_NOT_SUPPORT if color keying is
not supported by hardware.

8.4 Premultiply and scissor functions
This section provides an overview of the premultiply and scissor functions.

8.4.1 vg_lite_enable_premultiply function

Description:

This function enables alpha premultiplication in hardware and returns a status error code.
Not all VGLite-compatible i.MX RT platforms support alpha premultiplication.

Note: Not all VGLite-compatible i.MX RT platforms support color premultiplication. For
more details, see Table 82.

Syntax:

vg_lite_error_t vg_lite_enable_premultiply (void);

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
34 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

8.4.2 vg_lite_disable_premultiply function

Description:

This function disables alpha premultiplication and returns a status error code. Not all
VGLite-compatible i.MX RT platforms support alpha premultiplication.

Note: Not all VGLite-compatible i.MX RT platforms support color premultiplication. For
more details, see Table 82.

Syntax:

vg_lite_error_t vg_lite_disable_premultiply (void);

8.4.3 vg_lite_enable_scissor function

Description:

This function enables scissor operations for a render targets boundary.

Syntax:

vg_lite_error_t vg_lite_enable_scissor (void);

8.4.4 vg_lite_disable_scissor function

Description:

This function disables scissor operations for a render targets boundary.

Syntax:

vg_lite_error_t vg_lite_disable_scissor (void);

8.4.5 vg_lite_set_scissor function

Description:

This function is used to configure a rectangular scissoring area into a render target so
that the region outside the scissor boundary is not drawn.

Syntax:

vg_lite_error_t vg_lite_set_scissor (
 int32_t x,
 int32_t y,
 int32_t width,
 int32_t height
);

Parameters:

Parameter Description

x X coordinate of the scissoring window origin

Y Y coordinate of the scissoring window origin

Table 35. vg_lite_set_scissor function

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
35 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Parameter Description

width Width of the scissoring window in pixels

height Height of the scissoring window in pixels

Table 35. vg_lite_set_scissor function...continued

9 Vector path control

This chapter provides overview of the vector path enumerations, structures, functions,
and opcodes for plotting paths.

9.1 Vector path enumerations
This section provides an overview of vector path enumerations.

9.1.1 vg_lite_format_t enumeration

Values for vg_lite_format_t enum are defined in Table 1.

9.1.2 vg_lite_quality_t enumeration

Specifies the level of hardware assisted anti-aliasing.

Used in structure: vg_lite_path_t.

Used in function: vg_lite_init_path, vg_lite_init_arc_path.

Value Description

VG_LITE_HIGH High quality: 16x coverage sample anti-aliasing

VG_LITE_UPPER Upper quality: 8x coverage sample anti-aliasing. Not all VGLite-compatible i.MX RT
platforms support this setting. For more details, see Table 82.

VG_LITE_MEDIUM Medium quality: 4x coverage sample anti-aliasing

VG_LITE_LOW Low quality: No anti-aliasing

Table 36. vg_lite_quality_t enumeration

9.2 Vector path structures
This section provides an overview of vector path structures.

9.2.1 vg_lite_hw_memory structure

This structure gets the memory allocation information recorded by kernel.

Used in structure: vg_lite_path_t.

vg_lite_hw_memory_t member Type Description

handle void * GPU memory object handle

memory void * Logical memory address

address uint32_t GPU memory address

Table 37. vg_lite_hw_memory structure

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
36 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

vg_lite_hw_memory_t member Type Description

bytes uint32_t Size of memory

property uint32_t Bit 0 is used for path upload:
• 0: Disable path data uploading (always embedded into

command buffer)
• 1: Enable auto path data uploading

Table 37. vg_lite_hw_memory structure...continued

9.2.2 vg_lite_path_t structure

This structure describes VGLite path data.

Path data is made of op codes and coordinates. The format for opcodes is always
VG_LITE_S8. For more details on opcodes, see Section 9.4.

Used in init functions: vg_lite_init_path, vg_lite_upload_path,
vg_lite_clear_path, vg_lite_path_append.

Used in draw functions: vg_lite_draw, vg_lite_draw_gradient,
vg_lite_draw_radial_gradient, vg_lite_draw_pattern.

vg_lite_path_t member Type Description

bounding_box[4] vg_lite_float_t bounding box for path
[0] left
[1] top
[2] right
[3] bottom

quality vg_lite_quality_t enum for quality hint for the path, anti-aliasing level

format vg_lite_format_t enum for coordinate format

uploaded vg_lite_hw_memory_t struct with path data that has been uploaded into GPU
addressable memory

path_length int32_t number of bytes in the path

path void * pointer to path data

path_changed int32_t 0: not changed; 1: changed.

Table 38. vg_lite_path_t structure

The coordinate may have the formats listed in the following table.

If vg_lite_format_t is: Path data alignment in array should be:

VG_LITE_S8 8 bits

VG_LITE_S16 2 bytes

VG_LITE_S32 4 bytes

Table 39. Coordinate format

Special notes for path objects:

• Endianness has no impact, as it is aligned against the boundaries
• Multiple contiguous opcodes should be packed by the size of the specified data format.

For example, by 2 bytes for VG_LITE_S16 or by 4 bytes for VG_LITE_S32.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
37 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

For example, because opcodes are 8-bit (1-byte), 16-bit (2-byte), or 32-bit (4-byte) data
types:

…
<opcode1_that_needs_data>
<align_to_data_size>
<data_for_opcode1>
<opcode2_that_doesnt_need_data>
<align_to_data_size>
<opcode3_that_needs_data>
<align_to_data_size>
<data_for_opcode3>
…

• Path data in the array should always be 1-, 2-, or 4-byte aligned, depending on the
format:

For example, for 32-bit (4-byte) data types:

…
<opcode1_that_needs_data>
<pad to 4 bytes>
<4 byte data_for_opcode1>
<opcode2_that_doesnt_need_data>
<pad to 4 bytes>
<opcode3_that_needs_data>
<pad to 4 bytes>
<4 byte data_for_opcode3>
…

9.3 Vector path functions
If a small tessellation window is used, then depending on the size of the path, a path
might be uploaded to the hardware multiple times because the hardware scanline
converts the path according to the specified tessellation window size. This may result in
reduced VGLite path-rendering performance. Therefore, the tessellation buffer size must
be set to the most common path size. For example, if you only render 24-point fonts, then
you can set the tessellation buffer to 24x24.

All the color formats available in the vg_lite_buffer_format_t are supported as the
destination buffer for the draw function.

9.3.1 vg_lite_path_calc_length function

Description:

This function calculates the path command buffer length (in bytes).

The application is responsible for allocating a buffer according to the buffer length
calculated with this function. Then, the buffer is used by the path as a command buffer.
The VGLite driver does not allocate the path command buffer.

Syntax:

int32_t vg_lite_path_calc_length (
 uint8_t cmd,
 uint32_t count,
 vg_lite_format_t format

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
38 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

);

Parameters:

Parameter Description

cmd Pointer to the opcode array to use to construct the path

count The opcode count

format The coordinate data format. All formats available in the vg_lite_format_t enum are
valid formats for this function.

Table 40.  vg_lite_path_calc_length function

9.3.2 vg_lite_path_append function

Description:

This function assembles the command buffer for the path. It prepares the final GPU
command buffer for the path based on the input opcodes (cmd) and coordinates (data).
The application allocates the command buffer and assigns it to the path. The application
is responsible to allocate a buffer large enough for the path.

Syntax:

int32_t vg_lite_path_append (
 vg_lite_path_t *path,
 uint8_t *cmd,
 void *data,
 uint32_t seg_count
);

Parameters:

Parameter Description

path Pointer to the path definition

cmd Pointer to the opcode array to use to construct the path

data Pointer to the coordinate data array to use to construct the path

seg_count The opcode count

Table 41. vg_lite_path_append function

9.3.3 vg_lite_init_path function

Description:

This function initializes a path definition with specified values.

Syntax:

vg_lite_error_t vg_lite_init_path (
 vg_lite_path_t *path,
 vg_lite_format_t data_format,
 vg_lite_quality_t quality,
 uint32_t path_length,
 void *path_data,
 vg_lite_float_t min_x,
 vg_lite_float_t min_y,

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
39 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

 vg_lite_float_t max_x,
 vg_lite_float_t max_y
);

Parameters:

Parameter Description

path Pointer to the vg_lite_path_t structure for the path object to be initialized with the
member values specified.

data_format The coordinate data format. All formats available in the vg_lite_format_t enum are
valid formats for this function.

quality The quality for the path object. All formats available in the vg_lite_quality_t enum
are valid formats for this function.

path_length The length of the path data (in bytes)

path_data Pointer to path data

min_x
min_y
max_x
max_y

Minimum and maximum x and y values specifying the bounding box of the path

Table 42. vg_lite_init_path function

Returns:

Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return
codes.

9.3.4 vg_lite_init_arc_path function

Description:

This function initializes an arc path definition with specified vectors.

Syntax:

vg_lite_error_t vg_lite_init_arc_path (
 vg_lite_path_t *path,
 vg_lite_format_t data_format,
 vg_lite_quality_t quality,
 uint32_t path_length,
 void *path_data,
 vg_lite_float_t min_x,
 vg_lite_float_t min_y,
 vg_lite_float_t max_x,
 vg_lite_float_t max_y
);

Parameters:

Parameter Function

path Pointer to the vg_lite_path_t structure for the path object to be initialized with the member
values specified.

Table 43. vg_lite_init_arc_path function

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
40 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Parameter Function

data_format The coordinate data format. All formats available in the vg_lite_format_t enum are valid
formats for this function.

quality The quality for the path object. All formats available in the vg_lite_quality_t enum are valid
formats for this function.

path_length The length of the path data (in bytes)

path_data Pointer to path data

min_x
min_y
max_x
max_y

Minimum and maximum x and y values specifying the bounding box of the path

Table 43. vg_lite_init_arc_path function ...continued

Returns:

Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return
codes.

9.3.5 vg_lite_upload_path function

Description:

This function is used to upload a path to GPU memory. Usually, the VGLite driver copies
any path data into a command buffer structure during runtime. This process takes more
time if several paths are to be rendered. In an embedded system, the path data does
not change; therefore, the path data must be uploaded into GPU memory in such a form
that the GPU can access it directly. This function signals the driver to allocate a buffer
containing the path data and the required command buffer header and footer data for the
GPU to access the data directly. Call the vg_lite_clear_path function to free this
buffer after the path is used.

Syntax:

vg_lite_error_t vg_lite_upload_path (
 vg_lite_path_t *path
);

Parameters:

Parameter Description

path Pointer to a vg_lite_path_t structure that contains the path to be uploaded

Table 44.  vg_lite_upload_path function Description:

Returns:

VG_LITE_OUT_OF_MEMORY if not enough GPU memory is available for buffer allocation.

9.3.6 vg_lite_clear_path function

Description:

This function clears and resets path member values. If the path has been uploaded, it
frees the GPU memory allocated when uploading the path.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
41 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Syntax:

vg_lite_error_t vg_lite_clear_path (
 vg_lite_path_t *path
);

Parameters:

Parameter Description

path Pointer to the path definition to be cleared

Table 45. vg_lite_clear_path function

Returns:

Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return
codes.

9.4 Vector path opcodes for plotting paths
The following opcodes are path drawing commands available for vector path data.

A path operation is submitted to the GPU as [Opcode | Coordinates]. The operation code
is stored as a VG_LITE_S8 while the coordinates are specified via vg_lite_format_t.

Opcode Arguments Description

0x00 None END. Finish tessellation. Close any open path.

0x02 (x, y) MOVE. Move to the given vertex. Close any open path.

0x03 (∆x, ∆y) MOVE_REL. Move to the given relative point. Close any open path.

0x04 (x, y) LINE. Draw a line to the given point:

0x05 (∆x, ∆y) LINE_REL. Draw a line to the given relative point:

Table 46. Vector path data opcodes

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
42 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Opcode Arguments Description

0x06 (cx, cy) (x, y) QUAD. Draw a quadratic curve to the given endpoint using the specified
control point:

0x07 (∆cx, ∆cy)
(∆x, ∆y)

QUAD_REL. Draw a quadratic curve to the given relative endpoint using
the specified relative control point:

0x08 (cx-1, cy1) (cx2, cy2) (x, y) CUBIC. Draw a cubic curve to the given endpoint using the specified
control points:

0x09 (∆cx-1, ∆cy1)
(∆cx2, ∆cy2)
(∆x, ∆y)

CUBIC_REL. Draw a cubic curve to the given relative endpoint using the
specified relative control points:

Table 46. Vector path data opcodes...continued

The table below shows the opcodes available for arc paths. Here, CW and CCW stand
for "clockwise" and "counter-clockwise", respectively.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
43 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Opcode for arc
paths

Arguments Description

0x0A (rh, rv, rot, x, y) SCCWARC. Draw a small CCW arc to the given endpoint using the
specified radius and rotation angle:

0x0B (rh, rv, rot, x, y) SCCWARC_REL. Draw a small CCW arc to the given relative endpoint
using the specified radius and rotation angle:

0x0C (rh, rv, rot, x, y) SCWARC. Draw a small CW arc to the given endpoint using the specified
radius and rotation angle:

0x0D (rh, rv, rot, x, y) SCWARC_REL. Draw a small CW arc to the given relative endpoint using
the specified radius and rotation angle:

0x0E (rh, rv, rot, x, y) LCCWARC. Draw a large CCW arc to the given endpoint using the
specified radius and rotation angle:

0x0F (rh, rv, rot, x, y) LCCWARC_REL. Draw a large CCW arc to the given relative endpoint
using the specified radius and rotation angle:

0x10 (rh, rv, rot, x, y) LCWARC. Draw a large CW arc to the given endpoint using the specified
radius and rotation angle:

Table 47. Vector path data opcodes for arc paths

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
44 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Opcode for arc
paths

Arguments Description

0x11 (rh, rv, rot, x, y) LCWARC_REL. Draw a large CW arc to the given relative endpoint using
the specified radius and rotation angle:

Table 47. Vector path data opcodes for arc paths...continued

10 Vector-dased draw operations

This part of the API performs the hardware accelerated draw operations.

10.1 Draw and gradient enumerations
This section provides an overview of draw and gradient enumerations.

10.1.1 vg_lite_blend_t enumeration

This enumeration is defined under the "Blit enumerations" section (see Section 8.1.1).

10.1.2 vg_lite_color_t parameter

The common parameter vg_lite_color_t is described in Section 3.1.

10.1.3 vg_lite_fill_t enumeration

This enumeration is used to specify the fill rule to use. For drawing any path, the
hardware supports both non-zero and odd-even fill rules.

To determine whether any point is contained inside an object, imagine drawing a line
from that point out to infinity in any direction such that the line does not cross any vertex
of the path. For each edge that is crossed by the line, add 1 to the counter if the edge is
crossed from left to right, as seen by an observer walking across the line toward infinity,
and subtract 1 if the edge crossed from right to left. In this way, each region of the plane
receives an integer value.

The non-zero fill rule says that a point is inside the shape if the resulting sum is not equal
to zero. The even/odd rule says that a point is inside the shape if the resulting sum is
odd, regardless of sign.

The fill algorithm is limited to 256 intersection points when VG_LITE_LOW or
VG_LITE_MEDIUM quality is selected for the vector path, 64 crossing points for
VG_LITE_UPPER and only 3 for VG_LITE_HIGH. If the polygon to render has a complex
shape (many vertices and/or many self-intersecting edges) it is recommended to use a
lower rendering quality (such as VG_LITE_MEDIUM) in order not to overflow the crossing
points buffer which, in turn, could degrade rendering quality.

Used in draw functions: vg_lite_draw, vg_lite_draw_gradient,
vg_lite_draw_radial_gradient, vg_lite_draw_pattern.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
45 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Value Description

VG_LITE_FILL_NON_ZERO Non-zero fill rule. A pixel is drawn if it crosses at least one path pixel.

VG_LITE_FILL_EVEN_ODD Even-odd fill rule. A pixel is drawn if it crosses an odd number of path pixels.

Table 48. vg_lite_fill_t enumeration

10.1.4 vg_lite_filter_t enumeration

This enum is defined under the "Blit enumerations" section (see Section 8.1.3).

10.1.5 vg_lite_pattern_mode_t enumeration

Defines how the region outside the image pattern is filled for the path.

Used in function: vg_lite_draw_gradient, vg_lite_draw_pattern.

Value Description

VG_LITE_PATTERN_COLOR Fill the area outside the pattern with a specified color

VG_LITE_PATTERN_PAD The color of the pattern border is expanded to fill the region outside the pattern

Table 49. vg_lite_pattern_mode_t enumeration

10.1.6 vg_lite_radial_gradient_spreadmode_t enumeration

Defines the radial gradient padding mode.

Used in structure: vg_lite_radial_gradient_t.

Value Description

VG_LITE_RADIAL_GRADIENT_SPREAD_FILL = 0 Coordinates outside the gradient area filled with black
color

VG_LITE_RADIAL_GRADIENT_SPREAD_PAD The area is filled with the closest stop color

VG_LITE_RADIAL_GRADIENT_SPREAD_REPEAT The gradient is repeated outside the gradient area

VG_LITE_RADIAL_GRADIENT_SPREAD_REFLECT The gradient is reflected outside the gradient area

Table 50. vg_lite_radial_gradient_spreadmode_t enumeration

10.2 Draw and gradient structures
This section provides an overview of the draw and gradient structures.

10.2.1 vg_lite_buffer_t structure

This structure is defined under the "Pixel buffer structures" section (see Section 6.5.1).

10.2.2 vg_lite_color_ramp_t structure

This structure defines the stops for the radial gradient. The five parameters provide the
offset and color for the stop. Each stop is defined by a set of floating point values that
specify the offset and the sRGBA color and alpha values. Color channel values are in the
form of a non-premultiplied (R, G, B, alpha) quad. All parameters are in the range of [0,1].
The red, green, blue, alpha value of [0, 1] is mapped to an 8-bit pixel value [0, 255].

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
46 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

The define for the maximum number of radial gradient stops is:

#define MAX_COLOR_RAMP_STOPS 256

Used in radial gradient structure: vg_lite_radial_gradient_t.

vg_lite_color_ramp_t member Type Description

stop vg_lite_float_t Offset value for the color stop

red vg_lite_float_t Red color channel value for the color stop

green vg_lite_float_t Green color channel value for the color stop

blue vg_lite_float_t Blue color channel value for the color stop

alpha vg_lite_float_t Alpha color channel value for the color stop

Table 51. vg_lite_color_ramp_t structure

10.2.3 vg_lite_linear_gradient_parameter_t structure

This structure defines radial direction for a linear gradient.

Line0 connects point (X0, Y0) to point (X1, Y1) and represents the radial direction of the
linear gradient. Line1 is a line parallel to line0 which passes through point (X0, Y0). Line2
is a line parallel to line0 which passes through point (X1, Y1)

The linear gradient starts from line1 and ends at line 2.

Used in structure: vg_lite_linear_gradient_ext

Used in functions: vg_lite_set_linear_grad

vg_lite_linear_gradient_parameter_t
members

Type Description

X0 vg_lite_float_t X origin of linear gradient radial
direction

Y0 vg_lite_float_t Y origin of linear gradient radial
direction

X1 vg_lite_float_t X end point of linear gradient radial
direction

Y1 vg_lite_float_t Y end point of linear gradient radial
direction

Table 52.  vg_lite_linear_gradient_parameter_t structure

10.2.4 vg_lite_linear_gradient_t structure

This structure defines the organization of a linear gradient in VGLite data. The linear
gradient may be applied when filling a path. It generates a 256x1 image according to the
configuration settings.

Used in init and draw functions: vg_lite_init_grad, vg_lite_set_grad,
vg_lite_update_grad, vg_lite_get_grad_matrix, vg_lite_clear_grad,
vg_lite_draw_gradient.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
47 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

vg_lite_linear_gradient_t
constant Type Description

VLC_MAX_GRAD int32_t Constant. Maximum number of gradient colors = 16.

VLC_GRADBUFFER_WIDTH int32_t Constant. Width of the internal color ramp = 256.

Table 53. vg_lite_linear_gradient_t structure constants

vg_lite_linear_gradient_t member Type Description

colors[VLC_MAX_GRAD] uint32_t Color array for the gradient

count uint32_t Number of colors

stops[VLC_MAX_GRAD] uint32_t Color stop offsets, from 0 to 255

matrix vg_lite_matrix_t Transformation matrix to be used to transform the
gradient color ramp

image vg_lite_buffer_t Image object struct to represent the color ramp

Table 54. vg_lite_linear_gradient_t structure members

10.2.5 vg_lite_linear_gradient_ext_t structure

This structure defines the organization of the extended parameters possible for a linear
gradient.

Used in functions: vg_lite_draw_linear_gradient

vg_lite_linear_gradient_ext_t
members

Type Description

count uint32_t Count of colors, up to 256

matrix vg_lite_matrix_t The matrix to transform the gradient

image vg_lite_buffer_t The image for rendering gradient as
pattern

linearGradient vg_lite_linear_gradient_parameter_t Linear gradient parameters

vgColorRampLength uint32_t Color ramp length for gradient paints
provided to the driver

vgColorRamp[MAX_COLOR_RAMP_
STOPS]

vg_lite_color_ramp_t Color ramp colors for gradient paints
provided to the driver

intColorRampLength uint32_t Converted internal color ramp length

intColorRamp[MAX_COLOR_RAMP_
STOPS + 2]

vg_lite_color_ramp_t Converted internal color ramp

colorRampPremultiplied uint8_t If this value is set to 1, the color value
of vgColorRamp will be multiplied with
the alpha value of vgColorRamp

SpreadMode vg_lite_radial_gradient_spreadmode_t The gradient spread mode. This is the
same spread mode enumeration type
like for radial gradients.

Table 55.  vg_lite_linear_gradient_ext_t structure

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
48 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

10.2.6 vg_lite_matrix_t structure

This structure is defined under the "Matrix control structures" section (see Section 7.2.1).

10.2.7 vg_lite_path_t structure

This structure is defined under the "Vector path structures" section (see Section 9.2.2).

10.2.8 vg_lite_radial_gradient_parameter_t structure

This structure defines the gradient radius and the X and Y coordinates for the center and
focal points of the gradient.

Used in radial gradient structure: vg_lite_radial_gradient_t.

vg_lite_radial_gradient_parameter_t
member Type Description

cx vg_lite_float_t X coordinate of the center point of the gradient

cy vg_lite_float_t Y coordinate of the center point of the gradient

r vg_lite_float_t Radius of the gradient

fx vg_lite_float_t X coordinate of the focal point of the gradient

fy vg_lite_float_t Y coordinate of the focal point of the gradient

Table 56. vg_lite_radial_gradient_parameter_t structure

10.2.9 vg_lite_radial_gradient_t structure

This structure defines the application of the radial gradient to fill a path (from November
2020 onward).

Used in radial gradient functions: vg_lite_draw_gradient,
vg_lite_set_rad_grad, vg_lite_update_rad_grad, vg_lite_get_rad_grad,
vg_lite_clear_rad_grad.

vg_lite_radial_gradient_t member Type Description

count uint32_t Count of colors, up to 256

matrix vg_lite_matrix_t Structure that specifies the
transform matrix for the gradient

image vg_lite_buffer_t Structure that specifies the image
for rendering as a gradient pattern

radialGradient vg_lite_radial_
gradient_parameter_t

Structure that specifies the
location of the center point, focal
point, and radius of the gradient

vgColorRampLength uint32_t Number of colors in color ramp

vgColorRamp[MAX_COLOR_RAMP_STOPS] vg_lite_color_ramp_t Structure that specifies the color
ramp

intColorRampLength uint32_t Converted internal color ramp
length

intColorRamp[MAX_COLOR_RAMP_STOPS+2] vg_lite_color_ramp_t Structure that specifies the
internal color ramp

Table 57. vg_lite_radial_gradient_t structure

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
49 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

vg_lite_radial_gradient_t member Type Description

colorRampPremultiplied uint32_t If this value is set to 1, then the
color value of vgColorRamp is
multiplied by the alpha value of
vgColorRamp

SpreadMode vg_lite_radial_gradient
_spreadmode_t

Enum that specifies the tiling
mode, which is applied to the
pixels out of the image after
transformation

Table 57. vg_lite_radial_gradient_t structure...continued

10.3 Draw functions
This section provides an overview of the draw functions.

10.3.1 vg_lite_draw function

Description:

This function performs a hardware accelerated 2D vector draw operation.

The size of the tessellation buffer can be specified at initialization and it is aligned with
the minimum hardware alignment requirements of the kernel. Specifying a smaller size
for tessellation buffer allocates less memory but reduces performance. Because the
hardware walks the target with the provided tessellation window size, a path may be sent
to the hardware multiple times. It is a good practice to set the tessellation buffer size to
the most common path size. For example, if all you do is render up to 24-point fonts, you
can set the tessellation buffer to 24x24.

Note:

• All the color formats available in the vg_lite_buffer_format_t enum are supported as the
destination buffer for the draw function

• The hardware does not support strokes; they must be converted to paths before you
use them in the draw API

Syntax:

vg_lite_error_t vg_lite_draw (
 vg_lite_buffer_t *target,
 vg_lite_path_t *path,
 vg_lite_fill_t fill_rule,
 vg_lite_matrix_t *matrix,
 vg_lite_blend_t blend,
 vg_lite_color_t color
);

Parameters:

Parameter Description

target Pointer to the vg_lite_buffer_t structure for the destination buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid destination formats for the
draw function.

Table 58. vg_lite_draw function

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
50 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Parameter Description

path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw. See opcode details in fontoxml-text-placeholder text="Type the link text".

fill_rule Specifies the vg_lite_fill_t enum value for the fill rule for the path

matrix Pointer to a vg_lite_matrix_t structure that defines the affine transformation matrix of
the path. If matrix is NULL, an identity matrix is assumed.
Note: Non-affine transformations are not supported by vg_lite_draw; therefore, a
perspective transformation matrix might have unexpected effects on path rendering.

blend Select one of the hardware-supported blend modes in the vg_lite_blend_t enum to be
applied to each drawn pixel. If no blending is required, set this value to VG_LITE_BLEND_
NONE (0).

color The color applied to each pixel drawn by the path

Table 58. vg_lite_draw function...continued

10.3.2 vg_lite_draw_gradient function

Description:

This function is used to fill a path with a linear gradient according to the specified fill
rules. The specified path is transformed according to the selected matrix and is filled with
the specified color gradient.

Syntax:

vg_lite_error_t vg_lite_draw_gradient (
 vg_lite_buffer_t *target,
 vg_lite_path_t *path,
 vg_lite_fill_t fill_rule,
 vg_lite_matrix_t *matrix,
 vg_lite_linear_gradient_t *grad,
 vg_lite_blend_t blend
);

Parameters:

Parameter Description

target Pointer to the vg_lite_buffer_t structure for the destination buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid destination formats for this
draw function.

path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw and fill with the linear gradient. See opcode details in Section 9.4.

fill_rule Specifies the vg_lite_fill_t enum value for the fill rule for the path

matrix Pointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of the
path. If matrix is NULL, an identity matrix is assumed.

grad Pointer to the vg_lite_linear_gradient_t structure that contains the description of
the color gradient to be used to fill the path

blend Specifies the blend mode in the vg_lite_blend_t enum to be applied to each drawn
pixel. If no blending is required, set this value to VG_LITE_BLEND_NONE (0).

Table 59.  vg_lite_draw_gradient function

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
51 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

10.3.3 vg_lite_draw_linear_gradient function

Description:

This function is used to fill a path with a linear gradient according to specified fill rules.
The specified path is transformed according to the selected matrix and filled with the
transformed linear gradient.

Note: Not all VGLite-compatible i.MX RT platforms support the linear gradients
extensions. For more details, see Table 41.

Syntax:

vg_lite_error_t vg_lite_draw_radial_gradient (
 vg_lite_buffer_t *target,
 vg_lite_path_t *path,
 vg_lite_fill_t fill_rule,
 vg_lite_matrix_t *path_matrix,
 vg_lite_radial_gradient_t *grad,
 vg_lite_color_t paint_color,
 vg_lite_blend_t blend,
 vg_lite_filter_t filter
);

Parameters:

Parameter Description

target Pointer to the vg_lite_buffer_t structure for the
destination buffer.

path Pointer to the vg_lite_path_t structure containing
path data which designates the path to draw for the
linear gradient.

fill_rule Specifies the vg_lite_fill_t enum value for the fill
rule for the path.

path_matrix Pointer to a vg_lite_matrix_t structure that defines
the 3x3 transformation matrix of the vector path. If this
matrix is NULL, an identity matrix is assumed.

grad Pointer to the vg_lite_linear_gradient_ext_t
structure which contains the values to be used to fill the
path.

paint_color Specifies the paint color vg_lite_color_t value to
be used when VG_LITE_RADIAL_GRADIENT_SPREAD_
FILL spread mode is selected using the vg_lite_
set_linear_grad API. This paint color is applied to
all pixels outside the gradient after transformation. See
also enum vg_lite_radial_gradient_spreadmode_
t.

blend Specifies the blend mode in the vg_lite_blend_t
enum to be applied to each drawn pixel. If no blending
is required, set this argument to VG_LITE_BLEND_NONE
(0).

Table 60.  vg_lite_draw_linear_gradient function

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
52 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Parameter Description

filter Specifies the filter mode vg_lite_filter_t enum
value to be applied to each drawn pixel. If no filtering is
required, set this argument to VG_LITE_BLEND_POINT
(0).

Table 60.  vg_lite_draw_linear_gradient function...continued

10.3.4 vg_lite_draw_radial_gradient function

Description:

This function is used to fill a path with a radial gradient according to the specified fill
rules. The specified path is transformed according to the selected matrix and is filled with
the radial color gradient.

Note: Not all VGLite-compatible i.MX RT platforms support the radial gradients feature.
For more details, see Table 82

Syntax:

vg_lite_error_t vg_lite_draw_radial_gradient (
 vg_lite_buffer_t *target,
 vg_lite_path_t *path,
 vg_lite_fill_t fill_rule,
 vg_lite_matrix_t *path_matrix,
 vg_lite_radial_gradient_t *grad,
 vg_lite_color_t paint_color,
 vg_lite_blend_t blend,
 vg_lite_filter_t filter
);

Parameters:

Parameter Description

target Pointer to the vg_lite_buffer_t structure for the destination buffer. All color
formats available in the vg_lite_buffer_format_t enum are valid destination
formats for this draw function.

path Pointer to the vg_lite_path_t structure containing path data which describes the
path to draw for and fill with the radial gradient. See opcode details in Section 9.4.

fill_rule Specifies the vg_lite_fill_t enum value for the fill rule for the path

path_matrix Pointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix
of the path. If matrix is NULL, an identity matrix is assumed.

grad Pointer to the vg_lite_radial_gradient_t structure, which contains the values to
be used to fill the path

paint_color Specifies the paint color enum vg_lite_color_t RGBA value to be applied by VG_
LITE_RADIAL_GRADIENT_SPREAD_FILL, which is set by function vg_lite_set_
rad_grad. When pixels are out of the image after transformation, this paint_color
is applied to them. See also Section 10.1.6.

blend Specifies the blend mode in the vg_lite_blend_t enum to be applied to each
drawn pixel. If no blending is required, set this value to VG_LITE_BLEND_NONE (0).

filter Specified the filter mode vg_lite_filter_t enum value to be applied to each
drawn pixel. If no filtering is required, set this value to VG_LITE_BLEND_POINT (0).

Table 61.  vg_lite_draw_radial_gradient function

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
53 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

10.3.5 vg_lite_draw_pattern function

Description:

This function fills a path with an image pattern. The path is transformed according to the
specified matrix and is filled with the transformed image pattern.

Syntax:

vg_lite_error_t vg_lite_draw_pattern (
 vg_lite_buffer_t *target,
 vg_lite_path_t *path,
 vg_lite_fill_t fill_rule,
 vg_lite_matrix_t *matrix0,
 vg_lite_buffer_t *source,
 vg_lite_matrix_t *matrix1,
 vg_lite_blend_t blend,
 vg_lite_pattern_mode_t pattern_mode,
 vg_lite_color_t pattern_color,
 vg_lite_filter_t filter
);

Parameters:

Parameter Description

target Pointer to the vg_lite_buffer_t structure for the destination buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid destination formats for this
draw function.

path Pointer to the vg_lite_path_t structure containing path data which describes the path to
draw. See opcode details in Section 9.4

fill_rule Specifies the vg_lite_fill_t enum value for the fill rule for the path

matrix0 Pointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of the
path. If matrix is NULL, an identity matrix is assumed.

source Pointer to the vg_lite_buffer_t structure that describes the source of the image pattern

matrix1 Pointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of the
source pixels into the target. If matrix is NULL, an identity matrix is assumed, which means
that the source is copied directly at 0,0 location on the target.

blend Specifies one of the hardware-supported blend modes to be applied to each drawn pixel in
the image. If no blending is required, set this value to VG_LITE_BLEND_NONE (0).

pattern_mode Specifies the vg_lite_pattern_mode_t value which defines how the region outside the
image pattern is to be filled

pattern_color Specifies a 32 bpp ARGB color to be applied to the fill outside the image pattern area when
the pattern_mode value is VG_LITE_PATTERN_COLOR

filter Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid
formats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.

Table 62. vg_lite_draw_pattern function

10.4 Linear gradient initialization and control functions
This part of the API performs linear gradient operations.

A color gradient (color progression, color ramp) is a smooth transition between a set of
colors (color stops) that is done along a line (linear, or axial color gradient) or radially,

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
54 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

along concentric circles (radial color gradient). The color transition is done by linear
interpolation between two consecutive color stops.

10.4.1 vg_lite_init_grad function

Description:

This function initializes the internal buffer for the linear gradient object with default
settings for rendering.

Syntax:

vg_lite_error_t vg_lite_init_grad (
 vg_lite_linear_gradient_t *grad
);

Parameters:

Parameter Description

grad Pointer to the vg_lite_linear_gradient_t structure, which defines the gradient to be initialized. Default
values are used.

Table 63. vg_lite_init_grad function

10.4.2 vg_lite_set_grad function

Description:

This function is used to set values for the members of the
vg_lite_linear_gradient_t structure.

Note: The vg_lite_set_grad API adopts the following rules to set the default
gradient colors if the input parameters are incomplete or invalid:

• If no valid stops have been specified (for example, due to an empty input array,
out-of-range or out-of-order stops), a stop at 0 with (R, G, B, A) color (0.0, 0.0, 0.0,
1.0) (opaque black) and a stop at 1 with color (1.0, 1.0, 1.0, 1.0) (opaque white) are
implicitly defined

• If at least one valid stop has been specified, but none has been defined with an offset
of 0, then an implicit stop is added with an offset of 0 and the same color as the first
user-defined stop

• If at least one valid stop has been specified, but none has been defined with an offset
of 1, then an implicit stop is added with an offset of 1 and the same color as the last
user-defined stop

Syntax:

vg_lite_error_t vg_lite_set_grad (
 vg_lite_linear_gradient_t *grad,
 uint32_t count,
 uint32_t *colors,
 uint32_t *stops
);

Parameters:

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
55 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Parameter Description

grad Pointer to the vg_lite_linear_gradient_t structure to be set

count The number of colors in the linear gradient. The maximum color stop count is defined by
VLC_MAX_GRAD which is 16.

colors Specifies the color array for the gradient stops. The color is in ARGB8888 format with alpha
in the upper byte.

stops Pointer to the gradient stop offset

Table 64. vg_lite_set_grad function

Returns:

Always returns VG_LITE_SUCCESS.

10.4.3 vg_lite_update_grad function

Description:

This function is used to update or generate values for an image object that is going to
be rendered. The vg_lite_linear_gradient_t object has an image buffer, which
is used to render the gradient pattern. The image buffer is created or updated with the
corresponding gradient parameters.

Syntax:

vg_lite_error_t vg_lite_update_grad (
 vg_lite_linear_gradient_t *grad
);

Parameters:

Parameter Description

grad Pointer to the vg_lite_linear_gradient_t structure, which contains the update values to be used for
the object to be rendered

Table 65.  vg_lite_update_grad function

10.4.4 vg_lite_get_grad_matrix function

Description:

This function is used to get a pointer to the transformation matrix of the gradient object.
It allows an application to manipulate the matrix to facilitate correct rendering of the
gradient path.

Syntax:

vg_lite_error_t vg_lite_get_grad_matrix (
 vg_lite_linear_gradient_t *grad
);

Parameters:

Parameter Description

grad Pointer to the vg_lite_linear_gradient_t structure, which contains the matrix to be retrieved

Table 66.  vg_lite_get_grad_matrix function

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
56 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

10.4.5 vg_lite_clear_grad function

Description:

This function is used to clear the values of a linear gradient object and free up the
memory of the image buffer.

Syntax:

vg_lite_error_t vg_lite_clear_grad (
 vg_lite_linear_gradient_t *grad
);

Parameters:

Parameter Description

grad Pointer to the vg_lite_linear_gradient_t structure which is to be cleared

Table 67. vg_lite_clear_grad function

10.5 Extended linear gradient initialization and control functions
The following functions are available only on i.MX RT platforms including hardware
support for extended linear gradient capabilities. For details about your specific platform,
refer to Table 82.

10.5.1 vg_lite_set_linear_gradient function

Description:

This function is used to set the values that define the linear gradient.

Note: Not all VGLite-compatible i.MX RT platforms support the linear gradients’
extensions. For more details, see Table 82.

Syntax:

vg_lite_error_t vg_lite_set_linear_grad (
 vg_lite_linear_gradient_ext_t *grad,
 uint32_t count,
 vg_lite_color_ramp_t *vgColorRamp,
 vg_lite_linear_gradient_parameter_t linearGradient,
 vg_lite_radial_gradient_spreadmode_t SpreadMode,
 uint8_t colorRampPremultiplied
);

Parameters:

Parameter Description

grad Pointer to the vg_lite_linear_gradient_ext_t
structure to configure.

count Count of the colors in the gradient. The maximum color stop
count is defined by MAX_COLOR_RAMP_STOPS, which is set
to 256.

Table 68. vg_lite_set_linear_gradient function

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
57 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Parameter Description

vgColorRamp It is the array of stops for the linear gradient. The number of
parameters for each stop is 5, and gives the offset and color
of the stop. Each stop is defined by a floating-point offset
value and four floating-point values containing the sRGBA
color and alpha value associated with each stop, in the form
of a non-premultiplied (R, G, B, alpha) quad. The range of all
parameters is [0,1].

linearGradient Gradient parameters as specified in structure vg_lite_
linear_gradient_parameter_t.

SpreadMode The fill mode applied to the pixels out of the paint after
transformation. Uses the same spread mode enumeration
types as radial gradient. See vg_lite_radial_gradient_
spreadmode_t enum.

colorRampPremultiplied This parameter controls whether color and alpha values are
interpolated in premultiplied or non-premultiplied form.

Table 68. vg_lite_set_linear_gradient function...continued

10.5.2 vg_lite_get_linear_grad_matrix function

Description:

This function gets the pointer to the linear gradient object's matrix. It allows applications
to manipulate the matrix to correctly position the color gradient over the vector polygon.

Note: Not all VGLite-compatible i.MX RT platforms support the linear gradients’
extensions. For more details, see Table 82.

Syntax:

vg_lite_matrix_t * vg_lite_get_linear_grad_matrix (
 vg_lite_linear_gradient_ext_t *grad
);

Parameters:

Parameter Description

grad Pointer to the vg_lite_linear_gradient_ext_t object
whose matrix to retrieve.

Table 69. vg_lite_get_linear_grad_matrix function

10.5.3 vg_lite_update_linear_grad function

Description:

This function is used to update or generate the corresponding image object to render.

The vg_lite_linear_gradient_ext_t object has an image buffer which is used
to render the linear gradient paint. The image buffer is created/updated according to the
grad parameters specified via the previous call to vg_lite_set_linear_grad.

Note: Not all VGLite-compatible i.MX RT platforms support the linear gradients’
extensions. For more details, see Table 82.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
58 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Syntax:

vg_lite_error_t vg_lite_update_linear_gradient (
 vg_lite_linear_gradient_ext_t *grad
);

Parameters:

Parameter Description

grad Pointer to the vg_lite_linear_gradient_ext_t
structure which is to be updated or created.

Table 70. vg_lite_update_linear_grad function

10.5.4 vg_lite_clear_linear_grad function

Description:

This function is used to clear the linear gradient object. It resets the grad members and
free the image buffer's memory.

Note: Not all VGLite-compatible i.MX RT platforms support the linear gradients
extensions. For more details, see Table 82.

Syntax:

vg_lite_error_t vg_lite_clear_linear_grad (
 vg_lite_linear_gradient_ext_t *grad
);

Parameters:

Parameter Description

grad Pointer to the vg_lite_linear_gradient_ext_t
structure which is to be cleared.

Table 71. vg_lite_clear_linear_grad function

10.6 Radial gradient functions initialization and control functions
This part of the API performs radial gradient operations.

Note: Not all VGLite-compatible i.MX RT platforms support the radial gradients feature.
For more details, see Table 82.

Note: There is no init function required for radial gradients. Buffer initialization is done
through the vg_lite_update_rad_grad() function.

10.6.1 vg_lite_set_rad_grad function

Description:

This function is used to set the values for the radial linear gradient definition.

Syntax:

vg_lite_error_t vg_lite_set_rad_grad (
 vg_lite_radial_gradient_t *grad,
 uint32_t count,

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
59 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

 vg_lite_color_ramp_t *vgColorRamp,
 vg_lite_radial_gradient_parameter_t radialGradient,
 vg_lite_radial_gradient_spreadmode_t spreadMode,
 uint8_t colorRampPremultiplied
);

Parameters:

Parameter Description

grad Pointer to the vg_lite_radial_gradient_t structure for the radial gradient that has to be set

count The number of color stops in the gradient. The maximum color stop count is defined by MAX_
COLOR_RAMP_STOPS, which is currently 256.

vgColorRamp Pointer to the vg_lite_color_ramp_t structure which defines the stops for the radial gradient.
The five parameters provide the offset and color for each stop. Each stop is defined by a set
of floating point values that specify the offset and the sRGBA color and alpha values. Color
channel values are in the form of a non-premultiplied (R, G, B, alpha) quad. All parameters
are in the range of [0,1]. The red, green, blue, alpha value of [0, 1] is mapped to an 8-bit pixel
value [0, 255].

radialGradient The radial gradient parameters are supplied as a vector of 5 floats. Parameters (cx, cy)
specify the center point, parameters (fx, fy) specify the focal point, and r specifies the
radius. See structure vg_lite_radial_gradient_parameter_t.

spreadMode The tiling mode that is applied to pixels out of the paint after transformation. See enum vg_
lite_radial_gradient_spreadmode_t.

colorRamp
Premultiplied

Controls whether color and alpha values are interpolated in premultiplied or non-premultiplied
form. If this value is set to 1, the color value of vgColorRamp is multipled by the alpha value
of vgColorRamp.

Table 72. vg_lite_set_rad_grad function

Returns:

Returns VG_LITE_INVALID_ARGUMENTS to indicate that the parameters are wrong.

10.6.2 vg_lite_update_rad_grad function

Description:

This function is used to update or generate values for an image object that is going to
be rendered. The vg_lite_radial_gradient_t object has an image buffer, which
is used to render the gradient pattern. The image buffer is created or updated with the
corresponding gradient parameters.

Syntax:

vg_lite_error_t vg_lite_update_rad_grad (
 vg_lite_radial_gradient_t *grad
);

Parameters:

Parameter Description

grad Pointer to the vg_lite_radial_gradient_t structure, which contains the updated values to be used for
the object to be rendered

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
60 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

10.6.3 vg_lite_get_rad_grad_matrix function

Description:

This function is used to get a pointer to the transformation matrix of the radial gradient
object. It allows an application to manipulate the matrix to facilitate correct rendering of
the gradient path.

Syntax:

vg_lite_error_t vg_lite_get_rad_grad_matrix (
 vg_lite_radial_gradient_t *grad
);

Parameters:

Parameter Description

grad Pointer to the vg_lite_radial_gradient_t structure, which contains the matrix to be retrieved

Table 73. vg_lite_get_rad_grad_matrix function

10.6.4 vg_lite_clear_rad_grad function

Description:

This function is used to clear the values of a radial gradient object and free up the
memory of the image buffer.

Syntax:

vg_lite_error_t vg_lite_clear_rad_grad (
 vg_lite_radial_gradient_t *grad
);

Parameters:

Parameter Description

grad Pointer to the vg_lite_radial_gradient_t structure which is to be cleared

Table 74. vg_lite_clear_rad_grad function

11 Stroke operations

This part of the API performs line stroking operations.

11.1 Stroke enumerations

11.1.1 vg_lite_cap_style_t enumeration

Defines the style of a cap at the end of a stroke.

Used in function: vg_lite_set_stroke

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
61 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

vg_lite_cap_style_t values Description

VG_LITE_CAP_BUTT The butt end cap style terminates each segment with a line
perpendicular to the tangent at each endpoint.

VG_LITE_CAP_ROUND The round end cap style appends a semicircle with a
diameter equal to the line width centered around each
endpoint.

VG_LITE_CAP_SQUARE The square end cap style appends a rectangle with two
sides of length equal to the line width perpendicular to the
tangent, and two sides of length equal to half the line width
parallel to the tangent, at each endpoint.

Table 75.  vg_lite_cap_style_t enumeration

11.1.2 vg_lite_draw_path_type_t enumeration

Defines the type of vector path to draw.

Used in structure: vg_lite_path_t

Used in function: vg_lite_set_draw_path_type

vg_lite_draw_path_type_t values Description

VG_LITE_DRAW_FILL_PATH Vector path is filled (solid color, color gradient, or pattern
filled)

VG_LITE_DRAW_STROKE_PATH Vector path is stroked

VG_LITE_DRAW_FILL_STROKE_PATH Vector path is both filled (solid color, color gradient or pattern
filled) and stroked

Table 76. vg_lite_draw_path_type_t enumeration

11.1.3 vg_lite_join_style_t enumeration

Defines the type of styles available for line joins.

Used in function: vg_lite_set_stroke

vg_lite_join_style_t values Description

VG_LITE_JOIN_MITER The miter join style appends a trapezoid with one vertex at
the intersection point of the two original lines, two adjacent
vertices at the outer endpoints of the two “thickened” lines
and a fourth vertex at the extrapolated intersection point of
the outer perimeters of the two “thickened” lines.

VG_LITE_JOIN_ROUND The round join style appends a wedge-shaped portion of a
circle, centered at the intersection point of the two original
lines, having a radius equal to half the line width.

VG_LITE_JOIN_BEVEL The bevel type join style appends a triangle with two vertices
at the outer endpoints of the two "thickened” lines and a third
vertex at the intersection point of the two original lines.

Table 77. vg_lite_join_style_t enumeration

11.1.4 vg_lite_join_style_t enumeration

Defines the type of styles available for line joins.

Used in function: vg_lite_set_stroke
IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
62 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

vg_lite_join_style_t values Description

VG_LITE_JOIN_MITER The miter join style appends a trapezoid with one vertex at
the intersection point of the two original lines, two adjacent
vertices at the outer endpoints of the two “thickened” lines
and a fourth vertex at the extrapolated intersection point of
the outer perimeters of the two “thickened” lines.

VG_LITE_JOIN_ROUND The round join style appends a wedge-shaped portion of a
circle, centered at the intersection point of the two original
lines, having a radius equal to half the line width.

VG_LITE_JOIN_BEVEL The bevel type join style appends a triangle with two vertices
at the outer endpoints of the two "thickened” lines and a third
vertex at the intersection point of the two original lines.

Table 78. vg_lite_join_style_t enumeration

11.2 Stroke structures

11.2.1 vg_lite_path_t structure

Defined under Vector Path Structures - vg_lite_path_t structure.

11.3 Stroke functions

11.3.1 vg_lite_set_draw_path_type function

Description:

This function sets the vector path type. By default, a vector path is considered
VG_LITE_DRAW_FILL_PATH.

Syntax:

vg_lite_error_t vg_lite_set_draw_path_type (
 vg_lite_path_t *path,
 vg_lite_draw_path_type_t path_type
);

Parameters:

Parameter Description

path Pointer to the vg_lite_path_t structure that describes the
vector path.

path_type The type to set for the mentioned vector path.

Table 79.  vg_lite_set_draw_path_type function

11.3.2 vg_lite_set_stroke function

Description:

This function sets the attributes of a stroked vector path.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
63 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Syntax:

vg_lite_error_t vg_lite_set_stroke (
 vg_lite_path_t *path,
 vg_lite_cap_style _t stroke_cap_style,
 vg_lite_join_style_t stroke_join_style,
 vg_lite_float_t stroke_line_width,
 vg_lite_float_t stroke_miter_limit,
 vg_lite_float_t *stroke_dash_pattern,
 uint32_t stroke_dash_pattern_count,
 vg_lite_float_t stroke_dash_phase
);

Parameters:

Parameter Description

path Pointer to the vg_lite_path_t structure that describes the
vector path.

stroke_cap_style The end cap style defined by the vg_lite_cap_style_t enum.

stroke_join_style The line join style defined by the vg_lite_join_style_t enum.

stroke_line_width The line width of the stroked path. A line width less than or
equal to 0 prevents stroking from taking place.

stroke_miter_limit When stroking using the miter line join style, the miter length
(that is, the length between the intersection of the inner and
outer perimeters of the two “thickened” lines) is compared
to the product of the user-set miter limit and the line width.
If the miter length exceeds this product, the miter join is not
drawn and a bevel join is substituted.
Note: All miter limit values less than 1 are silently clamped to
1.

stroke_dash_pattern Pointer to a dash pattern which consists of a sequence of
lengths of alternating "on" and "off" dash segments. The
first value of the dash array defines the length, in user
coordinates, of the first "on" dash segment. The second
value defines the length of the following "off" segment. Each
subsequent pair of values defines one "on" and one "off"
segment.
Note: If the dash pattern has an odd number of elements,
the final element is ignored.

stroke_dash_pattern_count The count of dash on/off segments.

stroke_dash_phase Defines the starting point in the dash pattern that is
associated with the start of the first segment of the path. For
example, if the dash pattern is [10 20 30 40] and the dash
phase is 35, the path will be stroked with an "on" segment
of length 25 (skipping the first "on" segment of length 10,
the following "off" segment of length 20, and the first 5 units
of the next "on" segment), followed by an "off" segment of
length 40. The pattern will then repeat from the beginning,
with an “on” segment of length 10, an "off" segment of length
20, an "on" segment of length 30.

Table 80. vg_lite_set_stroke function

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
64 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

11.3.3 vg_lite_set_update_stroke function

Description:

This function uses the path and stroke attributes as specified by function
vg_lite_set_stroke to update the stroked path's parameters and generate the
stroked path data.

Syntax:

vg_lite_error_t vg_lite_update_stroke (
 vg_lite_path_t *path
);

Parameters:

Parameter Description

path Pointer to the vg_lite_path_t structure that describes the
vector path.

Table 81. vg_lite_set_update_stroke function

12 Platform-specific features

The table below describes VGLite features that are supported by some but not all NXP
VGLite-compatible i.MX RT platforms. The features that are not mentioned here are
supported by all NXP VGLite-compatible i.MX RT platforms.

Supported? (Yes/No)VGLite feature

i.MX RT500 i.MX RT1160 i.MX RT1170

2 bits per channel image formats (ARGB2222, BGRA2222,
ABGR2222, RGBA2222)

Yes No No

Indexed image formats (1, 2, 4, and 8 bits per pixel) Yes No No

8x coverage sample anti-aliasing for vector paths (VG_
LITE_UPPER)

Yes No No

Border culling Yes No No

Alpha channel premultiplication during vg_lite_blit No Yes Yes

Dithering No Yes Yes

Color Keying No Yes Yes

Radial gradients No Yes Yes

Linear gradients extensions No Yes Yes

Table 82. Platform-specific VGLite features

13 VGLite API programming examples

This chapter provides a set of VGLite API programming examples.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
65 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

13.1 vg_lite_clear example
The following code snippet demonstrates the basic flow of a VGLite application program
and the usage of the vg_lite_clear API. First, the program initializes the VGLite API
with:

error = vg_lite_init(0, 0);

Note: Because the tessellation buffer width and height are defined as (0, 0) in the call to
vg_lite_init. This application cannot use the path rendering vg_lite_draw APIs.
Only clear and blit APIs can be used in this context.

After initialization, the program allocates a 256x256 render buffer with a format of
VG_LITE_RGB565:

buffer.width = 256;
buffer.height = 256;
buffer.format = VG_LITE_RGB565;
error = vg_lite_allocate(&buffer);
fb = &buffer;

It clears the entire render buffer with blue color first using the vg_lite_clear API:

error = vg_lite_clear(fb, NULL, 0xFFFF0000);

Then, it paints red a 64x64 square at the position (64, 64) relative to the top-left origin of
the render buffer:

vg_lite_rectangle_t rect = { 64, 64, 64, 64 };
error = vg_lite_clear(fb, &rect, 0xFF0000FF);

After that, it calls vg_lite_finish to flush the commands to Vivante GPU hardware
and then frees up the allocated render buffer. Finally, it calls vg_lite_close to destroy
the VGLite context which is initialized by vg_lite_init:

vg_lite_finish();
vg_lite_free(&buffer);
vg_lite_close();

Figure 1. vg_lite_clear example output

13.2 vg_lite_blit example
This section describes an example program demonstrating the usage of the
vg_lite_blit API. It first clears a 320x480 render buffer with blue background color,
and then blits six 256x256 icon images to six different positions on the render buffer
for each icon, using a blit matrix. The blit matrix scales the original icon image to a

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
66 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

proper size and translates the scaled icon to the right position in the render buffer. The
vg_lite_blit API call sets the blend mode to VG_LITE_BLEND_SRC_OVER so the
icon image pixels with an alpha value 0xFF over the background blue color.

vg_lite_blit(fb, &icons[icon_id], &icon_matrix,
 VG_LITE_BLEND_SRC_OVER, 0, VG_LITE_FILTER_POINT);

Figure 2. vg_lite_blit example output

13.3 vg_lite_draw example
This section demonstrates the usage of the vg_lite_draw API with which it draws
a highlighted rectangle on the top-right icon in above image. The program defines
a path (path_data[]) for a 10x10 square-bounding box. It also sets up a proper
“highlight_matrix” to translate/scale the 10x10 square to cover the top-right icon. The
vg_lite_draw API call uses blend parameter VG_LITE_BLEND_SRC_OVER and
foreground color 0x22444488 (alpha value 0x22) to draw a semi-transparent rectangle on
the top-right icon.

static char path_data[] = {
 2, 0, 0, // moveto 0, 0
 4, 10, 0, // lineto 10, 0
 4, 10, 10, // lineto 10, 10
 4, 0, 10, // lineto 0, 10
 0, // end
};
static vg_lite_path_t path = {
 {-10, -10, 10, 10}, // bounding box left, top, right,
 bottom
 VG_LITE_HIGH, // quality
 VG_LITE_S8, // -128 to 127 coordinate range
 {0}, // uploaded
 sizeof(path_data), // path length
 path_data, // path data
 1 // path changed
};
error = vg_lite_draw(fb, &path, VG_LITE_FILL_EVEN_ODD,
 &highlight_matrix,
 VG_LITE_BLEND_SRC_OVER, 0x22444488);

After the vg_lite_draw call, vg_lite_clear_path(&path) should be called to free
and reset the path data.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
67 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

13.4 vg_lite_draw_gradient example
This section demonstrates the usage of the vg_lite_draw_gradient API. It defines
five colors (black, red, green, blue, white) in the ramps[] array and five stops in
stops[] array which are used for gradient color transition. The application uses the
following sequence of calls to set up the color gradient image:

uint32_t ramps[] = {0xff000000, 0xffff0000, 0xff00ff00,
 0xff0000ff, 0xffffffff};
uint32_t stops[] = {0, 66, 122, 200, 255};
vg_lite_set_grad(&grad, 5, ramps, stops);
vg_lite_update_grad(&grad);

Note: The “colors” parameter (ramps[]) in vg_lite_set_grad API must be in
ARGB8888 format with alpha at the highest byte.

The application configures the gradient transformation matrix (matGrad) with a proper
scale factor and 30 degree rotation:

matGrad = vg_lite_get_grad_matrix(&grad);
vg_lite_identity(matGrad);
vg_lite_rotate(30.0f, matGrad);

Then, it calls:

vg_lite_draw_gradient(fb, &path, VG_LITE_FILL_EVEN_ODD,
 &matPath, &grad, VG_LITE_BLEND_NONE);

with a polygon path and color gradient image/matrix so that it generates the rendering
effect as illustrated in the image below.

After the gradient draw API, it calls the following to flush the VGLite commands and clean
up the gradient image buffer.

vg_lite_finish();
vg_lite_clear_grad(&grad);

Figure 3. vg_lite_draw_gradient example output

13.5 vg_lite_draw_pattern example
This section demonstrates the usage of the vg_lite_draw_pattern API. It defines a
vg_lite_path_t path for a convex polygon shape (shown in Figure 4) and loads an
image file landscape.raw to be used to fill the interior area of the polygon.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
68 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

It also defines two matrices, one named “matrix” for the image, another named “matPath”
for the “path”. The image matrix rotates the image clockwise 33 degrees relative to the
image center.

vg_lite_identity(&matrix);
vg_lite_translate(fb_width / 2.0f, fb_height / 4.0f, &matrix);
vg_lite_rotate(33.0f, &matrix);
vg_lite_scale(0.4f, 0.4f, &matrix);
vg_lite_translate(fb_width / -2.0f, fb_height / -4.0f,
 &matrix);
vg_lite_identity(&matPath);
vg_lite_translate(fb_width / 2.0f, fb_height / 4.0f, &matPath);
vg_lite_scale(10, 10, &matPath);

Then, it calls vg_lite_draw_pattern API two times with different parameters to draw
the polygon twice.

error = vg_lite_draw_pattern(fb, &path, VG_LITE_FILL_EVEN_ODD,
 &matPath, &image,
 &matrix,
 VG_LITE_BLEND_NONE,VG_LITE_PATTERN_COLOR,
 0xffaabbcc, VG_LITE_FILTER_POINT);
error = vg_lite_draw_pattern(fb, &path, VG_LITE_FILL_EVEN_ODD,
 &matPath,&image,
 &matrix,
 VG_LITE_BLEND_NONE,VG_LITE_PATTERN_PAD,
 0xffaabbcc, VG_LITE_FILTER_POINT);

With the vg_lite_pattern_mode_t setting of VG_LITE_PATTERN_COLOR,
the polygon area outside the pattern image of the upper polygon is filled with color
0xffaabbcc. With the vg_lite_pattern_mode_t setting of VG_LITE_PATTERN_PAD,
the polygon area outside the pattern image of the lower polygon is filled with the border
pixel color of the pattern image.

Figure 4. vg_lite_draw_pattern example output

13.6 Vector-based font-rendering example
This section demonstrates vector-based font rendering with the vg_lite_draw API.
This API can be used to draw quadratic curves and cubic curves based on end point and
control point coordinates in the path data. Font path data can be generated either using

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
69 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

a third-party font engine that can produce VGLite path data directly or using VGLite tools
from VeriSilicon that can convert font data of other formats (such as SVG) to VGLite path
data. Here is an example of path data for the character “~” (ASCII code 126):

float ascii_font_126[] =
{
 2,15.984375,20.273438,
 4,16.296875,20.476563,
 6,15.781250,21.351563,14.921875,21.992188,
 6,13.953125,22.710938,13.046875,22.710938,
 6,12.375000,22.710938,10.898438,22.203125,
 6,9.421875,21.695313,8.656250,21.695313,
 6,7.937500,21.695313,7.375000,22.117188,
 6,7.015625,22.382813,6.421875,23.117188,
 4,6.109375,22.914063,
 6,7.593750,20.664063,9.453125,20.664063,
 6,10.156250,20.664063,11.492188,21.140625,
 6,12.828125,21.617188,13.531250,21.617188,
 6,14.921875,21.617188,15.984375,20.273438,
 0
};

The first integer on each line is the path opcode, followed by the coordinates for each
opcode. As listed in Section 9.4:

• Opcode (2, x, y) moves the current position to (x, y)
• Opcode (4, x, y) draws a line from the current position to (x, y)
• Opcode (6, cx, cy, x, y) draws a quadratic curve from the current position to the given

end point (x, y) using the specified control point (cx, cy)

The program calls the following function to initialize VGLite with a 256x256
path tessellation buffer, and then allocates a 320x320 render buffer with the
VG_LITE_RGBA8888 format. The size of the tessellation buffer is large enough to cover
the font character bounding box.

error = vg_lite_init(256, 256);

The program renders the path for each character in the string "Hello,
\nVerisilicon!" in a loop with calls to the following function:

/* Draw the path using the matrix.*/
error = vg_lite_draw(fb, &path, VG_LITE_FILL_EVEN_ODD, &matrix,
 VG_LITE_BLEND_NONE, 0xFF0000FF);

The vector path of the character is rendered without blending (VG_LITE_BLEND_NONE).
The path interior is filled with the red color (0xFF0000FF).

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
70 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Figure 5. Text rendering example output

To demonstrate the smooth curve of vector-based path rendering with any scale factor,
the program renders a single character “H” with a scaled size of 8X using the following
API calls:

vg_lite_identity(&matrix);
vg_lite_translate(startX, startY, &matrix);
vg_lite_scale(8.0, 8.0, &matrix);
error = vg_lite_draw(fb, &path, VG_LITE_FILL_EVEN_ODD, &matrix,
 VG_LITE_BLEND_NONE, 0xFF0000FF);

The following image example shows the resulting vector path rendering of character “H”.

Figure 6. Letter rendering example output

14 Revision history

The table below summarizes the revisions to this document.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
71 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Revision Date Topic cross-reference Change description

Rev. 1.1 22 September 2022 • Paragraph 4.1.1 Updated Table 3 - vg_lite_
feature_t enumeration.

• Paragraph 6.6 Added documentation for
new API vg_lite_set_dither

• Paragraph 8.2 Blit structures- Added
documentation for new data structure vg_
lite_color_key_t -; added documentation
for new data structure vg_lite_color_key4_t

• Paragraph 8.3.1, vg_lite_blit function-
added note related to HW limitation on
RT500 platform

• Paragraph 8.3.2, vg_lite_blit_rect function
-added note related to HW limitation on
RT500 platforms

• Paragraph 8.3.3, vg_lite_get_transfor
m_matrix function- adjusted function
description, adjusted function parameters
description

• Paragraph 8.3, blit functions- added
documentation for new API vg_lite_set_
color_key

• Paragraph 8.4.1, vg_lite_enable_premulti
ply function- added note about limited
support on specific platforms

• Paragraph 8.4.2, vg_lite_disable_premulti
ply function- added note about limited
support on specific platforms

• Paragraph 10.1.3, vg_lite_fill_t enumerat
ion- added note about crossing points
buffer limitation

• Paragraph 10.2, draw and gradient structur
es- added documentation for new data
structure vg_lite_gradient_parameter_t -
done- added documentation for new data
structure vg_lite_gradient_ext_t

• Paragraph 10.3, draw functions- added
documentation for new API vg_lite_draw_
linear_gradient

• Paragraph 10, vector-Based Draw
Operations - added new paragraph 10.5
Extended linear gradient initialization and
control functions; added documentation
for new API vg_lite_set_linear_gradient
; added documentation for new API
vg_lite_get_linear_grad_matrix; added
documentation for new API vg_lite_
update_linear_grad; Added documentation
for new API vg_lite_clear_linear_grad

• Paragraph 10.5, Radial gradient functions -
adjusted paragraph title

• Added new Chapter Stroke Operations
• Chapter Platform-Specific Features -

updated Table 41 - Platform-specific
 VGLite features

Table 83. Revision history

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
72 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Revision Date Topic cross-reference Change description

Section 1 Added i.MX RT1160 to the list of NXP
devices that support VGLite graphics API

Section 3.2.1 Updated Table 2

Section 4.1.1 Updated Table 3

Section 5 Updated chapter introductory text

Section 5.1.2 Updated section

Section 6.1 Updated section

Section 6.4.1 Updated section

Section 6.4.1.1 Updated section

Removed "vg_lite_perspective function"
section

Section 8.2.7 Added as a new section

Section 8.2.8 Added as a new section

Section 8.3.3 Added as a new section

Section 8.4.5 Updated section

Section 9.1.2 Updated section

Section 9.3.4 Added as a new section

Section 9.4 Added Table 47

Rev. 1 27 January 2022

Section 12 Added as a new chapter

Rev. 0 22 February 2021 Initial release

Table 83. Revision history...continued

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
73 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

15 Legal information

15.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

15.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

15.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
74 / 76

mailto:PSIRT@nxp.com

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

Contents
1 Introduction ... 2
2 Vivante VGLite Graphics API 2
2.1 API partitions ... 2
2.2 API files ... 2
3 Common parameters and error values 2
3.1 Common parameter types 3
3.2 Enumerations for error reporting 3
3.2.1 vg_lite_error_t enumeration3
4 Hardware product and feature information4
4.1 Enumerations for product and feature

queries ... 4
4.1.1 vg_lite_feature_t enumeration 4
4.2 Structures for product and feature queries 4
4.2.1 vg_lite_info_t structure4
4.3 Functions for product and feature queries 5
4.3.1 vg_lite_get_product_info function 5
4.3.2 vg_lite_get_info function 5
4.3.3 vg_lite_get_register function5
4.3.4 vg_lite_query_feature function6
4.3.5 vg_lite_mem_avail function 6
5 API control ...7
5.1 Context initialization and control functions7
5.1.1 vg_lite_set_command_buffer_size function 7
5.1.2 vg_lite_init function .. 7
5.1.3 vg_lite_close function .. 8
5.1.4 vg_lite_finish function .. 8
5.1.5 vg_lite_flush function ... 8
6 Pixel buffers .. 9
6.1 Pixel buffer alignment .. 9
6.2 Pixel cache .. 9
6.3 Internal representation9
6.4 Pixel buffer enumerations9
6.4.1 vg_lite_buffer_format_t enumeration 10
6.4.1.1 Alignment notes ...14
6.4.2 vg_lite_buffer_image_mode_t enumeration15
6.4.3 vg_lite_buffer_layout_t enumeration15
6.4.4 vg_lite_buffer_transparency_mode_t

enumeration ... 16
6.4.5 vg_lite_swizzle_t enumeration16
6.4.6 vg_lite_yuv2rgb_t enumeration16
6.5 Pixel buffer structures16
6.5.1 vg_lite_buffer_t structure 16
6.5.2 vg_lite_yuvinfo_t structure 17
6.6 Pixel buffer functions 18
6.6.1 vg_lite_allocate function 18
6.6.2 vg_lite_free function ...18
6.6.3 vg_lite_buffer_upload function 19
6.6.4 vg_lite_map function ..19
6.6.5 vg_lite_unmap function20
6.6.6 vg_lite_set_CLUT function20
6.6.7 vg_lite_set_dither ...21
7 Matrices ..21
7.1 Matrix control float parameter type 21
7.2 Matrix control structures 21
7.2.1 vg_lite_matrix_t structure22
7.3 Matrix control functions22

7.3.1 vg_lite_identity function 22
7.3.2 vg_lite_rotate function22
7.3.3 vg_lite_scale function 23
7.3.4 vg_lite_translate function 23
8 Blits for compositing and blending23
8.1 Blit enumerations ...24
8.1.1 vg_lite_blend_t enumeration24
8.1.2 vg_lite_color_t parameter 28
8.1.3 vg_lite_filter_t enumeration28
8.2 Blit structures ...28
8.2.1 vg_lite_buffer_t structure 28
8.2.2 vg_lite_color_key_t structure 28
8.2.3 vg_lite_color_key4_t structure 29
8.2.4 vg_lite_matrix_t structure29
8.2.5 vg_lite_path_t structure 29
8.2.6 vg_lite_rectangle_t structure29
8.2.7 vg_lite_point_t structure29
8.2.8 vg_lite_point4_t structure30
8.3 Blit functions .. 30
8.3.1 vg_lite_blit function .. 30
8.3.2 vg_lite_blit_rect function 31
8.3.3 vg_lite_get_transform_matrix function 32
8.3.4 vg_lite_clear function 33
8.3.5 vg_lite_set_color_key function33
8.4 Premultiply and scissor functions 34
8.4.1 vg_lite_enable_premultiply function34
8.4.2 vg_lite_disable_premultiply function 35
8.4.3 vg_lite_enable_scissor function 35
8.4.4 vg_lite_disable_scissor function 35
8.4.5 vg_lite_set_scissor function35
9 Vector path control ... 36
9.1 Vector path enumerations36
9.1.1 vg_lite_format_t enumeration 36
9.1.2 vg_lite_quality_t enumeration 36
9.2 Vector path structures36
9.2.1 vg_lite_hw_memory structure36
9.2.2 vg_lite_path_t structure 37
9.3 Vector path functions38
9.3.1 vg_lite_path_calc_length function38
9.3.2 vg_lite_path_append function39
9.3.3 vg_lite_init_path function 39
9.3.4 vg_lite_init_arc_path function 40
9.3.5 vg_lite_upload_path function 41
9.3.6 vg_lite_clear_path function 41
9.4 Vector path opcodes for plotting paths 42
10 Vector-dased draw operations45
10.1 Draw and gradient enumerations45
10.1.1 vg_lite_blend_t enumeration45
10.1.2 vg_lite_color_t parameter 45
10.1.3 vg_lite_fill_t enumeration 45
10.1.4 vg_lite_filter_t enumeration46
10.1.5 vg_lite_pattern_mode_t enumeration 46
10.1.6 vg_lite_radial_gradient_spreadmode_t

enumeration ... 46
10.2 Draw and gradient structures 46
10.2.1 vg_lite_buffer_t structure 46

IMXRTVGLITEAPIRM All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Reference manual Rev. 1.1 — 22 September 2022
75 / 76

NXP Semiconductors IMXRTVGLITEAPIRM
i.MX RT VGLite API Reference Manual

10.2.2 vg_lite_color_ramp_t structure46
10.2.3 vg_lite_linear_gradient_parameter_t

structure ...47
10.2.4 vg_lite_linear_gradient_t structure47
10.2.5 vg_lite_linear_gradient_ext_t structure 48
10.2.6 vg_lite_matrix_t structure49
10.2.7 vg_lite_path_t structure 49
10.2.8 vg_lite_radial_gradient_parameter_t

structure ...49
10.2.9 vg_lite_radial_gradient_t structure49
10.3 Draw functions ...50
10.3.1 vg_lite_draw function 50
10.3.2 vg_lite_draw_gradient function 51
10.3.3 vg_lite_draw_linear_gradient function 52
10.3.4 vg_lite_draw_radial_gradient function 53
10.3.5 vg_lite_draw_pattern function54
10.4 Linear gradient initialization and control

functions ...54
10.4.1 vg_lite_init_grad function 55
10.4.2 vg_lite_set_grad function55
10.4.3 vg_lite_update_grad function56
10.4.4 vg_lite_get_grad_matrix function 56
10.4.5 vg_lite_clear_grad function57
10.5 Extended linear gradient initialization and

control functions .. 57
10.5.1 vg_lite_set_linear_gradient function 57
10.5.2 vg_lite_get_linear_grad_matrix function 58
10.5.3 vg_lite_update_linear_grad function 58
10.5.4 vg_lite_clear_linear_grad function 59
10.6 Radial gradient functions initialization and

control functions .. 59
10.6.1 vg_lite_set_rad_grad function59
10.6.2 vg_lite_update_rad_grad function60
10.6.3 vg_lite_get_rad_grad_matrix function61
10.6.4 vg_lite_clear_rad_grad function61
11 Stroke operations ..61
11.1 Stroke enumerations ..61
11.1.1 vg_lite_cap_style_t enumeration 61
11.1.2 vg_lite_draw_path_type_t enumeration 62
11.1.3 vg_lite_join_style_t enumeration62
11.1.4 vg_lite_join_style_t enumeration62
11.2 Stroke structures ... 63
11.2.1 vg_lite_path_t structure 63
11.3 Stroke functions ...63
11.3.1 vg_lite_set_draw_path_type function63
11.3.2 vg_lite_set_stroke function 63
11.3.3 vg_lite_set_update_stroke function 65
12 Platform-specific features 65
13 VGLite API programming examples 65
13.1 vg_lite_clear example 66
13.2 vg_lite_blit example ... 66
13.3 vg_lite_draw example 67
13.4 vg_lite_draw_gradient example 68
13.5 vg_lite_draw_pattern example68
13.6 Vector-based font-rendering example69
14 Revision history .. 71

15 Legal information ..74

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2022 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 22 September 2022
Document identifier: IMXRTVGLITEAPIRM

	1 Introduction
	2 Vivante VGLite Graphics API
	2.1 API partitions
	2.2 API files

	3 Common parameters and error values
	3.1 Common parameter types
	3.2 Enumerations for error reporting
	3.2.1 vg_lite_error_t enumeration

	4 Hardware product and feature information
	4.1 Enumerations for product and feature queries
	4.1.1 vg_lite_feature_t enumeration

	4.2 Structures for product and feature queries
	4.2.1 vg_lite_info_t structure

	4.3 Functions for product and feature queries
	4.3.1 vg_lite_get_product_info function
	4.3.2 vg_lite_get_info function
	4.3.3 vg_lite_get_register function
	4.3.4 vg_lite_query_feature function
	4.3.5 vg_lite_mem_avail function

	5 API control
	5.1 Context initialization and control functions
	5.1.1 vg_lite_set_command_buffer_size function
	5.1.2 vg_lite_init function
	5.1.3 vg_lite_close function
	5.1.4 vg_lite_finish function
	5.1.5 vg_lite_flush function

	6 Pixel buffers
	6.1 Pixel buffer alignment
	6.2 Pixel cache
	6.3 Internal representation
	6.4 Pixel buffer enumerations
	6.4.1 vg_lite_buffer_format_t enumeration
	6.4.1.1 Alignment notes

	6.4.2 vg_lite_buffer_image_mode_t enumeration
	6.4.3 vg_lite_buffer_layout_t enumeration
	6.4.4 vg_lite_buffer_transparency_mode_t enumeration
	6.4.5 vg_lite_swizzle_t enumeration
	6.4.6 vg_lite_yuv2rgb_t enumeration

	6.5 Pixel buffer structures
	6.5.1 vg_lite_buffer_t structure
	6.5.2 vg_lite_yuvinfo_t structure

	6.6 Pixel buffer functions
	6.6.1 vg_lite_allocate function
	6.6.2 vg_lite_free function
	6.6.3 vg_lite_buffer_upload function
	6.6.4 vg_lite_map function
	6.6.5 vg_lite_unmap function
	6.6.6 vg_lite_set_CLUT function
	6.6.7 vg_lite_set_dither

	7 Matrices
	7.1 Matrix control float parameter type
	7.2 Matrix control structures
	7.2.1 vg_lite_matrix_t structure

	7.3 Matrix control functions
	7.3.1 vg_lite_identity function
	7.3.2 vg_lite_rotate function
	7.3.3 vg_lite_scale function
	7.3.4 vg_lite_translate function

	8 Blits for compositing and blending
	8.1 Blit enumerations
	8.1.1 vg_lite_blend_t enumeration
	8.1.2 vg_lite_color_t parameter
	8.1.3 vg_lite_filter_t enumeration

	8.2 Blit structures
	8.2.1 vg_lite_buffer_t structure
	8.2.2 vg_lite_color_key_t structure
	8.2.3 vg_lite_color_key4_t structure
	8.2.4 vg_lite_matrix_t structure
	8.2.5 vg_lite_path_t structure
	8.2.6 vg_lite_rectangle_t structure
	8.2.7 vg_lite_point_t structure
	8.2.8 vg_lite_point4_t structure

	8.3 Blit functions
	8.3.1 vg_lite_blit function
	8.3.2 vg_lite_blit_rect function
	8.3.3 vg_lite_get_transform_matrix function
	8.3.4 vg_lite_clear function
	8.3.5 vg_lite_set_color_key function

	8.4 Premultiply and scissor functions
	8.4.1 vg_lite_enable_premultiply function
	8.4.2 vg_lite_disable_premultiply function
	8.4.3 vg_lite_enable_scissor function
	8.4.4 vg_lite_disable_scissor function
	8.4.5 vg_lite_set_scissor function

	9 Vector path control
	9.1 Vector path enumerations
	9.1.1 vg_lite_format_t enumeration
	9.1.2 vg_lite_quality_t enumeration

	9.2 Vector path structures
	9.2.1 vg_lite_hw_memory structure
	9.2.2 vg_lite_path_t structure

	9.3 Vector path functions
	9.3.1 vg_lite_path_calc_length function
	9.3.2 vg_lite_path_append function
	9.3.3 vg_lite_init_path function
	9.3.4 vg_lite_init_arc_path function
	9.3.5 vg_lite_upload_path function
	9.3.6 vg_lite_clear_path function

	9.4 Vector path opcodes for plotting paths

	10 Vector-dased draw operations
	10.1 Draw and gradient enumerations
	10.1.1 vg_lite_blend_t enumeration
	10.1.2 vg_lite_color_t parameter
	10.1.3 vg_lite_fill_t enumeration
	10.1.4 vg_lite_filter_t enumeration
	10.1.5 vg_lite_pattern_mode_t enumeration
	10.1.6 vg_lite_radial_gradient_spreadmode_t enumeration

	10.2 Draw and gradient structures
	10.2.1 vg_lite_buffer_t structure
	10.2.2 vg_lite_color_ramp_t structure
	10.2.3 vg_lite_linear_gradient_parameter_t structure
	10.2.4 vg_lite_linear_gradient_t structure
	10.2.5 vg_lite_linear_gradient_ext_t structure
	10.2.6 vg_lite_matrix_t structure
	10.2.7 vg_lite_path_t structure
	10.2.8 vg_lite_radial_gradient_parameter_t structure
	10.2.9 vg_lite_radial_gradient_t structure

	10.3 Draw functions
	10.3.1 vg_lite_draw function
	10.3.2 vg_lite_draw_gradient function
	10.3.3 vg_lite_draw_linear_gradient function
	10.3.4 vg_lite_draw_radial_gradient function
	10.3.5 vg_lite_draw_pattern function

	10.4 Linear gradient initialization and control functions
	10.4.1 vg_lite_init_grad function
	10.4.2 vg_lite_set_grad function
	10.4.3 vg_lite_update_grad function
	10.4.4 vg_lite_get_grad_matrix function
	10.4.5 vg_lite_clear_grad function

	10.5 Extended linear gradient initialization and control functions
	10.5.1 vg_lite_set_linear_gradient function
	10.5.2 vg_lite_get_linear_grad_matrix function
	10.5.3 vg_lite_update_linear_grad function
	10.5.4 vg_lite_clear_linear_grad function

	10.6 Radial gradient functions initialization and control functions
	10.6.1 vg_lite_set_rad_grad function
	10.6.2 vg_lite_update_rad_grad function
	10.6.3 vg_lite_get_rad_grad_matrix function
	10.6.4 vg_lite_clear_rad_grad function

	11 Stroke operations
	11.1 Stroke enumerations
	11.1.1 vg_lite_cap_style_t enumeration
	11.1.2 vg_lite_draw_path_type_t enumeration
	11.1.3 vg_lite_join_style_t enumeration
	11.1.4 vg_lite_join_style_t enumeration

	11.2 Stroke structures
	11.2.1 vg_lite_path_t structure

	11.3 Stroke functions
	11.3.1 vg_lite_set_draw_path_type function
	11.3.2 vg_lite_set_stroke function
	11.3.3 vg_lite_set_update_stroke function

	12 Platform-specific features
	13 VGLite API programming examples
	13.1 vg_lite_clear example
	13.2 vg_lite_blit example
	13.3 vg_lite_draw example
	13.4 vg_lite_draw_gradient example
	13.5 vg_lite_draw_pattern example
	13.6 Vector-based font-rendering example

	14 Revision history
	15 Legal information
	Contents

