
CodeWarrior Plug-in for
Freescale HCS12(X)

Device Initialization
User Manual

Help version 2.9

Copyright 2010 Freescale Semiconductor, Inc.

PROCESSOR EXPERT is trademark of Freescale Semiconductor, Inc.

- 1 -

- 2 -

CONTENTS
1. Introduction 4
1.1. Features and Benefits 4
1.2. Basic Terms and Definitions 4
1.3. Quick Start 5
1.4. Rapid Application Development Tools 6

2. User Interface 8
2.1. Main Menu 8
2.2. Device Initialization Window 9
2.3. Inspector Dialog Box 12

2.3.1. Inspector Items 14
2.4. Error Window 15
2.5. Code Generation Options Dialog Box 16

3. Using the Tool 18
3.1. Peripheral Initialization Components 18
3.2. Code Generation And Usage 19
3.3. Saving and Restoring the Design 21
3.4. Defining Interrupt Service Routines 21
3.5. Changing The CPU 22
3.6. Converting Code Warrior Project To Use The Device Initialization 23
3.7. Converting Device Initialization Project To Processor Expert 24

4. Tutorials 26

5. Help Revisions History 27

- 3 -

Device Initialization User Manual

1. Introduction
Device Initialization is a fast, easy, and user-friendly way to configure and generate a CPU peripheral

initialization code.

1.1. Features and Benefits
The key features of the Device Initialization tool are:

Graphical• user interface with CPU package, peripherals and pins.

User-friendly• access to the initialization setup of the CPU peripherals.

Initialization• code generator.

User• can select Assembly or C format for the generated code.

Built-in• detailed design specifications of the Freescale CPUs.

Initialization• options are automatically transformed into the peripheral control registers values.

Easy• to view control register values resulting from the parameter settings. Changes are immediately

highlighted.

Changes• in the peripheral control registers values are transformed back into the component parameters.

The key benefits of the Device Initialization tool are:

Easy• to learn design environment.

User• friendly names of the peripheral features - no need to explore manuals for the control register details.

Easy• changes in initialization.

Possibility• to reuse the individual peripheral setup for other designs.

No• need to generate code to see the resulting peripheral control registers values.

1.2. Basic Terms and Definitions
Component - Peripheral Initialization component - is a component that encapsulates initialization of a

peripheral. A component can be configured using the Inspector. See 3.1 Peripheral Initialization Components

for details.

CPU component - Component configuring the CPU core parameters. It cannot be removed from the project.

Design - All components (the CPU component and the Peripheral Initialization components) with their

customized parameters.

Inspector - Window that allow to view and configure parameters of the selected component.

Internal peripherals - Internal peripherals of the CPU (ports, timers, A/D converters, etc. usually controlled by

the CPU core using special registers).

ISR - Interrupt Service Routine - code which is called when an interrupt occurs.

Module - Source code module. Could be generated by the tool or created by the user and included in the project

(user module).

Peripheral settings - Initialization parameters for an individual peripheral. These settings can be saved and

restored from the file.

- 4 -

Device Initialization User Manual Introduction

Popup menu - This menu is displayed when the right mouse button is pressed on some graphical object.

Properties - Parameters of the component. Property settings define the internal peripheral initialization state that

will be converted to generated initialization code during the code generation process.

Target CPU - CPU derivative used in a given design.

1.3. Quick Start
This section describes how to create a simple design, configure a device, generate initialization code and use it in

your application.

Step 1. Create an Empty Design

Use the Project Wizard to create a new project. It can be invoked by clicking on the Create New Project button

in the Startup screen or using the menu command File > New Project....

Follow the step by step settings and in the Rapid Application Development Options page and select the Device
Initialization option.

Step 2. Configure Peripherals

The Device Initialization window shows the CPU package with the available internal peripherals.

Click on a peripheral field to configure its initialization. A new peripheral initialization component is

automatically created and the Inspector dialog window is displayed. It allows the user to view and change the

parameters.

Use the Inspector dialog window that appears to setup initialization parameters of the peripheral as per your

requirement and confirm it by clicking on the OK button. Use the same steps for all peripherals you wish to

setup.

Step 3. Generate Code

Click the Generate Code button in the Device Initialization window.

Within the Options dialog box, that appears immediately, select the desired initialization code format: C or
Assembly.

Please note that on ColdFire CPUs, the assembly code generation is not available.

Within the Options dialog box, that appears immediately, you can specify the name of the output files you wish

to generate (you can also keep a default name 'MCUInit') using the field Generated module name.

For more details on generated code, see the 3.2 Code Generation And Usage.

- 5 -

Device Initialization User Manual Introduction

Step 4. Use the Generated Code

The MCU_init initialization function call is automatically placed at the beginning of the main routine. Start

writing your application code after this initialization function call.

1.4. Rapid Application Development Tools
Two tools are available in the CodeWarrior IDE for rapid application development: Processor Expert and Device

Initialization. Both tools have many advanced features that lead to development cycle acceleration.

Features Comparison

Feature Processor Expert Device Initialization

Easy to use graphical IDE

Interactive design specifications

of Freescale MCUs

Generated code Peripheral Drivers Initialization code only

Generated code languages C C or Assembly

Peripheral Init Components

Low Level Components

High Level Components

Project Configurations

User-friendly linker parameter

file configuration

Generated code changes tracking

Timing settings in time units

(such as seconds and bauds)

Free components library on the

web

User components creation

Device Initialization

Device Initialization provides a fast and easy way to configure and generate an initialization source code for the

CPU. It contains only one set of components: Peripheral Initialization Components. The code initializing the

peripheral can be generated for use in Assembler or C.

- 6 -

Device Initialization User Manual Introduction

Processor Expert

Processor Expert generates drivers in the C language that allows a hardware-independent access to CPU

peripherals. It contains large library of components called Embedded Components. Embedded Components

encapsulate the initialization and functionality of embedded systems basic elements, such as CPU core, CPU

on-chip peripherals, standalone peripherals, virtual devices and pure software algorithms. These facilities are

interfaced to the user using properties, methods, and events, such as objects in Object Oriented Programming

(OOP).

Note: Processor Expert Embedded Components were formerly called Embedded Beans.

Description of the Embedded Components on different levels of abstraction:

High• Level Components - Basic set of components designed carefully to provide functionality to most of

the microcontrollers in the market. An application built from these components can be easily ported to

another microcontroller supported by the Processor Expert. This group of components can provide

comfortable settings of a desired functionality such as time in ms or frequency in Hz, without the user

knowing about the details of the hardware registers.

Low• Level Components - Components dependent on the peripheral structure that allow the user to benefit

from the non-standard features of a peripheral. The level of portability is decreased due to a different

component interface and the component is usually implemented only for a CPU family offering the

appropriate peripheral. However, there is still possible to easily configure device's features and use a set of

methods and events.

Peripheral• Initialization Components - Components on the lowest level of abstraction. An interface of

such components is based on the set of the peripheral control registers. These components cover all features

of the peripherals and are designed for initialization of these peripherals.

For more details, please see the Processor Expert documentation.

- 7 -

Device Initialization User Manual Introduction

2. User Interface

Menu

Device Initialization menu is integrated into the CodeWarrior IDE menu. See 2.1 Main Menu for details.

Windows and Dialog Boxes

The Device Initialization user interface consists of the following windows that are integrated in the CodeWarrior

IDE:

Device• Initialization - Main window graphically showing CPU package, structure and components

connected to the internal peripherals. It allows the user to easily to add components related to a specific

peripheral to the design. See 2.2 Device Initialization Window for details.

Inspector• - Window that allows the user to setup peripheral initialization components parameters. See 2.3

Inspector Dialog Box for details.

Error• window - Window with errors, warning messages and hints from design checking and code

generation. See 2.4 Error Window for details.

Code• Generation Options - Dialog box with design and code generation related settings. See 2.5 Code

Generation Options Dialog Box for details.

2.1. Main Menu
Device Initialization menu is integrated in the CodeWarrior IDE main menu.

The menu contains the following commands:

Initialize• Device - Creates a new design for the currently opened CodeWarrior project or opens an existing

one, if it already exists on the disk. If the design is already opened, only the Device Initialization window is

activated. See 2.2 Device Initialization Window for details.

Backup• Device Settings - Invokes a file selection dialog box and if the user confirms the selection, it saves

all design settings using the selected file name. See 3.3 Saving and Restoring the Design for details.

Restore• Device Settings - Invokes a file selection dialog box and if the user confirms the selection, it loads

all design settings from the selected file name. See 3.3 Saving and Restoring the Design for details.

Update• PE from Package - Installs a patch or update from the .PEUpd file.

Options• - Invokes the Options dialog box that contains the design-related settings with default values for

next code generations. See 2.5 Code Generation Options Dialog Box for details.

Generate• Code {designname}.mcp - Initiates the initialization code generation process. See 3.2 Code

Generation And Usage for details.

View• Report

Project Settings - Generates a new document containing XML data with parameters and values of all

components in the design.

Register Settings - Generates a new document containing XML data with all registers (and their values)

that will be set within generated code.

Interrupt Usage - Generates a new document containing XML data with all interrupts allocation by ISR

routines.

Pin Usage - Generates a new document containing XML data of all pins allocated by the device

initialization design.

- 8 -

Device Initialization User Manual User Interface

Help Menu

The help pages links is integrated in the Help menu of the CodeWarrior under the Help > Device Initialization
submenu.

Device• Initialization help - displays the main help file.

Device• Initialization Tutorial - opens a tutorial showing the device initialization basics.

List• of all supported CPUs - displays the page with the list of CPUs supported in the current installation.

List• of all supported Peripheral Initialization Components - displays the page with the list of CPUs

supported in the current installation.

View• Read Me and Revision History - shows the document containing details related to the current version

and the history of revisions and changes of the Device Initialization tool.

2.2. Device Initialization Window
The Device Initialization window is the main window of the Device Initialization design. The window contain

the design control buttons at the top of the window and working area that allows the user to browse and

configure the CPU peripherals. To open the Device Initialization window, select Device Initialization >
Initialize Device in the menu bar.

Design Control Buttons

The window contains the following control buttons:

Select• CPU package - Lists available packages from the current target CPU. From the list of packages, the

user can choose the one to be used in the design. See 3.5 Changing The CPU for details.

Generate• Code - Invokes the Code Generation dialog allowing the user to generate the initialization code

according to the current settings. See 3.2 Code Generation And Usage for details.

Backup• - Invokes a file selection dialog and if the user confirms the selection, saves all design settings using

the selected file name. See 3.3 Saving and Restoring the Design for details.

Restore• - Allows to restore the whole design from a file. File selection dialog is invoked immediately. See

3.3 Saving and Restoring the Design for details.

Help• - Opens the help page.

Work Area

This area allows the user to configure the CPU peripherals by adding the Peripheral Initialization Components.

See 3.1 Peripheral Initialization Components for details.

The following view modes are available:

Package• View of the CPU mode: Configure a peripheral by clicking on the peripheral field.

Alphabetically• ordered peripherals list mode: Configure a peripheral by clicking on its name or icon.

Control Icons

• - Rotates the CPU by 90 degrees.

• - Zoom-in - Increases the package diagram size and detail level.

- 9 -

Device Initialization User Manual User Interface

• - Zoom-out - Decreases the package diagram size and detail level.

• - Activates the Package View mode.

• - Activates the Peripherals List mode.

Package View Mode

This is the default view mode for the design. In this mode, the window contains:

Peripherals• available on the CPU and their allocation by components.

Pins• and their allocation by components.

Useful• information that is available in the status line if the mouse cursor is placed on pin, component or

peripheral.

The following information about each pin is displayed on the package:

Pin• name (either default or user-defined).

Icon• of a component that uses (allocates) the pin.

Direction• of the pin (input, output, or input/output) symbolized by blue arrows, if a component is connected.

Some pins cannot be used by the user because they are allocated by special signals such as power signals,

external or data buses. Special pins are indicated by special blue icons, for example . The allocation of pins by

special signals could be affected by the CPU component properties.

Peripheral List

This mode shows the alphabetically ordered list of all CPU peripherals and their allocation. Unallocated

peripherals have a gray icon.

Hints

A hint appears when the mouse cursor is placed on a specific item:

A pin hint contains:

pin• number

pin• name

owner• of the pin (component that allocates it)

short• pin description

Note: The pin hint is available only in the package view mode

Component icon hint contains:

component• type

component• description

- 10 -

Device Initialization User Manual User Interface

Component Pop-up Menu

This menu appears when the user right-clicks on a component icon button. It contains the following commands:

Disable• Peripheral Initialization - Removes the selected component with all its settings from the design.

Help• on Component - Opens the help pages related to the selected component.

General Pop-up Menu

This menu appears when the user right-clicks anywhere in the Device Initialization window. It contains the

following command:

Help• on Device Initialization Window - Shows the help page.

Sample Screenshot

- 11 -

Device Initialization User Manual User Interface

2.3. Inspector Dialog Box
The Inspector dialog box allows the user to modify parameters of components configuring internal peripherals of

the target CPU. (For more details on the peripheral components, please see 3.1 Peripheral Initialization

Components.)

Inspector dialog box consists of two panels:

Component• Parameters - Contains the parameters that influence the initialization of the selected device.

Register• Details - Contains the values of the individual control registers that is set by a generated

initialization code.

Control Buttons

The buttons description from left to right:

• - Removes the currently opened peripheral initialization component from the

design. This command is not available for the CPU component.

• - Opens the file selection dialog box and saves parameters to the selected file.

• - Opens the file selection dialog box and restores parameters from the selected file.

• - Opens a help page with the description of the component parameters.

• - Enables/disables the Register Map column in the Register details panel (see below).

• - Saves the initialization. parameters and closes the window

• - Cancels changes and closes the window.

• - Opens the help page of the Inspector window.

Component Parameters Panel

Component Parameters panel contains the four columns:

Item• status

green checkmark - Item setting is correct.

red exclamation - Item setting is not correct. Items that cause errors or warnings are written in

magenta color. See description in the last column or the Error Window.

plus or minus - Item is a group of settings that can be expanded or collapsed.

light background - Item is version specific and is displayed only for CPU derivatives that support it.

These items cover the special capabilities of the CPU that are not present for all CPUs.

Item• names - Items that are to be set are listed in the second column of the inspector. Groups of items

describing certain features can be collapsed or expanded by double clicking on the first line of the group.

Selected• settings - Settings of the items are made in the third column. See chapter 2.3.1 Inspector Items for

list of item types.

Setting• status - Current setting or an error status may be reflected on the same line, in the rightmost column

of the inspector. The error is also displayed in the item's hint.

- 12 -

Device Initialization User Manual User Interface

A parameter can be presented as read-only and the user cannot change its content. Such read-only values are

shown in gray.

Register Details

This panel shows values of individual control or data registers related to the currently selected CPU peripheral

and reflects the settings in the Component Parameters panel.

On some peripherals there may be present an Additionally modified registers section within this panel that lists

the registers that are initialized but belong to a different peripheral.

The following two types of rows can be found in this panel:

Whole• register content

The row contains the following four columns:

Status field - Contains plus or minus - each register can be expanded or collapsed by clicking the

icon to show or hide individual bits.

Name - Specifies name of the register according to the CPU datasheet.

Address - Specifies address of a register.

Init. Value - Specifies the initialization value of a register or bit computed according to the settings in

the Component Parameters panel. This is the last value written by the initialization function to the
register.
Note: For some registers, the value read from the register afterwards can be different than the last

written value. For example, some interrupt flags are cleared by writing 1. Please see the CPU manual

for details on registers behavior.

If the row is active, the value can be changed using the keyboard. The field also contains a radix button

(H,D,B) that allows to switch between Hexadecimal, Decimal and Binary formats of the value.

The value that contains undefined bits is always shown in binary format.

Register Map - Graphical representation of the initialization value. The colors represent states of

individual bits:

(White) = value 0

(Black) = value 1

(Gray) = bit has no meaning for initialization of the peripheral (reserved, read-only or related to

another peripheral) or the value of the bit is undefined.

Presence of this column depends on the View Register Map checkbox.

Individual• bit of the register

The row contains the bit value icon (0 or 1) and the name of the bit. Bits are sorted from the highest to lowest

weight. The bit rows of a register can be shown or hidden using the and icons in the status field of the

register row.

Changes Highlighting

The user can immediately watch the impact of the changes in the Component Parameters panel on the CPU

peripheral registers and bits values. The registers influenced by a last settings change are highlighted in green

- 13 -

Device Initialization User Manual User Interface

(see the figure below for example).

Figure 2.4 - The register affected by the parameter change

The changes made to a register values are automatically analyzed and transformed into the component

parameters values. Such parameters changes are highlighted the same way the register changes are.

The changes highlighting works only if the component has been set-up correctly before the change is made and

the new setup is correct and no error reported in the component settings. If there is an error in the component

settings, the after-reset values are shown.

2.3.1. Inspector Items

The following types of the items are found in the Inspector:

Boolean• Group - A group of settings controlled by this boolean property. If the group is enabled, all the

items under the group are valid; if it is disabled, the list of items is not valid. Clicking the + sign shows/hides

the items in the group but doesn't influence the value or validity of the items.

Boolean• yes / no - The user can switch between two states of the property using the round icon .

Enumeration• - Selection from a list of values. If the user clicks on the arrow icon (), a list of the possible

values for the property is offered.

Enumeration• Group - A list of items. Number of visible (and valid) items in the group depends on the

chosen value. Clicking the arrow icon () shows a list of the possible values of the property. Clicking the +

sign shows/hides the items in the group but doesn't influence the value or validity of the items.

Group• - A list of items that can be expanded/collapsed by clicking the plus/minus icon or by double clicking

at the row. Values of the items in the group are untouched.

Integer• Number - The user can insert a number of the selected radix. Radix of the number can be switched

using the icons (D = Decimal ,H = Hexadecimal, B = Binary). Only reasonable radixes are offered

for the property. If the radix switching icon is not present, Processor Expert expects the decimal radix.

- 14 -

Device Initialization User Manual User Interface

List• of items - A list of items may be expanded/collapsed by clicking on the plus/minus button at the left

side of the row or by double clicking on the row. The user may add/remove an item by clicking on the

plus/minus button. The items in the list can be arranged using the related pop-up menu commands.

Peripheral• selection - The user can select a peripheral from the list of the available peripherals. The

peripherals that are already allocated have the component icon in the list. The properties that conflicts with

the component settings have the red exclamation mark.

Real• Number - The user can insert any real (floating point) number.

String• - Allows to enter any text or value.

2.4. Error Window
This window is automatically displayed if there are any errors, warnings or hints found during:

automatic• design checking

code• generation

Some errors are found right after inconsistent or incorrect data is entered, others during the code generation of a

design. The single messages mention the component where the error is found. If an error concerns two

components, the error is attributed to both components.

To improve the readability of the Error window right-click the Error window to display a pop-up menu and

delete the desired tools or code generation errors, warnings, and hints.

Figure 2.15 - Processor Expert Error window

- 15 -

Device Initialization User Manual User Interface

Pop-up Menu

The pop-up menu, invoked by right-clicking, contains the following items:

Delete• All Tool Errors, Warnings and Hits - Removes all tool errors, warnings and hints listed in the error

window

Delete• All code generation errors, warnings and Hints - Removes all code generation errors, warnings

and hints listed in the Error window

Copy• to Clipboard - Copies the whole content of the window as a text to the clipboard.

Note: This command can be very useful in the case you need to contact our support personnel with a

component setup issue.

Help• - Displays documentation

2.5. Code Generation Options Dialog Box
This dialog box is invoked at each code generation or using the Options command from the main menu The user

can specify the options influencing the format and placement of the generated code. Options are divided into two

groups using tabs.

Basic Options

Basic options include the following options and option groups:

Generated• file types available:

(For more information on generated files, please see the chapter 3.2 Code Generation And Usage)

Relocatable Assembler - Generates the relocatable code in the assembly language. This option is not

available for the absolute assembly projects.

Absolute Assembler - Generates an absolute code in assembly language. This option is supported only if

it was selected in the CodeWarrior Project wizard.

C - Generates the code in the C language. This option is not available for the assembly projects.

After• Generation

Save and add files to the project - The files produced by Processor Expert are named using the value of

the Generated Module Name field. The files are automatically added to the Generated Code folder of the

Code Warrior project.

Create file and do not add to project - The code will be generated into the newly created untitled editor

files.

Generated• module name - Specifies name of the files where the initialization code will be generated.

- 16 -

Device Initialization User Manual User Interface

Advanced Options

The following options modify the generation of code:

Generate• register modification only if initialization value does not match reset state - This option does

not affect the registers writable only once (for example CONFIGx) nor the registers placed in FLASH (for

example MORx).

Generate• comments about register modification - Source code will contain comments with descriptions of

the registers values.

Generate• interrupt vector table - Interrupt vector table content will be generated to the output file.

Generate• interrupt service routine templates - Tool will generate an empty interrupt routines definitions

for all enabled interrupts according to the components parameters. See 3.4 Defining Interrupt Service

Routines for details.

Generate• initialization of registers writable only once - These registers can be written only once after

reset due to technological or safety reasons. This options enables the generation of initialization code for

these registers.

Generate• initialization of register placed in FLASH - Initialization of these registers will be done during

the programming of the application code to the FLASH memory.

After• code generation show description how to use the generated files - If this option is enabled, a dialog

box with the short description of the generated modules and their usage is displayed after every code

generation.

Common Options

Show• this dialog every time before code generation - Using this check-box, the user can enable or disable

appearance of this dialog box before every code generation.

- 17 -

Device Initialization User Manual User Interface

3. Using the Tool
The sub-chapters describe basic principles and tasks related to device initialization.

Peripheral• Initialization Components

Code• Generation And Usage

Saving• and Restoring the Design

Defining• Interrupt Service Routines

Changing• The CPU

Converting• Code Warrior Project To Use The Device Initialization

Converting• Device Initialization Project To Processor Expert

3.1. Peripheral Initialization Components
A Peripheral Initialization Component is an object that provides a human-readable interface to the initialization

parameters of a selected on-chip CPU peripheral. Parameters of the Peripheral Initialization Component

represent the settings of all peripheral registers in the clear tabular form. Names of the Peripheral Initialization

Components are Init_<peripheral> and they are specific for each CPU family.

Adding Component

Components can be added to the design using the Device Initialization window. Click on the unallocated

peripheral to add a new component. The new component is preset to work with the selected device. Inspector

dialog box appears allowing the user to configure parameters of the component.

Component Parameters and Device Registers

Every component contains a group of parameters (properties) that describe the desired initialization state of the

device. These parameters are automatically transformed to values of control registers related to the selected

peripheral. Inspector shows both - component parameters and resulting registers values.

Component parameters are grouped to several groups by type. The following groups are commonly present in

peripheral initialization components:

Settings• - Common peripheral parameters.

Pins• - Configuration of the pins related to the peripheral.

Interrupts• - Configuration of the interrupts and interrupt service routines related to the peripheral. See 3.4

Defining Interrupt Service Routines for details.

Initialization• - Parameters related to the peripheral initialization.

CPU components

A CPU component is the component that configures the parameters of the CPU core, such as clock source and

frequency and power-saving capabilities. The CPU component is always present in design and cannot be

removed. CPU component contains the following parameter groups:

Clock• Settings - Configuration of the CPU timing

Internal• Peripherals - Configurations of the peripherals not supported by separate components and settings

that can be shared among components.

CPU• Interrupts - Configuration of the interrupts related to the CPU core.

- 18 -

Device Initialization User Manual Using the Tool

Modifying Components Settings

Parameters of existing components can be configured using the Inspector dialog which can be opened by

clicking on the component's icon in the Device Initialization window.

3.2. Code Generation And Usage

Starting The Code Generation

To generate code:

Click1. the Generate Code button in the Device Initialization or select the Generate Code {design name}
command from the main menu.

A dialog box with the code generation options appears, if it is not disabled by the 'Show this dialog every

time before code generation' check-box. See 2.5 Code Generation Options Dialog Box for details.

Click2. the Generate button in the Options dialog box. The source code initializing the CPU registers

according to the specified component parameters is generated.

After a successful code generation, the dialog box appears with a basic information on generated code and its

usage. This dialog box can be enabled or disabled in the Options dialog box. See 2.5 Code Generation Options

Dialog Box for details.

Generated Code

During the Code Generation process the Device Initialization tool generates the initialization code for the CPU

peripherals allocated by the components. The generated initialization code is split into two functions -

MCU_init_reset and MCU_init.

MCU_init_reset• - the function contains initialization of the memory configuration. By default, this function

is called after reset.

MCU_init• - the function contains the reset of the initialization code. The user shall call this function at the

start of application code to initialize peripherals.

The generated module consists of two files:

Implementation• file containing the code of the initialization function(s) and optionally the interrupt vectors

table.

Interface• file containing the declarations that can be referenced by the user. This file is generated only if the

files are stored to a disc (see below).

Depending on the After generation option, the files can be stored to a disk and added to the current project or just

shown in the editor as untitled files. See 2.5 Code Generation Options Dialog Box for details.

Device Initialization tool can generate the following types of initialization code:

Relocatable• Assembler - The implementation file has the extension .asm and the interface file has the

extension .inc. This option is not available for the absolute assembly projects.

Absolute• Assembler - The implementation file has the extension .inc and must be included at the end of the

user module, where address for code is selected (using ORG). Absolute assembler is supported only if it was

selected in the CodeWarrior Project wizard.

- 19 -

Device Initialization User Manual Using the Tool

C• language - The implementation file has the extension .c and the interface file has the extension .h.

A default name for the generated module is ' MCUInit '. An Initialization code format, the generated module

name, and other code generation options, can be configured in the Options dialog box. See 2.5 Code Generation

Options Dialog Box for details.

User Changes in the Generated Code

If the content of generated modules is written to the disk, it always overwrites the existing files during every

code generation. As a result all the user modification are discarded with the following exceptions:

user• definitions (or generally any other source code) in .C (or .asm) placed in the special comment marks. In

case of C language it looks like:

/* User declarations and definitions */

 User source code...

/* End of user declarations and definitions */

content• of interrupt service routines that are assigned to any interrupt(s) in the peripheral initialization

components. See 3.4 Defining Interrupt Service Routines for details.

unused• interrupt service routines (no component contains their name). They do not disappear but they are

moved to the end of the file. The generated comments before and after the ISR must not be modified for this

feature to work properly.

Note: No user changes in the .h file (or .inc in case of assembly language) are preserved. The file is always

overwritten.

Using the Generated Code

To call MCU_init function from the main file, it's necessary to do the following modification in your code:

Device• initialization by default generates an interrupt vectors table containing all interrupt vectors (it can be

disabled in the Options dialog box, see chapter 2.5 Code Generation Options Dialog Box for details).

Existing interrupt vector definitions have to be removed or commented out to avoid a conflict.

For details on configuring interrupt vectors in Device Initialization please see the chapter 3.4 Defining

Interrupt Service Routines.

Add• a call to the generated MCU_init function at the beginning of the application main routine. The newly

created projects already contain this line.

Note: The prototype or external declaration of the MCU_init function or a command including the interface

file with this declaration should be present in the module where the MCU_init is called. In a new project, it

is already there in the main file.

Use• MCU_init_reset as the Reset Vector (newly created projects use it by default).

For step-by-step instructions on how to convert the existing C or assembly project to use the DeviceInitialization

please see the chapter 3.6 Converting Code Warrior Project To Use The Device Initialization.

- 20 -

Device Initialization User Manual Using the Tool

3.3. Saving and Restoring the Design

Automatic Saving

All parameters and settings of the device initialization design are stored in the file with the extension .iPE and

the same name as the CodeWarrior project file. It is also located within the same directory.

The design is saved after each successful code generation with the option Save and add files to project , so it

reflects the state of the code in the generated modules.

The design is automatically loaded when the project created with the Device Initialization option is opened.

Numbered Archive Files

When the design is automatically saved, the previous content of the saved file is not overwritten. It is renamed to

a new name with the number appended to the end and stored in the same directory. This number is automatically

incremented after every save. Previous design versions data, stored in numbered files, can be manually restored

using a manual restore function (see the following paragraph for details).

Manual Backup and Restore

The user can manually save or restore all settings to or from a .iPE file on the disk. This file can be used in

another project, archived or for example sent by an e-mail.

To perform manual backup or restore, you can use the Backup and Restore buttons in the Device Initialization

Window or use the main menu commands Backup Device Settings and Restore Device Settings. The restored

settings override all current settings and they are lost. The user is warned about it and has to confirm the

restoration process. See chapters 2.2 Device Initialization Window and 2.1 Main Menu for details.

Closing Device Initialization Window

If there are any changes in the design or the code is not generated yet, a dialog box asking for confirmation to

save design appears after closing the Device Initialization window. If the user confirms this dialog box, the file

name selection dialog box appears allowing the user to choose a name for the file.

3.4. Defining Interrupt Service Routines
Some Peripheral Initialization components allow the initialization of an interrupt service routine. Interrupt(s) can

be enabled in initialization code using appropriate parameters that can be found within the group Interrupts.

After enabling, the specification of an Interrupt Service Routine (ISR) name using the ISR name property is

required. This name is generated to Interrupt Vector table during the code generation process. See 3.2 Code

Generation And Usage for details.

Please note that if the ISR name is filled it is generated into the Interrupt Vector Table even if the interrupt

property is disabled.

Figure 3.1 - Example Of The Interrupt Setup

- 21 -

Device Initialization User Manual Using the Tool

Enabling or disabling peripheral interrupts during runtime has to be done by the user's code.

Interrupt Service Routines Code

The ISR with the specified name has to be declared according to the compiler conventions and fully

implemented by the user. Declarations of the ISRs that do not exist yet can be generated automatically during the

code generation process into the generated module if the option Generate interrupt service routine templates
is enabled. See 2.5 Code Generation Options Dialog Box for details.

The contents of interrupt service routines, written by the user, that are assigned to any interrupt within
the components parameters is protected against being overwritten during the code Generation process. In
case the interrupt service routine is not assigned to any interrupt, it's moved to the end of the file.

Warning: The user is responsible for synchronizing ISR names in the code and ISR names specified in

components. If an ISR is renamed, the name has to be changed in the component(s) where this ISR name is

assigned and vice versa. This has to be done before next code generation. Otherwise the newly specified ISR

would not be found and the existing ISR with an old name will be treated as unassigned, that is, it will be moved

to the end of file.

3.5. Changing The CPU

Changing CPU package

The type of the CPU package can be changed using the Select CPU Package button in the Device Initialization

window. See 2.2 Device Initialization Window for details.

Switching the Project to a Different CPU Derivative

To switch to a different CPU derivative for the project, select Project Change MCU / Connection from the

menu bar in the CodeWarrior IDE.

Components Assignment

If some peripherals of the MCU set by components are not supported by the new MCU derivative the project is

switched to, a dialog box with a list of the unsupported items is shown. The user is asked to confirm that these

items will be removed from the design.

- 22 -

Device Initialization User Manual Using the Tool

3.6. Converting Code Warrior Project To Use The Device
Initialization
This chapter guides the user through a conversion from a plain C or assembly project to the project using the

Device Initialization plugin and a peripheral initialization code generated by this tool.

The following steps should be done to convert the project:

Open1. the project you want to convert.

Select2. the Device Initialization > Initialize Device main menu command. Confirm the dialog window

with the question 'Do you want to add a new iPE device setting?' by clicking the 'Yes' button.

A Device Initialization window with a CPU package appears.

Configure3. the peripherals and generate the initialization code by using the Generate code button. See

chapters 3.1 Peripheral Initialization Components and 3.2 Code Generation And Usage for details.

Open4. and modify the main file of the project to reference and call the MCU_init subroutine the following

way:

(This subroutine will contain an initialization code generated according to the peripheral configuration

after the 'Generate code' button is pressed. See 3.2 Code Generation And Usage for details.)

For Relocatable Assembly Project :

Find the part of the code including the derivative information and add the bold marked line:

; Include derivative-specific definitions

 INCLUDE 'derivative.inc'

 XREF MCU_init

Then find the main routine start and add the MCU_init call at the place you want the peripherals to be

initialized :

; code section

MyCode: SECTION

main:

_Startup:

 ...

 ; Call generated Device Initialization function

 JSR MCU_init

For Absolute Assembly Project :

Find the part of the code including the derivative information and add the bold marked line:

; Include derivative-specific definitions

 INCLUDE 'derivative.inc'

 INCLUDE 'MCUInit.inc'

Then find the main routine start and add the MCU_init call at the place you want the peripherals to be

initialized :

_Startup:

 ...

 ; Call generated Device Initialization function

 JSR MCU_init

- 23 -

Device Initialization User Manual Using the Tool

For C Project :

Add the MCU_init function declaration and its call to the main C module by adding the bold marked

lines into the code:

void MCU_init(void); /* Device init function declaration */

...

void main(void) {

 MCU_init(); /* call Device Initialization */

...

Remove,5. comment or modify the existing code that conflicts with the generated initialization code.

Note: The Device Initialization generates the complete interrupt vector table. Any interrupt declarations in

the .prm file (lines starting with vector keyword) or elsewhere need to be removed or commented out and

all interrupt need to be configured by using the Device initialization. Please see the chapter 3.4 Defining

Interrupt Service Routines for details.

Build6. the application. The peripheral initialization code can be anytime re-generated by using the

Generate Code button.

3.7. Converting Device Initialization Project To Processor Expert
The project created using the Device Initialization can be converted to Processor Expert. This is useful when the

user finds out that he/she would like to use additional features of Processor Expert. Please see the chapter 1.4

Rapid Application Development Tools for the tools comparison. This conversion is available for C projects only.

Warning: Don't forget to backup the whole project before the conversion. Some files will have to be removed
from the project. The conversion to Processor Expert is recommended to experienced users only.

Conversion Steps

Generate1. code to save the last state of the design (if you haven't already done it).

Backup2. the whole project.

Select3. the menu command Processor Expert > Open Processor Expert for <projectname>.mcp

Switch4. to Files tab of the CodeWarrior project panel.

Remove5. the following files from the project using the DEL key or the Remove pop-up menu command:

Sources / main.c (It will be replaced by the {projectname}.c)

Include / derivative.h (It will be replaced by the generated IO_Map.h)

Include / <CPUderivative>.h (It will be replaced by the generated IO_Map.h)

Linker Files / Project.prm, in case of ColdFire it's Project.lcf (It will be replaced by the generated

{projectname}.prm/.lcf)

Libs / <CPUderivative>.C (It will be replaced by the generated IO_Map.h)

Remove6. all object code using the menu command Project > Remove object code....

Switch7. to processor Expert tab of the CodeWarrior project panel.

Generate8. the code with the command Processor Expert > Generate Code <projectname>

Copy9. the user code from the function in main.c into the newly generated main module <projectname>.c at

the place marked with the text /* Write your code here */.

Copy10. the user ISRs code from the in MCUinit.c (or a filename specified in options.) into a new user

- 24 -

Device Initialization User Manual Using the Tool

module or to the main module.

Make11. the project using the Project Make command.

- 25 -

Device Initialization User Manual Using the Tool

4. Tutorials
The following tutorials are available:

The Device Initialization tutorials are available within the CodeWarrior tutorials. Please follow these instructions

to start the tutorial:

Invoke• the CodeWarrior startup dialog by starting the CodeWarrior or select the File | Startup dialog main

menu command.

Click• on the Run Getting Started Tutorial button.

Select• a tutorial tutorial from the tutorials contents.

- 26 -

Device Initialization User Manual Tutorials

5. Help Revisions History
The current revision number: 2.9 (Generated: 14.7.2010 09:12:14)

18.1.2010 Revision 2.9

Minor• content updates

30.11.2009 Revision 2.8

Minor• content updates

7.10.2009 Revision 2.7

Language• corrections

16.9.2009 Revision 2.6

Added• additionally modified registers

4.6.2009 Revision 2.5

Added• information regarding RS08 interrupt support

19.5.2009 Revision 2.4

updates• related to MPC512x

8.4.2009 Revision 2.3

updated• copyright information

16.12.2008 Revision 2.2

updated• Converting to PE

9.9.2008 Revision 2.1

New• version for HCS12(X)

10.4.2008 Revision 2.0

Added• name checking to DI to PE conversion chapter

Removed• version number from window title

29.11.2007 Revision 1.9

Update• options names

Separated• helps for individual releases.

10.08.2007 Revision 1.8

Added• __initialize_hardware function description

26.07.2007 Revision 1.7

Changed• handling of ISRs contend during generation

07.03.2007 Revision 1.6

Initial• addition of ColdFire V1

12.09.2006 Revision 1.5

Updated• Tutorials, Quick start and Code Genaration and usage to match the project wizard in CodeWarrior

for HC(S)08 V5.1.

Removed• animated tutorials - replaced by links to the same tutorials available from startup dialog.

Added• a new chapter 'Converting project to use the Device Initialization'.

- 27 -

Device Initialization User Manual Help Revisions History

27.04.2006 Revision 1.4

Added• information on Initialization Value meaning.

Added• information on Absolute/relative assembly options.

21.11.2005 Revision 1.3

Tutorials• updated.

Added• animated versions of tutorials.

The• Quick Start and Code Generation chapter updated.

7.11.2005 Revision 1.2

Corrected• error in the CPU derivative name in tutorials

1.11.2005 Revision 1.1

Languace• corrections

Updated• the Options, Tutorial and PE conversion chapters.

26.10.2005 Revision 1.0

Initial• release.

- 28 -

Device Initialization User Manual Index

- 29 -

Device Initialization User Manual Index

INDEX
Adding Device Initialization 23
Changing CPU 22
Code generation 19
Component 18, 4
Converting project 23
Converting to Processor Expert 24
CPU component 4
Creating ISRs 21
Design 4
Design steps 5
Features 4
Initialization code 19
Inspector 4, 12
Inspector items 14
Internal peripherals 4
Interrupt initialization 21
ISRS 21
Main Menu 8
Module 4
Options 16
Peripheral Initialization 18
Peripheral settings 4
Porperty types 14
Project creation 5
Properties 5
RAD tools 6
Saving settings 21
Settings backup 21
Target CPU 5
Tools comparison 6
Using generated code 19

- 30 -

Device Initialization User Manual Index

	1. Introduction
	1.1. Features and Benefits
	1.2. Basic Terms and Definitions
	1.3. Quick Start
	1.4. Rapid Application Development Tools

	2. User Interface
	2.1. Main Menu
	2.2. Device Initialization Window
	2.3. Inspector Dialog Box
	2.3.1. Inspector Items

	2.4. Error Window
	2.5. Code Generation Options Dialog Box

	3. Using the Tool
	3.1. Peripheral Initialization Components
	3.2. Code Generation And Usage
	3.3. Saving and Restoring the Design
	3.4. Defining Interrupt Service Routines
	3.5. Changing The CPU
	3.6. Converting Code Warrior Project To Use The Device Initialization
	3.7. Converting Device Initialization Project To Processor Expert

	4. Tutorials
	5. Help Revisions History

