L |

RS08 Build Tools
Reference Manual for
Microcontrollers

frees,calte"“

Revised: 18 October 2007~ aamieon ductor

y
A

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or ser-
vice names are the property of their respective owners.

Copyright © 2007 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.
7700 West Parmer Lane
Austin, TX 78729

U.S.A.

World Wide Web http://www. freescale.com/codewarrior

Technical Support http://www. freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

| Overview

Il Using the Compiler

1 Introduction

Compiler Environment
Project Directoryo,
Editor. ...

Using the CodeWarrior IDE to Manage a Project
New Project Wizard
Analysis of the Project Files and Folders

Compilationo
Linking withthe Linker
Using the Simulator/Debugger.

Application Programs (Build Tools).

Startup Command-Line Options.

Highlights

CodeWarrior Integration.
Combined or Separated Installations.
Target Settings Preference Panel.
Build Extras Preference Panel.
Assembler for RSO8 Preference Panel
Burner Preference Panel
Compiler for RSO8 Preference Panel
Importer for RSO8 Preference Panel
Linker for RSO8 Preference Panel................
CodeWarrior Tips and Tricks

Integration into Microsoft Visual Studio (Visual C++ V5.0 or later)

Object-File Formats

RSO08 Build Tools Reference Manual for Microcontrollers

Table of Contents

ELF/DWAREF Object-File Format 75
TO0IS .. 76
Mixing Object-File Formats 76

2 Graphical User Interface 77
Launching the Compiler i 78
Interactive Mode 78
BatchMode o 78
Tipofthe Day o 79
Main Windowo 80
Window Title.o 81
CONENt ATEa . .« o\ttt e e e 82
Toolbar.o 83
Status Bar 84
Menu Bar. 84
File Menu. o 84
Editor Settings dialog box 86
Save Configuration dialog box i i i 93
Environment Configuration Dialog Box 94
Compiler MENUo ovt e 96
View MeNU.o 97
HelpMenu.o e 98
Standard Types dialog box 98
Option Settings dialog boxX i 100
Compiler Smart Control dialogboxo, 102
Message Settings dialog boX. 104
Changing the Class associated with a Message. 106
Retrieving Information about an Error Message 106
About dialog boX. 107
Specifyingthe Input File. 107
Use the Command Line in the Toolbar to Compile. 107
Message/Error Feedback 108
Use Information from the Compiler Window 109
Use a User-Defined Editor. it 109

4 RS08 Build Tools Reference Manual for Microcontrollers

Table of Contents

3 Environment 111
Current DIr€Ctoryottt 112
Environment Macros.o. vttt 113
Global Initialization File (mcutools.ini) 114
Local Configuration File (usually project.ini) 114
Paths ... 115
Line Continuationottt e 116
Environment Variable Details., 117

COMPOPTIONS: Default Compiler Options. 117
COPYRIGHT: Copyright entry in objectfile 118
DEFAULTDIR: Default Current Directory. 119
ENVIRONMENT: Environment File Specification 120
ERRORFILE: Error filename Specification 121
GENPATH: #include “File” Path 122
INCLUDETIME: Creation Time in ObjectFile..................... 123
LIBRARYPATH: ‘include <File>"Path 124
OBJPATH: ObjectFilePath 125
TEXTPATH: TextFile Path. 126
TMP: Temporary Directory.ot 127
USELIBPATH: Using LIBPATH Environment Variable 128
USERNAME: User Name in ObjectFile 129

4 Files 131

Input Fileso o 131
Source Files.o 131
Include Fileso 131

Output Files.o 132
Object Files oo 132
Error Listingo 132
Interactive Mode (Compiler Window Open). 132

File Processingouio it 133

5 Compiler Options 135
Option Recommendationo i, 137

RSO08 Build Tools Reference Manual for Microcontrollers 5

Table of Contents

Compiler Option Details i e 138
OPtion GIoUPS . . ¢ o v ettt e e et e e 138
OPLioN SCOPES . . . v vttt e e e e 139
Option Detail Descriptionottt 140
-I: filenames to DOS length. o i 142
-AddIncl: Additional Include File 143
-Ansi: Strict ANST. . oo 144
-BfaB: Bitfield Byte Allocation., 145
-BfaGapLimitBits: Bitfield Gap Limit 147
-BfaTSR: Bitfield Type-Size Reduction 148
-CH+ (-C++f, -CH++e, -C++c): C++Support . ..o ovv e 150
-Cc: Allocate Constant Objects intoROM 151
-Ccx: Cosmic Compatibility Mode for Space Modifiers and Interrupt

Handlers. 153
-Ci: Tri- and Bigraph Support i 155
-Cn: Disable compactC++features 159
-Cni: No Integral Promotion 160
-Cppc: C++ Comments in ANSI-C o i 162
-Cq: Propagate const and volatile qualifiers for structs. 164
-CswMaxLF: Maximum Load Factor for Switch Tables. 165
-CswMinLB: Minimum Number of Labels for Switch Tables 167
-CswMinLF: Minimum Load Factor for Switch Tables 168
-CswMinSLB: Minimum Number of Labels for Search Switch Tables . . .170
-Cu:Loop Unrollingcuuinini it 171
-Cx: No Code Generationouuuereneneneenenenennnnnn. 174
-D: Macro Definition. 174
-Ec: Conversion from 'const T*' to "T*' 176
-Eencrypt: Encrypt Files 178
-Ekey: Encryption Key 179
-Env: Set Environment Variable 180
-F (-F2, -F20): Object-File Format 181
-H:ShortHelp . .o 182
IiInclude FilePath. 183
-La: Generate Assembler Include File. 184
-Lasm: Generate Listing File. oL 186

6 RS08 Build Tools Reference Manual for Microcontrollers

Table of Contents

-Lasmc: Configure Listing File. 187
-Ldf: Log Predefined DefinestoFile 188
-Li: Listof Included Files i 190
-Lic: License Information 191
-LicA: License Information about every Feature in Directory 192
-LicBorrow: Borrow License Feature 193
-LicWait: Wait until Floating License is Available from Floating

License Server.ttt 195
-LI: Statistics about Each Function. 196
-Lm: List of Included Files in Make Format. 197
-LmCfg: Configuration of List of Included Files in Make Format. 199
Lot Object File Listo v 201
-Lp: Preprocessor Outputttt 202
-LpCfg: Preprocessor Output configuration 203
-LpX: Stop after Preprocessor.o 205
-N: Display Notify BoX. 206
-NoBeep: No Beepin Case of an Error. 207
-NoDebuglnfo: Do not Generate Debug Information. 208
-NoPath: StripPathInfo 209
-Oa: Alias Analysis Optionsot ittt 210
-O (-Os, -Ot): Main Optimization Target 211
-ObjN: Object filename Specification. 212
-Obsr: Generate Always NearCalls 213
-Od: Disable Mid-Level Optimizations.oueueeuen... 215
-Odb: Disable Mid-Level Branch Optimizations 216
-OdocF: Dynamic Option Configuration for Functions 218
SO Inlining. . .o 220
-Oilib: Optimize Library Functions. 221
-OnB: Disable Branch Optimizer, 223
-OnBRA: Disable JAL to BRA Optimization. 224
-Onbsr: Disable far to near call optimization 228
-OnCopyDown: Do Generate Copy Down Information for Zero

Values. . ..o 230
-OnCstVar: Disable CONST Variable by Constant Replacement. 231
-Onp: Disable Peephole Optimizer., .. 232

RSO08 Build Tools Reference Manual for Microcontrollers 7

Table of Contents

-OnPMNC: Disable Code Generation for NULL Pointer to Member Check . .

233
-Onr: Disable Reload from Register Optimization 234
-Ont: Disable Tree Optimizerc.ouiuiieninninenenn... 235
-Ontc: disable tail call optimization.cooienen ... 241
-Ostk: Reuse Locals of Stack Frame 243
-Pe: Preprocessing Escape Sequences in Strings. 244
-Pio: Include FilesOnly Once., 246
-Prod: Specify Project Fileat Startup 247
-Qvtp: Qualifier for Virtual Table Pointers 249
-T: Flexible Type Managementuuinintirenenennnn .. 250
-V: Prints the Compiler Version. 256
-View: Application Standard Occurrence 257
-WErrFile: Create "err.log" Error File. 258
-Wmsg8x3: Cut filenames in Microsoft Formatto 8.3 259
-WmsgCE: RGB Color for Error Messages 260
-WmsgCF: RGB Color for Fatal Messages.cooovn.... 261
-WmsgCI: RGB Color for Information Messages. 262
-WmsgCU: RGB Color for User Messages.vuuvneneenen .. 263
-WmsgCW: RGB Color for Warning Messages 264
-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch

Mode ... o 264
-WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for

Interactive Mode 266
-WmsgFob: Message Format for BatchMode 268
-WmsgFoi: Message Format for Interactive Mode 270
-WmsgFonf: Message Format for no File Information................ 273
-WmsgFonp: Message Format for no Position Information 275
-WmsgNe: Number of Error Messages.c.oo.... 276
-WmsgNi: Number of Information Messages. 277
-WmsgNu: Disable User Messages.cooviinenenennene .. 278
-WmsgNw: Number of Warning Messages.c..... 280
-WmsgSd: Setting a Message to Disable. 281
-WmsgSe: Setting a MessagetoError. 282
-WmsgSi: Setting a Message to Information. 283

8 RS08 Build Tools Reference Manual for Microcontrollers

Table of Contents

-WmsgSw: Setting a Message to Warning 284
-WOutFile: Create Error Listing File 285
-Wpd: Error for Implicit Parameter Declaration. 286
-WStdout: Write to Standard Output. 287
-W1: No Information Messagescouvuiininennenenen.. 288
-W2: No Information and Warning Messages. 289
6 Compiler Predefined Macros 291
Compiler Vendor Defines 292
Product Defines. 292
Data Allocation Defines i i 292
Various Defines for Compiler Option Settings. 293
Option CheckinginCCodet 294
ANSI-C Standard Types 'size_t', 'wchar_t' and 'ptrdiff_t' Defines 295
Macros for RSO8 297
Divisionand Modulus. 297
Macrosfor RSO8 298
Object-File Format Defines i, 298
Bitfield Defines. 298
Bitfield Allocation. i 298
Bitfield Type Reduction 300
Signof Plain Bitfields i 301
Type Information Defines i 302
Freescale RS08-Specific Defines 305
7 Compiler Pragmas 307
Pragma Details 307
#pragma CONST_SEG: Constant Data Segment Definition 309
#pragma CREATE_ASM_LISTING: Create an Assembler Include File
LiSting . ..ot 312
#pragma DATA_SEG: Data Segment Definition 313
#pragma INLINE: Inline Next Function Definition 315
#pragma INTO_ROM: Put Next Variable Definition into ROM 316
#pragma LINK_INFO: Pass Information to the Linker 318
#pragma LOOP_UNROLL: Force Loop Unrolling 319

RSO08 Build Tools Reference Manual for Microcontrollers 9

Table of Contents

#pragma mark: Entry in CodeWarrior IDE Function List.............. 320
#pragma MESSAGE: Message Settingovvueno... 322
#pragma NO_ENTRY: NoEntry Code 323
#pragma NO_EXIT: NoExitCode, 325
#pragma NO_FRAME: NoFrame Code. 327
#pragma NO_INLINE: Do not Inline next function definition. 328
#pragma NO_LOOP_UNROLL.: Disable Loop Unrolling 329
#pragma NO_RETURN: No Return Instruction. 330
#pragma NO_STRING_CONSTR: No String Concatenation during
PIEPIOCESSING . . o vttt e et et e e e e 332
#pragma ONCE: Include Once 333
#pragma OPTION: Additional Options., 334
#pragma REALLOC_OBIJ: Object Reallocation. 336
#pragma STRING_SEG: String Segment Definition 338
#pragma TEST_CODE: Check Generated Code. 340
#pragma TRAP_PROC: Mark function as interrupt function. 342
8 ANSI-C Frontend 343
Implementation Features. i 343
Keywords. . ..o 344
Preprocessor Directivest 344
Language EXtensions.ottt e 344
Implementation-Defined Behavior 360
Translation Limitationsc. i 361
ANSI-C Standard 365
Integral Promotionst 365
Signed and Unsigned Integers.ot .. 365
Arithmetic CONVErSIONS« ottt ettt et 365
Order of Operand Evaluation. 366
Rules for Standard-Type Sizes.t 367
Floating-Type Formats, 367
Floating-Point Representation of 500.0 for IEEE 367
Representation of 500.0 in IEEE32 Format. 368
Volatile Objects and Absolute Variables. 369
Bitfields. 369

10

RS08 Build Tools Reference Manual for Microcontrollers

Table of Contents

Signed Bitfields. 370
Segmentation.u .t e 371
Example of Segmentation without the -Cc Compiler Option. 373
Example of Segmentation with the -Cc Compiler Option 374
OPHMIZATIONS . . o\ ettt ettt e e e e e e e e 374
Peephole Optimizer.ttt 374
Strength Reduction i 376
Shift Optimizations i 376
Branch Optimizationsouiiien i, 376
Dead-Code Elimination., 376
Constant-Variable Optimization i, 376
Tree RewWriting.ot 377
Using Qualifiers for Pointers 379
Defining C Macros Containing HLI Assembler Code 382
Defining aMacro. 382
Using Macro Parameters.t 384
Using the Immediate-Addressing Mode in HLI Assembler Macros. 384
Generating Unique Labels in HLI Assembler Macros 385
Generating Assembler Include Files (-La Compiler Option) 386

9 Generating Compact Code 397
Compiler OptionsSot e 397
-Oi:Inline Functions i 397
Relocatable Data. i 398
Using -OstKot e 399
Programming Guidelines i, 399
Constant Function at a Specific Address. 400
HLI Assemblyt e e e 400
Post- and Pre-Operators in Complex Expressions 401
Boolean Types. . ..o ovt et 402
printf)andscanf() 402
Bitfleldsot 402
Struct REturns 403
Local Variables 404
Parameter Passing 404

RSO08 Build Tools Reference Manual for Microcontrollers 11

Table of Contents

Unsigned Data Types.ot i 404
Inlining and MacroS.ottt 405
Data TyPes . . ot 406
Tiny or Short Segmentsot 406
Qualifierso e 406
10 RS08 Backend 407
Non-ANSTKeywordsttt e e 407
Data Ty PeS. « oot e 407
Scalar TYpes. « .ot 407
Floating Point Typest e 409
Pointer Types and Function Pointers. 409
Structured Types, Alignment.ttt 409
Bit Fieldso 409
Register Usage. oottt e 410
Parameter Passing 410
Entryand ExitCode. 411
Pragmas. 411
TRAP_PROC. 411
NO_ENTRY ..o e e 412
NO_EXIT .. 412
Interrupt Functions 412
#pragma TRAP_PROC 412
Interrupt Vector Table Allocation, 412
Segmentation.ttt e 412
OpUMIZAONS . . o\ ettt e e e e e e e et et 413
Lazy Instruction Selection., 413
Branch Optimizationst 413
Constant Folding o e 413
Volatile ObJectS oottt 413
Programming HintS. 414
11 High-Level Inline Assembler for the Freescale RS08 415
SYMEAX .« ottt e 415
Mixing HLT Assemblyand HLL 416

12 RS08 Build Tools Reference Manual for Microcontrollers

Table of Contents

Example.o 416
CMaCTOS . . .ot 416
Special Featurest 417
Caller/Callee Saved Registers., 417
Reserved Words. 418
__asm MOV #%HIGH_6_13(var),_ PAGESEL 418
Pseudo—Opcodesot 418
Accessing Variables. 419
Constant EXpressionsooiiiniiniiiininennenn.n 419

Il ANSI-C Library Reference

12 Library Files 423
Directory StruCturevt et e 423
Generating aLibrary.o 423
Common Source Files. i 424
Startup Fileso 425
Library Files oot e 425
13 Special Features 427

Memory Management -- malloc(), free(), calloc(), realloc(); alloc.c, and heap.c .
427

Signals-signal.C. e 427

Multi-byte Characters - mblen(), mbtowc(), wctomb(), mbstowcs(), westombs();

StAID.C . ot e 428

Program Termination - abort(), exit(), atexit(); stdlib.c 428
TO-printfic ..o 428

Locales - locale.® e 430

Oy D v ettt 430

String Conversions - strtol(), strtoul(), strtod(), and stdlib.c. 430

14 Library Structure 431
Error Handling 431

RSO08 Build Tools Reference Manual for Microcontrollers 13

Table of Contents

String Handling Functions 431
Memory Block Functions i 432
Mathematical Functionsttt 432
Memory Management.ttt e 434
Searching and SOTtingttt 435
System Functionst e 436
Time Functions e 436
Locale FUNCtions e e 437
Conversion FUnctionsttt 437
printf() and scanf() 438
File /O ... 438
15 Types and Macros in the Standard Library 441
BITNO.N L o e 441
float.h. ... 441
Hmits.h. .o 443
locale.h 444
math.h .. 446
SE M. . L e 446
signal.h ... 446
stddef.h ..o 447
StAI0h « . 447
stdlib.h. .o 448
M. . 449
SN . e 449
ASSeTLN. . o 450
stdarg.h .. 450
ClypPe. . o 451
16 The Standard Functions 453
ADOTE() « ottt 454
ADS() e e 454
acos()and acosf(). 455
ASCHIME() + vt ettt et e 456
asin)and asinf() e 456

14

RS08 Build Tools Reference Manual for Microcontrollers

Table of Contents

ASSCTL() . o et e 457
atan()and atanf(). 457
atan2()and atan2f(). 458
ALEXIE() « v v e et e e e 459
AtOF() . oo 459
At0I() .« .o 460
AtO10) . o 461
bsearch() . ..ot 461
CalloC(). . oo 463
ceilandceilf(). i 463
clearerr() . ..o 464
ClOCK() . o 464
cos)and coSt() ..ot i i 465
cosh()andcoshf() i i 465
CHME() . ottt e 466
Aifftime() . ..o 466
AiVO) . o 467
CXIt() ot e 467
expO and expf(). . ..ot 468
fabsO)and fabsf(). e 469
FClOSE).« o v ettt 469
feof() . 470
ferror() . . oo 470
fllush() . ..o 471
(] 77) P 471
FOtPOS() - v vt e 472
FEetS() ot 473
floor() and floorf(). o 473
fmod() and fmodf() e 474
fopen() . . .o 474
fprintf() . ..o 476
IPULC) .« ot 476
TPULS() - oo 477
fread() . ..o e 477
free() . oo e 478

RSO08 Build Tools Reference Manual for Microcontrollers 15

Table of Contents

freopen()ot 478
frexp()and frexpf()ot 479
fscanf(). . ..o e 479
fseek() ..o 480
FSRtPOS() e v v vt e 481
Ftell() « ottt 481
4 o L= () 482
BOEC() + e et 482
getchar(). . ..ot 483
GELEIVI) « ot vttt e e e 483
OS] vt e 483
SMEME() - o v ettt ettt e e 484
isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), and isxdigit() 485
LabS() ot 486
Idexp() and 1dexpf()o oo ot 486
IdiVO) oo 487
localeconV() . ..o e 487
localtime()o ot 488
log) and 1ogf(). . . . oo e e 488
logl00) and 1og10f(). . . . oot 489
Longimp() . . .o 490
mMalloC() . . oo 490
mMbIen(). . ..o e 491
MDStOWCS(). « ot ettt e e 491
MDEOWC() .« oottt e 492
memchr() e 492
MEMCIP() « v et et et et e e e e e e 493
memcpy() and MEMMOVE() « .+« v v v e vt ettt 494
MEMSELE() .« ot e et e e 494
MKHME() ..ot e 495
modf)and modff() 495
PEITOT() . .« et ettt e e e e e e 496
pow(and powt()o 496
Printf() . .o e 497

16

RS08 Build Tools Reference Manual for Microcontrollers

Table of Contents

PULCO) - ettt 498
putchar() 498
PULS() « et et 498
SOTE() & ettt e e e e 499
TAISE() . o v v e ettt e e 500
TANA() . . .o 501
TAllOC) . . oo 501
TEMOVE() © o vttt 502
TENAME() . o\ttt et e 502
TEWINA() . . oo 503
SCANT() . o e 503
Setbuf(). 504
SEUMP() v v v ettt e 504
setlocale() . ..ot 505
Setvbuf(). . . o 506
SIZNAL(). o o v 507
sin)and sinf(). e 508
sinh()andsinhf(). 508
SPrintf() . .o 509
sqrtQ) and sqrtf()o e 513
STANA() . . . oo e 513
SSCANT() ... 514
SEECAL() . ot 518
StrChr() . . .o 518
SITCINP() v v vt ettt e e e e e 519
SICOLL() vt e 519
SECPY() + v ettt e 520
SITCSPII() .« v v e e et e e e e 520
SETEITOI() .« v vttt et e e e 521
Strftime()o e 522
SEIEN() . o 523
SHNCAL() . v v vttt e 524
SENCIP() « - e v ettt e e e 524
SINCPY ()« vttt e e e e e e 525
SPDIK() . o oo 525

RSO08 Build Tools Reference Manual for Microcontrollers 17

Table of Contents

SUTCNI() . . oo e 526
SIESPII() .+« v e e e e et e e e e 526
SEESEI).« ot e 527
SIEOA() . o oot e 528
SEEOK() . o oo e 528
SIEOL) © vttt e 529
SIEOUL() . vttt e 530
SUXEIM(). . . e 531
SYSEEIM() « « o v et et e e 532
tan)and tanf(). 532
tanh()andtanhf(). 533
HME() . . oot 534
tmpfile(). ... 534
EMPNAM() .« o et e e e e 535
tOLOWET() ..ot 535
LOUPPET() - v v vt ettt et e e e e 536
UNZELC() « o v vt et e e e e et e e e e e 536
va_arg(), va_end(),and va_start() i 537
viprintf(), vprintf(), and vsprintf(). 538
WCOMD() . et 538
WCSTOMDS(). + v vt ettt e e e e 539

IV Appendices

A Porting Tips and FAQs 543
Migration Hints. o 543

Porting from Cosmic i 543

Allocation of Bitfields i 549

Type Sizes and Signofchar.......... 549

@bool Qualifier. o 550

@tiny and @far Qualifier for Variables. 550

Arrays with Unknown Size i 550

Missing Prototypeot 551

18

RS08 Build Tools Reference Manual for Microcontrollers

Table of Contents

_aSM(“SEQUENCE™) .« vttt ettt e e 551
Recursive COmMments.o.vt ittt 551
Interrupt Function, @interruptouiiiinininenan.... 551
Defining Interrupt Functions. 552
General Optimization Hints 555
Frequently Asked Questions (FAQs), Troubleshooting 556
Making Applications.t 556
EBNF NOtationottt e e e et e 561
Terminal Symbols 562
Non-Terminal Symbols. 562
Vertical Baro e 562
Brackets. . ..ot e 563
Parentheseso 563
Production End 563
EBNF Syntax.ot e 563
EXtenSIONS . . o oot e 564
Abbreviations, Lexical ConventionsS.ttt 564
Number Formats it e 565
Precedence and Associativity of Operators for ANSI-C 566
List of all Escape Sequences.t innnenen.. 568
B Global Configuration File Entries 569
[Options] SECtionttt e e e 569
DefaultDir e 569
[XXX_Compiler] Sectiont 570
SaveOnEXit 570
SAVEAPPEATANCE . . . o oottt e 570
SaveEditor.o 570
SaAVEOPLIONS. . . vttt et e e 571
RecentProject0, RecentProjectl, etc. 571
TipFilePoso 572
ShowTipOfDayo e 572
TipTimeStamp. 572
[Editor] SECtion. oottt 573
Editor_ Name. e 573

RSO08 Build Tools Reference Manual for Microcontrollers 19

Table of Contents

Editor_ExXe. ... 573
Editor_Opts . .ottt 574
Example.o 574
C Local Configuration File Entries 577
[Editor] SECtiON . . . oottt et e e 577
Editor_ Name e 577
Editor_ExXe. e 578
Editor_Opts . . . oot 578
Example [Editor] Section i 578
[XXX_Compiler] Sectionouinin i 579
RecentCommandLineX 579
CurrentCommandLine. i 579
StatusbarEnabled 580
ToolbarEnabled i 580
WindowPos 581
WindowFont e 581
OPHONS. .« .+ ettt et e e e e e 582
EditorType . . .o 582
EditorCommandLine. 583
EditorDDECHentNameouuttntnint it eeeenennnn 583
EditorDDETopicNameo.uniitneiininenan. 583
EditorDDEServiceNameot i 584
Example. o 584
D Known C++ Issues in the RS08 Compilers 587
Template ISSUESo 587
OPETALOTS .« . vt vttt e e e e e e e e e e 588
Binary Operatorsvu ittt e 589
Unary Operatorsttt 590
Equality Operators.ov ittt e e 591
Header Files. e e 592
Bigraph and Trigraph Support. 592
Known Class ISSUes.ottt 593
Keyword Support.ot 595

20

RS08 Build Tools Reference Manual for Microcontrollers

Table of Contents

Member ISSUES . ..ottt 595
Constructor and Destructor Functions 598
Overload Features.ov it i e e e e 601
Conversion Featurest e e 603

Standard Conversion Sequencesc..vuvrinnnenenenen.. 603

Ranking implicit conversion SEqUeNcesc...ouuenen.o.. 604

Explicit Type CONVerSionoutvttne i 605
Initialization Features i i 606
BIrOrS o e 608
Other Features.ot e e e 610

RSO08 Build Tools Reference Manual for Microcontrollers 21

Table of Contents

22 RS08 Build Tools Reference Manual for Microcontrollers

Overview

The RS08 Build Tools Reference Manual for Microcontrollers describes the ANSI-C/C++
Compiler used for the Freescale 8-bit MCU (Microcontroller Unit) chip series. This
document contains these major sections:

¢ Overview (this section): Description of the structure of this document and a
bibliography of C language programming references

» Using the Compiler: Description of how to run the Compiler

¢ ANSI-C Library Reference: Description of how the Compiler uses the ANSI-C
library

* Appendices: FAQs, Troubleshooting, and Technical Notes
Refer to the documentation listed below for details about programming languages.

* American National Standard for Programming Languages — C, ANSI/ISO 9899—
1990 (see ANSI X3.159-1989, X3J11)

e The C Programming Language, second edition, Prentice-Hall 1988
e C: A Reference Manual, second edition, Prentice-Hall 1987, Harbison and Steele

e C Traps and Pitfalls, Andrew Koenig, AT&T Bell Laboratories, Addison-Wesley
Publishing Company, Nov. 1988, ISBN 0-201-17928-8

¢ Data Structures and C Programs, Van Wyk, Addison-Wesley 1988

* How to Write Portable Programs in C, Horton, Prentice-Hall 1989

e The UNIX Programming Environment, Kernighan and Pike, Prentice-Hall 1984
e The C Puzzle Book, Feuer, Prentice-Hall 1982

e C Programming Guidelines, Thomas Plum, Plum Hall Inc., Second Edition for
Standard C, 1989, ISBN 0-911537-07-4

* DWARF Debugging Information Format, UNIX International, Programming
Languages SIG, Revision 1.1.0 (October 6, 1992), UNIX International, Waterview
Corporate Center, 20 Waterview Boulevard, Parsippany, NJ 07054

RSO08 Build Tools Reference Manual for Microcontrollers 23

DWARF Debugging Information Format, UNIX International, Programming
Languages SIG, Revision 2.0.0 (July 27, 1993), UNIX International, Waterview
Corporate Center, 20 Waterview Boulevard, Parsippany, NJ 07054

System V Application Binary Interface, UNIX System V, 1992, 1991 UNIX Systems
Laboratories, ISBN 0-13-880410-9

Programming Microcontroller in C, Ted Van Sickle, ISBN 1878707140

C Programming for Embedded Systems, Kirk Zurell, ISBN 1929629044
Programming Embedded Systems in C and C ++, Michael Barr, ISBN 1565923545
Embedded C, Michael J. Pont, ISBN 020179523X

24

RS08 Build Tools Reference Manual for Microcontrollers

Using the Compiler

This section contains eleven chapters in the use and operation of the Compiler:

Introduction: Description of the CodeWarrior Development Studio and the Compiler
Graphical User Interface: Description of the Compiler’s GUI
Environment: Description of all the environment variables

Files: Description of how the Compiler processes input and output files

Compiler Options: Detailed description of the full set of Compiler options
Compiler Predefined Macros: List of all macros predefined by the Compiler
Compiler Pragmas: List of available pragmas

ANSI-C Frontend: Description of the ANSI-C implementation

Generating Compact Code: Programming advice for the developer to produce
compact and efficient code.

RS08 Backend: Description of code generator and basic type implementation, also
information about hardware-oriented programming (optimizations, interrupt
functions, etc.) specific for the Freescale RS08.

High-Level Inline Assembler for the Freescale RSO8: Description of the HLI
Assembler for the RSO8.

RSO08 Build Tools Reference Manual for Microcontrollers 25

26

RS08 Build Tools Reference Manual for Microcontrollers

Introduction

This chapter describes the Compiler used for the Freescale RS08. The Compiler consists
of a Frontend, which is language-dependent, and a Backend that depends on the target
processor, the RSO8.

The major sections of this chapter are:
¢ Compiler Environment
» Using the CodeWarrior IDE to Manage a Project
* Application Programs (Build Tools)
o Startup Command-Line Options
* Highlights
¢ CodeWarrior Integration

¢ Integration into Microsoft Visual Studio (Visual C++ V5.0 or later)

¢ Object-File Formats

Compiler Environment

You can use the Compiler as a transparent, integral part of the CodeWarrior Development
Studio. Using the CodeWarrior IDE is the recommended way to get your project up and
running in minimal time. Alternatively, you can configure the Compiler and use it as a
standalone application as a member of a suite of other Build Tool Utilities such as a
Linker, Assembler, EPROM Burner, Simulator or Debugger.

In general, a Compiler translates source code, such as from C source code files (* . ¢) and
header (* . h) files into object-code (* . o) files for further processing by a Linker. The

* . c files contain the programming code for the project’s application, and the * . h files
have data that is specifically targeted to a particular CPU chip or are interface files for
functions. The RSO8 Compiler does not directly generate absolute (* . abs) files, but uses
the ELF/DW AREF object file format to produce relocatable object code. Use the
CodeWarrior ELF linker to link object files. The Burner uses the resulting absolute files to
produce S-Record (* . s19 or * . sx) files for programming ROM memory.

A typical Compiler configuration is associated with a Project Directory and an Editor.

RSO08 Build Tools Reference Manual for Microcontrollers 27

A 4
4\

Introduction
Using the CodeWarrior IDE to Manage a Project

Project Directory

A project directory contains all of the environment files that you need to configure your
development environment.

When designing a project, you can start from scratch by making your own project
configuration (* . ini) file and various layout files for your project for use with
standalone project-building tools; you can let the CodeWarrior software coordinate and
manage the entire project; or, you can begin the construction of your project with the
CodeWarrior IDE and use the standalone build tools (Assembler, Compiler, Linker,
Simulator/Debugger) that are included with the CodeWarrior suite.

NOTE The Build Tools are located in the prog folder in the CodeWarrior
installation. The default location is:
C:\Program Files\Freescale\CW for Microcontrollers
V6.1l\prog.

Editor

You can associate an editor, including the editor that is integrated into CodeWarrior
Development Suite, with the Compiler to enable both error or positive feedback. You can
use the Configuration dialog box to configure the Compiler to select your choice of editors
when using the Build Tools. Refer to the Editor Settings dialog box.

Using the CodeWarrior IDE to Manage a
Project

The CodeWarrior Development Suite has a New Project Wizard to easily configure and
manage a project. You can get your project up and running by following a short series of
steps to configure the project and to generate the basic files which are placed in the project
directory.

Use the information in the New Project Wizard section to construct and configure a basic
CodeWarrior project that uses C source code.

28 RS08 Build Tools Reference Manual for Microcontrollers

g |

Introduction
Using the CodeWarrior IDE to Manage a Project

New Project Wizard

Start the RSO8 CodeWarrior IDE (usual path: Freescale\CodeWarrior for
Microcontrollers V6.1\bin\IDE.exe). The Startup dialog box appears
automatically (Figure 1.1). Alternatively, you can select File > New Project to create a
project after closing the Startup dialog box. Now, create a new project by following these

steps:

Figure 1.1 Startup Dialog Box

Create Mew Project

Load E=anple Project

Load Previous Project

Run Getting Started Tutarial

Start Using Codetw arriorn

¥ Display on Startup

RSO08 Build Tools Reference Manual for Microcontrollers 29

y
4\

Introduction

Using the CodeWarrior IDE to Manage a Project

1.

window appears (Figure 1.2).

Figure 1.2 New Project Device and Connection Dialog Box

Microcontrollers New Project

Select Create New Project. The Microcontrollers New Project Device and Connection

13}
Wizard Map L) .
Select the derivative pou would like to use: Choosge your default connection:
Derice and Connection __ Heos Pos—
Project Parameters [H-HC505 Full Chip Simulation
[=-R50& P&E Multilink{Cyclane Prao
Add Additional Files | E-RSO8KA Family SofTec R308
f = RS05 Open Source BDM
Proceszor Expert
- CaldFire ¥1
[#]- Flexis
PEE RS0 Full Chip Simulation with ;l
zimulation of all an-chip peripherals.
I
< Back I ext » I Firigt Cancel |

2. Select the RS08 derivative to use for your project.

30

RS08 Build Tools Reference Manual for Microcontrollers

Introduction
Using the CodeWarrior IDE to Manage a Project

3. Press Next >.

The Project Parameters dialog box appears (Figure 1.3).

Figure 1.3 New Project Wizard - Project Parameters Dialog Box

Microcontrollers New Project

Wizard Map

|x

Please chooze the set of languages to be Project name:
supported initially. Y'ou can make multiple
selections.

. : fibonacci.my
Device and Connection I- P

el Location:
roject Haramelers I Absolute assembly ID:\Data\Fihonacci
Add Additional Files " Relocatable assembly
Set..
v
Processor Expert e
|
C/C++ Optiong
PC-Lint C language support will be included in ;l
the project
I
< Back I ext » Finish Cancel

4. Select the language set for the project.

In this case, select C, the default, but leave Relocatable Assembly and C++ unselected.
Enter the name for your project in the Project Name text box. The CodeWarrior IDE
uses the default * . mcp extension automatically, so you do not have to explicitly
append the extension to the filename.

If the default location in the Location textbox is not where you want to place the
project directory, press the Set button to the right of the Location textbox and browse
to the location of your choice in the Choose Project Location dialog box. The wizard
automatically creates a folder with the same name as the project.

5. Press the Save button to close the Choose Project Location dialog box.

RSO08 Build Tools Reference Manual for Microcontrollers 31

4
A

Introduction
Using the CodeWarrior IDE to Manage a Project

6. Press Next >.
The Add Additional Files dialog box appears (Figure 1.4).
Figure 1.4 Add Additional Files Dialog Box

12
Wizard Map o .
Add exizting files ta the project
Device and Conneclion B ;I Praject Files .
. [#-{5) ColdFire_Support
Praject Parameters [+ CaldFire_Tacls Add
Add Additional Files M Drivers
E-5) Help FAemove |
Processor Expert) lib
C/C++ Options EHD Lint
[#-{) ProcessorExpert
FC-Lint [#-{7) prog W Copy files to project
[#-{7) Release_Motes
(-7 Templates - [v' Create main.c/main.zsm file
L, C o
S elect files to be added to the new project and press “Add.." -
To copy the added files to the project folder, select "'Copy Files to Project”
To have the wizard generate default main.c and/ar main.asm files. select "Create LI

< Back I ext » I Finish I Cancel |

Sample files can be found in the (CodeWarrior Examples) folder in the
installation folder, but in this case do not add any files.

32 RS08 Build Tools Reference Manual for Microcontrollers

g |

Introduction
Using the CodeWarrior IDE to Manage a Project

7. Click Next >.
The Processor Expert dialog box appears (Figure 1.5).

Figure 1.5 Processor Expert Dialog Box

Microcontrollers Mew Project X
Wizard Map . o
Rapid Application D evelopment
Optiong:
Device and Connection
Praject Parameters & MNone
Add Additional Files " Device Initialization

Processor Expert | Frocesson Expert

C/C++ Optiong
FC-Lint

Mo code iz generated, it iz necessary to wiite device d
initialization code manually. Project containg startup
code only.

;I Help |
< Back I ext » I Finish I Cancel |

The default, None, is already checked. Press Next>.

RSO08 Build Tools Reference Manual for Microcontrollers 33

4
A

Introduction
Using the CodeWarrior IDE to Manage a Project

The C/C++ Options dialog box appears (Figure 1.6).

Figure 1.6 C/C++ Options Dialog Box

Microcontrollers New Project

Wizard Map .
“which level of startup code do you want to uze?
Select ‘minimal startup code' for best code density.
Device and Connection

= minimal startup code

Froject P. t
QISCH S AMSIET & AMS| startup code

Add Additional Files
Pracessor Expert
C/C++ Ophions & Nore

’ " float is IEEE32, double is IEEE32
PC-Lint
€ float s [EEE32, double iz IEEEGS

|

T hiiz will perfarm an AMSI compliant
ztartup code: it intializes global
variables/objects and calls the
application main routine.

I]

< Back I MNext > I Firish Cancel |

8. Select ANSI startup code and None for float options.

A simple project does not require the complexity of floating-point numbers. Use the
integer format whenever possible in your projects, as floating-point numbers impose a

severe speed penalty.

34 RS08 Build Tools Reference Manual for Microcontrollers

g |

Introduction
Using the CodeWarrior IDE to Manage a Project

9. Press Next >.

The PCLint dialog box appears (Figure 1.7).

Figure 1.7 PCLint dialog box

Microcontrollers Mew Project X
Wizard Map .
Do you want to create a project set up
far PC-lint(Th]?
Device and Connection
Praject Parameters " Yes
& No

Add Additional Files
Processor Expert
C/C++ Optiong
PC-Lint

Lint toals can find comman pragramming mistakes or d
zuspicious lines in source code by analyzing it
PC-lint[Tk] is a product from Gimpel S oftware. You
need the PC-AinkTh] software fram Gimpel installed in
order to uze the Code\w arrior plugin.
'ou can enable PCint[TH] later by manually cloning a

target and changing the linker ta PC-int linker.

I

< Back fliest > | Finish I Cancel

10. Select No.

PCLint is a useful software package for detecting software errors, but is not needed for
this project.

RSO08 Build Tools Reference Manual for Microcontrollers 35

PR 4

Introduction
Using the CodeWarrior IDE to Manage a Project

11. Press Finish >.

The CodeWarrior software now creates an ANSI-C project (Figure 1.8).

Figure 1.8 CodeWarrior Project Window
=k

File Edit WYiew Search Project Processor Expert Device Initialization Window Help

s Easc-x<xha A A mEN L HE]

==l

fibonacci.mcp I
[D Full Chip Simulaton BBy By
Files ILink Dlderl Talgetsl
% | File | Code | Data [|
W 53 Sources 0 0« ==
w -l mainc 0 0« =

BT Includes 0 0 =
w @] Libs 0 0e =
w [F{_] Project Settings 0 0« =

S files 0 0

4| |

| Y

Some files and folders are automatically generated. The root folder is the project directory
that you selected in the first step.

36 RS08 Build Tools Reference Manual for Microcontrollers

g |

Introduction
Using the CodeWarrior IDE to Manage a Project

Analysis of the Project Files and Folders

The CodeWarrior software created a project window that contains two text files and seven
folders. The folder icons do not necessarily represent any actual folders but instead are
convenient groups of project files. In Windows Explorer, if you examine the project
directory that the software created for the project, you can view the actual project folders
and files generated, as in Figure 1.9. After the final stage of the New Project Wizard, you
can safely close the project and return to it later, in the same configuration as when you
last saved it.

Figure 1.9 Project Directory in the Windows Explorer

=
File Edit Wiew Favorites Tools Help | :'O,.-
\ e -
@ Back = &) - ? r ﬁ(| 7) Search ‘ll.. Folders =] x q | El-
Address Iljl D:\Datalfibanacc =] =
Falders % || Mame = T ﬁSize
= 5 Data d (Chbin
I Enniskilen Clc.md .
2= (=) fibonacc
[bin |-)fibonacci_Data
= emnd (Cprm
£ Fibonacci [)Project_3
|5 fibonacci_Data () Sources
=) prm [t =_Layout. bl 1 KB
) Project_3 DEFau\t.mem 1 KB
[Sources Prbonacc.mep 56 KB
[Project _35RSDS_FuI_Chip_SimuIatnr‘ini 1 KB
I Project_1
[T Project_z
C] Projects -
< | » 4 | N

For this project, the name of the project directory and its path is:
D:\Data\fibonacci

Inside the project directory is the master file for the project fibonacci .mcp. This is the
file that you open when you want to reopen the project. Opening this master project file
opens the CodeWarrior project in the same configuration it had when it was last saved.

RSO08 Build Tools Reference Manual for Microcontrollers 37

PR 4

Introduction
Using the CodeWarrior IDE to Manage a Project

If you expand the folders (groups) in the CodeWarrior project window, you can view the
default files that the CodeWarrior software generated (Figure 1.10).

Figure 1.10 Project Window Showing the Files Created by the CodeWarrior IDE

iF Freescale CodeVarrior =0 x|

File Edit ‘iew Search Project Processor Expert Device Initialization

Window Help

AEdsgE < hB A AN EEN Y

=

fibonacci mcp I

W}' Full Chip Simulation ~ER Yy 3y
File:s | Link Order I T argets I
| File | Code | Data |4 |-
@ [FE3 Souces] 0« ==
'3 -l main.c I 0« =
&R Includes] o =
~fl derivative.h 0 o =
~-Hl MCIRS08KATh a] =
¥ EE3Libs 0 0 e =
@ @l ansilib] o =
w ~Hl MCIRS08KAT.C a o« =
@ =43 Project Settings I 0« =
% [E435tartup Code] 0« =
w -l StartRS08.c] 0« =
w [E43Linker Files 0 o=
W ~Hl burner.bbl nta nfa =
'3 Hl Project.pim néa nfa =
- Project.map néa nfa =
T files 1} 1}

|

4

Files marked by red check marks will remain checked until they are successfully
assembled, compiled, or linked.

Double click on the main. c file in the Sources group. The CodeWarrior editor opens
the main. c file in the project window (Figure 1.11).

38

RS08 Build Tools Reference Manual for Microcontrollers

g |

Introduction
Using the CodeWarrior IDE to Manage a Project

Figure 1.11 main.c Opened in the Project Window

o

b-{} M- - o'~ Path |D:'\Data\fibonacci\Sources\main.c [o2
#include <hidef.h> /* for EnableInterrupts mac xS EI
#include "deriwvatiwve.h" /* include peripheral declaraticns */ ;I

wolid main{wvoid] {

EnableInterrupts; /* enable interrupts */
f* include yvour code here */

fori;;) (

__RESET WATCHDOG () ; /% fe=de the dog */

ure that you never leave main */

Line 1 Coli || 4] vz

You can adapt the main. c file created by the Wizard as a base for your C source
program, or you can import other C source-code files into the project and remove the
default main. c file from the project. Either way, you need only one main () function
for your project.

For now, use the simple main. c file. At this point, the CodeWarrior IDE has created the
project, but the source files have not yet been compiled and no object code has been linked
into an executable output file. Return to the CodeWarrior project window.

You can process any of the check-marked files individually or a combination of them
simultaneously by selecting their icons in the project window. To build the entire project
all at once, press the Make button on the Toolbar in the project window, or build your
project using Project > Make or Project > Debug.

If the CodeWarrior IDE is correctly configured and the files have no serious errors, all of
the red check marks in the project window disappear after a successful build of the project
(Figure 1.12).

RSO08 Build Tools Reference Manual for Microcontrollers 39

4
A

Introduction

Using the CodeWarrior IDE to Manage a Project

Figure 1.12 Successful Build of your Project

=l

fibonacci.mcp l

[¥ Ful Chip Simlation

File:s I Link Drdell Targetsl

ey @,

¥ | Fie | Code | Data |9 |-
=53 Sources 7 1« ==
R rnain e 7 1+ =
=3 Includes i .
-l derivative.h 1] o =
B MCIRS02KAL K i} 0 =
=3 Libs 13227 3E94 « =
-l aniilin 13227 3BEV =l
o MCIRS08KAT.C i} 27 e =
=423 Project Settings 122 3=
[Z}4=3 Startup Cade 122 3 e =
o[l StantRS08.c 122 3=
=43 Linker Files 0 -
- burner.bbl n'a néa =
M Project.prm na nfa =l
----- B Project.map na nfa =l
S filez 13356 3698

|

|+

Continually compiling and linking your project files during the construction phase of the
project is a wise programming technique in case an error occurs. The source of the error is
much easier to locate if the project is frequently rebuilt.

This project has some C source files that successfully compiled. The Code and Data
columns in the project window show the size of the compiled executable object code and
the non-executable data in the object code for the compiled source files. Some additional
files were generated after the build process (Figure 1.13).

40

RS08 Build Tools Reference Manual for Microcontrollers

h

Introduction
Using the CodeWarrior IDE to Manage a Project

Figure 1.13 Additional Files after a Project Build

% ObjectCode =
File Edit Wiew Favorites Tools Help | ’-'.l'.
@Back - L) - l? |i‘ i‘ | /_jSaarch |[E‘ Folders | o |5 x Q | v
Address IE] [niDatalfibonaccifibonace_DataistandardiObjectCode j &
Folders X || Name - E
E) Data ﬂ . main.c.o SKE ¢
3 Andromeda [E mcorsnakat.c.o 13K8 ¢
I Chuchuallain [startrss.c.o GKE ¢
I Enniskillen
L5 Enterprise
Bl 5 fibonacc
[53 bin
125 cmd b
= (5 fibonacc_Data
= [Standard
5 prm
[Sources =
e
il | _>IJ < |)

The object-code files for the C-source files are found in the ObjectCode folder. However,
the executable output file is located in the bin folder (Figure 1.14).

Figure 1.14 bin Folder in the Project Directory
[o]

File Edit Wiew Favorites Tools Help ‘J'Il..

i
eBack - J b 1_1; |i‘ f ‘ /':) Search EF_" Falders ="k x q ‘ '

Address I[ﬁ D Datatfibonacc|bin j e

Falders X | | Mame = I m—]
|53 Dublin ;I . Project.abs 22 KE ¢
I Enniskillen =] Project.abs.519 1KE ¢

|51 Enterprise Project.map 1GKE ¢

I5) Fermanagh
B 1) Fibonacc
om J
150 cmd
=l |7 Fibonacci_Data
[T Standard
) prm
El Sources
|50 Galactica
1) Galway
— e

| _ | _>ILI < | i

RSO08 Build Tools Reference Manual for Microcontrollers 41

3
4

4
A

Introduction
Using the CodeWarrior IDE to Manage a Project

All the files currently in the bin folder have the Project filename plus an extension.
The extension for the executable is * . als (for absolute). The * . s19 file extension is the
S-Record File used for programming ROM memory. The * . map file extension is for the
Linker Map file. The Map file provides (among other things) useful information
concerning how the Linker allocates RAM and ROM memory areas for the various
modules used in the project.

You did not enter these filenames when creating the project with the Project Wizard.
These are the default filenames for the project when using the New Project Wizard. You
can change these defaults to be more meaningful, say Alpha.*, by using the Target
Settings preference panels available in the CodeWarrior IDE.

From the Edit menu in the CodeWarrior IDE, select Edit > Standard Settings. The Target
Settings dialog box appears with the Target Settings preference panel (Figure 1.15).

Figure 1.15 Target Settings Preference Panel

i mStandard Settings [fibonacci.mcp] ﬂil

IE T arget Settings Panels ||E Target Settings

=- Target .
- Target 5ettings Target Name: IAlpha

- Access Pathe Likenl T
- Build Extras inker: Linker for RS08

- File Mappings Pre-linkel:INone
- Source Trees .

. OSEK Sysgen F‘ost-llnket:l Maone
- Agzembler for RS02 Output Directary:

- Burner for R508 Choose... |
|{Proiect}bin

- Compiler for R508
- Importer for RS03 Clear |
- Linker for R508
(=~ Editor

Lo Cuugtom Kepwords

Ll L L

[Save project entries using relative paths

Factary Settings Rewert Import Panel... | Expart Panel... I

0K | Cancel | Apply I

The Target Name: text box contains the default Target Name for the project. Enter Alpha
in this text box and press OK. Select the Edit menu to see that the Standard Settings menu
item has been replaced by Alpha Settings. This change is also reflected in the project
window. Alpha now appears as the new name for the build target (Figure 1.16).

42

RS08 Build Tools Reference Manual for Microcontrollers

g |

Introduction
Using the CodeWarrior IDE to Manage a Project

Figure 1.16 Alpha is the New Name for the Build Target

=l

fibonacei.mcp I

[[D¥ Full Chip Simuation ey By
Files | Link Order Targets |
N T argets ¥
¥ ciphd] |=
1 target
< | +]

This causes the name of the Standard folder that contains the object files to be changed
to Alpha. However, the names in the bin folder still are unchanged. You can change the
name of the executable file to Alpha . abs by using another preference panel. From the
Edit menu, select Alpha Settings. The Alpha Settings dialog box appears. Select Target >
Linker for RSOS8 in the Target Settings Panels. The Linker for RSOS preference panel
appears (Figure 1.17).

RSO08 Build Tools Reference Manual for Microcontrollers 43

4
A

Introduction
Using the CodeWarrior IDE to Manage a Project

Figure 1.17 Linker for RS08 Preference Panel

i mAlpha Settings [fibonacci.mecp]

IE T arget Settings Panels ||E Linker for RS08

= Target ;I

. Command Line Arguments:
- Target Settings

- Access Paths I-WmsgS d1100 AwmsegSd1an 2

- Build Estraz

)) Meszages Options

- File Mappings d 2 |

- Source Trees ™ Display generated commandiines in message window
- OSEK Sysgen

- Prepracess PRM file

= Use Custam PRM file IProiect.prm

- Aszembler for RS08

- Burner for R508

- Compiler for R508
- |mporter for R508
ket fi

& Uze PRM file from project

e fo

o " Absolute, Single-File Assembly project
(=~ Editor

L. Custom Keywords Application Filename:

€ Use Template PRM file [$3PRM_FILE_NAMESS.pm] Copp Templats

-

IPloiect.abs _I
About | Help |
=
Factary Settings | Rewert | Import Panel... | Expart Panel... I

oK

Caneel |

Arply

In the Application Filename text box, replace Project . abs with Alpha.abs and
press OK. A dialog box appears stating that Target ‘Alpha’ must be relinked. Press OK.
Press the Make icon on the Toolbar to rebuild the project. The contents of the bin folder

change to reflect the new build target Alpha (Figure 1.18).

44

RS08 Build Tools Reference Manual for Microcontrollers

h o
g |

Introduction

Using the CodeWarrior IDE to Manage a Project

Figure 1.18 bin Folder after Changing Project to Alpha

Mebin =0l]
File Edit Wiew Favorites Tools Help ‘ ":f.
Qeack - ©) - (T [F ff | PO searan [roiers | |5 57 X 9 | [F]-

Address I_.? D:\Datalfibonacciibin j =
Faolders % | | Mame = m

Bl) Data | Dject.abs 27KE ¢
I Andromeda PrDjECt.abs.le 1KE ©
) Chuchualiain Birroject.map \8KE
I3 Enniskillen nlpha.abs 27KE
IC3) Enterprise Rlpha.abs.slg LKE =
= 25 Fibonace P.lpha.map 18KE ¢

(=
153 cmd .
= E] fibonacci_Data

[T Alpha
= prm
I3 Sources

B E] Galactilca) =

ll _ = " |]

Now, files with the Alpha . * filenames are generated. The previous Project . * files
are not modified at all. However, they no longer are included in the project, so they may

be safely deleted.

The Linker PRM file

The PRM file determines how the Linker allocates the RAM and ROM memory areas.
The usual procedure is to use the default PRM file in the project window for any particular
CPU derivative. However, it is possible to modify the PRM file if you want an alternative

allocation.

RSO08 Build Tools Reference Manual for Microcontrollers

45

4
A

Introduction
Compilation

Compilation

You can use the RSO8 Compiler as a standalone compiler. This tutorial does not create an
entire project with the Build Tools, but instead uses parts of a project already created by
the CodeWarrior New Project Wizard. Using the CodeWarrior software, you can create,
configure, and manage a project much easier and quicker than using the Build Tools.
However, you can use the Build Tools to create and configure a project from scratch.
Instead, we will create a new project directory for this project, but will make use of some
files already created in the previous project.

A Build Tool such as the Compiler makes use of a project directory file for configuring
and locating its generated files. The folder that is properly configured for this purpose is
referred to by a Build Tool as the current directory.

Start the Compiler by opening the crs08 . exe file in the prog folder in the RS08
CodeWarrior installation. The Compiler opens (Figure 1.19).

Figure 1.19 RS08 Compiler Opens

E:!;ERSDB Compiler Default Configuration - |EI|1|
File Compiler Yiew Help
DS HE| 28| SlE s fmE 3| E

| -

L o

Ready 14:49:13 4

Read the Tips or press Close to close the Tip of the Day dialog box.

46 RS08 Build Tools Reference Manual for Microcontrollers

Introduction
Compilation

Configuring the Compiler

A Build Tool, such as the Compiler, requires information from configuration files. There
are two types of configuration data:

¢ Global

This data is common to all Build Tools and projects. There may be common data for
each Build Tool, such as the listing of the most recent projects. All tools may store
some global data into the mcutools. ini file. The tool first searches for this file in
the directory of the tool itself (path of the executable). If there is no

mcutools. ini file in this directory, the tool looks for an mcutools. ini file
located in the MS WINDOWS installation directory (e.g. C : \WINDOWS). Typical
locations for a global configuration file are:

— \<CW installation directory>\prog\mcutools.ini

— C:\WINDOWS\mcutools.ini - (used if nomcutools. ini file exists in
above directory)

If you start a tool in the C: \Program Files\Freescale\CodeWarrior
for Microcontrollers V6.1\prog directory, the initialization file in the
same directory as the tool is used:

C:\Program Files\Freescale\CodeWarrior for
Microcontrollers V6.1l\prog\mcutools.ini.

If you start the tool from the CodeWarrior installation directory, the tool uses the
initialization file in the Windows directory. For example,
C: \WINDOWS\mcutools. ini.

For information about entries in the global configuration file, see Global
Configuration File Entries in the Appendices.

e Local

Any build tool can use this file for a particular project. For information about entries
for the local configuration file, see Local Configuration File Entries in the
Appendices.

Normally after opening the compiler, you load the configuration file for your project if it
already has one. However, in this case you will create a new configuration file and save it
so that when the project is reopened, it reuses the previously saved configuration state.

1. In Windows Explorer, create a new folder called fibonacci_2.
2. From the compiler File menu, select New / Default Configuration.

Now save this configuration in the newly created folder that will become the project
directory.

3. From the File menu, select Save Configuration (or Save Configuration As).

A Saving Configuration as dialog box appears.

RSO08 Build Tools Reference Manual for Microcontrollers 47

h -

4
A

Introduction
Compilation

4. Rename the file if you wish and navigate to the newly created folder (Figure 1.20).

Figure 1.20 Loading Configuration Dialog Box

1;[RS08 Compiler Default Configuration

[0l x]
T

b=

= | =

Savein: I@ fibonacei 2 | & =5 Ef-

File name: |proiect.ini

Save I
Save as lype: IProiect files [*.iri:* pit) j Cancel | _ILI
< »

4

Ready

15:537:40 2

5. Press Save.

The current directory of the RSO8 Compiler changes to your new project directory
(Figure 1.21), and saves project.ini in the folder.

Figure 1.21 Compiler’s Current Directory Switches to Your Project Directory

:»: ! RS08 Compiler D:\Data'\fibonacci_2'projeck.ini

(ol x|
File Compiler Wiew Help
DSHE 2|

R =10

-
Changed current directory to D:\Data\fibonacci_2 j

«1 | _'l_I
Ready

15:39:50 2

The project directory, examined using Windows Explorer, contains the project.ini
configuration file that you just created. If you examine the contents of project.ini

48 RS08 Build Tools Reference Manual for Microcontrollers

Introduction
Compilation

configuration file, you notice that it now contains the [CRSO8_Compiler] portion of the
project.ini file in the prog folder where the Build Tools are located. Any options
added to or deleted from your project by any Build Tool are placed into or deleted from
this configuration file in the appropriate section for each Build Tool.

If you want to apply additional options to all projects, you can take care of that later by

changing the project. ini file in the prog folder.

Now set the object file format that you intend to use (ELF/DWARF).

1. Select the Compiler > Options > Options.

The Compiler displays the RSO8 Compiler Option Settings dialog box.

2. Select the Output tab (Figure 1.22).

Figure 1.22 Compiler Option Settings Dialog Box

RS0& Compiler Option Settings

Huost I Code Generation I Meszages
Optirnizations Dutput | Iput I Language

[lallocate COMST objects in ROM -
[|Enciypt Files [-Eencropt[=<file:]

[|Enciyption K.e
M ibiect File Format

[1Generate Azzembler Inchude File
[w|Generate Listing File

[Configure Listing File

[|Log predefined defines to file
[1List of included files to ".inc' file
[T'write statistic autput ta file LI

-F[20l2]: Object File Format

" Compatible ELF/DwARF 2.0
% ELF/DWARF 2.0

-F2 -Lasm=%n.lst ﬂ

I

ok I Cancel | Help

3. In the Output panel, select the check boxes labeled Generate Listing File and Object

File Format.

4. For the Object File Format, select the ELF/DWARF 2.0 button.

5. Press OK to close the RSO8 Compiler Option Settings dialog box.

RSO08 Build Tools Reference Manual for Microcontrollers

49

r
4\

Introduction
Compilation

Save the changes to the configuration by:
 selecting File > Save Configuration (Ctrl + S) or

» pressing the Save button on the toolbar.

Input Files

Now that the project’s configuration is set, you can compile a C source-code file. You can
create C source (* . c) and include (* . inc) files from scratch for this project, or copy
and paste the Sources folder from a previous CodeWarrior project into the
fibonacci_2 project directory (Figure 1.23). In this case, copy the Sources folder from
fibonacci into fibonacci_2.

Figure 1.23 Project Files

=10x|
File Edit Wiew Favaorites Tools Help | _-..F
@Back > B ¥ f g‘ | 7) search ‘[t Folders | = s x 4 | El'
Address Ii] [\Datatfibonacci_2\Sources j Go
Folders X | | Mame = | Size | 1
[Enterprise Al B cerivative.n LKE ¢
= I Fibonacci i ain. o LKB €
) bin BB startrsos.c 2KB
I emd
= [fibonacri_Data
159 alpha J
[prm
(L7 Sources
=l I Fibonacci_

I) Galactica hd
« S) K1 o

Now there are four files in the project:

e the project.ini configuration file in the project directory and
* in the Sources folder:
— derivative.h
A collection of paged data-access runtime routines
- main.c
The user’s program plus derivative-specific and memory-model includes
— StartRS08.c.

The startup and initialization routines

50 RS08 Build Tools Reference Manual for Microcontrollers

g |

Introduction
Compilation

Compiling the C Source-Code Files

Let’s compile the StartRS08. ¢ C source file. In the compiler, select File > Compile.
The Select File to Compile dialog box appears (Figure 1.24).

Figure 1.24 Select File to Compile Dialog Box

Select File to Compile d |

Laok in: I ' Sources j i IC:F -

i SkartRS08.c

File name: |StatRiS08.c Open I
Files of type: IE source files [*.c) j Cancel |
S

Browse to the Sources folder in the project directory and select the StartRS08.c
file. Press Open and the StartRS08. c file starts compiling (Figure 1.25).

RSO08 Build Tools Reference Manual for Microcontrollers 51

4
A

Introduction
Compilation

Figure 1.25 Results of compiling the StartRS08.c file

=10 x|

File Compiler Yiew Help

0= H| 2 K ||oDatefibonace 2\SoucesStanRis08 || 88 24 | S 111 8 =2 | &

Changed current directory to D:\Data\fibonacci_2
D:\Datalfibonacci 2% Sources\StartRI08.c

Command Line: '-F2 -Lasw=%n.lst D:\Data\fibonacci_z)Sourcesh3tartRI05.c'
D:\Data'fibonacci_2%JourcesyitartR308.c

Could not open the file 'startrs08.h!'

»= in "DihData\fibonacci &%Sources)3tcartRE08.c", line 29, col 10, pos 853
#include <startrs05.h-
-
ERROE C5200: startrs08.h file not found
Could not open the file 'startrs05_init.c'

>= in "DrihData\fibonacci 2%\ ZJources\itartRS08.c", line 36, col 10, pos 1066
#include "startes08_init.c™ /% include © file =20 we can use B3R #/
-
ERREOE C5200: startrs0S_init.c f£ile not found
R508 Cowmpiler: %% 2 error(s), 0 warning(s), 0 information message(s) %%

*#% command line: '-F2 -Lasm=%n.lst D:\Data\fibonacci_2)Sources)3tartR3508.c
R308 Compiler: #%% Error occurred while proceszsing! &%+
4 | i
Pracessing Failed! 15:51:19 4

The project window provides positive or negative feedback information about the
compilation process or generates error messages if compiling was unsuccessful. In this
case two error messages are generated - two instances of the C5200: ‘FileName’ file not
found message. If you right-click on the text about the error message, a context menu

appears (Figure 1.26).

52 RS08 Build Tools Reference Manual for Microcontrollers

g |

Introduction
Compilation

Figure 1.26 Context Menu
RS08 Compiler i ject.ini _ 1Ol x|

File Compiler Yiew Help

0= H| 2 K ||oDatefibonace 2\SoucesStanRis08 || 88 24 | S 111 8 =2 | &

Changed current directory to D:\Data\fibonacci_2
D:\Datalfibonacci 2% Sources\StartRI08.c

Command Line: '-F2 -Lasw=%n.lst D:\Data\fibonacci_z)Sourcesh3tartRI05.c'
D:\Data'fibonacci_2%JourcesyitartR308.c

Could not open the file 'startrs08.h!'

»= in "DihyData\fibonacci 2\3ources)3tartRE08.c", line 29, col 10, wos 853
#include <ztartra03.h= Iain Help
- i 3 T
ERROR C5200: startrs08.h open file "DiiDatalfibonacc_2lSources|StartRs0g.c”
Could not open the file Copy "= = in "IviDatalfibonacc_2\SourcesStartRS08.., "

>= in "DrihData\fibonacci 2%\ ZJources\itartRS08.c", line 36, col 10, pos 1066
#include "startes08_init.c™ /% include © file =20 we can use B3R #/

-
ERREOE C5200: startrs0S_init.c f£ile not found
R508 Cowmpiler: %% 2 error(s), 0 warning(s), 0 information message(s) %%
*#% command line: '-F2 -Lasm=%n.lst D:\Data\fibonacci_2)Sources)3tartR3508.c
R506 Compiler: %% Error occurred while processing! #%%

4 | i
Calls context help 15:53:37 4

Select Help on ‘FileName’ file not found and help for the C5200 error message appears
(Figure 1.27).

RSO08 Build Tools Reference Manual for Microcontrollers 53

y
A

Introduction
Compilation

Figure 1.27 C5200 Error Message

C5200: 'FileName' file
not found

[ERROE]

Description

The specified source file was not found.

Example

fiinclude "notexisting.h'

Tips

[

The Tips portion in the Help for the C5200 error tells you to specify the correct paths and
names for the source files. Locate Startrs08.h in <CodeWarrior
installation folder>\1lib\rs08c\include. Locate Startrs08_init.c
in <CodeWarrior installation folder>\1lib\rs08c\src.

NOTE Ifyoureadthe Startrs08. c file, you could have anticipated this because of

an #include preprocessor directive for the header file. The other missing file
was included by the header file.

The Compiler needs a configuration modification so that it can find these missing files.

54 RS08 Build Tools Reference Manual for Microcontrollers

g |

Introduction
Compilation

1. Select File > Configuration.
The Configuration dialog box appears (Figure 1.28).

Figure 1.28 Browsing for the include Subfolder in the CodeWarrior lib Folder

Configuration x|

Editar Settingsl Save Configuration Enviranment |

General Path
Ohiject Path
Text Path
Ahzolute Path

Header File Fath
Wariouz Environment W ariablas

| .|

Add | Changel Deletel]} | annl

QK. I Cancel | Help

2. Select the Environment tab in the Configuration dialog box
3. Select Header File Path.

4. Press the “...” button and navigate in the Browse for Folder dialog box for the folder
that contains the missing file: the rs08c\include subfolder in the CodeWarrior
installation’s 11ib folder.

5. Press OK to close the Browse for Folder dialog box.
The Configuration dialog box is now active (Figure 1.29).

RSO08 Build Tools Reference Manual for Microcontrollers 55

h -

4
A

Introduction

Compilation
Figure 1.29 Adding a Header File Path
x
Editar Settingsl Save Configuration Enviranment |
General Path
Ohiject Path
Text Path
Ahzolute Path
Header File Fath
Wariouz Environment W ariablas
IC:\F’rogram Filez'\FreescalehCodew arrior for Micro |
Add | Changel [elete |]} | oy |
C:\Program FileshFreescale\Codew armior for Microcontroll
QK. I Cancel Help
6. Press the Add button.
The path to the header file C: \Program Files\Freescale\CodeWarrior
for Microcontrollers V6.1\1ib\rs08.c\include now appears in the
lower panel.
7. Press OK.
An asterisk now appears in the Configuration Title bar, so save the configuration
modification.
8. Press the Save button or select File > Save Configuration.
If you do not save the configuration, the Compiler reverts to the last-saved
configuration the next time the project is opened. After saving the asterisk disappears.
TIP You can clear the messages in the Compiler window at any time by selecting View
> Log > Clear Log.
Repeat steps 1 through 8 to supply the pathto startrs08_init.c, which is located in
C:\Program Files\Freescale\CodeWarrior for Microcontrollers
V6.1\1lib\rs08c\src
56 RS08 Build Tools Reference Manual for Microcontrollers

Introduction
Compilation

Now that you have supplied the path to the missing files, you can try again to compile the
Startrs08.c file. Instead of compiling each file separately, compile both of them
simultaneously.

Select File > Compile and again navigate to the Sources folder (if it is not active) and this
time select both * . ¢ files and press Open.

Once again the compiler error messages indicate missing files, hidef .h and
derivative.h. Locate these files in the installation or project folder, and add them to
the configuration the same way you added startrs08_init.c and startrs08.h.

NOTE Some RSO08-specific header files and source code files are located in the HC08
folders. If repeated errors occur, verify the file location using Windows, and
add the correct file path to the configuration.

Select File > Compile and navigate to the Sources folder. Select both * . c files and press
Open.

The Compiler indicates successful compilation of both C-source files and displays the
Code Size for each. Also, the header files included by each C-source file are shown. The
message *** 0 error (s), indicates that the file compiled without errors. Do not
forget to save the configuration one additional time.

The Compiler also generated object files in the Sources folder (for further processing by
the Linker), and a output listing file in the project directory. The binary object file has the
same name as the input module, but with the * . o extension instead. The assembly output
file for each C-source file is similarly named.

NOTE The Compiler generates object-code files in the same location as the C-source
files. If any C-source code file is in a CodeWarrior library folder (a subfolder
inside \ 1ib), we recommend that you configure the path for this C source file
into somewhere other than this 1ib folder. The OBJPATH environment
variable is used for this case. You use the Object Path option in the
Configuration dialog box for this (Figure 1.29).

The haphazard running of this project was intentionally designed to fail in order to
illustrate what occurs if the path to any header file is not properly configured. Be aware
that header files may be included by C-source or other header files. The 1ib folder in the
CodeWarrior installation contains several derivative-specific header and other files
available for inclusion into your projects.

Now that the project’s object code files are available, the Linker Build Tool

(linker . exe) together with an appropriate * . prm file for the CPU-derivative used in
the project could link these object-code files together with any necessary library files to
create a * . abs executable output file. See the Linker Section in the Build Tool Utilities
manual for details. However, using the CodeWarrior Development Studio is much faster
and easier to set up or configure for this purpose.

RSO08 Build Tools Reference Manual for Microcontrollers 57

3
4

y
A

Introduction

Compilation

Linking with the Linker

If you are using the standalone Linker (also known as the SmartLinker), use a PRM file for
the Linker to allocate RAM and ROM memory areas:

1.

Start your editor and create the project’s linker parameter file. You can modify a
* . prm file from another project and rename it as <target_name>.prm.

Store the PRM file in the project directory.

3. Inthe <target_name>.prm file, use the LINK section to add the name of the

executable (* . abs) file, <target_name> . abs (use unique names for your * . abs
files):

LINK Alpha.abs

. Add the names of the object code files using the NAMES command:

NAMES StartRS08.c.o Main.c.o MCI9RS08KAl.c.o END

NOTE You can also modify the start and end addresses for the ROM and RAM

memory areas. The module’s * . prm file is a PRM file from another
CodeWarrior project. In the project window, double-click on a . prm file to
display contents.

NOTE If you are adapting a PRM file from a CodeWarrior project, you need to add

the LINK portion and the NAMES portion for object filenames that are to be
linked.

NOTE Most of the entries in the PLACEMENT section are not used in this simple

project. Furthermore, a number of extra entries were deleted from the actual
PRM file used in another CodeWarrior project. It does not matter if all of these
entries are used or not. They were left in order to show what entries are
available for your future projects.

The commands in the linker parameter file are described in detail in the Linker section of
the Build Tool Utilities manual.

1.

Start the Linker.

The SmartLinker tool is located in the prog folder in the CodeWarrior installation:
prog\linker.exe

Press Close to close the Tip of the Day dialog box.
Load the project’s configuration file.

Use the same <project>. ini that the Compiler used for its configuration - the
project.ini file in the project directory:

58

RS08 Build Tools Reference Manual for Microcontrollers

Introduction
Compilation

4. Select File > Load Configuration and navigate to the project’s configuration file.
5. Press Open to load the configuration file.

The project directory is now the current directory for the Linker. You can select File >
Save Configuration to save the configuration if you choose. If you fail to save the
configuration, the Linker reverts to its last-saved configuration when it is reopened.
From the File menu in the SmartLinker, select File > Link.

6. Browse to locate the PRM file for your project.
7. Select the PRM file.
8. Press Open.

The Smart Linker links the object-code files in the NAMES section to produce the
executable * . abs file as specified in the LINK portion of the Linker PRM file.

The messages in the linker’s project window indicate:

* The current directory for the Linker is the project directory,
D:\Data\fibonacci_2

¢ The project.prm file was used to name the executable file, specify which object
files were linked, and allocate the RAM and ROM memory areas for the relocatable
sections.

* There were three object-code files, Startrs08.c.o,main.c.o, and
MCO9RS08KAl.C.o.

¢ The output format was DWAREF 2.0.
* The Code Size was 137 bytes.
¢ A Linker Map file was generated: <project>.map.

* No errors or warnings occurred and no information messages were issued.

Using the Simulator/Debugger

Use the Simulator/Debugger Build Tool, hiwave . exe, located in the prog folder in the
CodeWarrior installation to simulate the sample program in the main . c source-code file.
The Simulator Build Tool can be operated in this manner:

e Start the Simulator.
¢ Load the absolute executable file:
— File > Load Application and browse to the appropriate * . abs file or

— Select the given path to the executable file, if it is appropriate as in this case
(Figure 1.30):
D:\Data\fibonaccilalpha.abs

RSO08 Build Tools Reference Manual for Microcontrollers 59

y
A

Introduction
Compilation

Figure 1.30 RS08 Simulator: Select the Executable File

Load Executable File 21x|
Loak in: I I bin j - £F E2-

Project.abs

File name: IAIpha.abs Open I
Files of type: IExecutabIes [*.abs; * elf] j Cancel |

—Advanced Command

Load Code | Load Symbaols Werify Code I

— Open and Load Code Optior:
™| Butomatically erase and program into FLASH and EEPRDHM

™ Werify memory image after loading code
& Complete image
€ First byte of each lnaded block [faster]

[T Fiun after successiul load

I~ | Stop at Function; I

4

* Assembly-Step (Figure 1.31) through the program source code.

Figure 1.31 Simulator Startup

Boowee -lo/x]
D:Datatfibonaccivs ounceshStatRS08.c [Lire: 42

#pragma NO_CALLER /% we don't have a caller. This generats;l
woid Startup(wveid)] (M@
rodut(]:

0 initi i a
_DoCopyDlowmi); /% handle non zero initialized varia.blesJ

__asw JHP main /¥ start with main. */
-
=)

K| v

You can simulate this particular C program through its program, to gain an insight as to

what the startrs08. c routines are before it turns the program over to the routines in
main.c.

60 RS08 Build Tools Reference Manual for Microcontrollers

Introduction
Application Programs (Build Tools)

Application Programs (Build Tools)

You will find the standalone application programs (Build Tools) in the \prog directory
where you installed the CodeWarrior software. For example, if you installed the
CodeWarrior software in the C: \Program Files\Freescale\ directory, all the
Build Tools are located in the C: \Program Files\Freescale\prog directory
with the exception of IDE. exe which is found in the bin subfolder of the CodeWarrior
installation folder.

The following list is an overview of the tools used for C programming:

IDE. exe - CodeWarrior IDE

crs08. exe - Freescale RSO8 Compiler

ahc08. exe - Freescale HCO8/RS08 Assembler
libmaker.exe - Librarian Tool to build libraries

linker. exe - Link Tool to build applications (absolute files). The Linker is also
referred to as the Smart Linker.

decoder . exe - Decoder Tool to generate assembly listings. This is another name
for a Disassembler.

maker . exe - Make Tool to rebuild automatically
burner. exe - Batch and interactive Burner
hiwave.exe - Multi-Purpose Simulation or Debugging Environment

piper.exe - Utility to redirect messages to stdout

NOTE Depending on your license configuration, not all programs listed above may be

installed or there might be additional programs.

Startup Command-Line Options

There are some special tool options. These tools are specified at tool startup (while
launching the tool). They cannot be specified interactively:

-Prod: Specify Project File at Startup specifies the current project directory or file
(Listing 1.1).

Listing 1.1 Example of a startup command-line option

linker.exe -Prod=C:\Freescale\demo\myproject.pjt

RSO08 Build Tools Reference Manual for Microcontrollers 61

y
A

Introduction
Highlights

There are other options that launch a build tool and open its special dialog boxes. Those
dialog boxes are available in the compiler, assembler, burner, maker, linker, decoder, or
libmaker:

ShowOptionDialog

This startup option (see Listing 1.2) opens the tool’s option dialog box.
ShowMessageDialog

This startup option opens the tool message dialog box.
ShowConfigurationDialog

This opens the File > Configuration dialog box.

ShowBurnerDialog

This option is for the Burner only and opens the Burner dialog box.
ShowSmartSliderDialog

This option is for the compiler only and opens the smart slider dialog box.
ShowAboutDialog

This option opens the tool about box.

The above options open a modal dialog box where you can specify tool settings. If you
press the OK button of the dialog box, the settings are stored in the current project settings
file.

Listing 1.2 Example of storing options in the current project settings file

C:\Freescale\prog\linker.exe -ShowOptionDialog

-Prod=C:\demos\myproject.pjt

Highlights

Powerful User Interface

Online Help

Flexible Type Management
Flexible Message Management
32-bit Application

Support for Encrypted Files
High-Performance Optimizations
Conforms to ANSI/ISO 9899-1990

62

RS08 Build Tools Reference Manual for Microcontrollers

Introduction
CodeWarrior Integration

CodeWarrior Integration

All required plug-ins are installed together with the CodeWarrior IDE. The CodeWarrior
IDE is installed in the bin directory (usually C: \Freescale\CodeWarrior for
Microcontrollers V6.1\bin). The plug-ins are installed in the bin\plugins
directory.

Combined or Separated Installations

The installation script enables you to install several CPUs in one single installation path.
This saves disk space and enables switching from one processor family to another without
leaving the IDE.

NOTE In addition, it is possible to have separate installations on one machine. There
is only one point to consider: The IDE uses COM files, and for COM the IDE
installation path is written into the Windows Registry. This registration is done
in the installation setup. However, if there is a problem with the COM
registration using several installations on one machine, the COM registration is
done by starting a small batch file located in the ‘bin’ (usually the
C:\Freescale\CodeWarrior for Microcontrollers
V6 .1\bin) directory. To do this, start the regservers.bat batch file.

RSO08 Build Tools Reference Manual for Microcontrollers 63

4
A

Introduction
CodeWarrior Integration

Target Settings Preference Panel

The linker builds an absolute (* . abs) file. Before working with a project, set up the
linker for the selected CPU in the Target Settings Preference Panel (Figure 1.32).

Figure 1.32 Target Settings Preference Panel

i malpha Settings [fibonacci.mecp] ﬂil
E Target Settings Panels ||E Target Settings
= Target ;I
Target Mame: |Alpha
- focess Paths . -
- Build Estras Llnker.ILmker for RS08 j
- File Mappings Pre-linker:INone j
- Source Trees .
. DISEK Spsgen Post-llnker.lNone j
- fgzzgembler for R508 Output Directory:
- Burner for RS08 | Choose... |
- Carmpiler for RS08 {Projectibin
- |mporter for RS08 ﬂ
- Linker for RS08
= Editor [T Save project entries using relative paths
S Custom Keywords
Factory Settings Frewert Import Panel... | Export Panel... |
Ok | Cancel | Apply |

Depending on the CPU targets installed, you can choose from various linkers available in
the linker drop box.

You can also select a libmaker. When a libmaker is set up, the build target is a library

(*.11ib) file. Furthermore, you may decide to rename the project’s target by entering its
name in the Target Name: text box.

64

RS08 Build Tools Reference Manual for Microcontrollers

g |

Introduction
CodeWarrior Integration

Build Extras Preference Panel

Use the Build Extras Preference Panel (Figure 1.33) to get the compiler to generate
browser information.

Figure 1.33 Build Extras Preference Panel

i malpha Settings [fibonacci.mecp] 21|
E Target Settings Panels ||E Build E xtraz
= Target ;I

- Target Settings - Exras

.. Access Paths V' Use madification date caching [v Cache Subprojects

7k Generate Browser Data From: | Compiler j—|

- File Mappings

- Source Trees . .) .

- OSEK Sysgen [™ Dump internal broveze information after compile

- &gzembler for RS0
- Burner for RS08

- Compiler for RS08
- Importer for R508

This zetting is used by compiler developers to debug generated browser data.

. Linker for RS08 —Iv Usze External Debugger
B gEjltEDIL[Jstom Kepwords Application: I{Eompiler}prog\hiwave.exe Browse. .. |
Arguments: IDS_FuII_Ehip_Simulator.ini -instance=phers08fcs
Initial directorny: I{Proiect} Browse. .. |
Factory Settings | Frewert Import Panel... | Export Panel... |
Ok | Cancel | Apply |

Enable the Use External Debugger check box to use the external simulator or debugger.
Define the path to the debugger, which is either absolute (for example, C: \Program
Files\Freescale\CodeWarrior for Microcontrollers

V6 .1l\prog\hiwave.exe), or installation-relative (for example,
{Compiler}prog\hiwave.exe).

RSO08 Build Tools Reference Manual for Microcontrollers 65

y
A

Introduction
CodeWarrior Integration

Additional command-line arguments passed to the debugger are specified in the
Arguments box. In addition to the normal arguments (refer to your simulator or debugger
documentation), you can also specify the following $ macros:

Table 1.1 Additional % macros for the external debugger

gsourceFilePath %projectSelectedFiles
%sourceFileDir %targetFilePath
%sourceFileName %targetFileDir
%sourceLineNumber %targetFileName

%sourceSelection

gcurrentTargetName

%sourceSelUpdate %symFilePath
%projectFilePath %symFileDi
%projectFileDir %symFileName

%projectFileName

66

RS08 Build Tools Reference Manual for Microcontrollers

Introduction
CodeWarrior Integration

Assembler for RS08 Preference Panel
The Assembler for RS08 preference panel (Figure 1.34) contains the following:

e Command Line Arguments: Command-line options are displayed. You can add,
delete, or modify the options by hand, or by using the Messages and Options buttons.

— Messages: Button to open the Messages dialog box
— Options: Button to open the Options dialog box

* Display generated commandlines in message window: The plug-in filters the
messages produced, so that only Warning, Information, or Error messages are
displayed in the ‘Errors & Warnings” window. With this check box set, the complete
command line is passed to the tool.

e Use Decoder to generate Disassembly Listing: The built-in listing file generator is
used to produce the disassembly listing. If this check box is set, the external decoder
is enabled.

e About: Provides status and version information.

* Help: Opens the help file.

Figure 1.34 Assembler for RS08 Preference Panel

i mAlpha Settings [fibonacci.mcp] ﬂil
E Target Settings Panels ||E Azzembler for BS08
= Target . = Command Line Arguments:

- Target Settings

- Access Paths I'CF‘SG8 Ms

- Build Extraz =

- File Mappings Messages Optiohs

- Source Trees

- OSEK Syzgen [Display generated commandlines in message window

- bler for A
- Burner for R508 [Use Decoder to generate Disassembly Listing
- Compiler for RS08
- |mporter for RS08
- Linker for RS08
(= Editor
S Custom Keywords

About | Help |

FactorySettingsl Frewert | Import Panel... | Export Panel... |

QK Cancel | Apply |

RSO08 Build Tools Reference Manual for Microcontrollers 67

y
A

Introduction
CodeWarrior Integration

Burner Preference Panel

The Burner Plug-In Function: The * .bb1 (batch burner language) files are mapped to the
Burner Plug-In in the File Mappings Preference Panel. Whenever a * . bb1 file is in the
project file, the * . bb1 file is processed during the post-link phase using the settings in the
Burner Preference Panel (Figure 1.35).

Figure 1.35 Burner for RS08 Preference Panel

i @ Alpha Settings [fibonacci.mcp] ﬂil

E Target Settings Panels ||E Burner for RS08
= Target -

- Target Settings

- Access Paths I
- Build Extras
- File Mappings
- Source Trees
- OSEK Sysgen " Display generated commandlines in message windaw
- &gzembler for R508

- Compiler for RS08

Command Line Arguments:

Meszages Options Burner

- |mporter for RS08
- Linker for RS08
(= Editor

S Custom Keywords

About | Help |

FactorySettingsl Frewert | Import Panel... | Export Panel... |

QK | Cancel | Apply |

The Burner for RSO8 preference panel contains the following:

e Command Line Arguments: The actual command line options are displayed. You can
add, delete, or modify the options manually, or use the Messages, Options, and
Burner buttons.

— Messages: Opens the Messages dialog box
— Options: Opens the Options dialog box
— Burner: Opens the Burner dialog box

e Display generated commandlines in message window: The plug-in
filters the messages produced, so that only Warning, Information, or Error messages
are displayed in the ‘Errors & Warnings’ window. With this check box set, the
complete command line is passed to the tool.

e About: Provides status and version information.

* Help: Opens the help file.

68 RS08 Build Tools Reference Manual for Microcontrollers

Introduction
CodeWarrior Integration

Compiler for RS08 Preference Panel
The plug-in Compiler Preference Panel (Figure 1.36) contains the following:

e Command Line Arguments: Command line options are displayed. You can add,
delete, or modify the options manually, or use the Messages, Options, Type Sizes,
and Smart Sliders buttons listed below.

— Messages: Opens the Messages dialog box

— Options: Opens the Options dialog box

— Type Sizes: Opens the Standard Type Size dialog box
— Smart Sliders: Opens the Smart Slider dialog box

* Display generated commandlines in message window: The plug-in filters the
messages produced, so that only Warning, Information, or Error messages are
displayed in the ‘Errors & Warnings’ window. With this check box set, the complete
command line is passed to the tool.

e Use Decoder to generate Disassembly Listing: Checking this check box enables the
external decoder to generate a disassembly listing.

e About: Provides status and version information.

* Help: Opens the help file.

Figure 1.36 Compiler for RS08 Preference Panel

i mAlpha Settings [fibonacci.mcp] ﬂil
E Target Settings Panels | E Compiler for RS08
= Target . = Command Line Arguments:

- Target Settings

- Aooess Paths |Ms-D_NO_FLOAT

- Build Extraz = = =

- File Mappings Messages Optiohs Type Sizes Smart Sliders

- Source Trees

- OSEK Sysgen " Display generated commandlines in message windaw

- &gzembler for RS0
- [Use Decoder to generate Disazsembly Listing

- Linker for RS08
(= Editor
S Custom Keywords

About | Help |

FactorySettingsl Frewert | Import Panel... | Export Panel... |

QK Cancel | Apply |

RSO08 Build Tools Reference Manual for Microcontrollers 69

3
4

y
A

Introduction
CodeWarrior Integration

Importer for RS08 Preference Panel

The plug-in Importer Preference Panel (Figure 1.37) contains the following controls:

¢ Command-line Arguments: Command-line options are displayed. You can add,
delete, or modify the options manually, or use the Messages or Options buttons listed
below.

— Messages: Opens the Messages dialog box
— Options: Opens the Options dialog box

* Display generated commandlines in message window: The plug-in filters the
messages produced so that only Warning, Information, or Error messages are
displayed in the ‘Errors & Warnings” window. With this check box set, the complete
command line is passed to the tool.

e About: Provides status and version information.

* Help: Opens the help file.

Figure 1.37 Importer Preference Panel

i malpha Settings [fibonacci.mecp] ﬂil
E Target Settings Panels ||E Imparter for BS08
- Taget . = Command Line Arguments:

- Target Settings

- Access Paths I

- Build Extras =

- File Mappings Messages Optiohs

- Source Trees

- OSEK Sysgen " Display generated commandlines in message windaw

- Agsembler for R508

- Burner for RS08

- Compiler for RS08

o | rriporter for R

- Linker for R508

= Editor
L. Custom Keywords

About | Help |

FactorySettingsl Fewvert | Import Panel... | Export Panel... |

QK Cancel | Apply |

70 RS08 Build Tools Reference Manual for Microcontrollers

Introduction
CodeWarrior Integration

Linker for RS08 Preference Panel

This preference panel (Figure 1.38) displays in the Target Settings Panel if the Linker is
selected. The plug-in preference panel contains the following controls:

e Command-line Arguments: Command-line options are displayed. You can add,
delete, or modify the options manually, or use the Messages or Options buttons listed
below.

— Messages: Opens the Messages dialog box
— Options: Opens the Options dialog box

e Preprocess PRM file: When checked, the preprocessor of the ANSI-C compiler is
used to preprocess the PRM file prior to the linking step. In the PRM file, all ANSI-C
preprocessor conditions like conditional inclusion (#if) are available. The same
preprocessor macros as in ANSI-C code can be used (e.g., #ifdef _ SMALL__).

* Display generated commandlines in message window: The plug-in filters the
messages produced, so that only Warning, Information, or Error messages are
displayed in the ‘Errors & Warnings’ window. With this check box set, the complete
command line is passed to the tool.

e Use Custom PRM file: Specifies a custom linker parameter file in the edit box. Use
the browse button (...) to browse for a file.

e Use Template PRM file: With this radio control set, you can select one of the pre-
made PRM files located in the templates directory (usually
C:\Freescale\templates\<target>\prm). By employing the ‘Copy
Template’ button, the user can copy a template PRM file into the project to maintain
a local copy.

» Application Filename: The output filename is specified.
e About: Provides status and version information.

* Help: Button to open the tool help file directly.

RSO08 Build Tools Reference Manual for Microcontrollers 71

y
A

Introduction
CodeWarrior Integration

Figure 1.38 Linker Preference Panel

i g Alpha Settings [fibonacci.mcp]

21X

E Target Settings Panels ||E Linker for RS08

B Target ;I Command Line Arguments:

- Target Settings

. fpcess Paths I-W'msng‘I 100 *WmsgSd1912

- Build Extras

Messages Options

- File Mappings g | 2 |

- Source Trees [Display generated commandlines in message windaw
- OSEK Sy=gen

[~ Preproces: PRM file

assembler for RS08 7 Use Custom PRM file

IProiect.prm _I

- Burner for RS08
- Compiler for RS08

- |rmporter for RS08 ' Use PRM file from project

far R

 phzolute, Single-File Azsembly project

L Custam Keywords Application Filenarme:

O Use Template PRM file [§3PRM_FILE_NAMESS.pm v Copy Templats

IAIpha.abs _I
About | Help |
=
Factory Settingsl Fewvert | Import Panel... | Export Panel... |
QK | Cancel | Apply |

CodeWarrior Tips and Tricks

If the Simulator or Debugger cannot be launched, check the settings in the Build Extras

Preference Panel.

If the data folder of the project is deleted, then some project-related settings may also have

been deleted.

If a file cannot be added to the project, its file extension may be absent from the File

Mappings Preference Panel. Add this file’s extension to the listing in the File Mappings

Preference Panel to correct this.

If it is suspected that project data is corrupted, export and re-import the project using File

> Export Project and File > Import Project.

Figure 1.39 Compiler Log Display

Top: c:\Testib.prm

INFORMATION LzZ01Z: EReading directories of:
Jhwbintblo

ERROR LEZ104: Linking failed.
Tool returned code: 1
+ [+ Build % Debug % Findin Files 1%, Find in Files 2 % HMARE Linkar

c:ZTest\b. prm: INFORMATION L40032: Linking c:

ERROR LEZOG64: Recuired system object _main not found

-

Y Testib.prm

STl lel

72

RS08 Build Tools Reference Manual for Microcontrollers

Introduction
Integration into Microsoft Visual Studio (Visual C++ V5.0 or later)

Integration into Microsoft Visual Studio

(Visual

C++ V5.0 or later)

Use the following procedure to integrate the Tools into the Microsoft Visual Studio
(Visual C++).

1.
2.
3.

Start Visual Studio.
Select the menu Tools > Customize.
Select the Tools Tab.

. Add a new tool using the New button, or by double-clicking on the last empty entry in

the Menu contents list.

5. Type in the name of the tool to display in the menu (for example, Linker).

8.
9.

In the Command field, type in the name and path of the piper tool (for example,
C:\Freescale\prog\piper.exe.

In the Arguments field, type in the name of the tool to be started with any command
line options

(for example, -N) and the $(FilePath) Visual variable
(for example, ‘C: \Freescale\prog\linker.exe -N $(FilePath)’).
Check Use Output Window.

Uncheck Prompt for arguments.

Proceed as above for all other tools (for example, compiler, decoder).

Close the Customize dialog box (Figure 1.40).

Figure 1.40 Customize Dialog Box
Customize EHE

Commanids | Toolbars Tools | Keyboard I Add-ins and Macra Files I

enu contents: R O S <

Error Lookkup
OLE/COM Object &Viewer
EHI P

=
LCornmand: Ic: Yhiwarehproghpiper. exe J

Arguments: Ic: “hivwarehproghlinker.exe $(FilePath) 3

Initial directary: I j

v Use Output ‘window [Prompt for anguments [Cloee window on exing

Close

RSO08 Build Tools Reference Manual for Microcontrollers 73

y
A

Introduction
Integration into Microsoft Visual Studio (Visual C++ V5.0 or later)

This allows the active file to be compiled or linked in the Visual Editor

(*$ (FilePath)). Tool messages are reported in a separate Visual output window
(Figure 1.41). Double click on the output entries to jump to the right message position
(message feedback).

Figure 1.41 Visual Output Window

Top: c:WTestWb_prm -

c:hTesc b _ prm: INFORMATION L4003: Linking c:\Testhb_prm
INFOPMATION LzOlz: PBReading directories of:

Sbintb oo

ERROR Lz0eg4: Recuired system object _main not found
ERROR LZ104: Linking fajiled.

Tool returned code: 1 =
A =
A J[E % Bwild % Debug % Find in Filez 1 % Find in Files 2 % HWWARE Linkar el 3

Use the following procedure to integrate the Toolbar in Microsoft Visual Studio (Visual
C++).

1. Start Visual Studio.

Make sure that all tools are integrated as Additional Tools.
2. Select the menu Tools > Customize.
3. Select the Toolbars Tab.

4. Select New and enter a name (for example, CodeWarrior Build Tools). A new
empty toolbar named CodeWarrior Build Tools appears on your screen.

5. Select the Commands Tab.
6. In the Category drop down box, select Tools.

On the right side many ‘hammer’ tool images appear, each with a number. The number
corresponds to the entry in the Tool menu. Usually the first user-defined tool is tool
number 7. (The Linker was set up in Additional Tools above.)

7. Drag the selected tool image to the CodeWarrior Build Tools toolbar.

All default tool images look the same, making it difficult to know which tool has been
launched. Associate a name with them.

a. Right-click on a tool in the CodeWarrior Build Tools to open the context menu of
the button.

b. Select Button Appearance in the context menu.

c. Select Image and Text.

74

RS08 Build Tools Reference Manual for Microcontrollers

Introduction
Object-File Formats

d. Enter the tool name to associate with the image in Button text: (for example,
Linker).

8. Repeat the above for all the desired tools to appear in the toolbar.

9. Close the Customize dialog box after all the Build Tools are entered into the Toolbar.
This enables the tools to be started from the toolbar.

The Compiler provides the following language settings:

¢ ANSI-C: The compiler can behave as an ANSI-C compiler. It is possible to force the
compiler into a strict ANSI-C compliant mode.

* language extensions that are specially designed for more efficient embedded systems
programming.

Object-File Formats

The Compiler supports only the ELF/DWAREF object-file format. The object-file format
specifies the format of the object files (* . o extension), the library files (* . 1ib
extension), and the absolute files (* . abs extension).

NOTE Do not mix object-file formats. Both HIWARE and the ELF/DWAREF object
files use the same filename extensions. HITWARE object-file format is not
supported on the RS08.

ELF/DWARF Object-File Format

The ELF/DWAREF object-file format originally comes from the UNIX world. This format
is very flexible and is able to support extensions.

Many chip vendors define this object-file format as the standard for tool vendors
supporting their devices. This standard allows inter-tool operability making it possible to
use the compiler from one tool vendor, and the linker from another. The developer has the
choice to select the best tool in the tool chain. In addition, other third parties (for example,
emulator vendors) only have to support this object file to support a wide range of tool
vendors.

NOTE ANSI-C and Modula-2 are supported in this object-file format.

RSO08 Build Tools Reference Manual for Microcontrollers 75

3
4

y
A

Introduction
Object-File Formats

Tools

The CodeWarrior Development Studio contains the following Tools, among others:

Compiler

The same Compiler executable supports both object-file formats. Use the -F (-F2, -F20):
Object-File Format compiler option to switch the object-file format.

Note that the RS08 Compiler backend supports only the ELF/DWAREF object-file format,
not the HIWARE object-file format. Some compiler backends support one or both.

Decoder

Use the executable decoder . exe for the ELF/DWARF object-file format.

Linker

Use the executable 1inker . exe for the ELF/DWAREF object-file format.

Simulator or Debugger
The Simulator or Debugger supports the ELF/DW ARF object-file format.

Mixing Object-File Formats

Mixing HIWARE and ELF object files is not possible. HIWARE object file formats are

not supported on the RS08. Mixing ELF object files with DWARF 1.1 and DWARF 2.0
debug information is possible. However, the final generated application does not contain
any debug data.

76

RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface

The Graphical User Interface (GUI) tool provides both a simple and a powerful user
interface:

¢ Graphical User Interface

¢ Command-Line User Interface
¢ Online Help

* Error Feedback

» Easy integration into other tools (for example, the CodeWarrior IDE, CodeWright,

MS Visual Studio, or WinEdit)

This chapter describes the user interface and provides useful hints. Its major elements are:

* Launching the Compiler

¢ Tip of the Day

¢ Main Window

* Window Title

¢ Content Area

¢ Toolbar

* Status Bar

¢ Menu Bar

» Standard Types dialog box

* Option Settings dialog box

¢ Compiler Smart Control dialog box
¢ Message Settings dialog box

* About dialog box
¢ Specifying the Input File

RSO08 Build Tools Reference Manual for Microcontrollers

77

y
A

Graphical User Interface
Launching the Compiler

Launching the Compiler

Start the compiler using:
* The Windows Explorer
* An Icon on the desktop
¢ An Icon in a program group
* Batch and command files

¢ Other tools (Editor, Visual Studio, etc.)

Interactive Mode

If the compiler is started with no input (that means no options and no input files), then the
graphical user interface (GUI) is active (interactive mode). This is usually the case if the
compiler is started using the Explorer or using an Icon.

Batch Mode

If the compiler is started with arguments (options and/or input files), then it is started in
batch mode (Listing 2.1).

Listing 2.1 Specify the line associated with an icon on the desktop.

C:\Freescale\prog\crs08.exe -F2 a.c d.c

In batch mode, the compiler does not open a window. It is displayed in the taskbar only for
the time it processes the input and terminates afterwards (Listing 2.2).

Listing 2.2 Commands are entered to run as shown below.

C:\> C:\Freescale\prog\crs08.exe -F2 a.c d.c

Message output (stdout) of the compiler is redirected using the normal redirection
operators (for example, ‘>’ to write the message output to a file), as shown in Listing 2.3:

Listing 2.3 Command-line message output is redirected to a file.

C:\> C:\Freescale\prog\crs08.exe -F2 a.c d.c > myoutput.o

The command line process returns after starting the compiling process. It does not wait
until the started process has terminated. To start a process and wait for termination (for
example, for synchronization), use the start command under Windows 2000®,

78 RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
Tip of the Day

Windows XP, or Windows Vista™ operating systems, or use the /wait options (see
Windows Help help start).Using start /wait (Listing 2.4) you can write perfect
batch files.

Listing 2.4 Start a compilation process and wait for termination

C:\> start /wait C:\Freescale\prog\crs08.exe -F2 a.c d.c

Tip of the Day

When you start the application, a standard Tip of the Day (Figure 2.1) window opens
containing the last news and tips.

The Next Tip button displays the next tip about the application.

If it is not desired for the Tip of the Day window to open automatically when the
application is started, uncheck the check box Show Tips on StartUp.

NOTE This configuration entry is stored in the local project file.

To enable automatic display from the standard Tip of the Day window when the
application is started, select the entry Help > Tip of the Day. The Tip of the Day window
opens. Check the box Show Tips on Start Up.

Click Close to close the Tip of the Day window.

RSO08 Build Tools Reference Manual for Microcontrollers 79

y
A

Graphical User Interface
Main Window

Figure 2.1 Tip of the Day Dialog
x

@ Did you know...

You can alzo uze the toolbar to load or store a
configuration.

¥ Show Tips on Startlp Mext Tip | Cloge I

Main Window

This Main Window (Figure 2.2) is only visible on the screen when a filename is not

specified while starting the application. The application window provides a window title, a
menu bar, a toolbar, a content area, and a status bar.

Figure 2.2 Main Window

File Compiler “iew Help
D 2w MR =

Command Line: 'demo.c '
C:ydemo’ deno. ©
Object file: C:‘demo‘demo.o

Fr» in "Cihvdewobdewo.c™, line &, col &, pos 41
£il):
A

TWARNING C1301: Tmplicit parameter-declaration
Code 3ize: &

Froceszing ok 14:45:00

80 RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
Window Title

Window Title

The window title displays the application name and the project name. If there is no project
currently loaded, Default Configuration is displayed. An asterisk (*) after the
configuration name is present if any value has changed but has not yet been saved.

NOTE Changes to options, the Editor Configuration, and the application appearance
can make the * appear.

RSO08 Build Tools Reference Manual for Microcontrollers 81

y
A

Graphical User Interface

Content Area

Content Area

The content area is used as a text container, where logging information about the process
session is displayed. This logging information consists of:

¢ The name of the file being processed

* The whole names (including full path specifications) of the files processed (main C
file and all files included)

* An error, warning, and information message list
» The size of the code generated during the process session

When a file is dropped into the application window content area, the corresponding file is
either loaded as configuration data, or processed. It is loaded as configuration data if the
file has the * . ini extension. If the file does not contain this extension, the file is
processed with the current option settings.

All text in the application window content area can contain context information. The
context information consists of two items:

* A filename including a position inside of a file
* A message number

File context information is available for all output where a text file is considered. It is also
available for all source and include files, and for messages which do concern a specific
file. If a file context is available, double-clicking on the text or message opens this file in
an editor, as specified in the Editor Configuration. The right mouse button can also be
used to open a context menu. The context menu contains an Open entry if a file context is
available. If a file cannot be opened although a context menu entry is present, refer to

Global Initialization File (mcutools.ini).

The message number is available for any message output. There are three ways to open the
corresponding entry in the help file.

* Select one line of the message and press F1.

If the selected line does not have a message number, the main help appears.
* Press Shift-F1 and then click on the message text.

If the message text does not have a message number, the main help appears.
¢ Click with the right mouse at the message text and select Help on.

This entry is available only if a message number is available (Figure 2.3).

82

RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
Toolbar

Figure 2.3 Online Help Dialog

while (TRUE)
-

INFORMATION C4000: C

Main Help
Code Size: 142

Help on "C4000: Condition always iz TRUE"
DOpen file "fibo.c"

Top: fibo.c » _
LCopy "INFORMATION C4000; Condition always is TRUE™

Toolbar

The three buttons on the left in the Toolbar (Figure 2.4) are linked with the corresponding
entries of the File menu. The next button opens the About dialog box. After pressing the
context help button (or the shortcut Shift F'1), the mouse cursor changes its form and
displays a question mark beside the arrow. The help file is called for the next item which is
clicked. It is clicked on menus, toolbar buttons, and on the window area to get help
specific for the selected topic.

Figure 2.4 Toolbar

O =

e x| FmE || =

The command line history contains a list of the commands executed. Once a command is
selected or entered in history, clicking Compile starts the execution of the command. Use
the F2 keyboard shortcut key to jump directly to the command line. In addition, there is a
context menu associated with the command line (Figure 2.5):

* The Stop button stops the current process session.

¢ The next four buttons open the option setting, the smart slider, type setting, and the
message setting dialog box.

» The last button clears the content area (Output Window).

Figure 2.5 Command line Context Menu

| jale] ﬂ

Cut
Copy
Easfe
Delete

Selech sl

RSO08 Build Tools Reference Manual for Microcontrollers 83

'
A

Graphical User Interface

Status Bar

Status Bar

When pointing to a button in the toolbar or a menu entry, the message area displays the
function of the button or menu entry being pointed to.

Figure 2.6 Status Bar

Proceszing ok 14:48:00 Al

Menu Bar

Table 2.1 lists and describes the menus available in the menu bar (Figure 2.7):

Table 2.1 Menus in the Menu Bar

Menu Entry Description

File Contains entries to manage application configuration files.
Compiler Contains entries to set the application options.

View Contains entries to customize the application window output.
Help A standard Windows Help menu.

Figure 2.7 Menu Bar

File Compiler “iew Help

File Menu

Save or load configuration files from the File Menu (Figure 2.8). A configuration file
contains the following information:

The application option settings specified in the application dialog boxes

The Message Settings that specify which messages to display and which messages to
treat as error messages

The list of the last command line executed and the current command line being
executed

The window position

The Tips of the Day settings, including if enabled at startup and which is the current
entry

84

RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
Menu Bar

Figure 2.8 File Menu

LCarmnpile

Mew / Defaulk Configuratian Chel+h
Load Canfiguration
Save Canfiguration
Save Configuration Az ..

Chrl+01
Chl+5

Canfiguration ...
1 praoject.ini
E mit

Configuration files are text files which use the standard extension * . ini. A developer
can define as many configuration files as required for a project. The developer can also
switch between the different configuration files using the File > Load Configuration and
File > Save Configuration menu entries or the corresponding toolbar buttons.

Table 2.2 describes all the commands that are available from the File Menu:

Table 2.2 File Menu Commands

Menu entry

Description

Compile

Opens a standard Open File box. The configuration data stored
in the selected file is loaded and used by a future session.

New / Default
Configuration

Resets the application option settings to the default value. The
application options which are activated per default are specified
in section Command Line Options in this document

Load Configuration

Opens a standard Open File box. The configuration data stored
in the selected file is loaded and used by a future session.

Save Configuration

Saves the current settings.

Save Configuration
As

Opens a standard Save As box. The current settings are saved in
a configuration file which has the specified name. See Local
Configuration File (usually project.ini).

Configuration

Opens the Configuration dialog box to specify the editor used for
error feedback and which parts to save with a configuration.

RSO08 Build Tools Reference Manual for Microcontrollers 85

'
A

Graphical User Interface

Menu Bar

Table 2.2 File Menu Commands (continued)

Menu entry Description

1... project.ini Recent project list. Access this list to reopen a recent project.
2.

Exit Closes the application.

Editor Settings dialog box

The Editor Settings dialog box has a main selection entry. Depending on the main type of

editor selected, the content below changes.

These main Editor Setting entries are described on the following pages.

Global Editor configuration

The Global Editor (Figure 2.9) is shared among all tools and projects on one work station.
It is stored in the global initialization file mcutools.ini in the [Editor] section.
Some Modifiers are specified in the editor command line.

Figure 2.9 Global Editor configuration

Configuration
Editor Settings I Save Configuration | Envirarment |
@ Global Editar [Shared by all Tool: and &l Projects)
" Local Editor (Shared by all Toals)
€ Editor started with Command Line
" Editor Communicatiarn with DDE
" Codewarrior [with COM)

Editor Mame IlDF

Editor Executable IC: proghidf. exe _l

Editor Argurnents sz g%l %

uze %f for the filename, %1 for the line and %c for the column

Ok I Cancel Help

86

RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
Menu Bar

Local Editor configuration

The Local Editor (Figure 2.10) is shared among all tools using the same project file. When
an entry of the Global or Local configuration is stored, the behavior of the other tools
using the same entry also changes when these tools are restarted.

Figure 2.10 Local Editor configuration
Configuration
Editor Settings | Save Configuration | Enviranment |
" Global Editor [Shared by all Tools and all Projects)
¢ Local Editar [Shared by all Toals)
" Editor started with Command Line

" Editar Communication with DDE
' Code\Wamior [with COM)

E ditar M ame IIDF

Editor Executable Ic:\prng'\idf.exe _l

Editar &rqurments sz -g%

5]

uge Zf for the filename, % for the line and Zc for the column

QK I Cancel | Help |

Editor started with Command Line

When this editor type (Figure 2.11) is selected, a separate editor is associated with the
application for error feedback. The configured editor is not used for error feedback.
Enter the command that starts the editor.

The format of the editor command depends on the syntax. Some Modifiers are specified in
the editor command line to refer to a line number in the file. (See the Modifiers section
below.)

The format of the editor command depends upon the syntax that is used to start the editor.

RSO08 Build Tools Reference Manual for Microcontrollers 87

'
A

Graphical User Interface
Menu Bar

Figure 2.11 Editor Started with Command Line
Configuration
Editor Settings | Save Configuration | Enviranment |

" Global Editor [Shared by all Tools and all Projects)
" Local Editar [Shared by all Toals)

' Editor started with Command Line

" Editor Commurication with DD E

' Code\Wamior [with COM)

Command Line

b proghidf exe %I g%l %c |

uge Zf for the filename, % for the line and Zc for the column

QK I Cancel | Help

Examples:

For CodeWright V6.0 version, use (with an adapted path to the cw32 . exe file):
C:\CodeWright\cw32.exe %f -g%

For the WinEdit 32-bit version, use (with an adapted path to the winedit.exe file):
C:\WinEdit32\WinEdit.exe %f /#:%1

88 RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
Menu Bar

Editor Started with DDE

Enter the service and topic names and the client command for the DDE connection to the

editor (Microsoft Developer Studio [Figure 2.12] or UltraEdit-32 [Figure 2.13]). The
entries for Topic Name and Client Command can have modifiers for the filename, line
number, and column number as explained in Modifiers.

Figure 2.12 Editor Started with DDE (Microsoft Developer Studio)

Configuration E

Editor Settings | Save Configuration | Environment |
" Global Editar [Shared by all Tools and all Projects]
" Local Editor [Shared by all Tools)

" Editor started with Command Line

& Editor Communication with DDE:
" Code\warior [with COM]

Service Mame Imsdev
Topic Mame Isystem
I[open["/of]]

Client Command

uze ZF for the filename, %l for the line and Zc for the column

0k I Cancel Help

For Microsoft Developer Studio, use the settings in Listing 2.5.

Listing 2.5 .Microsoft Developer Studio configuration

Service Name : msdev
Topic Name : system
Client Command : [open(%f)]

UltraEdit-32 is a powerful shareware editor. It is available from www.idmcomp.com or
www.ultraedit.com, email idm@idmcomp.com. For UltraEdit, use the following settings

(Listing 2.6).

RSO08 Build Tools Reference Manual for Microcontrollers 89

www.idmcomp.com
www.idmcomp.com
www.idmcomp.com
www.ultraedit.com

'
A

Graphical User Interface
Menu Bar

Listing 2.6 UltraEdit-32 editor settings.

Service Name : UEDIT32
Topic Name : system
Client Command : [open("$%$f/%1/%c")]

NOTE The DDE application (e.g., Microsoft Developer Studio or UltraEdit) must be
started or the DDE communication fails.

Figure 2.13 Editor Started with DDE (UltraEdit-32)
Configuration
Editor Settings | Save Configuration | Enviranment |
" Global Editor [Shared by all Tools and all Projects)
" Local Editar [Shared by all Toals)
" Editor started with Command Line
' Editor Commurication with DD E

' Code\W amior [with COM)

Service Mame IUED|T32

Topic Mame IS-"'Stem

Client Command I[Dpen["foZIa’Xc"]]

uge Zf for the filename, % for the line and Zc for the column

QK I Cancel Help

90 RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
Menu Bar

CodeWarrior (with COM)

If CodeWarrior with COM (Figure 2.14) is enabled, the CodeWarrior IDE (registered as
COM server by the installation script) is used as the editor.
Figure 2.14 CodeWarrior (with COM)
Configuration
Editor Settings | Save Configuration | Enviranment |
" Global Editor [Shared by all Tools and all Projects)
" Local Editar [Shared by all Toals)

" Editar started with Command Line
" Editar Communication with DDE

QK I Cancel Help

RSO08 Build Tools Reference Manual for Microcontrollers 91

A 4
4\

Graphical User Interface
Menu Bar

Modifiers

The configuration must contain modifiers that instruct the editor which file to open and at
which line.

¢ The % £ modifier refers to the name of the file (including path) where the message
has been detected.

¢ The $1 modifier refers to the line number where the message has been detected.

* The $c modifier refers to the column number where the message has been detected.

NOTE The %1 modifier can only be used with an editor which is started with a line
number as a parameter. This is not the case for WinEdit version 3.1 or lower or
for the Notepad. When working with such an editor, start it with the filename
as a parameter and then select the menu entry Go to to jump on the line where
the message has been detected. In that case the editor command looks like:
C:\WINAPPS\WINEDIT\Winedit.EXE %f
Check the editor manual to define which command line to use to start the
editor.

92 RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
Menu Bar

Save Configuration dialog box

All save options are located on the second page of the configuration dialog box.

Use the Save Configuration dialog box to configure which parts of your configuration are
stored into a project file.

This Save Configuration dialog box (Figure 2.15) offers the following options:
Figure 2.15 Save Configuration dialog box
Configuration
Editor Settings Save Configuration |Enw1:n‘nert|

ltems to Save
Save |

¥ Cptions

¥ Editor Corfiguration Save As |

¥ Sppearance (Position, Size, Font)
¥ Environment Varizbles

¥ Save on Exit

All marked items are saved. Already contained, not
changed items remain valid

oK I Cancel Help

* Options
The current option and message setting is saved when a configuration is written. By
disabling this option, the last saved content remains valid.

* Editor Configuration
The current editor setting is saved when a configuration is written. By disabling this
option, the last saved content remains valid.

e Appearance

This saves topics consisting of many parts such as the window position (only loaded
at startup time) and the command line content and history. These settings are saved
when a configuration is written.

RSO08 Build Tools Reference Manual for Microcontrollers 93

A 4
4\

Graphical User Interface

Menu Bar

¢ Environment Variables

The environment variable changes done in the Environment property sheet are saved.

NOTE

By disabling selective options only some parts of a configuration file are
written. For example, when the best options are found, the save option mark is
removed. Subsequent future save commands will no longer modify the options.

* Save on Exit

The application writes the configuration on exit. No question dialog box appears to
confirm this operation. If this option is not set, the application will not write the
configuration at exit, even if options or another part of the configuration have
changed. No confirmation appears in either case when closing the application.

NOTE

NOTE

Most settings are stored in the configuration file only.
The only exceptions are:

- The recently used configuration list.

- All settings in this dialog box.

The application configurations can (and in fact are intended to) coexist in the
same file as the project configuration of UltraEdit-32. When an editor is
configured by the shell, the application reads this content out of the project file,
if present. The project configuration file of the shell is named project.ini.
This filename is also suggested (but not required) to be used by the application.

Environment Configuration Dialog Box

This Environment Configuration dialog box (Figure 2.16) is used to configure the
environment. The content of the dialog box is read from the actual project file out of the
section [Environment Variables].

The following environment variables are available (Listing 2.1):

Listing 2.7 Environment variables

General Path:
Object Path:
Text Path:
Absolute Path:
Header File Path:

GENPATH
OBJPATH
TEXTPATH
ABSPATH
LIBPATH

Various Environment Variables: other variables not mentioned above.

94

RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
Menu Bar

Figure 2.16 Environment Configuration dialog box
Configuration

Editar Settingsl Save Configuration Enviranment |

General Path

Ohiject Path

Text Path

Abzolute Path

Header File Fath

Wariouz Environment W ariablas

I${INST:ﬂ«LLF'ﬁ?«TH}'\Iib\${EF‘U}c'\Iib |

Hdd | Changel Deletel i]e] | annl

$IMS TALLPATHMiBASICPU e hlib
FINSTALLPATHIMbAHICPU chsre

0k I Cancel Help |

The following buttons are available on this dialog box (Table 2.3):

Table 2.3 Functions of the buttons on the Environment Configuration dialog box

Button Function

Add Adds a new line or entry
Change Changes a line or entry
Delete Deletes a line or entry

Up Moves a line or entry up
Down Moves a line or entry down

The variables are written to the project file only if the Save button is pressed (or use File >
Save Configuration, or CTRL-S). In addition, the environment is specified if it is to be
written to the project in the Save Configuration dialog box.

RSO08 Build Tools Reference Manual for Microcontrollers 95

'
A

Graphical User Interface

Menu Bar

Compiler Menu

This menu (Figure 2.17) enables the application to be customized. Application options are
graphically set as well as defining the optimization level.

Figure 2.17 Compiler Menu

Compiler

Standard bypez

Meszages Dptions
=1) ! O e = Smart Sliders
Table 2.4 Compiler Menu options
Menu entry Description
Options Allows you to customize the application. You can graphically set
or reset options. The next three entries are available when
Options is selected:
Standard Types Allows you to specify the size you want to associate with each
ANSI C standard type. (See Standard Types dialog box.)
Advanced Allows you to define the options which must be activated when
processing an input file. (See Option Settings dialog box.).
Smart Slider Allows you to define the optimization level you want to reach
when processing the input file. (See Compiler Smart Control
dialog box.)
Messages Opens a dialog box, where the different error, warning, or

information messages are mapped to another message class.
(See Message Settings dialog box.)

Stop Compilation

Immediately stops the current processing session.

96

RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
Menu Bar

View Menu

The View menu (Figure 2.18) enables you to customize the application window. You can
define things such as displaying or hiding the status or toolbar. You can also define the
font used in the window, or clear the window. Table 2.5 lists the View Menu options.

Figure 2.18 View Menu

v Toolbar |
v Statuzhar

==

Clear Log

Table 2.5 View Menu options

Menu entry Description

Toolbar Switches display from the toolbar in the application window.
Status Bar Switches display from the status bar in the application window.
Log Allows you to customize the output in the application window content

area. The following entries are available when Log is selected:

Change Font Opens a standard font selection box. The options selected in the font
dialog box are applied to the application window content area.

Clear Log Allows you to clear the application window content area.

RSO08 Build Tools Reference Manual for Microcontrollers 97

'
A

Graphical User Interface
Standard Types dialog box

Help Menu

The Help Menu (Figure 2.19) enables you to either display or not display the Tip of the
Day dialog box application startup. In addition, it provides a standard Windows Help entry
and an entry to an About box. Table 2.6 defines the Help Menu options:

Figure 2.19 Help Menu

Tip of the Day

Help Topics
About ..

Table 2.6 Help Menu Options

Menu entry Description

Tip of the Day Switches on or off the display of a Tip of the Day during startup.
Help Topics Standard Help topics.

About Displays an About box with some version and license information.

Standard Types dialog box

The Standard Types dialog box (Figure 2.20) enables you to define the size you want to
associate to each ANSI-C standard type. You can also use the -T: Flexible Type
Management compiler option to configure ANSI-C standard type sizes.

NOTE Notall formats may be available for a target. In addition, there has to be at least
one type for each size. For example, it is incorrect to specify all types to a size
of 32 bits. There is no type for 8 bits and 16 bits available for the Compiler.

The following rules (Listing 2.8) apply when you modify the size associated with an
ANSI-C standard type:

Listing 2.8 Size relationships for the ANSI-C standard types.

sizeof
sizeof

char) <= sizeof (short)
short) <= sizeof (int)

sizeof (long) <= sizeof(long long)

(
(
sizeof (
(
(

sizeof

(
(
int) <= sizeof (long)
(
(

float) <= sizeof (double)

98

RS08 Build Tools Reference Manual for Microcontrollers

g |

Graphical User Interface
Standard Types dialog box

sizeof (double) <= sizeof (long double)

Enumerations must be smaller than or equal to int.

The signed check box enables you to specify whether the char type must be considered
as signed or unsigned for your application.

The Default button resets the size of the ANSI C standard types to their default values.
The ANSI C standard type default values depend on the target processor.

Figure 2.20 Standard Types Dialog Box

x
ahit 1Ebit 32hit B4bit oK.
char o . . [signed _
hart . f . i Defaults |
it . f . ()
o . . i i Cancel
longlong ¢ o o) —l
EnLm & v L ¥ signed 4|Help
plain bit field ¥ signed
DSF IEEE32 IEEER4
flnat () f l
dauble () f l
lohg double () f l
lohg long double () f l

RSO08 Build Tools Reference Manual for Microcontrollers 99

'
A

Graphical User Interface
Option Settings dialog box

Option Settings dialog box

The Option Settings dialog box (Figure 2.21) enables you to set or reset application
options. The possible command line option is also displayed in the lower display area The
available options are arranged into different groups. A sheet is available for each of these
groups. The content of the list box depends on the selected sheet (not all groups may be
available). Table 2.7 lists the Option Settings dialog box selections.

Figure 2.21 Option Settings dialog box

Option Settings E2
Huost | Code Generation I teszages

Optirmizations | Dutput I [nput I Language

[1Mo integral promotion on characters

[ILaop unralling

B4 ain Dptimize Target

[|0ptimize array accesses [not available in LARGE mermary model]
[100 common subespreszion elimination

[1Dynarnic options configuration for functions (enter "optionl{option})
[1Enable inline expansion of function [enter [cgnz])

[|Dizable tree optimizer

[&Ml lazy regizter optimizations [be carefull)

-0Otlz]: Main Optirmize T arget

™ Optimize for execution ime
& Optimize for code size

QK I Cancel Help

100 RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
Option Settings dialog box

Table 2.7 Option Settings dialog box selections

Group Description

Optimizations Lists optimization options.

Output Lists options related to the output files generation (which kind of file
to generate).

Input Lists options related to the input file.

Language Lists options related to the programming language (ANSI-C)

Target Lists options related to the target processor.

Host Lists options related to the host operating system.

Code Lists options related to code generation (such as memory models or

Generation float format).

Messages Lists options controlling the generation of error messages.

Various Lists options not related to the above options.

An application option is set when its check box is checked. To obtain a more detailed
explanation about a specific option, select the option and press the F1 key or the help
button. To select an option, click once on the option text. The option text is then displayed
color-inverted. When the dialog box is opened and no option is selected, pressing the F1
key or the help button shows the help for this dialog box.

NOTE When options requiring additional parameters are selected, you can open an
edit box or an additional sub window where the additional parameter is set. For
example for the option Write statistic output to file available in the Output
sheet.

RSO08 Build Tools Reference Manual for Microcontrollers 101

'
A

Graphical User Interface
Compiler Smart Control dialog box

Compiler Smart Control dialog box

The Compiler Smart Control Dialog Box (Figure 2.22) enables you to define the
optimization level you want to reach during compilation of the input file. Five sliders are
available to define the optimization level. See Table 2.8.

Figure 2.22 Compiler Smart Control dialog box

Compiler Smart Control E2

Code Esecution Diebug Compilation Information

Denzity Speed Complesity Time Level
high

AR [B |

A | :
I - - - - —F

O -Ont AWl w2

QK I Drefaultz Cancel Help

102 RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface

Compiler Smart Control dialog box

Table 2.8 Compiler Smart Control dialog box controls

Slider

Description

Code Density

Displays the code density level expected. A high value indicates
highest code efficiency (smallest code size).

Execution Speed

Displays the execution speed level expected. A high value
indicates fastest execution of the code generated.

Debug Complexity

Displays the debug complexity level expected. A high value
indicates complex debugging. For example, assembly code
corresponds directly to the high-level language code.

Compilation Time

Displays the compilation time level expected. A higher value
indicates longer compilation time to produce the object file, e.g.,
due to high optimization.

Information Level

Displays the level of information messages which are displayed
during a Compiler session. A high value indicates a verbose
behavior of the Compiler. For example, it will inform with
warnings and information messages.

There is a direct link between the first four sliders in this window. When you move one
slider, the positions of the other three are updated according to the modification.

The command line is automatically updated with the options set in accordance with the
settings of the different sliders.

RSO08 Build Tools Reference Manual for Microcontrollers

103

'
A

Graphical User Interface
Message Settings dialog box

Message Settings dialog box

The Message Settings dialog box (Figure 2.23) enables you to map messages to a different
message class.

Some buttons in the dialog box may be disabled. (For example, if an option cannot be
moved to an Information message, the ‘Move to: Information’ button is disabled.)
Table 2.9 lists and describes the buttons available in this dialog box.

Figure 2.23 Message Settings dialog box

Message Settings |

Disabled Information I YW arning I Errar I Fatal I

C4401: Recursive comments not allowed ;I ~Mave to:

C4800: Implicit cast in assighement Dizabled |
CHA00; Incompatible pointer operation

C5702: <Marnablex: declared in function <Functions b Irformatiarn

C5300: Result is zero

CH901: Fle_sult iz ane "warning

ount iz Zemn

Error

Eddition replaced with shift Default

: Congtant switch expression
CH909: Azsignment in condition i

1] | » Reset Al

(] I Cancel | Help |

4

104 RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
Message Settings dialog box

Table 2.9 Message Settings dialog box buttons

Button

Description

Move to: Disabled

The selected messages are disabled. The message will not
occur any longer.

Move to: Information

The selected messages are changed to information
messages.

Move to: Warning

The selected messages are changed to warning messages.

Move to: Error

The selected messages are changed to error messages.

Move to: Default

The selected messages are changed to their default message
type.

Reset All Resets all messages to their default message kind.

OK Exits this dialog box and accepts the changes made.
Cancel Exits this dialog box without accepting the changes made.
Help Displays online help about this dialog box.

A panel is available for each error message class. The content of the list box depends on
the selected panel:.Table 2.10 lists the definitions for the message groups.

Table 2.10 Message Group Definitions

Message group

Description

Disabled Lists all disabled messages. That means messages displayed
in the list box will not be displayed by the application.

Information Lists all information messages. Information messages inform
about action taken by the application.

Warning Lists all warning messages. When a warning message is
generated, processing of the input file continues.

Error Lists all error messages. When an error message is
generated, processing of the input file continues.

Fatal Lists all fatal error messages. When a fatal error message is

generated, processing of the input file stops immediately.
Fatal messages cannot be changed and are only listed to call
context help.

RSO08 Build Tools Reference Manual for Microcontrollers 105

3
4

'
A

Graphical User Interface
Message Settings dialog box

Each message has its own prefix (e.g., ‘C’ for Compiler messages, ‘A’ for Assembler
messages, ‘L’ for Linker messages, ‘M’ for Maker messages, ‘LM’ for Libmaker
messages) followed by a 4- or 5-digit number. This number allows an easy search for the
message both in the manual or on-line help.

Changing the Class associated with a
Message

You can configure your own mapping of messages in the different classes. For that
purpose you can use one of the buttons located on the right hand of the dialog box. Each
button refers to a message class. To change the class associated with a message, you have
to select the message in the list box and then click the button associated with the class
where you want to move the message:

1. Click the Warning panel to display the list of all warning messages in the list box.
2. Click on the message you want to change in the list box to select the message.

3. Click Error to define this message as an error message.

NOTE Messages cannot be moved to or from the fatal error class.

NOTE The Move to buttons are active only when messages that can be moved are
selected. When one message is marked which cannot be moved to a specific
group, the corresponding Move to button is disabled (grayed).

If you want to validate the modification you have performed in the error message
mapping, close the Message Settings dialog box using the OK button. If you close it using
the Cancel button, the previous message mapping remains valid.

Retrieving Information about an Error
Message

You can access information about each message displayed in the list box. Select the
message in the list box and then click Help or the FI key. An information box is opened.
The information box contains a more detailed description of the error message, as well as
a small example of code that may have generated the error message. If several messages
are selected, a help for the first is shown. When no message is selected, pressing the F1
key or the help button shows the help for this dialog box.

106

RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
About dialog box

About dialog box

The About dialog box is opened by selecting Help>About The About box contains
information regarding your application. The current directory and the versions of subparts
of the application are also shown. The main version is displayed separately on top of the
dialog box.

Use the Extended Information button to get license information about all software
components in the same directory as that of the executable file.

Click OK to close this dialog box.

NOTE During processing, the sub-versions of the application parts cannot be
requested. They are only displayed if the application is inactive.

Specifying the Input File
There are different ways to specify the input file. During the compilation, the options are

set according to the configuration established in the different dialog boxes.

Before starting to compile a file make sure you have associated a working directory with
your editor.

Use the Command Line in the Toolbar to
Compile

The command line can be used to compile a new file and to open a file that has already
been compiled.

Compiling a new file

A new filename and additional Compiler options are entered in the command line. The
specified file is compiled as soon as the Compile button in the toolbar is selected or the
Enter key is pressed.

Compiling a file which has already been
compiled

The previously executed command is displayed using the arrow on the right side of the
command line. A command is selected by clicking on it. It appears in the command line.
The specified file is compiled as soon as the Compile button in the toolbar is clicked.

RSO08 Build Tools Reference Manual for Microcontrollers 107

3
4

y
A

Graphical User Interface
Specifying the Input File

Use the Entry File > Compile

When the menu entry File > Compile is selected, a standard open file box is displayed.
Use this to locate the file you want to compile. The selected file is compiled as soon as the
standard open file box is closed using the Open button.

Use Drag and Drop

A filename is dragged from an external application (for example the File Manager/
Explorer) and dropped into the Compiler window. The dropped file is compiled as soon as
the mouse button is released in the Compiler window. If a file being dragged has the
*.ini extension, it is considered to be a configuration and it is immediately loaded and
not compiled. To compile a C file with the * . ini extension, use one of the other
methods.

Message/Error Feedback

There are several ways to check where different errors or warnings have been detected
after compilation. Listing 2.9 lists the format of the error messages and Listing 2.10 is a
typical example of an error message.

Listing 2.9 Format of an error message

>> <FileName>, line <line number>, col <column number>, pos <absolute
position in file>

<Portion of code generating the problem>

<message class><message number>: <Message string>

Listing 2.10 Example of an error message

>> in "C:\DEMO\fibo.c", line 30, col 10, pos 428
EnableInterrupts
WHILE (TRUE) {
(
INFORMATION C4000: Condition always TRUE

See also the -WmsgFi (-WmsgFiv. -WmsgFim): Set Message Format for Interactive Mode

and -WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode

compiler options for different message formats.

108 RS08 Build Tools Reference Manual for Microcontrollers

Graphical User Interface
Specifying the Input File

Use Information from the Compiler
Window

Once a file has been compiled, the Compiler window content area displays the list of all
the errors or warnings that were detected.

Use your usual editor to open the source file and correct the errors.

Use a User-Defined Editor

You must first configure the editor you want to use for message/error feedback in the
Configuration dialog box before you begin the compile process. Once a file has been
compiled, double-click on an error message. The selected editor is automatically activated
and points to the line containing the error.

RSO08 Build Tools Reference Manual for Microcontrollers 109

A 4

4\
Graphical User Interface
Specifying the Input File
110

RS08 Build Tools Reference Manual for Microcontrollers

g |

Environment

This Chapter describes all the environment variables. Some environment variables are
also used by other tools (e.g., Linker or Assembler). Consult the respective manual for
more information.

The major sections in this chapter are:
* Current Directory
¢ Environment Macros
¢ Global Initialization File (mcutools.ini)

* Local Configuration File (usually project.ini)
¢ Paths

¢ Line Continuation
¢ Environment Variable Details

Parameters are set in an environment using environment variables. There are three ways to
specify your environment:

¢ The current project file with the [Environment Variables] section. This file may be
specified on Tool startup using the -Prod: Specify Project File at Startup option.

¢ An optional ‘default.env’ file in the current directory. This file is supported for
backwards compatibility. The filename is specified using the ENVIRONMENT:
Environment File Specification variable. Using the default.env file is not
recommended.

¢ Setting environment variables on system level (DOS level). This is not
recommended.

The syntax for setting an environment variable is (Listing 3.1):

Parameter: <KeyName>=<ParamDef>

NOTE Normally no white space is allowed in the definition of an environment
variable.

Listing 3.1 Setting the GENPATH environment variable

GENPATH=C: \INSTALL\LIB;D: \PROJECTS\TESTS; /usr/local/lib;
/home/me/my_project

RSO08 Build Tools Reference Manual for Microcontrollers 111

\
4

(

Environment
Current Directory

Parameters may be defined in several ways:
* Using system environment variables supported by your operating system.

» Putting the definitions into the actual project file in the section named [Environment
Variables].

* Putting the definitions in a file named default . env in the default directory.

NOTE The maximum length of environment variable entries in the default.env
file is 4096 characters.

¢ Putting the definitions in a file given by the value of the ENVIRONMENT system
environment variable.

NOTE The default directory mentioned above is set using the DEFAULTDIR: Default
Current Directory system environment variable.

When looking for an environment variable, all programs first search the system
environment, then the default . env file, and finally the global environment file
defined by ENVIRONMENT. If no definition is found, a default value is assumed.

NOTE The environment may also be changed using the -Env: Set Environment
Variable option.

NOTE Make sure that there are no spaces at the end of any environment variable
declaration.

Current Directory

The most important environment for all tools is the current directory. The current
directory is the base search directory where the tool starts to search for files (e.g., for the
default.env file).

The current directory of a tool is determined by the operating system or by the program
which launches another one.

* For the UNIX operating system, the current directory of an launched executable is
also the current directory from where the binary file has been started.

* For MS Windows based operating systems, the current directory definition is defined
as follows:

— If the tool is launched using the File Manager or Explorer, the current directory is
the location of the launched executable.

112

RS08 Build Tools Reference Manual for Microcontrollers

Environment
Environment Macros

— If the tool is launched using an Icon on the Desktop, the current directory is the
one specified and associated with the Icon.

— If the tool is launched by another launching tool with its own current directory
specification (e.g., an editor), the current directory is the one specified by the
launching tool (e.g., current directory definition).

* For the tools, the current directory is where the local project file is located. Changing
the current project file also changes the current directory if the other project file is in

a different directory. Note that browsing for a C file does not change the current

directory.

To overwrite this behavior, use the environment variable DEFAULTDIR: Default Current
Directory.

The current directory is displayed, with other information, using the -V: Prints the
Compiler Version compiler option and in the About dialog box.

Environment Macros

You can use macros in your environment settings (Listing 3.2).

Listing 3.2 Using Macros for setting environment variables

MyVAR=C: \test
TEXTPATH=$ (MyVAR) \txt
OBJPATH=$ {MyVAR} \obj

In the example above, TEXTPATH is expanded to C: \test\txt and OBJPATH is
expanded to C: \test\obj. Youcanuse $ () or ${}. However, the referenced variable
must be defined.

Special variables are also allowed (special variables are always surrounded by {} and
they are case-sensitive). In addition, the variable content contains the directory separator
*\ ’. The special variables are:
e {Compiler}
That is the path of the executable one directory level up if the executable is
C:\Freescale\prog\linker.exe, and the variable is C: \Freescale\.
e {Project}
Path of the current project file. This is used if the current project file is
C:\demo\project.ini, and the variable contains C: \demo\.
e {System}
This is the path where your Windows system is installed, e.g., C: \WINNT\.

RSO08 Build Tools Reference Manual for Microcontrollers 113

y
A

Environment
Global Initialization File (mcutools.ini)

Global Initialization File (mcutools.ini)

All tools store some global data into the file mcutools. ini. The tool first searches for
the mcutools. ini file in the directory of the tool itself (path of the executable). If there
isnomcutools. ini file in this directory, the tool looks for an mcutools. ini file in
the MS Windows installation directory (e.g., C : \WINDOWS).

Listing 3.3 Typical Global Initialization File Locations

C: \WINDOWS\mcutools.ini
D:\INSTALL\prog\mcutools.ini

If a tool is started in the D: \INSTALL\prog directory, the project file that is used is
located in the same directory as the tool (D: \INSTALL\prog\mcutools.ini).

If the tool is started outside the D: \INSTALL\prog directory, the project file in the
Windows directory is used (C: \WINDOWS\mcutools. ini).

Global Configuration File Entries documents the sections and entries you can include in
the mcutools.ini file.

Local Configuration File (usually project.ini)

All the configuration properties are stored in the configuration file. The same
configuration file is used by different applications.

The shell uses the configuration file with the name project.ini in the current
directory only. When the shell uses the same file as the compiler, the Editor Configuration
is written and maintained by the shell and is used by the compiler. Apart from this, the
compiler can use any filename for the project file. The configuration file has the same
format as the windows * . ini files. The compiler stores its own entries with the same
section name as those in the global mcutools.ini file. The compiler backend is encoded
into the section name, so that a different compiler backend can use the same file without
any overlapping. Different versions of the same compiler use the same entries. This plays
arole when options, only available in one version, must be stored in the configuration file.
In such situations, two files must be maintained for each different compiler version. If no
incompatible options are enabled when the file is last saved, the same file may be used for
both compiler versions.

The current directory is always the directory where the configuration file is located. If a
configuration file in a different directory is loaded, the current directory also changes.
When the current directory changes, the entire default . env file is reloaded. When a
configuration file is loaded or stored, the options in the environment variable
COMPOPTIONS are reloaded and added to the project options. This behavior is noticed

114

RS08 Build Tools Reference Manual for Microcontrollers

Environment
Paths

when different default.env files exist in different directories, each containing incompatible
options in the COMPOPTIONS variable.

When a project is loaded using the first default.env, its COMPOPTIONS are added to the
configuration file. If this configuration is stored in a different directory where a
default.env exists with incompatible options, the compiler adds options and remarks
the inconsistency. You can remove the option from the configuration file with the option
settings dialog box. You can also remove the option from the default.env with the shell or
a text editor, depending which options are used in the future.

At startup, there are two ways to load a configuration:

» Use the -Prod: Specify Project File at Startup command line option

¢ The project.ini file in the current directory.

If the -Prod option is used, the current directory is the directory the project file is in. If
the —-Prod option is used with a directory, the project.ini file in this directory is loaded.

Local Configuration File Entries documents the sections and entries you can include in a
project.ini file.

Paths

A path list is a list of directory names separated by semicolons. Path names are declared
using the following EBNF syntax (Listing 3.4).

Listing 3.4 EBNF path syntax

PathList = DirSpec {";" DirSpec}.
DirSpec = ["*"] DirectoryName.

Most environment variables contain path lists directing where to look for files (Listing
3.5).

Listing 3.5 Environment variable path list with four possible paths.

GENPATH=C: \INSTALL\LIB;D: \PROJECTS\TESTS; /usr/local/lib;
/home/me/my_project

If a directory name is preceded by an asterisk (*), the program recursively searches that
entire directory tree for a file, not just the given directory itself. The directories are
searched in the order they appear in the path list.

RSO08 Build Tools Reference Manual for Microcontrollers 115

y
A

Environment
Line Continuation

Listing 3.6 Setting an environment variable using recursive searching

LIBPATH=*C:\INSTALL\LIB

NOTE Some DOS environment variables (like GENPATH, LIBPATH, etc.) are used.

Line Continuation

It is possible to specify an environment variable in an environment file (default.env)
over different lines using the line continuation character \’ (see Listing 3.7).

Listing 3.7 Specifying an environment variable using line continuation characters

OPTIONS=\
-w2 \
-Wpd

This is the same as:

OPTIONS=-W2 -Wpd

But this feature may not work well using it together with paths, e.g.:

GENPATH=. \

TEXTFILE=.\txt

This results in:

GENPATH=.TEXTFILE=.\txt

To avoid such problems, use a semicolon ’ ; * at the end of a path if there is a *\ ’ at the

end (Listing 3.8):

Listing 3.8 Using a semicolon to allow a multiline environment variable

GENPATH=.\;
TEXTFILE=.\txt

116 RS08 Build Tools Reference Manual for Microcontrollers

Environment
Environment Variable Details

Environment Variable Details

The remainder of this chapter describes each of the possible environment variables. Table
3.1 lists these description topics in their order of appearance for each environment
variable.

Table 3.1 Environment Variables—documentation topics

Topic Description
Tools Lists tools that use this variable.
Synonym A synonym exists for some environment variables. Those synonyms may

be used for older releases of the Compiler and will be removed in the
future. A synonym has lower precedence than the environment variable.

Syntax Specifies the syntax of the option in an EBNF format.

Arguments Describes and lists optional and required arguments for the variable.

Default Shows the default setting for the variable or none.

Description | Provides a detailed description of the option and how to use it.

Example Gives an example of usage, and the effects of the variable where
possible. The example shows an entry in the default.env for a PC.

See also Names related sections.

COMPOPTIONS: Default Compiler Options

Tools

Compiler

Synonym
HICOMPOPTIONS

Syntax
COMPOPTIONS={<option>}

Arguments

<option>: Compiler command-line option

RSO08 Build Tools Reference Manual for Microcontrollers 117

y
A

Environment
Environment Variable Details

Default

None

Description

If this environment variable is set, the Compiler appends its contents to its
command line each time a file is compiled. Use this variable to specify global

options for every compilation. This frees you from having to specify them for
every compilation.

NOTE Itis not recommended to use this environment variable if the Compiler used is
version 5.x, because the Compiler adds the options specified in the
COMPOPTIONS variable to the options stored in the project.ini file.

Listing 3.9 Setting default values for environment variables (not recommended)

COMPOPTIONS=-W2 -Wpd

See also

Compiler Options

COPYRIGHT: Copyright entry in object file

Tools

Compiler, Assembler, Linker, or Librarian
Synonym

None

Syntax

COPYRIGHT=<copyright>

Arguments

<copyright>: copyright entry

Default

None

118 RS08 Build Tools Reference Manual for Microcontrollers

Environment
Environment Variable Details

Description
Each object file contains an entry for a copyright string. This information is
retrieved from the object files using the decoder.

Example

COPYRIGHT=Copyright by Freescale

See also
environmental variables:
¢ USERNAME: User Name in Object File
¢ INCLUDETIME: Creation Time in Object File

DEFAULTDIR: Default Current Directory

Tools

Compiler, Assembler, Linker, Decoder, Debugger, Librarian, Maker, or Burner
Synonym

None

Syntax

DEFAULTDIR=<directory>

Arguments

<directory>: Directory to be the default current directory

Default

None

Description

Specifies the default directory for all tools. All the tools indicated above will take
the specified directory as their current directory instead of the one defined by the
operating system or launching tool (e.g., editor).

RSO08 Build Tools Reference Manual for Microcontrollers 119

y
A

Environment
Environment Variable Details

NOTE This is an environment variable on a system level (global environment
variable). It cannot be specified in a default environment file
(default.env).

Specifying the default directory for all tools in the CodeWarrior suite:
DEFAULTDIR=C: \INSTALL\PROJECT
See also

Current Directory
Global Initialization File (mcutools.ini)

ENVIRONMENT: Environment File Specification

Tools
Compiler, Linker, Decoder, Debugger, Librarian, Maker, or Burner
Synonym

HIENVIRONMENT

Syntax
ENVIRONMENT=<file>

Arguments
<file>: filename with path specification, without spaces

Default

None

Description

This variable is specified on a system level. The application looks in the current
directory for an environment file named default.env. Using ENVIRONMENT (e.g.,
set in the autoexec.bat (DOS) or * . cshrc (UNIX)), a different filename
may be specified.

NOTE This is a system level environment variable (global environment variable). It
cannot be specified in a default environment file (default . env).

120 RS08 Build Tools Reference Manual for Microcontrollers

Environment
Environment Variable Details

Example
ENVIRONMENT=\Freescale\prog\global.env

ERROREFILE: Error filename Specification

Tools

Compiler, Assembler, Linker, or Burner

Synonym

None

Syntax

ERRORFILE=<filename>

Arguments

<filename>: filename with possible format specifiers

Description

The ERRORFILE environment variable specifies the name for the error file.

Possible format specifiers are:

%$n : Substitute with the filename, without the path.
%p : Substitute with the path of the source file.

% : Substitute with the full filename, i.e., with the path and name (the same as
20%
p3n).

A notification box is shown in the event of an improper error filename.

Examples

ERRORFILE=MyErrors.err

Lists all errors into the MyErrors . err file in the current directory.

ERRORFILE=\tmp\errors

Lists all errors into the errors file in the \ tmp directory.

ERRORFILE=%f.err

Lists all errors into a file with the same name as the source file, but with the * . err
extension, into the same directory as the source file. If you compile a file such as

RSO08 Build Tools Reference Manual for Microcontrollers 121

3
4

y
A

Environment
Environment Variable Details

sources\test.c, an error list file, \sources\test.err, is generated.
ERRORFILE=\dirl\%n.err

For a source file such as test . c, an error list file with the name
\dirl\test.err is generated.

ERRORFILE=%p\errors.txt

For a source file such as \dirl\dir2\test.c, an error list file with the name
\dirl\dir2\errors. txt is generated.

If the ERRORFILE environment variable is not set, the errors are written to the
EDOUT file in the current directory.

GENPATH: #include “File” Path

Tools

Compiler, Linker, Decoder, Debugger, or Burner

Synonym

HIPATH

Syntax
GENPATH= {<path>}

Arguments

<path>: Paths separated by semicolons, without spaces

Default

Current directory

Description

If a header file is included with double quotes, the Compiler searches first in the
current directory, then in the directories listed by GENPATH, and finally in the
directories listed by LIBRARYPATH.

NOTE If a directory specification in this environment variable starts with an asterisk
(*), the whole directory tree is searched recursively depth first, i.e., all
subdirectories and their subdirectories and so on are searched. Search order of
the subdirectories is indeterminate within one level in the tree.

122

RS08 Build Tools Reference Manual for Microcontrollers

Environment
Environment Variable Details

Example

GENPATH=\sources\include;..\..\headers;\usr\localllib

See also
LIBRARYPATH: ‘include <File>" Path environment variable

INCLUDETIME: Creation Time in Object File

Tools

Compiler, Assembler, Linker, or Librarian

Synonym

None

Syntax
INCLUDETIME:(ON|OFF)

Arguments
ON: Include time information into object file

OFF: Do not include time information into object file

Default
ON

Description

Each object file contains a time stamp indicating the creation time and data as
strings. Whenever a new file is created by one of the tools, the new file gets a new
time stamp entry.

This behavior may be undesired if (for Software Quality Assurance reasons) a
binary file compare has to be performed. Even if the information in two object files
is the same, the files do not match exactly as the time stamps are not identical. To
avoid such problems, set this variable to OFF. In this case, the time stamp strings in
the object file for date and time are “none” in the object file.

The time stamp is retrieved from the object files using the decoder.

Example
INCLUDETIME=0OFF

RSO08 Build Tools Reference Manual for Microcontrollers 123

y
A

Environment
Environment Variable Details

See also
Environment variables:
e COPYRIGHT: Copyright entry in object file
e USERNAME: User Name in Object File

LIBRARYPATH: ‘include <File>’ Path

Tools
Compiler, ELF tools (Burner, Linker, or Decoder)

Synonym
LIBPATH

Syntax
LIBRARYPATH={<path>}
Arguments
<path>: Paths separated by semicolons, without spaces

Default

Current directory

Description

If a header file is included with double quotes, the Compiler searches first in the
current directory, then in the directories given by GENPATH: #include “File” Path
and finally in the directories given by LIBRARYPATH.

NOTE If a directory specification in this environment variable starts with an asterisk
(*), the whole directory tree is searched recursively depth first, i.e., all
subdirectories and their subdirectories and so on are searched. Search order of
the subdirectories is indeterminate within one level in the tree.

Example

LIBRARYPATH=\sources\include; .\ . \headers;\usr\localllib

124 RS08 Build Tools Reference Manual for Microcontrollers

Environment
Environment Variable Details

See also
Environment variables:
¢ GENPATH: #include “File” Path
e USELIBPATH: Using LIBPATH Environment Variable
¢ Input Files

OBJPATH: Object File Path

Tools

Compiler, Linker, Decoder, Debugger, or Burner

Synonym

None

Syntax
OBJPATH=<path>

Default

Current directory

Arguments

<path>: Path without spaces

Description

If the Compiler generates an object file, the object file is placed into the directory
specified by OBJPATH. If this environment variable is empty or does not exist, the
object file is stored into the path where the source has been found.

If the Compiler tries to generate an object file specified in the path specified by this
environment variable but fails (e.g., because the file is locked), the Compiler issues
an error message.

If a tool (e.g., the Linker) looks for an object file, it first checks for an object file
specified by this environment variable, then in GENPATH: #include “File” Path
and finally in HIPATH.

Example

OBJPATH=\sources\obj

RSO08 Build Tools Reference Manual for Microcontrollers 125

y
A

Environment
Environment Variable Details

See also
Output Files

TEXTPATH: Text File Path

Tools
Compiler, Linker, or Decoder

Synonym

None

Syntax

TEXTPATH=<path>

Arguments

<path>: Path without spaces

Default

Current directory

Description

If the Compiler generates a textual file, the file is placed into the directory
specified by TEXTPATH. If this environment variable is empty or does not exist,
the text file is stored into the current directory.

Example

TEXTPATH=\sources\txt

See also
Output Files
Compiler options:
e -Li: List of Included Files
e -Lm: List of Included Files in Make Format
e -Lo: Object File List

126 RS08 Build Tools Reference Manual for Microcontrollers

Environment
Environment Variable Details

TMP: Temporary Directory

Tools

Compiler, Assembler, Linker, Debugger, or Librarian

Synonym

None

Syntax

TMP=<directory>

Arguments

<directory>: Directory to be used for temporary files

Default

None

Description

If a temporary file must be created, the ANSI function, tmpnam (), is used. This
library function stores the temporary files created in the directory specified by this
environment variable. If the variable is empty or does not exist, the current
directory is used. Check this variable if you get the error message “Cannot create
temporary file”.

NOTE This is an environment variable on a system level (global environment
variable). It cannot be specified in a default environment file
(default.env).

Example
TMP=C: \TEMP

See also
Current Directory

RSO08 Build Tools Reference Manual for Microcontrollers 127

y
A

Environment
Environment Variable Details

USELIBPATH: Using LIBPATH Environment Variable

Tools

Compiler, Linker, or Debugger
Synonym

None

Syntax

USELIBPATH= (OFF|ON|NO|YES)

Arguments

ON, YES: The environment variable LIBRARYPATH is used by the Compiler to
look for system header files <* . h>.

NO, OFF: The environment variable LIBRARYPATH is not used by the Compiler.

Default
ON

Description

This environment variable allows a flexible usage of the LIBRARYPATH
environment variable as the LIBRARYPATH variable might be used by other
software (e.g., version management PVCS).

Example
USELIBPATH=ON

See also
LIBRARYPATH: ‘include <File>" Path environment variable

128 RS08 Build Tools Reference Manual for Microcontrollers

Environment
Environment Variable Details

USERNAME: User Name in Object File

Tools

Compiler, Assembler, Linker, or, Librarian

Synonym

None

Syntax

USERNAME=<user>

Arguments

<user>: Name of user

Default

None

Description
Each object file contains an entry identifying the user who created the object file.
This information is retrievable from the object files using the decoder.
Example

USERNAME=The Master

See also
environment variables:
e COPYRIGHT: Copyright entry in object file
* INCLUDETIME: Creation Time in Object File

RSO08 Build Tools Reference Manual for Microcontrollers 129

A 4
4\

Environment
Environment Variable Details

130 RS08 Build Tools Reference Manual for Microcontrollers

Files

This chapter describes input and output files and file processing.

 Input Files
* Output Files
¢ File Processing

Input Files

The following input files are described:
* Source Files

¢ Include Files

Source Files

The frontend takes any file as input. It does not require the filename to have a special
extension. However, it is suggested that all your source filenames have the * . ¢ extension
and that all header files use the * .h extension. Source files are searched first in the
Current Directory and then in the GENPATH: #include “File” Path directory.

Include Files

The search for include files is governed by two environment variables: GENPATH:
#include “File” Path and LIBRARYPATH: ‘include <File>" Path. Include files that are
included using double quotes as in:

#include "test.h"

are searched first in the current directory, then in the directory specified by the -1: Include
File Path option, then in the directories given in the GENPATH: #include “File” Path
environment variable, and finally in those listed in the LIBPATH or LIBRARYPATH:
‘include <File>’ Path environment variable. The current directory is set using
the IDE, the Program Manager, or the DEFAULTDIR: Default Current Directory
environment variable.

Include files that are included using angular brackets as in

#include <stdio.h>

RSO08 Build Tools Reference Manual for Microcontrollers 131

y
A

Files
Output Files

are searched for first in the current directory, then in the directory specified by the -I
option, and then in the directories given in LIBPATH or LIBRARYPATH. The current
directory is set using the IDE, the Program Manager, or the DEFAULTDIR environment
variable.

Output Files

The following output files are described:

¢ Object Files
¢ Error Listing

Object Files

After successful compilation, the Compiler generates an object file containing the target
code as well as some debugging information. This file is written to the directory listed in
the OBJPATH: Object File Path environment variable. If that variable contains more than
one path, the object file is written in the first listed directory. If this variable is not set, the
object file is written in the directory the source file was found. Object files always get the
extension *.0.

Error Listing

If the Compiler detects any errors, it does not create an object file. Rather, it creates an
error listing file named err . txt. This file is generated in the directory where the source
file was found (also see ERRORFILE: Error filename Specification).

If the Compiler’s window is open, it displays the full path of all header files read. After
successful compilation the number of code bytes generated and the number of global
objects written to the object file are also displayed.

If the Compiler is started from an IDE (with '$f ' given on the command line) or
CodeWright (with ' %b%e "' given on the command line), this error file is not produced.
Instead, it writes the error messages in a special format in a file called EDOUT using the
Microsoft format by default. You may use the CodeWrights’s Find Next Error command
to display both the error positions and the error messages.

Interactive Mode (Compiler Window Open)

If ERRORFILE is set, the Compiler creates a message file named as specified in this
environment variable.

If ERRORFILE is not set, a default file named err . txt is generated in the current
directory.

132

RS08 Build Tools Reference Manual for Microcontrollers

Files

File Processing

Batch Mode (Compiler Window not Open)

If ERRORFILE is set, the Compiler creates a message file named as specified in this
environment variable.

If ERRORFILE is not set, a default file named EDOUT is generated in the current
directory.

File Processing

Figure 4.1 shows how file processing occurs with the Compiler:

Figure 4.1 Files used with the Compiler

1
2

L b =

e La b =

. current dir
. GENPATH

. current dir
. Option -I
.LIBPATH

. current dir
. Option -I

. GENPATH
. LIBPATH

.C
.CPpP
LCXX

1. OBJPATH

2. Source file path

.0

< h>

Compiler

T
I

file

RSO08 Build Tools Reference Manual for Microcontrollers

133

A 4
4\

Files
File Processing

134 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options

The major sections of this chapter are:

* Option Recommendation: Advice about the available compiler options.

» Compiler Option Details: Description of the layout and format of the compiler
command-line options that are covered in the remainder of the chapter.

The Compiler provides a number of Compiler options that control the Compiler’s
operation. Options consist of a minus sign or dash (-), followed by one or more letters or
digits. Anything not starting with a dash or minus sign is the name of a source file to be
compiled. You can specify Compiler options on the command line or in the
COMPOPTIONS variable. Each Compiler option is specified only once per compilation.

Command line options are not case-sensitive, e.g., —Li is the same as -11.

NOTE Itis not possible to coalesce options in different groups, e.g., -Cc -L1i cannot
be abbreviated by the terms —Cci or —-CcLi.

Another way to set the compiler options is to use the RSO8 Compiler Option Settings
dialog box (Figure 5.1).

NOTE Do not use the COMPOPTIONS environment variable if the GUI is used. The
Compiler stores the options in the project.ini file, not in the
default.env file.

RSO08 Build Tools Reference Manual for Microcontrollers 135

A
4

4
A

Compiler Options

Figure 5.1 Option Settings dialog box

RS08 Compiler Option Settings ﬂ
Host | Code Generation | Meszages |
Optimizations | Output I |mput | Language
[1Mo integral promotion on characters “
L. i
I arc
-Functio
[JAlias analysis options
[|Generate always near callz
[1Dizable mid level optimizations
[Dizable mid level branch optimizations
[1Dynamic options configuration for functions
Ciniining =l
-Otis]: b ain Optimize T argst
" Dptimize for execution tine
" Optimize for code size
D__NO_FLOAT_ -Ms Os =
L]
ak. I Cancel | Help |

The RS08 Compiler Message Settings dialog box, shown in Figure 5.2, may also be used

to move messages (-Wmsg options).

Figure 5.2 RS08 Compiler Message Settings dialog box

RS08 Compiler Message Settings

Disabledl Information “arning | Error I Fatal I

CB1: Cannat open statiztic log file “<file>' -
C53 Meszage <Meszagelds iz not used by thiz wersior
C1007: Multiple const declaration makes no sense
C1002: Multiple volatile declaration makes no zenze
C100E: llleqal storage class

C1013 0Id ghyle declaration

C1020: Incompatible tppe to previous declaration (four
1038 Cannot be friend of myzelf

C1042: Multiple virtual declaration makes no zense
C1045: <Special_Member_Function: not generated
C1047: Local compiler generated <ldent> not supparte

C1072: Redefined extermn to static
'l|

C110E: Mon-standard bitfield type

l

 Move to:
[Dizabled

i

Ifarmation
YA arming

Errar

Default

[ogai |
Reset Al |

o |

Cahicel |

Help

136

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Option Recommendation

Option Recommendation

Depending on the compiled sources, each Compiler optimization may have its advantages
or disadvantages. The following are recommended:

¢ -Wpd: Error for Implicit Parameter Declaration

The default configuration enables most optimizations in the Compiler. If they cause
problems in your code (e.g., they make the code hard to debug), switch them off (these
options usually have the -On prefix). Candidates for such optimizations are peephole
optimizations.

Some optimizations may produce more code for some functions than for others (e.g.,
-Oi: Inlining or -Cu: Loop Unrolling). Try those options to get the best result for each.

To acquire the best results for each function, compile each module with the -OdocF:

Dynamic Option Configuration for Functions option. An example for this option is
-OdocF="-0r".

For compilers with the ICG optimization engine, the following option combination
provides the best results:

-Ona -OdocF="-Onca|-One|-0Or"

RSO08 Build Tools Reference Manual for Microcontrollers 137

'
A

Compiler Options
Compiler Option Details

Compiler Option Details

Option Groups

Compiler options are grouped by:

* HOST

* LANGUAGE

* OPTIMIZATIONS
* CODE GENERATION

« OUTPUT

e INPUT

e TARGET

« MESSAGES

* VARIOUS

¢ STARTUP
See Table 5.1.

A special group is the STARTUP group: The options in this group cannot be specified
interactively; they can only be specified on the command line to start the tool.

Table 5.1 Compiler option groups

Group Description
HOST Lists options related to the host
LANGUAGE Lists options related to the programming language (e.g., ANSI-C)

OPTIMIZATIONS

Lists optimization options

OUTPUT Lists output file generation options (types of file generated)
INPUT Lists options related to the input file

CODE Lists options related to code generation (memory models, float
GENERATION format, etc.)

TARGET Lists options related to the target processor

MESSAGES Lists options controlling error message generation

VARIOUS Lists various options

STARTUP Options specified only on tool startup

138

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

The group corresponds to the property sheets of the graphical option settings.

NOTE Not all command line options are accessible through the property sheets as they
have a special graphical setting (e.g., the option to set the type sizes).

Option Scopes

Each option has also a scope. See Table 5.2.

Table 5.2 Option Scopes

Scope Description

Application The option has to be set for all files (Compilation Units) of an
application. A typical example is an option to set the memory
model. Mixing object files will have unpredictable results.

Compilation Unit This option is set for each compilation unit for an application
differently. Mixing objects in an application is possible.

Function The option may be set for each function differently. Such an option
may be used with the option: "-0docF=" “<option>".

None The option scope is not related to a specific code part. A typical
example are the options for the message management.

The available options are arranged into different groups. A sheet is available for each of
these groups. The content of the list box depends on the selected sheets.

RSO08 Build Tools Reference Manual for Microcontrollers 139

y
A

Compiler Options
Compiler Option Details

Option Detail Description

The remainder of this section describes each of the Compiler options available for the
Compiler. The options are listed in alphabetical order. Each is divided into several
sections listed in Table 5.3.

Table 5.3 Compiler Option—Documentation Topics

Topic Description

Group HOST, LANGUAGE, OPTIMIZATIONS, OUTPUT, INPUT, CODE
GENERATION, MESSAGES, or VARIOUS.

Scope Application, Compilation Unit, Function or None

Syntax Specifies the syntax of the option in an EBNF format

Arguments Describes and lists optional and required arguments for the option

Default Shows the default setting for the option
Defines List of defines related to the compiler option
Pragma List of pragmas related to the compiler option

Description Provides a detailed description of the option and how to use it

Example Gives an example of usage, and effects of the option where possible.
compiler settings, source code and Linker PRM files are displayed where
applicable. The example shows an entry in the default.env for a PC.

See also Names related options

140 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Using Special Modifiers

With some options, it is possible to use special modifiers. However, some modifiers may
not make sense for all options. This section describes those modifiers.

Table 5.4 lists the supported modifiers.

Table 5.4 Compiler Option Modifiers

Modifier | Description
P Path including file separator
N Filename in strict 8.3 format
%n Filename without extension
%E Extension in strict 8.3 format
%e Extension
3£ Path + filename without extension
%" A double quote (“) if the filename, the path or the extension contains a
space
%’ A single quote (‘) if the filename, the path or the extension contains a space
% (ENV) Replaces it with the contents of an environment variable
%% Generates a single ‘%’
Examples

For the following examples, the actual base filename for the modifiers is:
C:\Freescale\my demo\TheWholeThing.myEXt.

%p gives the path only with a file separator:

C:\Freescale\my demo\

%N results in the filename in 8.3 format (that is, the name with only eight characters):
TheWhole

%n returns just the filename without extension:

TheWholeThing

%E gives the extension in 8.3 format (that is, the extension with only three characters)
myE

%e is used for the whole extension:

RSO08 Build Tools Reference Manual for Microcontrollers 141

A 4
4\

Compiler Options
Compiler Option Details

myExt
% £ gives the path plus the filename:
C:\Freescale\my demo\TheWholeThing

Because the path contains a space, using $" or '’ is recommended: Thus, $"%$£%"
results in: (using double quotes)

"C:\Freescale\my demo\TheWholeThing"
where %’ $£% ' results in: (using single quotes)
‘C:\Freescale\my demo\TheWholeThing’

% (envVariable) uses an environment variable. A file separator following after

% (envVariable) is ignored if the environment variable is empty or does not exist. In other
words, if TEXTPATH is set to: TEXTPATH=C: \Freescale\txt,

% (TEXTPATH) \myfile. txt is replaced with:

C:\Freescale\txt\myfile.txt

But if TEXTPATH does not exist or is empty, % (TEXTPATH) \myfile. txt is set to:
myfile.txt

A %% may be used to print a percent sign. Using $e%% results in:

myExt%

-I: filenames to DOS length

Group
INPUT

Scope

Compilation Unit

Syntax

Arguments

None

Default

None

142 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Defines

None

Pragmas

None

Description

This option, called cut, is very useful when compiling files copied from an
MS-DOS file system. filenames are clipped to DOS length (eight characters).

Listing 5.1 Example of the cut option, -!

The cut option truncates the following include directive:
#include "mylongfilename.h"

to:

#include "mylongfi.h"

-Addincl: Additional Include File

Group
INPUT

Scope

Compilation Unit

Syntax
-AddIncl”<fileName>"

Arguments

<fileName>: name of the included file

Default

None

Defines

None

RSO08 Build Tools Reference Manual for Microcontrollers 143

y
A

Compiler Options
Compiler Option Details

Pragmas

None

Description

Includes the specified file at the beginning of the compilation unit. It has the same
effect as if written at the beginning of the compilation unit using double quotes

(",
#include "my headerfile.h"

Example

See Listing 5.2 for the ~-AddIncl compiler option that includes the above header
file.

Listing 5.2 -AddIncl example

-AddIncl"my headerfile.h"

See also

-I: Include File Path compiler option

-Ansi: Strict ANSI

Group
LANGUAGE

Scope

Function

Syntax

-Ansi

Arguments

None

Default

None

144 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Defines
__STDC___

Pragmas

None

Description

The -Ansi option forces the Compiler to follow strict ANSI C language
conversions. When -Ans1 is specified, all non ANSI-compliant keywords (e.g.,
__asm,___farand__near) are not accepted by the Compiler, and the Compiler
generates an error.

The ANSI-C compiler also does not allow C++ style comments (those started with
/ /). To allow C++ comments, even with -Ans1i set, the -Cppc: C++ Comments in
ANSI-C compiler option must be set.

The asm keyword is also not allowed if ~Ansi is set. To use inline assembly,
even with -Ansi set, use __asm instead of asm.

The Compiler defines ___STDC___ as 1 if this option is set, or as 0 if this option is
not set.

-BfaB: Bitfield Byte Allocation

Group
CODE GENERATION

Scope

Function

Syntax
-BfaB (MS|LS)

Arguments
MS: Most significant bit in byte first (left to right)
LS: Least significant bit in byte first (right to left)

Default
-BfaBLS

RSO08 Build Tools Reference Manual for Microcontrollers 145

y
A

Compiler Options
Compiler Option Details

Defines
_ BITFIELD_ _MSWORD_FIRST
_ BITFIELD_LSWORD_FIRST
_ BITFIELD MSBYTE_FIRST
_ BITFIELD_LSBYTE_FIRST
_ BITFIELD _MSBIT FIRST_
_ BITFIELD_LSBIT FIRST_

Pragmas

None

Description
Normally, bits in byte bitfields are allocated from the least significant bit to the
most significant bit. This produces less code overhead if a byte bitfield is allocated
only partially.

Example
Listing 5.3 uses the default condition and uses the three least significant bits.

Listing 5.3 Example struct used for the next listing

struct {unsigned char b: 3; } B;
// the default is using the 3 least significant bits

This allows just a mask operation without any shift to access the bitfield.

To change this allocation order, you can use the -BfaBMS or -BfaBLS options,
shown in the Listing 5.4.

Listing 5.4 Examples of changing the bitfield allocation order

struct {

char bl:
char Db2:
char Db3:
char b4:
char Db5:
} myBitfie

1;
1;
1;
1;
1
1

d;

146

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

|b1|b2|b3|b4 |b5 | ####| (-BfaBMS)
7 0
| ##4## | b5 |b4 |b3 |b2|bl| (-BfaBLS)
See also
Bitfield Allocation

-BfaGapLimitBits: Bitfield Gap Limit

Group
CODE GENERATION

Scope

Function

Syntax

-BfaGapLimitBits<number>

Arguments

<number>: positive number specifying the maximum number of bits for a gap

Default
0

Defines

None

Pragmas

None

Description

The bitfield allocation tries to avoid crossing a byte boundary whenever possible.
To achieve optimized accesses, the compiler may insert some padding or gap bits

RSO08 Build Tools Reference Manual for Microcontrollers 147

y
A

Compiler Options
Compiler Option Details

to reach this. This option enables you to affect the maximum number of gap bits
allowed.

Example

In the example in Listing 5.5, it is assumed that you have specified a 3-bit
maximum gap, i.e., -BfaGapLimitBits3.

Listing 5.5 Bitfield allocation

struct {
unsigned char a: 7;
unsigned char b: 5;
unsigned char c: 4;
} B;

The compiler allocates struct B with three bytes. First, the compiler allocates the
seven bits of a. Then the compiler tries to allocate the five bits of b, but this would
cross a byte boundary. Because the gap of one bit is smaller than the specified gap
of three bits, b is allocated in the next byte. Then the allocation starts for c. After
the allocation of b there are three bits left. Because the gap is three bits, c is
allocated in the next byte. If the maximum gap size were specified to zero, all 16
bits of B would be allocated in two bytes.

Listing 5.6 specifies a maximum size of two bits for a gap.

Listing 5.6 Example where the maximum number of gap bits is two

-BfaGapLimitBits?2

See also
Bitfield Allocation

-BfaTSR: Bitfield Type-Size Reduction

Group
CODE GENERATION

Scope

Function

148 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Syntax
-BfaTSR (ON|OFF)

Arguments
ON: Enable Type-Size Reduction
OFF: Disable Type-Size Reduction

Default

-BfaTSRon

Defines
_ BITFIELD_TYPE_SIZE_REDUCTION___
__ _BITFIELD_NO_TYPE_SIZE_REDUCTION__ _

Pragmas

None

Description

This option is configurable whether or not the compiler uses type-size reduction for
bitfields. Type-size reduction means that the compiler can reduce the type of an
int bitfield to a char bitfield if it fits into a character. This allows the compiler to
allocate memory only for one byte instead of for an integer.

Examples

Listing 5.7 and Listing 5.8 demonstrate the effects of -BfaTSRoff and
-BfaTSRon, respectively.

Listing 5.7 -BfaTSRoff

struct{
long bl:4;
long b2:4;
} myBitfield;

| #####HFHHHHSHHREHHREHHHHE | D2 |DL| -BfaTSRoff

RSO08 Build Tools Reference Manual for Microcontrollers 149

y
A

Compiler Options
Compiler Option Details

Listing 5.8 -BfaTSRon

|b2 | bl | -BfaTSRon

Example

-BfaTSRon

See also

Bitfield Type Reduction

-C++ (-C++f, -C++e, -C++c): C++ Support

Group
LANGUAGE

Scope

Compilation Unit

Syntax
-C++ (fl|elc)

Arguments
£ : Full ANSI Draft C++ support
e : Embedded C++ support (EC++)

¢ : compactC++ support (cC++)

Default

None

Defines
__cplusplus

150 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Pragmas

None

Description

With this option enabled, the Compiler behaves as a C++ Compiler. You can
choose between three different types of C++:

¢ Full ANSI Draft C++ supports the whole C++ language.

¢ Embedded C++ (EC++) supports a constant subset of the C++ language. EC++
does not support inefficient things like templates, multiple inheritance, virtual
base classes and exception handling.

¢ compactC++ (cC++) supports a configurable subset of the C++ language. You
can configure this subset with the option -Cn.

If the option is not set, the Compiler behaves as an ANSI-C Compiler.

If the option is enabled and the source file name extension is * . ¢, the Compiler
behaves as a C++ Compiler.

If the option is not set, but the source filename extension is . cpp or . cxx, the
Compiler behaves as if the -C++£f option were set.

Example
COMPOPTIONS=-C++f

See Also
-Cn: Disable compactC++ features

-Cc: Allocate Constant Objects into ROM
Group
OUTPUT

Scope

Compilation Unit

Syntax
-Cc

RSO08 Build Tools Reference Manual for Microcontrollers 151

A 4
4\

Compiler Options
Compiler Option Details

Arguments

None

Default

None

Defines

None

Pragmas

#pragma INTO_ROM: Put Next Variable Definition into ROM

Description

The Linker prepares no initialization for objects allocated into a read-only section.
The startup code does not have to copy the constant data.

You may also put variables into the ROM_VAR segment by using the segment
pragma (see the Linker manual).

With #pragma CONST_SECTION for constant segment allocation, variables
declared as const are allocated in this segment.

If the current data segment is not the default segment, const objects in that user—
defined segment are not allocated in the ROM_VAR segment but remain in the
segment defined by the user. If that data segment happens to contain only const
objects, it may be allocated in a ROM memory section (refer to the Linker section
of the Build Tools manual for more information).

NOTE In the ELF/DWAREF object-file format, constants are allocated into the
.rodata section.

NOTE The Compiler uses the default addressing mode for the constants specified by
the memory model.

Example

See also
Segmentation
Linker section in the Build Tools manual

-F (-F2. -F20): Object-File Format option

#pragma INTO_ROM: Put Next Variable Definition into ROM

152

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

-Ccx: Cosmic Compatibility Mode for Space Modifiers and Interrupt
Handlers

Group
LANGUAGE

Scope

Compilation Unit

Syntax

-Ccx

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

This option allows Cosmic style @near, @far and @t iny space modifiers as
well as @interrupt in your C code. The —~ANST option must be switched off. It
is not necessary to remove the Cosmic space modifiers from your application code.
There is no need to place the objects to sections addressable by the Cosmic space
modifiers.

The following is done when a Cosmic modifier is parsed:

* The objects declared with the space modifier are always allocated in a special
Cosmic compatibility (_CX) section (regardless of which section pragma is set)
depending on the space modifier, on the const qualifier or if it is a function or
a variable.

RSO08 Build Tools Reference Manual for Microcontrollers 153

"
A

Compiler Options
Compiler Option Details

* Space modifiers on the left hand side of a pointer declaration specify the pointer
type and pointer size, depending on the target.

See the example in Listing 5.9 for a prm file describing the placement of sections

mentioned in Table 5.5.

Table 5.5 Cosmic Modifier Handling

Definition

Placement to _CX section

@tiny int my_ var

_CX_DATA_TINY

@near int my_var

_CX_DATA_NEAR

@far int my_var

_CX_DATA_FAR

const @tiny int my_cvar

_CX_CONST_TINY

const @near int my_cvar

_CX_CONST_NEAR

const @far int my_cvar

_CX_CONST_FAR

@tiny void my_fun(void)

_CX_CODE_TINY

@near void my_fun(void)

_CX_CODE_NEAR

@far void my_fun (void)

_CX_CODE_FAR

@interrupt void my_fun (void)

_CX_CODE_INTERRUPT

For further information about porting applications from Cosmic to the
CodeWarrior IDE refer to the technical note TN234. Table 5.6 indicates how space

modifiers are mapped for the RS08.

Table 5.6 Cosmic Space modifier mapping for the RS08

Definition Keyword Mapping
@tiny ignored
@near ignored
@far ignored

See Listing 5.9 for an example of the -Ccx compiler option.

154

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options

Compiler Option Details
Listing 5.9 Cosmic Space Modifiers
volatile @tiny char tiny_ch;
extern @far const int table[100];
static @tiny char * @near ptr_tab[10];
typedef @far int (*@far funptr) (void) ;
funptr my_fun; /* banked and _ far calling conv. */
char @tiny *tptr = &tiny_ ch;
char @far *fptr = (char @far *)&tiny_ch;
Example for a prm file:
(16- and 24-bit addressable ROM;
8-, 16- and 24-bit addressable RAM)
SEGMENTS
MY_ROM READ_ONLY 0x2000 TO O0x7FFF;
MY_BANK READ_ONLY 0x508000 TO O0x50BFFF;
MY_ZP READ_WRITE 0xCO0 TO OxFF;
MY_RAM READ_WRITE 0xC000 TO OxCFFF;
MY_DBANK READ_WRITE 0x108000 TO O0x10BFFF;
END
PLACEMENT
DEFAULT_ROM, ROM_VAR,
_CX_CODE_NEAR, _CX_CODE_TINY, _CX_CONST_TINY,
_CX_CONST_NEAR INTO MY_ROM;
_CX_CODE_FAR, _CX_CONST_FAR INTO MY_BANK;
DEFAULT RAM, _CX_DATA_NEAR INTO MY_RAM;
_CX_DATA_FAR INTO MY_DBANK;
_ZEROPAGE, _CX_DATA TINY INTO MY_ZP;
END
See also
Cosmic Manuals, Linker Manual, TN234
-Ci: Tri- and Bigraph Support
Group
LANGUAGE
RS08 Build Tools Reference Manual for Microcontrollers 155

A 4
4\

Compiler Options
Compiler Option Details

Scope

Function

Syntax
-ci
Arguments

None

Default

None

Defines
__ _TRIGRAPHS___

Pragmas

None

Description

If certain tokens are not available on your keyboard, they are replaced with
keywords as shown in Table 5.7.

Table 5.7 Keyword Alternatives for Unavailable Tokens

Bigraph Token Trigraph Token Additional | Token
Keyword | Replaced | Keyword | Replaced | Keyword Replaced
<% } 27= # and &&
Y%o> } 22/ \ and_eq &=
< [2?7 A bitand &
>] 272([bitor |
Yo: # ??)] compl ~
Y%o:%: #i# 22! | not !
2?< { or Il
27> } or_eq =
7?- ~ xor A

156 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Table 5.7 Keyword Alternatives for Unavailable Tokens (continued)

Bigraph Token Trigraph | Token Additional | Token
Keyword | Replaced | Keyword | Replaced | Keyword Replaced
Xor_eq A=
not_eq =

NOTE Additional keywords are not allowed as identifiers if this option is enabled.

Example
-Ci
The example in Listing 5.10 shows the use of trigraphs, bigraphs, and the

additional keywords with the corresponding normal C source.

Listing 5.10 Trigraphs, Bigraphs, and Additional Keywords

int Trigraphs (int argc, char * argv??(??)) ?2?<
if (argc<l ??!??! *argv??(1??)=='??/0') return 0;
printf ("Hello, %s??/n", argv??(12?));

??7>

%:define TEST_NEW_THIS 5
%:define cat(a,b) a%:%:b
??=define arraycheck(a,b,c) a??(i??) ?2?2!?2?! b??(i??)

int 1i;

int cat(a,b);
char a<:10:>;
char b<:10:>;

void Trigraph2 (void) <%
if (1 and ab) <%
i and_eq TEST_NEW_THIS;
= 1 bitand 0x03;
= 1 bitor 0x8;
compl 1i;
= not 1i;
%> else if (ab or 1) <%
i or_eq 0x5;
i = i xor 0x12;
i1 xor_eq 99;
%> else if (i not_eq 5) <%

I R

RSO08 Build Tools Reference Manual for Microcontrollers 157

y
A

Compiler Options
Compiler Option Details

cat(a,b) = 5;
if (a??(i??) || bli])<%%>
if (arraycheck(a,b,i)) <%
i=0;
%>
%>
%>
/* is the same as ... */
int Trigraphs (int argc, char * argv[]) {
if (arge<l || *argv[1l]=='\0') return 0;

printf ("Hello, %s\n", argv[l]);
}

#define TEST NEW_THIS 5
#define cat(a,b) a##b
#define arraycheck(a,b,c) al[il] || b[i]

int 1i;

int cat(a,b);
char a[l1l0];
char b[10];

void Trigraph2 (void) {
if (1 && ab) {

1 &= TEST NEW_THIS;
i =1 & 0x03;
i =1 | 0x8;
i = ~i;
i = 11i;

} else if (ab || 1) {
i |= 0x5;
i =1 7~ 0x12;
i = 99;

} else 1if (i !'= 5) {
cat(a,b) = 5;
if (alil || bI[i]) {}
if (arraycheck(a,b,i)) {

i=0;

}

158 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

-Cn: Disable compactC++ features

Group
LANGUAGE

Scope

Compilation Unit

Syntax
-Cn [= {VE|Tpl|Ptm|Mih|Ctr|Cpr}]

Arguments
V£: Do not allow virtual functions
Tpl: Do not allow templates
Ptm: Do not allow pointer to member
Mih: Do not allow multiple inheritance and virtual base classes
Ctr: Do not create compiler defined functions

Cpr: Do not allow class parameters and class returns

Default

None

Defines

None

Pragmas

None

Description

If the -C++c option is enabled, you can disable the following compactC++
features:

e V£ : Virtual functions are not allowed.
Avoid having virtual tables that consume a lot of memory.
e Tpl : Templates are not allowed.

Avoid having many generated functions perform similar operations.

RSO08 Build Tools Reference Manual for Microcontrollers 159

3
4

y
A

Compiler Options
Compiler Option Details

Ptm : Pointer to member not allowed.
Avoid having pointer-to-member objects that consume a lot of memory.
Mih : Multiple inheritance is not allowed.

Avoid having complex class hierarchies. Because virtual base classes are logical
only when used with multiple inheritance, they are also not allowed.

Ctr : The C++ Compiler can generate several kinds of functions, if necessary:
— Default Constructor

— Copy Constructor

— Destructor

— Assignment operator

With this option enabled, the Compiler does not create those functions. This is
useful when compiling C sources with the C++ Compiler, assuming you do not
want C structures to acquire member functions.

Cpr : Class parameters and class returns are not allowed.

Avoid overhead with Copy Constructor and Destructor calls when passing
parameters, and passing return values of class type.

Example

-C++c -Cn=Ctr

-Cni: No Integral Promotion

Group

OPTIMIZATIONS

Scope

Function

Syntax

-Cni

Arguments

None

160

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Default

None

Defines
__CNI__

Pragmas

None

Description

Enhances code density of character operations by omitting integral promotion.
This option enables a non ANSI-C compliant behavior.

In ANSI-C operations with data types, anything smaller than int must be promoted
to int (integral promotion). With this rule, adding two unsigned character variables
results in a zero-extension of each character operand, and then adding them back in
as int operands. If the result must be stored back into a character, this integral
promotion is not necessary. When this option is set, promotion is avoided where
possible.

The code size may be decreased if this option is set because operations may be
performed on a character base instead of an integer base.

The —Cni option enhances character operation code density by omitting integral
promotion.

Consider the following:

* In most expressions, ANSI-C requires char type variables to be extended to the
next larger type int, which is required to be at least 16-bit in size by the ANSI
standard.

e The —Cni option suppresses this ANSI-C behavior and thus allows 'characters'
and 'character sized constants' to be used in expressions. This option does not
conform to ANSI standards. Code compiled with this option is not portable.

* The ANSI standard requires that 'old style declarations' of functions using the
char parameter (Listing 5.11) be extended to int. The -Cni option disables
this extension and saves additional RAM.

Example
See Listing 5.11 for an example of “no integer promotion.”

Listing 5.11 Definition of an ‘old style function’ using a char parameter.

old_style_func (a, b, c¢)
char a, b, c;

RSO08 Build Tools Reference Manual for Microcontrollers 161

3
4

y
A

Compiler Options
Compiler Option Details

The space reserved for a, b, and c is just one byte each, instead of two.

For expressions containing different types of variables, the following conversion
rules apply:

* If both variables are of type signed char, the expression is evaluated signed.

¢ If one of two variables is of type unsigned char, the expression is evaluated
unsigned, regardless of whether the other variable is of type signed or
unsigned char.

¢ If one operand is of another type than signed or unsigned char, the usual ANSI-
C arithmetic conversions are applied.

» If constants are in the character range, they are treated as characters. Remember
that the char type is signed and applies to the constants —128 to 127. All
constants greater than 127, (i.e., 128, 129, etc.) are treated as integer. If you
want them treated as characters, they must be cast (Listing 5.12).

Listing 5.12 Casting integers to signed char

signed char a, b;
if (a > b * (signed char)129)

NOTE This option is ignored with the —-Ansi Compiler switch active.

NOTE With this option set, the code that is generated does not conform to the ANSI
standard. In other words: the code generated is wrong if you apply the ANSI
standard as reference. Using this option is not recommended in most cases.

-Cppc: C++ Comments in ANSI-C

Group
LANGUAGE

162 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Scope

Function

Syntax
-Cppc

Arguments

None

Default
By default, the Compiler does not allow C++ comments if the -Ansi: Strict ANSI

compiler option is set.

Defines

None

Pragmas

None

Description

The -Ansi option forces the compiler to conform to the ANSI-C standard.
Because a strict ANSI-C compiler rejects any C++ comments (started with //), this
option may be used to allow C++ comments (Listing 5.13).

Listing 5.13 Using -Cppc to allow C++ comments

-Cppc

/* This allows the code containing C++ comments to be compiled with the
-Ansi option set */

void foo(void) // this is a C++ comment

See also
-Ansi: Strict ANSI

RSO08 Build Tools Reference Manual for Microcontrollers 163

y
A

Compiler Options
Compiler Option Details

-Cq: Propagate const and volatile qualifiers for structs

Group
LANGUAGE

Scope
Application

Syntax
-Cq

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

This option propagates const and volatile qualifiers for structures. That
means, if all members of a structure are constant, the structure itself is constant as
well. The same happens with the volatile qualifier. If the structure is declared
as constant or volatile, all its members are constant or volatile,
respectively. Consider the following example.

Example

The source code in Listing 5.14 declares two structs, each of which has a const
member.

Listing 5.14 Be careful to not write to a constant struct

struct {
const field;

164 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

} sl1, s2;

void foo (void) {
sl = s2; // struct copy
sl.field = 3; // error: modifiable lvalue expected

In the above example, the field in the struct is constant, but not the struct
itself. Thus the struct copy s1 = s2 islegal, even if the field of the struct
is constant. But, a write access to the struct field causes an error message. Using
the —Cqg option propagates the qualification (const) of the fields to the whole
struct or array. In the above example, the struct copy causes an error
message.

-CswMaxLF: Maximum Load Factor for Switch Tables

Group
CODE GENERATION

Scope

Function

Syntax

-CswMaxLF<number>

Arguments

<number>: a number in the range of 0 — 100 denoting the maximum load factor

Default
Backend-dependent

Defines

None

Pragmas

None

RSO08 Build Tools Reference Manual for Microcontrollers 165

A 4
4\

Compiler Options
Compiler Option Details

Description

Allows changing the default strategy of the Compiler to use tables for switch
statements.

This option is only available if the compiler supports switch tables.

Normally the Compiler uses a table for switches with more than about eight labels
if the table is filled between 80% (minimum load factor of 80) and 100%
(maximum load factor of 100). If there are not enough labels for a table or the table
is not filled, a branch tree is generated (tree of if-else-if-else). This branch tree is
like an ‘unrolled’ binary search in a table which quickly evaluates the associated
label for a switch expression.

Using a branch tree instead of a table improves code execution speed, but may
increase code size. In addition, because the branch tree itself uses no special
runtime routine for switch expression evaluation, debugging may be more
seamless.

Specifying a load factor means that tables are generated in specific ‘fuel’ status:

The table in Listing 5.15 is filled to 90% (labels for ‘0’ to ‘9°, except for ‘5’).

Listing 5.15 Load factor example

switch (1)
case 0
case 1:
case 2:
case 3
case 4
// case
case 6
case 7
case 8
case 9:
default
}
Assumed that the minimum load factor is set to 50% and setting the maximum load
factor for the above case to 80%, a branch tree is generated instead a table. But
setting the maximum load factor to 95% produces a table.
To guarantee that tables are generated for switches with full tables only, set the
table minimum and maximum load factors to 100:
-CswMinLF100 -CswMaxLF100.
166 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

See also
Compiler options:
¢ -CswMinL.B: Minimum Number of Labels for Switch Tables
e -CswMinSLB: Minimum Number of Labels for Search Switch Tables
¢ -CswMinLF: Minimum [oad Factor for Switch Tables

-CswMinLB: Minimum Number of Labels for Switch Tables

Group
CODE GENERATION

Scope

Function

Syntax

-CswMinLB<number>

Arguments

<number>: a positive number denoting the number of labels.

Default
Backend-dependent

Defines

None

Pragmas

None

Description

This option allows changing the default strategy of the Compiler using tables for
switch statements.

NOTE This option is only available if the compiler supports switch tables.

Normally the Compiler uses a table for switches with more than about 8§ labels
(case entries) (actually this number is highly backend-dependent). If there are not

RSO08 Build Tools Reference Manual for Microcontrollers 167

3
4

y
A

Compiler Options
Compiler Option Details

enough labels for a table, a branch tree is generated (tree of if-else-if-else). This
branch tree is like an ‘unrolled’ binary search in a table which evaluates very fast
the associated label for a switch expression.

Using a branch tree instead of a table may increases the code execution speed, but
it probably increases the code size. In addition, because the branch tree itself uses
no special runtime routine for switch expression evaluation, debugging may be
much easier.

To disable any tables for switch statements, just set the minimum number of labels
needed for a table to a high value (e.g., 9999):

-CswMinLB9999 -CswMinSLB9999.

When disabling simple tables it usually makes sense also to disable search tables
with the -CswMinSLB option.

See also

Compiler options:

¢ -CswMinLF: Minimum Load Factor for Switch Tables

¢ -CswMinSLB: Minimum Number of Labels for Search Switch Tables
¢ -CswMaxLF: Maximum Load Factor for Switch Tables

-CswMinLF: Minimum Load Factor for Switch Tables

Group

CODE GENERATION

Scope

Function

Syntax

-CswMinLF<number>

Arguments

<number>: a number in the range of 0 — 100 denoting the minimum load factor

Default

Backend-dependent

168

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Defines

None

Pragmas

None

Description

Allows the Compiler to use tables for switch statements.
NOTE This option is only available if the compiler supports switch tables.

Normally the Compiler uses a table for switches with more than about 8 labels and
if the table is filled between 80% (minimum load factor of 80) and 100%
(maximum load factor of 100). If there are not enough labels for a table or the table
is not filled, a branch tree is generated (tree of if-else-if-else). This branch tree is
like an ‘unrolled’ binary search in a table which quickly evaluates the associated
label for a switch expression.

Using a branch tree instead of a table improves code execution speed, but may
increase code size. In addition, because the branch tree itself uses no special
runtime routine for switch expression evaluation, debugging is more seamless.

Specifying a load factor means that tables are generated in specific ‘fuel” status:

The table in Listing 5.16 is filled to 90% (labels for ‘0’ to ‘9°, except for ‘5’).

Listing 5.16 Load factor example

switch(i) {
case 0: ...
case 1
case 2:
case 3
case 4: ...
// case 5:
case 6:
case 7:
case 8:
case 9:
default

Assuming that the maximum load factor is set to 100% and the minimum load
factor for the above case is set to 90%, this still generates a table. But setting the
minimum load factor to 95% produces a branch tree.

RSO08 Build Tools Reference Manual for Microcontrollers 169

y
A

Compiler Options
Compiler Option Details

To guarantee that tables are generated for switches with full tables only, set the
minimum and maximum table load factors to 100:

-CswMinLF100-CswMaxLF100.

See also
Compiler options:
¢ -CswMinl.B: Minimum Number of Labels for Switch Tables
e -CswMinSLB: Minimum Number of Labels for Search Switch Tables
¢ -CswMaxLF: Maximum [Load Factor for Switch Tables

-CswMinSLB: Minimum Number of Labels for Search Switch Tables

Group
CODE GENERATION

Scope

Function

Syntax

-CswMinSLB<number>

Arguments

<number>: a positive number denoting the number of labels

Default
Backend-dependent

Defines

None

Pragmas

None

Description

Allows the Compiler to use tables for switch statements.

170 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

NOTE This option is only available if the compiler supports search tables.

Switch tables are implemented in different ways. When almost all case entries in
some range are given, a table containing only branch targets is used. Using such a
dense table is efficient because only the correct entry is accessed. When large holes
exist in some areas, a table form can still be used.

But now the case entry and its corresponding branch target are encoded in the
table. This is called a search table. A complex runtime routine must be used to
access a search table. This routine checks all entries until it finds the matching one.
Search tables execute slowly.

Using a search table improves code density, but the execution time increases.
Every time an entry in a search table must be found, all previous entries must be
checked first. For a dense table, the right offset is computed and accessed. In
addition, note that all backends implement search tables (if at all) by using a
complex runtime routine. This may make debugging more complex.

To disable search tables for switch statements, set the minimum number of labels
needed for a table to a high value (e.g., 9999): -CswMinSLB9999.

See also
Compiler options:
e -CswMinLB: Minimum Number of Labels for Switch Tables
¢ -CswMinLF: Minimum [oad Factor for Switch Tables
¢ -CswMaxLF: Maximum Load Factor for Switch Tables

-Cu: Loop Unrolling
Group
OPTIMIZATIONS

Scope

Function

Syntax

-Cu[=i<number>]

RSO08 Build Tools Reference Manual for Microcontrollers 171

A 4
4\

Compiler Options
Compiler Option Details

Arguments

<number>: number of iterations for unrolling, between 0 and 1024

Default

None

Defines

None

Pragmas

#pragma LOOP_UNROLL: Force Loop Unrolling
#pragma NO_LOOP_UNROLL.: Disable Loop Unrolling

Description

Enables loop unrolling with the following restrictions:

¢ Only simple for statements are unrolled, e.g.,
for (i=0; i<10; i++)

* Initialization and test of the loop counter must be done with a constant.

¢ Only <, >, <=, >= are permitted in a condition.

¢ Only ++ or — are allowed for the loop variable increment or decrement.

* The loop counter must be integral.

* No change of the loop counter is allowed within the loop.

* The loop counter must not be used on the left side of an assignment.

* No address operator (&) is allowed on the loop counter within the loop.

¢ Only small loops are unrolled:

* Loops with few statements within the loop.

* Loops with fewer than 16 increments or decrements of the loop counter. The
bound may be changed with the optional argument =i<number>. The
—-Cu=120 option unrolls loops with a maximum of 20 iterations.

Examples

Listing 5.17 for Loop

-Cu

int 1, J;

j = 0;

for (i=0; 1<3; i++) {

172 RS08 Build Tools Reference Manual for Microcontrollers

g |

Compiler Options
Compiler Option Details

j += 1i;

When the -Cu compiler option is used, the Compiler issues an information
message Unrolling loop and transforms this loop as shown in Listing 5.18:

Listing 5.18 Transformation of the for Loop in Listing 5.17

+
1l

1;
2;
3;

[N
+
1l

The Compiler also transforms some special loops, i.e., loops with a constant condition or
loops with only one pass:

Listing 5.19 Example for a loop with a constant condition

for (i=1; i>3; i++) {
j += 1i;

}

The Compiler issues an information message Constant condition found, removing
loop and transforms the loop into a simple assignment, because the loop body is
never executed:

i=1;

Listing 5.20 Example for a loop with only one pass

for (i=1; i<2; i++) {
j += 1i;

}

The Compiler issues a warning 'Unrolling loop' and transforms the for loop into
j o+=1;
i = 2;

because the loop body is executed only once.

RSO08 Build Tools Reference Manual for Microcontrollers 173

y
A

Compiler Options
Compiler Option Details

-Cx: No Code Generation

Group

CODE GENERATION

Scope

Compilation Unit

Syntax
-Cx

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

The -Cx compiler option disables the code generation process of the Compiler. No
object code is generated, though the Compiler performs a syntactical check of the
source code. This allows a quick test if the Compiler accepts the source without

€ITOrS.

-D: Macro Definition

Group

LANGUAGE

174

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Scope

Compilation Unit

Syntax

-D<identifier>[=<value>]

Arguments
<identifier>: identifier to be defined

<value>: value for <identifier>, anything except - and <a blank>

Default

None

Defines

None

Pragmas

None

Description

The Compiler allows the definition of a macro on the command line. The effect is
the same as having a #define directive at the very beginning of the source file.

-DDEBUG=0

This is the same as writing:
#define DEBUG 0

in the source file.

If you need strings with blanks in your macro definition, there are two ways. Either
use escape sequences or double quotes:

-dPath="Path\40with\40spaces"
-d"Path=""Path with spaces"""

NOTE Blanks are not allowed after the —D option; the first blank terminates this
option. Also, macro parameters are not supported.

RSO08 Build Tools Reference Manual for Microcontrollers 175

y
A

Compiler Options
Compiler Option Details

-Ec: Conversion from 'const T*' to 'T*'

Group
LANGUAGE

Scope

Function

Syntax

-Ec

Arguments

None

Default

None

Description

If this non-ANSI compliant extension is enabled, a pointer to a constant type is
treated like a pointer to the non-constant equivalent of the type. Earlier Compilers
did not check a store to a constant object through a pointer. This option is useful if
some older source has to be compiled.

Defines

None

Pragmas

None

Examples

See Listing 5.21 and Listing 5.22 for examples using —-Ec conversions.

Listing 5.21 Conversion from ‘const T*' to 'T*

void f£() {

int *i;

const int *j;

i=j; /* C++ illegal, but OK with -Ec! */
}

176 RS08 Build Tools Reference Manual for Microcontrollers

g |

Compiler Options
Compiler Option Details

struct A {
int 1i;

Y

void g() {

const struct A *a;

a->i=3; /* ANSI C/C++ illegal, but OK with -Ec! */
}

void h() {
const int *i;
i=23; / ANSI-C/C++ illegal, but OK with -Ec! */

Listing 5.22 Assigning a value to a “constant” pointer

-Ec

void foo(const int *p) {
*p = 0; // Some Compilers do not issue an error.

RSO08 Build Tools Reference Manual for Microcontrollers 177

y
A

Compiler Options
Compiler Option Details

-Eencrypt: Encrypt Files

Group
OUTPUT

Scope

Compilation Unit

Syntax

-Eencrypt [=<filename>]

Arguments
<filename>: The name of the file to be generated

It may contain special modifiers (see Using Special Modifiers).

Default

The default filename is $f . e%e. A file named fun. c creates an encrypted file
named fun.ec.

Description

All files passed together with this option are encrypted using the given key with the
-Ekey: Encryption Key option.

NOTE This option is only available or operative with a license for the following
feature: HIxxxx30, where xxxx is the feature number of the compiler for a
specific target.

Defines

None

Pragmas

None

Example
fun.c fun.h -Ekeyl234567 -Eencrypt=%n.e%e

This encrypts the fun. c file using the 1234567 key to the fun. ec file, and the
fun.hfile to the fun. eh file.

178

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

The encrypted fun . ec and fun. eh files may be passed to a client. The client is
able to compile the encrypted files without the key by compiling the following file:

fun.ec

See also

-Ekey: Encryption Key

-Ekey: Encryption Key

Group
OUTPUT

Scope

Compilation Unit

Syntax

-Ekey<keyNumber>

Arguments

<keyNumber>

Default

The default encryption key is 0. Using this default is not recommended.

Description
This option is used to encrypt files with the given key number (-Eencrypt

option).

NOTE This option is only available or operative with a license for the following
feature: HIxxxx30 where xxxx is the feature number of the compiler for a
specific target.

Defines

None

Pragmas

None

RSO08 Build Tools Reference Manual for Microcontrollers 179

y
A

Compiler Options
Compiler Option Details

Example
fun.c -Ekey1234567 -Eencrypt=%n.e%e
This encrypts the fun.’ file using the 1234567 key.

See also

-Eencrypt: Encrypt Files

-Env: Set Environment Variable

Group
HOST

Scope

Compilation Unit

Syntax

-Env<Environment Variable>=<Variable Setting>

Arguments
<Environment Variable>: Environment variable to be set

<Variable Setting>: Setting of the environment variable

Default

None

Description

This option sets an environment variable. This environment variable may be used
in the maker, or used to overwrite system environment variables.

Defines

None

Pragmas

None

180 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Example
-EnvOBJPATH=\sources\obj
This is the same as:
OBJPATH=\sources\obj
in the default.env file.

Use the following syntax to use an environment variable using filenames with
spaces:

-Env"OBJPATH=\program filesg"

See also

Environment

-F (-F2, -F20): Object-File Format
Group
OUTPUT

Scope
Application

Syntax
-F(2]20)

Arguments
2: ELF/DWAREF 2.0 object-file format
20: compatible ELF/DWAREF 2.0 object-file format

NOTE Not all object-file formats may be available for a target.

Default
-F2

Defines
_ ELF_OBJECT_FILE_FORMAT___

RSO08 Build Tools Reference Manual for Microcontrollers 181

3
4

y
A

Compiler Options
Compiler Option Details

Pragmas

None

Description

The Compiler writes the code and debugging info after compilation into an object
file. The Compiler produces an ELF/DW ARF object file when the -F2 option is
set. This object-file format may also be supported by other Compiler vendors.

In the Compiler ELF/DWAREF 2.0 output, some constructs written in previous
versions were not conforming to the ELF standard because the standard was not
clear enough in this area. Because old versions of the simulator or debugger (V5.2
or earlier) are not able to load the corrected new format, the old behavior can still
be produced by using - £20 instead of -£2. Some old versions of the debugger
(simulator or debugger V5.2 or earlier) generate a GPF when a new absolute file is
loaded. If you want to use the older versions, use -f£2o instead of -£2. New
versions of the debugger are able to load both formats correctly. Also, some older
ELF/DWAREF object file loaders from emulator vendors may require you to set the
-F2o0 option.

Note that it is recommended to use the ELF/DWARF 2.0 format instead of the
ELF/DWAREF 1.1. The 2.0 format is much more generic. In addition, it supports
multiple include files plus modifications of the basic generic types (e.g., floating
point format). Debug information is also more robust.

-H: Short Help

Group

VARIOUS

Scope

None

Syntax

-H

Arguments

None

Default

None

182

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Defines

None

Pragmas

None

Description

The -H option causes the Compiler to display a short list (i.e., help list) of available
options within the Compiler window. Options are grouped into HOST,
LANGUAGE, OPTIMIZATIONS, OUTPUT, INPUT, CODE GENERATION,
MESSAGES, and VARIOUS.

Do not specify any other option or source file when you invoke the —H option.

Example
Listing 5.23 lists the short list options.

Listing 5.23 Short Help options

-H may produce the following list:

INPUT:

-1 Filenames are clipped to DOS length
-I Include file path

VARIOUS:

-H Prints this list of options

-V Prints the Compiler version

-I: Include File Path
Group
INPUT

Scope

Compilation Unit

Syntax
-I<path>

RSO08 Build Tools Reference Manual for Microcontrollers 183

3
4

y
A

Compiler Options
Compiler Option Details

Arguments

<path>: path, terminated by a space or end-of-line

Default

None

Defines

None

Pragmas

None

Description

Allows you to set include paths in addition to the LIBPATH, LIBRARYPATH:
‘include <File>’ Path and GENPATH: #include “File” Path environment variables.
Paths specified with this option have precedence over includes in the current
directory, and paths specified in GENPATH, LIBPATH, and LIBRARYPATH.

Example
-I. -I..\h -I\src\include

This directs the Compiler to search for header files first in the current directory (.),
then relative from the current directory in ' . . \h', and then in
"\src\include'". If the file is not found, the search continues with GENPATH,
LIBPATH, and LIBRARYPATH for header files in double quotes
(#include"headerfile.h"), and with LIBPATH and LIBRARYPATH for
header files in angular brackets (#include <stdio.h>).

See also

Input Files
-AddlIncl: Additional Include File
LIBRARYPATH: ‘include <File>" Path

-La: Generate Assembler Include File

Group

OUTPUT

184

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Scope

Function

Syntax

-La[=<filename>]

Arguments
<filename>: The name of the file to be generated

It may contain special modifiers (see Using Special Modifiers)

Default

No file created

Defines

None

Pragmas

None

Description

The -La option causes the Compiler to generate an assembler include file when
the CREATE_ASM_LISTING pragma occurs. The name of the created file is
specified by this option. If no name is specified, a default of $f . inc is taken. To
put the file into the directory specified by the TEXTPATH: Text File Path
environment variable, use the option -1a=%n. inc. The $£f option already
contains the path of the source file. When % £ is used, the generated file is in the
same directory as the source file.

The content of all modifiers refers to the main input file and not to the actual
header file. The main input file is the one specified on the command line.

Example

-La=asm.inc

See also

#pragma CREATE_ASM_LISTING: Create an Assembler Include File Listing
-La: Generate Assembler Include File

RSO08 Build Tools Reference Manual for Microcontrollers 185

y
A

Compiler Options
Compiler Option Details

-Lasm: Generate Listing File

Group
OUTPUT

Scope

Function

Syntax

-Lasm[=<filename>]

Arguments
<filename>: The name of the file to be generated.

It may contain special modifiers (see Using Special Modifiers).

Default

No file created.

Defines

None

Pragmas

None

Description

The -Lasm option causes the Compiler to generate an assembler listing file
directly. All assembler generated instructions are also printed to this file. The name
of the file is specified by this option. If no name is specified, a default of $n.1st
is taken. The TEXTPATH: Text File Path environment variable is used if the
resulting filename contains no path information.

The syntax does not always conform with the inline assembler or the assembler
syntax. Therefore, this option can only be used to review the generated code. It can
not currently be used to generate a file for assembly.

Example

-Lasm=asm. lst

186 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

See also
-Lasmc: Configure Listing File

-Lasmc: Configure Listing File

Group
OUTPUT

Scope

Function

Syntax

-Lasmc [={a]|c|i|s|h|p|e|v]|y}]

Arguments
a: Do not write the address in front of every instruction
c: Do not write the hex bytes of the instructions
i: Do not write the decoded instructions

: Do not write the source code

: Do not write the function header

: Do not write the source prolog

o T P o0

: Do not write the source epilog

<

: Do not write the compiler version

y: Do not write cycle information

Default
All printed together with the source

Defines

None

Pragmas

None

RSO08 Build Tools Reference Manual for Microcontrollers 187

y
A

Compiler Options
Compiler Option Details

Description

The -Lasmc option configures the output format of the listing file generated with
the -Lasm: Generate Listing File option. The addresses, the hex bytes, and the
instructions are selectively switched off.

The format of the listing file has the layout shown in Listing 5.24. The letters in
brackets ([]) indicate which suboption may be used to switch it off:

Listing 5.24 -Lasm configuration options

v] ANSI-C/cC++ Compiler V-5.0.1

[

[v]

[p] 1:

[p] 2: wvoid foo(void) {

[h]

[h] Function: foo

[h] Source : C:\Freescale\test.c
[h] Options : -Lasm=%n.lst

[h]

[s] 3: 1}

[a] 0000 [c] 34 [1] RTS
[e] 4:

[e] 5: // comments

[e] 6:

Example

-Lasmc=ac

-Ldf: Log Predefined Defines to File
Group
OUTPUT

Scope

Compilation Unit

Syntax
-LAf[="<file>"]

188 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Arguments

<file>: filename for the log file, default is predef . h.

Default
default <file>is predef.h.

Defines

None

Pragmas

None

Description

The -LdAf option causes the Compiler to generate a text file that contains a list of
the compiler-defined #define. The default filename is predef . h, but may be
changed (e.g., -Ldf="myfile.h”). The file is generated in the directory
specified by the TEXTPATH: Text File Path environment variable. The defines
written to this file depend on the actual Compiler option settings (e.g., type size
settings or ANSI compliance).

NOTE The defines specified by the command line (-D: Macro Definition option) are
not included.

This option may be very useful for SQA. With this option it is possible to
document every #define which was used to compile all sources.

NOTE This option only has an effect if a file is compiled. This option is unusable if
you are not compiling a file.

Example

Listing 5.25 is an example which lists the contents of a file containing define
directives.

Listing 5.25 Displays the contents of a file where define directives are present

-Ldf

This generates the predef.h filewith the following content:
/* resolved by preprocessor: _ LINE__ */

/* resolved by preprocessor: _ FILE__ */

/* resolved by preprocessor: _ DATE__ */

/* resolved by preprocessor: _ TIME__ */

RSO08 Build Tools Reference Manual for Microcontrollers 189

y
A

Compiler Options
Compiler Option Details

#define
#define
#define
#define
#define
#define
#define

__STDC__ 0
__VERSION__ 5004
__ _VERSION_STR_
_ SMALL___
__PTR_SIZE 2_

"V-5.0.4"

_ BITFIELD_LSBIT_FIRST
__ BITFIELD MSBYTE FIRST

See also

-D: Macro Definition

-Li: List of Included Files

Group
OUTPUT

Scope

Compilation Unit

Syntax
-Li

Arguments

None

Default

None

Defines

None

Pragmas

None

190

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Description

The -Li option causes the Compiler to generate a text file which contains a list of
the #include files specified in the source. This text file shares the same name as
the source file but with the extension, * . inc. The files are stored in the path
specified by the TEXTPATH: Text File Path environment variable. The generated
file may be used in make files.

Example

Listing 5.26 is an example where the -Li compiler option can be used to display a
file’s contents when that file contains an included directive.

Listing 5.26 Display contents of a file when include directives are present

-Li

If the source file is: C: \myFiles\b.c:
/* C:\myFiles\b.c */
#include <string.h>

Then the generated file is:

:\myFiles\b.c :\
:\Freescale\lib\targetc\include\string.h \
:\Freescale\lib\targetc\include\libdefs.h \
:\Freescale\lib\targetc\include\hidef.h \
:\Freescale\lib\targetc\include\stddef.h \
:\Freescale\lib\targetc\include\stdtypes.h

oo NS NONe!

See also
-Lm: List of Included Files in Make Format

-Lic: License Information

Group
VARIOUS

Scope

None

RSO08 Build Tools Reference Manual for Microcontrollers 191

y
A

Compiler Options
Compiler Option Details

Syntax
-Lic
Arguments

None

Default

None

Defines

None

Pragmas

None

Description

The -Lic option prints the current license information (e.g., if it is a demo version
or a full version). This information is also displayed in the about box.

Example
-Lic

See also
Compiler options:

e -LicA: License Information about every Feature in Directory

e -LicBorrow: Borrow License Feature

o -LicWait: Wait until Floating License is Available from Floating License Server

-LicA: License Information about every Feature in Directory

Group
VARIOUS

Scope

None

192 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Syntax

-LicA

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

The -LicA option prints the license information (e.g., if the tool or feature is a
demo version or a full version) of every tool or * .d11 in the directory where the
executable is located. Each file in the directory is analyzed.

Example

-LicA

See also

Compiler options:

e -Lic: License Information

e -LicBorrow: Borrow License Feature

¢ -LicWait: Wait until Floating License is Available from Floating License Server

-LicBorrow: Borrow License Feature

Group
HOST

Scope

None

RSO08 Build Tools Reference Manual for Microcontrollers

193

3
4

y
A

Compiler Options
Compiler Option Details

Syntax

-LicBorrow<feature>|[;<version>]:<date>

Arguments
<feature>: the feature name to be borrowed (e.g., HI100100).
<version>: optional version of the feature to be borrowed (e.g., 3.000).
<date>: date with optional time until when the feature shall be borrowed (e.g.,
15-Mar-2005:18:35).

Default

None

Defines

None

Pragmas

None

Description

This option allows to borrow a license feature until a given date or time. Borrowing
allows you to use a floating license even if disconnected from the floating license
server.

You need to specify the feature name and the date until you want to borrow the
feature. If the feature you want to borrow is a feature belonging to the tool where
you use this option, then you do not need to specify the version of the feature
(because the tool knows the version). However, if you want to borrow any feature,
you need to specify as well the feature version of it.

You can check the status of currently borrowed features in the tool about box.

NOTE You only can borrow features, if you have a floating license and if your
floating license is enabled for borrowing. See as well the provided FLEXIm
documentation about details on borrowing.

Example
-LicBorrowHI100100;3.000:12-Mar-2005:18:25

See also

Compiler options:

194 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

e -LicA: License Information about every Feature in Directory

e -Lic: License Information

¢ -LicWait: Wait until Floating License is Available from Floating License Server

-LicWait: Wait until Floating License is Available from Floating
License Server

Group
HOST

Scope

None

Syntax
-LicWait
Arguments

None

Default

None

Defines

None

Pragmas

None

Description
By default, if a license is not available from the floating license server, then the
application will immediately return. With -LicWait set, the application will wait
(blocking) until a license is available from the floating license server.

Example

-LicWait

RSO08 Build Tools Reference Manual for Microcontrollers 195

y
A

Compiler Options
Compiler Option Details

See also

e -Lic: License Information

e -LicA: License Information about every Feature in Directory

e -LicBorrow: Borrow License Feature

-LI: Statistics about Each Function

Group
OUTPUT

Scope

Compilation Unit

Syntax

-Ll[=<filename>]

Arguments

<filename>: file to be used for the output

Default

The default output filename is logfile. txt

Defines

None

Pragmas

None

Description

The -L1 option causes the Compiler to append statistical information about the
compilation session to the specified file. Compiler options, code size (in bytes),
memory usage (in bytes) and compilation time (in seconds) are given for each
procedure of the compiled file. The information is appended to the specified
filename (or the file make . txt, if no argument given). If the TEXTPATH: Text
File Path environment variable is set, the file is stored into the path specified by the
environment variable. Otherwise it is stored in the current directory.

196 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Example

Listing 5.27 is an example where the use of the -L.1 compiler options allows
statistical information to be added to the end of an output listing file.

Listing 5.27 Statistical information appended to an assembler listing

-Ll=mylog.txt

/* fun.c */

int Funcl (int b) {
int a = b+3;
return a+2;

}

void Func?2 (void) {

}

Appends the following two lines into mylog.txt:
fun.c Funcl -Ll=mylog.txt 11 4 0.055000
fun.c Func2 -Ll=mylog.txt 1 0 0.001000

-Lm: List of Included Files in Make Format

Group
OUTPUT

Scope

Compilation Unit

Syntax

-Im[=<filename>]

Arguments

<filename>: file to be used for the output

Default

The default filename is Make . txt

Defines

None

RSO08 Build Tools Reference Manual for Microcontrollers 197

3
4

y
A

Compiler Options
Compiler Option Details

Pragmas

None

Description

The -Lm option causes the Compiler to generate a text file which contains a list of
the #include files specified in the source. The generated list is in a make format.
The -Lm option is useful when creating make files. The output from several source
files may be copied and grouped into one make file. The generated list is in the
make format. The filename does not include the path. After each entry, an empty
line is added. The information is appended to the specified filename (or the
make. txt file, if no argument is given). If the TEXTPATH: Text File Path
environment variable is set, the file is stored into the path specified by the
environment variable. Otherwise it is stored in the current directory.

Example

Listing 5.28 is an example where the —-Lm option generates a make file containing
include directives.

Listing 5.28 Make file construction

COMPOTIONS=-Lm=mymake.txt

Compiling the following sources 'foo.c' and 'second.c':
/* foo.c */

#include <stddef.h>

#include "myheader.h"

/* second.c */
#include "inc.h"

#include "header.h"

This adds the following entries in the 'mymake.txt':

foo.o : foo.c stddef.h myheader.h
second.o : second.c inc.h header.h
See also

-Li: List of Included Files
-Lo: Object File List

198 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

-LmCfg: Configuration of List of Included Files in Make Format

Group
OUTPUT

Scope

Compilation Unit

Syntax
-LmCfg[={1i|1l|m|n|o|u|g}]

Arguments
i: Write path of included files
1: Use line continuation
m: Write path of main file

n: No string concatenation

o}

: Write path of object file

o

: Update information

g: Handle single quote (*) as normal token

Default

None

Defines

None

Pragmas

None

Description

This option is used when configuring the -Lm: List of Included Files in Make
Format option. The -LmC£g option is operative only if the —Lm option is also
used. The -Lm option produces the ‘dependency’ information for a make file. Each
dependency information grouping is structured as shown in Listing 5.29:

RSO08 Build Tools Reference Manual for Microcontrollers 199

y
A

Compiler Options
Compiler Option Details

Listing 5.29 Dependency information grouping

<main object file>: <main source file> {<included file>}

Example

If you compile a file named b . ¢, which includes ‘stdio.h’, the output of -Lm
may be:

b.o: b.c stdio.h stddef.h stdarg.h string.h
The 1 suboption uses line continuation for each single entry in the dependency list.

This improves readability as shown in Listing 5.30:

Listing 5.30 | suboption

b.o: \
b.c \
stdio.h \
stddef.h \
stdarg.h \
string.h

With the m suboption, the full path of the main file is written. The main file is the
actual compilation unit (file to be compiled). This is necessary if there are files
with the same name in different directories:

b.o: C:\test\b.c stdio.h stddef.h stdarg.h string.h

The o suboption has the same effect as m, but writes the full name of the target
object file:

C:\test\obj\b.o: b.c stdio.h stddef.h stdarg.h string.h
The i suboption writes the full path of all included files in the dependency list
(Listing 5.31):

Listing 5.31 i suboption

b.o: b.c C:\Freescale\lib\include\stdio.h
C:\Freescale\lib\include\stddef.h C:\Freescale\lib\include\stdarg.h
C:\Freescale\lib\include\ C:\Freescale\lib\include\string.h

The u suboption updates the information in the output file. If the file does not exist,
the file is created. If the file exists and the current information is not yet in the file,

200 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

the information is appended to the file. If the information is already present, it is
updated. This allows you to specify this suboption for each compilation ensuring
that the make dependency file is always up to date.

Example
COMPOTIONS=-LmCfg=u

See also
Compiler options:
e -Li: List of Included Files
e -Lo: Object File List
e -Lm: List of Included Files in Make Format

-Lo: Object File List

Group
OUTPUT

Scope

Compilation Unit

Syntax

-Lo[=<filename>]

Arguments

<filename>: file to be used for the output

Default
The default filename is objlist. txt

Defines

None

Pragmas

None

RSO08 Build Tools Reference Manual for Microcontrollers 201

y
A

Compiler Options
Compiler Option Details

Description

The -Lo option causes the Compiler to append the object filename to the list in the
specified file.The information is appended to the specified filename (or the file
make. txt file, if no argument given). If the TEXTPATH: Text File Path is set,
the file is stored into the path specified by the environment variable. Otherwise, it
is stored in the current directory.

See also
Compiler options:

e -Li: List of Included Files
e -Lm: List of Included Files in Make Format

-Lp: Preprocessor Output

Group
OUTPUT

Scope

Compilation Unit

Syntax

-Lp[=<filename>]

Arguments
<filename>: The name of the file to be generated.

It may contain special modifiers (see Using Special Modifiers).

Default

No file created

Defines

None

Pragmas

None

202 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Description

The -Lp option causes the Compiler to generate a text file which contains the
preprocessor’s output. If no filename is specified, the text file shares the same
name as the source file but with the extension, * . PRE (%n.pre). The TEXTPATH
environment variable is used to store the preprocessor file.

The resultant file is a form of the source file. All preprocessor commands (i.e.,
#include, #define, #1ifdef, etc.) have been resolved. Only source code is
listed with line numbers.

See also

-LpX: Stop after Preprocessor

-LpCfg: Preprocessor Output configuration

-LpCfg: Preprocessor Output configuration

Group
OUTPUT

Scope

Compilation Unit

Syntax
-LpCfg[={c|£|1]|s}]

Arguments
c: Do not generate line comments
e: Generate empty lines
f: Filenames with path
1: Generate #line directives in preprocessor output
m: Do not generate filenames

s: Maintain spaces

Default

If -LpC£g is specified, all suboptions (arguments) are enabled

RSO08 Build Tools Reference Manual for Microcontrollers 203

A 4
4\

Compiler Options
Compiler Option Details

Defines

None

Pragmas

None

Description

The -LpC f£g option specifies how source file and -line information is formatted in
the preprocessor output. Switching -LpCfg off means that the output is formatted
as in former compiler versions. The effects of the arguments are listed in Table 5.8.

Table 5.8 Effects of Source and Line Information Format Control Arguments

Argument | on off
c #line 1 /* 1 %/
/* 2 %/
#line 10 /* 10 */
e int j; int j;
int 1i;
int 1i;
f C:\Freescale\include\stdlib.h stdlib.h
1 #line 1 "stdlib.h" /**** FILE 'stdlib.h' */
m /**** FILE 'stdlib.h' */
s /* 1 */ int f(void) { /* 1 */ dint £ (void) {
/* 2 */ return 1; /* 2 */ return 1 ;
/* 3 %/} /* 3 %/ }
all #line 1
"C:\Freescale\include\stdlib.h" /**** FILE 'stdlib.h' */
/* 1 %/
/* 2 %/
#line 10 /* 10 */
Example
-Lpcfg
-Lpcfg=1fs
204 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

See also

-Lp: Preprocessor Output

-LpX: Stop after Preprocessor

Group
OUTPUT

Scope

Compilation Unit

Syntax
-LpX

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Without this option, the compiler always translates the preprocessor output as C
code. To do only preprocessing, use this option together with the —-Lp option. No

object file is generated.

Example
-LpX

See also

-Lp: Preprocessor Output

RSO08 Build Tools Reference Manual for Microcontrollers

205

y
A

Compiler Options
Compiler Option Details

-N: Display Notify Box

Group
MESSAGES

Scope

Function

Syntax
-N

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Makes the Compiler display an alert box if there was an error during compilation.
This is useful when running a make file (see Make Utility) because the Compiler
waits for you to acknowledge the message, thus suspending make file processing.
The N stands for “Notify”.

This feature is useful for halting and aborting a build using the Make Utility.
Example
-N

If an error occurs during compilation, a dialog box appears.

206 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

-NoBeep: No Beep in Case of an Error
Group
MESSAGES

Scope

Function

Syntax

-NoBeep

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

There is a beep notification at the end of processing if an error was generated. To
implement a silent error, this beep may be switched off using this option.

Example

-NoBeep

RSO08 Build Tools Reference Manual for Microcontrollers

207

y
A

Compiler Options
Compiler Option Details

-NoDebuginfo: Do not Generate Debug Information

Group
OUTPUT

Scope

None

Syntax

-NoDebugInfo

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

The compiler generates debug information by default. When this option is used, the
compiler does not generate debug information.

NOTE To generate an application without debug information in ELF, the linker
provides an option to strip the debug information. By calling the linker twice,
you can generate two versions of the application: one with and one without
debug information. This compiler option has to be used only if object files or
libraries are to be distributed without debug info.

NOTE This option does not affect the generated code. Only the debug information is

excluded.

208

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

See also
Compiler options:
e -F(-F2. -F20): Object-File Format
¢ -NoPath: Strip Path Info

-NoPath: Strip Path Info

Group
OUTPUT

Scope

Compilation Unit

Syntax

-NoPath

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

With this option set, it is possible to avoid any path information in object files. This
is useful if you want to move object files to another file location, or to hide your
path structure.

See also

-NoDebuglInfo: Do not Generate Debug Information

RSO08 Build Tools Reference Manual for Microcontrollers 209

y
A

Compiler Options
Compiler Option Details

-Oa: Alias Analysis Options

Group
OPTIMIZATIONS

Scope

Function

Syntax
-0a (addr|ANSI |type|none)

Arguments

addr: All objects in same address area may overlap (safe mode, default)
ANSTI: use ANSI9O rules

type: only objects in same address area with same type may overlap

none: assume no objects do overlap

Default
addr

Defines

None

Pragmas

None

Description

These four different options allow the programmer to control the alias behavior of
the compiler. The option -oaaddr is the default because it is safe for all C
programs. Use option —~oaans1i if the source code follows the ANSI C99 alias
rules. If objects with different types never overlap in your program, use option
-oatype. If your program doesn’t have aliases at all, use option ~oanone (or
the ICG option —-ona, which is supported for compatibility reasons).

Examples

-0aANSI

210

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

-O (-Os, -Ot): Main Optimization Target

Group
OPTIMIZATIONS

Scope

Function

Syntax
-O(s|t)

Arguments
s: Optimization for code size (default)

t: Optimization for execution speed

Default
-0Os

Defines
__ _OPTIMIZE_FOR_SIZE_
__ _OPTIMIZE_FOR_TIME_

Pragmas

None

Description

There are various points where the Compiler has to choose between two
possibilities: it can either generate fast, but large code, or small but slower code.

The Compiler generally optimizes on code size. It often has to decide between a
runtime routine or an expanded code. The programmer can decide whether to
choose between the slower and shorter or the faster and longer code sequence by
setting a command line switch.

The -Os option directs the Compiler to optimize the code for smaller code size.
The Compiler trades faster-larger code for slower-smaller code.

The -0t option directs the Compiler to optimize the code for faster execution
time. The Compiler replaces slower/smaller code with faster/larger code.

RSO08 Build Tools Reference Manual for Microcontrollers 211

y
A

Compiler Options
Compiler Option Details

NOTE This option only affects some special code sequences. This option has to be set
together with other optimization options (e.g., register optimization) to get best
results.

Example
-Os

-ObjN: Object filename Specification

Group
OUTPUT

Scope

Compilation Unit

Syntax
-ObjN=<file>

Arguments

<file>: Object filename

Default

-ObjN=% (OBJPATH) \%n.o

Defines

None

Pragmas

None

Description

The object file has the same name as the processed source file, but with the * . o
extension. This option allows a flexible way to define the object filename. It may
contain special modifiers (see Using Special Modifiers). If <£i1le> in the option
contains a path (absolute or relative), the OBJPATH environment variable is
ignored.

212 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Example
-ObjN=a.out

The resulting object file is a . out. If the OBJPATH environment variable is set to
\src\obj, the object file is \src\obj\a. out.

fibo.c -ObjN=%n.obj
The resulting object file is £ibo . obj.
myfile.c -ObjN=..\objects_%n.obj

The object file is named relative to the current directory to
..\objects_myfile.obj. The OBJPATH environment variable is ignored
because the <file> contains a path.

See also
OBJPATH: Object File Path

-Obsr: Generate Always Near Calls

Group
OPTIMIZATIONS

Scope

Function

Syntax
-Obsr

Arguments

None

Default

None

Defines

None

Pragmas

None

RSO08 Build Tools Reference Manual for Microcontrollers 213

wr
4\

Compiler Options
Compiler Option Details

Description

This option forces the compiler to always generate near calls, i.e. use BSR instruction
instead of a JSR in order to reduce code size. Without this option the compiler checks the
range of the call to determine if a BSR can be generated instead of a JSR.

Example

extern int f(void) ;

int g(void) {

return f();

Without -Obsr:

0000 b700 STA __OVL_g_pO0
0002 45 SHA
0003 b700 STA _ OVL_g_14_ PSID_75300004
0005 42 SLA
0006 b701 STA __OVL_g 14_ PSID_75300004:1
4: return f£();
0008 a600 LDA #__ OVL_g_14__ PSID_75300001
000a bdo000 JSR SFIX16(f)
000d 4e000f LDX __OVL_g_pO0
0010 4e000e MOV _ OVL_g_14_ PSID_75300001,D[X]
0013 2f INCX
0014 4e010e MOV _ OVL_g 14_ PSID_75300001:1,D[X]
0017 b600 LDA __OVL_g_14_ PSID_75300004
0019 45 SHA
00la be601 LDA __OVL_g 14_ PSID_75300004:1
001lc 42 SLA
5: }
001d be RTS
With -Obsr:
0000 b700 STA _ _OVL_g_p0
0002 45 SHA
0003 b700 STA _ OVL_g_ 14_ PSID_75300004
0005 42 SLA
0006 b701 STA __OVL_g_ 14 PSID_75300004:1
4: return f£();

214 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

0008
000a
000c
000f
0012
0013
0016
0018
0019
001b

001c

a600
adoo
4e000f
4e000e
2f
4e010e
b600
45
b601
42

}
be

LDA
BSR
LDX
MOV
INCX
MOV
LDA
SHA
LDA
SLA

RTS

#__ OVL_g_14__ PSID_75300001
PART_0_7(f)

__OVL_g_p0

_ _OVL_g_14_ PSID_75300001,D[X]

__OVL_g_14_ PSID_75300001:1,D[X]
__OVL_g_14_ PSID_75300004

__OVL_g_14_PSID_75300004:1

-Od: Disable Mid-Level Optimizations

Group
OPTIMIZATIONS

Scope

Syntax

Function

-0d [= <option Char> {<option Char>}]

Arguments

Default

<option Char> is one of the following:

o Q4 Q0 o o

h

g:

: Disable mid level copy propagation

: Disable mid level constant propagation

: Disable mid level common subexpression elimination (CSE)
: Disable mid level removing dead assignments

: Disable mid level instruction combination

: Disable mid level code motion

Disable mid level loop induction variable elimination

None

RSO08 Build Tools Reference Manual for Microcontrollers 215

y
A

Compiler Options
Compiler Option Details

Defines

None

Pragmas

None

Description

The backend of this compiler is based on the second generation intermediate code

generator (SICG). All intermediate language and processor independent

optimizations (cf. NULLSTONE) are performed by the SICG optimizer using the

powerful static single assignment form (SSA form). The optimizations are

switched off using —od. Currently four optimizations are implemented.
Examples

-0d disables all mid-level optimizations

-0d=d disables removing dead assignments only

-0d=cd disables removing dead assignments and CSE

See also

None

-Odb: Disable Mid-Level Branch Optimizations

Group
OPTIMIZATIONS

Scope

Function

Syntax

-0db [= <option Char> {<option Char>}]

Arguments
<option Char> is one of the following:
a: Disable mid level label rearranging

b: Disable mid level branch tail merging

216 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

c: Disable mid level loop hoisting

Default

None

Defines

None

Pragmas

None

Description

This option disables branch optimizations on the SSA form based on control flows.
Label rearranging sorts all labels of the control flow to generate a minimum
amount of branches.

Branch tail merging places common code into joining labels, as shown:
void fun(void) {void fun(void) {

if(cond) {if(cond) {

a = 0;} else {

} else {...

Examples
-0db disables all mid-level branch optimizations

-0db=Db disables only branch tail merging

See also

None

RSO08 Build Tools Reference Manual for Microcontrollers 217

y
A

Compiler Options
Compiler Option Details

-OdocF: Dynamic Option Configuration for Functions

Group
OPTIMIZATIONS

Scope

Function

Syntax

-OdocF=<option>

Arguments

<option>: Set of options, separated by | to be evaluated for each single function.

Default

None

Defines

None

Pragmas

None

Description

Normally, you must set a specific set of Compiler switches for each compilation
unit (file to be compiled). For some files, a specific set of options may decrease the
code size, but for other files, the same set of Compiler options may produce more
code depending on the sources.

Some optimizations may reduce the code size for some functions, but may increase
the code size for other functions in the same compilation unit. Normally it is
impossible to vary options over different functions, or to find the best combination
of options.

This option solves this problem by allowing the Compiler to choose from a set of
options to reach the smallest code size for every function. Without this feature, you
must set some Compiler switches, which are fixed, over the whole compilation
unit. With this feature, the Compiler is free to find the best option combination
from a user-defined set for every function.

218 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Standard merging rules applies also for this new option, e.g.,
-Or -OdocF="-Ocu]|-Cu"

is the same as

-OrDOCF="-0Ouc | -Cu"

The Compiler attempts to find the best option combination (of those specified) and
evaluates all possible combinations of all specified sets, e.g., for the option shown

in Listing 5.32:

Listing 5.32 Example of dynamic option configuration

-W2 -0docF="-Or|-Cni -Cul|-Oc"

NOTE

The code sizes for following option combinations are evaluated:
-W2
-W2 -Or
-w2 -Cni -Cu

1.

2

3

4. -W2 -Or -Cni -Cu
5. -W2 -Oc

6. -W2 -Or -Oc

7. -W2 -Cni -Cu -Oc

8. -W2 -Or -Cni -Cu -Oc

Thus, if the more sets are specified, the longer the Compiler has to evaluate all
combinations, e.g., for 5 sets 32 evaluations.

Do not use this option to specify options with scope Application or
Compilation Unit (such as memory model, float or double format, or object-file
format) or options for the whole compilation unit (like inlining or macro
definition). The generated functions may be incompatible for linking and
executing.

Limitations:

¢ The maximum set of options set is limited to five, e.g.,
-0docF="-0r -Ou|-Cni|-Cu|-0ic2|-W2 -Ob"

* The maximum length of the option is 64 characters.

* The feature is available only for functions and options compatible with
functions. Future extensions will also provide this option for compilation units.

RS08 Build Tools R

eference Manual for Microcontrollers 219

y
A

Compiler Options
Compiler Option Details

Example
-0docf="-0Or|-Cni"

-0i: Inlining

Group
OPTIMIZATIONS

Scope

Compilation unit

Syntax

-0i[=(c<code Size>|OFF)]

Arguments
<code Size>: Limit for inlining in code size

OFF: switching off inlining

Default
None. If no <code Size> is specified, the compiler uses a default code size of
40 bytes

Defines

None

Pragmas

#pragma INLINE

Description

This option enables inline expansion. If there is a #pragma INLINE before a
function definition, all calls of this function are replaced by the code of this
function, if possible.

Using the -0i=c0 option switches off inlining. Functions marked with the
#pragma INLINE are still inlined. To disable inlining, use the -Oi=0FF option.

220 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Example
-01
#pragma INLINE

static void f(int i) {

/* all calls of function f() are inlined */

VA
}

The option extension [=c<n>] signifies that all functions with a size smaller than
<n> are inlined. For example, compiling with the option —~oi=c100 enables
inline expansion for all functions with a size smaller than 100 bytes.

Restrictions
The following functions are not inlined:
» functions with default arguments

¢ functions with labels inside

¢ functions with an open parameter list (void f (int 1i,...

* functions with inline assembly statements

» functions using local static objects

-Oilib: Optimize Library Functions
Group
OPTIMIZATIONS

Scope

Function

Syntax

-Oilib[=<arguments>]

Arguments

<arguments> are one or multiple of following suboptions:

b: inline calls to the strlen () function

d: inline calls to the fabs () or fabsf () functions

RSO08 Build Tools Reference Manual for Microcontrollers

221

3
4

y
A

Compiler Options

Compiler Option Details

e: inline calls to the memset () function

f: inline calls to the memcpy () function

g: replace shifts left of 1 by array lookup

Default

None

Defines

None

Pragmas

None

Description

This option enables the compiler to optimize specific known library functions to
reduce execution time. The Compiler frequently uses small functions such as
strepy(), stremp(), and so forth. The following functions are optimized:

e strcpy () (only available for ICG-based backends)

e strlen() (e.g,strlen(“abc”))

e abs() or fabs() (e.g., ‘f = fabs(f);’)

* memset () is optimized only if:

the result is not used

memset () is used to zero out

the size for the zero out is in the range 1 — Oxff

the ANSI library header file <string.h> is included
An example for this is:

(void)memset (&buf, 0, 50);

In this case, the call to memset () is replaced with a call to
_memset_clear_ 8bitCount presentin the ANSI library
(string.c).

* memcpy () is optimized only if:

the result is not used,

the size for the copy out is in the range 0 to Oxf £,

the ANSI library header file <string.h> is included.
An example for this is:

(void)memcpy (&buf, &buf2, 30);

222

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

In this case the call to memcpy () is replaced with a call to
_memcpy_8bitCount present in the ANSI library (string. c).

* (char)l << wvalisreplaced by _PowOfTwo_8([vall] if _PowOfTwo_8
is known at compile time. Similarly, for 16-bit and 32-bit shifts, the arrays
_PowOfTwo_16 and _PowOfTwo_32 are used. These constant arrays
contain the values 1, 2, 4, 8, etc. They are declared in hidef . h. This
optimization is performed only when optimizing for time.

¢ -0ilib without arguments: optimize calls to all supported library functions.

Example

Compiling the £ () function with the -0ilib=a compiler option (only available
for ICG-based backends):

void f(void) {
char *s = strcpy(s, ct);
}
This translates in a similar fashion to the following function:
void g(void) {
s2 = s;
while (*s2++ = *ct++);

}

See also
-Oi: Inlining

-OnB: Disable Branch Optimizer
Group
OPTIMIZATIONS

Scope

Function

Syntax
-OnB

RSO08 Build Tools Reference Manual for Microcontrollers 223

V¥ ¢
i

Compiler Options
Compiler Option Details

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

With this option, all low-level branch optimizations are disabled.

Example
-OnB

See Also

None

-OnBRA: Disable JAL to BRA Optimization

Group
OPTIMIZATIONS

Scope

Function

Syntax
-OnBRA

Arguments

None

Default

None

224 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Defines

None

Pragmas

None

Description

If the call distance to a subroutine defined in the same compilation unit is in the
range of [-512 — 512], the Compiler replaces a JAL instruction by a BRA
instruction to reduce code size. Disable this optimization by specifying the option
-OnBRA if your linker places code between caller and callee.

Example 1: Branch to Subroutine

int f(void) {

return 1;
}
int g(void) {

return f();
}
With -OnBRA:
_ X _f:
F201 LDL R2, #1
06F6 JAL R6
_ X g:
7E1E STW R6, (RO,-R7)

5: return f£();

F600 LDL R6, #%RS08_8(_X_f)
AEOO0 ORH R6, #%RS08_8_H(_X_ f)
06F6 JAL R6
6E1D LDW R6, (RO,R7+)
06F6 JAL R6

RSO08 Build Tools Reference Manual for Microcontrollers 225

A 4
4\

Compiler Options
Compiler Option Details

Without -OnBRA:

X f:

F201 LDL R2, #1
3: 1}

06F6 JAL R6

_ X g:

TE1E STW R6, (RO,-R7)
5: return f();

06FA TFR R6, PC

3C00 BRA _X_f

6E1D LDW R6, (RO,R7+)

06F6 JAL R6

Example 2: Conditional Branch to Subroutine
int a;
int f(void) {
return 1;
}
void g(void) {
if (a !'= 0) {

(void) £();

}
}
With -OnBRA:
X f:
F201 LDL R2, #1
06F6 JAL R6
_X_g:
7E1E STW R6, (RO,-R7)

if (a !'= 0) {

F200 LDL R2, #%RS08_8(a)
AAQO0 ORH R2, #%RS08_8_H(a)
4A40 LDW R2, (R2,#0)

226 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

1840 TST
2603 BEQ

(void) £();

F600 LDL
AEO0O0

06F6

ORH
JAL

6E1D
06F6

LDwW
JAL

Without -OnBRA:

_ X f:
F201 LDL
06F6 JAL
_ X g:
7E1E STW
6:
F200 LDL
AAQ00 ORH
4240
1840
06FA

2400

LDW
TST
TFR
BNE
9: 1}
6E1D LDW
06F6 JAL

Example
-OnBRA

See also

None

if

(a

R2

*+8 ;abs = 0x00000016
R6, #%RS08_8(_X_f)
R6, #%RS08_8_H(_X_f)
R6

R6, (RO,R7+)

R6

R2, #1

R6

R6, (RO,-R7)

1= 0) {

R2, #%RS08_8(a)

R2, #%RS08_8_H(a)
R2, (R2,#0)

R2

R6, PC

_X_f

R6, (RO,R7+)

R6

RSO08 Build Tools Reference Manual for Microcontrollers

227

y
A

Compiler Options
Compiler Option Details

-Onbsr: Disable far to near call optimization

Group

OPTIMIZATIONS

Scope

Function

Syntax

-Onbsr

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

This option disables the JSR to BSR optimization. The compiler checks the range of the
call to determine if a BSR can be generated instead of a JSR. If -Onbsr is used this
optimization will be disabled.

Example

int f(void) {
return 1;

}

int g(void) {
return f£();

}

228

RS08 Build Tools Reference Manual for Microcontrollers

g |

Compiler Options
Compiler Option Details

Without -Onbst:

0000 b700 STA __OVL_g_pO0
0002 45 SHA
0003 b700 STA _ OVL_g_ 14_ PSID_75300005
0005 42 SLA
0006 b701 STA __OVL_g_ 14 PSID_75300005:1

5: return f£();
0008 a600 LDA #__ OVL_g_14__ PSID_75300002
000a adoo BSR PART_0_7(f)
000c 4e000f LDX __OVL_g_p0
000f 4e000e MOV _ _OVL_g_14_ PSID_75300002,D[X]
0012 2f INCX
0013 4e010e MOV __OVL_g 14_ PSID_75300002:1,D[X]
0016 b600 LDA __OVL_g_14_ PSID_75300005
0018 45 SHA
0019 be01 LDA __OVL_g 14_ PSID_75300005:1
001b 42 SLA

6: }
001lc be RTS

With -Onbsr:

n.lst -Onbsr

0000 b700 STA __OVL_g_p0
0002 45 SHA
0003 b700 STA __OVL_g_14__ _PSID_75300005
0005 42 SLA
0006 b701 STA __OVL_g_14_ PSID_75300005:1

5: return f£();
0008 a600 LDA #__ _OVL_g_14__ PSID_75300002
000a bd0000 JSR SFIX16 (f)
0004 4e000f LDX _ OVL_g_p0
0010 4e000e MOV _ OVL_g_14_ PSID_75300002,DI[X]
0013 2f INCX
0014 4e010e MOV _ OVL_g_14_ PSID_75300002:1,D[X]
0017 b600 LDA __OVL_g_14__ _PSID_75300005
0019 45 SHA
00la b601 LDA __OVL_g_14__ _PSID_75300005:1
001lc 42 SLA

6: }
001d be

RSO08 Build Tools Reference Manual for Microcontrollers 229

y
A

Compiler Options
Compiler Option Details

-OnCopyDown: Do Generate Copy Down Information for Zero
Values

Group
OPTIMIZATIONS

Scope

Compilation unit

Syntax

-OnCopyDown

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

With usual startup code, all global variables are first set to O (zero out). If the
definition contained an initialization value, this initialization value is copied to the
variable (copy down). Because of this, it is not necessary to copy zero values
unless the usual startup code is modified. If a modified startup code contains a
copy down but not a zero out, use this option to prevent the compiler from
removing the initialization.

NOTE The case of a copy down without a zero out is normally not used. Because the
copy down needs much more space than the zero out, it usually contains copy
down and zero out, zero out alone, or none of them.

In the ELF format, the object-file format permits optimization only if the whole
array or structure is initialized with 0.

230 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

NOTE This option controls the optimizations done in the compiler. However, the
linker itself might further optimize the copy down or the zero out.

Example
int 1=0;
int arr([10]={1,0,0,0,0,0,0,0,0,0};
If this option is present, no copy down is generated for 1.

For the arr array, it is not possible to separate initialization with 0 from
initialization with 1.

-OnCstVar: Disable CONST Variable by Constant Replacement

Group
OPTIMIZATIONS

Scope

Compilation Unit

Syntax
-OnCstVar

Arguments

None

Default

None

Defines

None

Pragmas

None

RSO08 Build Tools Reference Manual for Microcontrollers 231

3
4

y
A

Compiler Options
Compiler Option Details

Description

This option provides you with a way to switch OFF the replacement of CONST
variable by the constant value.

Example
const int MyConst = 5;
int 1i;
void foo(void) {
i = MyConst;
}

If the -OnStVar option is not set, the compiler replaces each occurrence of
MyConst with its constant value 5; thatis 1 = MyConst is transformed into i
= 5;. The Memory or ROM needed for the MyConst constant variable is
optimized as well. With the ~-OnCstVar option set, this optimization is avoided.
This is logical only if you want unoptimized code.

-Onp: Disable Peephole Optimizer

Group
OPTIMIZATIONS

Scope

Function

Syntax
-Onp

Arguments

None

Default

None

Defines

None

232 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Pragmas

None

Description

If -OnP is specified, the whole peephole optimizer is disabled. The peephole
optimizer removes useless loads and stores and applies pre and post increment
addressing if possible.

Example
-Onp

See Also

None

-OnPMNC: Disable Code Generation for NULL Pointer to Member
Check

Group
OPTIMIZATIONS

Scope

Compilation Unit

Syntax
-OnPMNC

Arguments

None

Default

None

Defines

None

Pragmas

None

RSO08 Build Tools Reference Manual for Microcontrollers 233

y
A

Compiler Options
Compiler Option Details

Description

Before assigning a pointer to a member in C++, you must ensure that the pointer to
the member is not NULL in order to generate correct and safe code. In embedded
systems development, the problem is to generate the denser code while avoiding
overhead whenever possible (this NULL check code is a good example). If you can
ensure this pointer to a member will never be NULL, then this NULL check is
useless. This option enables you to switch off the code generation for the NULL
check.

Example
-OnPMNC

-Onr: Disable Reload from Register Optimization

Group
OPTIMIZATIONS

Scope

Function

Syntax

-Onr

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

This option disables the low level register trace optimizations. If you use the option
the code becomes more readable, but less optimal.

234 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Example

-Onr

See Also

None

-Ont: Disable Tree Optimizer

Group
OPTIMIZATIONS

Scope

Function

Syntax
-ont[={%|&[*|+[-|/[0]1]7]8]9]?|~[a|blc|d]|e]
flglhli|l[m|nfo|plalr|s|t|ulv|w|]|~}]

Arguments

o

: Disable mod optimization
&: Disable bit and optimization
*: Disable mul optimization

+: Disable plus optimization

-: Disable minus optimization
: Disable div optimization

: Disable and optimization

/

0

1: Disable or optimization

7: Disable extend optimization

8: Disable switch optimization

9: Disable assign optimization

?: Disable test optimization

: Disable xor optimization

a: Disable statement optimization

b: Disable constant folding optimization

RSO08 Build Tools Reference Manual for Microcontrollers 235

3
4

y
A

Compiler Options

Compiler Option Details

B Q T O 8 = w. 5Q M0 QA

[0}

o

Default

: Disable compare optimization

: Disable binary operation optimization
: Disable constant swap optimization
: Disable condition optimization

: Disable compare size optimization

: Disable unary minus optimization

: Disable address optimization

: Disable transformations for inlining
: Disable label optimization

: Disable left shift optimization

: Disable right shift optimization

: Disable cast optimization

: Disable cut optimization

: Disable 16-32 compare optimization
: Disable 16-32 relative optimization
: Disable indirect optimization

: Disable for optimization

: Disable while optimization

: Disable do optimization

: Disable if optimization

: Disable bit or optimization

: Disable bit neg optimization

If -Ont is specified, all optimizations are disabled

Defines

None

Pragmas

None

236

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Description

The Compiler contains a special optimizer which optimizes the internal tree data
structure. This tree data structure holds the semantic of the program and represents
the parsed statements and expressions.

This option disables the tree optimizer. This may be useful for debugging and for
forcing the Compiler to produce ‘straightforward’ code. Note that the
optimizations below are just examples for the classes of optimizations.

If this option is set, the Compiler will not perform the following optimizations:

-Ont=~

Disable optimization of ‘~~1i’ into ‘1’
-Ont=l

Disable optimization of ‘1 | Oxf£££’ into ‘OxEE£E’
-Ont=w

Disable optimization of ‘1f (1) i = 0;’into ‘i = 03
-Ont=v

Disable optimization of ‘do ... while(0) into ‘...’
-Ont=u

Disable optimization of ‘while (1) ...;’into ‘...;’
-Ont=t

Disable optimization of ‘for (; ;) ...’ into ‘while(1)
-Ont=s

Disable optimization of ‘*&1i’ into ‘1’
-Ont=r

Disable optimization of ‘Li<=4’ into 16-bit compares if 16-bit compares are better

-Ont=q

Reduction of long compares into int compares if int compares are better: (-Ont=gq
to disable it)

if (uL == 0)

RSO08 Build Tools Reference Manual for Microcontrollers 237

A 4
4\

Compiler Options
Compiler Option Details

is optimized into

if ((int) (uL>>16) == 0 && (int)uL == 0)

-Ont=p

Disable optimization of ‘ (char) (long) i’ into ‘ (char)i’

-Ont=0

Disable optimization of ‘ (short) (int)L’ into ‘ (short)L’ if short and
int have the same size

-Ont=n, -Ont=m:

Optimization of shift optimizations (<<, >>, -Ont=n or -Ont=m to disable it):
Reduction of shift counts to unsigned char:

ul. = uLl >> ul2;
is optimized into:

ul. = uLl >> (unsigned char)ul2;

Optimization of zero shift counts:
ul, = uLl >> 0;
is optimized into:

ul, = ulLl;

Optimization of shift counts greater than the object to be shifted:
ul. = uLl >> 40;
is optimized into:

uL = 0L;

Strength reduction for operations followed by a cut operation:
ch = uLl * ul2;
is optimized into:

ch = (char)ulLl * (char)ul2;

Replacing shift operations by load or store

i = ul >> 16;

238 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

is optimized into:

i = *(int *) (&ul);

Shift count reductions:
ch = uL >> 17;
is optimized into:

ch = (*(char *) (&ul)+1)>>1;

Optimization of shift combined with binary and:
ch = (uL >> 25) & 0x10;
is optimized into:

ch = ((*(char *) (&uL))>>1) & 0x10;

-Ont=l

Disable optimization removal of labels if not used
-Ont=i

Disable optimization of ‘&*p’ into ‘p’
'Oﬂt:i

This optimization transforms the syntax tree into an equivalent form in which more
inlining cases can be done. This option only has an effect when inlining is enabled.

-Ont=h

Disable optimization of ‘- (-1)’ into ‘i’
-Ont=f

Disable optimization of ‘ (a==0)into ‘(!a)’
-Ont=e

Disable optimization of ‘2*1i’ into ‘1*2’
-Ont=d

Disable optimization of ‘us & ui’ into ‘us & (unsigned short)ui’

-Ont=c

Disable optimization of ‘if ((long)i)’into ‘i1f (i)’

RSO08 Build Tools Reference Manual for Microcontrollers 239

y
A

Compiler Options
Compiler Option Details

-Ont=b

Disable optimization of ‘3+7” into ‘10’

-Ont=a

Disable optimization of last statement in function if result is not used

-Ont=~

Disable optimization of ‘170’ into ‘1’

-Ont=?

Disable optimization of ‘1 = (int) (cond ? L1:L2);’ into
‘1 = cond ? (int)Ll: (int)L2;’

-Ont=9
Disable optimization of ‘i=1i;’
-Ont=8

Disable optimization of empty switch statement

-Ont=7

Disable optimization of ‘ (long) (char)L’ into ‘L’
-Ont=1

Disable optimization of ‘a || 0’ into ‘a’
-Ont=0

Disable optimization of ‘a && 1’ into ‘a’
-Ont=/

Disable optimization of ‘a/1’ into ‘a’
-Ont=-

Disable optimization of ‘a-0’ into ‘a’
-Ont=+

Disable optimization of ‘a+0’ into ‘a’

-Ont=*

Disable optimization of ‘a*1’ into ‘a’

240 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

-Ont=&

Disable optimization of ‘a&0’ into ‘0

s

-Ont=%

Disable optimization of ‘a%1’ into ‘0

s

Example
fibo.c -Ont

-Ontc: disable tail call optimization

Group
OPTIMIZATIONS

Scope

Function

Syntax
-Ontc

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

By default, the compiler replaces trailing calls (JSR/BSR) with JMP instructions if the
function does not contain any other function calls. This allows the compiler to remove all

the entry and exit code from the current function.

RSO08 Build Tools Reference Manual for Microcontrollers

241

wr
4\

Compiler Options
Compiler Option Details

Example

void f1() {

1++;

void £2() {
£1();

Without -Ontc:

Function: f1

Source : d:\junk\rsO8\test.c
Options : -Lasm=%n.lst
7: i++;
0000 3c01 INC i:1
0002 3602 BNE L6
0004 3c00 INC i
0006 L6:
8: }
0006 be RTS
9.

10: void £2() {

Function: f2

Source : d:\junk\rsO08\test.c
Options : -Lasm=%n.lst
11: £f1();
0000 3000 BRA PART_0_7(£f1)
12: 1}
With -Ontc:

Function: f1
Source : d:\junk\rsO08\test.c
Options : -Lasm=%n.lst -Ontc

242 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

7 i++;
0000 3cO01 INC i:1
0002 3602 BNE L6
0004 3c00 INC i
0006 L6:

8: }
0006 be RTS

9.

10: void £2() {

Function: f2

Source : d:\junk\rsO8\test.c

Options : -Lasm=%n.lst -Ontc
0000 45 SHA
0001 b700 STA _ OVL_f2_14_ PSID 75300003
0003 42 SLA
0004 b701 STA _ OVL_f2_14_ PSID_75300003:1
11: £f1();
0006 adoo0 BSR PART_0_7(f1)
0008 b600 LDA _ OVL_f2_14_PSID 75300003
000a 45 SHA
000b b601 LDA __OVL_f2_14_ PSID_75300003:1
0004 42 SLA
12: 1}
000e be RTS
13:

-Ostk: Reuse Locals of Stack Frame
Group
OPTIMIZATIONS

Scope

Function

Syntax
-Ostk

RSO08 Build Tools Reference Manual for Microcontrollers 243

A 4
4\

Compiler Options
Compiler Option Details

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

This option instructs the compiler to reuse the location of local variables/temporaries
whenever possible. When used, the compiler analyzes which local variables are alive
simultaneously. Based on that analysis the compiler chooses the best memory layout for
for variables. Two or more variables may end up sharing the same memory location.

Example
TBD

-Pe: Preprocessing Escape Sequences in Strings

Group
LANGUAGE

Scope

Compilation Unit

Syntax

-Pe

Arguments

None

Default

None

244 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Defines

None

Pragmas

None

Description

If escape sequences are used in macros, they are handled in an include directive
similar to the way they are handled in a printf () instruction:

#define STRING "C:\myfile.h"

#include STRING

produces an error:

>> Tllegal escape sequence

but used in:

printf (STRING) ;

produces a carriage return with line feed:
C:

myfile

If the -Pe option is used, escape sequences are ignored in strings that contain a
DOS drive letter ('a—'z', 'A' —'Z") followed by a colon ': ' and a backslash "\".

When the -Pe option is enabled, the Compiler handles strings in include directives
differently from other strings. Escape sequences in include directive strings are not
evaluated.

The following example:
#include "C:\names.h"

results in exactly the same include filename as in the source file
(“C:\names .h"). If the filename appears in a macro, the Compiler does not
distinguish between filename usage and normal string usage with escape sequence.

RSO08 Build Tools Reference Manual for Microcontrollers 245

3
4

y
A

Compiler Options
Compiler Option Details

This occurs because the STRING macro has to be the same for both the include and
the printf () call, as shown below:

#define STRING "C:\n.h"
#include STRING /* means: "C:\n.h" *

void main(void) {
printf (STRING);/* means: "C:", new line and ".h" */
}

This option may be used to use macros for include files. This prevents escape
sequence scanning in strings if the string starts with a DOS drive letter (a through
z or A through Z) followed by a colon ' : ' and a backslash '\ '. With the option
set, the above example includes the C: \n.h file and calls printf () with
"C:\n.h").

Example

-Pe

-Pio: Include Files Only Once

Group

INPUT

Scope

Compilation Unit

Syntax

-Pio

Arguments

None

Default

None

Defines

None

246

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Pragmas

None

Description

Includes every header file only once. Whenever the compiler reaches an
#include directive, it checks if this file to be included was already read. If so,
the compiler ignores the #include directive. It is common practice to protect
header files from multiple inclusion by conditional compilation, as shown in

Listing 5.33:

Listing 5.33 Conditional compilation

/* Header file myfile.h */
#ifndef MY FILE H_
#define _MY FILE_H_

/* ... content ... */
#endif /* _MY FILE_H_ */

When the #ifndef and #define directives are issued, any header file content is
read only once even when the header file is included several times. This solves
many problems as C-language protocol does not allow you to define structures
(such as enums or typedefs) more than once.

When all header files are protected in this manner, this option can safely accelerate
the compilation.

This option must not be used when a header file must be included twice, e.g., the
file contains macros which are set differently at the different inclusion times. In
those instances, #pragma ONCE: Include Once is used to accelerate the inclusion
of safe header files that do not contain macros of that nature.

Example

-Pio

-Prod: Specify Project File at Startup

Group

Startup - This option cannot be specified interactively.

RSO08 Build Tools Reference Manual for Microcontrollers 247

3
4

y
A

Compiler Options
Compiler Option Details

Scope

None

Syntax

-Prod=<file>

Arguments

<file>: name of a project or project directory

Default

None

Defines

None

Pragmas

None

Description

This option can only be specified at the command line while starting the
application. It cannot be specified in any other circumstances, including the
default.env file, the command line or whatever. When this option is given, the
application opens the file as a configuration file. When <file> names only a
directory instead of a file, the default name project . ini is appended. When the
loading fails, a message box appears.

Example

compiler.exe -prod=project.ini

NOTE Use the compiler executable name instead of “compiler”.

See also
Local Configuration File (usually project.ini)

248

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

-Qvtp: Qualifier for Virtual Table Pointers

Group
CODE GENERATION

Scope
Application

Syntax

-Qvtp (none| far |near |paged)

Arguments

None

Default

-Qvptnone

Defines

None

Pragmas

None

Description

Using a virtual function in C++ requires an additional pointer to virtual function
tables. This pointer is not accessible and is generated by the compiler in every class
object when virtual function tables are associated.

NOTE Specifying an unsupported qualifier has no effect, e.g., using a far qualifier if
the Backend or CPU does not support any ___far data accesses.

Example
-QvtpFar

This sets the qualifier for virtual table pointers to ___far enabling the virtual tables
to be placed into a __ FAR_ SEG segment (if the Backend or CPU supports
__FAR_SEG segments).

RSO08 Build Tools Reference Manual for Microcontrollers 249

y
A

Compiler Options
Compiler Option Details

-T: Flexible Type Management

Group
LANGUAGE.

Scope
Application

Syntax

-T<Type Format>

Arguments

<Type Format>: See below

Default

Depends on target, see the Backend chapter

Defines

To deal with different type sizes, one of the following define groups in Listing 5.34
is predefined by the Compiler:

Listing 5.34 Predefined define groups

_ CHAR_IS_SIGNED_ _
__CHAR_IS_UNSIGNED_ _

__ _CHAR_IS_8BIT

_ CHAR_IS_16BIT_
__ CHAR_IS_32BIT_
__CHAR_IS_64BIT_

__ SHORT_IS_8BIT

__ SHORT_IS_16BIT_
_ SHORT_IS_32BIT_
__ SHORT_IS_64BIT_

_ INT IS _8BIT

_ INT _IS_16BIT__
__ INT IS_32BIT
_ INT_IS_64BIT__

250 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

__ ENUM_IS_S8BIT___

__ENUM_IS_16BIT___
__ENUM_IS_32BIT___
_ _ENUM_TIS_64BIT_

_ ENUM_IS_SIGNED_
__ENUM_IS_UNSIGNED_

_ PLAIN_BITFIELD_IS_SIGNED_
__ PLAIN BITFIELD_IS_UNSIGNED_

_ LONG_IS_8BIT

_ LONG_IS_16BIT_
_ LONG_IS_32BIT_
_ LONG_IS_64BIT_

__ LONG_LONG_IS_8BIT___
_ LONG_LONG_IS_16BIT___
_ LONG_LONG_IS_32BIT__
__ LONG_LONG_IS_64BIT___

_ FLOAT_ IS IEEE32
_ FLOAT_IS_DSP__

_ DOUBLE_IS_IEEE32_
_ DOUBLE_IS_DSP_

_ LONG_DOUBLE_IS_IEEE32_
__ LONG_DOUBLE_IS_DSP_

__ LONG_LONG_DOUBLE_IS_IEEE32_
_ LONG_LONG_DOUBLE_DSP___

__ VTAB_DELTA_ IS _8BIT

_ VTAB_DELTA_IS_16BIT
_ VTAB_DELTA_IS_32BIT
__ VTAB_DELTA_ IS 64BIT

__ _PTRMBR_OFFSET_IS_8BIT_

__ _PTRMBR_OFFSET_IS 16BIT
__ PTRMBR_OFFSET_IS_32BIT_
__ _PTRMBR_OFFSET_IS_64BIT_

Pragmas

None

RSO08 Build Tools Reference Manual for Microcontrollers 251

y
A

Compiler Options
Compiler Option Details

Description

This option allows configurable type settings. The option syntax is:

-T{<type><format>}

For <type>, one of the keys listed in Table 5.9 may be specified:

Table 5.9 Data Type Keys

Type Key
char c
short s
int i
long L
long long LL
float £
double d
long double Ld
long long double LLd
enum e
sign plain bitfield b
virtual table delta size vtd
pointer to member offset size pmo

NOTE Keys are not case-sensitive, e.g., both £ or F may be used for the type £loat.

The sign of the type char or of the enumeration type may be changed with a
prefix placed before the key for the char key. See Table 5.10.

252

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Table 5.10 Keys for Signed and Unsigned Prefixes

Sign prefix Key
signed s
unsigned u

The sign of the type plain bitfield type is changed with the options
shown in Table 5.11. Plain bitfields are bitfields defined or declared without an
explicit signed or unsigned qualifier, e.g., int field: 3. Using this option, you
can specify if the int in the previous example is handled as signed int or as
unsigned int. Note that this option may not be available on all targets. Also
the default setting may vary. Refer to Sign of Plain Bitfields.

Table 5.11 Keys for Signed and Unsigned Bitfield Prefixes

Sign prefix Key
plain signed bitfield bs
plain unsigned bitfield bu

For <format>, one of the keys in Table 5.12 can be specified.

Table 5.12 Data Format Specifier Keys

Format Key
8-bit integral 1
16-bit integral 2
24-bit integral 3
32-bit integral 4
64-bit integral 8
IEEE32 floating 2
DSP (32-bit) 0

Not all formats may be available for a target. See RSO8 Backend for supported
formats.

RSO08 Build Tools Reference Manual for Microcontrollers 253

PR 4

Compiler Options
Compiler Option Details

NOTE At least one type for each basic size (1, 2, 4 bytes) has to be available. It is
illegal if no type of any sort is not set to at least a size of one. See RS08
Backend for default settings.

NOTE Enumeration types have the type signed int by default for ANSI-C
compliance.

The -Tpmo option allows you to change the pointer to a member offset value type.
The default setting is 16 bits. The pointer to the member offset is used for C++
pointer to members only.

Examples
-Tsc sets ‘char’ to “signed char’
and

-Tuc sets ‘char’ to “unsigned char’

Listing 5.35 -Tsc1s2i2L4LL4f2e2 denotes:

signed char with 8 bits (scl)

short and int with 16 bits (s212)
long, long long with 32 bits (L4LL4)
float with IEEE32 (f2)

enum with 16 bits (signed) (e2)

For integrity and compliance to ANSI, the following two rules must be true:

Listing 5.36 Restrictions

sizeof (char) <= sizeof (short)

sizeof (short) <= sizeof (int)

sizeof (int) <= sizeof (long)

sizeof (long) <= sizeof (long long)

sizeof (float) <= sizeof (double)

sizeof (double) <= sizeof (long double)
((

sizeof (long double) <= sizeof (long long double)

NOTE Itis not permitted to set char to 16 bits and int to 8 bits.

254 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Be careful if you change type sizes. Type sizes must be consistent over the whole
application. The libraries delivered with the Compiler are compiled with the
standard type settings.

Also be careful if you change the type sizes for under or overflows, e.g., assigning
a value too large to an object which is smaller now, as shown in the following
example:

int i; /* -Til int has been set to 8 bits! */

i = 0x1234; /* 1 will set to 0x34! */

Examples

Setting the size of char to 16 bits:

-Tc2

Setting the size of char to 16 bits and plain char is signed:

-Tsc2

Setting char to 8 bits and unsigned, int to 32 bits and long long to 32 bits:
-TuclidLL4

Setting float to IEEE32:

-Tf2

The -Tvtd option allows you to change the delta value type inside virtual function
tables. The default setting is 16-bit.

Another way to set this option is using the dialog box in the Graphical User
Interface (Figure 5.3):

Figure 5.3 Standard Types Settings dialog box

x
Bhit 16hit 32hit E4bit oK
char o (o e I signed -
short e g . e Diefaults |
ik C (o C o
long c £ 9 o Cancel
lomglong O [o (" —I
enum . w (o V¥ signed 4|H £l
plain kit figld ¥ signed
DsP IEEE32 |EEEG4
float 8 o e
double 8 o e
long double) o) (i3
long loha double 8 o) (i3

RSO08 Build Tools Reference Manual for Microcontrollers 255

y
A

Compiler Options
Compiler Option Details

See also

Sign of Plain Bitfields

-V: Prints the Compiler Version

Group
VARIOUS

Scope

None

Syntax
-V
Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Prints the internal subversion numbers of the component parts of the Compiler and
the location of current directory.

NOTE This option can determine the current directory of the Compiler.

256 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Example
-V produces the following list:
Directory: \software\sources\c
ANSI-C Front End, V5.0.1, Date Jan 01 2005
Tree CSE Optimizer, V5.0.1, Date Jan 01 2005
Back End V5.0.1, Date Jan 01 2005

-View: Application Standard Occurrence

Group
HOST

Scope

Compilation Unit

Syntax

-View<kind>

Arguments
<kind> is one of:
¢ Window: Application window has default window size
e Min: Application window is minimized
¢ Max: Application window is maximized

* Hidden: Application window is not visible (only if arguments)

Default
Application started with arguments: Minimized

Application started without arguments: Window

Defines

None

Pragmas

None

RSO08 Build Tools Reference Manual for Microcontrollers 257

A 4
4\

Compiler Options
Compiler Option Details

Description

The application starts as a normal window if no arguments are given. If the
application is started with arguments (e.g., from the maker to compile or link a
file), then the application runs minimized to allow batch processing.

You can specify the behavior of the application using this option:
¢ Using -ViewWindow, the application is visible with its normal window.
¢ Using -ViewMin, the application is visible iconified (in the task bar).

* Using -ViewMax, the application is visible maximized (filling the whole
screen).

¢ Using -ViewHidden, the application processes arguments (e.g., files to be
compiled or linked) completely invisible in the background (no window or icon
visible in the task bar). However, if you are using the -N: Display Notify Box
option, a dialog box is still possible.

Example

C:\Freescale\linker.exe -ViewHidden fibo.prm

-WErrFile: Create "err.log" Error File

Group
MESSAGES

Scope

Compilation Unit

Syntax
-WErrFile (On|Off)

Arguments

None

Default

err.log is created or deleted

Defines

None

258 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Pragmas

None

Description

The error feedback to the tools that are called is done with a return code. In 16-bit
window environments, this was not possible. In the error case, an err . 1log file,
with the numbers of errors written into it, was used to signal an error. To state no
error, the err . 1og file was deleted. Using UNIX or WIN32, there is now a return
code available. The err . 1og file is no longer needed when only UNIX or WIN32
applications are involved.

NOTE The error file must be created in order to signal any errors if you use a 16-bit
maker with this tool.

Example
-WErrFileOn
The err. log file is created or deleted when the application is finished.
-WErrFileOff

The existing err . 1og file is not modified.

See also

-WStdout: Write to Standard Output
-WOutFile: Create Error Listing File

-Wmsg8x3: Cut filenames in Microsoft Format to 8.3
Group
MESSAGES

Scope

Compilation Unit

Syntax
-Wmsg8x3

RSO08 Build Tools Reference Manual for Microcontrollers 259

y
A

Compiler Options
Compiler Option Details

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

Some editors (e.g., early versions of WinEdit) expect the filename in the Microsoft
message format (8.3 format). That means the filename can have, at most, eight
characters with not more than a three-character extension. Longer filenames are
possible when you use later versions of Windows. This option truncates the
filename to the 8.3 format.

Example
x:\mysourcefile.c(3): INFORMATION C2901: Unrolling loop
With the -Wmsg8x3 option set, the above message is:

x:\mysource.c(3): INFORMATION C2901: Unrolling loop

See also

-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode

-WmsgCE: RGB Color for Error Messages

Group
MESSAGES

Scope

Function

260 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Syntax
-WmsgCE<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value

Default
-WmsgCE16711680 (rFF g00 b00, red)

Defines

None

Pragmas

None

Description

This option changes the error message color. The specified value must be an RGB
(Red-Green-Blue) value and must also be specified in decimal.

Example

-WmsgCE255 changes the error messages to blue

-WmsgCF: RGB Color for Fatal Messages
Group
MESSAGES

Scope

Function

Syntax
-WmsgCF<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value

RSO08 Build Tools Reference Manual for Microcontrollers 261

y
A

Compiler Options
Compiler Option Details

Default
-WmsgCF8388608 (r80 g00 b00, dark red)

Defines

None

Pragmas

None

Description

This option changes the color of a fatal message. The specified value must be an
RGB (Red-Green-Blue) value and must also be specified in decimal.

Example

-WmsgCF255 changes the fatal messages to blue

-WmsgCl: RGB Color for Information Messages

Group
MESSAGES

Scope

Function

Syntax
-WmsgCI<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value

Default
-WmsgCI32768 (r00 g80 b00, green)

Defines

None

262

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Pragmas

None

Description

This option changes the color of an information message. The specified value must
be an RGB (Red-Green-Blue) value and must also be specified in decimal.

Example

-WmsgCI255 changes the information messages to blue

-WmsgCU: RGB Color for User Messages

Group
MESSAGES

Scope

Function

Syntax
-WmsgCU<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value

Default
-WmsgCUO (r00 g00 b00, black)

Defines

None

Pragmas

None

Description

This option changes the color of a user message. The specified value must be an
RGB (Red-Green-Blue) value and must also be specified in decimal.

RSO08 Build Tools Reference Manual for Microcontrollers 263

'
A

Compiler Options
Compiler Option Details

Example

-WmsgCU255 changes the user messages to blue

-WmsgCW: RGB Color for Warning Messages

Group
MESSAGES

Scope

Function

Syntax

-WmsgCW<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value

Default
-WmsgCW255 (r00 g00 bFF, blue)

Defines

None

Pragmas

None

Description

This option changes the color of a warning message. The specified value must be
an RGB (Red-Green-Blue) value and must also be specified in decimal.

Example

-WmsgCWO changes the warning messages to black

-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for

264 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Batch Mode

Group
MESSAGES

Scope

Compilation Unit

Syntax

-limsgFb [v|m]

Arguments
v: Verbose format

m: Microsoft format

Default

-WmsgFbm

Defines

None

Pragmas

None

Description

You can start the Compiler with additional arguments (e.g., files to be compiled
together with Compiler options). If the Compiler has been started with arguments
(e.g., from the Make Tool or with the appropriate argument from an external
editor), the Compiler compiles the files in a batch mode. No Compiler window is
visible and the Compiler terminates after job completion.

If the Compiler is in batch mode, the Compiler messages are written to a file
instead of to the screen. This file contains only the compiler messages (see the

examples in Listing 5.37).
The Compiler uses a Microsoft message format to write the Compiler messages
(errors, warnings, information messages) if the compiler is in batch mode.

This option changes the default format from the Microsoft format (only line
information) to a more verbose error format with line, column, and source
information.

RSO08 Build Tools Reference Manual for Microcontrollers 265

y
A

Compiler Options
Compiler Option Details

NOTE Using the verbose message format may slow down the compilation because the
compiler has to write more information into the message file.

Example
See Listing 5.37 for examples showing the differing message formats.

Listing 5.37 Message file formats (batch mode)

void foo (void) {
int i, J;
for (1=0;i<l;i++);
}
The Compiler may produce the following file if it is running in batch
mode (e.g., started from the Make tool):
X:\C.C(3): INFORMATION C2901: Unrolling loop
X:\C.C(2): INFORMATION C5702: j: declared in function foo but not
referenced

Setting the format to verbose, more information is stored in the file:
-WmsgFbv
>> in "X:\C.C", line 3, col 2, pos 33

int i, J;

for (i=0;i<1;i++);

INFORMATION C2901: Unrolling loop
>> in "X:\C.C", line 2, col 10, pos 28
void foo(void) {

int i, J;

INFORMATION C5702: j: declared in function foo but not referenced

See also
ERRORFILE: Error filename Specification environment variable
-WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for Interactive Mode

-WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for

266 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Interactive Mode

Group
MESSAGES

Scope

Compilation Unit

Syntax

-limsgFi[v|m]

Arguments
v: Verbose format

m: Microsoft format

Default

-WmsgFiv

Defines

None

Pragmas

None

Description

The Compiler operates in the interactive mode (that is, a window is visible) if it is
started without additional arguments (e.g., files to be compiled together with

Compiler options).

The Compiler uses the verbose error file format to write the Compiler messages

(errors, warnings, information messages).

This option changes the default format from the verbose format (with source, line
and column information) to the Microsoft format (only line information).

NOTE Using the Microsoft format may speed up the compilation because the

compiler has to write less information to the screen.

Example

See Listing 5.38 for examples showing the differing message formats.

RSO08 Build Tools Reference Manual for Microcontrollers

267

y
A

Compiler Options
Compiler Option Details

Listing 5.38 Message file formats (interactive mode)

void foo (void) {
int i, J;
for(i=0;i<1;1i++);
}
The Compiler may produce the following error output in the Compiler
window if it is running in interactive mode:
Top: X:\C.C
Object File: X:\C.O

>> in "X:\C.C", line 3, col 2, pos 33
int i, J;

for (i=0;i<1;i++);

A

INFORMATION C2901: Unrolling loop

Setting the format to Microsoft, less information is displayed:
-WmsgFim

Top: X:\C.C

Object File: X:\C.O

X:\C.C(3): INFORMATION C2901: Unrolling loop

See also

ERRORFILE: Error filename Specification
-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode

-WmsgFob: Message Format for Batch Mode
Group
MESSAGES

Scope

Function

Syntax

-WmsgFob<string>

268 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Arguments

<string>: format string (see below).

Default

oe

1):

oe
~
oe
[oN)

-WmsgFob"%"%$f%e%" (Sm\n"

Defines

None

Pragmas

None

Description

This option modifies the default message format in batch mode. The formats listed
in Table 5.13 are supported (assuming that the source file is
X:\Freescale\mysourcefile.cpph):

Table 5.13 Message Format Specifiers

Format | Description Example

%s Source Extract

%D Path X:\Freescale\
£ Path and name X:\Freescale\mysourcefile
%n filename mysourcefile
%e Extension .cpph

N File (8 chars) mysource

$E Extension (3 chars) . Cpp

%1 Line 3

%c Column 47

%0 Pos 1234

%K Uppercase kind ERROR

%k Lowercase kind error

%d Number Cc1815

RSO08 Build Tools Reference Manual for Microcontrollers 269

y
A

Compiler Options
Compiler Option Details

Table 5.13 Message Format Specifiers (continued)

Format | Description Example
%m Message text
%% Percent %
\n New line
" A " if the filename, path, or
extension contains a space
%! A" if the filename, path, or
extension contains a space

Example
-WmsgFob"%f%e(%$1): %k %d: Sm\n"
Produces a message in the following format:

X:\C.C(3): information C2901: Unrolling loop

See also

ERRORFILE: Error filename Specification
-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode

-WmsgFonp: Message Format for no Position Information
-WmsgFoi: Message Format for Interactive Mode

-WmsgFoi: Message Format for Interactive Mode
Group
MESSAGES

Scope

Function

Syntax

-WmsgFoi<string>

270 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Arguments

<string>: format string (See below.)

Default

-WmsgFoi"\\n>> in \"%f%e\", line %1, col >>%c, pos
$o\n%s\n%K $d: Sm\n"

Defines

None

Pragmas

None

RSO08 Build Tools Reference Manual for Microcontrollers 271

y
A

Compiler Options
Compiler Option Details

Description

This option modifies the default message format in interactive mode. The formats

listed in Table 5.14 are supported (assuming that the source file is

X:\Freescale\mysourcefile.cpph):

Table 5.14 Message Format Specifiers

Format | Description Example
%s Source Extract
%P Path X:\sources\
£ Path and name X:\sources\mysourcefile
%n filename mysourcefile
%e Extension .cpph
N File (8 chars) mysource
%E Extension (3 chars) . cpp
%1 Line 3
%c Column 47
%0 Pos 1234
%K Uppercase kind ERROR
%k Lowercase kind error
%d Number Cc1815
m Message text
%% Percent %
\n New line
" A " if the filename, path, or
extension contains a space.
%! A" if the filename, path, or
extension contains a space

272

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Example
-WmsgFoi"%f%e (%1): %k %d: %m\n"
Produces a message in following format:

X:\C.C(3): information C2901: Unrolling loop

See also

ERRORFILE: Error filename Specification
-WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode

-WmsgFonp: Message Format for no Position Information
-WmsgFob: Message Format for Batch Mode

-WmsgFonf: Message Format for no File Information

Group
MESSAGES

Scope

Function

Syntax

-WmsgFonf<string>

Arguments

<string>: format string (See below.)

Default

-WmsgFonf"%K %d: %$m\n"

Defines

None

Pragmas

None

RSO08 Build Tools Reference Manual for Microcontrollers 273

y
A

Compiler Options
Compiler Option Details

Description

Sometimes there is no file information available for a message (e.g., if a message
not related to a specific file). Then the message format string defined by
<string> is used. Table 5.15 lists the supported formats.

Table 5.15 Message Format Specifiers

Format Description Example
%K Uppercase kind ERROR
sk Lowercase kind error
%d Number Cc1815
%m Message text
%% Percent %
\n New line
%" A" if the filename, if the path or the

extension contains a space
%! A" if the filename, the path or the

extension contains a space

Example
-WmsgFonf"%k %d: %$m\n"
Produces a message in following format:

information L10324: Linking successful

See also
ERRORFILE: Error filename Specification
Compiler options:
e -WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode
¢ -WmsgFi (-WmsgFiv, -WmsgFim): Set Message Format for Interactive Mode

* -WmsgFonp: Message Format for no Position Information
¢ -WmsgFoi: Message Format for Interactive Mode

274 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

-WmsgFonp: Message Format for no Position Information

Group
MESSAGES

Scope

Function

Syntax

-WmsgFonp<string>

Arguments

<string>: format string (see below)

Default

-WmsgFonp"%"%£%e%": %K %d: %S$m\n"

Defines

None

Pragmas

None

Description

Sometimes there is no position information available for a message (e.g., if a
message not related to a certain position). Then the message format string defined
by <string> is used. Table 5.16 lists the supported formats.

Table 5.16 Message Format Specifiers

Format Description Example
3K Uppercase kind ERROR

sk Lowercase kind error

%d Number C1815

m Message text

RSO08 Build Tools Reference Manual for Microcontrollers 275

y
A

Compiler Options
Compiler Option Details

Table 5.16 Message Format Specifiers (continued)

Format Description Example
%% Percent %

\n New line

%" A" if the filename, if the path or the

extension contains a space

%! A" if the filename, the path, or the
extension contains a space

Example
-WmsgFonf"%k %$d: %$m\n"
Produces a message in following format:

information L10324: Linking successful

See also

ERRORFILE: Error filename Specification
Compiler options:

¢ -WmsgFb (-WmsgFbi, -WmsgFbm): Set Message File Format for Batch Mode

* -WmsgFonp: Message Format for no Position Information
¢ -WmsgFoi: Message Format for Interactive Mode

-WmsgNe: Number of Error Messages
Group
MESSAGES

Scope

Compilation Unit

Syntax

-WmsgNe<number>

276 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Arguments

<number>: Maximum number of error messages

Default
50

Defines

None

Pragmas

None

Description
This option sets the number of error messages that are to be displayed while the

Compiler is processing.

NOTE Subsequent error messages which depend upon a previous error message may
not process correctly.

Example
-WmsgNe2

Stops compilation after two error messages

See also

-WmsgNi: Number of Information Messages
-WmsgNw: Number of Warning Messages

-WmsgNi: Number of Information Messages

Group
MESSAGES

Scope

Compilation Unit

RSO08 Build Tools Reference Manual for Microcontrollers 277

y
A

Compiler Options
Compiler Option Details

Syntax

-WmsgNi<number>

Arguments

<number>: Maximum number of information messages

Default
50

Defines

None

Pragmas

None

Description

This option sets the amount of information messages that are logged.

Example
-WmsgNil0

Ten information messages logged

See also
Compiler options:
¢ -WmsgNe: Number of Error Messages

¢ -WmsgNw: Number of Warning Messages

-WmsgNu: Disable User Messages

Group
MESSAGES

Scope

None

278 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Syntax
-limsgNu[={a|b|c|d}]

Arguments
a: Disable messages about include files
b: Disable messages about reading files
c: Disable messages about generated files
d: Disable messages about processing statistics

e: Disable informal messages

Default

None

Defines

None

Pragmas

None

Description

The application produces messages that are not in the following normal message
categories: WARNING, INFORMATION, ERROR, or FATAL. This option
disables messages that are not in the normal message category by reducing the
amount of messages, and simplifying the error parsing of other tools.

a: Disables the application from generating information about all included files.

b: Disables messages about reading files (e.g., the files used as input) are disabled.
c: Disables messages informing about generated files.

d: Disables information about statistics (e.g., code size, RAM or ROM usage).

e: Disables informal messages (e.g., memory model, floating point format).

NOTE Depending on the application, the Compiler may not recognize all suboptions.
In this case they are ignored for compatibility.

Example

-WmsgNu=c

RSO08 Build Tools Reference Manual for Microcontrollers 279

y
A

Compiler Options
Compiler Option Details

-WmsgNw: Number of Warning Messages

Group
MESSAGES

Scope

Compilation Unit

Syntax

-WmsgNw<number>

Arguments

<number>: Maximum number of warning messages

Default
50

Defines

None

Pragmas

None

Description

This option sets the number of warning messages.

Example
-WmsgNwl5

Fifteen warning messages logged

See also
Compiler options:

¢ -WmsgNe: Number of Error Messages

¢ -WmsgNi: Number of Information Messages

280 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

-WmsgSd: Setting a Message to Disable

Group
MESSAGES

Scope

Function

Syntax

-WmsgSd<number>

Arguments

<number>: Message number to be disabled, e.g., 1801

Default

None

Defines

None

Pragmas

None

Description
This option disables message from appearing in the error output. This option
cannot be used in #pragma OPTION: Additional Options. Use this option only
with #pragma MESSAGE: Message Setting.

Example
-WmsgSdl801

Disables message for implicit parameter declaration

See also
-WmsgSe: Setting a Message to Error
-WmsgSi: Setting a Message to Information
-WmsgSw: Setting a Message to Warning

RSO08 Build Tools Reference Manual for Microcontrollers 281

y
A

Compiler Options
Compiler Option Details

-WmsgSe: Setting a Message to Error

Group
MESSAGES

Scope

Function

Syntax

-WmsgSe<number>

Arguments

<number>: Message number to be an error, e.g., 1853

Default

None

Defines

None

Pragmas

None

Description

This option changes a message to an error message. This option cannot be used in

#pragma OPTION: Additional Options. Use this option only with #pragma
MESSAGE: Message Setting.

Example
COMPOTIONS=-WmsgSel853

See also
-WmsgSd: Setting a Message to Disable
-WmsgSi: Setting a Message to Information

-WmsgSw: Setting a Message to Warning

282 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

-WmsgSi: Setting a Message to Information

Group
MESSAGES

Scope

Function

Syntax

-WmsgSi<number>

Arguments

<number>: Message number to be an information, e.g., 1853

Default

None

Defines

None

Pragmas

None

Description

This option sets a message to an information message. This option cannot be used
with #pragma OPTION: Additional Options. Use this option only with #pragma
MESSAGE: Message Setting.

Example
-WmsgSil853

See also
-WmsgSd: Setting a Message to Disable
-WmsgSe: Setting a Message to Error
-WmsgSw: Setting a Message to Warning

RSO08 Build Tools Reference Manual for Microcontrollers 283

y
A

Compiler Options
Compiler Option Details

-WmsgSw: Setting a Message to Warning

Group
MESSAGES

Scope

Function

Syntax

-WmsgSw<number>

Arguments

<number>: Error number to be a warning, e.g., 2901

Default

None

Defines

None

Pragmas

None

Description
This option sets a message to a warning message.

This option cannot be used with #pragma OPTION: Additional Options. Use this
option only with #pragma MESSAGE: Message Setting.

Example
-WmsgSw2901

See also

-WmsgSd: Setting a Message to Disable

-WmsgSe: Setting a Message to Error

-WmsgSi: Setting a Message to Information

284 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

-WOutFile: Create Error Listing File

Group
MESSAGES

Scope

Compilation Unit

Syntax
-WOutFile (On|Off)

Arguments

None

Default

Error listing file is created

Defines

None

Pragmas

None

Description

This option controls whether to create an error listing file. The error listing file
contains a list of all messages and errors that are created during processing. It is
possible to obtain this feedback without an explicit file because the text error
feedback can now also be handled with pipes to the calling application. The name
of the listing file is controlled by the environment variable ERRORFILE: Error

filename Specification.

Example

-WOutFileOn

Error file is created as specified with ERRORFILE

-WOutFileOff

No error file created

RSO08 Build Tools Reference Manual for Microcontrollers

285

y
A

Compiler Options
Compiler Option Details

See also

-WErrFile: Create "err.log" Error File

-WStdout: Write to Standard Output

-Wpd: Error for Implicit Parameter Declaration

Group
MESSAGES

Scope

Function

Syntax
-Wpd

Arguments

None

Default

None

Defines

None

Pragmas

None

Description

This option prompts the Compiler to issues an ERROR message instead of a
WARNING message when an implicit declaration is encountered. This occurs if
the Compiler does not have a prototype for the called function.

This option helps to prevent parameter-passing errors, which can only be detected
at runtime. It requires that each function that is called is prototyped before use. The
correct ANSI behavior is to assume that parameters are correct for the stated call.

This option is the same as using -WmsgSe1801.

286 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options

Compiler Option Details
Example
-Wpd
main() {
char a, b;
func(a, b); // <- Error here - only two parameters

}
func(a, b, <)

char a, b, c;

}

See also

-WmsgSe: Setting a Message to Error

-WStdout: Write to Standard Output

Group
MESSAGES

Scope

Compilation Unit

Syntax
-WStdout (On|0ff)

Arguments

None

Default

Output is written to stdout

Defines

None

RSO08 Build Tools Reference Manual for Microcontrollers 287

y
A

Compiler Options
Compiler Option Details

Pragmas

None

Description

The usual standard streams are available with Windows applications. Text written
into them does not appear anywhere unless explicitly requested by the calling
application. This option determines if error file text to the error file is also written
into the stdout file.

Example

-WStdoutOn: All messages written to stdout

-WErrFileOff: Nothing written to stdout

See also

-WErrFile: Create "err.log" Error File

-WOutFile: Create Error Listing File

-W1: No Information Messages

Group
MESSAGES

Scope

Function

Syntax
-W1

Arguments

None

Default

None

Defines

None

288 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Options
Compiler Option Details

Pragmas

None

Description

Inhibits printing INFORMATION messages. Only WARNINGs and ERROR
messages are generated.

Example
-W1

See also
-WmsgNi: Number of Information Messages

-W2: No Information and Warning Messages

Group
MESSAGES

Scope

Function

Syntax
-W2

Arguments

None

Default

None

Defines

None

Pragmas

None

RSO08 Build Tools Reference Manual for Microcontrollers 289

A 4
4\

Compiler Options
Compiler Option Details

Description

Suppresses all messages of type INFORMATION and WARNING. Only ERRORs
are generated.

Example
-W2
See also

-WmsgNi: Number of Information Messages

-WmsgNw: Number of Warning Messages

290 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Predefined
Macros

The ANSI standard for the C language requires the Compiler to predefine a couple of
macros. The Compiler provides the predefined macros listed in Table 6.1.

Table 6.1 Macros defined by the Compiler

Macro Description

__LINE__ Line number in the current source file

__FILE__ Name of the source file where it appears

_ DATE__ The date of compilation as a string

__TIME__ The time of compilation as a string

__STDC__ Set to 1 if the -Ansi: Strict ANSI compiler option has been given.
Otherwise, additional keywords are accepted (not in the ANSI standard).

The following tables lists all Compiler defines with their associated names and options.

It is also possible to log all Compiler predefined defines to a file using the -Ldf: Log
Predefined Defines to File compiler option.

RSO08 Build Tools Reference Manual for Microcontrollers 291

'
A

Compiler Predefined Macros
Compiler Vendor Defines

Compiler Vendor Defines

Table 6.2 shows the defines identifying the Compiler vendor. Compilers in the USA may

also be sold by ARCHIMEDES.

Table 6.2 Compiler Vendor Identification Defines

Name Defined
__HIWARE_ always
__MWERKS_ _ always, set to 1

Product Defines

Table 6.3 shows the Defines identifying the Compiler. The Compiler is a HI-CROSS+

Compiler (V5.0.x).

Table 6.3 Compiler Identification Defines

Name

Defined

__PRODUCT_HICROSS_PLUS_

defined for V5.0 Compilers

__DEMO_MODE___

defined if the Compiler is running in demo mode

__ _VERSION_ _

defined and contains the version number, e.g., it is
set to 5013 for a Compiler V5.0.13, or set to 3140 for
a Compiler V3.1.40

Data Allocation Defines

The Compiler provides two macros that define how data is organized in memory: Little
Endian (least significant byte first in memory) or Big Endian (most significant byte first in

memory).

The Compiler provides the “endian” macros listed in Table 6.4.

292 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Predefined Macros

Various Defines for Compiler Option Settings

Table 6.4 Compiler macros for defining “endianness”

Name

Defined

_ LITTLE_ENDIAN_

defined if the Compiler allocates in Little Endian order

__ BIG_ENDIAN___

defined if the Compiler allocates in Big Endian order

The following example illustrates the differences between little endian and big endian

(Listing 6.1).

Listing 6.1 Little vs. big endian

unsigned long L 0x87654321;

unsigned short s

* (unsiged short*)&L;
unsigned char ¢ = *(unsinged char*)&L;

// BE: 0x8765,LE: 0x4321
// BE: 0x87, LE: 0x21

Various Defines for Compiler Option

Settings

The following table lists Defines for miscellaneous compiler option settings.

Table 6.5 Defines for Miscellaneous Compiler Option Settings

Name Defined
__STDC_ -Ansi
__TRIGRAPHS_ -ci
__CNT___ -Cni
__OPTIMIZE_FOR_TIME__ -ot
__OPTIMIZE_FOR_SIZE__ -0s

RSO08 Build Tools Reference Manual for Microcontrollers

293

y
A

Compiler Predefined Macros
Option Checking in C Code

Option Checking in C Code

You can also check the source to determine if an option is active. The EBNF syntax is:

OptionActive = "__OPTION_ACTIVE__" " (" string ")".

The above is used in the preprocessor and in C code, as shown:

Listing 6.2 Using _ OPTION__ to check for active options.

#if _ OPTION_ACTIVE_ ("-W2")
// option -W2 is set
#endif

void main (void) {
int 1i;
if (__OPTION_ACTIVE__ ("-or")) {
i=2;

}

You can check all preprocessor-valid options (e.g., options given at the command line, via
the default.env orproject. ini files, but not options added with the #pragma
OPTION: Additional Options). You perform the same check in C code using -Odoc £ and
#pragma OPTIONS.

As a parameter, only the option itself is tested and not a specific argument of an option.

For example:

#if _ OPTION_ACTIVE_ ("-D") /* true if any -d option given
*/
#if _ OPTION_ACTIVE__ ("-DABS") /* not allowed */

To check for a specific define use:
#if defined (ABS)

If the specified option cannot be checked to determine if it is active (i.e., options that no
longer exist), the message “C1439: illegal pragma _ OPTION_ACTIVE__” is issued.

294 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Predefined Macros
ANSI-C Standard Types 'size_t, '‘wchar_t' and ‘ptrdiff_t' Defines

ANSI-C Standard Types 'size_t', 'wchar_t'
and 'ptrdiff_t' Defines

ANSI provides some standard defines in stddef . h to deal with the implementation of
defined object sizes.

Listing 6.3 show part of the contents of stdtypes.h (included from stddef .h).

Listing 6.3 Type Definitions of ANSI-C Standard Types

/* size_t: defines the maximum object size type */
#if defined(___SIZE_T_IS_UCHAR_)
typedef unsigned char size_t;
#elif defined(___SIZE_T_IS_USHORT)
typedef unsigned short size_t;
#elif defined(___SIZE_T_IS_UINT_)
typedef unsigned int size_t;
#elif defined(___SIZE_T_IS_ULONG_)
typedef unsigned long size_t;
#else
#error "illegal size_t type"
#endif
/* ptrdiff_t: defines the maximum pointer difference type */
#if defined(__ PTRDIFF_T_IS_CHAR_)
typedef signed char ptrdiff_t;
#elif defined(_ PTRDIFF_T_IS_SHORT_)
typedef signed short ptrdiff_t;
#elif defined(___PTRDIFF_T IS_INT_)
typedef signed int ptrdiff_t;
#elif defined(__PTRDIFF_T IS_LONG_)
typedef signed long ptrdiff_t;
#else
#error "illegal ptrdiff_t type"
#endif
/* wchar_t: defines the type of wide character */
#if defined(__ WCHAR_T_IS_UCHAR_)
typedef unsigned char wchar_t;
#elif defined(_ WCHAR_T_IS_USHORT)
typedef unsigned short wchar_t;
#elif defined(__ WCHAR_T_IS_UINT_)
typedef unsigned int wchar_t;
#elif defined(___ WCHAR_T_IS_ULONG_)
typedef unsigned long wchar_t;
#else
#error "illegal wchar_t type"
#endif

RSO08 Build Tools Reference Manual for Microcontrollers 295

y
A

Compiler Predefined Macros
ANSI-C Standard Types 'size_t', 'wchar_t' and ‘ptrdiff_t' Defines

Table 6.6 lists defines that deal with other possible implementations:

Table 6.6 Defines for Other Implementations

Macro Description

__SIZE_T _IS_UCHAR__ Defined if the Compiler expects size_t in stddef.h
to be unsigned char.

__SIZE_T IS_USHORT_ _ Defined if the Compiler expects size_t in stddef.h
to be unsigned short.

__SIZE_T_IS_UINT_ _ Defined if the Compiler expects size_t in stddef.h
to be unsigned int.

__SIZE_T_IS_ULONG___ Defined if the Compiler expects size_t in stddef.h
to be unsigned long.

__WCHAR_T_IS_UCHAR___ Defined if the Compiler expects wchar_t in
stddef.hto be unsigned char.

__WCHAR_T_IS_USHORT___ Defined if the Compiler expects wchar_t in
stddef.hto be unsigned short.

__WCHAR_T_IS_UINT_ _ Defined if the Compiler expects wchar_t in
stddef.hto be unsigned int.

__WCHAR_T_IS_ULONG___ Defined if the Compiler expects wchar_t in
stddef.h to beunsigned long.

__PTRDIFF_T_IS_CHAR__ Defined if the Compiler expects ptrdiff_t in
stddef.hto be char.

__PTRDIFF_T_IS_SHORT__ | Defined if the Compiler expects ptrdiff_t in
stddef.h to be short.

__ _PTRDIFF_T_IS_INT__ Defined if the Compiler expects ptrdiff_t in
stddef.htobe int.

__PTRDIFF_T_IS_LONG__ Defined if the Compiler expects ptrdiff_t in
stddef.hto be long.

The following tables show the default settings of the ANSI-C Compiler size_t and
ptrdiff_t standard types.

296 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Predefined Macros
Division and Modulus

Macros for RS08

Table 6.7 shows the settings for the RSOS target:

Table 6.7 RS08 Compiler Defines

size_t Macro Defined
__SIZE T_IS_UCHAR__ never
__SIZE T_IS_USHORT__ never
__SIZE_T IS_UINT_ _ always
__SIZE T_IS_ULONG_ never

Table 6.8 RS08 Compiler Pointer Difference Macros

ptrdiff_t Macro Defined
__PTRDIFF_T_IS_CHAR___ never
__PTRDIFF_T_TIS_SHORT_ _ never
__PTRDIFF_T_TIS_INT__ always
__PTRDIFF_T_TIS_LONG_ _ never

Division and Modulus

To ensure that the results of the "/" and "$" operators are defined correctly for signed
arithmetic operations, both operands must be defined positive. (Refer to the backend
chapter.) It is implementation-defined if the result is negative or positive when one of the
operands is defined negative. This is illustrated in the Listing 6.4.

Listing 6.4 Effect of polarity upon division and modulus arithmetic.

#ifdef _ MODULO_IS_POSITIV_ _

22 /7T == 3; 22 % =1
22 /-7 == -3; 22 % -7 == 1
-22 /7 == -4; -22 % 7 == 6
-22 /-7 == 4; -22 % -7 == 6
#else

22/ 7 == 3; 22 % 7 == +1
22 /-7 == -=-3; 22 % -7 == +1

RSO08 Build Tools Reference Manual for Microcontrollers 297

'
A

Compiler Predefined Macros
Object-File Format Defines

22 / 7 == -3; -22% 7 == -1
-22 /-7 == 3; -22 % -7 == -1
#endif

The following sections show how it is implemented in a backend.

Macros for RS08

Table 6.9 RS08 Compiler Modulo Operator Macros

Name Defined

__ MODULO_IS_POSITIV_ never

Object-File Format Defines

The Compiler defines some macros to identify the format (mainly used in the startup code

if it is object file specific), depending on the specified object-file format option. Table
6.10 lists these defines.

Table 6.10 Object-file Format Defines

Name Defined

__ ELF_OBJECT_FILE_FORMAT___ -F2

Bitfield Defines

This section describes the defines and define groups available for the RSO8 compiler.

Bitfield Allocation

The Compiler provides six predefined macros to distinguish between the different

allocations:

__ BITFIELD_MSBIT_FIRST _ /* defined if bitfield allocation starts
with MSBit */

__ BITFIELD LSBIT FIRST /* defined if bitfield allocation starts
with LSBit */

_ BITFIELD_MSBYTE_FIRST__ /* allocation of bytes starts with MSByte
*/
298

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Predefined Macros

Bitfield Defines
_ BITFIELD_LSBYTE_FIRST _ /* allocation of bytes starts with
LSByte */
_ BITFIELD_MSWORD_FIRST _ /* defined if bitfield allocation starts
with MSWord */
_ BITFIELD_LSWORD_FIRST = /* defined if bitfield allocation starts

with LSWord */

Using the above-listed defines, you can write compatible code over different Compiler
vendors even if the bitfield allocation differs. Note that the allocation order of bitfields is

important (Listing 6.5).

Listing 6.5 Compatible bitfield allocation

struct {
/* Memory layout of I/O port:

MSB LSB
name : BITA | CCR | DIR | DATA | DDR2
size: 1 1 1 4 1

*/
#ifdef _ BITFIELD _MSBIT_FIRST_
unsigned int BITA:1;
unsigned int CCR :1;
unsigned int DIR :1;
unsigned int DATA:4;
unsigned int DDR2:1;
#elif defined(__BITFIELD LSBIT_FIRST)
unsigned int DDR2:1;
unsigned int DATA:4;
unsigned int DIR :1;
unsigned int CCR :1;
unsigned int BITA:1;

#else

#error "undefined bitfield allocation strategy!"
#endif

} MyIOport;

If the basic allocation unit for bitfields in the Compiler is a byte, the allocation of memory
for bitfields is always from the most significant BYTE to the least significant BYTE. For
example, _ BITFIELD_MSBYTE_FIRST_ _ is defined as shown in Listing 6.6:

Listing 6.6 _ BITFIELD_MSBYTE_FIRST__ definition

/* example for _ BITFIELD_MSBYTE_FIRST _ */
struct {

RSO08 Build Tools Reference Manual for Microcontrollers 299

y
A

Compiler Predefined Macros
Bitfield Defines

unsigned char a:8;

unsigned char b:3;

unsigned char c:5;
} MyIOport2;

/* LSBIT_FIRST */ /* MSBIT_FIRST */
/* MSByte LSByte */ /* MSByte LSByte */
/* aaaaaaaa cccccbbb */ /* aaaaaaaa bbbccccc */

NOTE There is no standard way to allocate bitfields. Allocation may vary from
compiler to compiler even for the same target. Using bitfields for I/O register
access to is non-portable and, for the masking involved in unpacking individual
fields, inefficient. It is recommended to use regular bit-and (&) and bit-or (I)
operations for I/O port access.

Bitfield Type Reduction

The Compiler provides two predefined macros for enabled/disabled type size reduction.
With type size reduction enabled, the Compiler is free to reduce the type of a bitfield. For
example, if the size of a bitfield is 3, the Compiler uses the char type.

_ BITFIELD_TYPE_SIZE_REDUCTION_ _ /* defined if Type Size
Reduction is enabled */

_ BITFIELD_NO_TYPE_SIZE_REDUCTION__ /* defined if Type Size
Reduction is disabled */

It is possible to write compatible code over different Compiler vendors and to get
optimized bitfields (Listing 6.7):

Listing 6.7 Compatible optimized bitfields

struct{
long bl:4;
long b2:4;
} myBitfield;
31 7 3 0

300 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Predefined Macros
Bitfield Defines

Sign of Plain Bitfields

For some architectures, the sign of a plain bitfield does not follow standard rules.
Normally in the following (Listing 6.8):

Listing 6.8 Plain bitfield

struct _bits {
int myBits:3;
} bits;

myBits is signed, because plain int is also signed. To implement it as an unsigned
bitfield, use the following code (Listing 6.9):

Listing 6.9 Unsigned bitfield

struct _bits {
unsigned int myBits:3;

} bits;
However, some architectures need to overwrite this behavior to be compliant to their
EABI (Embedded Application Binary Interface). Under those circumstances, the -T:_
Flexible Type Management (if supported) is used. The option affects the following
defines:
define group_ PLAIN_BITFIELD_IS_SIGNED_ /* defined if plain
bitfield

is signed */
_ PLAIN_BITFIELD_IS_UNSIGNED__ /* defined if plain bitfield
is unsigned */

RSO08 Build Tools Reference Manual for Microcontrollers 301

'
A

Compiler Predefined Macros
Bitfield Defines

Macros for RS08

Table 6.11 identifies the implementation in the Backend.

Table 6.11 RS08 Compiler—Backend Macros

Name Defined

_ _BITFIELD_MSBIT_ FIRST_ __ -BfaBMS

_ _BITFIELD_LSBIT_FIRST_ __ -BfaBLS
__BITFIELD_MSBYTE_FIRST___ aways
__BITFIELD_LSBYTE_FIRST___ never
__BITFIELD_MSWORD_FIRST___ NW&YS
__BITFIELD_LSWORD_FIRST___ never
__BITFIELD_TYPE_SIZE_REDUCTION_ -BfaTSRon
_ _BITFIELD_NO_TYPE_SIZE_REDUCTION_ _ -BfaTSRoff
__PLAIN_BITFIELD_IS_SIGNED_ always
__PLATIN_BITFIELD_IS_UNSIGNED__ never

Type Information Defines

The Flexible Type Management sets the defines to identify the type sizes. Table 6.12 lists

these defines.

Table 6.12 Type Information Defines

Name

Defined

_ CHAR_IS_SIGNED_ _

see -T option or Backend

_ CHAR_IS_UNSIGNED_ _

see -T option or Backend

__CHAR_IS_S8BIT___

see -T option or Backend

__ CHAR_IS_16BIT___

see -T option or Backend

_ CHAR_IS_32BIT___

see -T option or Backend

__ CHAR_IS_64BIT___

see -T option or Backend

302 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Predefined Macros
Bitfield Defines

Table 6.12 Type Information Defines (continued)

Name

Defined

__SHORT_IS_8BIT___

see -T option or Backend

__ SHORT_IS_16BIT___

see -T option or Backend

__SHORT_IS_32BIT___

see -T option or Backend

__SHORT_IS_64BIT___

see -T option or Backend

__INT_IS_8BIT_ _

see -T option or Backend

__INT IS_16BIT__

see -T option or Backend

__INT _IS_32BIT__

see -T option or Backend

__INT IS_64BIT__

see -T option or Backend

__ ENUM_IS_8BIT

see -T option or Backend

_ ENUM_IS_SIGNED_

see -T option or Backend

__ENUM_IS_UNSIGNED_ _

see -T option or Backend

_ _ENUM_IS_16BIT

see -T option or Backend

__ENUM_IS_32BIT__

see -T option or Backend

__ENUM_IS_64BIT

see -T option or Backend

_ LONG_IS_8BIT__

see -T option or Backend

__ LONG_IS_16BIT__

see -T option or Backend

__ LONG_IS_32BIT__

see -T option or Backend

_ LONG_IS_64BIT__

see -T option or Backend

__ LONG_LONG_IS_8BIT___

see -T option or Backend

__ LONG_LONG_IS_16BIT___

see -T option or Backend

__ LONG_LONG_IS_32BIT___

see -T option or Backend

__ LONG_LONG_IS_64BIT___

see -T option or Backend

__ FLOAT_IS_IEEE32_

see -T option or Backend

_ FLOAT_IS_DSP___

see -T option or Backend

__ DOUBLE_IS_IEEE32_

see -T option or Backend

RSO08 Build Tools Reference Manual for Microcontrollers

303

'
A

Compiler Predefined Macros
Bitfield Defines

Table 6.12 Type Information Defines (continued)

Name Defined
__DOUBLE_IS_DSP___ see -T option or Backend
__LONG_DOUBLE_IS_IEEE32_ see -T option or Backend
__LONG_DOUBLE_IS_DSP_ see -T option or Backend
__LONG_LONG_DOUBLE_IS_IEEE32__ see -T option or Backend
__LONG_LONG_DOUBLE_IS_DSP_ see -T option or Backend
__VTAB_DELTA_IS_8BIT_ see -T option
__VTAB_DELTA_IS_16BIT__ see -T option
__VTAB_DELTA_IS_32BIT__ see -T option
__VTAB_DELTA_IS_64BIT__ see -T option
__PLAIN_BITFIELD_IS_SIGNED___ see option -T or Backend
__PLAIN_BITFIELD_IS_UNSIGNED_ see option -T or Backend

304 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Predefined Macros

Bitfield Defines
Freescale RS08-Specific Defines
Table 6.13 identifies implementations specific to the Backend.
Table 6.13 RS08 Back End Defines
Name Defined
__RS08__ always
__NO_RECURSION_ _ always
__PTR_SIZE_ 1 always
__PTR_SIZE_2_ never
__PTR_SIZE_3_ never
__PTR_SIZE_4_ never
RS08 Build Tools Reference Manual for Microcontrollers 305

A 4

4\
Compiler Predefined Macros
Bitfield Defines
306

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas

A pragma (Listing 7.1) defines how information is passed from the Compiler Frontend to
the Compiler Backend, without affecting the parser. In the Compiler, the effect of a
pragma on code generation starts at the point of its definition and ends with the end of the
next function. Exceptions to this rule are the pragmas #pragma ONCE: Include Once and
#pragma NO_STRING CONSTR: No String Concatenation during preprocessing, which
are valid for one file.

Listing 7.1 Pragma syntax

#pragma pragma_name [optional_arguments]

The value for optional_arguments depends on the pragma that you use. Some
pragmas do not take arguments.

NOTE A pragma directive accepts a single pragma with optional arguments. Do not
place more than one pragma name in a pragma directive. The following
example uses incorrect syntax:

#pragma ONCE NO_STRING_CONSTR
This is an invalid directive because two pragma names were combined into one
pragma directive.

The following section describes all of the pragmas that affect the Frontend. All other
pragmas affect only the code generation process and are described in the Backend section.

Pragma Details

This section describes each Compiler-available pragma. The pragmas are listed in
alphabetical order and are divided into separate tables. Table 7.1 lists and defines the
topics that appear in the description of each pragma.

RSO08 Build Tools Reference Manual for Microcontrollers 307

'
A

Compiler Pragmas
Pragma Detlails

Table 7.1 Pragma documentation topics

Topic Description

Scope Scope of pragma where it is valid. (See Table 7.2 below.)

Syntax Specifies the syntax of the pragma in an EBNF format.

Synonym Lists a synonym for the pragma or none, if a synonym does not exist.
Arguments Describes and lists optional and required arguments for the pragma.
Default Shows the default setting for the pragma or none.

Description Provides a detailed description of the pragma and how to use it.
Example Gives an example of usage and effects of the pragma.

See also Names related sections.

Table 7.2 is a description of the different scopes for pragmas.

Table 7.2 Definition of items that can appear in a pragma’s scope topic

Scope

Description

File

The pragma is valid from the current position until the end of the
source file. For example, if the pragma is in a header file included
from a source file, the pragma is not valid in the source file.

Compilation Unit

The pragma is valid from the current position until the end of the
whole compilation unit. For example, if the pragma is in a header file
included from a source file, it is valid in the source file too.

Data Definition

The pragma affects only the next data definition. Ensure that you
always use a data definition behind this pragma in a header file. If
not, the pragma is used for the first data segment in the next header
file or in the main file.

Function
Definition

The pragma affects only the next function definition. Ensure that you
use this pragma in a header file: The pragma is valid for the first
function in each source file where such a header file is included if
there is no function definition in the header file.

Next pragma
with same name

The pragma is used until the same pragma appears again. If no such
pragma follows this one, it is valid until the end of the file.

308

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

#pragma CONST_SEG: Constant Data Segment Definition
Scope
Until the next CONST__SEG pragma

Syntax
#pragma CONST_SEG (<Modif> <Name>|DEFAULT)

Synonym
CONST_SECTION

Arguments

Listing 7.2 Some strings which may be used for <Modif>

_ _FAR_SEG (compatibility alias: FAR)
_ PAGED_SEG

NOTE Do not use a compatibility alias in new code. It only exists for backwards
compatibility.
Some of the compatibility alias names conflict with defines found in certain
header files. Therefore, using them can cause hard to detect problems. Avoid
using compatibility alias names.

The segment modifiers are backend-dependent. The __SHORT_SEG modifier
specifies a segment which is accessed with 8-bit addresses.

<Name>: The name of the segment. This name must be used in the link parameter
file on the left side of the assignment in the PLACEMENT part. Refer to the linker
section of the Build Tools Utilities manual for details.

Default
DEFAULT

Description

This pragma allocates constant variables into a segment. The segment is then
allocated in the link parameter file to specific addresses. The CONST_SEG pragma

RSO08 Build Tools Reference Manual for Microcontrollers 309

3
4

y
A

Compiler Pragmas
Pragma Detlails

sets the current const segment. All constant data declarations are placed in this
segment. The default segment is set with:

#pragma CONST_SEG DEFAULT

With the -Cc option set, constants are always allocated in constant segments in the
ELF object-file format and after the first #pragma CONST__SEG (see -Cc: Allocate
Constant Objects into ROM).

The CONST_SEG pragma also affects constant data declarations as well as
definitions. Ensure that all constant data declarations and definitions are in the
same const segment.

Some compiler optimizations assume that objects having the same segment are
placed together. Backends supporting banked data, for example, may set the page
register only once for two accesses to two different variables in the same segment.
This is also the case for the DEFAULT segment. When using a paged access to
variables, place one segment on one page in the link parameter file.

When #pragma INTO_ROM: Put Next Variable Definition into ROM is active, the
current const segment is not used.

The CONST_SECTION synonym has exactly the same meaning as CONST_SEG.

Examples
Listing 7.3 shows code that uses the CONST_SEG pragma.

Listing 7.3 Examples of the CONST_SEG pragma

/* Use the pragmas in a header file */

#pragma CONST_SEG _ SHORT_ SEG SHORT_CONST_MEMORY
extern const int 1i_short;

#pragma CONST_SEG CUSTOM_CONST_MEMORY

extern const int j_custom;

#pragma CONST_SEG DEFAULT

/* Some C file, which includes the above header file code */
void main(void) {

int k = i; /* may use short access */

k= 3;
}

/* in the C file defining the constants : */
#pragma CONST_SEG _ SHORT_SEG SHORT_CONST_MEMORY
extern const int i_short=7

#pragma CONST_SEG CUSTOM_CONST_MEMORY

extern const int j_custom=8;

#pragma CONST_SEG DEFAULT

310 RS08 Build Tools Reference Manual for Microcontrollers

g |

Compiler Pragmas
Pragma Details

Listing 7.4 shows code that uses the CONST__SEG pragma improperly.

Listing 7.4 Improper use of the CONST_SEG pragma

#pragma DATA_SEG CONST1
#pragma CONST_SEG CONST1 /* error: same segment name has different
types!*/

#pragma CONST_SEG C2
#pragma CONST_SEG __ SHORT_SEG C2 // error: segment name has modifiers!

#pragma CONST_SEG CONSTI1

extern int 1i;

#pragma CONST_SEG DEFAULT

int i; /* error: i is declared in different segments */

#pragma CONST_SEG __ SHORT_SEG DEFAULT /* error: no modifiers for the
DEFAULT segment are allowed

See also
RS08 Backend
Linker section of the Build Tools manual
#pragma DATA_SEG: Data Segment Definition
#pragma STRING_SEG: String Segment Definition
#pragma INTO_ROM: Put Next Variable Definition into ROM
-Cc: Allocate Constant Objects into ROM

RSO08 Build Tools Reference Manual for Microcontrollers 311

y
A

Compiler Pragmas
Pragma Detlails

#pragma CREATE_ASM_LISTING: Create an Assembler Include
File Listing

Scope
Until the next CREATE_ASM_LISTING pragma

Syntax

#pragma CREATE_ASM_LISTING (ON|OFF)

Synonym

None

Arguments
ON: All following defines or objects are generated

OFF: All following defines or objects are not generated

Default
OFF

Description

This pragma determines if the following defines or objects are printed into the
assembler include file.

A new file is generated only when the —-La compiler option is specified together
with a header file containing #pragma CREATE_ASM LISTING ON.

Listing 7.5 Example

#pragma CREATE_ASM_LISTING ON
extern int i; /* 1 is accessible from the asm code */

#pragma CREATE_ASM_LISTING OFF
extern int j; /* j is only accessible from the C code */

See also

Generating Assembler Include Files (-I.a Compiler Option)

312 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

#pragma DATA_SEG: Data Segment Definition
Scope
Until the next DATA_SEG pragma

Syntax

#pragma DATA_SEG (<Modif> <Name> | DEFAULT)

Synonym
DATA_SECTION

Arguments

Listing 7.6 Some of the strings which may be used for <Modif>

__ _TINY_SEG

___SHORT_SEG (compatibility alias: SHORT)
__DIRECT_SEG (compatibility alias: DIRECT)
__ PAGED_SEG

__FAR_SEG (compatibility alias: FAR)

NOTE Do not use a compatibility alias in new code. It only exists for backwards
compatibility. Some of the compatibility alias names conflict with defines
found in certain header files. Therefore, using them can cause problems which
may be hard to detect. So avoid using compatibility alias names.

___TINY_SEG: specifies an operand that can be encoded on four bits (between
0x0 and 0xF). Use this modifier for frequently accessed global variables.

___SHORT_SEG: specifies an operand that can be encoded on five bits (between
0x0 and 0x1F). Use this modifier to access IO registers in the lower RS08 register
bank.

__DIRECT_SEG: specifies an operand that can be encoded within the range 0x00
and 0xBF. Use this modifier to access global variables. If the operand does not fit
into either four bits (__TINY_SEG) or five bits (_ SHORT_SEG) then direct (8
bit) addressing is used.

__PAGED_SEG: specifies an operand that can be encoded within the range 0x100
and Ox3FF for read/write registers and within the range 0x00 and Ox3FFF for
global read-only data. Use this modifier to access IO registers in the high RS08

RSO08 Build Tools Reference Manual for Microcontrollers 313

3
4

y
A

Compiler Pragmas

Pragma Detlails

register bank (read/write) or to access constant data. Objects allocated using
___PAGED_SEG must not cross page boundaries.

__FAR_SEG: specifies an operand that can be encoded within the range 0x00 to
0x3FFF. Use this modifier to access large constant (read-only) data. Allocate FAR
sections to multiple pages.

<Name>: The name of the segment. This name must be used in the link parameter
file on the left side of the assignment in the PLACEMENT part. Refer to the linker
manual for details.

Default

DEFAULT

Description

The DATA_SEG pragma allocates variables into the current data segment. This
segment is used to place all variable declarations. Use this pragma to impose tiny
or short addressing mode when accessing variables in the relevant sections. Set the
default segment with:

#pragma DATA_SEG DEFAULT

‘When using the -Cc: Allocate Constant Objects into ROM compiler option and the
ELF object-file format, constants are not allocated in the data segment.

The DATA_SEG pragma also affects data declarations, as well as definitions.
Ensure that all variable declarations and definitions are in the same segment.

The RS08 compiler automatically allocates non-static local data into an OVERLAP
section. The OVERLAP section uses the same address range as __ DIRECT_SEG
(0x00 — OxBF).

Some instructions support tiny and short addressing. These instructions are
encoded on one byte only rather than two bytes.

Some compiler optimizations assume that objects having the same segment are
together. Backends supporting banked data, for example, may set the page register
only once if two accesses to different variables in the same segment are done. This
is also the case for the DEFAULT segment. When using a paged access to constant
variables, put one segment on one page in the link parameter file.

When #pragma INTO_ROM: Put Next Variable Definition into ROM is active, the
current data segment is not used.

The synonym DATA_SECTION means exactly same as DATA_SEG.

Example

Listing 7.7 shows source code that uses the DATA_SEG pragma.

314

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

Listing 7.7 Using the DATA_SEG pragma

/* in a header file */
#pragma DATA_SEG _ TINY_SEG MyTinySection
char status;

#pragma DATA_SEG _ SHORT_SEG MyShortSection
unsigned char IOReg;

#pragma DATA_SEG DEFAULT
char temp;

#pragma DATA_SEG _ PAGED_SEG MyShortSection
unsigned char IOReg;
unsigned char *_ paged io_ptr = &IOREG;

#pragma DATA_SEG _ PAGED_SEG MyPagedSection
const char table[1l0];
unsigned char *_ paged tblptr = table;

#pragma DATA_SEG __ FAR_SEG MyFarSection
const char table[1000];
unsigned char *__ far tblptr = table;

See also
RS08 Backend
Linker section of the Build Tools manual
#pragma CONST_SEG: Constant Data Segment Definition
#pragma STRING_SEG: String Segment Definition
#pragma INTO_ROM: Put Next Variable Definition into ROM
-Cc: Allocate Constant Objects into ROM

#pragma INLINE: Inline Next Function Definition

Scope

Function Definition

RSO08 Build Tools Reference Manual for Microcontrollers 315

y
A

Compiler Pragmas
Pragma Detlails

Syntax

#pragma INLINE
Synonym

None

Arguments

None

Default

None

Description

This pragma directs the Compiler to inline the next function in the source.

The pragma is the same as using the -O1 compiler option.

Listing 7.8 Using an INLINE pragma to inline a function

int 1i;
#pragma INLINE
static void fun(void) {
i =12;
}
void main(void) {
fun(); // results in inlining ‘i = 12;°

}

See also

#pragma NO_INLINE: Do not Inline next function definition

-Oi: Inlining

#pragma INTO_ROM: Put Next Variable Definition into ROM

Scope

Data Definition

316 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

Syntax
#pragma INTO_ROM

Synonym

None

Arguments

None

Default

None

Description

This pragma forces the next (non-constant) variable definition to be const
(together with the -Cc compiler option).

The pragma is active only for the next single variable definition. A subsequent
segment pragma (CONST_SEG, DATA_SEG, CODE_SEG) disables the pragma.

NOTE This pragma is only useful for the HIWARE object-file format (but not for
ELF/DWAREF).

NOTE This pragma is to force a non-constant (meaning a normal ‘variable’) object to
be recognized as ‘const’ by the compiler. If the variable already is declared
as ‘const’ in the source, this pragma is not needed. This pragma was
introduced to cheat the constant handling of the compiler and shall not be used
any longer. It is supported for legacy reasons only.

Example
Listing 7.9 presents some examples which use the INTO_ROM pragma.

Listing 7.9 Using the INTO_ROM pragma

#pragma INTO_ROM
char *const B[] = {"hello", "world"};

#pragma INTO_ROM
int constVariable; /* put into ROM_VAR, .rodata */

int other; /* put into default segment */

#pragma INTO_ROM

RSO08 Build Tools Reference Manual for Microcontrollers 317

y
A

Compiler Pragmas
Pragma Detlails

#pragma DATA_SEG MySeg /* INTO_ROM overwritten! */
int other2; /* put into MySeg */

See also
-Cc: Allocate Constant Objects into ROM

#pragma LINK_INFO: Pass Information to the Linker

Scope

Function

Syntax

#pragma LINK_INFO NAME "CONTENT"

Synonym

None

Arguments

NAME: Identifier specific to the purpose of this LINK_INFO.
CONTENT: C-style string containing only printable ASCII characters.

Default

None

Description

This pragma instructs the compiler to put the passed name content pair into the
ELF file. For the compiler, the name that is used and its content have no meaning
other than each name can contain only one content string. However, multiple
pragmas with different NAMEs are legal.

For the Linker or for the Debugger, however, NAME might trigger some special
functionality with CONTENT as an argument.

The Linker collects the CONTENT for every NAME from different object files and
issues a message if CONTENT differs in different object files.

NOTE This pragma only works with the ELF object-file format.

318 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

Example

Apart from extended functionality implemented in the Linker or Debugger, this
feature can also be used for user-defined link-time consistency checks.

Using the code shown in Listing 7.10 in a header file used by all compilation units,
the Linker issues a message if the object files built with _ DEBUG are linked with
object files built without it.

Listing 7.10 Using pragmas to assist in debugging

#ifdef _DEBUG

#pragma LINK_INFO MY_BUILD_ENV DEBUG
#else

#pragma LINK_INFO MY_BUILD_ENV NO_DEBUG
#endif

#pragma LOOP_UNROLL: Force Loop Unrolling

Scope

Function

Syntax
#pragma LOOP_UNROLL

Synonym

None

Arguments

None

Default

None

Description

If this pragma is present, loop unrolling is performed for the next function. This is
the same as setting the —~Cu option for the following single function.

RSO08 Build Tools Reference Manual for Microcontrollers 319

y
A

Compiler Pragmas
Pragma Detlails

Listing 7.11 Using a LOOP_UNROLL pragma to unroll the for loop

#pragma LOOP_UNROLL
void F(void) {
for (i=0; i<5; i++) { // unrolling this loop

See also

#pragma NO_LOOP_UNROLL.: Disable Loop Unrolling
-Cu: Loop Unrolling

#pragma mark: Entry in CodeWarrior IDE Function List

Scope

Line
Syntax

#pragma mark {any text - no quote marks needed}
Synonym

None

Arguments

None

Default

None

Description

This pragma adds an entry into the function list of the CodeWarrior IDE. It also
helps to introduce faster code lookups by providing a menu entry which directly
jumps to a code position. With the special #pragma mark -, a separator line is
inserted.

NOTE The compiler does not actually handle this pragma. The compiler ignores this
pragma. The CodeWarrior IDE scans opened source files for this pragma. It is

320 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

not necessary to recompile a file when this pragma is changed. The IDE
updates its menus instantly.

Example

For the example in Listing 7.12 the pragma accesses declarations and definitions.

Listing 7.12 Using the MARK pragma

#pragma mark local function declarations
static void inc_counter (void) ;
static void inc_ref (void) ;

#pragma mark local variable definitions
static int counter;
static int ref;

#pragma mark -

static void inc_counter (void) {
counter++;

}

static void inc_ref (void) {
ref++;

}

RSO08 Build Tools Reference Manual for Microcontrollers 321

y
A

Compiler Pragmas
Pragma Detlails

#pragma MESSAGE: Message Setting

Scope

Compilation Unit or until the next MESSAGE pragma

Syntax

#pragma MESSAGE { (WARNING |ERROR|INFORMATION |DISABLE|DEFAULT) {<CNUM>}}

Synonym
None

Arguments

<CNUM>: Number of messages to be set in the C1234 format

Default

None

Description
Messages are selectively set to an information message, a warning message, a

disable message, or an error message.

NOTE This pragma has no effect for messages which are produced during
preprocessing. The reason is that the pragma parsing has to be done during
normal source parsing but not during preprocessing.

NOTE This pragma (as other pragmas) has to be specified outside of the function’s

scope. For example, it is not possible to change a message inside a function or
for a part of a function.

Example

In the example shown in Listing 7.13, parentheses () were omitted.

322 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

Listing 7.13 Using the MESSAGE Pragma

/* treat Cl412: Not a function call, */
/* address of a function, as error */
#pragma MESSAGE ERROR C1412
void f (void);
void main(void) {
f; /* () is missing, but still legal in C */
/* ERROR because of pragma MESSAGE */
}

See also
Compiler options:
¢ -WmsgSd: Setting a Message to Disable
¢ -WmsgSe: Setting a Message to Error
¢ -WmsgSi: Setting a Message to Information
e -WmsgSw: Setting a Message to Warning

#pragma NO_ENTRY: No Entry Code

Scope

Function

Syntax

#pragma NO_ENTRY
Synonym

None

Arguments

None

Default

None

RSO08 Build Tools Reference Manual for Microcontrollers 323

3
4

y
A

Compiler Pragmas
Pragma Detlails

Description

NOTE

TIP

This pragma suppresses the generation of entry code and is useful for inline
assembler functions. The entry code prepares subsequent C code to run properly. It
usually consists of pushing register arguments on the stack (if necessary), and
allocating the stack space used for local variables and temporaries and storing
callee saved registers according to the calling convention.

The main purpose of this pragma is for functions which contain only High-Level
Inline (HLI) assembler code to suppress the compiler generated entry code.

One use of this pragma is in the startup function _Startup. At the start of this
function the stack pointer is not yet defined. It has to be loaded by custom HLI
code first.

C code inside of a function compiled with #pragma NO_ENTRY generates
independently of this pragma. The resulting C code may not work since it
could access unallocated variables in memory.

This pragma is safe in functions with only HLI code. In functions that contain C
code, using this pragma is a very advanced topic. Usually this pragma is used
together with the pragma NO_FRAME.

Use a #pragma NO_ENTRY and a #pragma NO_EXIT with HLI-only
functions to avoid generation of any additional frame instructions by the compiler.

The code generated in a function with #pragma NO_ENTRY may be unreliable.
It is assumed that the user ensures correct memory use.

WARNING! Not all backends support this pragma. Some may still generate entry

code even if this pragma is specified.

Example

Listing 7.14 shows how to use the NO_ENTRY pragma (along with others) to avoid
any generated code by the compiler. All code is written in inline assembler.

Listing 7.14 Blocking compiler-generated function-management instructions

#pragma
#pragma
#pragma
#pragma

NO_ENTRY
NO_EXIT
NO_FRAME
NO_RETURN

void FuncO (void) {
__asm {/* No code should be written by the compiler.*/

324

RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

See also
#pragma NO_EXIT: No Exit Code
#pragma NO_FRAME: No Frame Code
#pragma NO_RETURN: No Return Instruction

#pragma NO_EXIT: No Exit Code

Scope

Function

Syntax

#pragma NO_EXIT

Synonym

None

Arguments

None

Default

None

Description

This pragma suppresses generation of the exit code and is useful for inline
assembler functions. The two pragmas NO_ENTRY and NO_EXIT together avoid
generation of any exit/entry code. Functions written in High-Level Inline (HLI)
assembler can therefore be used as custom entry and exit code.

The compiler can often deduce if a function does not return, but sometimes this is
not possible. This pragma can then be used to avoid the generation of exit code.

TIP Usea #pragma NO_ENTRY and a #pragma NO_EXIT with HLI-only
functions to avoid generation of any additional frame instructions by the compiler.

RSO08 Build Tools Reference Manual for Microcontrollers 325

y
A

Compiler Pragmas
Pragma Detlails

The code generated in a function with #pragma NO_EXIT may not be safe. It is
assumed that the user ensures correct memory usage.

NOTE Not all backends support this pragma. Some may still generate exit code even
if this pragma is specified.

Example

Listing 7.15 shows how to use the NO_EXIT pragma (along with others) to avoid
any generated code by the compiler. All code is written in inline assembler.

Listing 7.15 Blocking Compiler-generated function management instructions

#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME
#pragma NO_RETURN
void FuncO (void) {
__asm {/* No code should be written by the compiler.*/

}

See also
#pragma NO_ENTRY: No Entry Code
#pragma NO_FRAME: No Frame Code
#pragma NO_RETURN: No Return Instruction

326 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

#pragma NO_FRAME: No Frame Code

Scope

Function

Syntax
#pragma NO_FRAME

Synonym

None

Arguments

None

Default

None

Description

This pragma is accepted for compatibility only. It is replaced by the #pragma
NO_ENTRY and #pragma NO_EXIT pragmas.

For some compilers, using this pragma does not affect the generated code. Use the
two pragmas NO_ENTRY and NO_EXTT instead (or in addition). When the
compiler does consider this pragma, see the #pragma NO_ENTRY and
#pragma NO_EXIT for restrictions that apply.

This pragma suppresses the generation of frame code and is useful for inline
assembler functions.

The code generated in a function with #pragma NO_FRAME may be unreliable.
It is assumed that the user ensures correct memory usage.

NOTE Not all backends support this pragma. Some may still generate frame code
even if this pragma is specified.

Example

Listing 7.16 shows how to use the NO_FRAME pragma (along with others) to avoid
any generated code by the compiler. All code is written in inline assembler.

RSO08 Build Tools Reference Manual for Microcontrollers 327

y
A

Compiler Pragmas
Pragma Detlails

Listing 7.16 Blocking compiler-generated function management instructions

#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME
#pragma NO_RETURN
void FuncO (void) {
__asm {/* No code should be written by the compiler.*/

}
}

See also
#pragma NO_ENTRY: No Entry Code
#pragma NO_EXIT: No Exit Code
#pragma NO_RETURN: No Return Instruction

#pragma NO_INLINE: Do not Inline next function definition

Scope

Function

Syntax

#pragma NO_INLINE
Synonym

None

Arguments

None

Default

None

328 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

Description

This pragma prevents the Compiler from inlining the next function in the source.
The pragma is used to avoid inlining a function which would be inlined because of
the —O1 compiler option.

Listing 7.17 Use of #pragma NO_INLINE to prevent inlining a function.

// (With the -0i option)

int 1i;

#pragma NO_INLINE

static void foo (void) {
i =12;

}

void main (void) {

foo(); // call is not inlined

}

See also

#pragma INLINE: Inline Next Function Definition
-Oi: Inlining

#pragma NO_LOOP_UNROLL: Disable Loop Unrolling

Scope

Function

Syntax
#pragma NO_LOOP_UNROLL

Synonym

None

Arguments

None

RSO08 Build Tools Reference Manual for Microcontrollers 329

y
A

Compiler Pragmas
Pragma Detlails

Default

None

Description

If this pragma is present, no loop unrolling is performed for the next function
definition, even if the —~Cu command line option is given.

Example

Listing 7.18 Using the NO_LOOP_UNROLL pragma to temporarily halt loop unrolling

#pragma NO_LOOP_UNROLL
void F(void) {
for (i=0; i<5; i++) { // loop is NOT unrolled

See also

#pragma LOOP_UNROLL: Force Loop Unrolling
-Cu: Loop Unrolling

#pragma NO_RETURN: No Return Instruction

Scope

Function

Syntax
#pragma NO_RETURN

Synonym

None

Arguments

None

Default

None

330 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

Description

This pragma suppresses the generation of the return instruction (return from a
subroutine or return from an interrupt). This may be useful if you care about the
return instruction itself or if the code has to fall through to the first instruction of
the next function.

This pragma does not suppress the generation of the exit code at all (e.g.,
deallocation of local variables or compiler generated local variables). The pragma
suppresses the generation of the return instruction.

NOTE If this feature is used to fall through to the next function, smart linking has to
be switched off in the Linker, because the next function may be not referenced
from somewhere else. In addition, be careful that both functions are in a linear
segment. To be on the safe side, allocate both functions into a segment that
only has a linear memory area.

Example

The example in Listing 7.19 places some functions into a special named segment.
All functions in this special code segment have to be called from an operating
system every 2 seconds after each other. With the pragma some functions do not
return. They fall directly to the next function to be called, saving code size and
execution time.

Listing 7.19 Blocking compiler-generated function return instructions

#pragma CODE_SEG CallEvery2Secs
#pragma NO_RETURN
void FuncO (void) {

/* first function, called from 0OS */

} /* fall through!!!! */
#pragma NO_RETURN
void Funcl (void) {

} /* fall through */

/* last function has to return, no pragma is used! */
void FuncLast (void) {

}

RSO08 Build Tools Reference Manual for Microcontrollers 331

y
A

Compiler Pragmas
Pragma Detlails

See also
#pragma NO_ENTRY: No Entry Code
#pragma NO_EXIT: No Exit Code
#pragma NO_FRAME: No Frame Code

#pragma NO_STRING_CONSTR: No String Concatenation during
preprocessing

Scope

Compilation Unit

Syntax

#pragma NO_STRING_CONSTR
Synonym

None

Arguments

None

Default

None

Description

This pragma is valid for the rest of the file in which it appears. It switches off the
special handling of # as a string constructor. This is useful if a macro contains
inline assembler statements using this character, e.g., for IMMEDIATE values.

332 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

Example

The following pseudo assembly-code macro shows the use of the pragma. Without
the pragma, # is handled as a string constructor, which is not the desired behavior.

Listing 7.20 Using a NO_STRING_CONSTR pragma in order to alter the meaning of #

#pragma NO_STRING_CONSTR
#define HALT (x) _asm { \
LOAD Reg, #3 \
HALT x, #255\
}

See also

Using the Immediate-Addressing Mode in HLI Assembler Macros

#pragma ONCE: Include Once

Scope
File

Syntax

#pragma ONCE
Synonym

None

Arguments

None

Default

None

Description

If this pragma appears in a header file, the file is opened and read only once. This
increases compilation speed.

Example
#pragma ONCE

RSO08 Build Tools Reference Manual for Microcontrollers 333

y
A

Compiler Pragmas
Pragma Detlails

See also

-Pio: Include Files Only Once

#pragma OPTION: Additional Options

Scope

Compilation Unit or until the next OPTION pragma

Syntax

#pragma OPTION ADD [<Handle>] “<Option>"
#pragma OPTION DEL <Handle>
#pragma OPTION DEL ALL

Synonym

None

Arguments

<Handle>: An identifier - added options can selectively be deleted.

<Option>: A valid option string

Default

None

Description
Options are added inside of the source code while compiling a file.

The options given on the command line or in a configuration file cannot be
changed in any way.

Additional options are added to the current ones with the ADD command. A handle
may be given optionally.

The DEL command either removes all options with a specific handle. It also uses
the ALL keyword to remove all added options regardless if they have a handle or
not. Note that you only can remove options which were added previously with the
OPTION ADD pragma.

All keywords and the handle are case-sensitive.

334 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

Restrictions:

¢ The -D: Macro Definition (preprocessor definition) compiler option is not
allowed. Use a #def ine preprocessor directive instead.

¢ The -OdocF: Dynamic Option Configuration for Functions compiler option is
not allowed. Specify this option on the command line or in a configuration file
instead.

¢ These Message Setting compiler options have no effect:
— -WmsgSd: Setting a Message to Disable,_
— -WmsgSe: Setting a Message to Error,
— -WmsgSi: Setting a Message to Information, and
-WmsgSw: Setting a Message to Warning.
Use #pragma MESSAGE: Message Setting instead.

* Only options concerning tasks during code generation are used. Options
controlling the preprocessor, for example, have no effect.

* No macros are defined for specific options.
* Only options having function scope may be used.
* The given options must not specify a conflict to any other given option.

* The pragma is not allowed inside of declarations or definitions.

Example

The example in Listing 7.21 shows how to compile only a single function with the
additional -Oxr option.

Listing 7.21 Using the OPTION Pragma

#pragma OPTION ADD function_main_handle "-Or"

int sum(int max) { /* compiled with -or */
int i, sum=0;

for (1 = 0; i1 < max; i++) {
sum += 1i;

}

return sum;

}

#pragma OPTION DEL function_main_handle
/* Now the same options as before #pragma OPTION ADD */
/* are active again. */

RSO08 Build Tools Reference Manual for Microcontrollers 335

y
A

Compiler Pragmas
Pragma Details

The examples in Listing 7.22 show improper uses of the OPTION pragma.

Listing 7.22 Improper uses of the OPTION pragma

#pragma OPTION ADD -Or /* ERROR, quotes missing; use "-Or" */
#pragma OPTION "-Or" /* ERROR, needs also the ADD keyword */

#pragma OPTION ADD "-Odocf=\"-Or\""
/* ERROR, "-Odocf" not allowed in this pragma */

void f(void) {

#pragma OPTION ADD "-Or"

/* ERROR, pragma not allowed inside of declarations */
}i

#pragma OPTION ADD "-Cni"

#ifdef _ CNI_

/* ERROR, macros are not defined for options */

/* added with the pragma */

#endif

#pragma REALLOC_OBJ: Object Reallocation

Scope

Compilation Unit

Syntax

#pragma REALLOC_OBJ "segment" ["objfile"] object qualifier

Arguments

segment: Name of an already existing segment. This name must have been
previously used by a segment pragma (DATA_SEG, CODE_SEG, CONST_SEG, or
STRING_SEG).

objfile: Name of a object file. If specified, the object is assumed to have static
linkage and to be defined in obj file. The name must be specified without
alteration by the qualifier __namemangle.

object: Name of the object to be reallocated. Here the name as known to the
Linker has to be specified.

336 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

qualifier: One of the following:
* _ near,

e far,

e _ paged,or

e _ namemangle.

Some of the qualifiers are only allowed to backends not supporting a specified
qualifier generating this message. With the special __namemangle qualifier, the
link name is changed so that the name of the reallocated object does not match the
usual name. This feature detects when a REALLOC_OBJ pragma is not applied to
all uses of one object.

Default

None

Description

This pragma reallocates an object (e.g., affecting its calling convention). This is
used by the linker if the linker has to distribute objects over banks or segments in
an automatic way (code distribution). The linker is able to generate an include file
containing #pragma REALLOC_OBJ to tell the compiler how to change calling
conventions for each object. See the Linker manual for details.

Example

Listing 7.23 uses the REALLOC_OBJ pragma to reallocate the evaluate.o
object file.

Listing 7.23 Using the REALLOC_OBJ pragma to reallocate an object

#pragma REALLOC_OBJ "DISTRIBUTEl" ("evaluate.o") Eval_Plus __ near
_ _namemangle

See also
Message C420 in the Online Help

Linker section of the Build Tools manual

RSO08 Build Tools Reference Manual for Microcontrollers 337

y
A

Compiler Pragmas
Pragma Detlails

#pragma STRING_SEG: String Segment Definition
Scope
Until the next STRING_SEG pragma

Syntax

#pragma STRING_SEG (<Modif><Name> | DEFAULT)

Synonym
STRING_SECTION

Arguments

Listing 7.24 Some of the strings which may be used for <Modif>

_ _FAR_SEG (compatibility alias: FAR)
_ PAGED_SEG

NOTE Do not use a compatibility alias in new code. It only exists for backwards
compatibility.
Some of the compatibility alias names conflict with defines found in certain
header files. So avoid using compatibility alias names.

The ___SHORT_SEG modifier specifies a segment that accesses using 8-bit
addresses. The definitions of these segment modifiers are backend-dependent.

<Name>: The name of the segment. This name must be used in the link parameter
file on the left side of the assignment in the PLACEMENT part. Refer to the linker
manual for details.

Default

DEFAULT.

Description

This pragma allocates strings into a segment. Strings are allocated in the linker
segment STRINGS. This pragma allocates strings in special segments. String
segments also may have modifiers. This instructs the Compiler to access them in a
special way when necessary.

338 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas

Pragma Details

Segments defined with the pragma STRING_SEG are treated by the linker like
constant segments defined with #pragma CONST__SEG, so they are allocated in

ROM areas.

The pragma STRING_SEG sets the current string segment. This segment is used to

place all newly occurring strings.

NOTE The linker may support a overlapping allocation of strings. e.g., the allocation
of CDE inside of the string ABCDE, so that both strings together need only six

bytes. When putting strings into user-defined segments, the linker may no
longer do this optimization. Only use a user-defined string segment when

necessary.

The synonym STRING_SECTION has exactly the same meaning as

STRING_SEG.

Example

Listing 7.25 is an example of the STRING_SEG pragma allocating strings into a

segment with the name, STRING_MEMORY.

Listing 7.25 Using a STRING_SEG pragma to allocate a segment for strings

#pragma STRING_SEG _ FAR SEG STRING_MEMORY
char * _ far p="Stringl";
void f (char * far);

void main(void) {
f("String2") ;
}

#pragma STRING_SEG DEFAULT

See also
RS08 Backend
Linker section of the Build Tools manual
#pragma CONST_SEG: Constant Data Segment Definition
#pragma DATA_SEG: Data Segment Definition

RSO08 Build Tools Reference Manual for Microcontrollers

339

y
A

Compiler Pragmas
Pragma Detlails

#pragma TEST_CODE: Check Generated Code

Scope

Function Definition

Syntax
#pragma TEST_CODE CompareOperator <Size> [<HashCode>]
CompareOperator: == | I= | < | > | <= | >=

Arguments

<Size>: Size of the function to be used in a compare operation

<HashCode>: optional value specifying one specific code pattern.

Default

None

Description

This pragma checks the generated code. If the check fails, the message C3601 is
issued.

The following parts are tested:
* Size of the function

The compare operator and the size given as arguments are compared with the
size of the function.

This feature checks that the compiler generates less code than a given boundary.
Or, to be sure that certain code it can also be checked that the compiler produces
more code than specified. To only check the hashcode, use a condition which is
always TRUE, such as != 0.

¢ Hashcode

The compiler produces a 16-bit hashcode from the produced code of the next
function. This hashcode considers:

— The code bytes of the generated functions

— The type, offset, and addend of any fixup.

340 RS08 Build Tools Reference Manual for Microcontrollers

Compiler Pragmas
Pragma Details

To get the hashcode of a certain function, compile the function with an active
#pragma TEST_CODE which will intentionally fail. Then copy the computed
hashcode out of the body of the message C3601.

NOTE The code generated by the compiler may change. If the test fails, it is often not
certain that the topic chosen to be checked was wrong.

Examples
Listing 7.26 and Listing 7.27 present two examples of the TEST_CODE pragma.

Listing 7.26 Using TEST_CODE to check the size of generated object code

/* check that an empty function is smaller */
/* than 10 bytes */

#pragma TEST_CODE < 10

void main(void) {

}

You can also use the TEST_CODE pragma to detect when a different code is
generated (Listing 7.27).

Listing 7.27 Using a Test_Code pragma with the hashcode option

/* If the following pragma fails, check the code. */
/* If the code is OK, add the hashcode to the */
/* list of allowed codes : */
#pragma TEST_CODE != 0 25645 37594
/* check code patterns : */
/* 25645 : shift for *2 */
/* 37594 : mult for *2 */
void main(void) {
f(2*1);
}

See also
Message C3601 in the Online Help

RSO08 Build Tools Reference Manual for Microcontrollers 341

y
A

Compiler Pragmas
Pragma Detlails

#pragma TRAP_PROC: Mark function as interrupt function

Scope

Function Definition

Syntax

#pragma TRAP_PROC

Arguments
See Backend

Default

None

Description

This pragma marks a function to be an interrupt function. Because interrupt

functions may need some special entry and exit code, this pragma has to be used
for interrupt functions.

Do not use this pragma for declarations (e.g., in header files) because the pragma is
valid for the next definition.

See the RSO8 Backend chapter for details.

Example

Listing 7.28 marks the MyInterrupt () function as an interrupt function.

Listing 7.28 Using the TRAP_PROC pragma to mark an interrupt function

#pragma TRAP_PROC
void MyInterrupt (void) {

}

See also

interrupt keyword

342 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend

The Compiler Frontend reads the source files, does all the syntactic and semantic
checking, and produces intermediate representation of the program which then is passed
on to the Backend to generate code.

This chapter discusses features, restrictions, and further properties of the ANSI-C
Compiler Frontend.

* Implementation Features
¢ ANSI-C Standard

¢ Floating-Type Formats
¢ Volatile Objects and Absolute Variables

¢ Bitfields

* Segmentation

¢ Optimizations

¢ Using Qualifiers for Pointers

¢ Defining C Macros Containing HLI Assembler Code

Implementation Features

The Compiler provides a series of pragmas instead of introducing additions to the
language to support features such as interrupt procedures. The Compiler implements
ANSI-C according to the X3J11 standard. The reference document is “American National
Standard for Programming Languages — C”, ANSI/ISO 9899-1990.

RSO08 Build Tools Reference Manual for Microcontrollers 343

y
A

ANSI-C Frontend
Implementation Features

Keywords

See Listing 8.1 for the complete list of ANCSI-C keywords.

Listing 8.1 ANSI-C keywords

auto break case
const continue default
double else enum
float for goto

int long register
short signed sizeof
struct switch typedef
unsigned void volatile

char
do
extern
if
return
static
union
while

Preprocessor Directives

The Compiler supports the full set of preprocessor directives as required by the ANSI
standard (Listing 8.2.

Listing 8.2 ANSI-C preprocessor directives

#if, #ifdef, #ifndef,
#define, #undef
#include
#pragma
#error,

#else, #elif, #endif

#line

The preprocessor operators defined, #, and ## are also supported. There is a special
non-ANSI directive #warning which is the same as #error, but issues only a warning
message.

Language Extensions

There is a language extension in the Compiler for ANSI-C. You can use keywords to
qualify pointers in order to distinguish them, or to mark interrupt routines.

The Compiler supports the following non-ANSI compliant keywords (see Backend if they
are supported and for their semantics):

344

RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Implementation Features

Pointer Qualifiers

Pointer qualifiers (Listing 8.3) can be used to distinguish between different pointer types
(e.g., for paging). Some of them are also used to specify the calling convention to be used
(e.g., if banking is available).

Listing 8.3 Pointer qualifiers

_ _far (alias far)
__near (alias near)
paged

Far pointers contain a real RSO8 address, that is, a linear address between 0 and Ox3FFF.
A paged pointer is a 16-bit data entity containing a page number in the high byte and an
address in the low byte. The address lies within the paging window, so no additional
overhead is required to compute the value. Paged pointers cannot be used to access data
across page boundaries. Use paged pointers whenever possible.

To allow portable programming between different CPUs (or if the target CPU does not
support an additional keyword), you can include the defines listed below in the hidef .h
header file (Listing 8.4).

Listing 8.4 far and near can be defined in the hidef.h file

#define far /* no far keyword supported */
#define near /* no near keyword supported */

Special Keywords

ANSI-C was not designed with embedded controllers in mind. The listed keywords
(Listing 8.5) do not conform to ANSI standards. However, they enable you to achieve
good results from code used for embedded applications.

Listing 8.5 Special (non-ANSI) keywords

__alignof___

__va_sizeof

__interrupt (alias interrupt)
__asm (aliases _asm and asm)

You can use the __interrupt keyword to mark functions as interrupt functions, and to
link the function to a specified interrupt vector number (not supported by all backends).

RSO08 Build Tools Reference Manual for Microcontrollers 345

y
A

ANSI-C Frontend
Implementation Features

Binary Constants (0b)

It is as well possible to use the binary notation for constants instead of hexadecimal
constants or normal constants. Note that binary constants are not allowed if the -Ansi:
Strict ANSI compiler option is switched on. Binary constants start with the Ob prefix,
followed by a sequence of zeros or ones (Listing 8.6).

Listing 8.6 Demonstration of a binary constant

#define myBinaryConst 0b01011

int 1i;

void main(void) {

i

}

myBinaryConst;

Hexadecimal constants ($)

It is possible to use Hexadecimal constants inside HLI (High-Level Inline) Assembly. For
example, instead of 0x1234 you can use $1234. Note that this is valid only for inline
assembly.

#warning directive

The #warning directive (Listing 8.7) is used as it is similar to the #error directive.

Listing 8.7 #warning directive

#ifndef MY_MACRO

#warning "MY_MACRO set to default™
#define MY_MACRO 1234

#endif

Global Variable Address Modifier (@address)

You can assign global variables to specific addresses with the global variable address
modifier. These variables are called absolute variables. They are useful for accessing
memory mapped I/O ports and have the following syntax:

Declaration = <TypeSpec> <Declarator>

[@<Address>|@"<Section>"] [= <Initializer>];

346

RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Implementation Features

where:
* <TypeSpec> is the type specifier, e.g., int, char
* <Declarator> is the identifier of the global object, e.g., 1, glob
¢ <Address> is the absolute address of the object, e.g., 0x££04, 0x00+8
e <Initializer> is the value to which the global variable is initialized.

A segment is created for each global object specified with an absolute address. This
address must not be inside any address range in the SECTIONS entries of the link
parameter file. Otherwise, there would be a linker error (overlapping segments). If the
specified address has a size greater than that used for addressing the default data page,
pointers pointing to this global variable must be ___far. An alternate way to assign global
variables to specific addresses is setting the PLACEMENT section in the Linker parameter
file (see Listing 8.8).

Listing 8.8 Assigning global variables to specific addresses

#pragma DATA_SEG [__SHORT_SEG] <segment_name>

An older method of accomplishing this is shown in Listing 8.9.

Listing 8.9 Another means of assigning global variables to specific addresses

<segment_name> INTO READ_ONLY <Address> ;

Listing 8.10 is an example using correctly and incorrectly the global variable address
modifier and Listing 8.11 is a possible PRM file that corresponds with the example
Listing.

Listing 8.10 Using the global variable address modifier

int glob @0x0500 = 10; // OK, global variable "glob" is
// at 0x0500, initialized with 10

void g() @0x40cO; // error (the object is a function)
void f£() {
int i @0x40cc; // error (the object is a local variable)

}

Listing 8.11 Corresponding Linker parameter file settings (prm file)

/* the address 0x0500 of "glob" must not be in any address

RSO08 Build Tools Reference Manual for Microcontrollers 347

y
A

ANSI-C Frontend
Implementation Features

range of the SECTIONS entries */

SECTIONS
MY_RAM = READ_WRITE 0x0800 TO Ox1BFF;
MY_ROM = READ_ONLY O0x2000 TO OxFEFF;
MY_STACK = READ_WRITE 0x1C00 TO Oxl1FFF;
MY_IO_SEG = READ_WRITE 0x0400 TO Ox4ff;
END
PLACEMENT
IO_SEG INTO MY_IO_SEG;

DEFAULT_ROM INTO MY_ROM;
DEFAULT_RAM INTO MY_RAM;

SSTACK
END

INTO MY_STACK;

Variable Allocation using @“SegmentName”

Sometimes it is useful to have the variable directly allocated in a named segment instead
of using a #pragma. Listing 8.12 is an example of how to do this.

Listing 8.12 Allocation of variables in named segments

#pragma DATA_SEG _ SHORT_SEG tiny
#pragma DATA_SEG not_tiny

#pragma DATA_SEG _ SHORT_SEG tiny_b
#pragma DATA_SEG DEFAULT

int i@"tiny";

int j@"not_tiny";

int k@"tiny_b";

So with some pragmas in a common header file and with another definition for the macro,
it is possible to allocate variables depending on a macro.

Declaration = <TypeSpec> <Declarator>
[@"<Section>"] [=<Initializer>];

Variables declared and defined with the @"section" syntax behave exactly like
variables declared after their respective pragmas.

e <TypeSpec> is the type specifier, e.g., int or char
* <Declarator> is the identifier of your global object, e.g., i, glob

* <Section> is the section name. Define it in the link parameter file as well (e.g.,
MyDataSection).

e <Initializer> is the value to which the global variable is initialized.

348

RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Implementation Features

The section name used has to be known at the declaration time by a previous section
pragma (Listing 8.13).

Listing 8.13 Examples of section pragmas

#pragma DATA_SEC __ SHORT_SEG MY_SHORT_DATA_SEC

#pragma DATA_SEC MY_DATA_SEC
#pragma CONST_SEC MY_CONST_SEC
#pragma DATA_SEC DEFAULT // not necessary,
// but good practice
#pragma CONST_SEC DEFAULT // not necessary,

// but good practice
int short_var @"MY_ SHORT_DATA_SEC"; // OK, accesses are
// short
int ext_var @"MY_ DATA_SEC" = 10; // OK, goes into
// MY_DATA_SECT
int def_var; / OK, goes into DEFAULT_RAM
const int cst_var @"MY_ CONST_SEC" = 10; // OK, goes into
// MY_CONST_SECT

Listing 8.14 Corresponding Link Parameter File Settings (prm-file)

SECTIONS
MY_ZRAM = READ_WRITE 0x00F0 TO Ox00FF;
MY RAM = READ WRITE 0x0100 TO 0xO01FF;
MY ROM = READ ONLY 0x2000 TO OxFEFF;
MY_STACK = READ_WRITE 0x0200 TO O0x03FF;
END
PLACEMENT
MY_CONST_SEC, DEFAULT_ROM INTO MY_ROM;
MY_SHORT_DATA_SEC INTO MY ZRAM;
MY_DATA_SEC, DEFAULT_RAM INTO MY RAM;
SSTACK INTO MY_STACK
END

Absolute Functions

Sometimes it is useful to call an absolute function (e.g., a special function in ROM).
Listing 8.15 is a simple example of calling an absolute function using normal ANSI-C.

Listing 8.15 Absolute function

#define erase ((void(*) (void)) (0xfc06))

RSO08 Build Tools Reference Manual for Microcontrollers 349

A 4
4\

ANSI-C Frontend
Implementation Features

void main(void) {

erase(); /* call function at address 0xfc06 */

}

350 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Implementation Features

Absolute Variables and Linking
Special attention is needed if absolute variables are involved in the linker’s link process.

If an absolute object is not referenced by the application, it is always linked using the ELF/
DWAREF format. To force linking, switch off smart linking in the Linker, or using the
ENTRIES command in the linker parameter file.

NOTE Interrupt vector entries are always linked.

The example in Listing 8.16 shows how the linker handles different absolute variables.

Listing 8.16 Linker handling of absolute variables

char 1i; /* zero out */
char j = 1; /* zero out, copy-down */
const char k = 2; /* download */
char 1@0x10; /* no zero out! */
char J@Ox11 = 1;/* copy down */
const char K@0x12 = 2;/* ELF: download! */
static char L@0Ox13; /* no zero out! */
static char M@0x14 = 3; /* copy down */

static const char N@QOx15 = 4; /* BELF: download */

void interrupt 2 MyISRfct(void) {} /* download, always linked! */
/* vector number two is downloaded with &MyISRfct */

void foo(char *p) {} /* download */

void main(void) { /* download */

)
foo(&i); foo(&j); fool(&k);
foo(&I); foo(&J); foo(&K) ;
foo(&L); foo(&M); foo(&N);

Zero out means that the default startup code initializes the variables during startup. Copy
down means that the variable is initialized during the default startup. To download means
that the memory is initialized while downloading the application.

The __far Keyword

The keyword far is a synonym for ___far, which is not allowed when the -Ansi: Strict
ANSI compiler option is present.

A __far pointer allows access to the whole memory range supported by the processor,
not just to the default data page. You can use it to access memory mapped I/O registers
that are not on the data page. You can also use it to allocate constant strings in a ROM not
on the data page.

RSO08 Build Tools Reference Manual for Microcontrollers 351

3
4

y
A

ANSI-C Frontend
Implementation Features

The __far keyword defines the calling convention for a function. Some backends
support special calling conventions which also set a page register when a function is
called. This enables you to use more code than the address space can usually
accommodate. The special allocation of such functions is not done automatically.

Using the __far Keyword for Pointers

The keyword ___far is a type qualifier like const and is valid only in the context of
pointer types and functions.The __far keyword (for pointers) always affects the last * to
its left in a type definition. The declaration of a___far pointer to a __far pointer to a
character is:

char *__ _far *_ far p;

The following is a declaration of a normal (short) pointer to a ___far pointer to a
character:

char *_ far * p;

NOTE Todeclare a __far pointer, place the __far keyword after the asterisk:
char *__far p;

not
char __ far *p;
The second choice will not work.

__ far and Arrays

The __far keyword does not appear in the context of the * type constructor in the
declaration of an array parameter, as shown:

void my_func (char al[37]);

Such a declaration specifies a pointer argument. This is equal to:

void my_func (char *a);

There are two possible uses when declaring such an argument to a __far pointer:
void my_func (char al[37] __far);

or alternately

void my_func (char *_ far a);

In the context of the [] type constructor in a direct parameter declaration, the __far
keyword always affects the first dimension of the array to its left. In the following
declaration, parameter a has type “___far pointer to array of 5 __far pointers to char™:

void my_func (char *_ far a[][5] __far);

352

RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Implementation Features

__far and typedef Names

If the array type has been defined as a typedef name, as in:
typedef int ARRAY[10];

then a __far parameter declaration is:

void my_func (ARRAY _ far a);

The parameter is a ___far pointer to the first element of the array. This is equal to:
void my_func (int *__ far a);

It is also equal to the following direct declaration:

void my_func (int a[l10] __ far);

It is not the same as specifying a __far pointer to the array:
void my_func (ARRAY *__ far a);

because a has type “___far pointer to ARRAY” instead of “___far pointer to int”.

___far and Global Variables

The __far keyword can also be used for global variables:

int _ far 1i; // OK for global variables
int _ far *i; // OK for global variables
int _ far *_ _far i; // OK for global variables

This forces the Compiler to perform the same addressing mode for this variable as if it has
been declared in a __ FAR_SEG segment. Note that for the above variable declarations or
definitions, the variables are in the DEFAULT_DATA segment if no other data segment is
active. Be careful if you mix __far declarations or definitions within a

non-__ FAR_SEG data segment. Assuming that __FAR_ SEG segments have extended
addressing mode and normal segments have direct addressing mode, Listing 8.17 and
Listing 8.18 clarify this behavior:

Listing 8.17 OK - consistent declarations

#pragma DATA_SEG MyDirectSeg

/* use direct addressing mode */

int 1i; // direct, segment MyDirectSeg
int j; // direct, segment MyDirectSeg

#pragma DATA_SEG __ FAR_SEG MyFarSeg
/* use extended addressing mode */
int k; // extended, segment MyFarSeg
int 1; // extended, segment MyFarSeg

RSO08 Build Tools Reference Manual for Microcontrollers 353

y
A

ANSI-C Frontend
Implementation Features

int _ far m; // extended, segment MyFarSeg

Listing 8.18 Mixing extended addressing and direct addressing modes

// caution: not consistent!!!!

#pragma DATA_SEG MyDirectSeg

/* use direct-addressing mode */

int i; // direct, segment MyDirectSeg
int j; // direct, segment MyDirectSeg
int _ far k; // extended, segment MyDirectSet
int __far 1; // extended, segment MyDirectSeg
int _ far m // extended, segment MyDirectSeg

NOTE The __ far keyword global variables only affect the access to the variable
(addressing mode) and NOT the allocation.

__far and C++ Classes

If a member function gets the modifier __far, the this pointeris a__far pointer. This
is useful, if for instance, the owner class of the function is not allocated on the default data

page. See Listing 8.19.

Listing 8.19 __ far member functions

class A {

public:
void f_far(void) _ far {
/* __ far version of member function A::f() */

}
void f(void) {

/* normal version of member function A::f() */
}
Y
#pragma DATA_SEG MyDirectSeg // use direct addressing mode
A a_normal; // normal instance
#pragma DATA_SEG _ FAR_SEG MyFarSeg // use extended addressing mode
A _ far a_far; // __far instance
void main(void) {
a_normal.f(); // call normal version of A::f() for normal instance
a_far.f_far(); // call _ far version of A::f() for _ far instance

}

354 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Implementation Features

__far and C++ References

The __far modifier is applied to references. This is useful if it is a reference to an object
outside of the default data page. For example:

int j; // object j allocated outside the default data page
// (must be specified in the link parameter file)
void f(void) {
int & far 1 = j;

I

Using the __far Keyword for Functions

A special calling convention is specified for the __far keyword. The __far keyword is
specified in front of the function identifier:

void _ far f(void);

If the function returns a pointer, the __far keyword must be written in front of the first
asterisk (*).

int _ far *f(void);

It must, however, be after the int and not before it.

For function pointers, many backends assume that the __far function pointer is pointing
to functions with the __far calling convention, even if the calling convention was not
specified. Moreover, most backends do not support different function pointer sizes in one

compilation unit. The function pointer size is then dependent only upon the memory
model.

Table 8.1 Interpretation of the __far Keyword

Declaration Allowed Type Description

int __far f£(); OK __far function returning an int

_ far int f(); error

__far £(); OK __far function returning an int

int __ far *f(); OK __far function returning a pointer to
int

int * __far f£(); OK function returning a __far pointer to
int

__far int * £(); error

RSO08 Build Tools Reference Manual for Microcontrollers 355

'
A

ANSI-C Frontend
Implementation Features

Table 8.1 Interpretation of the __far Keyword (continued)

Declaration Allowed Type Description

int _ _far * __far f(); OK __far function returninga __far
pointer to int

int _ far i; OK global __far object

int __ far *i; OK pointer to a __far object

int * _ far i; OK __far pointer to int

int _ _far * __far i; OK __far pointertoa __far object
__far int *i; OK pointer to a __far integer

int *__far (* __ far OK __far pointer to function returning a
f) (void) __far pointer to int

void * __far (* f) (void) | OK pointer to function returninga __far

pointer to void

void __far * (* f) (void) | OK pointer to __far function returning a
pointer to void

__near Keyword

The near keyword is a synonym for __near. The near keyword is only allowed when
the -Ansi: Strict ANSI compiler option is present.

The __near keyword can be used instead of the __far keyword. Use it in situations
where non-qualified pointers are ___far and you want to specify an explicit __near
access or when you must explicitly specify the ___near calling convention.

The __near keyword uses two semantic variations. Either it specifies a small size of a
function or data pointers or it specifies the __near calling convention.

Table 8.2 Interpretation of the __near Keyword

Declaration Allowed | Type Description

int __near f£(); OK __near function returning an int
int __near __far f(); error

__near f£(); OK __near function returning an int

356 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Implementation Features

Table 8.2 Interpretation of the __near Keyword (continued)

Declaration Allowed | Type Description

int __near * __far f(); OK __near function returning a
__far pointerto int

int __ far *i; error

int * _ _near i; OK __far pointer to int

int * _ far* _ near i; OK __near pointer to __far pointer
to int

int *__far (* __near OK __near pointer to function

f) (void) returning a __far pointer to int

void * _ _near (* f)(void) OK pointer to function returning a
__near pointer to void

void _ far *_ _near (*_ _near OK __near pointerto __far function

f) (void) returning a __far pointer to void

Compatibility

__far pointers and normal pointers are compatible. If necessary, the normal pointer is
extended to a ___far pointer (subtraction of two pointers or assignmenttoa __ far
pointer). In the other case, the __far pointer is clipped to a normal pointer (i.e., the page
part is discarded).

__alignof__ keyword

Some processors align objects according to their type. The unary operator,
__alignof__, determines the alignment of a specific type. By providing any type, this
operator returns its alignment. This operator behaves in the same way as

sizeof (type-name) operator. See the target backend section to check which
alignment corresponds to which fundamental data type (if any is required) or to which
aggregate type (structure, array).

This macro may be useful for the va_arg macro in stdarg.h, e.g., to differentiate the
alignment of a structure containing four objects of four bytes from that of a structure
containing two objects of eight bytes. In both cases, the size of the structure is 16 bytes,
but the alignment may differ, as shown (Listing 8.20):

RSO08 Build Tools Reference Manual for Microcontrollers 357

y
A

ANSI-C Frontend
Implementation Features

Listing 8.20 va_arg macro

#define va_arg (ap, type) \
(((__alignof__ (type)>=8) ? \
((ap) = (char *) (((int) (ap) \
+ __alignof_ (type) - 1) & (~(__alignof_ (type) - 1)))) \
0), \
((ap) += __va_rounded_size(type)),\

(((type *) (ap))[-11))

__va_sizeof__ keyword

According to the ANSI-C specification, you must promote character arguments in open
parameter lists to int. The use of char in the va_arg macro to access this parameter may
not work as per the ANSI-C specification (Listing 8.21).

Listing 8.21 Inappropriate use of char with the va_arg macro

int f(int n, ...) {
int res;
va_list 1= va_start(n, int);
res= va_arg(l, char); /* should be va_arg(l, int) */
va_end (1) ;

return res;

}

void main(void) {
char c=2;
int res=£f(1,c);

With the __va_sizeof__ operator, the va_arg macro is written the way that £ ()
returns 2.

A safe implementation of the f function is to use va_arg (1, int) instead of
va_arg(l, char).

The __va_sizeof__ unary operator, which is used exactly as the sizeof keyword,
returns the size of its argument after promotion as in an open parameter list (Listing 8.22).

358 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Implementation Features

Listing 8.22 _ va_sizeof _ examples

__va_sizeof_ (char) == sizeof (int)

__va_sizeof_ (float) == sizeof (double)

struct A { char a; };

_ va_sizeof_ (struct A) >= 1 (1 if the target needs no padding bytes)

NOTE Itis not possible in ANSI-C to distinguish a 1-byte structure without alignment
or padding from a character variable in a va_arg macro. These need a
different space on the open parameter calls stack for some processors.

interrupt keyword

The __interrupt keyword is a synonym for interrupt, which is allowed when the
-Ansi: Strict ANSI compiler option is present.

NOTE Not all Backends support this keyword. See the Non-ANSI Keywords section
in RS08 Backend.

One of two ways can be used to specify a function as an interrupt routine:

* Use #pragma TRAP PROC: Mark function as interrupt function and adapt the
Linker parameter file.

¢ Use the nonstandard interrupt keyword.

Use the nonstandard interrupt keyword like any other type qualifier (Listing 8.23). It
specifies a function to be an interrupt routine. It is followed by a number specifying the
entry in the interrupt vector that contains the address of the interrupt routine. If it is not
followed by any number, the interrupt keyword has the same effect as the TRAP_PROC
pragma. It specifies a function to be an interrupt routine. However, the number of the
interrupt vector must be associated with the name of the interrupt function by using the
Linker’s VECTOR directive in the Linker parameter file.

Listing 8.23 Examples of the interrupt keyword

interrupt void f(); // OK
// same as #pragma TRAP_PROC,
// please set the entry number in the prm-file

interrupt 2 int g{();
// The 2nd entry (number 2) gets the address of func g().

interrupt 3 int g(); // OK

RSO08 Build Tools Reference Manual for Microcontrollers 359

y
A

ANSI-C Frontend
Implementation Features

// third entry in vector points to g{()
interrupt int 1; // error: not a function

__asm Keyword

The Compiler supports target processor instructions inside of C functions.

The asm keyword is a synonym for ___asm, which is allowed when the -Ansi: Strict
ANSI compiler option is not present (Listing 8.24).

Listing 8.24 Examples of the __asm keyword

__asm {
nop
nop ;

}

comment

asm ("nop; nop");
__asm("nop\n nop");
__asm "nop";

__asm nop;

#asm
nop
nop

#endasm

Implementation-Defined Behavior

The ANSI standard contains a couple of places where the behavior of a particular
Compiler is left undefined. It is possible for different Compilers to implement certain
features in different ways, even if they all comply with the ANSI-C standard.
Subsequently, the following discuss those points and the behavior implemented by the
Compiler.

Right Shifts

The result of E1 >> E2 is implementation-defined for a right shift of an object with a
signed type having a negative value if E1 has a signed type and a negative value.

In this implementation, an arithmetic right shift is performed.

360

RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Implementation Features

Initialization of Aggregates with non Constants

The initialization of aggregates with non-constants is not allowed in the ANSI-C
specification. The Compiler allows it if the -Ansi: Strict ANSI compiler option is not set

(see Listing 8.25).

Listing 8.25 Initialization using a non constant

void main () {
struct A {
struct A *n;
} v={&v}; /* the address of v is not constant */

Sign of char

The ANSI-C standard leaves it open, whether the data type char is signed or unsigned.

Division and Modulus

The results of the " /" and "% " operators are also not properly defined for signed
arithmetic operations unless both operands are positive.

NOTE The way a Compiler implements "/ " and "% " for negative operands is
determined by the hardware implementation of the target’s division
instructions.

Translation Limitations

This section describes the internal limitations of the Compiler. Some limitations depend
on the operating system used. For example, in some operating systems, limits depend on
whether the compiler is a 32-bit compiler running on a 32-bit platform, or if it is a 16-bit
Compiler running on a 16-bit platform (e.g., Windows for Workgroups).

The ANSI-C column in Table 8.3 below shows the recommended limitations of ANSI-C
(5.2.4.1 in ISO/IEC 9899:1990 (E)) standard. These quantities are only guidelines and do
not determine compliance. The ‘Implementation’ column shows the actual
implementation value and the possible message number. ‘-’ means that there is no
information available for this topic and ‘n/a’ denotes that this topic is not available.

RSO08 Build Tools Reference Manual for Microcontrollers 361

y
A

ANSI-C Frontend
Implementation Features

Table 8.3 Translation Limitations (ANSI)

Limitation Implementation ANSI-C

Nesting levels of compound statements, 256 (C1808) 15
iteration control structures, and selection
control structures

Nesting levels of conditional inclusion - 8

Pointer, array, and function decorators (inany | - 12
combination) modifying an arithmetic,
structure, union, or incomplete type in a
declaration

Nesting levels of parenthesized expressions 32 (C4006) 32
within a full expression

Number of initial characters in an internal 32,767 31
identifier or macro name

Number of initial characters in an external 32,767 6
identifier

External identifiers in one translation unit - 511
Identifiers with block scope declared in one - 127
block

Macro identifiers simultaneously defined in 655,360,000 (C4403) 1024
one translation unit

Parameters in one function definition - 31
Arguments in one function call - 31
Parameters in one macro definition 1024 (C4428) 31
Arguments in one macro invocation 2048 (C4411) 31
Characters in one logical source line 2/31 509
Characters in a character string literal or wide 8196 (C3301, C4408, 509
string literal (after concatenation) C4421)

Size of an object 32,767 32,767
Nesting levels for #include files 512 (C3000) 8

362 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Implementation Features

Table 8.3 Translation Limitations (ANSI) (continued)

Limitation Implementation ANSI-C

Case labels for a switch statement (excluding 1000 257
those for any nested switch statements)

Data members in a single class, structure, or - 127
union

Enumeration constants in a single - 127
enumeration

Levels of nested class, structure, or union 32 15

definitions in a single struct declaration list

Functions registered by atexit() - n/a
Direct and indirect base classes - n/a
Direct base classes for a single class - n/a
Members declared in a single class - n/a
Final overriding virtual functions in a class, - n/a

accessible or not

Direct and indirect virtual bases of a class - n/a
Static members of a class - n/a
Friend declarations in a class - n/a
Access control declarations in a class - n/a
Member initializers in a constructor definition - n/a
Scope qualifications of one identifier - n/a
Nested external specifications - n/a
Template arguments in a template declaration | - n/a
Recursively nested template instantiations - n/a
Handlers per try block - n/a
Throw specifications on a single function - n/a
declaration

RSO08 Build Tools Reference Manual for Microcontrollers 363

y
A

ANSI-C Frontend
Implementation Features

The table below shows other limitations which are not mentioned in an ANSI standard:

Table 8.4 Translation Limitations (non-ANSI)

Limitation

Description

Type Declarations

Derived types must not contain more than 100 components.

Labels

There may be at most 16 other labels within one procedure.

Macro Expansion

Expansion of recursive macros is limited to 70 (16-bit OS) or
2048 (32-bit OS) recursive expansions (C4412).

Include Files The total number of include files is limited to 8196 for a single
compilation unit.

Numbers Maximum of 655,360,000 different numbers for a single
compilation unit (C2700, C3302).

Goto M68k only: Maximum of 512 Gotos for a single function

(C15300).

Parsing Recursion

Maximum of 1024 parsing recursions (C2803).

Lexical Tokens

Limited by memory only (C3200).

Internal IDs Maximum of 16,777,216 internal IDs for a single compilation unit
(C3304). Internal IDs are used for additional local or global
variables created by the Compiler (e.g., by using CSE).

Code Size Code size is limited to 32KB for each single function.

filenames Maximum length for filenames (including path) are 128

characters for 16-bit applications or 256 for Win32 applications.

UNIX versions support filenames without path of 64 characters in
length and 256 in the path. Paths may be 96 characters on 16-bit
PC versions, 192 on UNIX versions or 256 on 32-bit PC versions.

364

RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
ANSI-C Standard

ANSI-C Standard

This section provides a short overview about the implementation (see also ANSI Standard
6.2) of the ANSI-C conversion rules.

Integral Promotions

You may use a char, ashort int, or an int bitfield, or their signed or unsigned
varieties, or an enum type, in an expression wherever an int or unsigned int is used.
If an int represents all values of the original type, the value is converted to an int;
otherwise, it is converted to an unsigned int. Integral promotions preserve value
including sign.

Signed and Unsigned Integers

Promoting a signed integer type to another signed integer type of greater size requires
"sign extension": Intwo's-complement representation, the bit pattern is unchanged,
except for filling the high order bits with copies of the sign bit.

When converting a signed integer type to an unsigned inter type, if the destination has
equal or greater size, the first signed extension of the signed integer type is performed. If
the destination has a smaller size, the result is the remainder on division by a number, one
greater than the largest unsigned number, that is represented in the type with the smaller
size.

Arithmetic Conversions

The operands of binary operators do implicit conversions:

 If either operand has type long double, the other operand is converted to 1ong
double.

 If either operand has type double, the other operand is converted to double.
 If either operand has type £1oat, the other operand is converted to float.
* The integral promotions are performed on both operands.

Then the following rules are applied:

¢ If either operand has type unsigned long int, the other operand is converted to
unsigned long int.

» If one operand has type long int and the other has type unsigned int,ifa
long int can represent all values of an unsigned int, the operand of type
unsigned int isconverted to long int;ifa long int cannot represent all
the values of an unsigned int, both operands are converted to unsigned
long int.

RSO08 Build Tools Reference Manual for Microcontrollers 365

y
A

ANSI-C Frontend
ANSI-C Standard

o If either operand has type long int, the other operand is converted to long int.

e If either operand has type unsigned int, the other operand is converted to
unsigned int.

¢ Both operands have type int.

Order of Operand Evaluation

The priority order of operators and their associativity is listed in Listing 8.26.

Listing 8.26 Operator precedence

Operators Associativity
() [1 -> . left to right
I ~ ++ ——- + - * & (type) sizeof right to left
& /% left to right
+ - left to right
<< >> left to right
< <= > >= left to right

== = left to right
& left to right
” left to right
| left to right
&& left to right
|| left to right
? right to left
>>= right to left

left to right

Il
+
Il
|
Il
*
Il
~
Il
oe
Il
iy
Il
>
Il
Il
A
A
Il

Unary +,- and * have higher precedence than the binary forms.

Examples of operator precedence

if (a&3 == 2)
‘=="has higher precedence than ‘&’. Thus it is evaluated as:
if (a & (3==2)
which is the same as:
if (a&0)
Furthermore, is the same as:

if (0) => Therefore, the if condition is always ‘false’.

Hint: use brackets if you are not sure about associativity!

366 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Floating-Type Formats

Rules for Standard-Type Sizes

In ANSI-C, enumerations have the type of int. In this implementation they have to be
smaller than or equal to int.

Listing 8.27 Size relationships among the integer types

sizeof (char) <= sizeof (short)
sizeof (short) <= sizeof (int)

sizeof (int) <= sizeof (long)

sizeof (long) <= sizeof (long long)
sizeof (float) <= sizeof (double)
sizeof (double)<= sizeof (long double)

Floating-Type Formats

The RSO8 compiler supports only the IEEE32 floating point format. Figure 8.1 shows this
format.

Floats are implemented as IEEE32. This may vary for a specific Backend, or possibly,
both formats may not be supported.
Figure 8.1 Floating-point formats

IEEE 32-bit format (Precision: 6.5 decimal digits)
|| 8-bitexp | 23-bit mantissa |

Sign bit Value = -15 * 2E127)* { m

Negative exponents are in two’s complement; the
mantissa is in signed fixed-point format.

Floating-Point Representation of 500.0 for
IEEE

First, convert 500 . 0 from the decimal representation to a representation with base 2:
value = (-1)"s * m*2"exp

where: s, signis O or 1,

2>m>= 1 for IEEE,

and exp is a integral number.

RSO08 Build Tools Reference Manual for Microcontrollers 367

A 4
4\

ANSI-C Frontend
Floating-Type Formats

For 500, this gives:

sign (500.0) = 1,
m, mant (500.0, IEEE) = 1.953125, and
exp (500.0, IEEE) = 8

NOTE The number O (zero) cannot be represented this way. So for 0, IEEE defines a
special bit pattern consisting of O bits only.

Next, convert the mantissa into its binary representation.

mant (500.0, IEEE) = 1.953125

= 1*27°(0) + 1*27(-1) + 1*27~(-2) + 1*27(-3) + 1*27(-4)
+ 0*27(=5) + 1*27(-6) + 0*...

= 1.111101000... (binary)

Because this number is converted to be larger or equal to 1 and smaller than 2, there is
always a 1 in front of the decimal point. For the remaining steps, this constant (1) is left
out in order to save space.

mant (500.0, IEEE, cut) = .111101000...
The exponent must also be converted to binary format:
exp (500.0, IEEE) = 8 == 08 (hex) == 1000 (binary)

For the IEEE formats, the sign is encoded as a separate bit (sign magnitude representation)

Representation of 500.0 in IEEE32 Format

The exponent in IEEE32 has a fixed offset of 127 to always have positive values:
exp (500.0,IEEE32) = 8+127 == 87 (hex) == 10000111 (bin)
The fields must be put together as shown Listing 8.28:

Listing 8.28 Representation of decimal 500.0 in IEEE32

500.0 (dec) =
0 (sign) 10000111 (exponent)
11110100000000000000000 (mantissa) (IEEE32 as bin)
0100 0011 1111 1010 0000 0000 0000 0000 (IEEE32 as bin)
43 fa 00 00 (IEEE32 as hex)

The IEEE32 representation of decimal -500 is shown in Listing 8.29.

368 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Volatile Objects and Absolute Variables

Listing 8.29 Representation of decimal -500.0 in IEEE32

-500.0 (dec) =
1 (sign) 10000111 (exponent)
11111010000000000000000 (mantissa) (IEEE32 as bin)
1100 0011 1111 1010 0000 0000 0000 0000 (IEEE32 as bin)
C3 fa 00 00 (IEEE32 as hex)

NOTE The IEEE formats recognize several special bit patterns for special values. The
number 0 (zero) is encoded by the bit pattern consisting of zero bits only. Other
special values such as “Not a number”, “infinity”, -0 (minus zero) and
denormalized numbers do exist. Refer to the IEEE standard documentation for
details.

Except for the 0 (zero) and -0 (minus zero) special formats, not all special

formats may be supported for specific backends.

Volatile Objects and Absolute Variables

The Compiler does not do register- and constant tracing on volatile or absolute global
objects. Accesses to volatile or absolute global objects are not eliminated. See Listing 8.30
for one reason to use a volatile declaration.

Listing 8.30 Using volatile to avoid an adverse side effect

volatile int x;
void main(void) {

x = 0;
if (x == 0) { // without volatile attribute, the
// comparison may be optimized away!
Error () ; // Error() is called without compare!

}

Bitfields

There is no standard way to allocate bitfields. Bitfield allocation varies from Compiler to
Compiler, even for the same target. Using bitfields for access to I/O registers is

RSO08 Build Tools Reference Manual for Microcontrollers 369

A 4
4\

ANSI-C Frontend
Bitfields

non-portable and inefficient for the masking involved in unpacking individual fields. It is
recommended that you use regular bit-and (&) and bit-or (|) operations for I/O port access.

The maximum width of bitfields is Backend-dependent (see RSO8 Backend for details), in
that plain int bitfields are signed. A bitfield never crosses a word (2 bytes) boundary. As
stated in Kernighan and Ritchie's The C Programming Language, 2"P ed., the use of
bitfields is equivalent to using bit masks to which the operators &, I, ~, |I= or &= are
applied. In fact, the Compiler translates bitfield operations to bit mask operations.

Signed Bitfields

A common mistake is to use signed bitfields, but testing them as if they were unsigned.
Signed bitfields have a value of -1 or 0. Consider the following example (Listing 8.31).

Listing 8.31 Testing a signed bitfield as being unsigned

typedef struct _B {
signed int bO0: 1;} B;
B b;

if (b.b0 == 1)

The Compiler issues a warning and replaces the 1 with -1 because the condition

(b.b0 == 1) isalways false. The test (b.b0 == -1) is performed as expected. This
substitution is not ANSI compatible and will not be performed when the -Ansi: Strict
ANSI compiler option is active.

The correct way to specify this is with an unsigned bitfield. Unsigned bitfields have the
values 0 or 1 (Listing 8.32).

Listing 8.32 Using unsigned bitfields

typedef struct _B {
unsigned b0: 1;

} B;
B b;
if (b.b0 == 1)

Because b0 is an unsigned bitfield having the values O or 1, the test (b.b0 == 1) is
correct.

370 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Segmentation

Recommendations

In order to save memory, it is recommended to implement globally accessible boolean
flags as unsigned bitfields of width 1. However, using bitfields for other purposes is not
recommended because:

» Using bitfields to describe a bit pattern in memory is not portable between
Compilers, even on the same target, as different Compilers may allocate bitfields
differently.

Segmentation

The Linker supports the concept of segments in that the memory space may be partitioned
into several segments. The Compiler allows attributing a certain segment name to certain
global variables or functions which then are allocated into that segment by the Linker.
Where that segment actually lies is determined by an entry in the Linker parameter file.

Listing 8.33 Syntax for the segment-specification pragma

SegDef = #pragma SegmentType ({SegmentMod} SegmentName |

DEFAULT) .
SegmentType: CODE_SEG|CODE_SECTION |
DATA_SEG|DATA_SECTION|
CONST_SEG | CONST_SECTION |
STRING_SEG | STRING_SECTION
SegmentMod: _ DIRECT SEG|__NEAR_SEG|__CODE_SEG|

__FAR SEG|__BIT_SEG|__Y BASED_SEG|

__ 7 BASED_SEG|__ DPAGE_SEG|__PPAGE_SEG |
__ EPAGE_SEG|__RPAGE_SEG|__GPAGE_SEG|
__PIC_SEG|CompatSegmentMod

CompatSegmentMod: DIRECT |NEAR|CODE|FAR|BIT|
Y_BASED|Z_BASED | DPAGE | PPAGE |
EPAGE | RPAGE | GPAGE | PIC

Because there are two basic types of segments, code and data segments, there are also two
pragmas to specify segments:

#pragma CODE_SEG <segment_name>
#pragma DATA_SEG <segment_name>
In addition there are pragmas for constant data and for strings:

#pragma CONST_SEG <segment_name>

RSO08 Build Tools Reference Manual for Microcontrollers 371

3
4

y
A

ANSI-C Frontend
Segmentation

#pragma STRING_SEG <segment_name>
All four pragmas are valid until the next pragma of the same kind is encountered.
In the ELF object file format, constants are always put into a constant segment.

Strings are put into the segment STRINGS until a pragma STRING_SEG is specified.
After this pragma, all strings are allocated into this constant segment. The linker then
treats this segment like any other constant segment.

If no segment is specified, the Compiler assumes two default segments named
DEFAULT_ROM (the default code segment) and DEFAULT_RAM (the default data
segment). Use the segment name DEFAULT to explicitly make these default segments the
current segments:

#pragma CODE_SEG DEFAULT
#pragma DATA_SEG DEFAULT
#pragma CONST_SEG DEFAULT
#pragma STRING_SEG DEFAULT

Segments may also be declared as ___ SHORT_SEG by inserting the keyword
___SHORT__SEG just before the segment name (with the exception of the predefined
segment DEFAULT — this segment cannot be qualified with __ SHORT_SEG). This makes
the Compiler use short (i.e., 8 bits or 16 bits, depending on the Backend) absolute
addresses to access global objects, or to call functions. It is the programmer's
responsibility to allocate ___ SHORT__SEG segments in the proper memory area.

NOTE The default code and data segments may not be declared as __ SHORT _SEG.

The meaning of the other segment modifiers, such as __ NEAR_SEG and __FAR_SEG,
are backend-specific. Modifiers that are not supported by the backend are ignored.

The segment pragmas also have an effect on static local variables. Static local variables
are local variables with the ‘static’ flag set. They are in fact normal global variables but
with scope only to the function in which they are defined:

#pragma DATA_SEG MySeg

static char foo(void) {
static char i = 0; /* place this variable into MySeg */
return i++;

}

#pragma DATA_SEG DEFAULT

372

RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Segmentation

NOTE Using the ELF/DWAREF object file format (-F1 or -F2 compiler option), all
constants are placed into the section .rodata by default unless
#pragma CONST_SEG is used

NOTE There are aliases to satisfy the ELF naming convention for all segment names:
Use CODE_SECTION instead of CODE_SEG.
Use DATA_SECTIONIinstead of DATA_SEG.
Use CONST _SECTION instead of CONST_SEG.
Use STRING_SECTION instead of STRING SEG.
These aliases behave exactly as do the XXX_SEG name versions.

Example of Segmentation without the -Cc
Compiler Option

static int a;
static const int c0 = 10;

#pragma DATA_SEG MyVarSeg
static int b;
static const int cl = 11;

#pragma DATA_SEG DEFAULT
static int c;
static const int c2 = 12;

#pragma DATA_SEG MyVarSeg
#pragma CONST_SEG MyConstSeg
static int 4d;

static const int c3 = 13;

#pragma DATA_SEG DEFAULT
static int e;
static const int c4 = 14;

#pragma CONST_SEG DEFAULT
static int £f;
static const int ¢5 = 15;

/*
/*
/~k

/~k
/*

/*
/*

/~k
/*

/*
/*

/*
/~k

Placed into Segment: */
DEFAULT_RAM(-1) */
DEFAULT _RAM(-1) */

MyVarSeg (0) */
MyVarSeg (0) */

DEFAULT_RAM(-1) */
DEFAULT_RAM(-1) */

MyVarSeg (0) */
MyConstSeg (1) */

DEFAULT_RAM(-1) */
MyConstSeg (1) */

DEFAULT_RAM(-1) */
DEFAULT_RAM(-1) */

RSO08 Build Tools Reference Manual for Microcontrollers 373

y
A

ANSI-C Frontend
Optimizations

Example of Segmentation with the -Cc
Compiler Option

static int a;
static const int c0 = 10;

#pragma DATA_SEG MyVarSeg
static int b;
static const int cl = 11;

#pragma DATA_SEG DEFAULT
static int c;
static const int c2 = 12;

#pragma DATA_SEG MyVarSeg
#pragma CONST_SEG MyConstSeg
static int 4d;

static const int ¢3 = 13;

#pragma DATA_SEG DEFAULT
static int e;
static const int c4 = 14;

#pragma CONST_SEG DEFAULT
static int f;
static const int ¢5 = 15;

/* Placed into Segment: */
/* DEFAULT _RAM(-1) */
/* ROM_VAR(-2) */

/* MyVarSeg(0) */
/* MyVarSeg(0) */

/* DEFAULT_RAM(-1) */
/* ROM_VAR(-2) */

/* MyVarSeg (0) */
/* MyConstSeg(l) */

/* DEFAULT RAM(-1) */
/* MyConstSeg (1) */

/* DEFAULT_RAM(-1) */
/* ROM_VAR (-2) */

Optimizations

The Compiler applies a variety of code-improving techniques called optimizations. This
section provides a short overview about the most important optimizations.

Peephole Optimizer

A peephole optimizer is a simple optimizer in a Compiler. A peephole optimizer tries to
optimize specific code patterns on speed or code size. After recognizing these specific
patterns, they are replaced by other optimized patterns.

After code is generated by the backend of an optimizing Compiler, it is still possible that
code patterns may result that are still capable of being optimized. The optimizations of the
peephole optimizer are highly backend-dependent because the peephole optimizer was
implemented with characteristic code patterns of the backend in mind.

374

RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Optimizations

Certain peephole optimizations only make sense in conjunction with other optimizations,
or together with some code patterns. These patterns may have been generated by doing
other optimizations. There are optimizations (e.g., removing of a branch to the next
instructions) that are removed by the peephole optimizer, though they could have been
removed by the branch optimizer as well. Such simple branch optimizations are performed
in the peephole optimizer to reach new optimizable states.

RSO08 Build Tools Reference Manual for Microcontrollers 375

3
4

'
A

ANSI-C Frontend
Optimizations

Strength Reduction

Strength reduction is an optimization that strives to replace expensive operations by
cheaper ones, where the cost factor is either execution time or code size. Examples are the
replacement of multiplication and division by constant powers of two with left or right
shifts.

NOTE The compiler can only replace a division by two using a shift operation if either
the target division is implemented the way that -1/2 == -1, or if the value to be
divided is unsigned. The result is different for negative values. To give the
compiler the possibility to use a shift, ensure that the C source code already
contains a shift, or that the value to be shifted is unsigned.

Shift Optimizations

Shifting a byte variable by a constant number of bits is intensively analyzed. The
Compiler always tries to implement such shifts in the most efficient way.

Branch Optimizations

This optimization tries to minimize the span of branch instructions. The Compiler will
never generate a long branch where a short branch would have sufficed. Also, branches to
branches may be resolved into two branches to the same target. Redundant branches (e.g.,
a branch to the instruction immediately following it) may be removed.

Dead-Code Elimination

The Compiler removes dead assignments while generating code. In some programs it may
find additional cases of expressions that are not used.

Constant-Variable Optimization

If a constant non-volatile variable is used in any expression, the Compiler replaces it by
the constant value it holds. This needs less code than taking the object itself.

The constant non-volatile object itself is removed if there is no expression taking the
address of it (take note of ci in Listing 8.34). This results in using less memory space.

376

RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend

Optimizations

Listing 8.34 Example demonstrating constant-variable optimization
void f(void) {

const int ci = 100; // ci removed (no address taken)

const int ci2 = 200; // ci2 not removed (address taken below)

const volatile int c¢i3 = 300; // ci3 not removed (volatile)

int 1i;

int *p;

i = ci; // replaced by i = 100;

i = ci2; // no replacement

p = &ci2; // address taken

Global constant non-volatile variables are not removed. Their use in expressions are
replaced by the constant value they hold.

Constant non-volatile arrays are also optimized (take note of array [] in Listing 8.35).

Listing 8.35 Example demonstrating the optimization of a constant, non-volatile array

void g(void) {

const int arrayl[] = {1,2,3,4};
int 1i;
i = arrayl[2]; // replaced by i=3;

}

Tree Rewriting

The structure of the intermediate code between Frontend and Backend allows the
Compiler to perform some optimizations on a higher level. Examples are shown in the
following sections.

Switch Statements

Efficient translation of switch statements is mandatory for any C Compiler. The Compiler
applies different strategies, i.e., branch trees, jump tables, and a mixed strategy, depending
on the case label values and their numbers. Table 8.5 describes how the Compiler
implements these strategies.

RSO08 Build Tools Reference Manual for Microcontrollers 377

'
A

ANSI-C Frontend
Optimizations

Table 8.5 Switch Implementations

Method Description
Branch For small switches with scattered case label values, the Compiler
Sequence generatesan if...elsif...elsif...else... sequence if the

Compiler switch -Os is active.

Branch Tree For small switches with scattered case label values, the Compiler
generates a branch tree. This is the equivalent to unrolling a binary
search loop of a sorted jump table and therefore is very fast.
However, there is a point at which this method is not feasible simply
because it uses too much memory.

Jump Table In such cases, the Compiler creates a table plus a call of a switch
processor. There are two different switch processors. If there are a lot
of labels with more or less consecutive values, a direct jump table is
used. If the label values are scattered, a binary search table is used.

Mixed Strategy | Finally, there may be switches having clusters of label values
separated by other labels with scattered values. In this case, a mixed
strategy is applied, generating branch trees or search tables for the
scattered labels and direct jump tables for the clusters.

Absolute Values

Another example for optimization on a higher level is the calculation of absolute values.
In C, the programmer has to write something on the order of:

float x, vy;
x=(<00)?-y:y;

This results in lengthy and inefficient code. The Compiler recognizes cases like this and
treats them specially in order to generate the most efficient code. Only the most significant
bit has to be cleared.

378 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Using Qualifiers for Pointers

Combined Assignments

The Compiler can also recognize the equivalence between the three following statements:

X =x + 1;

and between:

x =x/v;

Therefore, the Compiler generates equally efficient code for either case.

Using Qualifiers for Pointers

This section provides some examples for the use of const or volatile because
const and volatile are very common for Embedded Programming.

Consider the following example:
int i;
const int ci;

The above definitions are: a ‘normal’ variable i and a constant variable ci. Each are
placed into ROM. Note that for C++, the constant ci must be initialized.

int *ip;

const int *cip;

ip is a pointer to an int, where cip is a pointer to a const int.

int *const icp;

const int *const cicp;

icpis aconst pointer to an int, where cicp is a const pointer to a const int.

It helps if you know that the qualifier for such pointers is always on the right side of the *.
Another way is to read the source from right to left.

You can express this rule in the same way to volatile. Consider the following example of
an ‘array of five constant pointers to volatile integers’:

volatile int *const arr[5];

RSO08 Build Tools Reference Manual for Microcontrollers 379

3
4

y
A

ANSI-C Frontend
Using Qualifiers for Pointers

arr is an array of five constant pointers pointing to volatile integers. Because the array
itself is constant, it is put into ROM. It does not matter if the array is constant or not
regarding where the pointers point to. Consider the next example:

const char *const *buf[] = {&a, &b};

Because the array of pointers is initialized, the array is not constant. ‘buf’ is a (non-
constant) array of two pointers to constant pointers which points to constant characters.
Thus ‘buf’ cannot be placed into ROM by the Compiler or Linker.

Consider a constant array of five ordinary function pointers. Assuming that:
void (*fp) (void) ;

is a function pointer ‘fp’ returning void and having void as parameter, you can define it
with:

void (*fparr([5]) (void) ;

It is also possible to use a typedef to separate the function pointer type and the array:
typedef void (*Func) (void) ;

Func fp;

Func fparr[5];

You can write a constant function pointer as:

void (*const cfp) (void);

Consider a constant function pointer having a constant int pointer as a parameter returning
void:

void (*const cfp2) (int *const);

Or a const function pointer returning a pointer to a volatile double having two constant
integers as parameter:

volatile double *(*const fp3) (const int, const int);
And an additional one:
void (*const fpl[3]) (void);

This is an array of three constant function pointers, having void as parameter and returning
void. ‘fp’ is allocated in ROM because the ‘fp’ array is constant.

Consider an example using function pointers:

int (* (** funcO(int (*f) (void))) (int (*) (void))) (int (*)
(void)) {

return O;
}

380

RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Using Qualifiers for Pointers

It is actually a function called func. This func has one function pointer argument called
f. The return value is more complicated in this example. It is actually a function pointer of
a complex type. Here we do not explain where to put a const so that the destination of
the returned pointer cannot be modified. Alternately, the same function is written more
simply using typedefs:

typedef int (*funcTypel) (void);
typedef int (* funcType2) (funcTypel);
typedef funcType2 (* funcType3) (funcTypel);

funcType3* funcO (funcTypel f) {
return O;
}
Now, the places of the const becomes obvious. Just behind the * in funcType3:

typedef funcType2 (* const constFuncType3) (funcTypel);

constFuncType3* funcl (funcTypel £f) {
return O;
}
By the way, also in the first version here is the place where to put the const:
int (* (*const * funcl(int (*£f) (void))) (int (*) (void)))
(int (*) (void)) {

return 0;

RSO08 Build Tools Reference Manual for Microcontrollers 381

y
A

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Defining C Macros Containing HLI
Assembler Code

You can define some ANSI C macros that contain HLI assembler statements when you are
working with the HLI assembler. Because the HLI assembler is heavily Backend-
dependent, the following example uses a pseudo Assembler Language:

CLR RegO0 ; Clear Register zero

CLR Regl ; Clear Register one

CLR var ; Clear variable ‘var’ in memory

LOAD var,Reg0 ; Load the variable ‘var’ into Register 0
LOAD #0, Reg0 ; Load immediate value zero into Register 0

LOAD @var,Regl ; Load address of variable ‘var’ into Regl
STORE Reg0,var ; Store Register 0 into variable ‘var’

The HLI instructions are only used as a possible example. For real applications, you must
replace the above pseudo HLI instructions with the HLI instructions for your target.

Defining a Macro

An HLI assembler macro is defined by using the define preprocessor directive.

For example, a macro could be defined to clear the RO register. (Listing 8.36).

Listing 8.36 Defining the ClearR0 macro.

/* The following macro clears RO. */
#define ClearRO {__asm CLR RO;}

The source code invokes the C1learR0 macro in the following manner.

Listing 8.37 Invoking the ClearR0O macro.

ClearRO;

And then the preprocessor expands the macro.

Listing 8.38 Preprocessor expansion of ClearRO0.

{ __asm CLR RO ; } ;

An HLI assembler macro can contain one or several HLI assembler instructions. As the
ANSI-C preprocessor expands a macro on a single line, you cannot define an HLI

382 RS08 Build Tools Reference Manual for Microcontrollers

g |

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

assembler block in a macro. You can, however, define a list of HLI assembler instructions
(Listing 8.39).

Listing 8.39 Defining two macros on the same line of source code.

/* The following macro clears RO and R1. */
#define ClearROandl {__asm CLR RO; _ _asm CLR R1l; }

The macro is invoked in the following way in the source code (Listing 8.40).

Listing 8.40

ClearROandl;

The preprocessor expands the macro:
{ _asm CLR RO ; _ _asm CLR R1 ; } ;

You can define an HLI assembler macro on several lines using the line separator ‘\’.

NOTE This may enhance the readability of your source file. However, the ANSI-C
preprocessor still expands the macro on a single line.

Listing 8.41 Defining a macro on more than one line of source code

/* The following macro clears RO and R1. */
#define ClearROandR1l {__asm CLR RO; \
__asm CLR R1;}

The macro is invoked in the following way in the source code (Listing 8.42).

Listing 8.42 Calling the ClearROandR1 macro

ClearROandR1;

The preprocessor expands the macro (Listing 8.43).

Listing 8.43 Preprocessor expansion of the ClearR0OandR1 macro.

{__asm CLR RO; _ _asm CLR R1; };

RSO08 Build Tools Reference Manual for Microcontrollers 383

y
A

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Using Macro Parameters

An HLI assembler macro may have some parameters which are referenced in the macro
code. Listing 8.44 defines the Clear1 macro that uses the var parameter.

Listing 8.44 Clear1 macro definition.

/* This macro initializes the specified variable to 0.*/
#define Clearl(var) {__asm CLR var;}

Listing 8.45 Invoking the Clear1 macro in the source code

Clearl (varl) ;

Listing 8.46 The preprocessor expands the Clear1 macro

{__asm CLR varl ; };

Using the Immediate-Addressing Mode in
HLI Assembler Macros

There may be one ambiguity if you are using the immediate addressing mode inside of a
macro.

For the ANSI-C preprocessor, the symbol # inside of a macro has a specific meaning
(string constructor).

Using #pragma NO_STRING_CONSTR: No String Concatenation during preprocessing,
instructs the Compiler that in all the macros defined afterward, the instructions remain
unchanged wherever the symbol # is specified. This macro is valid for the rest of the file in
which it is specified.

Listing 8.47 Definition of the Clear2 macro

/* This macro initializes the specified variable to 0.%*/
#pragma NO_STRING_CONSTR

#define Clear2(var){__asm LOAD #0,Reg0;__asm STORE Reg0,var;}

384 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Listing 8.48 Invoking the Clear2 macro in the source code

Clear2 (varl) ;

Listing 8.49 The preprocessor expands the Clear2 macro

{ __asm LOAD #0,Reg0;__asm STORE Reg0O,varl; };

Generating Unique Labels in HLI
Assembler Macros

When some labels are defined in HLI Assembler Macros, if you invoke the same macro
twice in the same function, the ANSI C preprocessor generates the same label twice (once
in each macro expansion). Use the special string concatenation operator of the ANSI-C
preprocessor (‘##’) in order to generate unique labels. See Listing 8.50.

Listing 8.50 Using the ANSI-C preprocessor string concatenation operator

/* The following macro copies the string pointed to by 'src'
into the string pointed to by 'dest'.
'src' and 'dest' must be valid arrays of characters.
'inst' is the instance number of the macro call. This
parameter must be different for each invocation of the
macro to allow the generation of unique labels. */

#pragma NO_STRING_CONSTR

#define copyMacro2 (src, dest, inst) { \

__asm LOAD @src,Reg0; /* load src addr */ N\

__asm LOAD @dest,Regl; /* load dst addr */ \

__asm CLR Reg2; /* clear index reg */ \

_ _asm lp##inst: LOADB (Reg2, Reg0); /* load byte reg indir */ \
___asm STOREB (Reg2, Regl); /* store byte reg indir */ \
__asm ADD #1,Reg2; /* increment index register */ \
__asm TST Reg2; /* test if not zero */ 0\
___asm BNE lp##inst; }

RSO08 Build Tools Reference Manual for Microcontrollers 385

y
A

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Listing 8.51 Invoking the copyMacro2 macro in the source code

copyMacro?2 (source2, destination2, 1);
copyMacro?2 (source2, destination3, 2);

During expansion of the first macro, the preprocessor generates an 1p1 label. During
expansion of the second macro, an 1p2 label is created.

Generating Assembler Include Files (-La
Compiler Option)

In many projects it often makes sense to use both a C compiler and an assembler. Both
have different advantages. The compiler uses portable and readable code, while the

assembler provides full control for time-critical applications or for direct accessing of the
hardware.

The compiler cannot read the include files of the assembler, and the assembler cannot read
the header files of the compiler.

The assembler’s include file output of the compiler lets both tools use one single source to
share constants, variables or labels, and even structure fields.

The compiler writes an output file in the format of the assembler which contains all
information needed of a C header file.

The current implementation supports the following mappings:
¢ Macros
C defines are translated to assembler EQU directives.
¢ enum values
C enum values are translated to EQU directives.
¢ Ctypes

The size of any type and the offset of structure fields is generated for all typedefs.
For bitfield structure fields, the bit offset and the bit size are also generated.

* Functions
For each function an XREF entry is generated.
¢ Variables

C Variables are generated with an XREF. In addition, for structures or unions all
fields are defined with an EQU directive.

¢ Comments

C style comments (/* ... */)areincluded as assembler comments (; . . .).

386

RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

General

A header file must be specially prepared to generate the assembler include file.

Listing 8.52 A pragma anywhere in the header file can enable assembler output

#pragma CREATE_ASM_LISTING ON

Only macro definitions and declarations behind this pragma are generated. The compiler

stops generating future elements when #pragma CREATE_ASM_LISTING: Create an

Assembler Include File Listing occurs with an OFF parameter.

#pragma CREATE_ASM_LISTING OFF

Not all entries generate legal assembler constructs. Care must be taken for macros. The
compiler does not check for legal assembler syntax when translating macros. Put macros
containing elements not supported by the assembler in a section controlled by #pragma
CREATE_ASM_LISTING OFF

The compiler only creates an output file when the -La option is specified and the compiled
sources contain #pragma CREATE_ASM LISTING ON.

Example

Listing 8.53 Header file: a.h

#pragma
typedef
short
short

CREATE_ASM_LISTING ON
struct {

i;

J;

} Struct;
Struct Var;
void f(void);

#pragma

CREATE_ASM_LISTING OFF

When the compiler reads this header file with the -La=a.inc a.h option, it generates
the following (Listing 8.54):

Listing 8.54 a.inc file

Struct_SIZE EQU s$4
Struct_1i EQU $0
Struct_j EQU $2

XREF Var
Var_1i EQU Var + $0
Var_j EQU Var + $2

RSO08 Build Tools Reference Manual for Microcontrollers 387

y
A

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

XREF £

You can now use the assembler INCLUDE directive to include this file into any assembler
file. The content of the C variable, Var_ 1, can also be accessed from the assembler
without any uncertain assumptions about the alignment used by the compiler. Also,
whenever a field is added to the structure Struct, the assembler code must not be
altered. You must, however, regenerate the a . inc file with a make tool.

Usually the assembler include file is not created every time the compiler reads the header
file. It is only created in a separate pass when the header file has changed significantly.
The -La option is only specified when the compiler must generate a . inc. If -La is
always present, a . inc is always generated. A make tool will always restart the assembler
because the assembler files depend on a . inc. Such a makefile might be similar to:

Listing 8.55 Sample makefile

a.inc : a.h
$(CC) -La=a.inc a.h
ac.o : a.c.c a.h
$(CC) a_c.c
a_asm.o : a_asm.asm a.inc
$ (ASM) a_asm.asm

The order of elements in the header file is the same as the order of the elements in the
created file, except that comments may be inside of elements in the C file. In this case, the
comments may be before or after the whole element.

The order of defines does not matter for the compiler. The order of EQU directives matters
for the assembler. If the assembler has problems with the order of EQU directives in a
generated file, the corresponding header file must be changed accordingly.

Macros

The translation of defines is done lexically and not semantically, so the compiler does not
check the accuracy of the define.

The following example (Listing 8.56) shows some uses of this feature:

Listing 8.56 Example source code

#pragma CREATE_ASM LISTING ON
int 1i;

#define UseI 1

#define Constant 1

388 RS08 Build Tools Reference Manual for Microcontrollers

g |

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

#define Sum Constant+0X1000+01234

The source code in Listing 8.56 produces the following output (Listing 8.57):

Listing 8.57 Assembler listing of Listing 8.56

XREF 1
UselI EQU i
Constant EQU 1
Sum EQU Constant + $1000 + @234

The hexadecimal C constant 0x1000 was translated to $1000 while the octal 01234 was
translated to @1234. In addition, the compiler has inserted one space between every two
tokens. These are the only changes the compiler makes in the assembler listing for defines.

Macros with parameters, predefined macros, and macros with no defined value are not
generated.

The following defines (Listing 8.58) do not work or are not generated:

Listing 8.58 Improper defines

#pragma
int 1i;

#define
#define
#define
#define
#define
#define

CREATE_ASM_LISTING ON

AddressOfI &1

ConstantInt ((int)1l)

Mul7(a) a*7

Nothing

uselUndef UndefFkt*6

Anything § § / % & % / & + * % ¢ 65467568756 86

The source code in Listing 8.58 produces the following output (Listing 8.59):

Listing 8.59 Assembler listing of Listing 8.58

XREF 1
AddressOfI EQU & i
ConstantInt EQU ((int) 1)
useUndef EQU UndefFkt * 6
Anything EQU § 8§/ % &%/ &+ * % ¢ 65467568756 86

RSO08 Build Tools Reference Manual for Microcontrollers 389

3
4

y
A

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

The AddressOfI macro does not assemble because the assembler does not know to
interpret the & C address operator. Also, other C-specific operators such as
dereferenciation (*ptr) must not be used. The compiler generates them into the assembler
listing file without any translation.

The ConstantInt macro does not work because the assembler does not know the cast
syntax and the types.

Macros with parameters are not written to the listing. Therefore, Mul7 does not occur in
the listing. Also, macros defined as Nothing, with no actual value, are not generated.

The C preprocessor does not care about the syntactical content of the macro, though the
assembler EQU directive does. Therefore, the compiler has no problems with the
useUndef macro using the undefined object UndefFkt. The assembler EQU directive
requires that all used objects are defined.

The Anything macro shows that the compiler does not care about the content of a macro.
The assembler, of course, cannot treat these random characters.

These types of macros are in a header file used to generate the assembler include file.
They must only be in a region started with #pragma CREATE_ASM_LISTING OFF
so that the compiler will not generate anything for them.

enums

enums in C have a unique name and a defined value. They are simply generated by the
compiler as an EQU directive.

Listing 8.60 enum

#pragma CREATE_ASM LISTING ON
enum {

E1=4,

E2=47,

E3=-1%*7
};

The enum code in Listing 8.61 results in the following EQUs:

Listing 8.61 Resultant EQUs from enums

El EQU $4
E2 EQU $2F
E3 EQU $FFFFFFF9

390 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

NOTE Negative values are generated as 32-bit hex numbers.

Types

As it does not make sense to generate the size of any occurring type, only typedefs are
considered.

The size of the newly defined type is specified for all typedefs. For the name of the size
of a typedef, an additional term _SIZE is appended to the end of the name. For
structures, the offset of all structure fields is generated relative to the structure’s start. The
names of the structure offsets are generated by appending the structure field’s name after
an underline (_) to the typedef’s name.

Listing 8.62 typedef and struct

#pragma CREATE_ASM LISTING ON
typedef long LONG;
struct tagA {

char a;

short b;

I

typedef struct {

long d;

struct taglA e;

int £:2;
int g:1;

} str;

Creates:

Listing 8.63 Resultant EQUs

LONG_SIZE
str_SIZE
str_d
str_e
str_e_a
str_e b
str_ f

str_f_ BIT
str_f_ BIT_

str_g

str_g_BIT_|
str_g_BIT_|

EQU $4
EQU $8
EQU $0
EQU $4
EQU ¢4
EQU $5
EQU &7
WIDTH EQU $2
OFFSET EQU $0
EQU &7
WIDTH EQU $1
OFFSET EQU $2

RSO08 Build Tools Reference Manual for Microcontrollers 391

A 4
4\

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

All structure fields inside of another structure are contained within that structure. The
generated name contains all the names for all fields listed in the path. If any element of the
path does not have a name (e.g., an anonymous union), this element is not generated.

The width and the offset are also generated for all bitfield members. The offset O specifies
the least significant bit, which is accessed with a 0x1 mask. The offset 2 specifies the most
significant bit, which is accessed with a 0x4 mask. The width specifies the number of bits.

The offsets, bit widths and bit offsets, given here are examples. Different compilers may
generate different values. In C, the structure alignment and the bitfield allocation is
determined by the compiler which specifies the correct values.

Functions

Declared functions are generated by the XREF directive. This enables them to be used
with the assembler. Do not generate the function to be called from C, but defined in
assembler, into the output file as the assembler does not allow the redefinition of labels
declared with XREF. Such function prototypes are placed in an area started with
#pragma CREATE_ASM LISTING OFF, as shown in Listing 8.64.

Listing 8.64 Function prototypes

#pragma CREATE_ASM LISTING ON
void main(void) ;
void f_C(int i, long 1);

#pragma CREATE_ASM_LISTING OFF
void f_asm(void) ;

Creates:

Listing 8.65 Functions defined in assembler

XREF main
XREF f C

Variables

Variables are declared with XREF. In addition, for structures, every field is defined with
an EQU directive. For bitfields, the bit offset and bit size are also defined.

Variables in the __ SHORT_SEG segment are defined with XREF . B to inform the
assembler about the direct access. Fields in structures in __ SHORT__SEG segments, are
defined with a EQU . B directive.

392 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Listing 8.66 struct and variable

#pragma CREATE_ASM_LISTING ON
struct A {
char a;
int 1:2;
Y
struct A VarA;
#pragma DATA_SEG __ SHORT_SEG ShortSeg
int VarInt;

Creates:

Listing 8.67 Resultant XREFs and EQUs

XREF VarA
VarA_a EQU VarA + $0
VarA_i EQU VarA + $1
VarA_i_BIT WIDTH EQU $2
VarA_i_BIT OFFSET EQU $0

XREF.B VarInt

The variable size is not explicitly written. To generate the variable size, use a typedef
with the variable type.

The offsets, bit widths, and bit offsets given here are examples. Different compilers may
generate different values. In C, the structure alignment and the bitfield allocation is
determined by the compiler which specifies the correct values.

Comments

Comments inside a region generated with #pragma CREATE_ASM_LISTING ON are
also written on a single line in the assembler include file.

Comments inside of a typedef, a structure, or a variable declaration are placed either
before or after the declaration. They are never placed inside the declaration, even if the
declaration contains multiple lines. Therefore, a comment after a structure field in a
typedef is written before or after the whole typedef, not just after the type field. Every
comment is on a single line. An empty comment (/* */) inserts an empty line into the
created file.

See Listing 8.68 for an example of how C source code with its comments is converted into
assembly.

RSO08 Build Tools Reference Manual for Microcontrollers 393

y
A

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

Listing 8.68 C source code conversion to assembly

#pragma CREATE_ASM_LISTING ON
/*

The main() function is called by the startup code.

This function is written in C. Its purpose is

to initialize the application. */

void main(void) ;
/*

The SIZEOF_INT macro specified the size of an integer type

in the compiler. */
typedef int SIZEQOF_INT;
#pragma CREATE_ASM_LISTING OFF

Creates:

; The function main is called by the startup code.
; The function is written in C. Its purpose is
; to initialize the application.
XREF main
F The SIZEOF_INT macro specified the size of an integer type
; in the compiler.
SIZEOF_INT_ SIZE EQU $2

Guidelines

The -La option translates specified parts of header files into an include file to import
labels and defines into an assembler source. Because the -La compiler option is very
powerful, its incorrect use must be avoided using the following guidelines implemented in
a real project. This section describes how the programmer uses this option to combine C
and assembler sources, both using common header files.

The following general implementation recommendations help to avoid problems when
writing software using the common header file technique.

¢ All interface memory reservations or definitions must be made in C source files.
Memory areas, only accessed from assembler files, can still be defined in the
common assembler manner.

¢ Compile only C header files (and not the C source files) with the -La option to avoid
multiple defines and other problems. The project-related makefile must contain an
inference rules section that defines the C header files-dependent include files to be
created.

394 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

e Use #pragma CREATE_ASM_LISTING ON/OFF only in C header files. This
#pragma selects the objects to translate to the assembler include file. The created
assembler include file then holds the corresponding assembler directives.

* Do not use the -La option as part of the command line options used for all
compilations. Use this option in combination with the -Cx (no Code Generation)
compiler option. Without this option, the compiler creates an object file which could
accidently overwrite a C source object file.

* Remember to extend the list of dependencies for assembler sources in your make
file.

¢ Check if the compiler-created assembler include file is included into your assembler
source.

NOTE In case of a zero-page declared object (if this is supported by the target), the
compiler translates it into an XREF . B directive for the base address of a
variable or constant. The compiler translates structure fields in the zero page
into an EQU . B directive in order to access them. Explicit zero-page addressing
syntax may be necessary as some assemblers use extended addresses to EQU. B
defined labels.

Project-defined data types must be declared in the C header file by including a
global project header (e.g., global.h). This is necessary as the header file is
compiled in a standalone fashion.

RSO08 Build Tools Reference Manual for Microcontrollers 395

A 4
4\

ANSI-C Frontend
Defining C Macros Containing HLI Assembler Code

396 RS08 Build Tools Reference Manual for Microcontrollers

9

Generating Compact Code

The Compiler tries whenever possible to generate compact and efficient code. But not
everything is handled directly by the Compiler. With a little help from the programmer, it
is possible to reach denser code. Some Compiler options, or using __ SHORT_SEG
segments (if available), help to generate compact code.

Compiler Options

Using the following compiler options helps to reduce the size of the code generated. Note
that not all options may be available for each target.

-0i: Inline Functions

Use the inline keyword or the command line option -Oi for C/C++ functions. Defining a
function before it is used helps the Compiler to inline it:

/* OK */ /* better! */
void fun(void) ; void fun(void) {
void main (void) { //

fun() ; }
} void main (void) {
void fun(void) { fun() ;

/... }

}

This also helps the compiler to use a relative branch instruction instead of an absolute
branch instruction.

RSO08 Build Tools Reference Manual for Microcontrollers 397

y
A

Generating Compact Code
Relocatable Data

Relocatable Data

The limited RAM size of the RSO8 requires careful data allocation. Access global read/
write data using tiny, short, direct, or paged addressing. Access global read-only data
using paged or far addressing. RS08 non-static local data must be allocated into an
OVERLAP section. The compiler does this allocation automatically, using the same
address range as is used for direct addressing (0x00 to OxBF).

* Use tiny addressing (__TINY_SEG) for frequently accessed global variables when
the operand can be encoded on four bits. The address range for these variables is
0x00 — OxOF.

* Use short addressing (__SHORT_SEG) to access 1O registers in the lower RS08
register bank, when the operand can be encoded on five bits. The address range for
these variables is 0x00 — Ox1F.

¢ Use direct (8-bit) addressing (DEFAULT) to access global variables when the
operand is greater than four or five bits. The address range for these variables is 0x00
to OxBF.

¢ Use paged addressing (__PAGED_SEG) to access 1O registers in the upper RSO8
register bank. The address range for these variables is 0x100 to Ox3FF.

* Use paged addressing (__PAGED_SEG) to access global read-only (constant) data.
Objects allocated in PAGED sections must not cross page boundaries. The address
range for these constants is 0x00 to Ox3FFF.

¢ Use far addressing (__FAR_SEG) to access large constant data. Allocate far sections
to more than one page. The address range for these constants is 0x00 to Ox3FFF.

See Listing 9.1 for examples using the different addressing modes.

Listing 9.1 Allocating variables on the RS08

/* in a header file */
#pragma DATA_SEG _ TINY_SEG MyTinySection
char status;

#pragma DATA_SEG ___
unsigned char IOReg;

SHORT_SEG MyShortSection
#pragma DATA_SEG DEFAULT

char temp;

#pragma DATA_SEG _ PAGED_SEG MyShortSection
unsigned char IOReg;

unsigned char *_ paged io_ptr = &IOREG;

#pragma DATA_SEG _ PAGED_SEG MyPagedSection

398 RS08 Build Tools Reference Manual for Microcontrollers

Generating Compact Code
Programming Guidelines

const char table[10];
unsigned char *_ paged tblptr = table;

#pragma DATA_SEG _ FAR_SEG MyFarSection
const char table[1000];
unsigned char *__ far tblptr = table;

The segment must be placed on the direct page in the PRM file (Listing 9.2).

Listing 9.2 Linker parameter file

LINK test.abs
NAMES test.o startup.o ansi.lib END

SECTIONS
Z_RAM = READ_WRITE 0x0080 TO O0xOOFF;
MY_RAM = READ_WRITE 0x0100 TO OxO0lFF;
MY_ROM = READ_ONLY 0xF000 TO OxXFEFF;

PLACEMENT
DEFAULT_ROM INTO MY_ROM;
DEFAULT_RAM INTO MY_RAM;
_ZEROPAGE, myShortSegment INTO Z_RAM;
END

VECTOR 0 _Startup /* set reset vector on _Startup */

NOTE The linker is case-sensitive. The segment name must be identical in the C and
PRM files.

Using -Ostk

When you use the -~Ostk option, the compiler analyzes which local variables are alive
simultaneously. Based on that analysis the compiler chooses the best memory layout for
for variables. When using -Ostk, two or more variables may end up sharing the same
memory location.

Programming Guidelines

Following a few programming guidelines helps to reduce code size. Many things are
optimized by the Compiler. However, if the programming style is very complex or if it

RSO08 Build Tools Reference Manual for Microcontrollers 399

y
A

Generating Compact Code
Programming Guidelines

forces the Compiler to perform special code sequences, code efficiency is not would be
expected from a typical optimization.

Constant Function at a Specific Address

Sometimes functions are placed at a specific address, but the sources or information
regarding them are not available. The programmer knows that the function starts at
address 0x1234 and wants to call it. Without having the definition of the function, the
program runs into a linker error due to the lack of the target function code. The solution is
to use a constant function pointer:

void (*const fktPtr) (void) = (void(*) (void))0x1234;
void main(void) {

fktpPtr () ;
}

This gives you efficient code and no linker errors. However, it is necessary that the
function at 0x1234 really exists.

Even a better way (without the need for a function pointer):

#define erase ((void(*) (void)) (0xfc06))
void main(void) {
erase(); /* call function at address O0xfc06 */

}

HLI Assembly

Do not mix High-level Inline (HLI) Assembly with C declarations and statements (see
Listing 9.3). Using HLI assembly may affect the register trace of the compiler. The
Compiler cannot touch HLI Assembly, and thus it is out of range for any optimizations
except branch optimization.

Listing 9.3 Mixing HLI Assembly with C Statements (not recommended).

void foo (void) {
/* some local variable declarations */
/* some C/C++ statements */
__asm {
/* some HLI statements */
}

/* maybe other C/C++ statements */

400 RS08 Build Tools Reference Manual for Microcontrollers

Generating Compact Code
Programming Guidelines

The Compiler in the worst case has to assume that everything has changed. It cannot hold
variables into registers over HLI statements. Normally it is better to place special HLI
code sequences into separate functions. However, there is the drawback of an additional
call or return. Placing HLI instructions into separate functions (and module) simplifies
porting the software to another target (Listing 9.4).

Listing 9.4 HLI Statements are not mixed with C Statements (recommended).

/* hardware.c */
void special_hli (void) {
__asm {
/* some HLI statements */
}
}
/* foo.c */
void foo(void) {
/* some local variable declarations */
/* some C/C++ statements */
special_hli();
/* maybe other C/C++ statements */

}

Post- and Pre-Operators in Complex
Expressions

Writing a complex program results in complex code. In general it is the job of the
compiler to optimize complex functions. Some rules may help the compiler to generate
efficient code.

If the target does not support powerful postincrement or postdecrement and preincrement
or predecrement instructions, it is not recommended to use the ‘++’ and ‘--’ operator in
complex expressions. Especially postincrement or postdecrement may result in additional
code:

ali++] = b[--J1;

Write the above statement as:

j--; alil = bljl; i++;

Using it in simple expressions as:

i++;

Avoid assignments in parameter passing or side effects (as ++ and --). The evaluation

order of parameters is undefined (ANSI-C standard 6.3.2.2) and may vary from Compiler
to Compiler, and even from one release to another:

RSO08 Build Tools Reference Manual for Microcontrollers 401

3
4

y
A

Generating Compact Code
Programming Guidelines

Example
i = 3;
fun(i++, --1);

In the above example, fun () is called either with fun (3, 3) or with fun (2, 2).

Boolean Types

In C, the boolean type of an expression is an ‘int’. A variable or expression evaluating to 0
(zero) is FALSE and everything else (!=0) is TRUE. Instead of using an int (usually 16
or 32 bits), it may be better to use an 8-bit type to hold a boolean result. For ANSI-C
compliance, the basic boolean types are declared in stdtypes.h:

typedef int Bool;
#define TRUE 1
#define FALSE O

Using typedef Byte Bool_8 from stdtypes.h (Byte is an unsigned 8-bit data
type also declared in stdtypes . h) reduces memory usage and improves code density.

printf() and scanf()

The printf or scanf code in the ANSI library can be reduced if no floating point
support (%f) is used. Refer to the ANSI library reference and printf.c or scanf.cin
your library for details on how to save code (not using float or doubles in printf may
result in half the code).

Bitfields

Using bitfields to save memory may be a bad idea as bitfields produce a lot of additional
code. For ANSI-C compliance, bitfields have a type of signed int, thus a bitfield of
size 1 is either -1 or 0. This could force the compiler to sign extend operations:

struct {
int b:0; /* -1 or 0 */
} B;

int i = B.b; /* load the bit, sign extend it to -1 or 0 */

Sign extensions are normally time- and code-inefficient operations.

402

RS08 Build Tools Reference Manual for Microcontrollers

Generating Compact Code
Programming Guidelines

Struct Returns

Normally the compiler must first allocate space for the return value (1) and then to call the
function (2). In phase (3) the return value is copied to the variable s. In the callee fun,
during the return sequence, the Compiler must copy the return value (4, struct
copy).

Depending on the size of the struct, this may be done inline. After return, the caller
main must copy the result back into s. Depending on the Compiler or Target, it is
possible to optimize some sequences, avoiding some copy operations. However, returning
a struct by value may increase execution time, and increase code size and memory
usage.

Listing 9.5 Returning a struct can force the Compiler to produce lengthy code.

struct S fun(void)
/* .. */
return s; // (4)

}

void main(void) {
struct S s;

VA
s = fun(); // (1), (2), (3)
VA

With the example in Listing 9.6, the Compiler just has to pass the destination address and
to call fun (2). On the callee side, the callee copies the result indirectly into the
destination (4). This approach reduces memory usage, avoids copying structs, and results
in denser code. Note that the Compiler may also inline the above sequence (if supported).
But for rare cases the above sequence may not be exactly the same as returning the struct
by value (e.g., if the destination struct is modified in the callee).

Listing 9.6 A better way is to pass only a pointer to the callee for the return value.

void fun(struct S *sp) {

/* .. */
*sp = s; // (4)
}
volid main(void) {
S s;
/* L. */
fun(&s); // (2)
/* .. */
}

RSO08 Build Tools Reference Manual for Microcontrollers 403

3
4

y
A

Generating Compact Code
Programming Guidelines

Local Variables

Using local variables instead of global variable results in better manageability of the
application as side effects are reduced or totally avoided. Using local variables or
parameters reduces global memory usage but increases local memory usage.

Memory access capabilities of the target influences the code quality. Depending on the
target capabilities, access efficiency to local variables may vary. Allocating a huge amount
of local variables may be inefficient because the Compiler has to generate a complex
sequence to allocate the memory in the beginning of the function and to deallocate it in the

end (Listing 9.7):

Listing 9.7 Good candidate for global variables

void fun(void) {
/* huge amount of local variables: allocate space! */

/*

*/

/* deallocate huge amount of local variables */

}

If the target provides special entry or exit instructions for such cases, allocation of many
local variables is not a problem. A solution is to use global or static local variables. This
deteriorates maintainability and also may waste global address space.

The RS08 Compiler overlaps parameter or local variables using a technique called
overlapping. The Compiler allocates local variables or parameters as global, and the linker
overlaps them depending on their use. Since the RS08 has no stack, this is the only
solution. However this solution makes the code non-reentrant (no recursion is allowed).

Parameter Passing

Avoid parameters which exceed the data passed through registers (see Backend).

Unsigned Data Types

Using unsigned data types is acceptable as signed operations are much more complex than
unsigned ones (e.g., shifts, divisions and bitfield operations). But it is a bad idea to use
unsigned types just because a value is always larger or equal to zero, and because the type
can hold a larger positive number.

404

RS08 Build Tools Reference Manual for Microcontrollers

Generating Compact Code
Programming Guidelines

Inlining and Macros
abs() and labs()

Use the corresponding macro M_ABS defined in std1ib.h instead of calling abs ()
and absl () inthe stdlib:

/* extract

/* macro definitions of abs() and labs() */
#define M_ABS(J) (((3) >=0) 2 (3) = -(3))
extern int abs (int 3J);

extern long int labs (long int Jj);

But be careful asM_ABS () 1is a macro,
i = M_ABS(j++);
and is not the same as:

1 = abs(j++);

memcpy() and memcpy2()

ANSI-C requires that the memcpy () library function in strings.h returns a pointer of
the destination and handles and is able to also handle a count of zero:

Listing 9.8 Excerpts from the string.h and string.c files relating to memcpy()

/* extract of string.h *
extern void * memcpy(void *dest, const void * source, size_t count);

extern void memcpy2(void *dest, const void * source, size_t count);
/* this function does not return dest and assumes count > 0 */

/* extract of string.c */

void * memcpy(void *dest, const void *source, size_t count) {
uchar *sd = dest;
uchar *ss = source;

while (count--)
*sd++ = *ss++;

return (dest);

If the function does not have to return the destination and it has to handle a count of zero,
the memcpy?2 () function in Listing 9.9 is much simpler and faster:

RSO08 Build Tools Reference Manual for Microcontrollers 405

y
A

Generating Compact Code
Programming Guidelines

Listing 9.9 Excerpts from the string.c File relating to memcpy2()

/* extract of string.c */
void
memcpy?2 (void *dest, const void* source, size_t count) {
/* this func does not return dest and assumes count > 0 */
do {
*((uchar *)dest)++ = *((uchar*)source)++;
} while (count--);

Replacing calls to memcpy () with calls to memcpy?2 () saves runtime and code size.

Data Types

Do not use larger data types than necessary. Use IEEE32 floating point format both for
float and doubles if possible. Set the enum type to a smaller type than int using the -T
option. Avoid data types larger than registers.

Tiny or Short Segments

Whenever possible, place frequently used global variables intoa __ TINY_SEG or
___SHORT_SEG segment using:

#pragma DATA_SEG __ SHORT_SEG MySeg
or

#pragma DATA_SEG _ TINY_SEG MySeg

Qualifiers

Use the const qualifier to help the compiler. The const objects are placed into ROM
for the Freescale object-file format if the —~Cc compiler option is given.

406 RS08 Build Tools Reference Manual for Microcontrollers

RS08 Backend

10

The Backend is the target—dependent part of a Compiler, containing the code generator.
This section discusses the technical details of the Backend for the RS08 family.

Non-ANSI Keywords

The following table gives an overview about the supported non-ANSI keywords:

Keyword Data Pointer Supported for Function
Function Pointer

__ far no no no

__hear no no no

interrupt no no yes

__paged yes no no

Data Types

This section describes how the basic types of ANSI-C are implemented by the RS08

Backend.

Scalar Types

All basic types may be changed with the -T option. Note that all scalar types (except char)
have no signed/unsigned qualifier, and are considered signed by default, for example int
is the same as signed int.

The sizes of the simple types are given by the table below together with the possible
formats using the - T option:

RSO08 Build Tools Reference Manual for Microcontrollers

407

A 4

4\

RS08 Backend

Data Types
Type Default | Default Value Range Formats

Format Available With
Min Max Option -T

char (unsigned) 8bit 0 255 8bit, 16bit, 32bit
singned char 8bit -128 127 8bit, 16bit, 32bit
unsigned char 8bit 0 255 8bit, 16bit, 32bit
signed short 16bit -32768 32767 8bit, 16bit, 32bit
unsigned short 16bit 0 65535 8bit, 16bit, 32bit
enum (signed) 16bit -32768 32767 8bit, 16bit, 32bit
signed int 16bit -32768 32767 8bit, 16bit, 32bit
unsigned int 16bit 0 65535 8bit, 16bit, 32bit
signed long 32bit -2147483648 2147483647 8bit, 16bit, 32bit
unsigned long 32bit 0 4294967295 8bit, 16bit, 32bit
signed long long 32bit -2147483648 2147483647 8bit, 16bit, 32bit
unsigned long 32bit 0 4294967295 8bit, 16bit, 32bit
long

NOTE Plain type char is signed. This default is changed with the -T option.

408 RS08 Build Tools Reference Manual for Microcontrollers

RS08 Backend
Data Types

Floating Point Types

The RSO8 compiler supports IEEE32 floating point calculations. The compiler uses
IEEE32 format for both f1oat and double types.

The option -T may be used to change the default format of float/double.

Type Default Default Value Range Formats
Format - Available With
Min Max Option -T

float IEEE32 -1.17549435E-38F 3.402823466E+38F IEEE32

double IEEE32 1.17549435E-38F 3.402823466E+38F IEEE32

long double IEEE32 1.17549435E-38F 3.402823466E+38F IEEE32

long long IEEE32 1.17549435E-38F 3.402823466E+38F IEEE32

double

Pointer Types and Function Pointers

The size of pointer types depends on the memory model selected. The following table
gives an overview.

Type Example Size
default data pointer char* 1 byte
default function pointer void (*) (void) 2 bytes

Structured Types,

Alignment

Local variables are allocated in overlapping areas. The most significant part of a simple
variable is stored at the low memory address.

Bit Fields

The maximum width of bit fields is 32 bits. The allocation unit is one byte. The Compiler
uses words only if a bit field is wider than eight bits. Allocation order is from the least
significant bit up to the most significant bit in the order of declaration.

RSO08 Build Tools Reference Manual for Microcontrollers

409

'
A

RS08 Backend
Register Usage

Register Usage

The RS08 Compiler and library use five pseudo registers defined in the table below:

Register Normal Function

U (or _U) scratch register

V (or _V) scratch register

W (or _W) scratch register

Y (or_Y) address register of binary operations
Z (or _Z) scratch register

Parameter Passing

These parameter passing and return value conventions apply for the RS08:
* Registers used for Parameter Passing (only for parameter lists without the ellipsis):
— if the last parameter is 8-bit large, the parameter is passed in register A
— all other are parameters passed using the shared section (OVERLAP)

* Parameter naming conventions for the shared OVERLAP section are zero-relative
starting from the last parameter. In other words:

— __OVL_funcname_pO0 indicates the last parameter
— __OVL_funcname_pl indicates the next to the last parameter
— __OVL_funcname_p?2 indicates the third from the last parameter, and so on.

* Ellipsis (for open parameters): Pass open parameters using a parameter block
allocated in the local scope of the caller. The address of this block is passed
implicitly together with the last declared parameter. The callee uses this address to
get the open parameters:

unsigned char _ OVL_callerfuncname_pblock
[MAX_BLOCK_SIZE] // MAX_BLOCK_SIZE is the maximum of
bytes needed by a caller to pass open parameters

» The following return address is used for non-leaf functions or for functions that call
the runtime library):

unsigned char _ OVL_funcname_ral[2] // 2 bytes for return
address of caller

410 RS08 Build Tools Reference Manual for Microcontrollers

RS08 Backend
Entry and Exit Code

Entry and Exit Code

The RSO8 uses an overlapping system, rather than a stack, for memory allocation. Listing
10.1 illustrates correct entry and exit code use.

Listing 10.1 Entry and Exit Code Example

10: int f(int x) {
0000 45 SHA

0001 b700 sTA _ OVL_f 14 PSID 75300003 ------ > entry code. Saves the
SPC value. This only happens for non-leaf functions !
0003 42 sSLA

0004 b701 sTA __OvL_f_14_PSID_75300003:1
11: g(&x);

0006 a600 LDA #__ OVL_f_pO0

0008 ad00 BSR PART_0_7(g)

12: return x;

000a 4e000f LDX _ OVvL_f pl ---—-——-- > stores the return value
000d 4e000e MOV __OVL_f_p0,D[X]
0010 2f INCX

0011 4e010e MOV __OVL_f_p0:1,D[X]
0014 be00 LDA _ OVL_f 14 PSID 75300003 ----- > restore SPC. This only
happens for non-leaf functions !

0016 45 SHA

0017 b601 LDA _ OVL_f 14 PSID_75300003:1
0019 42 sSLA

13: 3}

00la be RTS

Pragmas

The Compiler provides some pragmas that control the generation of entry and exit code.

TRAP_PROC

The procedure terminates with an RTS instruction instead of an JAL R6. The same effect
can be achieved with the interrupt keyword.

RSO08 Build Tools Reference Manual for Microcontrollers 411

'
A

RS08 Backend
Interrupt Functions

NO_ENTRY

Omits generation of procedure entry code.

NO_EXIT

Does not generate procedure exit code.

Interrupt Functions

Interrupt procedures are quite different from other procedures.
* The function returns with a RTS.
* no registers must be saved.

« interrupt functions can either have no arguments or exactly one with either 8 or 16
bit, this argument is passed in R1 (and not in R2 as it would be for other functions).

#pragma TRAP_PROC

Which page registers are saved is determined by pragma TRAP_PROC. The syntax of this
pragma is

#pragma TRAP_PROC

Interrupt Vector Table Allocation

The vector table has to be setup with normal C (or assembly) code. The interrupt number
feature for the interrupt vector is not supported for the RSOS.

Instead an array of vectors has to be allocated and initialized with the address of the
handlers and with their initial thread argument.

Segmentation

The Linker memory space may be partitioned into several segments. The Compiler allows
attributing a certain segment name to certain global variables or functions which then are
allocated into that segment by the Linker. Where that segment actually lies is determined
by an entry in the Linker parameter file.

412

RS08 Build Tools Reference Manual for Microcontrollers

RS08 Backend
Optimizations

There are two basic types of segments, code and data segments, each with a matching
pragma:

#pragma CODE_SEG <name>
#pragma DATA_SEG <name>

Both are valid until the next pragma of the same kind is encountered. If no segment is
specified, the Compiler assumes two default segments named DEFAULT_ROM (the default
code segment) and DEFAULT_RAM (the default data segment). To explicitly make these
default segments the current ones, use the segment name DEFAULT:

#pragma CODE_SEG DEFAULT
#pragma DATA_SEG DEFAULT

Optimizations

The Compiler applies a variety of code improving techniques commonly called
optimizations. This section gives a short overview about the most important optimizations.

Lazy Instruction Selection

Lazy instruction selection is a very simple optimization that replaces certain instructions
by shorter and/or faster equivalents. Examples are the use of TSTA instead of CMPA #0
or using COMB instead of EORB #0xFF.

Branch Optimizations

The Compiler uses branch instructions with short offsets whenever possible. Additionally,
other optimizations for branches are also available.

Constant Folding

Constant folding options only affect constant folding over statements. The constant
folding inside of expressions is always done.

Volatile Objects

The Compiler does not do register tracing on volatile objects. Accesses to volatile objects
are not eliminated. It also doesn’t change word operations to byte operations on volatile
objects as it does for other memory accesses.

RSO08 Build Tools Reference Manual for Microcontrollers 413

y
A

RS08 Backend
Programming Hints

Programming Hints

The RSO08 is an 8/16-bit processor not designed with high-level languages in mind. You
must observe certain points to allow the Compiler to generate reasonably efficient code.

The following list provides an idea of what is “good” programming from the processor’s
point of view.

* Use the restrict keyword as a hint for the pointer to thread function argument
descriptors.

* Use 8-bit computations unless larger types are absolutely required. The RS08 core is
an 8-bit MCU, so 16-bit arithmetic operations are expensive, since they are
implemented by runtime calls.

¢ Limit the number of local variables, since storage space is limited.
Using unsigned types instead of signed types is better in the following cases:
» Implicit or explicit extensions from char to int or from int to long.

¢ Use types long, f1loat or double only when absolutely necessary. They produce
a lot of code.

414

RS08 Build Tools Reference Manual for Microcontrollers

11

High-Level Inline Assembler
for the Freescale RS08

The HLI (High Level Inline) Assembler provides a means to make full use of the
properties of the target processor within a C program. There is no need to write a separate
assembly file, assemble it and later bind it with the rest of the application written in ANSI-
C/C++ with the inline assembler. The Compiler does all that work for you. For further
information, refer to the RSO8 Reference Manual.

Syntax

Inline assembly statements can appear anywhere a C statement can appear (an __asm
statement must be inside a C function). Inline assembly statements take one of two forms,
shown in various configurations:

__asm <Assembly Instruction> ; [/* Comment */]
__asm <Assembly Instruction> ; [// Comment]
or
__asm { { <Assembly Instruction> [; Comment] \n } }
or
__asm (<Assembly Instruction> [; Comment]);
or
_asm [(] <string Assembly instruction > [)] [;]
with <string Assembly instruction >
= <Assembly Instruction> [";" <Assembly instruction>]
or
#asm <Assembly Instruction> [; Comment] \n #endasm

If you use the first form, multiple __asm statements are contained on one line and
comments are delimited like regular C or C++ comments. If you use the second form, one
to several assembly instructions are contained within the __asm block, but only one
assembly instruction per line is possible and the semicolon starts an assembly comment.

RSO08 Build Tools Reference Manual for Microcontrollers 415

y
A

High-Level Inline Assembler for the Freescale RS08
Syntax

Mixing HLI Assembly and HLL

Mixing High Level Inline (HLI) Assembly with a High Level Language (HLL, for
example C or C++) requires special attention. The Compiler does care about used or
modified registers in HLI Assembly, thus you do not have save/restore registers which are
used in HLI. It is recommended to place complex HLI Assembly code, or HLI Assembly
code modifying any registers, into separate functions.

Example:

void foo (void) {
/* some C statements */
p->v = 1;
__asm {
/* some HLI statements destroying registers */
}
/* some C statements */
p->v = 2;

In the above sequence, the Compiler holds the value of p in a register. The compiler will
correctly reload p if necessary.

Example

A simple example illustrates the use of the HLI-Assembler. Assume the following:
e from points to some memory area
* to points to some other, non-overlapping memory area.

Then we can write a simple string copying function in assembly language as follows:

void _CMPS (void) {

__asm {
ADD #128
STA 7z
LDA Y
ADD #128
CMP 7z

}

}
C Macros

The C macros are expanded inside of inline assembler code as they are expanded in C.
One special point to note is the syntax of a___asm directive generated by macros. As

416 RS08 Build Tools Reference Manual for Microcontrollers

High-Level Inline Assembler for the Freescale RS08
Special Features

macros always expand to one single line, only the first form of the __asm keyword is
used in macros:

__asm NOP;
For example:
#define SPACE_OK { _ _asm NOP; _ asm NOP; }
Using the second form is invalid:
#define NOT_OK { __asm { \
NOP; \
NOP; \
}

The macro NOT_OK is expanded by the preprocessor to one single line, which is then
incorrectly translated because every assembly instruction must be explicitly terminated by
anewline. Use the pragma NO_STRING_CONSTR to build immediates by using #
inside macros.

Special Features

The following special features are available with the RS08 compiler.

Caller/Callee Saved Registers

The compiler assumes that R1 and RS remain valid across function calls. Therefore
assembly functions must ensure this condition holds when they are called from C code.

RSO08 Build Tools Reference Manual for Microcontrollers 417

V¥ ¢
i

High-Level Inline Assembler for the Freescale RS08
Special Features

Reserved Words

The inline assembler knows a couple of reserved words, which must not collide with user
defined identifiers such as variable names. These reserved words are:

¢ All opcodes (MOV, NOP, ...)
¢ All register names (A, X, DI[X])

* The fixup identifiers:

Name Address Kind Description

$HIGH_6_13 Logical Address Returns the page number corresponding to
a given RS08 14-bit address.

$MAP_ADDR_6 Logical Address Returns the offset within the paging window
corresponding to a given RS08 address.

$LOWC Logical Address Returns the low byte of an address; checks
for overflows

$HIGH Logical Address Returns the high byte of an address.

$FIX16 Global Address 16-bit fixup

For these reserved words, the inline assembler is not case sensitive, that is JSR is the same
as jsr or even JsR. For all other identifiers (labels, variable names and so on) the inline
assembler is case sensitive. The following example shows the syntax of the fixup
specification:

__asm MOV #%HIGH_6_13 (var),__ PAGESEL

Pseudo-Opcodes

The inline assembler provides some pseudo opcodes to put constant bytes into the
instruction stream. These are:

DC.B 1 ; Byte constant 1
DC.B O ; Byte constant 0
DC.wW 12 ; Word constant 12
DC.L 20,23 ; Longword constants

418

RS08 Build Tools Reference Manual for Microcontrollers

High-Level Inline Assembler for the Freescale RS08
Special Features

Accessing Variables

The inline assembler allows accessing local and global variables declared in C by using
their name in the instruction. For global variable names, use the correct fixup specification
(usually $LOWC for the low byte and $HIGH for the high byte part).

Constant Expressions

Constant expressions may be used anywhere an IMMEDIATE value is expected. The HLI
supports the same operators as in ANSI-C code. The syntax of numbers is the same as in
ANSI-C.

RSO08 Build Tools Reference Manual for Microcontrollers 419

A 4
4\

High-Level Inline Assembler for the Freescale RS08
Special Features

420 RS08 Build Tools Reference Manual for Microcontrollers

ANSI-C Library Reference

This section covers the ANSI-C Library.
e Library Files: Description of the types of library files

* Special Features: Description of special considerations of the ANSI-C standard
library relating to embedded systems programming

e Library Structure: Examination of the various elements of the ANSI-C library,
grouped by category.

* Types and Macros in the Standard Library: Discussion of all types and macros
defined in the ANSI-C standard library.

» The Standard Functions: Description of all functions in the ANSI-C library

RSO08 Build Tools Reference Manual for Microcontrollers 421

422 RS08 Build Tools Reference Manual for Microcontrollers

12
Library Files

Directory Structure

The library files are delivered in the following structure (Listing 12.1):

Listing 12.1 Layout of files after a CodeWarrior installation/

<install>\lib\<target>c\ /* readme files, make files */
<install>\lib\<target>c\src /* C library source files */
<install>\lib\<target>c\include /* library include files */
<install>\lib\<tartet>c\lib /* default library files */
<install>\lib\<target>c\prm /* Linker parameter files */

Read the README . TXT located in the library folder for additional information on
memory models and library filenames.

NOTE The RS08 and the HCO8 share the standard library files. Therefore the RS08
library files are located in:
<install>\1ib\hc08c

Generating a Library

In the directory structure above, a CodeWarrior * . mcp file is provided to build all the
libraries and the startup code object files. Simply load the <target>_1ib.mcp file into
the CodeWarrior IDE and build all the targets.

RSO08 Build Tools Reference Manual for Microcontrollers 423

y
A

Library Files
Common Source Files

Common Source Files

Table 12.1 lists the source and header files of the Standard ANSI Library that are not

target-dependent.

Table 12.1 Standard ANSI Library—Target Independent Source and Header Files

Source File Header File
alloc.c
assert.c assert.h
ctype.c ctype.h
errno.h
heap.c heap.h
math.c, mathf.c limits.h, ieemath.h, float.h
printf.c, scanf.c stdio.h
signal.c signal.h
stdarg.h
stddef.h
stdlib.c stdlib.h
string.c string.h
time.h

424

RS08 Build Tools Reference Manual for Microcontrollers

Library Files
Startup Files

Startup Files

Because every memory model needs special startup initialization, there are also startup
object files compiled with different Compiler option settings (see Compiler options for
details).

The correct startup file must be linked with the application depending on the memory
model chosen. The floating point format used does not matter for the startup code.

Note that the library files contain a generic startup written in C as an example of doing all
the tasks needed for a startup:

e Zero Out
¢ Copy Down
¢ Handling ROM libraries

Because not all of the above tasks may be needed for an application and for efficiency
reasons, special startup is provided as well (e.g., written in HLI). However, the version
written in C could be used as well. For example, just compile the ‘startup.c’ file with
the memory/options settings and link it to the application.

Library Files

Most of the object files of the ANSI library are delivered in the form of an object library.

Several Library files are bundled with the Compiler. The reasons for having different
library files are due to different memory models or floating point formats.

The library files contain all necessary runtime functions used by the compiler and the
ANSI Standard Library as well. The list files (* . 1st extension) contains a summary of
all objects in the library file.

To link against a modified file which also exists in the library, it must be specified first in
the link order.

Check out the readme . txt located in the library structure
(1ib\<target>c\README. TXT) for a list of all delivered library files and memory
model or options used.

RSO08 Build Tools Reference Manual for Microcontrollers 425

A 4

4\
Library Files
Library Files
426

RS08 Build Tools Reference Manual for Microcontrollers

13

Special Features

Not everything defined in the ANSI standard library makes sense in embedded systems
programming. Therefore, not all functions have been implemented, and some have been
left open to be implemented because they strongly depend on the actual setup of the target
system.

This chapter describes and explains these points.

NOTE All functions not implemented do a HALT when called. All functions are
re-entrant, except rand() and srand() because these use a global variable to
store the seed, which might give problems with light-weight processes.
Another function using a global variable is strtok(), because it has been defined
that way in the ANSI standard.

Memory Management -- malloc(), free(),
calloc(), realloc(); alloc.c, and heap.c

File alloc. c provides a full implementation of these functions. The only problems
remaining are the question of heap location, heap size, and what happens when heap
memory runs out.

All these points can be addressed in the heap . c file. The heap is viewed as a large array,
and there is a default error handling function. Modify this function or the size of the heap
to suit the needs of the application. The size of the heap is defined in 1ibdefs.h,
LIBDEF_HEAPSIZE.

Signals - signal.c

Signals have been implemented as traps. This means the signal() function allows you to
set a vector to some function of your own (ideally a TRAP_PROC), while the raise()
function is unimplemented. If you decide to ignore a certain signal, a default handler is
installed that does nothing.

RSO08 Build Tools Reference Manual for Microcontrollers 427

'
A

Special Features
Multi-byte Characters - mblen(), mbtowc(), wetomb(), mbstowces(), westombs(); stdlib.c

Multi-byte Characters - mblen(), mbtowc(),
wctomb(), mbstowcs(), westombs(); stdlib.c

Because the compiler does not support multi-byte characters, all routines in stdlib.c
dealing with those are unimplemented. If these functions are needed, the programmer
must write them.

Program Termination - abort(), exit(),
atexit(); stdlib.c

Because programs in embedded systems usually are not expected to terminate, we only
provide a minimum implementation of the first two functions, while atexit() is not
implemented at all. Both abort() and exit() perform a HALT.

I/O - printf.c

The printf() library function is unimplemented in the current version of the library sets in
the ANSI libraries, but it is found in the terminal.c file.

This difference has been planned because often no terminal is available at all or a terminal
depends highly on the user hardware.

The ANSI library contains several functions which makes it simple to implement the
printf () function with all its special cases in a few lines.

The first, ANSI-compliant way is to allocate a buffer and then use the vsprintf ()
ANSI function (Listing 13.1).

Listing 13.1 An implementation of the printf() function

int printf (const char *format, ...) {
char outbuf [MAXLINE] ;
int 1i;
va_list args;
va_start (args, format);
i = vsprintf (outbuf, format, args);
va_end(args) ;
WriteString (outbuf) ;
return 1i;

428 RS08 Build Tools Reference Manual for Microcontrollers

Special Features
/O - printf.c

The value of MAXLINE defines the maximum size of any value of print£ (). The
WriteString () function is assumed to write one string to a terminal. There are two
disadvantages to this solution:

¢ A buffer is needed which alone may use a large amount of RAM.

¢ As unimportant how large the buffer (MAXLINE) is, it is always possible that a
buffer overflow occurs. Therefore this solution is not safe.

Two non-ANSI functions, vprintf () and set_printf (), are provided in its newer
library versions in order to avoid both disadvantages. Because these functions are a non-
ANSI extension, they are not contained in the stdio . h header file. Therefore, their
prototypes must be specified before they are used (Listing 13.2):

Listing 13.2 Prototypes of vprintf() and set_printf()

int vprintf (const char *pformat, va_list args);
void set_printf (void (*f) (char));

The set_printf () function installs a callback function, which is called later for every
character which should be printed by vprintf ().

Be advised that the standard ANSI C printf () derivatives functions, sprintf() and
vsprintf (), are also implemented by calls to set_printf () and vprintf ().
This way much of the code for all printf derivatives can be shared across them.

There is also a limitation of the current implementation of printf(). Because the callback
function is not passed as an argument to vprint £ (), but held in a global variable, all the
printf () derivatives are not reentrant. Even calls to different derivatives at the same
time are not allowed.

For example, a simple implementation of a printf () with vprintf () and
set_printf () is shown in Listing 13.3:

Listing 13.3 Implementation of prinft() with vprintf() and set_printf()

int printf (const char *format, ...){
int 1i;
va_list args;

set_printf (PutChar) ;
va_start (args, format);

i = vprintf (format, args);
va_end(args) ;

return 1i;

RSO08 Build Tools Reference Manual for Microcontrollers 429

'
A

Special Features
Locales - locale.”

The PutChar () function is assumed to print one character to the terminal.

Another remark has to be made about the printf () and scanf() functions. The full
source code is provided of all printf () derivatives in "printf.c" and of scanf ()
in scanf . c. Usually many of the features of printf () and scanf () are not used by
a specific application. The source code of the library modules printf and scanf contains
switches (defines) to allow the use to switch off unused parts of the code. This especially
includes the large floating-point parts of vprintf () and vsscanf ().

Locales - locale.*

ctype

Has not been implemented.

ctype contains two sets of implementations for all functions. The standard is a set of
macros which translate into accesses to a lookup table.

This table uses 257 bytes of memory, so an implementation using real functions is
provided. These are accessible if the macros are undefined first. After #undef
isupper, isupper is translated into a call to function i supper (). Without the
undef, isupper is replaced by the corresponding macro.

Using the functions instead of the macros of course saves RAM and code size - at the
expense of some additional function call overhead.

String Conversions - strtol(), strtoul(),
strtod(), and stdlib.c

To follow the ANSI requirements for string conversions, range checking has to be done.
The variable errno is set accordingly and special limit values are returned. The macro

ENABLE_OVERFLOW_CHECK is set to 1 by default. To reduce code size, switching this
macro off is recommended (clear ENABLE_OVERFLOW_CHECK to 0).

430

RS08 Build Tools Reference Manual for Microcontrollers

14

Library Structure

In this chapter, the various parts of the ANSI-C standard library are examined, grouped by
category. This library not only contains a rich set of functions, but also numerous types
and macros.

Error Handling

Error handling in the ANSI library is done using a global variable errno that is set by the
library routines and may be tested by a user program. There also are a few functions for
error handling (Listing 14.1):

Listing 14.1 Error handling functions

void assert(int expr) ;
void perror(const char *msg);
char * strerror (int errno);

String Handling Functions

Strings in ANSI-C always are null-terminated character sequences. The ANSI library
provides the following functions to manipulate such strings (Listing 14.2).

Listing 14.2 ANSI-C string manipulation functions

size_t strlen(const char *s);

char * strcpy(char *to, const char *from);

char * strncpy(char *to, const char *from, size_t size);
char * strcat(char *to, const char *from);

char * strncat(char *to, const char *from, size_t size);
int strcmp (const char *p, const char *q);

int strncmp (const char *p, const char *g, size_t size);
char strchr (const char *s, int ch);

char strrchr (const char *s, int ch);

char strstr (const char *p, const char *q);

*
*
*
size_t strspn(const char *s, const char *set);
t strcspn(const char *s, const char *set);

RSO08 Build Tools Reference Manual for Microcontrollers 431

y
A

Library Structure
Memory Block Functions

char * strpbrk(const char *s, const char *set);
char * strtok(char *s, const char *delim);

Memory Block Functions

Closely related to the string handling functions are those operating on memory blocks.
The main difference to the string functions is that they operate on any block of memory,
whether it is null-terminated or not. The length of the block must be given as an additional
parameter. Also, these functions work with void pointers instead of char pointers
(Listing 14.3).

Listing 14.3 ANSI-C Memory Block functions

void * memcpy (void *to, const void *from, size_t size);
void * memmove (void *to, const void *from, size_t size);
int memcmp (const void *p, const void *qg, size_t size);
void * memchr (const void *adr, int byte, size_t size);
void * memset (void *adr, int byte, size_t size);

Mathematical Functions

The ANSI library contains a variety of floating point functions. The standard interface,
which is defined for type double (Listing 14.4), has been augmented by an alternate
interface (and implementation) using type f1loat.

Listing 14.4 ANSI-C Double-Precision mathematical functions

double acos(double x)

double asin (double x)

double atan (double x);

double atan2 (double x, double vy);
double ceil (double x);

double cos (double x);

double cosh(double x);

double exp (double x);

double fabs (double x);

double floor (double x);

double fmod(double x, double v);

double frexp(double x, int *exp);
double ldexp (double x, int exp);

7

7

7

432 RS08 Build Tools Reference Manual for Microcontrollers

g |

Library Structure
Mathematical Functions

double log(double x);

double 1loglO (double x);

double modf (double x, double *ip);
double pow(double x, double vy);
double sin(double x);

double sinh (double x);

double sgrt (double x);

double tan(double x);

double tanh (double x);

The functions using the £1oat type have the same names with an £ appended (Listing
14.5).

Listing 14.5 ANSI-C Single-Precision mathematical functions

float acosf(float x)

float asinf (float x)

float atanf(float x);

float atan2f(float x, float vy);
float ceilf (float x);

float cosf(float x);

float coshf (float x);

float expf(float x);

float fabsf(float x);

float floorf (float x);

float fmodf (float x, float v);
float frexpf(float x, int *exp);
float ldexpf(float x, int exp);
float logf(float x);

float loglOf (float x);

float modff (float x, float *ip);
float powf (float x, float vy);
float sinf(float x);

float sinhf (float x);

float sqgrtf(float x);

float tanf (float x);

float tanhf (float x);

7

7

7

RSO08 Build Tools Reference Manual for Microcontrollers 433

y
A

Library Structure
Memory Management

In addition, the ANSI library also defines a couple of functions operating on integral
values (Listing 14.6):

Listing 14.6 ANSI-C Integral functions

int abs (int 1);

div_t div(int a, int b);
long labs(long 1);

ldiv_t 1ldiv(long a, long b);

Furthermore, the ANSI-C library contains a simple pseudo-random number generator
(Listing 14.7) and a function for generating a seed to start the random-number generator:

Listing 14.7 Random number generator functions

int rand(void);
void srand(unsigned int seed);

Memory Management

To allocate and deallocate memory blocks, the ANSI library provides the following
functions (Listing 14.8):

Listing 14.8 Memory allocation functions

void* malloc(size_t size);

void* calloc(size_t n, size_t size);
void* realloc(void* ptr, size_t size);
void free(void* ptr);

Because it is not possible to implement these functions in a way that suits all possible
target processors and memory configurations, all these functions are based on the system
module heap.c £ile, which can be modified by the user to fit a particular memory
layout.

434 RS08 Build Tools Reference Manual for Microcontrollers

Library Structure
Searching and Sorting

Searching and Sorting

The ANSI library contains both a generalized searching and a generalized sorting
procedure (Listing 14.9):

Listing 14.9 Generalized searching and sorting functions

void* bsearch(const void *key, const void *array,

size_t n, size_t size, cmp_func f);
void gsort(void *array, size_t n, size_t size, cmp_func f);
Character Functions

These functions test or convert characters. All these functions are implemented both as
macros and as functions, and, by default, the macros are active. To use the corresponding
function, you have to #undefine the macro.

Listing 14.10 ANSI-C character functions

int isalnum(int ch)
int isalpha (int ch)
int iscntrl (int ch)
int isdigit(int ch)
int isgraph(int ch)
int islower (int ch)
int isprint (int ch)
int ispunct (int ch);
int isspace(int ch)
int isupper (int ch)
int isxdigit(int ch
int tolower (int ch)
int toupper (int ch)

)

7

The ANSI library also defines an interface for multibyte and wide characters. The
implementation only offers minimum support for this feature: the maximum length of a
multibyte character is one byte (Listing 14.11).

Listing 14.11 Interface for multibyte and wide characters

int mblen (char *mbs, size_t n);

size_t mbstowcs (wchar_t *wcs, const char *mbs, size_t n);
int mbtowc (wchar_t *wc, const char *mbc, size_t n);
size_t wcstombs (char *mbs, const wchar_t *wcs size_t n);
int wctomb (char *mbc, wchar_t wc) ;

RSO08 Build Tools Reference Manual for Microcontrollers 435

y
A

Library Structure
System Functions

System Functions

The ANSI standard includes some system functions for raising and responding to signals,
non-local jumping, and so on.

Listing 14.12 ANSI-C system functions

void abort (void) ;

int atexit (void(* func) (void));

void exit (int status) ;

char* getenv (const char* name) ;

int system(const char* cmd) ;

int setjmp (jmp_buf env) ;

void longjmp (jmp_buf env, int wval);
_sig_func signal (int sig, _sig_func handler) ;
int raise(int sig);

To process variable-length argument lists, the ANSI library provides the functions shown
in Listing 14.13, implemented as macros:

Listing 14.13 Macros with variable-length arguments

void va_start(va_list args, param);
type va_arg(va_list args, type);
void va_end(va_list args);

Time Functions

In the ANSI library, there also are several function to get the current time. In an embedded
systems environment, implementations for these functions cannot be provided because
different targets may use different ways to count the time (Listing 14.14).

Listing 14.14 ANSI-C time functions

clock_t clock (void) ;

time_t time(time_t *time_val);

struct tm * localtime(const time_t *time_val);
time_t mktime (struct tm *time_rec);

char * asctime (const struct tm *time_rec) ;
char ctime (const time *time_val);

size_t strftime(char *s, size_t n,

436 RS08 Build Tools Reference Manual for Microcontrollers

Library Structure
Locale Functions

const char *format,

const struct tm *time_rec);
double difftime(time_t tl, time_t t2);
struct tm * gmtime(const time_t *time_val);

Locale Functions

These functions are for handling locales. The ANSI-C library only supports the minimal C
environment (Listing 14.15).

Listing 14.15 ANSI-C locale functions

struct lconv *localeconv(void) ;

char *setlocale(int cat, const char *locale);
int strcoll (const char *p, const char *q);
size_t strxfrm(const char *p, const char *g, size_t n);

Conversion Functions

Functions for converting strings to numbers are found in Listing 14.16.

Listing 14.16 ANSI-C string/number conversion functions

int atoi (const char *s);

long atol (const char *s);

double atof (const char *s);

long strtol (const char *s, char **end, int base);
unsigned long strtoul (const char *s, char **end, int base);
double strtod(const char *s, char **end);

RSO08 Build Tools Reference Manual for Microcontrollers 437

y
A

Library Structure
printf() and scanf()

printf() and scanf()

More conversions are possible for the C functions for reading and writing formatted data.
These functions are shown in Listing 14.17.

Listing 14.17 ANSI-C read and write functions

int sprintf (char *s, const char *format, ...);
int vsprintf (char *s, const char *format, va_list args);
int sscanf (const char *s, const char *format, ...);

File I/O

The ANSI-C library contains a fairly large interface for file I/O. In microcontroller
applications however, one usually does not need file I/O. In the few cases where one
would need it, the implementation depends on the actual setup of the target system.
Therefore, it is impossible for Freescale to provide an implementation for these features
that the user has to specifically implement.

Listing 14.18 contains file I/O functions while Listing 14.19 has functions for the reading
and writing of characters. The functions for reading and writing blocks of data are found
in Listing 14.20. Functions for formatted I/O on files are found in Listing 14.21, and
Listing 14.22 has functions for positioning data within files.

Listing 14.18 ANSI-C file I/O functions

FILE* fopen(const char *name, const char *mode);

FILE* freopen(const char *name, const char *mode, FILE *f);
int fflush(FILE *f);

int fclose (FILE *f);

int feof (FILE *f);

int ferror (FILE *f);

void clearerr (FILE *f);

int remove (const char *name) ;

int rename (const char *old, const char *new);

FILE* tmpfile(void);

char* tmpnam(char *name) ;

void setbuf(FILE *f, char *buf);

int setvbuf (FILE *f, char *buf, int mode, size_t size);

438 RS08 Build Tools Reference Manual for Microcontrollers

g |

Library Structure

File I/O
Listing 14.19 ANSI-C functions for writing and reading characters
int fgetc (FILE *f);
char* fgets(char *s, int n, FILE *f);
int fputc (int ¢, FILE *f);
int fputs (const char *s, FILE *f);
int getc (FILE *f);
int getchar (void) ;
char* gets(char *s);
int putc(int ¢, FILE *f);
int puts (const char *s);
int ungetc(int ¢, FILE *f);
Listing 14.20 ANSI-C functions for reading and writing blocks of data
size_t fread(void *buf, size_t size, size_t n, FILE *f);
size t fwrite(void *buf, size_ t size, size_t n, FILE *f);
Listing 14.21 ANSI-C formatted I/O functions on files
int fprintf(FILE *f, const char *format, ...);
int vfprintf (FILE *f, const char *format, va_list args);
int fscanf (FILE *f, const char *format, ...);
int printf (const char *format, ...);
int vprintf (const char *format, va_list args);
int scanf (const char *format, ...);
Listing 14.22 ANSI-C positioning functions
int fgetpos(FILE *f, fpos_t *pos);
int fsetpos(FILE *f, const fpos_t *pos);
int fseek(FILE *f, long offset, int mode);
long ftell (FILE *f);
void rewind (
RS08 Build Tools Reference Manual for Microcontrollers 439

A 4

4\
Library Structure
File I/O
440

RS08 Build Tools Reference Manual for Microcontrollers

15

Types and Macros in the
Standard Library

This chapter discusses all types and macros defined in the ANSI standard library. We
cover each of the header files, in alphabetical order.

errno.h

This header file just declared two constants, that are used as error indicators in the global
variable errno.

extern int errno;

#define EDOM -1
#define ERANGE -2

float.h

Defines constants describing the properties of floating point arithmetic. See Table 15.1
and Table 15.2.

Table 15.1 Rounding and Radix Constants

Constant Description
FLT_ROUNDS Gives the rounding mode implemented
FLT_RADIX The base of the exponent

All other constants are prefixed by either FLT_, DBL_ or LDBL_. FLT_ is a constant for
type £loat, DBL_ for double and LDBL_ for long double.

RSO08 Build Tools Reference Manual for Microcontrollers 441

'
A

Types and Macros in the Standard Library
float.h

Table 15.2 Other constants defined in float.h

Constant Description

DIG Number of significant digits.

EPSILON Smallest positive x for which 1.0 + x I= x.

MANT_DIG Number of binary mantissa digits.

MAX Largest normalized finite value.

MAX_EXP Maximum exponent such that FLT_RADIXMAX_EXP g 5

finite normalized value.

MAX_10_EXP Maximum exponent such that 10MAX-10_EXP js 5 finjte
normalized value.

MIN Smallest positive normalized value.

MIN_EXP Smallest negative exponent such that
FLT_RADIXMN-EXP is a normalized value.

MIN_10_EXP Smallest negative exponent such that 10MIN-10_EXP 5 5
normalized value.

442 RS08 Build Tools Reference Manual for Microcontrollers

Types and Macros in the Standard Library
limits.h

limits.h

Defines a couple of constants for the maximum and minimum values that are allowed for

certain types. See Table 15.3.

Table 15.3 Constants Defined in limits.h

Constant Description

CHAR_BIT Number of bits in a character
SCHAR_MIN Minimum value for signed char
SCHAR_MAX Maximum value for signed char
UCHAR_MAX Maximum value for unsigned char
CHAR_MIN Minimum value for char

CHAR_MAX Maximum value for char
MB_LEN_MAX Maximum number of bytes for a multi-byte character.
SHRT_MIN Minimum value for short int
SHRT_MAX Maximum value for short int
USHRT_MAX Maximum value for unsigned short int
INT_MIN Minimum value for int

INT_MAX Maximum value for int

UINT_MAX Maximum value for unsigned int
LONG_MIN Minimum value for long int
LONG_MAX Maximum value for long int
ULONG_MAX Maximum value for unsigned long int

RSO08 Build Tools Reference Manual for Microcontrollers

443

y
A

Types and Macros in the Standard Library
locale.h

locale.h

The header file in Listing 15.1 defines a struct containing all the locale specific values.

Listing 15.1 Locale-specific values

struct lconv { /* "C" locale (default) */
char *decimal_point; J*xonLn oxy

/* Decimal point character to use for non-monetary numbers */
char *thousands_sep; Jxonnoxy

/* Character to use to separate digit groups in
the integral part of a non-monetary number. */
char *grouping; /* "\CHAR_MAX" */

/* Number of digits that form a group. CHAR_MAX
means “no grouping”, '\0' means take previous
value. For example, the string "\3\0" specifies the
repeated use of groups of three digits. */

char *int_curr_symbol; VA

/* 4d-character string for the international
currency symbol according to ISO 4217. The
last character is the separator between currency symbol
and amount. */

char *currency_symbol; /xomnox)

/* National currency symbol. */

char *mon_decimal_point; /* "." */
char *mon_thousands_sep; /* "" */
char *mon_grouping; /* "\CHAR_MAX" */

/* Same as decimal_point etc., but
for monetary numbers. */
char *positive_sign; /xomnox/

/* String to use for positive monetary numbers.*/
char *negative sign; Jxomn kg

/* String to use for negative monetary numbers. */
char int_frac_digits; /* CHAR_MAX */
/* Number of fractional digits to print in a
monetary number according to international format. */
har frac_digits; /* CHAR_MAX */

/* The same for national format. */

444 RS08 Build Tools Reference Manual for Microcontrollers

Types and Macros in the Standard Library
locale.h

char p_cs_precedes; /* 1 */
/* 1 indicates that the currency symbol is left of a

positive monetary amount; 0 indicates it is on the right. */
char p_sep_by space; /* 1 */

/* 1 indicates that the currency symbol is
separated from the number by a space for
positive monetary amounts. */

char n_cs_precedes; /* 1 */

char n_sep_by space; /* 1 */

/* The same for negative monetary amounts. */
char p_sign_posn; /* 4 */
char n_sign_posn; /x4 x/

/* Defines the position of the sign for positive
and negative monetary numbers:

amount and currency are in parentheses

sign comes before amount and currency

sign comes after the amount

sign comes immediately before the currency

sign comes immediately after the currency */

B W NP o

There also are several constants that can be used in setlocale() to define which part of the
locale to set. See Table 15.4.

Table 15.4 Constants used with setlocal()

Constant Description

LC_ALL Changes the complete locale

LC_COLLATE Only changes the locale for the strcoll() and strxfrm()
functions

LC_MONETARY Changes the locale for formatting monetary numbers

LC_NUMERIC Changes the locale for numeric, i.e., non—monetary
formatting

LC_TIME Changes the locale for the stritime() function

LC_TYPE Changes the locale for character handling and multi-byte
character functions

This implementation only supports the minimum C locale.

RSO08 Build Tools Reference Manual for Microcontrollers 445

'
A

Types and Macros in the Standard Library
math.h

math.h

Defines just this constant:

HUGE_VAL

Large value that is returned if overflow occurs.

setimp.h

Contains just this type definition:
typedef jmp_buf;
A buffer for sejmp() to store the current program state.

signal.h

Defines signal handling constants and types. See Table 15.5 and Table 15.6.

typedef sig_atomic_t;

Table 15.5 Constants defined in signal.h

Constant Definition

SIG_DFL If passed as the second argument to signal,
the default response is installed.

SIG_ERR Return value of signal(), if the handler could
not be installed.

SIG_IGN If passed as the second argument to signal(),
the signal is ignored.

Table 15.6 Signal Type Constants

Constant Definition

SIGABRT Abort program abnormally
SIGFPE Floating point error
SIGILL lllegal instruction

446 RS08 Build Tools Reference Manual for Microcontrollers

Types and Macros in the Standard Library
stddef.h

Table 15.6 Signal Type Constants (continued)

Constant Definition

SIGINT Interrupt

SIGSEGV Segmentation violation
SIGTERM Terminate program normally

stddef.h

Defines a few generally useful types and constants. See Table 15.7.

Table 15.7 Constants Defined in stddef.h

Constant Description

ptrdiff_t The result type of the subtraction of two
pointers.

size_t Unsigned type for the result of sizeof.

wchar_t Integral type for wide characters.

#define NULL ((void *)

0)

size_t offsetof (

type, struct_member)

Returns the offset of field struct_member
in struct type.

stdio.h

There are two type declarations in this header file. See Table 15.8.

Table 15.8 Type definitions in stdio.h

Type Definition

Description

FILE

Defines a type for a file descriptor.

fpos_t

A type to hold the position in the file as needed by
fgetpos() and fsetpos().

Table 15.9 lists the constants defined in stdio.h.

RSO08 Build Tools Reference Manual for Microcontrollers 447

'
A

Types and Macros in the Standard Library

stdlib.h

Table 15.9 Constants defined in stdio.h

Constant Description

BUFSIZ Buffer size for setbuf().

EOF Negative constant to indicate end—of-file.
FILENAME_MAX Maximum length of a filename.

FOPEN_MAX Maximum number of open files.

_IOFBF To set full buffering in setvbuf().

_IOLBF To set line buffering in setvbuf().

_IONBF To switch off buffering in setvbuf().
SEEK_CUR fseek() positions relative from current position.
SEEK_END fseek() positions from the end of the file.L
SEEK_SET fseek() positions from the start of the file.
TMP_MAX Maximum number of unique filenames tmpnam() can generate.

In addition, there are three variables for the standard I/O streams:

extern FILE *stderr, *stdin, *stdout;

stdlib.h

Besides a redefinition of NULL, size_t and wchar_t, this header file contains the type
definitions listed in Table 15.10.

Table 15.10 Type Definitions in stdlib.h

Type Definition

Description

typedef div_t;

A struct for the return value of div().

typedef 1div_t;

A struct for the return value of Idiv().

Table 15.11 lists the constants defined in stdlib.h

448

RS08 Build Tools Reference Manual for Microcontrollers

Types and Macros in the Standard Library

time.h

Table 15.11 Constants Defined in stdlib.h

Constant

Definition

EXIT_FAILURE

Exit code for unsuccessful termination.

EXIT_SUCCESS

Exit code for successful termination.

RAND_MAX Maximum return value of rand().
MB_LEN_MAX Maximum number of bytes in a multi-byte character.

time.h

This header files defines types and constants for time management. See Listing 15.2.

Listing 15.2 time.h—Type Definitions and Constants

typedef clock_t;

typedef time_t;

struct tm {

int
int
int
int
int
int
int
int
int

tm_sec;
tm_min;
tm_hour;
tm_mday;
tm_mon;
tm_year;
tm_wday;
tm_vyday;
tm_isdst;

/*
/*
/*
/*
/*
/*
/*
/*
/*

Seconds */

Minutes */

Hours */

Day of month: 0 .. 31 */

Month: 0 .. 11 */

Year since 1900 */

Day of week: 0 .. 6 (Sunday == 0) */
day of year: 0 .. 365 */

Daylight saving time flag:

>

<

0
0
0

It is DST
It is not DST
unknown */

The constant CLOCKS_PER_SEC gives the number of clock ticks per second.

string.h

The file string.h defines only functions and not types or special defines.

The functions are explained below together with all other ANSI functions.

RSO08 Build Tools Reference Manual for Microcontrollers

449

y
A

Types and Macros in the Standard Library
assert.h

assert.h

The file assert . h defines the assert() macro. If the NDEBUG macro is defined, then
assert does nothing. Otherwise, assert calls the auxiliary function _assert if the one macro
parameter of assert evaluates to 0 (FALSE) . See Listing 15.3.

Listing 15.3 Use assert() to assist in debugging

#ifdef NDEBUG

#define assert (EX)
#else

#define assert(EX) ((EX) ? 0 : _assert(_LINE__, _ FILE_))
#endif

stdarg.h

The file stdarg.h defines the type va_1ist and the va_arg(), va_end(), and va_start()
macros. The va_1list type implements a pointer to one argument of a open parameter
list. The va_start () macro initializes a variable of type va_1list to point to the first
open parameter, given the last explicit parameter and its type as arguments. The
va_arg () macro returns one open parameter, given its type and also makes the
va_list argument pointing to the next parameter. The va_end () macro finally
releases the actual pointer. For all implementations, the va_end () macro does nothing
because va_1list is implemented as an elementary data type and therefore it must not be
released. The va_start () and the va_arg () macros have a type parameter, which is
accessed only with sizeof (). So type, but also variables can be used. See Listing 15.4
for an example using stdarg.h

Listing 15.4 Example using stdarg.h

char sum(long p, ...) {
char res=0;
va_list list= va_start() (p, long);
res= va_arg(list, int); // (*)
va_end(list);
return res;
}
void main(void) {
char ¢ = 2;
if (£(10L, ¢) '= 2) Error();

450 RS08 Build Tools Reference Manual for Microcontrollers

Types and Macros in the Standard Library
ctype.h

In the line (*) wva_arg mustbe called with int, not with char. Because of the default
argument-promotion rules of C, for integral types at least an int is passed and for floating
types at least a double is passed. In other words, the result of using

va_arg (..., char) orva_arg(..., short) isundefinedin C. Be especially
careful when using variables instead of types for va_arg (). In the example above,
res= va_arg(list, res) isnotcorrect unless res has the type int and not
char.

ctype.h

The ctype.h file defines functions to check properties of characters, as if a character is a
digit- isdigit (), aspace - isspace (), and many others. These functions are either
implemented as macros, or as real functions. The macro version is used when the -Ot
compiler option is used or the macro __ OPTIMIZE_FOR_TIME__ is defined. The
macros use a table called _ctype.whose length is 257 bytes. In this array, all properties
tested by the various functions are encoded by single bits, taking the character as indices
into the array. The function implementations otherwise do not use this table. They save
memory by using the shorter call to the function (compared with the expanded macro).

The functions in Listing 15.5 are explained below together with all other ANSI functions.

Listing 15.5 Macros defined in ctypes.h

extern unsigned char _ctypell];

#define
#define
#define
#define
#define
#define
#define
#define

U (1<<0) /* Uppercase */
L (1<<1) /* Lowercase */
N (1<<2) /* Numeral (digit) */
S (1<<3) /* Spacing character */
P (1<<4) /* Punctuation */
_C (1<<5) /* Control character */
B (1l<<6) /* Blank */
X (1<<7) /* hexadecimal digit */

#ifdef _ OPTIMIZE_FOR_TIME__ /* -Ot defines this macro */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

isalnum(c) (_ctypel (unsigned char) (c+1)] & (_U|_L|_N))
isalpha(c) (_ctypel (unsigned char) (c+1)] & (_U|_L))
iscntrl(c) (_ctypel (unsigned char) (c+1)] & _C)

isdigit(c) (_ctypel (unsigned char) (c+1)] & _N)

isgraph(c) (_ctypel (unsigned char) (c+1)] & (_P|_U|_L|_N))
islower (c) (_ctypel (unsigned char) (c+1)] & _L)

isprint(c) (_ctypel (unsigned char) (c+1)] & (_P|_U|_L|_N|_B))
ispunct(c) (_ctypel (unsigned char) (c+1)] & _P)

isspace(c) (_ctypel (unsigned char) (c+1)] & _S)

isupper (c) (_ctypel (unsigned char) (c+1)] & _U)
isxdigit(c) (_ctypel (unsigned char) (c+1)] & _X)

tolower (c) (isupper(c) ? ((c) - 'A' + 'a') (c))

RSO08 Build Tools Reference Manual for Microcontrollers 451

y
A

Types and Macros in the Standard Library

ctype.h
#define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c))
#define disascii(c) (!((c) & ~127))

#define toascii(c) (¢ & 127)
#endif /* _ OPTIMIZE_FOR_TIME__ */

452 RS08 Build Tools Reference Manual for Microcontrollers

16

The Standard Functions

This section describes all the standard functions in the ANSI-C library. Each function
description contains the subsections listed in Table 16.1.

Table 16.1 Function Description Subsections

Subsection Description

Syntax Shows the function’s prototype and also which
header file to include.

Description A description of how to use the function.

Return Describes what the function returns in which
case. If the global variable errno is modified by
the function, possible values are also described.

See also Contains cross—references to related functions.

Functions not implemented because the implementation would be hardware-specific
anyway (e.g., clock()) are marked by the following icon appearing in the right margin next
to the function’s name:

Hardware @
specific
Functions for file I/O, which also depend on the particular hardware’s setup and therefore
also are not implemented, are marked by the following icon in the right margin:

RSO08 Build Tools Reference Manual for Microcontrollers 453

The Standard Functions

abort()

Syntax
#include <stdlib.h>

void abort (void) ;

Description
abort () terminates the program. It does the following (in this order):
¢ raises signal STGABRT
 flushes all open output streams
¢ closes all open files
¢ removes all temporary files
e calls HALT

If your application handles STGABRT and the signal handler does not return (e.g.,
because it does a Longjmp ()), the application is not halted.

See also
atexit(),
exit(),
raise(), and
signal()

abs()

Syntax
#include <stdlib.h>

int abs(int 1i);

Description

abs () computes the absolute value of 1.

454 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Return

The absolute value of i;i.e., 1 if i is positive and -1 if i is negative. If 1 is
-32768, this value is returned and errno is set to ERANGE.

See also

fabs() and fabsf()

acos() and acosf()

Syntax
#include <math.h>
double acos(double x);

float acosf(float x);
Description

acos () computes the principal value of the arc cosine of x.

Return

The arc cosine cos” (-1) (x) of x in the range between 0 and Pi if x is in the

range -1 <= x <= 1.Ifxisnotin this range, NAN is returned and errno is set
to EDOM.

See also

asin() and asinf(),
atan() and atanf(),
atan2() and atan2f(),
cos() and cosf(),
sin() and sinf(), and
tan() and tanf()

RSO08 Build Tools Reference Manual for Microcontrollers 455

The Standard Functions

ascti me() Hardware @

specific

Syntax
#include <time.h>

char * asctime(const struct tm* timeptr);
Description
asctime () converts the time, broken down in timeptr, into a string.

Return

A pointer to a string containing the time string.

See also

localtime(),
mktime(), and

time!

asin() and asinf()

Syntax
#include <math.h>
double asin(double x) ;

float asinf(float x);
Description
asin () computes the principal value of the arc sine of x.

Return

The arc sine sin” (-1) (x) of xin the range between -Pi/2 and Pi/2 if x isin

therange -1 <= x <= 1.Ifxisnotin this range, NAN is returned and errno is
set to EDOM.

456 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

See also
acos() and acosf(),
atan() and atanf(),
atan2() and atan2f(),
cos() and cosf(), and

tan() and tanf()

assert()

Syntax
#include <assert.h>

void assert (int expr) ;

Description

assert () is amacro that indicates expression expr is expected to be true at this
point in the program. If expr is false (0), assert () halts the program.
Compiling with option ~-DNDEBUG or placing the preprocessor control statement

#define NDEBUG

before the #include <assert.h> statement effectively deletes all assertions

from the program.

See also

abort() and
exit()

atan() and atanf()

Syntax
#include <math.h>
double atan (double x);
float atanf(float x);

RSO08 Build Tools Reference Manual for Microcontrollers

457

The Standard Functions

Description

atan () computes the principal value of the arc tangent of x.

Return

The arc tangent tan” (-1) (x), in the range from -Pi/2 to Pi/2 radian

See also

acos() and acosf(),
asin() and asinf(),
atan2() and atan2f(),
cos() and cosf(),
sin() and sinf(), and
tan() and tanf()

atan2() and atan2f()

Syntax
#include <math.h>
double atan2 (double y, double x);
float atan2f(float y, float x);

Description

atan?2 () computes the principal value of the arc tangent of v /x. It uses the sign
of both operands to determine the quadrant of the result.

Return

The arc tangent tan” (-1) (y/x), in the range from -P1i to P1i radian, if not
both x and y are 0. If both x and vy are 0, it returns 0.

See also

acos() and acosf(),
asin() and asinf(),
atan() and atanf(),
cos() and cosf(),
sin() and sinf(), and
tan() and tanf()

458 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

atexit()

Syntax
#include <stdlib.h>

int atexit (void (*func) (void));

Description

atexit () lets you install a function that is to be executed just before the normal
termination of the program. You can register at most 32 functions with
atexit (). These functions are called in the reverse order they were registered.

Return
atexit () returns O if it could register the function, otherwise it returns a non—
zero value.

See also

abort() and
exit()

atof()

Syntax
#include <stdlib.h>

double atof (const char *s);

Description

atof () converts the string s to a double floating point value, skipping over
white space at the beginning of s. It stops converting when it reaches either the end
of the string or a character that cannot be part of the number. The number format
accepted by atof is the following:

FloatNum = Sign{Digit}[.{Digit}] [Exp]

Sign = [+]-]

Digit = <any decimal digit from 0 to 9>
Exp = (e|E) SignDigit{Digit}

RSO08 Build Tools Reference Manual for Microcontrollers 459

The Standard Functions

Return

atof () returns the converted double floating point value.

See also
atoi(),
strtod(),
strtol(), and
strtoul()

atoi()

Syntax
#include <stdlib.h>

int atoi(const char *s);

Description

atoi () converts the string s to an integer value, skipping over white space at the
beginning of s. It stops converting when it reaches either the end of the string or a
character that cannot be part of the number. The number format accepted by atoi
is the following:

Number = [+|-]1Digit{Digit}

Return

atoi () returns the converted integer value.

See also
atof(),
atol(),
strtod(),
strtol(), and
strtoul()

460 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

atol()

Syntax
#include <stdlib.h>

long atol (const char *s);

Description

atol () converts the string s to an 1ong value, skipping over white space at the
beginning of s. It stops converting when it reaches either the end of the string or a
character that cannot be part of the number. The number format accepted by
atol () is the following:

Number = [+|-]1Digit{Digit}

Return

atol () returns the converted 1ong value.

See also
atoi(),
atof(Q,
strtod(),
strtol(), and
strtoul()

bsearch()

Syntax
#include <stdlib.h>

void *bsearch(const void *key,
const void *array,
size_t n,
size t size,

cmp_func cmp ()) ;

RSO08 Build Tools Reference Manual for Microcontrollers 461

The Standard Functions

Description

bsearch () performs a binary search in a sorted array. It calls the comparison
function cmp () with two arguments: a pointer to the key element that is to be
found and a pointer to an array element. Thus, the type cmp_ func can be declared
as:

typedef int (*cmp_func) (const void *key,
const void *data) ;

The comparison function returns an integer according to (Table 16.2):

Table 16.2 Return value from the comparison function, cmp_func()

Key element value Return value
less than the array element less than zero (negative)
equal to the array element zero

greater than the array element greater than zero (positive)

The arguments (Table 16.3) of bsearch () are:

Table 16.3 Possible arguments to the bsearch() function

Parameter Meaning

Name

key A pointer to the key data you are seeking

array A pointer to the beginning (i.e., the first element) of the

array that is searched

n The number of elements in the array
size The size (in bytes) of one element in the table
cmp() The comparison function

NOTE Make sure the array contains only elements of the same size. bsearch () also
assumes that the array is sorted in ascending order with respect to the
comparison function cmp () .

462 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Return

bsearch () returns a pointer to an element of the array that matches the key, if
there is one. If the comparison function never returns zero, i.e., there is no
matching array element, bsearch () returns NULL.

calloc()

Hardware m
specific

Syntax
#include <stdlib.h>

void *calloc(size_t n, size_t size);

Description

calloc () allocates a block of memory for an array containing n elements of size
size. All bytes in the memory block are initialized to zero. To deallocate the
block, use £ree () . Do not use the default implementation in interrupt routines
because it is not reentrant.

Return
calloc () returns a pointer to the allocated memory block. If the block cannot be
allocated, the return value is NULL.

See also

malloc() and
realloc()

ceil() and ceilf()

Syntax
#include <math.h>
double ceil (double x);
float ceilf(float x);

Description

ceil () returns the smallest integral number larger than x.

RSO08 Build Tools Reference Manual for Microcontrollers 463

The Standard Functions

See also

floor() and floorf() and
fmod() and fmodf()

clearerr() File /O H

Syntax

#include <stdio.h>

void clearerr (FILE *f);

Description

clearerr () resets the error flag and the EOF marker of file £.

Hard
clock() i;!i%i @

Syntax

#include <time.h>

clock_t clock(void) ;

Description

clock () determines the amount of time since your system started, in clock ticks.
To convert to seconds, divide by CLOCKS_PER_SEC.

Return

clock () returns the amount of time since system startup.

See also

timel

464 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

cos() and cosf()

Syntax
#include <time.h>
double cos(double x);

float cosf(float x);

Description

cos () computes the principal value of the cosine of x. Express x in radians.

Return

The cosine cos (x)

See also

acos() and acosf(),
asin() and asinf(),
atan() and atanf(),
atan2() and atan2f(),
sin() and sinf(), and
tan() and tanf()

cosh() and coshf()

Syntax
#include <time.h>
double cosh (double x);
float coshf(float x);

Description

cosh () computes the hyperbolic cosine of x.

RSO08 Build Tools Reference Manual for Microcontrollers 465

The Standard Functions

Return
The hyperbolic cosine cosh (x) . If the computation fails because the value is too
large, HUGE_VAL is returned and errno is set to ERANGE.
See also
cos() and cosf(),
sinh() and sinhf(), and
tanh() and tanhf()

. Hard
ctime() ‘Z,Jﬁi}ﬁi @

Syntax

#include <time.h>

char *ctime(const time_t *timer);

Description

ctime () converts the calendar time timer to a character string.

Return

The string containing the ASCII representation of the date.

See also

asctime(),
mktime(), and

time!

dlfftlme() Hardware @

specific

Syntax
#include <time.h>

double difftime(time_t *tl, time_t tO0);

466 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Description

difftime () calculates the number of seconds between any two calendar times.

Return

The number of seconds between the two times, as a double.

See also
mktime() and

time!

div()

Syntax
#include <stdlib.h>

div_t div(int x, int vy);

Description

div () computes both the quotient and the modulus of the division x/y.

Return

A structure with the results of the division.

See also
1div()

exit()

Syntax
#include <stdlib.h>

void exit (int status);

RSO08 Build Tools Reference Manual for Microcontrollers 467

The Standard Functions

Description
exit () terminates the program normally. It does the following, in this order:
* executes all functions registered with atexit ()
 flushes all open output streams
* closes all open files
* removes all temporary files
e calls HALT

The status argument is ignored.

See also
abort()

exp() and expf()

Syntax
#include <math.h>
double exp (double x);
float expf(float x);

Description

exp () computes e, where e is the base of natural logarithms.

Return
e*. If the computation fails because the value is too large, HUGE_VAL is returned
and errno is set to ERANGE.

See also

log() and logf(),
log10() and log10f(), and

pow() and powf()

468 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

fabs() and fabsf()

Syntax
#include <math.h>
double fabs (double x);
float fabsf(float x);

Description

fabs () computes the absolute value of x.

Return

The absolute value of x for any value of x.

See also

abs() and
labs()

fclose()

File I/O H

Syntax
#include <stdlib.h>
int fclose(FILE *f);

Description
fclose () closes file f. Before doing so, it does the following:
¢ flushes the stream, if the file was not opened in read—only mode
 discards and deallocates any buffers that were allocated automatically, i.e., not
using setbuf().
Return

Zero, if the function succeeds; EOF otherwise.

See also
fopen()

RSO08 Build Tools Reference Manual for Microcontrollers 469

The Standard Functions

feof() File /O H
Syntax
#include <stdio.h>
int feof (FILE *f);
Description
feof () tests whether previous I/O calls on file £ tried to do anything beyond the
end of the file.
NOTE Calling clearerr () or £seek () clears the file’s end-of-file flag;
therefore feof () returns O.
Return
Zero, if you are not at the end of the file; EOF otherwise.
ferror() File /0 H
Syntax
#include <stdio.h>
int ferror (FILE *f);
Description
ferror () tests whether an error had occurred on file £. To clear the error
indicator of a file, use clearerr(). rewind() automatically resets the file’s error flag.
NOTE Donotuse ferror () to test for end-of-file. Use feof() instead.
Return
Zero, if there was no error; non—zero otherwise.
470 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

fflush() File /O H
Syntax
#include <stdio.h>
int fflush(FILE *f);
Description
fflush () flushes the I/O buffer of file £, allowing a clean switch between
reading and writing the same file. If the program was writing to file £, £f1ush ()
writes all buffered data to the file. If it was reading, £f1ush () discards any
buffered data. If £ is NULL, all files open for writing are flushed.
Return
Zero, if there was no error; EOF otherwise.
See also
setbuf() and
setvbuf()
fgetc() File I/O H
Syntax

#include <stdio.h>

int fgetc(FILE *f);

Description

fgetc () reads the next character from file £.

NOTE If file £ had been opened as a text file, the end—of-line character combination
isread as one ' \n' character.

Return

The character is read as an integer in the range from 0 to 255. If there was a read
error, fgetc () returns EOF and sets the file’s error flag, so that a subsequent call

RSO08 Build Tools Reference Manual for Microcontrollers 471

The Standard Functions

to ferror () will return a non—zero value. If an attempt is made to read beyond
the end of the file, fgetc () also returns EOF, but sets the end—offile flag
instead of the error flag so that feof () will return EOF, but ferror() will return 0.

See also

:

ets(),

]

open(),

|

read(),

:

fscanf(), and

etc

fgetpos() File I/O H

Syntax

#include <stdio.h>

int fgetpos(FILE *f, fpos_t *pos);

Description

fgetpos () returns the current file position in *pos. This value can be used to
later set the position to this one using fsetpos().

NOTE Do not assume the value in *pos to have any particular meaning such as a
byte offset from the beginning of the file. The ANSI standard does not require
this, and in fact any value may be put into *pos as long as there is a
fsetpos () with that value resets the position in the file correctly.

Return

Non-zero, if there was an error; zero otherwise.

See also

fseek() and
ftell()

472 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

fgets() File /O H

Syntax

#include <stdio.h>

char *fgets(char *s, int n, FILE *f);

Description

fgets () reads a string of at most n-1 characters from file f into s. Immediately
after the last character read, a ' \ 0" is appended. If fgets () reads a line break
("\n") or reaches the end of the file before having read n-1 characters, the
following happens:

e If fgets () reads a line break, it adds the '\n' plus a '\ 0" to s and returns
successfully.

« Ifitreaches the end of the file after having read at least 1 character, it adds a '\ 0'
to s and returns successfully.

* Ifitreaches EOF without having read any character, it sets the file’s end—of—file
flag and returns unsuccessfully. (s is left unchanged.)

Return

NULL, if there was an error; s otherwise.

See also

fgetc() and
fputsQ)

floor() and floorf()

Syntax
#include <math.h>
double floor (double x);
float floorf(float x);

Description

floor () calculates the largest integral number not larger than x.

RSO08 Build Tools Reference Manual for Microcontrollers 473

The Standard Functions

Return

The largest integral number not larger than x.

See also

ceil() and ceilf() and
modf() and modff()

fmod() and fmodf()

Syntax
#include <math.h>
double fmod (double x, double y);
float fmodf(float x, float vy);

Description

fmod () calculates the floating point remainder of x/y.

Return

The floating point remainder of x /vy, with the same sign as x. If y is 0, it returns 0
and sets errno to EDOM.

See also
divQ,
1divQ),
Idexp() and ldexpf(), and
modf() and modff()

fopen() File I/O H

Syntax

#include <stdio.h>

FILE *fopen(const char *name, const char *mode);

474 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Description

fopen () opens a file with the given name and mode. It automatically allocates an
I/O buffer for the file.

There are three main modes: read, write, and update (i.e., both read and write)
accesses. Each can be combined with either text or binary mode to read a text file
or update a binary file. Opening a file for text accesses translates the end—of-line
character (combination) into ' \n' when reading and vice versa when writing.
Table 16.4 lists all possible modes.

Table 16.4 Operating modes of the file opening function, fopen()

Mode Effect

r Open the file as a text file for reading.

w Create a text file and open it for writing.

a Open the file as a text file for appending

rb Open the file as a binary file for reading.

wb Create a file and open as a binary file for writing.

ab Open the file as a binary file for appending.

r+ Open a text file for updating.

W+ Create a text file and open for updating.

a+ Open a text file for updating. Append all writes to the end.
r+b, or rb+ Open a binary file for updating.

w+b, or wb+ Create a binary file and open for updating.

a+b, or ab+ Open a binary file for updating, appending all writes to the end.

@

If the mode contains an “r”, but the file does not exist, fopen () returns
unsuccessfully. Opening a file for appending (mode contains “a”) always appends
writing to the end, even if £seek (), fsetpos (), or rewind () is called.
Opening a file for updating allows both read and write accesses on the file.
However, fseek (), fsetpos () or rewind () must be called in order to write
after a read or to read after a write.

RSO08 Build Tools Reference Manual for Microcontrollers 475

The Standard Functions

Return

A pointer to the file descriptor of the file. If the file could not be created, the
function returns NULL.

See also
fclose(),
freopen(),
setbuf() and
setvbuf()

fprintf()

Syntax
#include <stdio.h>

int fprintf(FILE *f, const char *format,...);

Description

fprintf () isthe same as sprintf (), but the output goes to file £ instead of a
string.

For a detailed format description see sprintf ().

Return

The number of characters written. If some error occurs, fprintf () returns EOF.

See also

printf() and
viprintf(), vprintf(). and vsprintf()

fputc()

File I/0 H

Syntax
#include <stdio.h>

int fputc(int ch, FILE *f);

476

RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Description

fputc () writes a character to file f.

Return

The integer value of ch. If an error occurs, fputc () returns EOF.

See also
fputs()

fputs()

File I/O H

Syntax
#include <stdio.h>

int fputs(const char *s, FILE *f);

Description

fputs () writes the zero—terminated string s to file £ (without the terminating
"\O0".

Return

EOF, if there was an error; zero otherwise.

See also
fputc()

fread()

Syntax
#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t n, FILE *f);

Description

fread () reads a contiguous block of data. It attempts to read n items of size
size from file £ and stores them in the array to which ptr points. If either n or
sizeis 0, nothing is read from the file and the array is left unchanged.

RSO08 Build Tools Reference Manual for Microcontrollers 477

The Standard Functions

Return

The number of items successfully read.

See also
fgetc(),
fgets(), and
fwrite
Hardware
free() pdare | €
Syntax
#include <stdlib.h>
void free(void *ptr);
Description
free () deallocates a memory block that had previously been allocated by
calloc(),malloc (), orrealloc (). If ptr is NULL, nothing happens. Do
not use the default implementation in interrupt routines because it is not reentrant.
freopen() File I/O H

Syntax
#include <stdio.h>
void freopen (const
const

FILE

Description

char *name,
char *mode,

*£);

freopen () opens a file using a specific file descriptor. This can be useful for

redirecting stdin, stdout, or stderr. About possible modes, see fopen ().

See also
fclose()

478 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

frexp() and frexpf()

Syntax
#include <math.h>
double frexp(double x, int *exp);

float frexpf(float x, int *exp) ;

Description

frexp () splits a floating point number into mantissa and exponent. The relation
isx = m * 2%exp.malways is normalized to therange 0.5 < m <= 1.0.
The mantissa has the same sign as x.

Return
The mantissa of x (the exponent is written to *exp). If x is 0 . 0, both the mantissa
(the return value) and the exponent are 0.

See also

exp() and expf(),
Idexp() and ldexpf(), and

modf() and modffi

fscanf() File I/O H

Syntax

#include <stdio.h>

int fscanf (FILE *f, const char *format,...);

Description
fscanf () is the same as scanf () but the input comes from file f instead of a
string.

Return

The number of data arguments read, if any input was converted. If not, it returns
EOF.

RSO08 Build Tools Reference Manual for Microcontrollers 479

The Standard Functions

See also

fgetc(),
fgets(), and
scanf()

fseek() File I/O H

Syntax

#include <stdio.h>

int fseek(FILE *f, long offset, int mode);

Description
fseek () sets the current position in file £.

For binary files, the position can be set in three ways, as shown in Table 16.5.

Table 16.5 Offset position into the file for the fseek() function

Mode Offset position

SEEK_SET of fset bytes from the beginning of the file.
SEEK_CUR of fset bytes from the current position.
SEEK_END of fset bytes from the end of the file.

For text files, either of fset must be zero or mode is SEEK_SET and of fset a
value returned by a previous call to ftell().

If £seek () is successful, it clears the file’s end—of —file flag. The position cannot
be set beyond the end of the file.
Return

Zero, if successful; non—zero otherwise.

See also

fgetpos(), and
fsetpos()

480 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

fsetpos() File /O H

Syntax

#include <stdio.h>

int fsetpos(FILE *f, const fpos_t *pos);

Description

fsetpos () sets the file position to pos, which must be a value returned by a
previous call to fgetpos() on the same file. If the function is successful, it clears the
file’s end—of—file flag.

The position cannot be set beyond the end of the file.

Return

Zero, if it was successful; non—zero otherwise.

See also

fgetpos(),
fseek(), and
ftell)

ftell() File /O H

Syntax

#include <stdio.h>

long ftell (FILE *f);

Description
ftell () returns the current file position. For binary files, this is the byte offset
from the beginning of the file; for text files, do not use this value except as an
argument to £seek ().

Return

-1, if an error occurred; otherwise the current file position.

RSO08 Build Tools Reference Manual for Microcontrollers 481

The Standard Functions

See also
fgetpos() and

fsetpos

fwrite() File /O H

Syntax

#include <stdio.h>

size_t fwrite(const void *p,
size t size,
size_t n,

FILE *f);

Description

fwrite () writes a block of data to file f. It writes n items of size size, starting
at address ptr.

Return

The number of items successfully written.

See also
fputc(Q),

fputs(), and
fread()

getc() File /O H

Syntax

#include <stdio.h>

int getc(FILE *f);

482 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Description

getc () is the same as fgetc (), but may be implemented as a macro. Therefore,
make sure that f is not an expression having side effects. See fgetc () for more
information.

getchar() File /O H

Syntax

#include <stdio.h>

int getchar (void) ;

Description

getchar () is the same as getc () (stdin). See fgetc () for more
information.

getenv() File /O H

Syntax

#include <stdio.h>

char *getenv(const char *name) ;

Description

getenv () returns the value of environment variable name.

Return
NULL

gets() File 1/O H

Syntax

#include <stdio.h>

char *gets(char *s);

RSO08 Build Tools Reference Manual for Microcontrollers 483

The Standard Functions

Description

gets () reads a string from stdin and stores it in s. It stops reading when it
reaches a line break or EOF character. This character is not appended to the string.
The string is zero—terminated.

If the function reads EOF before any other character, it sets stdin’s end—of—file
flag and returns unsuccessfully without changing string s.

Return

NULL, if there was an error; s otherwise.

See also
fgetc() and

uts

. Hard
gmtime() e | €M

Syntax

#include <time.h>

struct tm *gmtime(const time_t *time) ;

Description

gmtime () converts *time to UTC (Universal Coordinated Time), which is
equivalent to GMT (Greenwich Mean Time).

Return
NULL, if UTC is not available; a pointer to a struct containing UTC otherwise.

See also
ctime() and

time!

484 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),

ispunct(), isspace(), isupper(), and isxdigit()

Syntax
#include <ctype.h>
int isalnum (int ch);

int isalpha (int ch);

int isxdigit(int ch);

Description

These functions determine whether character ch belongs to a certain set of
characters. Table 16.6 describes the character ranges tested by the functions.

Table 16.6 Appropriate character range for the testing functions

Function Range Tested

isalnum() alphanumeric character, i.e., A-Z, a-z or 0-9.
isalpha () an alphabetic character, i.e., A-Z or a-z.

iscntrl() a control character, i.e., \000-\037 or \177 (DEL).
isdigit () a decimal digit, i.e., 0-9.

isgraph () a printable character except space (! - or ~).
islower () a lower case letter, i.e., a-z.

isprint() a printable character (' '-'~').

ispunct () a punctuation character, i.e., !-'/', '-'@", 'T-"" and '{"-'~".
isspace() a white space character, i.e.,' ', \f', \n', \r', \t' and "\v".
isupper () an upper case letter, i.e., A-Z.

isxdigit () a hexadecimal digit, i.e., 0-9, A-F or a-f.

RSO08 Build Tools Reference Manual for Microcontrollers

485

The Standard Functions

Return

TRUE (i.e., 1), if ch is in the character class; zero otherwise.

See also
tolower() and
toupperi)

labs()

Syntax
#include <stdlib.h>
long labs(long 1) ;

Description

labs () computes the absolute value of 1.

Return

The absolute value of i, i.e., i if 1 is positive and -1 if i is negative. If i is
-2,147,483, 648, this value is returned and errno is set to ERANGE.

See also
abs()

Idexp() and Idexpf()

Syntax
#include <math.h>
double ldexp (double x, int exp);
float 1ldexpf(float x, int exp);

Description
ldexp () multiplies x by 2%*P.

486 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Return

x * 2%¥P_1f it fails because the result would be too large, HUGE_VAL is returned
and errno is set to ERANGE.

See also
exp() and expf(),
frexp() and frexpf(),
log() and logf(),
log10() and log10f(), and
modf() and modff()

Idiv()

Syntax
#include <stdlib.h>

1ldiv_t 1ldiv(long x, long Vv);

Description

1div () computes both the quotient and the modulus of the division x/y.

Return

A structure with the results of the division.

See also
div()

localeconv() Hardware m

specific

Syntax
#include <locale.h>

struct lconv *localeconv(void) ;

RSO08 Build Tools Reference Manual for Microcontrollers 487

The Standard Functions

Description

localeconv () returns a pointer to a struct containing information about the
current locale, e.g., how to format monetary quantities.

Return

A pointer to a struct containing the desired information.

See also
setlocale()
. Hardware
localtime() specific @
Syntax

#include <time.h>

struct tm *localetime(const time_t *time);

Description

localtime () converts *time into broken—down time.

Return

A pointer to a struct containing the broken—down time.

See also

asctime(),
mktime(), and

time!

log() and logf()

Syntax
#include <math.h>
double log (double x);
float 1logf(float x);

488 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Description

log () computes the natural logarithm of x.

Return

1n(x), if x is greater than zero. If x is smaller then zero, NAN is returned; if it is
equal to zero, 1og () returns negative infinity. In both cases, errno is set to
EDOM.

See also

exp() and expf() and
log10() and log10f()

log10() and log10f()

Syntax
#include <math.h>
double 1loglO (double x);
float 1loglOf(float x);

Description
1ogl0 () computes the decadic logarithm (the logarithm to base 10) of x.

Return

logl0 (x), if x is greater than zero. If x is smaller then zero, NAN is returned; if it
is equal to zero, 1og10 () returns negative infinity. In both cases, errno is set to
EDOM.

See also

exp() and expf() and
log10() and log10f()

RSO08 Build Tools Reference Manual for Microcontrollers 489

The Standard Functions

longjmp()
Syntax
#include <getjmp.h>
void longjmp (jmp_buf env, int val);
Description
longjmp () performs a non—local jump to some location earlier in the call chain.
That location must have been marked by a call to setjmp () . The environment at
the time of that call to setjmp () - env, which also was the parameter to
setjmp () - is restored and your application continues as if the call to
setjmp () just had returned the value val.
See also
setimp()
Hardware
malloc() specific @
Syntax
#include <stdlib.h>
void *malloc(size_t size);
Description
malloc () allocates a block of memory for an object of size size bytes. The
content of this memory block is undefined. To deallocate the block, use free ().
Do not use the default implementation in interrupt routines because it is not
reentrant.
Return
malloc () returns a pointer to the allocated memory block. If the block could not
be allocated, the return value is NULL.
See also
calloc() and
realloc()
490 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Hardware
mblen() specific @
Syntax
#include <stdlib.h>
int mblen(const char *s, size_t n);
Description
mblen () determines the number of bytes the multi—byte character pointed to by s
occupies.
Return
0, if sisNULL.
-1, if the first n bytes of *s do not form a valid multi-byte character.
n, the number of bytes of the multi-byte character otherwise.
See also
mbtowc() and
mbstowcs()
Hardware
mbstowcs() specific @
Syntax

#include <stdlib.h>
size_t mbstowcs (wchar_t *wcs,
const char *mbs,

size_t n);

Description

mbstowcs () converts a multi-byte character string mbs to a wide character
string wcs. Only the first n elements are converted.

Return

The number of elements converted, or (size_t) - 1 if there was an error.

RSO08 Build Tools Reference Manual for Microcontrollers 491

The Standard Functions

See also
mblen() and
mbtowc()
Hardware
mbtowc() specific w
Syntax

#include <stdlib.h>

int mbtowc (wchar_t *wc, const char *s, size_t n);

Description

mbtowc () converts a multi-byte character s to a wide character code wc. Only
the first n bytes of *s are taken into consideration.

Return
The number of bytes of the multi-byte character converted (size_t) if
successful or -1 if there was an error.

See also

mblen(), and
mbstowcs()

memchr()

Syntax

#include <string.h>

void *memchr (const void *p, int ch, size_t n);
Description

memchr () looks for the first occurrence of a byte containing (ch & O0xFF)in
the first n bytes of the memory are pointed to by p.

Return

A pointer to the byte found, or NULL if no such byte was found.

492 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

See also
mememp(),
strchr(), and
strrchr()

memcmp()

Syntax
#include <string.h>
void *memcmp (const void *p,
const void *q,

size_t n);

Description
memcmp () compares the first n bytes of the two memory areas pointed to by p
and q.
Return
A positive integer, if p is considered greater than g; a negative integer if p is
considered smaller than g or zero if the two memory areas are equal.
See also
memchr(),
stremp(), and
strncmp()

RSO08 Build Tools Reference Manual for Microcontrollers 493

The Standard Functions

memcpy() and memmove()

Syntax
#include <string.h>
void *memcpy (const void *p,
const void *qg,

size_t n);

void *memmove (const void *p,
const void *qg,
size_t n);
Description

Both functions copy n bytes from g to p. memmove () also works if the two
memory areas overlap.

Return
p

See also

strepy() and
strnepy()

memset()

Syntax

#include <string.h>

void *memset (void *p, int val, size_t n);
Description

memset () sets the first n bytes of the memory area pointed to by p to the value
(val & OxFF).

494 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Return

o

See also
calloc() and

memcpy () and memmove ()

mktlme() Hardware m

specific

Syntax

#include <string.h>

time_t mktime (struct tm *time);

Description

mktime () converts *time to a time_t. The fields of *t ime may have any
value; they are not restricted to the ranges given time . h. If the conversion was
successful, mktime () restricts the fields of *t ime to these ranges and also sets
the tm_wday and tm_yday fields correctly.

Return

*time asa time_t.

See also
ctime(),
gmtime(), and

time!

modf() and modff()

Syntax
#include <math.h>
double modf (double x, double *i);
float modff (float x, float *i);

RSO08 Build Tools Reference Manual for Microcontrollers 495

The Standard Functions

Description
modf () splits the floating-point number x into an integral part (returned in *1)
and a fractional part. Both parts have the same sign as x.

Return

The fractional part of x.

See also
floor() and floorf(),
fmod() and fmodf()

frexp() and frexpf(), and
Idexp() and ldexpf()

perror()

Syntax
#include <stdio.h>

void perror (const char *msg) ;

Description
perror () writes an error message appropriate for the current value of errno to
stderr. The character string msg is part of perror’s output.

See also

assert() and
strerror()

pow() and powf()

Syntax
#include <math.h>
double pow (double x, double v);
float powf (float x, float vy);

496 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Description

pow () computes x to the power of v, i.e., xY.

Return
xY, ifx > 0
1, ify ==
+X, if(x == 0 && y < 0)

NAN, if(x < 0 && yisnotintegral). Also, errno is set to EDOM.

+x, with the same sign as x, if the result is too large.

See also
exp() and expf(),
Idexp() and ldexpf()
log() and logf(), and
modf() and modff()

printf() File /O H

Syntax

#include <stdio.h>

int printf (const char *format,...);

Description

printf () isthe same as sprintf (), but the output goes to stdout instead of
a string.

For a detailed format description see sprintf ().

Return

The number of characters written. If some error occurred, EOF is returned.

See also

fprintf() and
viprintf(), vprintf(). and vsprintf()

RSO08 Build Tools Reference Manual for Microcontrollers 497

The Standard Functions

putc() File I/0 H

Syntax

#include <stdio.h>

int putc(char ch, FILE *f);

Description

putc () isthe same as fputc (), but may be implemented as a macro. Therefore,

make sure that the expression £ has no unexpected effects. See fputc () for more
information.

putchar() File /O H

Syntax

#include <stdio.h>
int putchar (char ch) ;
Description

putchar (ch) is the same as putc (ch, stdin). See fputc () for more
information.

puts() File /0 H

Syntax

#include <stdio.h>
int puts(const char *s);
Description
puts () writes string s followed by a newline '\n' to stdout.

Return

EOF, if there was an error; zero otherwise.

498 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

See also
fputc() and

utc

qgsort()

Syntax
#include <stdlib.h>

void *gsort (const void *array,
size_t n,
size t size,

cmp_func cmp) ;

Description

gsort () sorts the array according to the ordering implemented by the
comparison function. It calls the comparison function cmp () with two pointers to
array elements. Thus, the type cmp_ func () can be declared as:

typedef int (*cmp_func) (const void *key,
const void *other) ;

The comparison function returns an integer according to Table 16.7.

Table 16.7 Return value from the comparison function, cmp_func()

Key element value Return value

less than the other one less than zero (negative)
equal to the other one zero

greater than the other one greater than zero (positive)

The arguments to gsort () are listed in Table 16.8.

RSO08 Build Tools Reference Manual for Microcontrollers 499

The Standard Functions

Table 16.8 Possible arguments to the sorting function, gsort()

Argument Name Meaning

array A pointer to the beginning (i.e., the first
element) of the array to be sorted

n The number of elements in the array
size The size (in bytes) of one element in the table
cmp () The comparison function

NOTE Make sure the array contains elements of equal size.

raise()

Syntax
#include <signal.h>

int raise(int sig);

Description

raise () raises the given signal, invoking the signal handler or performing the
defined response to the signal. If a response was not defined or a signal handler
was not installed, the application is aborted.

Return

Non-zero, if there was an error; zero otherwise.

See also
signal()

500 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

rand()
Syntax
#include <stdlib.h>
int rand(void) ;
Description
rand () generates a pseudo random number in the range from 0 to RAND_MAX.
The numbers generated are based on a seed, which initially is 1. To change the
seed, use srand ().
The same seeds always lead to the same sequence of pseudo random numbers.
Return
A pseudo random integer in the range from 0 to RAND_MAX.
Hardware
realloc() specific @

Syntax

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

Description

realloc () changes the size of a block of memory, preserving its contents. ptr
must be a pointer returned by calloc () ,malloc (), realloc (), or NULL. In
the latter case, realloc () is equivalenttomalloc () .

If the new size of the memory block is smaller than the old size, realloc ()
discards that memory at the end of the block. If size is zero (and ptr is not NULL),
realloc () frees the whole memory block.

If there is not enough memory to perform the realloc (), the old memory block
is left unchanged, and realloc () returns NULL. Do not use the default
implementation in interrupt routines because it is not reentrant.

Return

realloc () returns a pointer to the new memory block. If the operation cannot be
performed, the return value is NULL.

RSO08 Build Tools Reference Manual for Microcontrollers 501

The Standard Functions

See also
free()

remove() File I/O H

Syntax

#include <stdio.h>
int remove (const char *filename) ;
Description

remove () deletes the file £ilename. If the file is open, remove () does not
delete it and returns unsuccessfully.

Return

Non-zero, if there was an error; zero otherwise.

See also

tmpfile() and
tmpnam()

rename() File /O H

Syntax

#include <stdio.h>
int rename (const char *from, const char *to);
Description

rename () renames the from file to to. If there already is a to file, rename ()
does not change anything and returns with an error code.

Return

Non-zero, if there was an error; zero otherwise.

502 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

See also

tmpfile() and
tmpnam()

rewind() File /O H

Syntax

#include <stdio.h>

void rewind(FILE *f);

Description

rewind () resets the current position in file f to the beginning of the file. It also
clears the file’s error indicator.

See also
fopen(),

fseek(), and
fsetpos()

scanf() File I/O H

Syntax

#include <stdio.h>

int scanf (const char *format,...);

Description
scanf () is the same as sscanf (), but the input comes from stdin instead of
a string.

Return

The number of data arguments read, if any input was converted. If not, it returns
EOF.

RSO08 Build Tools Reference Manual for Microcontrollers 503

The Standard Functions

See also

fgetc(),
fgets(), and
fscanf()

setbuf() File I/O H

Syntax

#include <stdio.h>

void setbuf (FILE *f, char *buf);

Description

setbuf () lets you specify how a file is buffered. If buf is NULL, the file is
unbuffered; i.e., all input or output goes directly to and comes directly from the
file. If buf is not NULL, it is used as a buffer (in that case, buf points to an array

of BUFSIZ bytes).

See also
fflush() and
setvbuf()

setjmp()

Syntax
#include <setjmp.h>

int setjmp (jmp_buf env);

Description
setjmp () saves the current program state in the environment buffer env and
returns zero. This buffer can be used as a parameter to a later call to longjmp (),
which then restores the program state and jumps back to the location of the setjmp.
This time, setjmp () returns a non-zero value, which is equal to the second
parameter to longjmp ().

504 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Return

Zero if called directly; non-zero if called by a longjmp ().

See also
longjmp()
Hardware
setlocale() specific @
Syntax

#include <locale.h>

char *setlocale(int class, const char *loc);

Description

setlocale () changes all or part of the program’s locale, depending on class.
The new locale is given by the character string 1oc. The classes allowed are given
in Table 16.9.

Table 16.9 Allowable classes for the setlocale() function

Class Affected portion of program locale

LC_ALL All classes

LC_COLLATE streoll() and strxfrm() functions

LC_MONETARY Monetary formatting

LC_NUMERIC Numeric formatting

LC_TIME strftime() function

LC_TYPE Character handling and multi-byte character functions

The CodeWarrior IDE supports only the minimum locale C (see locale.h) so this
function has no effect.

Return

C, if loc is C or NULL; NULL otherwise.

RSO08 Build Tools Reference Manual for Microcontrollers 505

The Standard Functions

See also
localeconv(),
streoll(),
strftime(), and
strxfrm()

setvbuf() File 1/0 H

Syntax

#include <stdio.h>

void setvbuf (FILE *f,
char *buf,
int mode,

size_t size);

Description

setvbuf () is used to specify how a file is buffered. mode determines how the
file is buffered.

Table 16.10 Operating Modes for the setvbuf() Function

Mode Buffering
_IOFBF Fully buffered
_IOLBF Line buffered
_IONBF Unbuffered

To make a file unbuffered, call setvbuf () with mode _ TONBF; the other
arguments (buf and size) are ignored.

In all other modes, the file uses buffer buf of size size. If buf is NULL, the
function allocates a buffer of size size itself.

506 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

See also

fflush() and
setbuf()

signal()

Syntax
#include <signal.h>

_sig_func signal (int sig, _sig_func handler) ;

Description

signal () defines how the application shall respond to the sig signal. The
various responses are given in Table 16.11.

Table 16.11 Various responses to the signal() function’s input signal

Handler Response to the signal

SIG_IGN The signal is ignored.

SIG_DFL The default response (HALT).

a function The function is called with sig as parameter.

The signal handling function is defined as:
typedef void (*_sig_func) (int sig);

The signal can be raised using the raise () function. Before the handler is called,
the response is reset to STG_DFL.

In the CodeWarrior IDE, there are only two signals: STGABRT indicates an
abnormal program termination, and STGTERM a normal program termination.

Return

If signal succeeds, it returns the previous response for the signal; otherwise it
returns SIG_ERR and sets errno to a positive non—zero value.

See also
raise()

RSO08 Build Tools Reference Manual for Microcontrollers 507

The Standard Functions

sin() and sinf()

Syntax
#include <math.h>
double sin(double x);

float sinf (float x);

Description

sin () computes the sine of x.

Return

The sine sin (x) of x in radians.

See also

asin() and asinf(),
acos() and acosf(),
atan() and atanf(),
atan2() and atan2f(),
cos() and cosf(), and
tan() and tanf()

sinh() and sinhf()

Syntax
#include <math.h>
double sinh(double x);
float sinhf (float x);

Description

sinh () computes the hyperbolic sine of x.

508 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Return

The hyperbolic sine sinh (x) of x. If it fails because the value is too large, it
returns infinity with the same sign as x and sets errno to ERANGE.

See also
asin() and asinf(),
cosh() and coshf(),
sin() and sinf(), and
tan() and tanf()

sprintf()

Syntax
#include <stdio.h>

int sprintf(char *s, const char *format,...);

Description

sprintf () writes formatted output to the s string. It evaluates the arguments,
converts them according to the specified format, and writes the result to s,
terminated with a zero character.

The format string contains the text to be printed. Any character sequence in a
format starting with '%' is a format specifier that is replaced by the corresponding
argument. The first format specifier is replaced with the first argument after
format, the second format specifier by the second argument, and so on.

A format specifier has the form:

FormatSpec = %${Format} [Width] [.Precision]
[Length]Conversion

where:

e Format = -|+|<a blank>|#

Format defines justification and sign information (the latter only for numerical
arguments). A "-" left-justifies the output, a "+" forces output of the sign, and a
blank outputs a blank if the number is positive and a "—" if it is negative. The
effect of "#" depends on the Conversion character (Table 16.12).

RSO08 Build Tools Reference Manual for Microcontrollers 509

The Standard Functions

Table 16.12 Effect of # in the Format specification

Conversion Effect of "#"

e E f The value of the argument always is printed with decimal point,
even if there are no fractional digits.

9,G As above, but In addition zeroes are appended to the fraction
until the specified width is reached.

o] A zero is printed before the number to indicate an octal value.

X, X "0x" (if the conversion is "x") or "0X" (if it is "X") is printed
before the number to indicate a hexadecimal value.

others undefined.

A "0" as format specifier adds leading zeroes to the number until the desired
width is reached, if the conversion character specifies a numerical argument.

Ifboth " " and "+" are given, only "+" is active; if both "0" and "-" are
specified, only "—" is active. If there is a precision specification for integral
conversions, "0" is ignored.

* width = *|Number | ONumber

Number defines the minimum field width into which the output is to be put. If
the argument is smaller, the space is filled as defined by the format characters.

ONumber is the same as above, but Os are used instead of blanks.

If an asterisk " * " is given, the field width is taken from the next argument,
which of course must be a number. If that number is negative, the output is left-
justified.

e Precision = [Number]

The effect of the Precision specification depends on the conversion character
(Table 16.13).

510 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Table 16.13 Effect of the Precision specification

Conversion Precision

d,i,o,u,x, X The minimum number of digits to print.

e Ef The number of fractional digits to print.

g, G The maximum number of significant digits to print.
S The maximum number of characters to print.
others undefined.

If the Precision specifier is " * ", the precision is taken from the next argument,
which must be an int. If that value is negative, the precision is ignored.

¢ Length = h|1l|L

A length specifier tells sprintf () what type the argument has. The first two
length specifiers can be used in connection with all conversion characters for
integral numbers. "h" defines short; "1" defines 1ong. Specifier "L " is
used in conjunction with the conversion characters for floating point numbers
and specifies long double.

Conversion = c|d|e|E|f]|g]|
Glilnfo[p|s]
u|x|x|%

The conversion characters have the following meanings (Table 16.14):

Table 16.14 Meaning of the Conversion Characters

Conversion | Description

c The int argument is converted to unsigned char; the resulting
character is printed.

d,i An int argument is printed.

RSO08 Build Tools Reference Manual for Microcontrollers 511

The Standard Functions

Table 16.14 Meaning of the Conversion Characters (continued)

Conversion

Description

e, E

The argument must be a double. It is printed in the form
[-1d.ddde+dd (scientific notation). The precision determines
the number of fractional digits; the digit to the left of the decimal
is 1 0 unless the argument is 0.0. The default precision is 6
digits. If the precision is zero and the format specifier "#" is not
given, no decimal point is printed. The exponent always has at
least 2 digits; the conversion character is printed just before the
exponent.

The argument must be a double. It is printed in the form
[-1ddd.ddd (see above). If the decimal point is printed, there
is at least one digit to the left of it.

9,G

The argument must be a double. sprintf chooses either
format £ or e (or E if G is given), depending on the magnitude of
the value. Scientific notation is used only if the exponent is < —4
or greater than or equal to the precision.

The argument must be a pointer to an int. sprintf() writes the
number of characters written so far to that address. If n is used
together with length specifier h or 1, the argument must be a
pointer to a short int ora long int.

The argument, which must be an unsigned int, is printedin
octal notation.

The argument must be a pointer; its value is printed in
hexadecimal notation.

The argument must be a char *; sprintf () writes the string.

The argument, which must be an unsigned int, is written in
decimal notation.

x, X

The argument, which must be an unsigned int, is written in
hexadecimal notation. x uses lower case letters a to £, while X
uses upper case letters.

%

Prints a "%" sign. Give only as "%%".

Conversion characters for integral types are d, i, o, u, x, and X; for floating point
types e, E, £, g, and G.

If sprintf () finds an incorrect format specification, it stops processing,
terminates the string with a zero character, and returns successfully.

512

RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

NOTE Floating point support increases the sprintf () size considerably, and
therefore the define LIBDEF_PRINTF_FLOATING exists. Set
LIBDEF_PRINTF_FLOATING if no floating point support is used. Some
targets contain special libraries without floating point support.

The IEEE64 floating point implementation is not supported.

Return

The number of characters written to s.

See also
sscanf()

sqrt() and sqrtf()

Syntax
#include <math.h>
double sqgrt (double Xx);
float sqgrtf(float x);

Description

sqgrt () computes the square root of x.

Return

The square root of x. If x is negative, it returns 0 and sets errno to EDOM.

See also
pow() and powf()

srand()

Syntax
#include <stdlib.h>

void srand(unsigned int seed) ;

RSO08 Build Tools Reference Manual for Microcontrollers 513

The Standard Functions

Description

srand () initializes the seed of the random number generator. The default seed
is 1.

See also
rand()

sscanf()

Syntax
#include <stdio.h>

int sscanf (const char *s, const char *format,...);

Description

sscanf () scans string s according to the given format, storing the values in the
given parameters. The format specifiers in the format tell sscanf () what to
expect next. A format specifier has the format:

FormatSpec = "%" [Flag] [Width] [Size] Conversion.
where:
e Flag — uxm

If the "% " sign which starts a format specification is followed by a "* ", the
scanned value is not assigned to the corresponding parameter.

e Width = Number

Specifies the maximum number of characters to read when scanning the value.
Scanning also stops if white space or a character not matching the expected syntax
is reached.

e Size = h|l|L

Specifies the size of the argument to read. The meaning is given in Table 16.15.

514 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Table 16.15 Relationship of the Size parameter with allowable conversions and types

Size Allowable Parameter Type
Conversions

h di,n short int * (instead of int *)

h o, u,x, X unsigned short int * (instead of
unsigned int *)

| d,i,n long int * (instead of int *)

| o, u, x, X unsigned long int * (instead of
unsigned int *)

| e, E f,9,G double * (instead of float *)
L e, E f,9,G long double * (instead of float *)
Conversion = cl|d|e|E|f]|g]

Gli[n[o|p|s|
u|x|X|%|Range

These conversion characters tell sscanf () what to read and how to store it in a
parameter. Their meaning is shown in Table 16.16.

RSO08 Build Tools Reference Manual for Microcontrollers 515

The Standard Functions

Table 16.16 Description of the action taken for each conversion.

Conversion | Description

c Reads a string of exactly width characters and stores it in the
parameter. If no width is given, one character is read. The
argument must be a char *. The string read is not zero—
terminated.

a A decimal number (syntax below) is read and stored in the
parameter. The parameter must be a pointer to an integral type.

i As d, but also reads octal and hexadecimal numbers (syntax
below).

e,E, f,g,o0r Reads a floating point number (syntax below). The parameter

el must be a pointer to a floating-point type.

n The argument must be a pointer to an int. sscanf () writes
the number of characters read so far to that address. If n is
used together with length specifier h or 1, the argument must
be a pointer to a short int ora long int.

o Reads an octal number (syntax below). The parameter must be
a pointer to an integral type.

p Reads a pointer in the same format as sprintf () prints it.
The parameter must be a void **.

s Reads a character string up to the next white space character
or at most width characters. The string is zero—terminated.
The argument must be of type char *.

u As d, but the parameter must be a pointer to an unsigned
integral type.

x, X As u, but reads a hexadecimal number.

% Skips a % sign in the input. Give only as %%.

° Range - ||[||[||/\||]Listn]n
e List = Element {Element}

¢ Element

= <any char> ["-"<any char>]

You can also use a scan set to read a character string that either contains only the
given characters or contains only characters not in the set. A scan set always is

516

RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

bracketed by left and right brackets. If the first character in the set is ~, the set is
inverted (i.e., only characters not in the set are allowed). You can specify whole
character ranges, e.g., A-Z specifies all upper-case letters. If you want to include a
right bracket in the scan set, it must be the first element in the list, a dash (-) must
be either the first or the last element. A ~ that shall be included in the list instead of
indicating an inverted list must not be the first character after the left bracket.

Some examples are:
e [A-Za-z]

Allows all upper- and lower-case characters.
e ["A-Z]

Allows any character that is not an uppercase
character.

* [labc]

Allows], a, b and c.
e [~]abc] Allows any char except], a, b and c.
e [-abc] Allows -, a, b and c.

A white space in the format string skips all white space characters up to the next
non—-white—space character. Any other character in the format must be exactly
matched by the input; otherwise sscanf () stops scanning.

The syntax for numbers as scanned by sscanf () is the following:

Number
IntNumber
DecNumber
OctNumber
HexNumber
FloatNumber
Exponent
OctDigit
Digit
HexDigit

FloatNumber | IntNumber

DecNumber | OctNumber | HexNumber

Sign Digit {Digit}

Sign 0 {OctDigit}

0 (x|X) HexDigit{HexDigit}

Sign {Digit} [.{Digit}] [Exponent]

(e|E) DecNumber

0|1|2]3]4|5]6]7

OctDigit |8]9

Digit |A|B|C|D|E|F|
albl|c|dle| £

Return

EOF, if s is NULL; otherwise it returns the number of arguments filled in.

NOTE If sscanf () finds an illegal input (i.e., not matching the required syntax), it

simply stops scanning and returns successfully!

RSO08 Build Tools Reference Manual for Microcontrollers 517

The Standard Functions

strcat()

Syntax
#include <string.h>

char *strcat(char *p, const char *q);

Description
strcat () appends string g to the end of string p. Both strings and the resulting
concatenation are zero—terminated.

Return
P

See also
memcpy() and memmove(),
strepy(),
strncat(), and
strncpy()

strchr()

Syntax
#include <string.h>

char *strchr(const char *p, int ch);

Description

strchr () looks for character ch in string p. If ch is '\ 0', the function looks for
the end of the string.

Return

A pointer to the character, if found; if there is no such character in *p, NULL is
returned.

518 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

See also
memchr(),
strrehr(), and
strstr()

stremp()

Syntax
#include <string.h>

int strcmp(const char *p, const char *q);

Description
strcmp () compares the two strings, using the character ordering given by the
ASCII character set.

Return
A negative integer, if p is smaller than g; zero, if both strings are equal; or a

positive integer if p is greater than q.

NOTE The return value of strcmp () is such that it could be used as a comparison
function in bsearch () and gsort ().

See also
memcmp(),
strcoll(), and
strncm[()

strcoll()

Syntax
#include <string.h>

int strcoll (const char *p, const char *q);

RSO08 Build Tools Reference Manual for Microcontrollers 519

The Standard Functions

Description
strcoll () compares the two strings interpreting them according to the current
locale, using the character ordering given by the ASCII character set.
Return
A negative integer, if p is smaller than g; zero, if both strings are equal; or a
positive integer if p is greater than g.
See also
mememp(),
strepy(), and
strncmp()

strcpy()

Syntax
#include <string.h>

char *strcpy(char *p, const char *q);

Description

strcpy () copies string g into string p (including the terminating '\ 0 ").

Return

IS

See also

memcpy() and memmove() and
strnepy()

strcspn()

Syntax
#include <string.h>

size_t strcspn(const char *p, const char *q);

520 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Description

strcspn () searches p for the first character that also appears in g.

Return

The length of the initial segment of p that contains only characters not in g.

See also

strchr(),
strpbrk(),
strrchr(), and
strspnQ)

strerror()

Syntax
#include <string.h>

char *strerror(int errno);

Description

strerror () returns an error message appropriate for error number errno.

Return

A pointer to the message string.

See also
[261”1‘01”!)

RSO08 Build Tools Reference Manual for Microcontrollers 521

The Standard Functions

strftime()
Syntax
#include <time.h>
size_t strftime (char *s,
size_t max,
const char *format,
const struct tm *time);
Description

strftime () converts time to a character string s. If the conversion results in a
string longer than max characters (including the terminating ' \0 "), s is left
unchanged and the function returns unsuccessfully. How the conversion is done is
determined by the format string. This string contains text, which is copied one-
to-one to s, and format specifiers. The latter always start with a % sign and are
replaced by the following (Table 16.17):

Table 16.17 strftime() output string content and format

Format Replaced with

%a Abbreviated name of the weekday of the current locale, e.g., Fri.
A Full name of the weekday of the current locale, e.g., Friday.

%b Abbreviated name of the month of the current locale, e.g., Feb.
%B Full name of the month of the current locale, e.g., February.

%c Date and time in the form given by the current locale.

%d Day of the month in the range from 0 to 31.

$H Hour, in 24-hour-clock format.

%I Hour, in 12-hour-clock format.

%3 Day of the year, in the range from 0 to 366.

$m Month, as a decimal number from 0 to 12.

M Minutes

522 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Table 16.17 strftime() output string content and format (continued)

Format Replaced with

P AM/PM specification of a 12-hour clock or equivalent of current
locale.

%S Seconds

U Week number in the range from 0 to 53, with Sunday as the first
day of the first week.

W Day of the week (Sunday = 0, Saturday = 6).

W Week number in the range from 0 to 53, with Monday as the first
day of the first week.

$x The date in format given by current locale.

X The time in format given by current locale.

£ The year in short format, e.g., "93".

Y The year, including the century (e.g., "2007").

%7 The time zone, if it can be determined.

%% A single '%' sign.

Return

If the resulting string would have had more than max characters, zero is returned;
otherwise the length of the created string is returned.

See also
mktime(),

setlocale(), and

time!

strlen()

Syntax

#include <string.h>

size_t strlen(const char *s);

RSO08 Build Tools Reference Manual for Microcontrollers 523

The Standard Functions

Description

strlen () returns the number of characters in string s.

Return
The length of the string.
strncat()
Syntax
#include <string.h>
char *strncat(char *p, const char *g, size_t n);
Description
strncat () appends string g to string p. If g contains more than n characters,
only the first n characters of g are appended to p. The two strings and the result all
are zero—terminated.
Return
1S
See also
strcat()
strnemp()
Syntax
#include <string.h>
char *strncmp(char *p, const char *qg, size_t n);
Description
strncmp () compares at most the first n characters of the two strings.
Return

A negative integer, if p is smaller than g; zero, if both strings are equal; or a
positive integer if p is greater than g.

524 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

See also
memcmp() and
stremp()
strncpy()
Syntax
#include <string.h>
char *strncpy(char *p, const char *qg, size_t n);
Description
strncpy () copies at most the first n characters of string g to string p,
overwriting p’s previous contents. If g contains less than n characters,a ' \0 ' is
appended.
Return
b
See also
memcpy() and memmove() and
strepy()
strpbrk()
Syntax
#include <string.h>
char *strpbrk(const char *p, const char *q);
Description
strpbrk () searches for the first character in p that also appears in g.
Return

NULL, if there is no such character in p; a pointer to the character otherwise.

RSO08 Build Tools Reference Manual for Microcontrollers 525

The Standard Functions

See also
strchr(),
strespn(),
strrchr(), and
strspn()

strrchr()

Syntax
#include <string.h>

char *strrchr (const char *s, int c);

Description

strpbrk () searches for the last occurrence of character ch in s.

Return

NULL, if there is no such character in p; a pointer to the character otherwise.

See also

strchr(),
strespn(),
strpbrk(), and
strspnQ)

strspn()

Syntax
#include <string.h>

size_t strspn(const char *p, const char *q);

Description

strspn () returns the length of the initial part of p that contains only characters
also appearing in g.

526 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Return

The position of the first character in p that is not in g.

See also

strchr(),
strespn(),
strpbrk(), and
strrchr()

strstr()

Syntax
#include <string.h>

char *strstr(const char *p, const char *q);

Description

strstr () looks for substring g appearing in string p.

Return

A pointer to the beginning of the first occurrence of string g in p, or NULL, if g
does not appear in p.

See also

strchr(),
strespn(),
strpbrk(),
strrchr(), and
strspnQ)

72}

RSO08 Build Tools Reference Manual for Microcontrollers 527

The Standard Functions

strtod()

Syntax
#include <stdlib.h>
double strtod(const char *s, char **end);

Description
strtod () converts string s into a floating point number, skipping over any white
space at the beginning of s. It stops scanning when it reaches a character not
matching the required syntax and returns a pointer to that character in *end. The
number format strtod () accepts is:
FloatNum = Sign{Digit}[.{Digit}] [Exp]
Sign = [+]-]
Exp = (e|E) SignDigit{Digit}
Digit = <any decimal digit from 0 to 9>

Return
The floating point number read. If an underflow occurred, 0. 0 is returned. If the
value causes an overflow, HUGE_VAL is returned. In both cases, errno is set to
ERANGE.

See also
atof(),
scanf(),
strtol(), and
strtoul()

strtok()
Syntax

#include <string.h>

char *strtok(char *p, const char *q);

528 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Description

strtok () breaks the string p into tokens which are separated by at least one
character appearing in g. The first time, call strtok () using the original string
as the first parameter. Afterwards, pass NULL as first parameter: strtok () will
continue at the position it stopped the previous time. strtok () saves the string p
if it is not NULL.

NOTE This function is not re—entrant because it uses a global variable for saving
string p. ANSI defines this function in this way.

Return

A pointer to the token found, or NULL, if no token was found.

See also
strchr(),
strespn(),
trpbrk().
strrchr(),
strspn(), and
strstr()

72}

72

strtol()

Syntax
#include <stdlib.h>

long strtol (const char *s, char **end, int base);

Description

strtol () converts string s into a long int of base base, skipping over any
white space at the beginning of s. It stops scanning when it reaches a character not
matching the required syntax (or a character too large for a given base) and returns
a pointer to that character in *end. The number format strtol () accepts is:

Int_Number

Dec_Number
Oct_Number

= Dec_Number | Oct_Number |
Hex_Number | Other_Num

= SignDigit{Digit}

Sign0{OctDhigit}

RSO08 Build Tools Reference Manual for Microcontrollers 529

The Standard Functions

Hex_Number = 0(x|X)Hex_Digit{Hex Digit}

Other_Num = SignOther_Digit{Other_Digit}

Oct_Digit = 0]|1]2|3]|4]|5]6]|7

Digit = Oct_Digit [8]9

Hex_Digit = Digit |A|B|C|D|E|F|
alb|c|dle|£

Other_Digit = Hex Digit |

<any char between 'G' and 'Z'>
<any char between 'g' and 'z'>

The base must be 0 or in the range from 2 to 36. If it is between 2 and 36, strtol
converts a number in that base (digits larger than 9 are represented by upper or
lower case characters from A to Z). If base is zero, the function uses the prefix to
find the base. If the prefix is 0, base 8 (octal) is assumed. If it is 0x or 0X, base 16
(hexadecimal) is taken. Any other prefixes make strtol () scan a decimal
number.

Return

The number read. If no number is found, zero is returned; if the value is smaller
than LONG_MTIN or larger than LONG_MAX, LONG_MIN or LONG_MAX is returned
and errno is set to ERANGE.

See also
atoi(),
atolQ),
scanf(),
strtod(), and
strtoul()

strtoul()

Syntax
#include <stdlib.h>

unsigned long strtoul (const char *s,
char **end,

int base) ;

530 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Description

strtoul () converts string s into an unsigned long int of base base,
skipping over any white space at the beginning of s. It stops scanning when it
reaches a character not matching the required syntax (or a character too large for a
given base) and returns a pointer to that character in *end. The number format
strtoul () accepts is the same as for strtol () except that the negative sign is
not allowed, and so are the possible values for base.

Return

The number read. If no number is found, zero is returned; if the value is larger than
ULONG_MAX, ULONG_MAX is returned and errno is set to ERANGE.

See also
atoi(),
atol(),
scanf(),
strtod(), and
strtol()

strxfrm()

Syntax
#include <string.h>

size_t strxfrm(char *p, const char *g, size_t n);

Description

strxfrm() transforms string g according to the current locale, such that the
comparison of two strings converted with strxfrm () using strcmp () yields
the same result as a comparison using strcoll (). If the resulting string would
be longer than n characters, p is left unchanged.

Return
The length of the converted string.

RSO08 Build Tools Reference Manual for Microcontrollers 531

The Standard Functions

See also
setlocale(),
stremp(), and
streoll)

Hard
system() peciic | M

Syntax

#include <string.h>

int system(const char *cmd) ;

Description

system () executes the cmd command line

Return

Zero

tan() and tanf()

Syntax
#include <math.h>
double tan(double x);
float tanf(float x);

Description

tan () computes the tangent of x. Express x in radians.

Return

tan (x). If x is an odd multiple of Pi/2, it returns infinity and sets errno to
EDOM.

532 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

See also

acos() and acosf(),
asin() and asinf(),
atan() and atanf(),
atan2() and atan2f(),
cosh() and coshf(),
sin() and sinf(), and
tan() and tanf()

tanh() and tanhf()

Syntax
#include <math.h>
double tanh(double x);
float tanhf(float x);

Description

tanh () computes the hyperbolic tangent of x.

Return
tanh (x).

See also
atan() and atanf(),
atan2() and atan2f(),
cosh() and coshf(),
sin() and sinf(), and
tan() and tanf()

RSO08 Build Tools Reference Manual for Microcontrollers 533

The Standard Functions

. Hard
time() ‘2;%?}?? @

Syntax

#include <time.h>

time_t time(time_t *timer);

Description
time () gets the current calendar time. If timer is not NULL, the current
calendar time is assigned to t imer.

Return

The current calendar time.

See also
clock(),
mktime(), and
strftime()

tmpfile() File /O H

Syntax

#include <stdio.h>
FILE *tmpfile(void) ;
Description

tmpfile () creates a new temporary file using mode "whb+" . Temporary files
automatically are deleted when they are closed or the application ends.

Return

A pointer to the file descriptor if the file could be created; NULL otherwise.

See also

fopen() and
tmpnam()

534 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

tmpnam() File /O H

Syntax

#include <stdio.h>

char *tmpnam(char *s);

Description

tmpnam () creates a new unique filename. If s is not NULL, this name is assigned
to it.

Return

A unique filename.

See also
tmpfile()

tolower()

Syntax
#include <ctype.h>

int tolower (int ch);

Description

tolower () converts any upper-case character in the range from A to Z into a
lower-case character from a to z.

Return
If ch is an upper-case character, the corresponding lower-case letter. Otherwise,
ch is returned (unchanged).

See also

isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct()

isspace(), isupper(), and isxdigit(),
toupper

RSO08 Build Tools Reference Manual for Microcontrollers 535

The Standard Functions

toupper()

Syntax
#include <ctype.h>
int toupper (int ch);
Description

tolower () converts any lower-case character in the range from a to z into an
upper-case character from A to Z.

Return

If ch is a lower-case character, the corresponding upper-case letter. Otherwise, ch
is returned (unchanged).

See also

isspace(). isupper(), and isxdigit(),
tolower()

ungetc() File I/O H

Syntax

#include <stdio.h>

int ungetc(int ch, FILE *f);

Description

ungetc () pushes the single character ch back onto the input stream £. The next
read from £ will read that character.

Return
ch

536 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

See also
feetsQ,
fopen(),
getc(), and
getchar()

va_arg(), va_end(), and va_start()

Syntax

#include <stdarg.h>

void va_start(va_list args, param);
type va_arg(va_list args, type);

void va_end(va_list args);

Description

These macros can be used to get the parameters into an open parameter list. Calls
to va_arg () get a parameter of the given type. Listing 16.1 shows how to do it:

Listing 16.1 Calling an open-parameter function

void my_func(char *s, ...) {
va_list args;
int i;
char *q;

va_start (args, s);

/* First call to 'va_arg' gets the first arg. */
i = va_arg (args, int);

/* Second call gets the second argument. */

g = va_arg(args, char *);

va_end (args);

RSO08 Build Tools Reference Manual for Microcontrollers 537

The Standard Functions

viprintf(), vprintf(), and vsprintf() File /0 H

Syntax

#include <stdio.h>

int vfprintf (FILE *f,

const char *format,

va_list args);
int vprintf (const char *format, va_list args);
int vsprintf (char *s,

const char *format,

va_list args);

Description

These functions are the same as fprintf (), printf (), and sprintf ()
except that they take a va_1ist instead of an open parameter list as argument.

For a detailed format description see sprintf ().

NOTE Only vsprintf () is implemented because the other two functions depend
on the actual setup and environment of the target.

Return

The number of characters written, if successful; a negative number otherwise.

See also

va_arg(), va_end(), and va_start()

wctomb()

Syntax
#include <stdlib.h>

int wctomb (char *s, wchar_t wchar) ;

538 RS08 Build Tools Reference Manual for Microcontrollers

The Standard Functions

Description

wctomb () converts wchar to a multi-byte character, stores that character in s,
and returns the length in bytes of s.

Return

The length of s in bytes after the conversion.

See also
wcstombs()
Hardware
wcstombs() specific @
Syntax

#include <stdlib.h>

int wcstombs (char *s, const wchar_t *ws, size_t n);

Description

wcstombs () converts the first n wide character codes in ws to multi-byte
characters, stores them character in s, and returns the number of wide characters
converted.

Return

The number of wide characters converted.

See also
wctomb()

RSO08 Build Tools Reference Manual for Microcontrollers 539

The Standard Functions

540 RS08 Build Tools Reference Manual for Microcontrollers

g |

Appendices

The appendices covered in this manual are:

» Porting Tips and FAQs: Hints about EBNF notation used by the linker and about
porting applications from other Compiler vendors to this Compiler

¢ Global Configuration File Entries: Documentation for the entries in the mcutools.ini
file

¢ Local Configuration File Entries: Documentation for the entries in the project.ini file.

RSO08 Build Tools Reference Manual for Microcontrollers 541

542 RS08 Build Tools Reference Manual for Microcontrollers

A
Porting Tips and FAQs

This appendix describes some FAQs and provides tips on the syntax of EBNF or how to
port the application from a different tool vendor.

* Migration Hints
¢ General Optimization Hints
¢ Frequently Asked Questions (FAQs), Troubleshooting

¢ Frequently Asked Questions (FAQs). Troubleshooting
 EBNF Notation

¢ Abbreviations, Lexical Conventions

¢ Number Formats

* Precedence and Associativity of Operators for ANSI-C

¢ List of all Escape Sequences

Migration Hints

This section describes the differences between this compiler and the compilers of other
vendors. It also provides information about porting sources and how to adapt them.

Porting from Cosmic

If your current application is written for Cosmic compilers, there are some special things
to consider.

Getting Started

The best way is to create a new project using the New Project Wizard (in the CodeWarrior
IDE: Menu File > New) or a project from a stationery template. This sets up a project for
you with all the default options and library files included. Then add the existing files used
for Cosmic to the project (e.g., through drag & drop from the Windows Explorer or using
in the CodeWarrior IDE: the menu Project > Add Files. Make sure that the right memory
model and CPU type are used as for the Cosmic project.

RSO08 Build Tools Reference Manual for Microcontrollers 543

y
A

Porting Tips and FAQs
Migration Hints

Cosmic Compatibility Mode Switch

The latest compiler offers a Cosmic compatibility mode switch (-Ccx: Cosmic

Compatibility Mode for Space Modifiers and Interrupt Handlers). Enable this compiler
option so the compiler accepts most Cosmic constructs.

Assembly Equates

For the Cosmic compiler, you need to define equates for the inline assembly using equ. If
you want to use an equate or value in C as well, you need to define it using #define as
well. For this compiler, you only need one version (i.e., use #define) both for C and for
inline assembly (Listing A.1). The equ directive is not supported in normal C code.

Listing A.1 An example using the EQU directive

#ifdef _ MWERKS_
#define CLKSRC_B 0x00 /*; Clock source */
#else

CLKSRC_B : equ $00 ; Clock source
#endif

Inline Assembly Identifiers

For the Cosmic compiler, you need to place an underscore (‘_") in front of each identifier,
but for this compiler you can use the same name both for C and inline assembly. In
addition, for better type-safety with this compiler you need to place a ‘@’ in front of
variables if you want to use the address of a variable. Using a conditional block like the
one below in Listing A.2 may be difficult. Using macros which deal with the cases below
(Listing A.3) is a better way to deal with this.

Listing A.2 Using a conditional block to account for different compilers

#ifdef _ MWERKS_
1ldx @myVariable, x
jsr MyFunction

#else
ldx _myVariable,x
jsr _MyFunction

#endif

Listing A.3 Using a macro to account for different compilers

#ifdef _ MWERKS_

544 RS08 Build Tools Reference Manual for Microcontrollers

Porting Tips and FAQs
Migration Hints

#define USCR (ident) ident
#define USCRA(ident) @ ident

#else /* for COSMIC, add a _ (underscore) to each ident */
#define USCR (ident) _##ident
#define USCRA (ident) _##ident

#endif

The source can use the macros:
1dx USCRA (myVariable) ,x

jsr USCR (MyFunction)

Pragma Sections

Cosmic uses the #pragma section syntax, while this compiler employs either
#pragma DATA_SEG (Listing A.4) or #pragma CONST_SEG (Listing A.5) or
another example (for the data section):

Listing A.4 #pragma DATA_SEG

#ifdef _ MWERKS_

#pragma DATA_SEG APPLDATA_SEG
#else

#pragma section {APPLDATA}
#endif

Listing A.5 #pragma CONST_SEG

#ifdef _ MWERKS_

#pragma CONST_SEG CONSTVECT_ SEG
#else

#pragma section const {CONSTVECT}
#endif

Do not forget to use the segments (in the examples above CONSTVECT_SEG and
APPLDATA_SEG) in the linker * . prm file in the PLACEMENT block.

Inline Assembly Constants

Cosmic uses an assembly constant syntax, whereas this compiler employs the normal C
constant syntax (Listing A.6):

RSO08 Build Tools Reference Manual for Microcontrollers 545

y
A

Porting Tips and FAQs
Migration Hints

Listing A.6 Normal C constant syntax

#ifdef _ MWERKS_
and O0xF8

#else
and #SF8

#endif

Inline Assembly and Index Calculation

Cosmic uses the + operator to calculate offsets into arrays. For the CodeWarrior IDE, you
have to use a colon (:) instead:

Listing A.7 Using a colon for offset

1dx array:7
#else

1dx array+7
#endif

Inline Assembly and Tabs

Cosmic lets you use TAB characters in normal C strings (surrounded by double quotes):
asm("This string contains hidden tabs!");

Because the compiler rejects hidden tab characters in C strings according to the ANSI-C
standard, you need to remove the tab characters from such strings.

Inline Assembly and Operators

Cosmic’s and this compiler’s inline assembly may not support the same amount or level of
operators. But in most cases it is simple to rewrite or transform them (Listing A.8).

Listing A.8 Accounting for different operators among different compilers

#ifdef _ MWERKS_

1dx # (BOFFIE + WUPIE) ; enable Interrupts
#else

lax #(BOFFIE | WUPIE) ; enable Interrupts
#endif

#ifdef _ MWERKS_

lda # (_TxBuf2+Datal)

1ldx #((_TxBuf2+Datal) / 256)
#else

546 RS08 Build Tools Reference Manual for Microcontrollers

Porting Tips and FAQs
Migration Hints

lda #((_TxBuf2+Datal) & S$ff)

1ldx #(((_TxBuf2+Datal) >> 8) & Sff)
#endif

@interrupt

Cosmic uses the @interrupt syntax, whereas this compiler employs the interrupt
syntax. In order to keep the source base portable, a macro can be used (e.g., in a main
header file which selects the correct syntax depending on the compiler used:

Listing A.9 interrupt syntax

/* place the following in a header file: */
#ifdef _ MWERKS_
#define INTERRUPT interrupt
#else
#define INTERRUPT @interrupt
#endif
/* now for each @interrupt we use the INTERRUPT macro: */
void INTERRUPT myISRFunction (void) {

Inline Assembly and Conditional Blocks
In most cases, the (-Ccx: Cosmic Compatibility Mode for Space Modifiers and Interrupt

Handlers) will handle the #asm blocks used in Cosmic inline assembly code Cosmic
compatibility switch. However, if #asm is used with conditional blocks like #1ifdef or
#1if, then the C parser may not accept it (Listing A.10).

Listing A.10 Use of Conditional Blocks without asm { and } Block Markers

void foo(void) {
#asm
nop
#if 1
#endasm
foo();
#asm
#endif
nop
#endasm

In such case, the #asm and #endasm must be ported to asm { and } block markers
(Listing A.11).

RSO08 Build Tools Reference Manual for Microcontrollers 547

y
A

Porting Tips and FAQs
Migration Hints

Listing A.11 Use of Conditional Blocks with asm { and } Block Markers

void foo (void) {
asm { // asm #1
nop
#if 1
} // end of asm #1
fool();
asm { // asm #2
#endif
nop
} // end of asm #2

Compiler Warnings

Check compiler warnings carefully. The Cosmic compiler does not warn about many
cases where your application code may contain a bug. Later on the warnings can be
switched off if desired (e.g., using the -W2: No Information and Warning
Messages option or using #pragma MESSAGE: Message Setting in the source code).

Linker *.Icf File (for the Cosmic compiler) and
Linker *.prm File (for this compiler)

Cosmic uses a *.Icf file for the linker with a special syntax. This compiler uses a linker
parameter file with a *.prm file extension. The syntax is not the same format, but most
things are straightforward to port. For this compiler, you must declare the RAM or ROM
areas in the SEGMENTS. . . END block and place the sections into the SEGMENTS in the
PLACEMENT. . . END block.

Make sure that all your segments you declared in your application (through #pragma
DATA_SEG, #pragma CONST_SEG, and #pragma CODE_SEG) are used in the
PLACEMENT block of the linker prm file.

Check the linker warnings or errors carefully. They may indicate what you need to adjust
or correct in your application. E.g., you may have allocated the vectors in the linker .prm
file (using VECTOR or ADDRESS syntax) and allocated them as well in the application
itself (e.g., with the #pragma CONST_SEG or with the @address syntax). Allocating
objects twice is an error, so these objects must be allocated one or the other way, but not
both.

Consult your map file produced by the linker to check that everything is correctly
allocated.

Remember that the linker is a smart linker. This means that objects not used or referenced
are not linked to the application. The Cosmic linker may link objects even if they are not

548 RS08 Build Tools Reference Manual for Microcontrollers

Porting Tips and FAQs
Migration Hints

used or referenced, but, nevertheless, these objects may still be required to be linked to the
application for some reason not required by the linker. In order to have objects linked to
the application regardless if they are used or not, use the ENTRIES. . . END block in the
linker .prm file:

ENTRIES /* the following objects or variables need to be
linked even if not referenced by the application */

_vectab ApplHeader FlashEraseTable
END

Allocation of Bitfields

Allocation of bitfields is very compiler-dependent. Some compilers allocate the bits first
from right (LSByte) to left (MSByte), and others allocate from left to right. Also,
alignment and byte or word crossing of bitfields is not implemented consistently. Some
possibilities are to:

¢ Check the different allocation strategies,
* Check if there is an option to change the allocation strategy in the compiler, or
¢ Use the compiler defines to hold sources portable:

— _ BITFIELD_LSBIT_FIRST

— __ _BITFIELD_MSBIT_FIRST___

— _ BITFIELD_LSBYTE FIRST

_ BITFIELD_MSBYTE FIRST_

— _ BITFIELD_LSWORD_FIRST_

— _ BITFIELD_MSWORD_FIRST_

— _ BITFIELD_TYPE_SIZE REDUCTION_

— _ BITFIELD_NO_TYPE_SIZE_REDUCTION_

Type Sizes and Sign of char

Carefully check the type sizes that a particular compiler uses. Some compilers implement
the sizes for the standard types (char, short, int, long, float, or double)
differently. For instance, the size for an int is 16 bits for some compilers and 32 bits for
others.

The signof plain char is also not consistent for all compilers. If the software program
requires that char be signed or unsigned, either change all plain char types to the signed
or unsigned types or change the sign of char with the -T: Flexible Type Management
option.

RSO08 Build Tools Reference Manual for Microcontrollers 549

3
4

y
A

Porting Tips and FAQs
Migration Hints

@bool Qualifier

Some compiler vendors provide a special keyword @boo1l to specify that a function
returns a boolean value:

@bool int foo(void) ;

Because this special keyword is not supported, remove @bool or use a define such as
this:

#define _BOOL /*@bool*/
_BOOL int foo(void);

@tiny and @far Qualifier for Variables

Some compiler vendors provide special keywords to place variables in absolute locations.
Such absolute locations can be expressed in ANSI-C as constant pointers:

#ifdef _ HIWARE
#define REG_PTB (*(volatile char*) (0x01))
#else /* other compiler vendors use non-ANSI features */
@tiny volatile char REG_PTB @0x01; /* port B */
#endif

The Compiler does not need the @tiny qualifier directly. The Compiler is smart enough to
take the right addressing mode depending on the address:

/* compiler uses the correct addressing mode */

volatile char REG_PTB @0x01;

Arrays with Unknown Size

Some compilers accept the following non-ANSI compliant statement to declare an array
with an unknown size:

extern char buf[0];

However, the compiler will issue an error message for this because an object with size
zero (even if declared as extern) is illegal. Use the legal version:

extern char buf[];

550

RS08 Build Tools Reference Manual for Microcontrollers

Porting Tips and FAQs
Migration Hints

Missing Prototype

Many compilers accept a function-call usage without a prototype. This compiler will issue
a warning for this. However if the prototype of a function with open arguments is missing
or this function is called with a different number of arguments, this is clearly an error:

printf("hello world!"); // compiler assumes void
printf (char¥*);
// error, argument number mismatch!

printf ("hello %s!", "world");

To avoid such programming bugs use the -Wpd: Error for Implicit Parameter Declaration
compiler option and always include or provide a prototype.

_asm(“sequence”)

Some compilers use _asm("string") to write inline assembly code in normal C
source code: _asm("nop");

This can be rewritten with asmorasm {}: asm nop;

Recursive Comments

Some compilers accept recursive comments without any warnings. The Compiler will
issue a warning for each such recursive comment:

/* this is a recursive comment /*
int a;
/* */
The Compiler will treat the above source completely as one single comment, so the
definition of ‘a’ is inside the comment. That is, the Compiler treats everything between

the first opening comment ‘/ *’ until the closing comment token ‘* /° as a comment. If
there are such recursive comments, correct them.

Interrupt Function, @interrupt

Interrupt functions have to be marked with #pragma TRAP_PROC or using the interrupt
keyword (Listing A.12).

Listing A.12 Using the TRAP_PROC pragma with an Interrupt Function

#ifdef _ HIWARE_
#pragma TRAP_PROC
void MyTrapProc (void)

RSO08 Build Tools Reference Manual for Microcontrollers 551

y
A

Porting Tips and FAQs
Migration Hints

#else /* other compiler-vendor non-ANSI declaration of interrupt

function */

@interrupt void MyTrapProc (void)

#endif

{

/* code follows here */

}

Defining Interrupt Functions

This manual section discusses some important topics related to the handling of interrupt
functions:

¢ Definition of an interrupt function
¢ Initialization of the vector table

* Placing an interrupt function in a special section

Defining an Interrupt Function

The compiler provides two ways to define an interrupt function:
* Using pragma TRAP_PROC.
¢ Using the keyword interrupt.

Using the TRAP_PROC Pragma

The TRAP_PROC pragma informs the compiler that the following function is an interrupt
function (Listing A.13). In that case, the compiler terminates the function by a special
interrupt return sequence (for many processors, an RTI instead of an RTS).

Listing A.13 Example of using the TRAP_PROC pragma

#pragma TRAP_PROC
void INCcount (void) {
tcount++;

}

Using the interrupt keyword

The interrupt keyword is non-standard ANSI-C and therefore is not supported by all
ANSI-C compiler vendors. In the same way, the syntax for the usage of this keyword may
change between different compilers. The keyword interrupt informs the compiler that the
following function is an interrupt function (Listing A.14).

5562

RS08 Build Tools Reference Manual for Microcontrollers

Porting Tips and FAQs
Migration Hints

Listing A.14 Example of using the “interrupt” keyword

interrupt void INCcount (void) {
tcount++;

}

Initializing the Vector Table

Once the code for an interrupt function has been written, you must associated this function
with an interrupt vector. This is done through initialization of the vector table. You can
initialize the vector table in the following ways:

¢ Using the VECTOR ADDRESS or VECTOR command in the PRM file
* Using the “interrupt” keyword.

Using the Linker Commands

The Linker provides two commands to initialize the vector table: VECTOR ADDRESS or
VECTOR. You use the VECTOR ADDRESS command to write the address of a function
at a specific address in the vector table.

In order to enter the address of the INCcount() function at address Ox8 A, insert the
following command in the application’s PRM file (Listing A.15).

Listing A.15 Using the VECTOR ADDRESS command

VECTOR ADDRESS 0x8A INCcount

The VECTOR command is used to associate a function with a specific vector, identified
with its number. The mapping from the vector number is target-specific.

In order to associate the address of the INCcount() function with the vector number 69,
insert the following command in the application’s PRM file (Listing A.16).

Listing A.16 Using the VECTOR command

VECTOR 69 INCcount

Using the interrupt Keyword

When you are using the keyword “interrupt”, you may directly associate your interrupt
function with a vector number in the ANSI C-source file. For that purpose, just specify the
vector number next to the keyword interrupt.

In order to associate the address of the INCcount function with the vector number 75,
define the function as in Listing A.17.

RSO08 Build Tools Reference Manual for Microcontrollers 553

y
A

Porting Tips and FAQs
Migration Hints

Listing A.17 Definition of the INCcount() interrupt function

interrupt 75 void INCcount (void) {
int cardl;
tcount++;

}

Placing an Interrupt Function in a Special
Section

For all targets supporting paging, allocate the interrupt function in an area that is
accessible all the time. You can do this by placing the interrupt function in a specific
segment.

Defining a Function in a Specific Segment

In order to define a function in a specific segment, use the CODE_SEG pragma (Listing
A.18).

Listing A.18 Defining a Function in a Specific Segment

/* This function is defined in segment ‘int_Function’*/
#pragma CODE_SEG Int_Function
#pragma TRAP_PROC
void INCcount (void) {
tcount++;
}
#pragma CODE_SEG DEFAULT /* Back to default code segment.*/

Allocating a Segment in Specific Memory

In the PRM file, you can define where you want to allocate each segment you have
defined in your source code. In order to place a segment in a specific memory area, just
add the segment name in the PLACEMENT block of your PRM file. Be careful, as the
linker is case-sensitive. Pay special attention to the upper and lower cases in your segment
name (Listing A.19).

Listing A.19 Allocating a Segment in Specific Memory

LINK test.abs

NAMES test.o ... END

SECTIONS

554 RS08 Build Tools Reference Manual for Microcontrollers

Porting Tips and FAQs
General Optimization Hints

INTERRUPT_ROM = READ_ONLY 0x4000 TO Ox5FFF;

MY_RAM

PLACEMENT

= READ_WRITE

Int_Function INTO INTERRUPT_ROM;

DEFAULT_RAM

END

INTO MY_RAM;

General

Optimization Hints

Here are some hints to reduce the size of your application:

Find out if you need the full startup code. For example, if you do not have any
initialized data, you can ignore or remove the copy-down. If you do not need any
initialized memory, you can remove the zero-out. And if you do not need either, you
may remove the complete startup code and set up your memory in the main routine.
Use INIT main in the prm file as the startup or entry into your main routine of the
application.

Check the compiler options. For example, the -OdocF: Dynamic Option
Configuration for Functions compiler option increases the compilation speed, but it
decreases the code size. Using the -Li: List of Included Files option to write a log file
displays the statistics for each single option.

Find out if you can use IEEE32 for both float and double. See the -T: Flexible Type
Management option for how to configure this. Do not forget to link the
corresponding ANSI-C library.

Use smaller data types whenever possible (e.g., 8 bits instead of 16 or 32 bits).

Look into the map file to check runtime routines, which usually have a *_’ prefix.
Check for 32-bit integral routines (e.g., _BMUL). Check if you need the long
arithmetic.

Enumerations: if you are using enums, by default they have the size of ‘int’. They
can be set to an unsigned 8-bit (see option -T, or use -TE1uE).

Check if you are using switch tables (have a look into the map file as well). There are
options to configure this (see -CswMinSLB: Minimum Number of Labels for Search
Switch Tables for an example).

Finally, the linker has an option to overlap ROM areas (see the -COCC option in the
linker).

RSO08 Build Tools Reference Manual for Microcontrollers 555

'
A

Porting Tips and FAQs
Frequently Asked Questions (FAQs), Troubleshooting

Frequently Asked Questions (FAQs),
Troubleshooting

This section provides some tips on how to solve the most commonly encountered
problems.

Making Applications

If the compiler or linker crashes, isolate the construct causing the crash and send a bug
report to Freescale support. Other common problems are:

The compiler reports an error, but WinEdit does
not display it.

This means that WinEdit did not find the EDOUT file, i.e., the compiler wrote it to a place
not expected by WinEdit. This can have several causes. Check that the DEFAULTDIR:
Default Current Directory environment variable is not set and that the project directory is
set correctly. Also in WinEdit 2.1, make sure that the OUTPUT entry in the file
WINEDIT.INT is empty.

Some programs cannot find a file.

Make sure the environment is set up correctly. Also check WinEdit’s project directory.
Read the Input Files section of the Files chapter.

The compiler seems to generate incorrect code.

First, determine if the code is incorrect or not. Sometimes the operator-precedence rules of
ANSI-C do not quite give the results one would expect. Sometimes faulty code can appear
to be correct. Consider the example in Listing A.20:

Listing A.20 Possibly faulty code?

if (x & vy !'= 0)
evaluates as:

if (x & (y != 0))
but not as:

if ((x & y) != 0)

556 RS08 Build Tools Reference Manual for Microcontrollers

Porting Tips and FAQs
Frequently Asked Questions (FAQs), Troubleshooting

Another source of unexpected behavior can be found among the integral promotion rules
of C. Characters are usually (sign—)extended to integers. This can sometimes have quite
unexpected effects, e.g., the if condition in Listing A.21 is FALSE:

Listing A.21 if condition is always FALSE

unsigned char a, b;
= —8;

= ~b;

f (a == ~b)

H-© O

because extending a results in 0x0007, while extending b gives 0x00F8 and the '~'
results in OxFF07. If the code contains a bug, isolate the construct causing it and send a
bug report to Freescale support.

The code seems to be correct, but the
application does not work.

Check whether the hardware is not set up correctly (e.g., using chip selects). Some
memory expansions are accessible only with a special access mode (e.g., only word
accesses). If memory is accessible only in a certain way, use inline assembly or use the
‘volatile’ keyword.

The linker cannot handle an object file.

Make sure all object files have been compiled with the latest version of the compiler and
with the same flags concerning memory models and floating point formats. If not,
recompile them.

The make utility does not make the entire
application.

Most probably you did not specify that the target is to be made on the command line. In
this case, the make utility assumes the target of the first rule is the top target. Either put the
rule for your application as the first in the make file, or specify the target on the command
line.

The make utility unnecessarily re-compiles a file.

This problem can appear if you have short source files in your application. It is caused by
the fact that MS—DOS only saves the time of last modification of a file with an accuracy of
+2 seconds. If the compiler compiles two files in that time, both will have the same time

RSO08 Build Tools Reference Manual for Microcontrollers 557

V¥ ¢
i

Porting Tips and FAQs
Frequently Asked Questions (FAQs), Troubleshooting

stamp. The make utility makes the safe assumption that if one file depends on another file
with the same time stamp, the first file has to be recompiled. There is no way to solve this
problem.

The help file cannot be opened by double
clicking on it in the file manager or in the
explorer.

The compiler help file is a true Win32 help file. It is not compatible with the windows 3.1
version of WinHelp. The program winhelp . exe delivered with Windows 3.1,
Windows 95 and Windows NT can only open Windows 3.1 help files. To open the
compiler help file, use Winhlp32. exe.

The winhlp32.exe program resides either in the windows directory (usually
C:\windows) or in its system (Win32s) or system32 (Windows 2000®, Windows XP,
or Windows Vista™ operating systems) subdirectory. The Win32s distribution also
contains Winhlp32.exe.

To change the association with Windows either (1) use the explorer menu View>Options
and then the File Types tab or (2) select any help file and press the Shift key. Hold it
while opening the context menu by clicking on the right mouse button. Select Open with
from the menu. Enable the Always using this program check box and select the
winhlp32.exe file with the “other” button.

To change the association with the file manager under Windows 3.1 use the
File>Associate menu entry.

How can constant objects be allocated in ROM?

Use #pragma INTO_ROM: Put Next Variable Definition into ROM and the -Cc: Allocate
Constant Objects into ROM compiler option.

The compiler cannot find my source file. What is
wrong?

Check if in the default.env file the path to the source file is set in the environment variable
GENPATH: #include “File” Path. In addition, you can use the -I: Include File Path
compiler option to specify the include file path. With the CodeWarrior IDE, check the
access path in the preference panel.

How can | switch off smart linking?
By adding a '+' after the object in the NAMES list of the prm file.

558

RS08 Build Tools Reference Manual for Microcontrollers

Porting Tips and FAQs
Frequently Asked Questions (FAQs), Troubleshooting

With the CodeWarrior IDE and the ELF/DW ARF object-file format (see -F (-F2. -F20):
Object-File Format) compiler option, you can link all in the object within an
ENTRIES. . .END directive in the linker prm file:

ENTRIES fibo.o:* END

How to avoid the ‘no access to memory’
warning?

In the simulator or debugger, change the memory configuration mode (menu Simulator >
Configure) to ‘auto on access’.

How can the same memory configuration be
loaded every time the simulator or debugger is
started?

Save that memory configuration under default.mem. For example, select Simulator >
Configure > Save and enter default .mem.

How can a loaded program in the simulator or
debugger be started automatically and stop at a
specified breakpoint?

Define the postload. cmd file. For example:

bs &main t

g

How can an overview of all the compiler options
be produced?

Type in -H: Short Help on the command line of the compiler.

How can a custom startup function be called
after reset?

In the prm file, use:

INIT myStartup

RSO08 Build Tools Reference Manual for Microcontrollers 559

wr
PRt

Porting Tips and FAQs
Frequently Asked Questions (FAQs), Troubleshooting

How can a custom name for the main() function
be used?

In the prm file, use:

MAIN myMain

How can the reset vector be set to the beginning
of the startup code?

Use this line in the prm file:
/* set reset vector on _Startup */

VECTOR ADDRESS OxXFFFE _Startup

How can the compiler be configured for the
editor?

Open the compiler, select File > Configuration from the menubar, and choose Editor
Settings.

Where are configuration settings saved?

Inthe project. ini file. With the CodeWarrior IDE, the compiler settings are stored in
the * .mcp file.

What should be done when “error while adding
default.env options” appears after starting the
compiler?

Choose the options set by the compiler to those set in the default.env file and then save
them in the project.ini file by clicking the save button in the compiler.

After starting up the ICD Debugger, an "lllegal
breakpoint detected" error appears. What could
be wrong?

The cable might be too long. The maximum length for unshielded cables is about 20 cm
and it also depends on the electrical noise in the environment.

560

RS08 Build Tools Reference Manual for Microcontrollers

Porting Tips and FAQs
EBNF Notation

EBNF

Why can no initialized data be written into the
ROM area?

The const qualifier must be used, and the source must be compiled with the -Cc: Allocate
Constant Objects into ROM option.

Problems in the communication or losing
communication.

The cable might be too long. The maximal length for unshielded cables is about 20 cm and
it also depends on the electrical noise in the environment.

What should be done if an assertion happens
(internal error)?

Extract the source where the assertion appears and send it as a zipped file with all the
headers, options and versions of all tools.

How to get help on an error message?

Either press F1 after clicking on the message to start up the help file, or else copy the
message number, open the pdf manual, and make a search on the copied message number.

How to get help on an option?

Open the compiler and type -H: Short Help into the command line. A list of all options
appears with a short description of them. Or, otherwise, look into the manual for detailed
information. A third way is to press F1 in the options setting dialog while a option is
marked.

Notation

This chapter gives a short overview of the Extended Backus—Naur Form (EBNF) notation,
which is frequently used in this document to describe file formats and syntax rules. A
short introduction to EBNF is presented.

Listing A.22 EBNF Syntax
ProcDecl = PROCEDURE " (" ArgList ")".
ArgList = Expression {"," Expression}.
Expression = Term ("*" | "/") Term.

RSO08 Build Tools Reference Manual for Microcontrollers 561

3
4

y
A

Porting Tips and FAQs

EBNF Notation
Term = Factor AddOp Factor.
AddOp = o,
Factor = (["="] Number) | " (" Expression ")".

The EBNF language is a formalism that can be used to express the syntax of context-free
languages. The EBNF grammar consists of a rule set called — productions of the form:

LeftHandSide = RightHandSide.

The left-hand side is a non-terminal symbol. The right-hand side describes how it is
composed.

EBNF consists of the symbols discussed in the sections that follow.
* Terminal Symbols
* Non-Terminal Symbols
¢ Vertical Bar
* Brackets
¢ Parentheses
¢ Production End

+ EBNF Syntax
* Extensions

Terminal Symbols

Terminal symbols (terminals for short) are the basic symbols which form the language
described. In above example, the word PROCEDURE is a terminal. Punctuation symbols of
the language described (not of EBNF itself) are quoted (they are terminals, too), while
other terminal symbols are printed in boldface.

Non-Terminal Symbols

Non-terminal symbols (non-terminals) are syntactic variables and have to be defined in a
production, i.e., they have to appear on the left hand side of a production somewhere. In
the example above, there are many non-terminals, e.g., ArgList or AddOp.

Vertical Bar

The vertical bar " | " denotes an alternative, i.e., either the left or the right side of the bar
can appear in the language described, but one of them must appear. e.g., the 3rd production
above means “an expression is a term followed by eithera "*" ora " /" followed by
another term.”

562

RS08 Build Tools Reference Manual for Microcontrollers

Porting Tips and FAQs
EBNF Notation

Brackets

Parts of an EBNF production enclosed by " [" and "] " are optional. They may appear
exactly once in the language, or they may be skipped. The minus sign in the last
production above is optional, both -7 and 7 are allowed.

The repetition is another useful construct. Any part of a production enclosed by " { " and
"} " may appear any number of times in the language described (including zero, i.e., it
may also be skipped). ArgList above is an example: an argument list is a single
expression or a list of any number of expressions separated by commas. (Note that the
syntax in the example does not allow empty argument lists.)

Parentheses

For better readability, normal parentheses may be used for grouping EBNF expressions, as
is done in the last production of the example. Note the difference between the first and the
second left bracket. The first one is part of the EBNF notation. The second one is a
terminal symbol (it is quoted) and may appear in the language.

Production End

A production is always terminated by a period.

EBNF Syntax

The definition of EBNF in the EBNF language is:

Listing A.23
Production = NonTerminal "=" Expression ".".
Expression = Term {"|" Term} .
Term = Factor {Factor}.
Factor = NonTerminal
| Terminal
| "(" Expression ")"
| "[" Expression "]"
| "{" Expression "}".
Terminal = Identifier | """ <any char> """.
NonTerminal = Identifier.

The identifier for a non-terminal can be any name you like. Terminal symbols are either
identifiers appearing in the language described or any character sequence that is quoted.

RSO08 Build Tools Reference Manual for Microcontrollers 563

'
A

Porting Tips and FAQs
Abbreviations, Lexical Conventions

Extensions

In addition to this standard definition of EBNF, the following notational conventions are
used.

The counting repetition: Anything enclosed by " {" and "} " and followed by a
superseripted o hression x must appear exactly x times. x may also be a non-terminal. In the
following example, exactly four stars are allowed:

Stars = {"*"}4.

The size in bytes: Any identifier immediately followed by a number 7 in square brackets
("["and "] ") may be assumed to be a binary number with the most significant byte
stored first, having exactly n bytes. See the example in Listing A.24.

Listing A.24 Example of a 4-byte identifier - FilePos

Struct = RefNo FilePos([4].

In some examples, text is enclosed by "<" and ">". This text is a meta-literal, i.e.,
whatever the text says may be inserted in place of the text (confer <any char> in
Listing A.24, where any character can be inserted).

Abbreviations, Lexical Conventions

Table A.1 has some programming terms used in this manual.

Table A.1 Common terminology

Topic Description

ANSI American National Standards Institute

Compilation Unit | Source file to be compiled, includes all included header files

Floating Type Numerical type with a fractional part, e.g., float, double, long double

HLI High-level Inline Assembly

Integral Type Numerical type without a fractional part, e.g., char, short, int, long,
long long

564 RS08 Build Tools Reference Manual for Microcontrollers

Porting Tips and FAQs

Number Formats

Number Formats

Valid constant floating number suffixes are £ and F for float and 1 or L for long double.
Note that floating constants without suffixes are double constants in ANSI. For
exponential numbers e or E has to be used. — and + can be used for signed representation

of the floating number or the exponent.

The following suffixes are supported (Table A.2):

Table A.2 Supported number suffixes

Constant Suffix Type

floating F float

floating L long double
integral) unsigned in t
integral ulL unsigned long

Suffixes are not case-sensitive, e.g., ul, Ul, uL and UL all denote an unsigned long
type. Listing A.25 has examples of these numerical formats.

Listing A.25 Examples of supported nhumber suffixes

+3.15f /* float */
-0.125f /* float */
3.125f /* float */
0.787F /* float */
7.125 /* double */
3.E7 /* double */
8.E+7 /* double */
9.E-7 /* double */
3.21 /* long double */
3.2el2L /* long double */

RSO08 Build Tools Reference Manual for Microcontrollers

565

'
A

Porting Tips and FAQs

Precedence and Associativity of Operators for ANSI-C

Precedence and Associativity of Operators

for ANSI-C

Table A.3 gives an overview of the precedence and associativity of operators.

Table A.3 ANSI-C Precedence and Associativity of Operators

Operators

Associativity

left to right

o~ e -+ =

& (type) sizeof right to left

left to right

left to right

left to right

left to right

left to right

left to right

left to right

left to right

left to right

left to right

right to left

oe

>>=

right to left

left to right

NOTE

Unary +, - and * have higher precedence than the binary forms.

The precedence and associativity is determined by the ANSI-C syntax (ANSI/ISO 9899-
1990, p. 38 and Kernighan/ Ritchie, “The C Programming Language”, Second Edition,

Appendix Table 2-1).

566

RS08 Build Tools Reference Manual for Microcontrollers

Porting Tips and FAQs
Precedence and Associativity of Operators for ANSI-C

Listing A.26 Examples of operator precedence and associativity

if (a == b&&c) and
if ((a == b)&&c) are equivalent.
However,

if (a == blc)
is the same as
b) | c)

In Listing A.26, operator-precedence causes the product of (c*d) to be added to b, and
that sum is then assigned to a.

In Listing A.27, the associativity rules first evaluates c+=1, then assigns b to the value of
b plus (c+=1), and then assigns the result to a.

Listing A.27 Three assignments in one statement

a=Db +=c += 1;

RSO08 Build Tools Reference Manual for Microcontrollers 567

'
A

Porting Tips and FAQs
List of all Escape Sequences

List of all Escape Sequences

Table A.4 gives an overview over escape sequences which could be used inside strings

(e.g., for printf):

Table A.4 Escape Sequences

Description Escape Sequence
Line Feed \n
Tabulator sign \t
Vertical Tabulator \v
Backspace \b
Carriage Return \r
Line feed \f
Bell \a
Backslash \N\
Question Mark \?
Quotation Mark \ A
Double Quotation Mark \ "
Octal Number \ooo
Hexadecimal Number \xhh

568

RS08 Build Tools Reference Manual for Microcontrollers

B

Global Configuration File
Entries

This appendix documents the entries that can appear in the global configuration file. This
file is named mcutools.ini.

mcutools.ini can contain these sections:
¢ [Options] Section
e [XXX Compiler] Section
» [Editor] Section
* Example

[Options] Section

This section documents the entries that can appear in the [Options] section of the file
mcutools.ini.

DefaultDir

Arguments
Default Directory to be used.

Description

Specifies the current directory for all tools on a global level (see also the
DEFAULTDIR: Default Current Directory environment variable).

Example

DefaultDir=C:\install\project

RSO08 Build Tools Reference Manual for Microcontrollers 569

A 4
4\

Global Configuration File Entries
[XXX_Compiler] Section

[XXX_Compiler] Section

This section documents the entries that can appear in an [XXX_Compiler] section of
the file mcutools. ini.

NOTE XXX s a placeholder for the name of the actual backend. For example, for the
RSO08 compiler, the name of this section would be [RS08_Compiler].

SaveOnExit

Arguments
1/0

Description

Set to 1 to store configuration when the compiler is closed. Clear to O otherwise.
The compiler does not ask to store a configuration in either case.

SaveAppearance
Arguments
1/0

Description

Set to 1 to store the visible topics when writing a project file. Clear to O if not. The
command line, its history, the windows position, and other topics belong to this

entry.
SaveEditor
Arguments
1/0
570

RS08 Build Tools Reference Manual for Microcontrollers

Global Configuration File Entries
[XXX_Compiler] Section

Description

Set to 1 to store the visible topics when writing a project file. Clear to O if not. The
editor setting contains all information of the Editor Configuration dialog box.

SaveOptions

Arguments
1/0

Description

Set to 1 to save the options when writing a project file. Clear to O otherwise. The
options also contain the message settings.

RecentProject0, RecentProjecti, etc.

Arguments

Names of the last and prior project files

Description

This list is updated when a project is loaded or saved. Its current content is shown
in the file menu.

Example
SaveOnExit=1
SaveAppearance=1
SaveEditor=1
SaveOptions=1
RecentProject0=C:\myprj\project.ini

RecentProjectl=C:\otherprj\project.ini

RSO08 Build Tools Reference Manual for Microcontrollers 571

y
A

Global Configuration File Entries
[XXX_Compiler] Section

TipFilePos
Arguments
Any integer, e.g., 236
Description
Actual position in tip of the day file. Used so different tips show at different calls.
Saved
Always saved when saving a configuration file.
ShowTipOfDay
Arguments
0/1
Description
Show the Tip of the Day dialog box at startup by setting ShowTipOfDay to 1.
1: Show Tip of the Day
0: Show only when opened in the help menu
Saved
Always saved when saving a configuration file.
TipTimeStamp
Arguments
date and time
Description

Date and time when the tips were last used.

572 RS08 Build Tools Reference Manual for Microcontrollers

Global Configuration File Entries
[Editor] Section

Saved

Always saved when saving a configuration file.

[Editor] Section

This section documents the entries that can appear in the [Editoxr] section of the
mcutools.ini file.

Editor Name

Arguments

The name of the global editor

Description
Specifies the name which is displayed for the global editor. This entry has only a
descriptive effect. Its content is not used to start the editor.

Saved

Only with Editor Configuration set in the File>Configuration Save Configuration
dialog box.

Editor_Exe

Arguments

The name of the executable file of the global editor

Description

Specifies the filename that is called (for showing a text file) when the global editor
setting is active. In the Editor Configuration dialog box, the global editor selection
is active only when this entry is present and not empty.

Saved

Only with Editor Configuration set in the File>Configuration Save Configuration
dialog box.

RSO08 Build Tools Reference Manual for Microcontrollers 573

y
A

Global Configuration File Entries
Example

Editor_Opts

Arguments

The options to use the global editor

Description
Specifies options used for the global editor. If this entry is not present or empty, $£
is used. The command line to launch the editor is built by taking the Editor_Exe
content, then appending a space followed by this entry.

Saved
Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

Example
[Editor]
editor_name=notepad
editor_exe=C:\windows\notepad.exe

editor_opts=%f

Example

Listing B.1 shows a typical mcutools. ini file.

Listing B.1 A Typical mcutools.ini File Layout

[Installation]
Path=c:\Freescale
Group=ANSI-C Compiler

[Editor]

editor_name=notepad
editor_exe=C:\windows\notepad.exe
editor_opts=%f

[Options]
DefaultDir=c:\myprj

[XXXX_Compiler]

574 RS08 Build Tools Reference Manual for Microcontrollers

Global Configuration File Entries
Example

SaveOnExit=1

SaveAppearance=1

SaveEditor=1

SaveOptions=1
RecentProjectO=c:\myprj\project.ini
RecentProjectl=c:\otherprj\project.ini
TipFilePos=0

ShowTipOfDay=1

TipTimeStamp=Jan 21 2006 17:25:16

RSO08 Build Tools Reference Manual for Microcontrollers 575

A 4

4\
Global Configuration File Entries
Example
576

RS08 Build Tools Reference Manual for Microcontrollers

C

Local Configuration File
Entries

This appendix documents the entries that can appear in the local configuration file.
Usually, you name this file project.ini, where project is a placeholder for the
name of your project.

A project. ini file can contain these sections:

e [Editor] Section
¢ [XXX_Compiler] Section

* Example

[Editor] Section

Editor Name

Arguments

The name of the local editor

Description

Specifies the name that is displayed for the local editor. This entry contains only a
descriptive effect. Its content is not used to start the editor.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box. This entry has the same format as the global Editor
Configuration in the mcutools. ini file.

RSO08 Build Tools Reference Manual for Microcontrollers 577

y
A

Local Configuration File Entries
[Editor] Section

Editor Exe

Arguments
The name of the executable file of the local editor
Description

Specifies the filename that is used for a text file when the local editor setting is
active. In the Editor Configuration dialog box, the local editor selection is only
active when this entry is present and not empty.

Saved

Only with Editor Configuration set in the File > Configuration > Save

Configuration dialog box. This entry has the same format as for the global Editor
Configuration in the mcutools. ini file.

Editor_Opts

Arguments

Local editor options

Description

Specifies options for the local editor to use. If this entry is not present or empty, $£
is used. The command line to launch the editor is built by taking the Editor_Exe
content, then appending a space followed by this entry.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box. This entry has the same format as the global Editor
Configuration in the mcutools. ini file.

Example [Editor] Section

[Editor]

editor_name=notepad

578 RS08 Build Tools Reference Manual for Microcontrollers

Local Configuration File Entries
[XXX_Compiler] Section

editor_exe=C:\windows\notepad.exe

editor_opts=%f

[XXX_Compiler] Section

This section documents the entries that can appear in an [XXX_Compiler] section of a
project.ini file.

NOTE XXX is aplaceholder for the name of the actual backend. For example, for the
RS08 compiler, the name of this section would be [RS08_Compiler].

RecentCommandLineX

NOTE X is a placeholder for an integer.

Arguments

String with a command line history entry, e.g., £ibo.c
Description

This list of entries contains the content of the command line history.
Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

CurrentCommandLine

Arguments

String with the command line, e.g., fibo.c -wl

Description

The currently visible command line content.

RSO08 Build Tools Reference Manual for Microcontrollers 579

y
A

Local Configuration File Entries
[XXX_Compiler] Section

Saved

Only with Appearance set in the File > Configuration >Save Configuration dialog
box.

StatusbarEnabled

Arguments
1/0

Special

This entry is only considered at startup. Later load operations do not use it
afterwards.

Description
Is status bar currently enabled?
1: The status bar is visible

0: The status bar is hidden

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

ToolbarEnabled

Arguments
1/0

Special

This entry is only considered at startup. Later load operations do not use it
afterwards.

Description
Is the toolbar currently enabled?

1: The toolbar is visible

580 RS08 Build Tools Reference Manual for Microcontrollers

Local Configuration File Entries
[XXX_Compiler] Section

0: The toolbar is hidden

Saved

Only with Appearance set in the File>Configuration > Save Configuration dialog
box.

WindowPos

Arguments
10 integers, e.g., “0,1,-1,-1,-1,-1,390,107,1103, 643"

Special

This entry is only considered at startup. Later load operations do not use it
afterwards.

Changes of this entry do not show the “*” in the title.

Description
This number contains the position and the state of the window (maximized) and
other flags.

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

WindowFont

Arguments

size: ==0-> generic size, < 0 -> font character height, > 0 font cell height
weight: 400 = normal, 700 = bold (valid values are 0 — 1000)
italic:0==no, 1 ==yes

font name: max 32 characters.

Description

Font attributes.

RSO08 Build Tools Reference Manual for Microcontrollers 581

y
A

Local Configuration File Entries
[XXX_Compiler] Section

Saved
Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

Example

WindowFont=-16,500,0,Courier

Options

Arguments
-W2

Description
The currently active option string. This entry is quite long as the messages are also
stored here.

Saved

Only with Options set in the File > Configuration > Save Configuration dialog
box.

EditorType

Arguments
0/1/2/3

Description
This entry specifies which Editor Configuration is active.
0: Global Editor Configuration (in the file mcutools.ini)
1: Local Editor Configuration (the one in this file)
2: Command line Editor Configuration, entry EditorCommandLine

3: DDE Editor Configuration, entries beginning with EditorDDE

582 RS08 Build Tools Reference Manual for Microcontrollers

Local Configuration File Entries
[XXX_Compiler] Section

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

EditorCommandLine

Arguments

Command line for the editor.

Description

Command line content to open a file.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

EditorDDECIlientName

Arguments

Client command, e.g., [open ($£f)]

Description
Name of the client for DDE Editor Configuration. For details see Editor Started

with DDE.
Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

EditorDDETopicName

Arguments

Topic name. For example, “system”

RSO08 Build Tools Reference Manual for Microcontrollers 583

A 4
4\

Local Configuration File Entries
Example

Description
Name of the topic for DDE Editor Configuration. For details, see
Editor Started with DDE

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

EditorDDEServiceName

Arguments

Service name. For example, “system”

Description

Name of the service for DDE Editor Configuration. For details, see Editor Started
with DDE.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

Example

Listing C.1 shows a typical configuration file layout (usually project.ini):

Listing C.1 A Typical Local Configuration File Layout

[Editor]

Editor_Name=notepad
Editor_Exe=C:\windows\notepad.exe
Editor_Opts=%f

[XXX_Compiler]

StatusbarEnabled=1

ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,390,107,1103,643
WindowFont=-16,500,0,Courier

Options=-wl

EditorType=3

584 RS08 Build Tools Reference Manual for Microcontrollers

Local Configuration File Entries
Example

RecentCommandLineO=fibo.c -w2
RecentCommandLinel=fibo.c
CurrentCommandLine=fibo.c -w2
EditorDDEClientName=[open (%f)]
EditorDDETopicName=system
EditorDDEServiceName=msdev
EditorCommandLine=C:\windows\notepad.exe %f

RSO08 Build Tools Reference Manual for Microcontrollers 585

A 4

4\
Local Configuration File Entries
Example

586

RS08 Build Tools Reference Manual for Microcontrollers

D

Known C++ Issues in the
RS08 Compilers

Template Issues

This section describes unsupported template features.

* Template specialization is unsupported. Example:

template <class T> class C {};

¢ Declaring a template in a class is unsupported. Example:

struct S {
template <class T1l, class T2> void f(T1, T2) {}
Y

- template <class T> struct S<..>

-template <int i>

* Non-template parameters are unsupported. Example:

template<> int £()

- S03< ::T03[3]> s03;
—————————————— N------------------Doesn't know global scope

template <int i, class P> struct S {}
S<0xa301, int(*)[4]1[31> s0;
————————————————————————— N--------Wrong type of template argument

RSO08 Build Tools Reference Manual for Microcontrollers 587

4
A

Known C++ Issues in the RS08 Compilers
Operators

¢ Implicit instantiations are unsupported. Example:

template <int i > struct A{
A<i> () {3}
————————————————— Ne—----—----------ERROR implicit instantiation

- void g00 (void) {}
void g00(U) {}
int g00(char) { return 0; }
——————————————————————————————— ERROR: Function differ in return type

¢ Accepting a template template parameter is unsupported. Example:

template <template <class P> class X, class T> struct A{}

* Defining a static function template is unsupported. Example:

template <class T> static int £(T t) {return 1}
———————————————— ~"--ERROR : Illegal storage class

Operators

This section describes operator-related limitations and issues as well as unsupported
operator features.

* Relational operators other than ‘==" are unsupported for function pointers.

¢ Operators in expressions are unsupported. Example:

- struct A { };
void operator* (A) { counter++; }
enum B{ };
int operator* (B) { return 0; }
———————————————————————— Function differs in return type only
(found 'void ' expected 'int ')
- struct A{
operator int* () {return &global;}

———————— Ae-e-—-————-—-—--—-—-Compile ERROR

588 RS08 Build Tools Reference Manual for Microcontrollers

g |

Known C++ Issues in the RS08 Compilers

Operators
- struct A{};
struct B:struct A{};
int operator* (A) {return 1;}
int £() {
B b;
return (*b);
————————————————— Neeeeee—————-—-----Tllegal cast operation
}
- int operator->*(B,int){ return 1; }
———————————————— ~---—-—--ERROR: unary operator must have one parameter

* When an expression uses an operator, a member function with the operator's name
should not hide a non-member function with the same name. Example:

struct A {
void operator* () { }
void test();
bi
void operator* (S, int) { } // not hidden by S::operator*()
void S::test () {
S s;
(void) (s * 3);
—————————————— Ne—----——--—--—---—---Compile ERROR

» Explicit operator calls are unsupported. Example:

struct B {
operator int() { return 1; }

—————————————————————————— ERROR: Not supported explicit operator call

Binary Operators

The following binary operator functions are unsupported:

* Implementing the binary ->* operator as a non-member function with two
parameters. Example:

friend long operator->* (base x, base y) ;

RSO08 Build Tools Reference Manual for Microcontrollers 589

4
A

Known C++ Issues in the RS08 Compilers
Operators

* Implementing the binary —>* operator as a non-static member function with one
parameter. Example:

int operator ->* (C)

7

¢ Overloaded operators are unsupported. Example:

struct S {

int m;

template <class T> void operator+=(T t) { m += t; } //
ERROR at template

}i
Unary operators
The following unary operator functions are unsupported:
* Implementing the unary ~ operator as a non-member function with one parameter.
Example:
int operator ~(C &X) { return 1; }
int tilda (C &X) { return 1; }
if (~c !'= tilda(c))
—————————— Ne—-ooo----------——---——---—---FERROR: Integer-operand expected
* Implementing the unary ! operator as a non-member function with one parameter.
Example:
class A{};

int operator! (A &X) { return 1; }
int bang_ (A &X) { return 1; }
A a;
if ((!a) != (bang_(a)))
————————— N--------ERROR : Arithmetic type or pointer expected

¢ Logical OR operators are unsupported. Example:

class X {
public:

operator int() {i = 1; return 1;}
}ox;

590 RS08 Build Tools Reference Manual for Microcontrollers

g |

Known C++ Issues in the RS08 Compilers

Operators
(void) (0 || x);
——————————————————————— ERROR
* Conditional operators are unsupported. Example:
int x = 1;
int a = 2;
int b = 3;
x?a:b 1;
————————————— Ne—-——--———-—-——-—-—---FERROR
* Assignment operators are incorrectly implemented. Example:
(1 =2) = 3;
————————————— N————---- The result of the = operator shall be an lvalue
(i *=2) = 3;

————————————— N——-—-—---—-- The result of the *= operator shall be an lvalue

————————————————————— The result of the += operator shall be an lvalue

Equality Operators

The following equality operator features are unsupported.

* Defining a pointer to member function type. Example:

struct X {
void f£() {}
Y
typedef void (X::*PROC) () ;

¢ Permitting an implementation to compare a pointer to member operand with a
constant expression which evaluates to zero using the == operator.

class X {
public:
int m;
}i
(void) (&X::m == 0);

RSO08 Build Tools Reference Manual for Microcontrollers 591

y
A

Known C++ Issues in the RS08 Compilers
Header Files

Header Files

Header files of type std namespace are unsupported.

Included cname header files are not mapped to name . h. Example:

#include <cstring>

Table D.1 shows unimplemented header files.

Table D.1 Unimplemented Header Files

<algorithm> <iomanip> <memory> <streambuf>
<bitset> <iosfwd> <new> <typeinfo>
<climits> <iostream> <numeric> <utility>
<complex> <istream> <ostream> <valarray>
<deque> <iterator> <queue> <vector>
<exception> <limits> <sstream> <wchar.h>
<fstream> <list> <stack> <wctype.h>
<functional> <map> <stdexcept>

Bigraph and Trigraph Support

The compiler does not recognize the trigraph sequence ?? ! as equal to |.

In some cases the compiler fails to replace the % : sequence. Example:

#if (4 == 9)

#include <string.h>

%:endif

A m e ERROR (missing endif directive)

592 RS08 Build Tools Reference Manual for Microcontrollers

Known C++ Issues in the RS08 Compilers
Known Class Issues

Known Class Issues

The following section describes known class issues and unimplemented or unsupported
features.

¢ Class Names

Usually, using elaborate type specifiers ensures the validity of both names when you
define a class and a function with the same name in the same scope. However, in the
RSO08 compilers this type of class name definition causes an error. Example:

class C { char c; };
void C(int x) { }

int x;
void main()
{
C(x);
—————— A ————_ ERROR

* Local classes are unsupported on the RSO8 compilers. Example:

void f (void)
{
class C {
c() {1}
Y

* The class member access feature is unsupported. Example:

class X {
public:

enum E { a, b, ¢ };
}ox;
int type(int) {return INT;}
int type(long) {return LONG;}
int type(char) {return CHAR;}
int type(X) {return ENUMX;}

—————————————————————————— Ambiguous parameters type

RSO08 Build Tools Reference Manual for Microcontrollers 593

4
A

Known C++ Issues in the RS08 Compilers
Known Class Issues

¢ Nested class declaration is unsupported, although some accesses and calls may
succeed when using nested classes.

* Nested class depths of ten or more are not supported. Example:

* Function member definitions are not allowed within local class definitions. Example:

void £ (){
class A({
int g();
——————————————— N——-----Tllegal local function definition
};
}

¢ Defining a class within a function template is not allowed. Example:

template <class T>
struct A {

void f£();
Y

template <class T>
void A<T>::f () {
class B {

* Unsupported Scope rules for classes

Declaring the name of a class does not ensure that the scope name extends through
the declarative regions of classes nested within the first class. Example:

struct X4 {
enum {i = 4};
struct Y4 {
int ar([il];

594 RS08 Build Tools Reference Manual for Microcontrollers

Known C++ Issues in the RS08 Compilers

Keyword Support

* Unimplemented Storage class specifiers

Normally, C++ allows taking the address of an object declared register. Example:

register int a;
int* ab = &a;

—————————— ~----— ERROR: Cannot take address of this object

¢ The mutable storage class specifier is unsupported.

Keyword Support

The following keywords are unsupported:

* typeid
e explicit
* typename
* mutable storage class specifier
¢ Cast keywords:
- static_cast
- const_cast
- reinterpret_cast

- dynamic_cast

Member Issues

The following member features are either unimplemented, unsupported, or not functioning

correctly in the RSO8 compilers.

¢ Pointer to Member

— Global pointer to member initialization is unimplemented. Example:

struct S1{};
struct S2 { int member; };
struct S3 : S1, S2 {};

RSO08 Build Tools Reference Manual for Microcontrollers

595

4
A

Known C++ Issues in the RS08 Compilers

Member Issues
— Accessing or initializing a class member using a pointer_to_member from
that class is unsupported. Example:
class X{
public
int a;
};

int main() {
int X::* p0 = &X::a;
X obj;
obj.*p0 = -1;
————————————————————————— ERROR:Unrecognized member

— Constructing an array from a pointer to member of a struct is unsupported.
Example:

int S::* a0[3];
a0[l] = &S::i

* Static member — When you refer a static member using the class member access
syntax, the object-expression is not evaluated or is evaluated incorrectly. Example:

int flag;
struct S {
static int val (void) { return flag; }
} s;
Ss* £f01() { flag = 101; return &s; }
void main () {
int g;
g = £f01()->val(); //evaluation failed

¢ Non-Static Member Functions

— Using non-static data members defined directly in their overlying class in non-
static member functions is unsupported. Example:

class X {

int var;
public:

X() : var(l) {}

596 RS08 Build Tools Reference Manual for Microcontrollers

g |

Known C++ Issues in the RS08 Compilers
Member Issues

int mem_func();
}ox;

int X::mem_func () {
return var; //returned value should be 1

}

— A non-static data member/member function name should refer to the object for
which it was called. However, in the RSO8 compiler, it does not. Example:

class X {

public:

int m;

X(int a) : m(a) {}
}
X obj = 2;

int a = obj.m; //should be 2 (but is not)
* Member Access Control
— Accessing a protected member of a base class using a friend function of the
derived class is unsupported. Example:
class A({
protected:
int i;

}s

class B:public A{
friend int f£(B* p){return p->i};
Yo

— Specifying a private nested type as the return type of a member function of the
same class or a derived class is unsupported. Example:

class A {
protected:
typedef int nested_type;
nested_type func_A(void) ;
}i
Class B: public A{
nested_type func_B(void) ;
}i
A::nested_type A::func_A(void) { return m; }
B:: nested_type B::func_B(void) { return m; }
N ERROR: Not allowed

RSO08 Build Tools Reference Manual for Microcontrollers 597

y
A

Known C++ Issues in the RS08 Compilers
Constructor and Destructor Functions

— Accessing a protected member is unsupported. Example:

class B {
protected:
int 1i;
Y
class C : private B {
friend void f (void);
Y
void f(void) { (void) &C::1i;}
——————————————————————————————— ERROR: Member cannot be accessed

— Access declaration

Base class member access modification is unimplemented in the following case:

class A({
public:
int z;
}i
class B: public A{
public:
A::z;
————————— A——-—--------ERROR
}i

Constructor and Destructor Functions

The compiler does not support the following destructor features:

* When a class has a base class with a virtual destructor, its user-declared destructor is
virtual

* When a class has a base class with a virtual destructor, its implicitly-declared
destructor is virtual

598 RS08 Build Tools Reference Manual for Microcontrollers

g |

Known C++ Issues in the RS08 Compilers
Constructor and Destructor Functions

The compiler does not support the following constructor features:

* Copy constructor is an unsupported feature. Example:

class C { int member;};
void f(void) {

C cl;

C c2 = cl;
——————— N————--——--—-ERROR: Illegal initialization of non-aggregate type
}

* Using a non-explicit constructor for an implicit conversion (conversion by
constructor) is unsupported. Example:
class A{
public:
int m;

S(int x) :m(x){};
Y
int £(A a) {return a.m};
int b = £(5) /*value of b should be 5 because of explicit conversion of
f parameter(b = £(A(5)))*/

» Directly invoking a virtual member function defined in a derived class using a
constructor/destructor of class x is unsupported. Example:

class A{
int m;
virtual void vf(){};
A(int) {vE()}

class B: public A{
void v () {}
B(int 1) : A(1) {}
}
B b(l); // this should result in call to A::vf()

RSO08 Build Tools Reference Manual for Microcontrollers 599

4
A

Known C++ Issues in the RS08 Compilers
Constructor and Destructor Functions

* Indirectly invoking a virtual member function defined in a derived class using a
constructor of class x is unsupported. Example:

class A({
int m;
virtual void vf(){};
void gf(){vEf();}
A(int) {gf();}
}
class B: public A{
void vE() {}
B(int i) : A(i) {}
}
B b(l); // this should result in call to A::vf()

* Invoking a virtual member function defined in a derived class using a ctor—
initializer of a constructor of class x is unsupported. Example:

class A{
int m;
virtual int vf () {return 1;};
A(int) :m(vE()) {}
}
class B: public A{
int vf(){return 2;}
B(int 1) : A(i) {}
}
B b(l); // this should result in call to A::vf()

600 RS08 Build Tools Reference Manual for Microcontrollers

Known C++ Issues in the RS08 Compilers
Overload Features

Overload Features

The following overload features are unsupported at this time.
* Overloadable Declarations

Usually, two function declarations of the same name with parameter types that only
differ in a parameter that is an enumeration in one declaration, and a different
enumeration in the other, can be overloaded. This feature is unsupported at this time.
Example:

enum el {a, b, c};

enum e2 {d, e};

int g(el) { return 3; }

int g(e2) { return 4; }
———————————————————————————————————— ERROR: function redefinition

¢ Address of Overloaded Function

Usually, in the context of a pointer-to-function parameter of a user-defined operator,
using a function name without arguments selects the non-member function that
matches the target. This feature is unsupported at this time. Example:

const int F_char = 100;
int func (char)
{

return F_char;

}
struct A {} a;
int operator+ (A, int (*pfc) (char))

{
return pfc(0);
}
if (a + func '= F_char) {}

———————————————————————————— Arithmetic types expected

RSO08 Build Tools Reference Manual for Microcontrollers 601

4
A

Known C++ Issues in the RS08 Compilers
Overload Features

¢ Usually, in the context of a pointer-to-member-function return value of a function,
using a function name without arguments selects the member function that matches
the target. This feature is unsupported at this time. Example:

struct X {

void £ (void) {}

void £ (int) {}
}ox;
typedef void (X::*mfvp) (void) ;
mfvp £03() {

return &X::f;

————————————————————————————— ERROR:Cannot take address of this object

¢ Usually, when an overloaded name is a function template and template argument
deduction succeeds, the resulting template argument list is used to generate an
overload resolution candidate that should be a function template specialization. This
feature is unsupported at this time. Example:

template <class T> int f(T) { return F_char; }

int f(int) { return F_int; }

int (*p00) (char) = f;

———————————————————————————————— AN—----———---FERROR: Indirection to
different types ('int (*) (int)' instead of 'int (*) (char)"')

¢ Opverloading operators is unsupported at this time. Example:

struct S {

int m;

template <class T> void operator+=(T t) { m += t; } //
ERROR at template
Y

602 RS08 Build Tools Reference Manual for Microcontrollers

Known C++ Issues in the RS08 Compilers
Conversion Features

Conversion Features

The following conversion features are unsupported.

* Implicit conversions using non-explicit constructors are unsupported. Example:

class A({
public:
int m;
S(int x) :m(x){};
I
int £(A a) {return a.m};
int b = £(5) /*value of b should be 5 because of explicit conversion of
f parameter(b = £(A(5)))*/

* Initializations using user-defined conversions are unsupported. Usually, when you
invoke a user-defined conversion to convert an assignment-expression of type cv S
(where S is a class type), to a type cvl T (where T is a class type), a conversion
member function of S that converts to cvl T is considered a candidate function by
overload resolution. However, this type of situation is unsupported on RS08
compilers. Example:

struct T{
int m;
T() { m = 0; }
ot
struct S {
operator T() { counter++; return t; }
} s00;

T t00 = s00;
————————————————————— Constructor call with wrong number of arguments

Standard Conversion Sequences

The following standard conversion sequences are unsupported:

* A standard conversion sequence that includes a conversion having a conversion rank.
Example:

int f0(long double) { return 0; }

int fO0 (double) { return 1; }

float £ = 2.3f;

value = £0(£f); //should be 1
———————————————————————— ERROR ambiguous

RSO08 Build Tools Reference Manual for Microcontrollers 603

y
A

Known C++ Issues in the RS08 Compilers
Conversion Features

¢ A standard conversion sequence that includes a promotion, but no conversion,
having a conversion rank. Example:

int fO0(char) { return 0; }

int f0(int) { return 1; }

short s = 5;

value = f0(s);

————————————————— N—-—----------- ERROR ambiguous

* A pointer conversion with a Conversion rank. Example:

int f0(void *) { return 0; }
int f£0(int) { return 1; }

value f0 ((short) 0);
———————————————— A------------- ERROR ambiguous
¢ User-Defined Conversion Sequences
A conversion sequence that consists of a standard conversion sequence, followed by
a conversion constructor and a standard conversion sequence, is considered a user-
defined conversion sequence by overload resolution and is unsupported. Example:
char k = 'a';
char * kp = &k;
struct SO {
SO0(...) { flag = 0; }
S0 (void *) { flag = 1; }
};

const S0& sO0r = kp;
—————————————————————— ERROR: Illegal cast-operation

Ranking implicit conversion sequences

The following implicit conversion sequence rankings situations are unsupported at this
time.

* When s1 and s2 are distinct standard conversion sequences and s1 is a sub-
sequence of s2, overload resolution prefers s1 to s2. Example:

int fO0(const char*) { return 0; }
int fO0(char*) { return 1; }
value = f0('a');

——————————————— A----------------ERROR:Ambiguous

604 RS08 Build Tools Reference Manual for Microcontrollers

g |

Known C++ Issues in the RS08 Compilers
Conversion Features

¢ When s1 and s2 are distinct standard conversion sequences of the same rank,
neither of which is a sub-sequence of the other, and when s1 converts c* to b*
(where b is a base of class c), while s2 converts c* to a* (where a is a base of class
b), then overload resolution prefers s1 to s2. Example:

struct a

struct b : public a

struct ¢ : public b

int f0(a*) { return 0; }

int f0(b*) { return 1; }

c* cp;

value = £0(cp);

—————————————— Ne---—-———--—-------ERROR:Ambiguous

* When s1 and s2 are distinct standard conversion sequences neither of which is a
sub-sequence of the other, and when s1 has Promotion rank, and s2 has Conversion
rank, then overload resolution prefers s1 to s2. Example:

int f(int) { return 11; }

int f(long) { return 55; }

short aa = 1;

int i = f(aa)

—————————— Ne-eoe-—————-———-—-—-———— ERROR:Ambiguous

Explicit Type Conversion

The following syntax use is not allowed when using explicit type conversions on an RS08
compiler:

i = int();//A simple-type-name followed by a pair of parentheses

The following explicit type conversion features are unsupported at this time:

» Casting reference to a volatile type object into a reference to a non-volatile type
object. Example:

volatile int x = 1;
volatile int& y= x;
if((int&)y !'= 1);

RSO08 Build Tools Reference Manual for Microcontrollers 605

y
A

Known C++ Issues in the RS08 Compilers
Initialization Features

* Converting an object or a value to a class object even when an appropriate
constructor or conversion operator has been declared. Example:

class X {

public:
int 1i;
X(int a) { 1 = a; }
Y
X x =1;
X = 2;

———————————————————————— ERROR: Illegal cast-operation

» Explicitly converting a pointer to an object of a derived class (private) to a pointer to
its base class. Example:

class A {public: int x;};
class B : private A {

public:
int vy;
Y
int main() {
B b;
A *ap = (A *) &b;
——————————————— N——-—-- ERROR: BASE_CLASS of class B cannot be accessed
}

Initialization Features

The compiler does not support the following initialization features:

* When an array of a class type T is a sub-object of a class object, each array element is
initialized by the constructor for T. Example:

class A{
public:

A(){}
I
class B{
public:

A x[3];

B(){};
}.

B b; /*the constructor of A is not called in order to initialize the
elements of the array*/

606 RS08 Build Tools Reference Manual for Microcontrollers

g |

Known C++ Issues in the RS08 Compilers
Initialization Features

¢ Creating and initializing a new object (call constructor) using a new-expression with
one of the following forms:

- (void) new C();
- (void) new C;

* When initializing bases and members, a constructor's mem-initializer-list
may initialize a base class using any name that denotes that base class type
(typedef); the name used may differ from the class definition. Example:

struct B {
int im;
B(int 1=0) { im = 1i; }
}i
typedef class B B2;
struct C : public B {
C(int 1) : B2(i) {} ;

* Specifying explicit initializers for arrays is not supported. Example:

typedef M MA[3];
struct S {
MA a;
S(int i) : a() {}
————————————————————————————————— ERROR: Cannot specify explicit
initializer for arrays

Y

« Initialization of local static class objects with constructor is unimplemented.
Example:

struct S {

int a;

S(int aa) : a(aa) {}
Y
static S s(10);

See Conversion Features also.

RSO08 Build Tools Reference Manual for Microcontrollers 607

4
A

Known C++ Issues in the RS08 Compilers
Errors

Errors

The following functions are incorrectly implemented:
e sprintf
e vprintf
e putc
e atexit from stdlib.h
e strlen from string.h
¢]O functions (freopen, fseek, rewind, etc.)
The following errors occur when using C++ with the RS08 compiler.
¢ EILSEQ is undefined when <errno . h> is included
¢ Float parameters pass incorrectly
int func(float, float, float);
func(f, 6.000300000e0, 5.999700000e0)
the second value becomes -6.0003

¢ Local scope of switch statement is unsupported for the default branch. Example:

switch (a){
case 'a': break;

default
int x = 1;
—————————— N~-------------ERROR: Not declared x
}
* An if condition with initialized declaration is unsupported. Example:
if(int i = 0)

The following internal errors occur when using C++ with the RS08 compiler:

 Internal Error #103. Example:

long double & f(int i) {return 1;}

long double 1ij;

if (£(i)!=1)

————————————————————————— Internal Error

608 RS08 Build Tools Reference Manual for Microcontrollers

g |

Known C++ Issues in the RS08 Compilers
Errors

 Internal Error #385, generated by the following example:

class C{
public:
int n;
operator int() { return n; };
tey;
switch(cy) {

break;
default:
break;

 Internal Error #418, generated by the following example:

#include <time.h>
struct std::tm T;

¢ Internal Error #604, generated by the following example:

class C {

public:
int a;
unsigned func() { return 1;}
Y
unsigned (C::*pf) () = &C::func;
if (pf '= 0);

————————————————————————— Generates the error

¢ Internal Error #1209, when using a twelve-dimensional array

 Internal Error #1810, generated by the following example:

struct Index {

int s;
Index (int size) { s = size; }
~Index (void) { ++x; }
}i
for (int i = 0; i < 10; i++)
for (Index j(0); j.s < 10; j.s++) {
//
}

RSO08 Build Tools Reference Manual for Microcontrollers 609

y
A

Known C++ Issues in the RS08 Compilers
Other Features

Other Features

This section describes unsupported or unimplemented features.

¢ Unsupported data types include:
— bool
— wchar_t (wide character).

* Exception handling is unsupported

¢ Using comma expressions as 1values is unsupported. Example:
(a=7, b) = 10;

* Name Features

— Namespaces are currently unsupported. Example:

namespace A {
A

int f(int x);

— The name lookup feature is currently unsupported. Name lookup is defined as
looking up a class as if the name is used in a member function of X when the
name is used in the definition of a static data member of the class. Example:

class C {

public:
static int 1i;
static struct S {
int 1i; char c;
} os;

int C::1 = s.1;

— Hiding a class name or enumeration name using the name of an object, function,
or enumerator declared in the same scope is unsupported. Example:

enum {one=1, two, hidden_name };
struct hidden_name{int x;};
——————————— N----------------Not allowed

610 RS08 Build Tools Reference Manual for Microcontrollers

g |

Known C++ Issues in the RS08 Compilers
Other Features

¢ Global initializers with non-const variables are unsupported. Example:

int x;
int vy = x;

¢ Anonymous unions are unsupported. Example:

void f()
{
union { int x; double y; };
x = 1;
v = 1.0;
}
* The following time functions (<ctime>) are unsupported:
— time()
— localtime()
— strftime()
— ctime()
— gmtime ()
— mktime ()
— clock()
- asctime()
¢ The fundamental type feature is not supported:
int fun (char x){}
int fun (unsigned char x) {}
—————————————— N -————————--———--———--Tllegal function redefinition
* Enumeration declaration features
— Defining an enum in a local scope of the same name is unsupported. Example:
enum e { gwiz }; // global enum e
void £f()
{
enum e { lwiz };
——————————————— N———-——-——-—--—-—-—- ERROR: Illegal enum redeclaration
}

RSO08 Build Tools Reference Manual for Microcontrollers 611

4
A

Known C++ Issues in the RS08 Compilers
Other Features

— The identifiers in an enumerator-list declared as constants, and appearing
wherever constants are required, is unsupported. Example:

int fun(short 1) { return 0; }
int fun(const int 1) { return 1; }
enum E { %X, v };

fun(x); /*should be 1*/

* Unsupported union features:
— An unnamed union for which an object is declared having member functions

— Allocation of bit-fields within a class object. Example:

enum {two = 2};
struct D { unsigned char : two; };

* The following multiple base definition features are unimplemented as yet:

— More than one indirect base class for a derived class. Example:

Class B:public A(){};
Class C: public B(){};
Class D :public B, public A,publicC{};

— Multiple virtual base classes. Example:

class A{};

class B: public virtual A{};
class C: public virtual A{};
class D: public B, public C{}

* Generally, a friend function defined in a class is in the scope of the class in which it
is defined. However, this feature is unsupported at this time. Example:

class A{
public:
static int b;
int f£(){return b;};
}i
int A::b = 1;
int x = £(); /*ERROR : x!=1 (it should be 1)*/

612 RS08 Build Tools Reference Manual for Microcontrollers

g |

Known C++ Issues in the RS08 Compilers
Other Features

* The compiler considers the following types ambiguous (the same):
- char
- unsigned char
- signed char

¢ The Call to Named Function feature is unsupported. Example:

class A{
static int f£() {return 0;}
friend void call_f(){
£(0);
——————————— ERROR: missing prototype (it should be accepted
by the compiler)

* Preprocessing directives are unsupported. Example:

#define MACRO (X) 1+ X
MACRO(1) + 1;
———————————————————————————————— Illegal cast-operation

* The following line control feature is unsupported.

— Including a character-sequence in a line directive makes the implementation
behave as if the content of the character string literal is equal to the name of the
source file. Example:

#line 19 "testfile.C" //line directive should alter _ FILE_

» The following floating point characteristics errors occur:
— Float exponent is inconsistent with minimum
power (FLT_RADIX, FLT MIN_EXP -1) != FLT_MIN
— Float largest radix power is incorrect

FLT MAX / FLT RADIX + power (FLT RADIX, FLT MAX_ EXP-
FLT_MANT DIG-1)!= power (FLT_RADIX,FLT MAX_EXP-1)

— Multiplying then dividing by radix is inexact
— Dividing then multiplying by radix is inexact
— Double exponent is inconsistent with minimum

— Double, power of radix is too small

RSO08 Build Tools Reference Manual for Microcontrollers 613

wr
4\

Known C++ Issues in the RS08 Compilers
Other Features

— Double largest radix power is incorrect
— Multiplying then dividing by radix is inexact
— Dividing then multiplying by radix is inexact
— Long double exponent is inconsistent with minimum
— Long double, power of radix is too small
— Long double largest radix power is incorrect
¢ The following best viable function is unsupported:

— When two viable functions are indistinguishable implicit conversion sequences, it
is normal for the overload resolution to prefer a non-template function over a
template function. Example:

int £ (short , int) { return 1; }

template <class T> int f(char, T) { return 2; }
value = £(1, 2);
——————————————————————————————— ERROR: Ambiguous

¢ The following Reference features are unsupported:

— Object created and initialized/destroyed when reference is to a const. Example:

——————————————————————————————————— ERROR: Illegal cast-operation

— The following syntax is unsupported:

int a7, a;
1if(&(::a7) == &a);
———————————————————————————— ERROR:Not supported operator

* Aggregate features

— Object initialization fails. Example:

class complex{
float re, im;

complex(float r, float i = 0) { re=r; im=i; };
int operator!=(complex x) {}

}

complex z = 1;

z!1=1

————————————————————— ERROR :Type mismatch

614 RS08 Build Tools Reference Manual for Microcontrollers

g |

Known C++ Issues in the RS08 Compilers
Other Features

— Initialization of aggregate with an object of a struct/class publicly derived from
the aggregate fails. Example:

class A {
public:
int a;
A(int) ;
Y
class B: public A{
public:
int b;
B(int, int);
}i
B::B(int ¢, int d) : A(d) { b = ¢; }
B b_obj(l, 2);
int x = B_obj.a;
————— A—-------—--ERROR: x should be 2

¢ Evaluating default arguments at each point of call is an unsupported feature.

» The following typedef specifier is unsupported:

typedef int new_type;
typedef int new_type;
————————————————————— ERROR: Invalid redeclaration of new_type

¢ This return statement causes an error:

return ((void) 1);

* Permitting a function to appear in an integral constant if it appears in a sizeof
expression is unsupported. Example:

void f£() {}
int i[sizeof &f];

RSO08 Build Tools Reference Manual for Microcontrollers 615

4
A

Known C++ Issues in the RS08 Compilers
Other Features

* Defining a local scope using a compound statement is an unimplemented feature.

Example:
int i = 4;
int main() {
if ((4 1= 1) || (::1 1= 4));
———————————————————————— N—————-——-——-ERROR
}

¢ The following Main function is currently unimplemented:

argv[argc] '=0 (it should be guaranteed that argv[argc]==0.)

* The following Object lifetime feature is currently unimplemented:

— When the lifetime of an object ends and a new object is created at the same
location before it is released, a pointer that pointed to the original object can be
used to manipulate the new object.

* The following Function call features are unsupported:

— References to functions feature is not supported. Example:

int main() {

int f(void);
int (&fr) (void) = f;/
}

— Return pointer type of a function make ambiguous between void * and X *.
Example:

class X {
public:
X *f() { return this; }
Y
int type(void *x) {return VOIDP;}
int type(X *x) {return CXP;}
X x;
type (x.£())
————— N—-------ERROR: ambiguous

— Incorrect implementation of a member function call when the call is a conditional
expression followed by argument list. Example:

616 RS08 Build Tools Reference Manual for Microcontrollers

g |

Known C++ Issues in the RS08 Compilers
Other Features

struct S {

s(){}

int f£() { return 0; }

int g() { return 11; }
int h() {

return (this->*((0?(&S::f) : (&S::g9)))) ();

—————————————————————————————— A——-—-—-------ERROR

}
Y

¢ The following Enumeration feature is unsupported:

— For enumerators and objects of enumeration type, if an int can represent all the
values of the underlying type, the value is converted to an int; otherwise if an
unsigned int canrepresent all the values, the value is converted to an
unsigned int; otherwise if a 1ong can represent all the values, the value is
converted to a 1ong; otherwise it is converted to unsigned long. Example:

enum E { i=INT_ MAX, ui=UINT MAX , 1=LONG_MAX, ul=ULONG_MAX };
————————————————————————— N--------------ERROR: Integral type expected
or enum value out of range

* Delete operations have the following restrictions:

— Usethe S: : operator delete only for single cell deletion and not array
deletion. For array deletion, use the global : : delete (). Example:

struct S{

s {3}

~S () {destruct_counter++;}

void * operator new (size_t size) {
return new char[size];

}

void operator delete (void * p) {
delete_counter ++;
::delete p;}

= new S[3];

delete [] ps;

————————————— N—-------ERROR: Used delete operator (should use global
::delete)

RSO08 Build Tools Reference Manual for Microcontrollers 617

y
A

Known C++ Issues in the RS08 Compilers
Other Features

— Global : : delete uses the class destructor once for each cell of an array of class
objects. Example:

S * psl = new S[5];
::delete [] psl;
———————————— ~------ERROR: ~S is not used

— Error at declaring delete operator. Example:

void operator deletel] (void *p){};

¢ The New operator is unimplemented. Example:

- void * operator newl] (size_t);
——————————————————————————— ERROR: Operator must be a function

» The following Expression fails to initialize the object. Example:

int *p = new int(1l+(2*4)-3);
—————————————————————— ERROR: The object is not initialized

¢ Use placement syntax for new int objects. Example:

int * pl, *p2;

pl new int;

p2 = new (pl) int;

—————————————————————————————— ERROR: Too many arguments

¢ The following Multi-dimensional array syntax is not supported:

int tab[2][3];
int fun(int (*tab) [3]);

* The following Goto syntax is unsupported:

label:
int x = 0;
————————————————————————————— ERROR: x not declared (or typename)

618 RS08 Build Tools Reference Manual for Microcontrollers

g |

Known C++ Issues in the RS08 Compilers
Other Features

» The following Declaration Statement feature is not implemented:

— Transfer out of a loop, out of a block, or past an initialized auto variable
involves the destruction of auto variables declared at the point transferred from
but not at the point transferred to.

* The following Function Syntax features are not supported:

— Function taking an argument and returning a pointer to a function that takes an
integer argument and returns an integer should be accepted. Example:

int (*funl (int)) (int a) {}
int fun2 (int (*funl (int)) (int)) ()
————— A ____ERROR

— Declaring a function fun taking a parameter of type integer and returning an
integer with typedef is not allowed. Example:

typedef int fun(int)

— A cv-qualifier-seqcan only be part of a declaration or definition of a non-
static member function, and of a pointer to a member function. Example:

class C {
const int funl (short);
volatile int fun2 (long);
const volatile int fun3(signed) ;

Y

const int (C::*cpl) (short) ;

————————————— AN——-—-—--------- ERROR:Should be initialized
volatile int (C::*cp2) (long);

————————————— A--------------- ERROR: Should be initialized
const volatile int (C::*cp3) (signed) ;
———————————————————————— ~---- ERROR: Should be initialized

— Use of const in a definition of a pointer to a member function of a struct should
be accepted. Example:

struct S {
const int funl (void) ;
volatile int fun2 (void);
const volatile int fun3 (void) ;
} s;
const int (S::*spl) (void) = &S::funl;
if(!spl);

RSO08 Build Tools Reference Manual for Microcontrollers 619

y
A

Known C++ Issues in the RS08 Compilers
Other Features

———————————————————————————— ERROR:Expected int

* When using Character literals, the Multi-characters constant is not treated as int.
Example:

int f(int i, char c¢) {return 1;}
f('abcd', 'c');

¢ The String characteristic “A string is an ‘array of n const char’” is not
supported. Example:

int type(const char al]){return 1};
type("five") != 1 /*Runtime failed*/

* Ambiguity Resolution

struct S {
int 1i;
S(int b){ 1 = b;}

—————————————————— ERROR: Should have been a function declaration, not
an object declaration

e Using const as a qualified reference is an unsupported feature. Example:

int 1i;
typedef int& c;
const ¢ cref = i;// reference to int

620 RS08 Build Tools Reference Manual for Microcontrollers

Index

Symbols Programs 61
-1 142 Arguments
operator 344 Command line 67, 68
operator 344, 385 Compiler command line 69
$ 346 Linker command line 71
$0 113 Array
${} 113 _ far 353
%’ modifier 141 Arrays with unknown size 550
%’ modifier 141 ars08.exe 61
asctime 456
Numerics asin, asinf 456
#asm 360
4
Ob 346 __asm 145, 345, 360
A _asm 345,551

asm 145, 345,360, 415

Assembler 415

Assembler for RS08 preference panel 67
Assembler Help option 67

Assembler messages 67

Assembler options 67

abort 428, 454
About
Assembler status 67
Burner status 68
About button 69, 70,71
About dialog box 107

assert 457
abs 454 assert.h 450
Absolute . Associativity 566
Functions 349 atan, atanf 457
Paths 65

atan2, atan2f 458

Variables 346 atexit 428, 459

and Linking 351

. atof 459
Absolute files (*.abs) 64 atoi 460
ABSPATH 94 atol 461
acos(), acosf() 455 auto 344

-AddlIncl 143
@address 346 B
Alignment 409
__alignof__ 345,357
alloc.c 427
Anonymous unions, unsupported 611
-Ansi 144,291,293
ANSI-C 161, 295
Reference Document 343
Standard 343
Application
File name, specifying 71

Batch burner language (*.bbl) files 68
Batch file 79

-BfaB 145,302

-BfaGapLimitBits 147

-BfaTSR 148

-BfaTSROFF 300

-BfaTSRON 300

Big Endian 292

__BIG_ENDIAN__ 293

Bigraphs, unsupported 592

RSO08 Build Tools Reference Manual for Microcontrollers 621

bin directory 63

Binary Constants 346

BIT 309

Bit fields 369, 409, 549

__ BIT_SEG 309

Bitfield allocation 298, 549
Bitfield type reduction 300

_ BITFIELD_ defines 146, 149, 298, 299, 300,

302, 549
@bool 550
Branch
Optimization 376
Sequence 378
Tree 378
break 344
Browser information 65
bsearch 461
BUFSIZ 448
Build Extras preference panel 65
Build tools 61
Burner button 68
Burner dialog box 68
Burner Help button 68
Burner messages dialog box 68
Burner options
-ShowBurnerDialog 62
Burner options dialog box 68
Burner preference panel 68
burner.exe 61
Buttons
About, Compiler 69
About, Importer 70
About, Linker 71
Burner 68
Copy Template, Linker 71
Help 68
Help, Compiler 69
Help, Importer 70
Help, Linker 71
Messages, Burner 68
Messages, Compiler 69
Messages, Importer 70
Messages, Linker 71
Options, Burner 68

Options, Compiler 69
Options, Importer 70
Options, Linker 71

Smart Slider, Compiler 69
Type Sizes, Compiler 69

C
*.c files 131
C programming tools
ars08.exe 61
burner.exe 61
crs08.exe 61
decoder.exe 61
hiwave.exe 61
ide.exe 61
libmaker.exe 61
linker.exe 61
maker.exe 61
piper.exe 61
C++ comments 145, 163
C++ Known Issues 587
-C++ option 150
C++ Support option (-C++) 150
Caller/Callee saved registers 417
calloc 427,463
case 344
Casts, unsupported 595
-Cc 151, 310, 314, 316, 333, 374, 558, 561
-Cex 153, 544, 547
ceil 463
ceilf 463
-Cf 155
char 344,361
CHAR_BIT 443
__ CHAR_IS_ define groups 250
__ CHAR_IS_ type information defines 302
CHAR_MAX 443
CHAR_MIN 443
-Ci 155,293
Class names, unsupported 593
clearerr 464
ClientCommand 89
clock 464
clock_t 449

622

RS08 Build Tools Reference Manual for Microcontrollers

CLOCKS_PER_SEC 449
-Cni 160,293
__CNIL__ 161,293
-CnMUL 160
CODE 138
CODE GENERATION 140
Code Size 364
CODE_SECTION 371
CODE_SEG 371
CodeWarrior (with COM) 91
CodeWarrior groups 37
CodeWarrior IDE 558, 559, 560
ide.exe 61
Integration 63
CodeWarrior project window 36
CodeWright 88
Color
Error messages 260
Fatal messages 261
Information messages 262
User messages 263
Warning messages 264
COM 91
COM files 63
Comma expressions, unsupported 610
Command line arguments 67, 68, 69, 70, 71
comments 551
Common Source Files 424
{Compiler} 113
Compiler
Configuration 85
Control 102
Error feedback 108
Error messages 106
Include file 131
Input File 131
Input file 107
Menu 96
Menu bar 84
Messages 104
Option 100
Option Settings dialog box 100
Standard Types dialog box 98
Status bar 84

Toolbar 83
Compiler for RS08 preference panel 69
Compiler help file 69
Compiler Messages button 69

Compiler Option Settings dialog box 49

Compiler Options

-ShowSmartSliderDialog 62
Compiler Options dialog box 69
Compiler Smart Sliders dialog box 69
Compiler status information 69
Compiler Type Sizes dialog box 69
COMPOPTIONS 114,117, 135
const 344,379
CONST_SECTION 152,309, 371, 372
CONST_SEG 309, 371, 372
Constant Function 400
continue 344
Copy Down 425
copy down 351
Copy Template button 71
COPYRIGHT 118
cos(), cosf() 465
cosh(), coshf() 465
Cosmic 543
-Cp 162
-Cppc 162
-Cq 164
CREATE_ASM_LISTING 312
crs08.exe 61
-CswMaxLF 165
-CswMinLB 167
-CswMinLF 168
-CswMinSLB 170, 555
ctime 466
CTRL-S (save) 95
ctype 430
ctype.h 451
-Cu 137,171, 319,330
Current directory 112

Default 119
CurrentCommandLine 579
YocurrentTargetName 66

RSO08 Build Tools Reference Manual for Microcontrollers

623

A
D bin 63
D 174 bin plugins 63

Data allocation defines 292
Data types, unsupported 610
DATA_SECTION 313, 371
DATA_SEG 313,371
_ DATE__ 291
decoder.exe 61
default 344
Default Directory 569
default.env 112, 120, 127, 135
DEFAULTDIR 113,119, 131
DefaultDir 569
#define 344
#define directive 175, 189
defined 344
Defines

Data allocation 292
_ DEMO_MODE__ 292
Dialog boxes

RSO08 Compiler Option Settings 49

Select File to Compile 51
difftime 466
DIG 442
DIRECT 313
__DIRECT_SEG 313,338
Directive
#define 189, 344
#elif 344
#else 344
#endif 344
#error 344, 346
#if 344
#ifdef 344
#ifndef 344
#include 191, 344
#line 344
#pragma 344
Preprocessor 344
#undef 344
#warning 344, 346
Directives
Preprocessor 344
Directories

Display generated command lines in message

window 67, 68,69, 70,71
div 467
div_t 448
Division 297, 361
do 344
DOS 143
double 344
__ DOUBLE_IS_ define groups 251
_ DOUBLE_IS_DSP__ 304
_ DOUBLE_IS_IEEE32__ 303
download 351

E

%E modifier 141

%e modifier 141

EABI 301

EBNF 561

-Ec 176

Editor 577

Editor_Exe 573,578
Editor_Name 573, 577
Editor_Opts 574,578
EditorCommandLine 583
EditorDDEClientName 583
EditorDDEServiceName 584
EditorDDETopicName 583
EditorType 582

EDOM 441

EDOUT 132

-Eencrypt 178

-Ekey 179

ELF/DWARF 75,351,559
ELF/DWAREF object-file format 75

__ELF_OBJECT_FILE_FORMAT__ 181,298

#elif 344
#else 344
else 344

Embedded Application Binary Interface 301

#endasm 360
Endian 292
#endif 344

624

RS08 Build Tools Reference Manual for Microcontrollers

ENTRIES 351

enum 344

_ ENUML_IS_ define groups 251

_ ENUM_IS_16BIT__ 303

_ ENUM_IS_32BIT__ 303

_ ENUM_IS_64BIT__ 303

_ ENUM_IS_8BIT__ 303

_ ENUML_IS_SIGNED__ 303

_ ENUM_IS_UNSIGNED___ 303

-Env 180

%(ENV) modifier 141

ENVIRONMENT 112, 120

Environment
COMPOPTIONS 117,135
COPYRIGHT 118
DEFAULTDIR 113,119, 131
ENVIRONMENT 111, 112, 120
ERRORFILE 121
File 112
GENPATH 122,124,125, 131, 184
HICOMPOPTIONS 117
HIENVIRONMENT 120
HIPATH 122, 125
INCLUDETIME 123
LIBPATH 122,124,128, 131, 132, 184
LIBRARYPATH 124,131, 132, 184
OBJPATH 125, 132
TEXTPATH 126, 185, 196, 202
TMP 127
USELIBPATH 128
USERNAME 129
Variable 117

Environment Variable 307

Environment Variable section 111

Environment Variables section 94, 112

EOF 448

EPROM 351

EPSILON 442

ERANGE 441

errno 441

errno.h 441

Error
Handling 431
Listing 132

Messages 106
#error 344,346
Error Format
Verbose 267
ERRORFILE 121
Escape Sequences 568
Exception handling, unsupported 610
exit 428, 467
EXIT_FAILURE 449
EXIT_SUCCESS 449
exp 468
expf 468
Explorer 78
Explorer, launch tool using 112
Extended Backus-Naur Form, see EBNF
extern 344

F

%f modifier 141

-F1 298,373

-F2 181,298, 373

F2 shortcut 83

-F20 181

fabs 221, 469

fabsf 221, 469

FAR 309, 313, 338,413

@far 550

_ far 345,351, 407
Arrays 353
Keyword 352

far 345, 351

_ FAR_SEG 309, 313,338

fclose 469

feof 470

ferror 470

fflush 471

fgetc 471

fgetpos 472

fgets 473

-Fh 181

FILE 447

File
Environment 112
Include 131

RSO08 Build Tools Reference Manual for Microcontrollers

625

Object 132
Source 131
File Manager, launch tool using 112
File Names 364
__FILE__ 291
FILENAME_MAX 448
Files
Absolute (*.abs) 64
Batch
regservers.bat 63
Batch burner language (*.bbl) 68
COM 63
*lib 64
Library 64
Object 132
PRM 45
float 344
float.h 441
_ FLOAT_IS_ define groups 251
_ FLOAT_IS_DSP__ 303
_ FLOAT_IS_IEEE32__ 303
Floating Point 409
floor 473
floorf 473
FLT_RADIX 441
FLT_ROUNDS 441
fmod 474
fopen 474
FOPEN_MAX 448
for 344
fpos_t 447
fprintf 476
fputc 476
fputs 477
fread 477
free 427,478

Function Pointer 409
fwrite 482

G

Generating
Browser information 65
Disassembly listing 67
GENPATH 94, 122, 124, 125, 131, 184, 558
getc 482
getchar 483
getenv 483
gets 483
Global initialization file 86
Global initializers, unsupported 611
gmtime 484
goto 344,364
Groups, CodeWarrior 37

H

-H 182,559, 561

*h files 131

HALT 427, 428

Header files, unmapped 592
heap.c 427

Help button 68, 69, 70, 71
Help, Assembler 67
Hexadecimal Constants 346
HICOMPOPTIONS 117
HIENVIRONMENT 120
HIPATH 122
__HIWARE__ 292
hiwave.exe 61, 65

HOST 138, 140

How to Generate Library 423
HUGE_VAL 446

freopen 478 I
fi 4
S -1 558
frexpf 479 :
-I option 131, 183
Front End 343 .
1/0 Registers 351
fscanf 479
Icon 78
fseek 480 :
fsetpos 481 ide.exe 61
ftell 481 IEEE 409
626 RS08 Build Tools Reference Manual for Microcontrollers

#if 344 iscntrl 485

if 344 isdigit 485
#ifdef 344 isgraph 485
#ifndef 344 islower 485
Implementation Restriction 361 isprint 435
Importer command line arguments 70 ispunct 485
Importer for RSO8 preference panel 70 isspace 485
Importer help file 70 isupper 485
Importer Messages dialog box 70 isxdigit 485
Importer Options dialog box 70
Importer status information 70 J
#include 191, 344 jmp_buf 446
Include Files 131, 364 Jump Table 378
INCLUDETIME 123
* ini files 85 L
INLINE 220,315 La 184
inline 397 Labels 364
.Inl_lne Asseml_oler, see A_ssembler labs 486
inline expansion, enabling 220 LANGUAGE 140
.INPUT 138, 140 -Lasm 186
int 344 . -Lasmc 187
__INT_IS_ define groups 250 Lazy Instruction Selection 413
_ INT_IS_16BIT__ 303 *]cf file 548
_ INT_IS_32BIT__ 303 lconv 444
_ INT_IS_64BIT__ 303 ldexp 486
_ INT_IS_8BIT__ 303 ldexpf 486
INT_MAX 443 -Ldf 188,291
INT_MIN 443 1div 487
Internal IDs 364 1div_t 448
__Interrupt 345 Lexical Tokens 364
Interrupt 359, 360, 551 -Li 190

keyword 359 lib file 64

vector 359 *]ib files 64
@1.nterrupt 551 libmaker, selecting 64
—interrupt 359 libmaker.exe 61
interrupt 345, 407 LIBPATH 94, 122, 124, 128, 131, 132, 184
Interrupt Procedure 411 Library files 64, 423,425
INTO_ROM 152,316 LIBRARYPATH 124, 131,132, 184
_IOFBF 448 -Lic 191
_IOLBF 4438 -LicA 192
_IONBF 4438 -LicBorrow 193
IPATH 125 -LicWait 195
isalnum 485 Limits

isalpha 485 Translation 361

RSO08 Build Tools Reference Manual for Microcontrollers 627

limits.h 443

#line 344

Line continuation 116

__LINE__ 291

LINK_INFO 318

Linker files 45

Linker for RSO8 preference panel 44,71

Linker help file 71

Linker Messages dialog box 71

Linker Options dialog box 71

Linker status information 71

linker.exe 61

Little Endian 292

_ LITTLE_ENDIAN__ 293

-L1 196

-Lm 197

-LmCfg 199

-Lo 201

Local classes, unsupported 593

locale.h 444

localeconv 487

Locales 430

localtime 488

log 488

logl0 489

log10f 489

logf 488

long 344

_ LONG_DOUBLE define groups 251

_ LONG_DOUBLE type information
defines 304

__LONG_IS define groups 251

__LONGL_IS type information defines 303

__LONG_LONG define groups 251

-LpX 205
* Ist file 425
lvalues unsupported 610

M

Macro
Definition 175
Expansion 364
Predefined 291
maker.exe 61
malloc 427,490
MANT_DIG 442
mark 320
math.h 446, 513
MAX 442
MAX_10_EXP 442
MAX_EXP 442
MB_LEN_MAX 443, 449
mblen 428, 491
mbstowcs 428,491
mbtowc 428, 492
*mep files 560
mcutools.ini 86, 114
memchr 492
memcmp 493
memcpy 222,494
memmove 494
memset 222,494
MESSAGE 140, 322
Message format
Microsoft 267
MESSAGES 138
Messages button 67, 68, 69,70, 71
Messages, Assembler 67

__LONG_LONG type information defines 303

_ LLONG_LONG_DOUBLE define groups 251 Microsoft message format 267

_ LONG_LONG_DOUBLE type information Microsoft Visual Studio, integrating 73
defines 304 MIN 442

LONG_MAX 443 MIN_10_EXP 442

Microsoft Developer Studio 89

LONG_MIN 443 MIN_EXP 442
longjmp 490 Missing Prototype 551
LOOP_UNROLL 319 mktime 495

-Lp 202 modf 495

-LpCfg 203 modff 495

628 RS08 Build Tools Reference Manual for Microcontrollers

__MODULO_IS_POSITIV__ 298
Modulus 297, 361

msdev 89

MS-DOS 143

mutable unsupported 595

_ MWERKS__ 292

N

-N 206

%N modifier 141

%n modifier 141

Name lookup, unsupported 610
NAMES 558

Namespaces, unsupported 610
NEAR 413

__near 345, 356, 407

near 345,356

NO_ENTRY 323,412,416
NO_EXIT 325,412
NO_FRAME 327
NO_INLINE 328
NO_LOOP_UNROLL 329
__NO_RECURSION__ 305
NO_RETURN 330
NO_STRING_CONSTR 332, 384
-NoBeep 207

-NoDebugInfo 208

-NoPath 209

NULL 447

Numbers 364

0]
*.0 files 132
-Oa 210,212
Object

File 132
Object files 132
Object-file formats 75
-ObjN 212
OBJPATH 94, 125,132
-0d 215
-Odb 216
-OdocF 137, 139, 218, 555
-Odocf 294

offsetof 447
-0i 137,220
-Oilib 221
-OnB 223
-OnBRA 224
ONCE 333
-OnCopyDown 230
-OnCstVar 231
-Onp 232
-OnPMNC 233
-Onr 234
-Ont 235
Operator
344
344
operator
defined 344
OPTIMIZATION 138, 140
Optimization
Branches 376
Lazy Instruction Selection 413
Shift optimizations 376
Strength Reduction 376
Time vs. Size 211
Tree Rewriting 377
__OPTIMIZE_FOR_SIZE__ 211,293
__OPTIMIZE_FOR_TIME__ 211,293
OPTION 294, 334
Option
CODE 138
CODE GENERATION 140
HOST 138, 140
INPUT 138, 140
LANGUAGE 140
LANGUAGE 138
MESSAGE 140
MESSAGES 138
OPTIMIZATION 138, 140
OUTPUT 138, 140
STARTUP 138
TARGET 138
VARIOUS 138, 140
Option scope 139
__OPTION_ACTIVE__ 294

RSO08 Build Tools Reference Manual for Microcontrollers 629

Options 569, 582
C++ Support (-C++) 150
Startup 62, 621
Startup command line 61
Options button 67, 68, 69, 70, 71
Options, Assembler 67
-Os 211,293,378
-Ot 211, 293
OUTPUT 138, 140

P

%p modifier 141

Panels
Assembler for RS08 preference 67
Build Extras preference 65
Burner preference 68
Compiler for RSO8 preference 69
Importer for RSO8 preference 70
Linker for RSO8 preference 44,71
Target Settings 42
Target Settings preference 64

Parsing Recursion 364

Path list 115

Paths
Absolute 65
Relative 65

-Pe 244

perror 496

-Pio 246

piper.exe 61

PLACEMENT 545

__ PLAIN_BITFIELD define groups 251, 301,

302,304
plugins directory 63
Pointer
Compatibility 357
_ far 352
Pointer Type 409
Pointers, unsupported 595
pow 496
powf 496
#pragma 344
CODE_SECTION 371
CODE_SEG 371,413

CONST_SECTION 152,371, 372
CONST_SEG 309, 371, 372, 545
CREATE_ASM_LISTING 312
DATA_SECTION 371
DATA_SEG 313, 371, 545
FAR 413
INLINE 220, 315
INTO_ROM 152,316
LINK_INFO 318
LOOP_UNROLL 319
mark 320
MESSAGE 322
NEAR 413
NO_ENTRY 323,412,416
NO_EXIT 325,412
NO_FRAME 327
NO_INLINE 328
NO_LOOP_UNROLL 329
NO_RETURN 330
NO_STRING_CONSTR 332, 384
ONCE 333
OPTION 294, 334
REALLOC_OBJ 336
SHORT 413
STRING_SEG 338
TEST_CODE 340
TRAP_PROC 342,411,412
SAVE_ALL_REGS 412
SAVE_NO_REGS 412
#pragma section 545
Precedence 566
Predefined macros 291, 298
Preprocessor directives 344
printf 428,497
printf.c 428
PRM file 45
Procedure
Interrupt 411
Variable, see Function Pointer
-Prod 115, 247
-Prod option 115
__ PRODUCT_HICROSS_PLUS__ 292
{Project} 113
Project files, analyzing 37

630

RS08 Build Tools Reference Manual for Microcontrollers

project.ini 115, 118, 135 ROM libraries 425

YoprojectFileDir 66 ROM_VAR 152,374

%projectFileName 66 RS08 compiler macros 302

%projectFilePath 66 RS08 Simulator 60

%projectSelectedFiles 66 RS08 Simulator Startup 60

__PTR_SIZE_1__ 305 __RS08__ 305

__PTR_SIZE_2__ 305

__PTR_SIZE_3__ 305 S

—PIR_SIZE 4__ 305 SAVE_ALL_REGS 412

ptrdiff_t 295, 447 SAVE_NO_REGS 412

__PTRDIFF_T_IS_CHAR__ 296, 297 SaveAppearance 570

_ PTRDIFF_T_IS_INT__ 296, 297 SaveEditor 570

__PTRDIFF_T_IS_LONG__ 296,297 SaveOnExit 570

__PTRDIFF_T_IS_SHORT__ 296,297 SaveOptions 571

_ PTRMBR_OFFSET_ define groups 251 scanf 503

putc 498 SCHAR_MAX 443

putchar 498 SCHAR_MIN 443

puts 498 SEEK_CUR 448

PVCS 128 SEEK_END 448

SEEK_SET 4438

Q Segment 412

gsort 499 Segmentation 371

-Qvpt 249 @ “SegmentName” 348

Select File to Compile dialog box 51

R Service Name 89

raise 500 setbuf 504

rand 501 setjmp 504

RAND_MAX 449 setjmp.h 446

realloc 427, 501 setlocale 505

REALLOC_OBJ 336 setvbuf 506

RecentCommandLine 579 Shift optimizations 376

Recursive comments 551 SHORT 313,413

register 344 short 344

regservers.bat 63 __SHORT_IS define groups 250

Relational operators, unsupported 588 __SHORT_IS_ define groups 250

Relative paths 65 _ SHORT_IS_16BIT__ 303

remove 502 __SHORT_IS_32BIT__ 303

rename 502 _ SHORT_IS_64BIT__ 303

Restriction _ SHORT_IS_8BIT__ 303
Implementation 361 _ _SHORT_SEG 313,372

return 344 -ShowAboutDialog 62

rewind 503 -ShowBurnerDialog 62

RGB 261, 262, 263,264 ShowConfigurationDialog 62

ROM 379, 558 -ShowMessageDialog 62

RSO08 Build Tools Reference Manual for Microcontrollers 631

-ShowOptionDialog 62
-ShowSmartSliderDialog 62
ShowTipOfDay 572
SHRT_MAX 443
SHRT_MIN 443
sig_atomic_t 446
SIG_DFL 446
SIG_ERR 446
SIG_IGN 446
SIGABRT 446
SIGFPE 446
SIGILL 446
SIGINT 447
signal 507
signal.c 427
signal.h 446
Signals 427
signed 344
SIGSEGV 447
SIGTERM 447
sin 508
sinf 508
sinh 508
Size

Type 407
size_t 295, 447
_ SIZE_T _IS_UCHAR__ 296, 297
_ SIZE_T _IS_UINT__ 296,297
_ SIZE_T _IS_ULONG__ 296, 297
_ SIZE_T_IS_USHORT__ 296,297
sizeof 344
Smart Control dialog box 102
Smart Sliders button 69
Source File 131
Source files 131
YosourceFileDir 66
YosourceFileName 66
YosourceFilePath 66
%sourceLineNumber 66
%sourceSelection 66
%sourceSelUpdate 66
Special Modifiers 141
sprintf 509
sqrt 513

sqrtf 513
srand 513
sscanf 514
Standard Types 98
Standard types 98
Start option 79
STARTUP 138
Startup 115
RS08 Simulator 60

Startup command line options 61

Startup Files 425
Startup options 62, 621
startup.c 425

static 344
StatusbarEnabled 580
stdarg 357

stdarg.h 357,450

_ STDC__ 145,291, 293
stddef.h 447

stderr 448

stdin 448

stdio.h 447

stdlib. 428

stdlib.c 428

stdlib.h 448,513
stdout 288, 448

Storage class specifiers, unsupported 595

strcat 518

strchr 518

strcmp 519

strcoll 519

strepy 520

strespn 520

Strength Reduction 376
strerror 521

strftime 522

String concatenation 385
string.h 449
STRING_SECTION 338
STRING_SEG 338
Strings 351

strlen 221,523

strncat 524

strncmp 524

632

RS08 Build Tools Reference Manual for Microcontrollers

strnepy 525 tmpfile 534

strpbrk 525 tmpnam 535
strrchr 526 tolower 535
strspn 526 Tool locations 61
strstr 527 ToolbarEnabled 580
strtod 527 Topic Name 89
strtok 528 toupper 536
strtol 529 Translation Limits 361
strtoul 530 TRAP_PROC 342,411,412, 551
struct 344 __TRIGRAPHS__ 156,293
strxfrm 531 Type
switch 344 Alignment 409
%symFileDir 66 Bit fields 409
%symFileName 66 Floating Point 409
%symFilePath 66 Pointer 409
Synchronization 78 Size 407
{System} 113 Size reduction 300
system 532 Type Declarations 364
Type Sizes button 69
T typedef 344
-T 250,407,409
tan 532 U
tanf 532 UCHAR_MAX 443
tanh 533 UINT_MAX 443
tanhf 533 ULONG_MAX 443
TARGET 138 UltraEdit 89
Target Settings preference panel 42, 64 #undef 344
YotargetFileDir 66 ungetc 536
YtargetFileName 66 union 344
YtargetFilePath 66 UNIX 112
Template Specialization, unsupported 587 unsigned 344
Termination 78 Use custom PRM file (Linker) 71
TEST_CODE 340 Use Decoder to generate Disassembly Listing 67,
TEXTPATH 94, 126, 185, 196, 202, 203 69
time 534 Use External Debugger check box 65
time.h 449 Use template PRM file (Linker) 71
__TIME__ 291 USELIBPATH 128
time_t 449 USERNAME 129
@tiny 550 USHRT_MAX 443
Tip of the Day 79
TipFilePos 572 VvV
TipTimeStamp 572 -V 256
TMP 127 va_arg 357,537
TMP_MAX 448 va_end 537

RSO08 Build Tools Reference Manual for Microcontrollers 633

A

__va_sizeof _ 345,358 -WmsgFim 266

va_start 537 -WmsgFiv 266

VARIOUS 138, 140 -WmsgFob 268, 273

VECTOR 359 -WmsgFoi 270,274,276

__VERSION__ 292 -WmsgFonf 273

viprintf 538 -WmsgFonp 270, 273,274, 275, 276

-View 257 -WmsgNe 276

Visual C++ 73 -WmsgNi 277

void 344 -WmsgNu 278

volatile 344,369 -WmsgNw 280

vprintf 538 -WmsgSd 281

vsprintf 428, 538 -WmsgSe 282

__VTAB_DELTA_ define groups 251 -WmsgSi 283

__VTAB_DELTA_ type information defines 304 -WmsgSw 284
-WOutFile 285

W -Wpd 286

W1 288 -WStdout 287

-W2 289, 548

/wait option 79 Z

#warning 344, 346 Zero Out 425

wchar_t 295, 447 zero out 351

__WCHAR_T_IS_UCHAR__ 296
__ WCHAR_T_IS_UINT__ 296
__ WCHAR_T_IS_ULONG__ 296
__WCHAR_T_IS_USHORT__ 296
westombs 428, 539
wctomb 428, 538
-WErrFile 258
while 344
WindowFont 581
WindowPos 581
Windows 112
CodeWarrior project 36
Winedit 88
-Wmsg8x3 259
-WmsgCE 260
-WmsgCF 261
-WmsgCI 262
-WmsgCU 263
-WmsgCW 264
-WmsgFb 260, 264, 268, 270, 273, 274,276
-WmsgFbi 264
-WmsgFbm 264
-WmsgFi 260, 266, 273,274,276

634 RS08 Build Tools Reference Manual for Microcontrollers

RSO08 Build Tools Reference Manual for Microcontrollers 635

636 RS08 Build Tools Reference Manual for Microcontrollers

	Overview
	Using the Compiler
	Introduction
	Compiler Environment
	Project Directory
	Editor

	Using the CodeWarrior IDE to Manage a Project
	New Project Wizard
	Analysis of the Project Files and Folders

	Compilation
	Linking with the Linker
	Using the Simulator/Debugger

	Application Programs (Build Tools)
	Startup Command-Line Options
	Highlights
	CodeWarrior Integration
	Combined or Separated Installations
	Target Settings Preference Panel
	Build Extras Preference Panel
	Assembler for RS08 Preference Panel
	Burner Preference Panel
	Compiler for RS08 Preference Panel
	Importer for RS08 Preference Panel
	Linker for RS08 Preference Panel
	CodeWarrior Tips and Tricks

	Integration into Microsoft Visual Studio (Visual C++ V5.0 or later)
	Object-File Formats
	ELF/DWARF Object-File Format
	Tools
	Mixing Object-File Formats

	Graphical User Interface
	Launching the Compiler
	Interactive Mode
	Batch Mode

	Tip of the Day
	Main Window
	Window Title
	Content Area
	Toolbar
	Status Bar
	Menu Bar
	File Menu
	Editor Settings dialog box
	Save Configuration dialog box
	Environment Configuration Dialog Box
	Compiler Menu
	View Menu
	Help Menu

	Standard Types dialog box
	Option Settings dialog box
	Compiler Smart Control dialog box
	Message Settings dialog box
	Changing the Class associated with a Message
	Retrieving Information about an Error Message

	About dialog box
	Specifying the Input File
	Use the Command Line in the Toolbar to Compile
	Message/Error Feedback
	Use Information from the Compiler Window
	Use a User-Defined Editor

	Environment
	Current Directory
	Environment Macros
	Global Initialization File (mcutools.ini)
	Local Configuration File (usually project.ini)
	Paths
	Line Continuation
	Environment Variable Details

	Files
	Input Files
	Source Files
	Include Files

	Output Files
	Object Files
	Error Listing
	Interactive Mode (Compiler Window Open)

	File Processing

	Compiler Options
	Option Recommendation
	Compiler Option Details
	Option Groups
	Option Scopes
	Option Detail Description

	Compiler Predefined Macros
	Compiler Vendor Defines
	Product Defines
	Data Allocation Defines
	Various Defines for Compiler Option Settings
	Option Checking in C Code
	ANSI-C Standard Types 'size_t', 'wchar_t' and 'ptrdiff_t' Defines
	Macros for RS08

	Division and Modulus
	Macros for RS08

	Object-File Format Defines
	Bitfield Defines
	Bitfield Allocation
	Bitfield Type Reduction
	Sign of Plain Bitfields
	Type Information Defines
	Freescale RS08-Specific Defines

	Compiler Pragmas
	Pragma Details

	ANSI-C Frontend
	Implementation Features
	Keywords
	Preprocessor Directives
	Language Extensions
	Implementation-Defined Behavior
	Translation Limitations

	ANSI-C Standard
	Integral Promotions
	Signed and Unsigned Integers
	Arithmetic Conversions
	Order of Operand Evaluation
	Rules for Standard-Type Sizes

	Floating-Type Formats
	Floating-Point Representation of 500.0 for IEEE
	Representation of 500.0 in IEEE32 Format

	Volatile Objects and Absolute Variables
	Bitfields
	Signed Bitfields

	Segmentation
	Example of Segmentation without the -Cc Compiler Option
	Example of Segmentation with the -Cc Compiler Option

	Optimizations
	Peephole Optimizer
	Strength Reduction
	Shift Optimizations
	Branch Optimizations
	Dead-Code Elimination
	Constant-Variable Optimization
	Tree Rewriting

	Using Qualifiers for Pointers
	Defining C Macros Containing HLI Assembler Code
	Defining a Macro
	Using Macro Parameters
	Using the Immediate-Addressing Mode in HLI Assembler Macros
	Generating Unique Labels in HLI Assembler Macros
	Generating Assembler Include Files (-La Compiler Option)

	Generating Compact Code
	Compiler Options
	-Oi: Inline Functions

	Relocatable Data
	Using -Ostk

	Programming Guidelines
	Constant Function at a Specific Address
	HLI Assembly
	Post- and Pre-Operators in Complex Expressions
	Boolean Types
	printf() and scanf()
	Bitfields
	Struct Returns
	Local Variables
	Parameter Passing
	Unsigned Data Types
	Inlining and Macros
	Data Types
	Tiny or Short Segments
	Qualifiers

	RS08 Backend
	Non-ANSI Keywords
	Data Types
	Scalar Types
	Floating Point Types
	Pointer Types and Function Pointers
	Structured Types, Alignment
	Bit Fields

	Register Usage
	Parameter Passing
	Entry and Exit Code
	Pragmas
	TRAP_PROC
	NO_ENTRY
	NO_EXIT

	Interrupt Functions
	#pragma TRAP_PROC
	Interrupt Vector Table Allocation

	Segmentation
	Optimizations
	Lazy Instruction Selection
	Branch Optimizations
	Constant Folding
	Volatile Objects

	Programming Hints

	High-Level Inline Assembler for the Freescale RS08
	Syntax
	Mixing HLI Assembly and HLL
	Example
	C Macros

	Special Features
	Caller/Callee Saved Registers
	Reserved Words
	__asm MOV #%HIGH_6_13(var),__PAGESEL
	Pseudo-Opcodes
	Accessing Variables
	Constant Expressions

	ANSI-C Library Reference
	Library Files
	Directory Structure
	Generating a Library
	Common Source Files
	Startup Files
	Library Files

	Special Features
	Memory Management -- malloc(), free(), calloc(), realloc(); alloc.c, and heap.c
	Signals - signal.c
	Multi-byte Characters - mblen(), mbtowc(), wctomb(), mbstowcs(), wcstombs(); stdlib.c
	Program Termination - abort(), exit(), atexit(); stdlib.c
	I/O - printf.c
	Locales - locale.*
	ctype
	String Conversions - strtol(), strtoul(), strtod(), and stdlib.c

	Library Structure
	Error Handling
	String Handling Functions
	Memory Block Functions
	Mathematical Functions
	Memory Management
	Searching and Sorting
	System Functions
	Time Functions
	Locale Functions
	Conversion Functions
	printf() and scanf()
	File I/O

	Types and Macros in the Standard Library
	errno.h
	float.h
	limits.h
	locale.h
	math.h
	setjmp.h
	signal.h
	stddef.h
	stdio.h
	stdlib.h
	time.h
	string.h
	assert.h
	stdarg.h
	ctype.h

	The Standard Functions

	Appendices
	Porting Tips and FAQs
	Migration Hints
	Porting from Cosmic
	Allocation of Bitfields
	Type Sizes and Sign of char
	@bool Qualifier
	@tiny and @far Qualifier for Variables
	Arrays with Unknown Size
	Missing Prototype
	_asm(“sequence”)
	Recursive Comments
	Interrupt Function, @interrupt
	Defining Interrupt Functions

	General Optimization Hints
	Frequently Asked Questions (FAQs), Troubleshooting
	Making Applications

	EBNF Notation
	Terminal Symbols
	Non-Terminal Symbols
	Vertical Bar
	Brackets
	Parentheses
	Production End
	EBNF Syntax
	Extensions

	Abbreviations, Lexical Conventions
	Number Formats
	Precedence and Associativity of Operators for ANSI-C
	List of all Escape Sequences

	Global Configuration File Entries
	[Options] Section
	[XXX_Compiler] Section
	[Editor] Section
	Example

	Local Configuration File Entries
	[Editor] Section
	[XXX_Compiler] Section
	Example

	Known C++ Issues in the RS08 Compilers
	Template Issues
	Operators
	Binary Operators
	Unary operators
	Equality Operators

	Header Files
	Bigraph and Trigraph Support
	Known Class Issues
	Keyword Support
	Member Issues
	Constructor and Destructor Functions
	Overload Features
	Conversion Features
	Standard Conversion Sequences
	Ranking implicit conversion sequences
	Explicit Type Conversion

	Initialization Features
	Errors
	Other Features

	Index

