
Freescale Digital Signal Processing
Development Software
Freescale
DSP Linker/Librarian

Reference Manual

DSPLNKRRM

Ho

Ho
ww

E-m
sup

US
Fre
Tec
130
Cha
+1-
sup

Eur
Fre
Tec
Sch
818
+44
+46
+49
+33
sup

Jap
Fre
Hea
AR
1-8
Tok
012
sup

Asi
Fre
Tec
2 D
Tai
Tai
+80
sup

For
Fre
P.O
Den
1-8
Fax
LDC
w to Reach Us:

me Page:
w.freescale.com

ail:
port@freescale.com

A/Europe or Locations Not Listed:
escale Semiconductor
hnical Information Center, CH370
0 N. Alma School Road
ndler, Arizona 85224

800-521-6274 or +1-480-768-2130
port@freescale.com

ope, Middle East, and Africa:
escale Halbleiter Deutschland GmbH
hnical Information Center
atzbogen 7
29 Muenchen, Germany
 1296 380 456 (English)
 8 52200080 (English)
 89 92103 559 (German)
 1 69 35 48 48 (French)
port@freescale.com

an:
escale Semiconductor Japan Ltd.
dquarters

CO Tower 15F
-1, Shimo-Meguro, Meguro-ku,
yo 153-0064, Japan
0 191014 or +81 3 5437 9125
port.japan@freescale.com

a/Pacific:
escale Semiconductor Hong Kong Ltd.
hnical Information Center
ai King Street
Po Industrial Estate
Po, N.T., Hong Kong
0 2666 8080
port.asia@freescale.com

 Literature Requests Only:
escale Semiconductor Literature Distribution Center
. Box 5405
ver, Colorado 80217

00-521-6274 or 303-675-2140
: 303-675-2150
ForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

PREFACE

Preface
This manual documents the linker and librarian, version 6.3.30.

Notation

The notational conventions used in this manual are:

DIRECTIVE

All linker directives and options are shown in bold upper case to highlight them.
However, the linker will recognize both upper and lower case for options and direc-
tives.

{ }

Contains a list of elements or directives, one of which must be selected. Each
choice will be separated by a vertical bar. For example, {R I L} indicates that either
R or L must be selected.

[]

Contains one or more optional elements. If more than one optional element is
shown, the required element separators are indicated. All elements outside of the
angle brackets (< >) must be specified as they appear. For example, the syntacti-
cal element [<number>,] requires the comma to be specified if the optional element
<number> is selected.
Freescale DSP Linker/Librarian Reference Manual iii

Preface
< >

The element names are printed in lower case and contained in angle brackets.
Some common elements used to describe linker options are:

<expr> or A linker expression
<expression>
<number> A numeric constant
<string> A string of ASCII characters enclosed in quotes
<delimiter> A delimiter character
<option> A linker option
<sym> or A linker symbol
<symbol>

Supporting Publications

DSP56300 Family Manual. Freescale, Inc.

DSP Assembler Reference Manual. Freescale, Inc.
iv DSP Linker/Librarian Reference Manual Freescale

Table of Contents

Preface

Chapter 1 Freescale DSP Linker

1.1 Introduction ... 1

1.2 Running the Linker .. 1

Chapter 2 Linker Operation

2.1 Introduction ... 11

2.2 Relocation and Linking ... 11

2.3 Linker Passes ... 12

2.4 Linking With Regions and Sections .. 13

2.5 Linking With Circular Buffers .. 13

2.6 Linking With Overlays ... 14

Chapter 3 Linker Directives

3.1 Memory Control File ... 15

3.2 Linker Directives ... 15

3.3 Memory Control File Example .. 22

Chapter 4 Freescale DSP Librarian

4.1 Introduction ... 25

4.2 Running the Librarian ... 25

4.3 Library Processing .. 29
Freescale DSP Linker/Librarian Reference Manual v

Table of Contents (Continued)

Chapter 5 Freescale DSP S-Record Conversion Utility (SREC)

5.1 Introduction ... 31

5.2 Installing SREC ... 31

5.3 Running SREC ... 31

5.4 SREC Processing ... 35

5.5 S-Record File Format ... 38

5.5.1 S-Record Content.. 38

5.5.2 S-Record Types .. 39

5.5.2.1 S0 Record .. 39

5.5.2.2 S1, S2, S3 Records ... 40

5.5.2.3 S7, S8, S9 Records ... 40

Chapter 6 Freescale DSP COFF File Dump Utility (COFDMP)

6.1 Introduction ... 41

6.2 Installing COFDMP ... 41

6.3 Running COFDMP .. 41

6.4 COFDMP Processing ... 44

Appendix A Linker Messages

A.1 Introduction... 45

A.2 Command Line Errors... 46

A.3 Warnings... 48

A.4 Errors .. 50

A.5 Fatal Errors ... 59

Appendix B Librarian Messages

B.1 Introduction... 65

B.2 Command Line Errors... 66

B.3 Warnings... 67

B.4 Fatal Errors ... 68
vi DSP Linker/Librarian Reference Manual Freescale

Table of Contents (Continued)

Appendix C Linker Map File Format

C.1 Introduction... 71

C.2 Map File Commentary .. 71

Index
Freescale DSP Linker/Librarian Reference Manual vii

Table of Contents (Continued)

viii DSP Linker/Librarian Reference Manual Freescale

Chapter 1 Freescale DSP Linker

1.1 Introduction

The Freescale DSP Linker is a program that processes relocatable object files produced
by the Freescale DSP assembler, generating an absolute executable file which can be
loaded directly into one of the Freescale DSP simulators, downloaded to an application
development system, or converted to Freescale S-record format for PROM burning. A
command line option provides for specification of a base address for each DSP memory
space and logical location counter. In addition, a memory control file may be supplied to
indicate absolute positioning of sections in DSP memory as well as physical mappings to
internal and external memory. The linker optionally generates a map file which shows
memory assignment of sections by memory space and a sorted list of symbols with their
load time values.

1.2 Running the Linker

The general format of the command line to invoke the linker is:

DSPLNK [options] <filenames>

where:

[options]

Any of the following command line options. These can be in any order, but
must precede the list of source filenames. Some options can be given more
Freescale DSP Linker/Librarian Reference Manual 1

Chapter 1 Freescale DSP Linker - Running the Linker
than once; the individual descriptions indicate which options may be speci-
fied multiple times. Option letters can be in either upper or lower case.

Command options that are used regularly may be placed in the environment
variable DSPLNKOPT. If the variable is found in the environment the linker
adds the associated text to the existing command line prior to processing
any options. See your host documentation for instructions on how to define
environment variables.

Option arguments may immediately follow the option letter or may be sepa-
rated from the option letter by blanks or tabs. However, an ambiguity arises
if an option takes an optional argument. Consider the following command
line:

DSPLNK -B MAIN IO

In this example it is not clear whether the file MAIN is an input file or is meant
to be an argument to the -B option. If the ambiguity is not resolved the linker
will assume that MAIN is an input file and attempt to open it for reading. This
may not be what the programmer intended.

There are several ways to avoid this ambiguity. If MAIN is supposed to be
an argument to the -B option it can be placed immediately after the option
letter:

DSPLNK -BMAIN IO

If there are other options on the command line besides those that take op-
tional arguments the other options can be placed between the ambiguous
option and the list of input file names:

DSPLNK -B MAIN -V IO

An alternative is to use two successive hyphens to indicate the end of the
option list:

DSPLNK -B -- MAIN IO

In this latter case the linker interprets MAIN as an input file name and uses
the default naming conventions for the -B option.

-A

Auto-align circular buffers. Any modulo or reverse-carry buffers defined in
the object file input sections are relocated independently in order to optimize
placement in memory. Code and data surrounding the buffer is packed to fill
2 DSP Linker/Librarian Reference Manual Freescale

Chapter 1 Freescale DSP Linker - Running the Linker
the space formerly occupied by the buffer and any corresponding alignment
gaps.

Example: DSPLNK -A myprog.cln

Link the file MYPROG.CLN and optimally align any buffers encoun-
tered in the input.

-B[<objfil>]

This option specifies that an object file is to be created for linker output.
<objfil> can be any legal operating system filename, including an optional
pathname. A hyphen also may be used as an argument to indicate that the
object file should be sent to the standard output.

If a pathname is not specified, the file will be created in the current directory.
If no filename is specified, or if the -B option is not present, the linker will use
the basename (filename without extension) of the first filename encountered
in the input file list and append .CLD to the basename. If the -I option is
present (see below) an explicit filename must be given. This is because if
the linker followed the default action it possibly could overwrite one of the
existing input files. The -B option should be specified only once. If the file
named in the -B option already exists, it will be overwritten.

Example: DSPLNK -Bfilter.cld main.cln fft.cln fio.cln

In this example, the files MAIN.CLN, FFT.CLN, and FIO.CLN are
linked together to produce the absolute executable file FILTER.CLD.

-EA<errfil>
-EW<errfil>

These options allow the standard error output file to be reassigned on hosts
that do not support error output redirection from the command line. <errfil>
must be present as an argument, but can be any legal operating system file-
name, including an optional pathname.

The -EA option causes the standard error stream to be written to <errfil>; if
<errfil> exists, the output stream is appended to the end of the file. The -EW
option also writes the standard error stream to <errfil>; if <errfil> exists it is
rewound (truncated to zero), and the output stream is written from the be-
ginning of the file.

Example: DSPLNK -EWerrors myprog.cln

Redirect the standard error output to the file ERRORS. If the file al-
ready exists, it will be overwritten.
Freescale DSP Linker/Librarian Reference Manual 3

Chapter 1 Freescale DSP Linker - Running the Linker
-F<argfil>

Indicates that the linker should read command line input from <argfil>.
<argfil> can be any legal operating system filename, including an optional
pathname. <argfil> is a text file containing further options, arguments, and
filenames to be passed to the linker. The arguments in the file need be sep-
arated only by some form of white space (blank, tab, newline). A semicolon
(;) on a line following white space makes the rest of the line a comment.

The -F option was introduced to circumvent the problem of limited line
lengths in some host system command interpreters. It may be used as often
as desired, including within the argument file itself. Command options may
also be supplied using the DSPLNKOPT environment variable. See the dis-
cussion of DSPLNKOPT under [options] at the beginning of this section.

Example: DSPLNK -Fopts.cmd

Invoke the linker and take command line options and input filenames
from the command file OPTS.CMD.

-G

Send source file line number information to the object file. The generated
line number information can be used by debuggers to provide source-level
debugging.

Example: DSPLNK -B -G myprog.cln

Link the file MYPROG.CLN and send source file line number infor-
mation to the resulting object file MYPROG.CLD.

-I

The linker ordinarily produces an absolute executable file as output. When
the -I option is given the linker combines the input files into a single relocat-
able object file suitable for reprocessing by the linker. No absolute address-
es are assigned and no errors are issued for unresolved external
references. Note that the -B option must be used when performing incre-
mental linking in order to give an explicit name to the output file. If the file-
name were allowed to default it could overwrite an existing input file.

Example: DSPLNK -I -Bfilter.cln main.cln fft.cln fio.cln

In this example, the files MAIN.CLN, FFT.CLN, and FIO.CLN are
combined to produce the relocatable object file FILTER.CLN.

-L<library>

The linker ordinarily processes a list of input files which each contain a sin-
gle relocatable code module. If the -L option is encountered the linker treats
4 DSP Linker/Librarian Reference Manual Freescale

Chapter 1 Freescale DSP Linker - Running the Linker
the following argument as a library file and searches the file for any out-
standing unresolved references.

If a module is found in the library that resolves an outstanding external ref-
erence, the module is read from the library and included in the object file out-
put. The linker continues to search a library until all external references are
resolved or no more references can be satisfied within the current library.
The linker searches a library only once, when it is encountered on the com-
mand line. Therefore, the position of the -L option on the command line is
significant.

Example: DSPLNK -B filter main fir -Lio

This example illustrates linking with a library. The files MAIN.CLN
and FIR.CLN are combined with any needed modules in the library
IO.LIB to create the file FILTER.CLD.

-M[<mapfil>]

This option indicates that a map file is to be created. <mapfil> can be any
legal operating system filename, including an optional pathname. A hyphen
also may be used as an argument to indicate that the map file should be
sent to the standard output.

If a pathname is not specified, the file will be created in the current directory.
If no filename is specified, the linker will use the basename (filename without
extension) of the first filename encountered in the input file list and append
.MAP to the basename. If the -M option is not specified, then the linker will
not generate a map file. The -M option should be specified only once. If the
file named in the -M option already exists, it will be overwritten.

Example: DSPLNK -M -- filter.cln gauss.cln

In this example, the files FILTER.CLN and GAUSS.CLN are linked
together to produce a map file. Because no filename was given with
the -M option, the output file will be named using the basename of the
first input file, in this case FILTER. The map file will be called FIL-
TER.MAP.
Freescale DSP Linker/Librarian Reference Manual 5

Chapter 1 Freescale DSP Linker - Running the Linker
-N

The linker considers case significant in symbol names. When the -N option
is given the linker ignores case in symbol names; all symbols are mapped
to lower case.

Example: DSPLNK -N filter.cln fft.cln fio.cln

In this example, the files FILTER.CLN, FFT.CLN, and FIO.CLN are
linked to produce the absolute executable file FILTER.CLD. All sym-
bol references are mapped to lower case.

-O<mem>[<ctr>][<map>]:<origin>

By default the linker generates instructions and data for the output file be-
ginning at absolute location zero for all DSP memory spaces. This option
allows the programmer to redefine the start address for any memory space
and associated location counter.

<mem> is one of the single-character memory space identifiers (X, Y, L, P).
The letter may be upper or lower case. The optional <ctr> is a letter indicat-
ing the high (H) or low (L) location counters. If no counter is specified the
default counter is used. <map> is also optional and signifies the desired
physical mapping for all relocatable code in the given memory space. It may
be I for internal memory, E for external memory, R for ROM, A for port A,
and B for port B. If <map> is not supplied, then no explicit mapping is pre-
sumed.

The <origin> is a hexadecimal number signifying the new relocation address
for the given memory space. The -O option may be specified as many times
as needed on the command line. This option has no effect if incremental
linking is being done (see the -I option).

Example: DSPLNK -Ope:200 myprog -Lmylib

This will initialize the default P memory counter to hex 200 and map
the program space to external memory.

-P<pathname>

When the linker encounters input files, the current directory (or the directory
given in the library specification) is first searched for the file. If it is not found
and the -P option is specified, the linker prefixes the filename (and optional
pathname) of the file specification with <pathname> and searches the newly
formed directory pathname for the file.
6 DSP Linker/Librarian Reference Manual Freescale

Chapter 1 Freescale DSP Linker - Running the Linker
The pathname must be a legal operating system pathname. The -P option
may be repeated as many times as desired. The directories will be searched
in the order specified on the command line.

Example: DSPLNK -P\project\ testprog

This example uses IBM PC pathname conventions, and would cause
the linker to prefix any library files not found in the current directory
with the \project\ pathname.

-Q

On some hosts the linker displays a banner on the console when invoked.
This option inhibits the banner display. It has no effect on hosts where the
signon banner is not displayed by default.

Example: DSPLNK -Q myprog.cln

Link the file MYPROG.CLN but do not display the signon banner on
the console.

-R[<ctlfil>]

This option indicates that a memory control file is to be read to determine
the placement of sections in DSP memory and other linker control functions.
<ctlfil> can be any legal operating system filename, including an optional
pathname.

If a pathname is not specified, an attempt will be made to open the file in the
current directory. If no filename is specified, the linker will use the base-
name (filename without extension) of the first filename encountered in the
link input file list and append .CTL to the basename. If the -R option is not
specified, then the linker will not use a memory control file. The -R option
should be specified only once.

Example: DSPLNK -Rproj filter.cln gauss.cln

In this example, the files FILTER.CLN and GAUSS.CLN are linked
together using the memory file PROJ.CTL.

-U<symbol>

Allows the declaration of an unresolved reference from the command line.
<symbol> must be specified. This option is useful for creating an undefined
external reference in order to force linking entirely from a library.

Example: DSPLNK -U start -Lproj.lib

Declare the symbol START undefined so that it will be resolved by
code within the library PROJ.LIB.
Freescale DSP Linker/Librarian Reference Manual 7

Chapter 1 Freescale DSP Linker - Running the Linker
-V

This option causes the linker to report linking progress (beginning of passes,
opening and closing of input files) to the standard error output stream. This
is useful to insure that link editing is proceeding normally.

Example: DSPLNK -V myprog.cln

Link the file MYPROG.CLN and send progress lines to the standard
error output.

-X<opt>[,<opt>,...,<opt>]

The -X option provides for link time options that alter the standard operation
of the linker. The options are described below (* means default). All options
may be preceded by NO to reverse their meaning. The -X<opt> sequence
can be repeated for as many options as desired.

Option Meaning

ABC* Perform address bounds checking
AEC* Check form of address expressions
ASC Enable absolute section bounds checking
CSL Cumulate section length data

(see Chapter 3, SIZSYM Set Size Symbol)
ESO Do not allocate memory below ordered sections
OVLP Warn on section overlap
RO Allow region overlap
RSC* Enable relative section bounds checking
SVO Preserve object file on errors
WEX Add warning count to exit status

Example: DSPLNK -XWEX filter.cln fft.cln fio.cln

Have the linker add the warning count to the exit status so that a
project build will abort on warnings as well as errors.

-Z

The linker strips source file line number and symbol information from the
output file. Symbol information normally is retained for debugging purpos-
es. This option has no effect if incremental linking is being done (see the -I
option).

Example: DSPLNK -Z filter.cln fft.cln fio.cln

In this example, the files FILTER.CLN, FFT.CLN, and FIO.CLN are
linked to produce the absolute object file FILTER.CLD. The output
file will contain no symbol or line number information.
8 DSP Linker/Librarian Reference Manual Freescale

Chapter 1 Freescale DSP Linker - Running the Linker
<filenames>

A list of operating system compatible filenames (including optional path-
names). If no extension is supplied for a given file, the linker first will attempt
to open the file using the filename as supplied. If that is not successful the
linker appends .CLN to the filename and attempts to open the file again. If
no pathname is specified for a given file, the linker will look for that file in the
current directory. The list of files will be processed sequentially in the order
given and all files will be used to generate the object file and map listing.
Freescale DSP Linker/Librarian Reference Manual 9

Chapter 1 Freescale DSP Linker - Running the Linker
10 DSP Linker/Librarian Reference Manual Freescale

Chapter 2 Linker Operation

2.1 Introduction

Using a linker allows the programmer to break up a large program into more manageable
modules which may be assembled or compiled separately. These modules can then be
link edited to produce an absolute module of the complete program. If a problem arises,
only the module with the problem need be edited and reassembled. Then the programmer
can relink the updated relocatable object module and the other previously created object
modules to produce a new executable file.

2.2 Relocation and Linking

The input to the linker is a set of relocatable object modules produced by the Freescale
DSP assembler. The term relocatable means that the data in the module has not yet
been assigned to absolute addresses in memory; instead, each different section is as-
sembled as though it started at relative address 0 (an exception to this is absolute blocks,
which do get assigned to absolute addresses at assembly time). When creating an abso-
lute object module, it is the job of the linker to read all the relocatable object modules
which comprise a program and assign the relocatable blocks in each section to an abso-
lute memory address. Then in the process of actually putting the code and data read from
each object module into the proper location in the executable file, the linker must fill in the
correct addresses for such items as absolute addresses and references across sections.
This is the process of relocation.

Along with relocation, the linker performs resolution between modules, so that one module
may reference symbols defined in a different module. At assembly time the module doing
the referencing has no idea where the symbol it is referencing will be in the final absolute
module. Therefore, the assembler sets up information in the relocatable object module
which indicates that an external symbol is referenced in this module and where the symbol
is referenced. In the relocatable object module where the symbol is defined there is infor-
mation indicating that this is the module in which the symbol is defined, along with the val-
ue of the symbol in the module. When the modules are presented as input to the linker,
the correct value of the symbol can be inserted wherever it is referenced.

If an external reference is made to a symbol for which there is no corresponding record in
the input, the linker flags it as an unresolved external reference. No final values are as-
Freescale DSP Linker/Librarian Reference Manual 11

Chapter 2 Linker Operation - Linker Passes
signed to these references, and the resulting output file is unusable. A list of unresolved
references is sent to the linker’s standard output and to the optional link map file.

References in the input file may be specified as either absolute or relative expressions.
An absolute expression is one which consists only of absolute terms, or is the difference
between two relative terms. A relative expression consists of one relative term along with
absolute terms and/or the result of two relative terms with opposing signs. Expressions
in the input file are a modified notation as supported by the assembler. See Appendix D
in the Freescale DSP Assembler Reference Manual for more information on the format
of relocatable object file expressions.

2.3 Linker Passes

The linker makes two partial passes over the input data. During the first pass, it collects
section, symbol, and external reference information from each input file given on the com-
mand line. If the input file is a library, the linker checks to see if there are any external ref-
erences outstanding. If there are, the linker opens the library file and searches each
module in the library until all external references are resolved or no more references can
be satisfied within that library. If there are no outstanding unresolved references, the linker
skips the library. At the end of the first pass a list of unresolved external references is sent
to the standard output as well as to the map file if one exists. References to unresolved
symbols may be fixed up using the SYMBOL directive of the memory control file, dis-
cussed in Chapter 3.

Prior to the second pass, the linker scans its internal tables and performs fixups on section
start addresses and symbol values. This includes setting the base relocation address for
any memory spaces and counters as given by the -O option on the command line or the
BASE directive in the memory control file. If a memory control file was specified on the
command line it is opened and read to determine placement of any named sections in
memory.

Blocks of code and data are arranged in memory first by region then by location counter
assignment. Absolute sections are located first, followed by ordered sections, and then
any remaining sections are placed in memory. It is possible that addresses assigned to a
section using a numbered location counter might overlap addresses of another section us-
ing a different counter. This design is intentional so that counters may be used as a logical
connection to the physical mapping of separate memories (e.g. internal and external
RAM), or as a means for supporting load and runtime counters for overlays.

During the second pass, the linker processes the data records, evaluating data fields as
expressions and writing the modified values to the output file. Errors are reported during
either pass, and the linker may abort depending on the severity of the error. Linker errors
are routed to standard output so they may be redirected to a file if necessary. An output
file produced with errors should not be used in any case. The number of errors is returned
as an exit status when the linker returns control to the host operating system.
12 DSP Linker/Librarian Reference Manual Freescale

Chapter 2 Linker Operation - Linking With Regions and Sections
2.4 Linking With Regions and Sections

The basic relocatable entity is the section. Sections are created by the assembler SEC-
TION directive. A section may contain code or data from any DSP memory space, and the
addresses of the code or data may be relocatable or absolute. Sections that are not ab-
solute at assembly time can be located either directly using the linker memory control file
SECTION directive, or indirectly via the linker command line -O option or the control file
BASE directive. Note that sections do not have to be relocatable to be linked; an absolute
section can be linked with any arbitrary module that contains or satisfies a reference to
that section.

Sections may be grouped for relocation into regions. A region is a defined area of mem-
ory where sections are located. Regions make it possible to specify varying base ad-
dresses for different groups of sections and set boundaries for section growth. Whereas
sections represent blocks of code or data which are positioned within a given memory
map, regions designate an area of a specified size where sections can be placed.

There is always at least one default region. Other regions are defined using the linker RE-
GION directive. A region always has a size and a start and end address. If these are not
given, the linker uses default values (e.g. if no end address is supplied for a region, the
highest target address is used).

Regions should not overlap. One exception is that regions may overlap for setting overlay
base addresses. Another exception is the default region, which allows explicit regions to
supercede it for relocation blocks. After all sections in explicit regions are located, the link-
er relocates remaining sections around the previously assigned blocks within the default
region. This behavior can be altered with the linker RO option (see section 1.2).

2.5 Linking With Circular Buffers

A circular buffer is a fixed area of memory manipulated via special-purpose DSP ad-
dressing modes. Because of the way buffers are accessed, they must be suitably aligned
on an address boundary. When the programmer declares a modulo or reverse-carry buff-
er, the assembler aligns the buffer block at an address corresponding to the size of the
buffer. The alignment may create a padding gap comprising the locations skipped to prop-
erly position the buffer block in memory.

The linker processes buffer blocks in one of two ways. By default, it keeps track of the larg-
est buffer in any section and aligns the entire section based on the size of the largest buff-
er block. This insures that any smaller buffers contained in the section will remain aligned
after relocation, but it can introduce additional padding gaps because of the section align-
ment.

If the -A option is given on the linker command line, or if one of the buffer alignment direc-
tives is specified in the memory control file, the linker auto-aligns buffers. It extracts the
buffer blocks in a given section, locates them in memory before any other relocatable
blocks, and repositions the section code and data to fill in gaps left from padding and re-
Freescale DSP Linker/Librarian Reference Manual 13

Chapter 2 Linker Operation - Linking With Overlays
located buffers. The linker sorts the buffers, placing the largest blocks in memory first in
order to make more eligible addresses available for subsequent smaller blocks.

Auto-alignment works only with relocatable buffers; the linker will not attempt to realign
any absolute block. Also, a buffer defined inside a relocatable overlay cannot be auto-
aligned because the assumption is that the overlay block will move, invalidating any opti-
mal placement of the buffer. If a buffer is declared using an open-ended alignment direc-
tive such as BADDR, the linker will not auto-align any buffers within that section
associated with the current memory space and counter. This is because the linker has no
knowledge of how far the open-ended block extends, and since alignment works only at
the section level, the linker must abandon auto-alignment of all buffers in the section. See
Chapter 4 in the Freescale DSP Assembler Reference Manual for more information on
circular buffers.

2.6 Linking With Overlays

An overlay is a segment of code or data that is loaded at one address, but is moved and
executed or used at another location. A good example is a user program burned into
PROM and transferred into internal RAM by the DSP bootstrap program. The linker han-
dles overlays by recognizing overlay blocks, reconciling overlay block addresses with pre-
viously relocated sections, and altering values for symbols associated with overlay blocks.

Processing of any overlays is postponed until after all absolute and otherwise relocatable
sections have been placed into the memory map. This is done so that any overlays based
on an explicit address (e.g. a relocatable expression) will be properly located. If overlays
exist that were not explicitly based (default overlays), the linker attempts to base them
from previous explicit blocks. If there are no explicit blocks, the linker will base the default
overlays from the enclosing section or region base address. In all cases for default over-
lays, the blocks will be located as if they were contiguous; that is, default overlays will not
overlap one another.

After all overlay blocks are processed the linker resolves overlay symbols. Overlay sym-
bols are those labels defined inside an overlay within the source file. The overlay block
information is retained for reporting to the link map file. See Chapter 4 in the Freescale
DSP Assembler Reference Manual for more information on overlays.
14 DSP Linker/Librarian Reference Manual Freescale

Chapter 3 Linker Directives

3.1 Memory Control File

A memory control file is simply a text file containing linker directives. It optionally contains
module identification, a global starting load address for linking purposes, and ordering,
sizing, or placement information for any named sections. Section addresses may be for
any memory space and any logical location counter. The memory control file also can
specify physical memory mappings (internal, external) associated with any memory space
or counter. In addition, global unresolved symbols may be assigned values in the memory
control file.

3.2 Linker Directives

Linker directives are commands which control the operation of the linker with respect to
section relocation, buffer alignment, symbol definition, and map file format. Linker direc-
tives are listed below:

BALIGN MEMORY SECSIZE SYMBOL
BASE REGION SECTION
IDENT RESERVE SIZSYM
MAP SBALIGN START

Several of the directives use the notation mem or memx to indicate the contents of a field.
The definitions of mem and memx are as follows:

mem = <attr>:<exp>
memx = <attr>:<exp>..<exp>
attr = <scm> | <sme>
scm = <spc>[<ctr>][<map>]
sme = <spc>[<map>][(exp)]
spc = X | Y | L | P
ctr = L | H
map = I | E | R | A | B
exp = expression
Freescale DSP Linker/Librarian Reference Manual 15

Chapter 3 Linker Directives - Linker Directives
The spc field indicates one of the DSP memory spaces (X, Y, L, P). The ctr field specifies
either Low or High location counters; if none is given the default counter is used. Alterna-
tively, an expression in parentheses may be provided to indicate an arbitrary counter des-
ignation. The map field indicates Internal memory, External memory, ROM, port A, or port
B; this field may be omitted, in which case no explicit mapping is done.

BALIGN
Auto-align Circular Buffers

BALIGN <mem>[,...,<mem>]

The BALIGN directive auto-aligns circular buffers within a particular region. All relocat-
able buffers found in any section within the region are relocated independently for optimal
placement in memory. Code and data around the buffer is made contiguous in order to fill
in previously occupied space. The <mem> argument indicates where in memory the align-
ment should begin.

Example:

BALIGN XE:$200,YE:$200 ; Realign X and Y external buffers

BASE
Set Region Base Address

BASE <mem>[,...,<mem>]

The BASE directive indicates where to begin the location counter for the given memory
region. This will be the base link address for all specified memory areas and all linked
code and data within the region except for sections relocated absolutely via a memory file
SECTION directive. Code and data not explicitly relocated will originate from this ad-
dress. The BASE directive is analogous to the linker -O command line option.

Example:

BASE XE:$200,YE:$200,PI:$200 ; Set memory base addresses

IDENT
Object Module Identification

IDENT <module name> <version> <revision> [;<comment>]

The IDENT directive functions similarly to the assembler IDENT directive by identifying
the name, version number, and revision number of the absolute or incrementally linked
16 DSP Linker/Librarian Reference Manual Freescale

Chapter 3 Linker Directives - Linker Directives
output module. The information is sent to the resulting output file. The <module name>
adheres to the rules for assembly language labels, so that it must begin with an alphabetic
character and consist only of alphanumeric characters or the underscore up to a length of
255. The version number and revision number must be absolute expressions. If a com-
ment follows the version and revision numbers it will be copied into the output file as well.

Example:

IDENT MYMODULE 1 2 ; MYMODULE, version 1, revision 2

INCLUDE
Include Directive File

INCLUDE <filename>

The INCLUDE directive provides for insertion of separate files containing other linker con-
trol directives. File inclusion can be convenient for always including a set of master direc-
tives in several different configuration files. <filename> must be in quotes.

Example:

INCLUDE ’main.ctl’ ; Include master control file

MAP PAGE
Map File Format Control

MAP PAGE <exp1>[,<exp2>[,<exp3>[,<exp4>[,<exp5>]]]]

The MAP PAGE modifier works similarly to the assembler PAGE directive, and causes
the .MAP file to be printed on the page according to the parameters supplied. If no MAP
PAGE appears in the memory control file, the linker produces a map file with a column
width of 80, a physical page length of 66 lines, and no blank lines at top and bottom.

Example:

MAP PAGE 132,,3,3

The above MAP PAGE directive indicates a column width of 132, a physical page length
of 66 lines (default), with three blank lines at the top and bottom of each page.
Freescale DSP Linker/Librarian Reference Manual 17

Chapter 3 Linker Directives - Linker Directives
MAP OPT
Map File Contents Control

MAP OPT <option>[,<option>,...,<option>]

The MAP OPT modifier determines the content of the output in the linker map file. The
following MAP OPT options are available:

GLOBMAP - produce global map by memory space
NOCONST - do not list symbols without a memory space attribute
NOGLOBSYM - omit symbols from global map
NOLOCAL - do not list non-global symbols (e.g. symbols which

 are local to a section)
NOSECADDR - do not list sections by address
NOSECNAME - do not list sections by name
NOSYMNAME - do not list symbols by name
NOSYMVAL - do not list symbols by value
NOUNUSED - do not list unused memory blocks

If no MAP OPT is found in the memory control file, the linker will list all symbols and sec-
tions by name, address, and value.

Example:

MAP OPT NOCONST,NOSYMVAL

The above MAP OPT directive specifies no constants in the map listing and no symbols
by value.

MEMORY
Set Region High Memory Address

MEMORY <mem>[,...,<mem>]

The MEMORY directive establishes a maximum high memory address for locating code
and data in the given memory region. If the linker attempts to relocate a block beyond the
address specified in the MEMORY directive, an error will occur. This directive is useful
for reflecting the true physical memory limits of the target system.

Example:

MEMORY PE:$1FFF ; External program memory ends at hex 1FFF
18 DSP Linker/Librarian Reference Manual Freescale

Chapter 3 Linker Directives - Linker Directives
REGION
Establish Memory Region

REGION <region> [<mem>[,...,<mem>]]
.
.
.

ENDR

The REGION directive defines a region of memory in which to locate sections. The region
name identifies the region. The optional <mem> parameter gives an absolute region size.
The REGION directive is used in conjunction with existing control directives to specify a
bounds for placing sections in memory. For example, a BASE directive used within a RE-
GION/ENDR pair defines the base address for that region only. Likewise a MEMORY di-
rective within a REGION scope indicates the high address for the enclosing region.

Example:

REGION INTERNAL_ROM X:$256,Y:$256
BASE X:0,Y:0 ; Base for INTERNAL_ROM region only
SECTION BUFFERS
ENDR

RESERVE
Reserve Memory Block

RESERVE <memx>[,...,<memx>]

The RESERVE directive sets aside a block of memory which the linker will not use for re-
location. The expression field in the <mem> parameter takes the form of a range n..m,
where n is the low reserve address and m is the high reserve address. This directive can
be used to protect ROM locations, system code, or uninitialized buffer areas.

Example:

RESERVE PI:$0..$1FF ; Protect interrupt vectors

SBALIGN
Auto-align Section Buffers

SBALIGN <section> <mem>[,...,<mem>]

The SBALIGN directive auto-aligns circular buffers within a named section. All relocat-
able buffers found in the section are relocated independently for optimal placement in
Freescale DSP Linker/Librarian Reference Manual 19

Chapter 3 Linker Directives - Linker Directives
memory. Code and data around the buffer is made contiguous in order to fill in previously
occupied space. The <mem> argument indicates where in memory the alignment should
begin.

Example:

SBALIGN MYSEC XE:$200 ; Realign X external buffers

SECSIZE
Pad Section Length

SECSIZE <section> [<mem>[,...,<mem>]]

The SECSIZE directive provides a mechanism for padding a section to a particular length
despite its code or data content. The value field in the mem parameter is an expression
which can either be an absolute size expressed as an integer, or a floating point value rep-
resenting a percentage to pad.

Example:

SECSIZE PADSEC X:$1000,Y:$1000 ; X and Y absolute size
SECSIZE PADSEC P:150.0 ; Increase size by one half

SECTION
Set Section Base Address

SECTION <section> [<mem>[,...,<mem>]]

The SECTION directive either assigns a section of code or data to an absolute location in
DSP memory, or implies an ordering if no address specification is present. The addresses
serve as the base for the corresponding memory spaces and counters in the named sec-
tion. Any memory areas not indicated in the SECTION directive are relocated relative to
the global starting load address given by the -O command line option or the memory file
BASE directive. If there is no -O option or BASE directive, unassigned areas are placed
in memory relative to location zero.

If the SECTION directive appears with only a section name and no address, it means that
the linker should locate this section in memory before handling any other default sections.
Thus given a set of sections A, B, C, and D, if B and C were listed in SECTION directives
without a corresponding address, the linker would place B and C in memory before A and
D. This provides a means for ordering sections in memory.
20 DSP Linker/Librarian Reference Manual Freescale

Chapter 3 Linker Directives - Linker Directives
Example:

SECTION ABS X:$2000,Y:$2000 ; X and Y absolute base
SECTION ORD ; Ordered section

SET
Set Symbol Value

SET <symbol> { <mem> | <expression> }

The SET directive is a synonym for the SYMBOL directive, described below. It is useful
for sharing counter declaration files between the assembler and linker since the syntax is
compatible.

Example:

SET PCTR 5 ; Set P memory counter number

SIZSYM
Set Size Symbol

SIZSYM <symbol> <attr>:[<section>]

The SIZSYM directive makes it possible to declare an arbitrary symbol to hold section
length data. This is useful when the programmer needs a cumulative section length for
overlay handling. It is analogous to the SYMBOL directive, in that the symbol so defined
may be employed to resolve an external reference in a source file.

If no section name is supplied the linker returns the length of all sections for the memory
space and counter specified. Ordinarily the linker retains length data only for relocatable
sections; use CSL (see -X option) to cumulate length data for absolute and buffer sections
as well. Note that SIZSYM symbols are valued after the memory control file is read, so
that attempting to reference the symbol value within the memory control file itself may
cause erroneous results.

Example:

SIZSYM XLEN X: ; Assign length of X memory to XLEN
Freescale DSP Linker/Librarian Reference Manual 21

Chapter 3 Linker Directives - Memory Control File Example
START
Establish Start Address

START <expression>

The START directive gives an alternative start address to which the program will jump at
runtime. This value is ordinarily given by the assembler END directive. The expression
may consist of an absolute value or a global symbol whose value will be adjusted during
link processing.

Example:

START BEGIN ; Jump to location BEGIN after loading

SYMBOL
Set Symbol Value

SYMBOL <symbol> { <mem> | <expression> }

The SYMBOL directive allows the programmer to specify a value for an otherwise unre-
solved reference. The named symbol must not have been defined during link processing.
The symbol is stored as an absolute global symbol. The symbol value may be either in-
teger or floating point. If the value is an address it may contain a memory space reference
and optionally a counter and mapping designation.

Example:

SYMBOL TARGET X:$200 ; Set TARGET to hex 200

3.3 Memory Control File Example

Figure 1 shows the contents of an example memory control file. The IDENT directive
identifies the object module and gives it explicit version and revision numbers. The com-
ment is also preserved in the output file. The START directive gives a starting address of
FILTER for the program, overriding any previous settings done with the assembler END
directive.

The BASE directive indicates that the X and Y low memory counters are to be mapped
into internal DSP memory, with a starting address of 100 hexadecimal. Any data associ-
ated with the X or Y low memory counters, and not relocated due to a subsequent memory
file SECTION directive, will be assigned addresses relative to this starting location. The
BASE directive also shows that X and Y high memory counters have been assigned start-
ing address 2000 hexadecimal in external DSP memory, and that linking to external pro-
gram memory begins at location 200 hexadecimal. Note that any memory specifications
given by the -O command line option override the values supplied by the memory file
BASE directive for the default region.
22 DSP Linker/Librarian Reference Manual Freescale

Chapter 3 Linker Directives - Memory Control File Example
The RESERVE directives set aside a part of the low internal X and Y data memory, even
though the base address is lower than the reserved area. The linker will locate data
around the reserved portions as if they had been previously allocated.

The REGION directive defines a sized region of memory for modulo buffers in internal
ROM. The corresponding MEMORY directive indicates that there are only 256 words of
memory in each data space for this region (the default base is zero).

The example SECTION directives are similar to the format of the BASE directive, except
that the particular section is named so that the individual section counters may be modi-
fied. For the section named INPUT, the program low memory counter is initialized to 100
hex and mapped to external memory. The program memory for the FILTER section uses
the default location counter and sets the initial value to 400 hex, mapped to external mem-
ory. Finally, the OUTPUT section is set to 800 hex, using the high memory P space
counter mapped to external memory.

Two unresolved symbols are given values with the SYMBOL directive. The symbol XDA-
TA is assigned to external high X memory with a value of 2000 hexadecimal. The symbol
YDATA is assigned to external high Y memory with a value of 2000 hexadecimal. Both
symbols will be stored as absolute global entities.

The MAP directives control the formatting and content of the link map file. The first direc-
tive sets the page width to 132, with three blank lines at top and bottom. The second di-
rective disables the reporting of sections by address and symbols by value.
Freescale DSP Linker/Librarian Reference Manual 23

Chapter 3 Linker Directives - Memory Control File Example
ident filter 2 1 ; Filter module
start filter

base xli:$100,xhe:$2000,yli:$100,yhe:$2000,pe:$200
reserve xli:$200..$3ff,yli:$200..$3ff

region internal_rom
memory x:256,y:256
section buffers
endr

section input ple:$100
section filter pe:$400
section output phe:$800

symbol xdata xhe:$2000
symbol ydata yhe:$2000

map page 132,,3,3
map opt nosecaddr,nosymval

Figure 1. DSP Linker Memory Control File Example
24 DSP Linker/Librarian Reference Manual Freescale

Chapter 4 Freescale DSP Librarian

4.1 Introduction

The Freescale DSP Librarian is a stand-alone utility that allows separate files to be
grouped together into a single file for linking or archival storage. After a library is created,
files may be added, deleted, replaced, or extracted from the library. The library contents
may also be listed, indicating the module name (base name of the input file path), size in
bytes, and the date and time the module was entered into the library.

4.2 Running the Librarian

The general format of the command line to invoke the librarian is:

DSPLIB [options] [<library>] [<files>]

where:

[options]

Any one of the following command line options. The single option must pre-
cede the library name. Option letters may be specified in either upper or
lower case. If no option is supplied, the librarian operates as if the update
(-U) option were given.

-A

This option adds the modules in the file list to the named library. The library
file must exist, and the modules must not already be in the library.

Example: DSPLIB -A fftlib fft16.cln fft512.cln ditfft.cln

In this example, the files FFT16.CLN, FFT512.CLN, and
DITFFT.CLN are added to the existing library FFTLIB.LIB.
Freescale DSP Linker/Librarian Reference Manual 25

Chapter 4 Freescale DSP Librarian - Running the Librarian
-C

Create a new library file and add any specified modules to it. If the library
file already exists, an error is issued.

Example: DSPLIB -C fftlib fft16.cln fft512.cln ditfft.cln

In this example, a new library file FFTLIB.LIB is created and the files
FFT16.CLN, FFT512.CLN, and DITFFT.CLN are added to the li-
brary.

-D

Delete the named modules from the library. If the module is not in the li-
brary, an error is issued.

Example: DSPLIB -D fftlib fft16.cln

In this example, the module FFT16.CLN is removed from the library
FFTLIB.LIB.

-EA<argfil>
-EW<argfil>

These options allow the standard error output file to be reassigned on hosts
that do not support error output redirection from the command line. <errfil>
must be present as an argument, but can be any legal operating system file-
name, including an optional pathname.

The -EA option causes the standard error stream to be written to <errfil>; if
<errfil> exists, the output stream is appended to the end of the file. The -EW
option also writes the standard error stream to <errfil>; if <errfil> exists it is
rewound (truncated to zero), and the output stream is written from the be-
ginning of the file.

Example: DSPLIB -EWerrors -A fftlib fft16.cln fft512.cln ditfft.cln

Redirect the standard error output to the file ERRORS. If the file al-
ready exists, it will be overwritten.

-F<argfil>

Indicates that the librarian should read command line input from <argfil>.
<argfil> can be any legal operating system filename, including an optional
pathname. <argfil> is a text file containing module names to be passed to
the librarian. The arguments in the file need be separated only by some form
of white space (blank, tab, newline). A semicolon (;) on a line following white
space makes the rest of the line a comment.
26 DSP Linker/Librarian Reference Manual Freescale

Chapter 4 Freescale DSP Librarian - Running the Librarian
The -F option was introduced to circumvent the problem of limited line
lengths in some host system command interpreters.

Example: DSPLIB -Fopts.cmd

Invoke the librarian and take command line filenames from the com-
mand file OPTS.CMD.

-L

List library contents. This option lists the module name as contained in the
library header, the module size (less library overhead), and the date and
time the file was stored into the library. The listing output is routed to stan-
dard output so that it may be redirected to a file if desired.

Example: DSPLIB -L fftlib > fftlib.lst

This example lists the contents of the library FFTLIB.LIB. The output
is redirected to the file FFTLIB.LST.

-Q

On some hosts the librarian displays a banner on the console when invoked.
This option inhibits the banner display. It has no effect on hosts where the
signon banner is not displayed by default.

Example: DSPLIB -AQ mylib.clb myprog.cln

Add the file MYPROG.CLN to the library MYLIB.CLB, but do not dis-
play the signon banner.

-R

This option replaces the named modules in the given library. The modules
must already be present in the library file.

Example: DSPLIB -R fftlib fft512.cln ditfft.cln

This example replaces the files FFT512.CLN and DITFFT.CLN in the
library FFTLIB.LIB.

-U

This option updates the specified modules if they exist in the library; other-
wise it adds them to the end of the library file.

Example: DSPLIB -U fftlib ditfft.cln

In this example, the file DITFFT.CLN is updated in the library
FFTLIB.LIB.
Freescale DSP Linker/Librarian Reference Manual 27

Chapter 4 Freescale DSP Librarian - Running the Librarian
-V

Display the librarian version number and copyright notice on standard out-
put.

Example: DSPLIB -V

This example displays the current librarian version number and copy-
right notice.

-X

Extract named modules from the library. The resulting files are given the
name of the modules as stored in the library module header.

Example: DSPLIB -X fftlib fft16.cln fft612.cln

This example extracts the files FFT16.CLN and FFT512.CLN from
the library FFTLIB.LIB. The files are placed in the current directory.

<library>

An operating system compatible filename (including optional pathname)
specifying the library file to create or access. If no extension is supplied, the
librarian will automatically append .LIB to the filename. If no pathname is
specified, the librarian will look for the library in the current directory.

The librarian also has an interactive mode, where commands can be en-
tered repeatedly without reloading the librarian program for each operation.
If the librarian is invoked without arguments, it prompts for a command
string. The interactive commands correspond to those given above, and the
syntax is similar to that of the command line. Because interactive input is
taken from the standard input channel of the host environment, it is possible
to create a batch of librarian commands and feed them to the program for
execution via redirection. Enter help or ? at the prompt for more information
on the librarian interactive mode.

<files>

A list of operating system compatible filenames separated by blanks. If no
pathname is specified for a given file, the librarian will look for that file in the
current directory. For input operations the filenames may also contain an
optional pathname; the path is stripped when the file is written to the library.
For output operations only the filename should be used to refer to library
modules. The list of files will be processed sequentially in the order given.
28 DSP Linker/Librarian Reference Manual Freescale

Chapter 4 Freescale DSP Librarian - Library Processing
4.3 Library Processing

A library file may contain several relocatable object modules, each of which contains one
or more global symbol definitions. Rather than being normal input to the linker, a library
file is searched. This means that for each relocatable object module in the library, a check
is made to determine whether any globally defined symbols in the library module match
any externally referenced symbols encountered in previous input modules. If so, the relo-
catable object module from the library is included in the executable file. If not, the search
continues with the next module in the library file.
Freescale DSP Linker/Librarian Reference Manual 29

Chapter 4 Freescale DSP Librarian - Library Processing
30 DSP Linker/Librarian Reference Manual Freescale

Chapter 5 Freescale DSP S-Record Conversion Utility (SREC)

5.1 Introduction

The Freescale DSP S-Record Conversion Utility SREC converts Freescale DSP COFF
format files into Freescale S-record files. The S-record format was devised for the pur-
pose of encoding programs or data files in a printable form for transportation between
computer systems. Freescale S-record format is recognized by many PROM program-
ming systems.

5.2 Installing SREC

SREC is distributed on various media and in different formats depending on the host op-
erating system environment. See Appendix G in the Freescale DSP Assembler Refer-
ence Manual, HOST-DEPENDENT INFORMATION, for details on installing and
operating SREC on your particular machine.

5.3 Running SREC

The general format of the command line to invoke SREC is:

SREC [options] <files>

where:

[options]

Any of the following command line options. The options must precede the
file names. Option letters may be specified in either upper or lower case.

-A<alen>

Use <alen> as the S-record address length. A value of 2 indicates a two-
byte address and will generate S1 records. A value of 3 indicates a three-
byte address and will generate S2 records. A value of 4 indicates a four-
byte address and will generate S3 records. This option overrides any S-
Freescale DSP Linker/Librarian Reference Manual 31

Chapter 5 Freescale DSP S-Record Conversion Utility (SREC) - Running SREC
record address length implied by the processor type. Address truncation
may occur for targets with address ranges greater than what <alen> can ac-
commodate.

Example: SREC -A4 prog

The file PROG.CLD is translated to S-records using the S3-S7 record
format.

-B

Use byte addressing when transferring load addresses to S-record address-
es. This means that object file start addresses are multiplied by the number
of bytes per target DSP word and subsequent S1/S3 record addresses are
computed based on the data byte count.

Example: SREC -B prog

In this example, the file PROG.CLD is translated to S-record format
using byte addressing. The load addresses will be multiplied by the
number of bytes per DSP word. A separate output file will be pro-
duced for each DSP memory space (X, Y, L, P, or E) represented in
the input file.

-L

Use double-word addressing when transferring load addresses from L
space to S-record addresses. This means that object file records for L
space data are moved unchanged and subsequent S1/S3 record addresses
are computed based on the data word count divided by 2. This option
should always be used when the object file contains sections in L memory
space.

Example: SREC -L filter.cld

Convert the file FILTER.CLD into separate S-record files for each
memory space in the object file. Convert L space load addresses to
long addresses in the S-record file.

-M

Split each DSP word into bytes and store the bytes in parallel S-records.
The -M and -S options are mutually exclusive.

Example: SREC -M main

For each memory space in the file MAIN.CLD create multiple S-
record files that correspond to each byte in the target DSP word. For
example, if MAIN.CLD contained only references to P memory and
32 DSP Linker/Librarian Reference Manual Freescale

Chapter 5 Freescale DSP S-Record Conversion Utility (SREC) - Running SREC
the target DSP is the DSP56300, then SREC would produce the files
MAIN.P0, MAIN.P1, and MAIN.P2.

-O<mem>:<offset>

Add <offset> to S-record addresses in <mem> memory space. <mem> is
one of the valid memory space specifiers: X, Y, L, P, or E. <offset> must be
given in hexadecimal.

Example: SREC -OP:100 prog

The file PROG.CLD is translated to S-record format with the value
100 hexadecimal added to all P memory addresses.

-P<procno>

Assume <procno> object file format. This makes a difference in the type of
S-type data records produced. <procno> is one of the Freescale DSP pro-
cessor numbers, e.g. 56300, 96000, etc. This option overrides the object
file machine ID. It is useful for handling object files from programs that do
not generate target machine information. This is a legacy option that has
been retained.

Example: SREC -P56300 prog

The file PROG.CLD is translated to S-record format with the assump-
tion that the target processor is in the DSP56300 family of proces-
sors.

-Q

On some hosts SREC displays a banner on the console when invoked. This
option inhibits the banner display. It has no effect on hosts where the signon
banner is not displayed by default.

Example: SREC -Q myprog.cld

Translate the file MYPROG.CLD to S-record format but do not dis-
play the signon banner on the console.

-R

Write bytes high to low, rather than low to high. This option has no effect
when used with the -M option.

Example: SREC -R prog

The file PROG.CLD is translated to S-record format with bytes writ-
ten high to low. A separate output file will be produced for each DSP
memory space (X, Y, L, P, or E) represented in the input file.
Freescale DSP Linker/Librarian Reference Manual 33

Chapter 5 Freescale DSP S-Record Conversion Utility (SREC) - Running SREC
-S

Write data to a single file, putting memory space information into the ad-
dress field of the S0 header record. The -M and -S options are mutually ex-
clusive.

Example: SREC -S filter

This example writes the S-record output to a single file called FIL-
TER.S and stores the memory space information in the address field
of the S0 header record. An S0 record is emitted whenever the mem-
ory space changes in the object file.

-T<tlen>

Use <tlen> as the target word length. A value of 2 indicates a two-byte word
length. A value of 3 indicates a three-byte word length. A value of 4 indi-
cates a four-byte word length. This option overrides any target word length
implied by the processor type, and therefore may lead to value padding or
truncation.

Example: SREC -T4 prog

The file PROG.CLD is translated to S-records using four-byte data
words.

-U

Write words high to low, rather than low to high when processing L memory
data records. This option has no effect when used with the -X option.

Example: SREC -U prog

The file PROG.CLD is translated to S-record format with L memory
words written high to low. A separate output file will be produced for
each DSP memory space (X, Y, L, P or E) represented in the input
file.

-W

Use word addressing when transferring load addresses to S-record ad-
dresses. This means that object file start addresses are moved unchanged
and subsequent S1/S3 record addresses are computed based on the data
word count.

Example: SREC -W main

In this example, the file MAIN.CLD is translated to S-record format
using word addressing. A separate output file will be produced for
34 DSP Linker/Librarian Reference Manual Freescale

Chapter 5 Freescale DSP S-Record Conversion Utility (SREC) - SREC Processing
each DSP memory space (X, Y, L, P, or E) represented in the input
file.

-X

Split L memory input words into respective X and Y data records. This op-
tion has no effect when used with the -U option.

Example: SREC -X prog

The file PROG.CLD is translated to S-record format with L memory
words translated to equivalent X and Y data values. A separate out-
put file will be produced for each DSP memory space (X, Y, L, P, or
E) represented in the input file.

<files>

A list of operating system compatible filenames separated by blanks. If no
pathname is specified for a given file, SREC will look for that file in the cur-
rent directory. If the special character ‘-’ is used as a filename SREC will
read from the standard input stream. The list of files will be processed se-
quentially in the order given.

5.4 SREC Processing

SREC takes as input a Freescale DSP absolute object file and produces byte-wide Free-
scale S-record files suitable for PROM burning. The Freescale DSP COFF file header
records are mapped into S0 and S7/S8/S9 records respectively. DSP COFF section raw
data are mapped into S1, S2, or S3-type records depending on the magnitude of the ad-
dress value or on the type of the target processor.

Since Freescale DSPs use different word sizes, the words must be split into bytes and
stored in a suitable format. The program keeps track of the input address magnitude to
determine the appropriate S-record format to generate. If the -A or -P option is selected,
SREC uses a format corresponding to the address size or processor type specified. For
example, if the programmer entered a -P96000 option, SREC would always produce S3/
S7 records regardless of the input address size.
Freescale DSP Linker/Librarian Reference Manual 35

Chapter 5 Freescale DSP S-Record Conversion Utility (SREC) - SREC Processing
In the default mode of operation the program writes the low, middle, and high bytes of
each word consecutively to the current S1/S2/S3 record being written. For example, given
the DSP56300 raw data record below:

0008F8 300000 340000 094E3E
| | | |
| | | fourth word
| | third word
| second word
first word

SREC would create the following S1 record:

byte count field
| address field checksum field
| | |

S10D0000F808000000300000343E4E09F9
| | | |
| | | fourth word
| | third word
| second word
first word

Output records are written to a file named according to the following convention:

<basename>.<M>

where <basename> is the filename of the input object file without extension and <M > is
the memory space specifier (X, Y, L, or P) for this set of data words. Note that a separate
file is created for each memory space encountered in the input file; thus the maximum
number of output files in the default mode is 4.
36 DSP Linker/Librarian Reference Manual Freescale

Chapter 5 Freescale DSP S-Record Conversion Utility (SREC) - SREC Processing
When the -M option is specified, SREC splits each DSP source word into bytes and stores
the bytes in parallel S1/S2/S3 records. For example, the following DSP56300 raw data:

0008F8 300000 340000 094E3E
| | | |
| | | fourth word
| | third word
| second word
first word

would be converted by SREC into the three S1 records below:

byte count field
| address field
| |

S1070000F800003EC2 -- low byte
S10700000800004EA2 -- mid byte
S1070000003034098B -- high byte

| | | | |
| | | | checksum field
| | | fourth word
| | third word
| second word
first word

The three records corresponding to the high, middle, and low bytes of each data word are
written to separate files. The files are named according to the following convention:

<basename>.<M><#>

where <basename> is the filename of the input object file without extension, <M> is the
memory space specifier (X, Y, L, P, or E) for this set of data words, and <#> is one of the
digits 0, 1, or 2 corresponding to low, middle, and high bytes, respectively.

Note that a separate set of byte-wide files is created for each memory space encountered
in the input file. Thus the number of output files generated is (number of memory spaces
in input * size of DSP word).

The -S option writes all information to a single file, storing the memory space information
in the address field of the S0 header record. The values stored in the address field and
their correspondence to the DSP memory spaces are as follows:

Value DSP Memory Space
 1 X
 2 Y
 3 L
 4 P
 5 E

When the memory space changes in the object file section record, a new S0 header
record is generated. The resulting output file is named <basename>.S, where <base-
Freescale DSP Linker/Librarian Reference Manual 37

Chapter 5 Freescale DSP S-Record Conversion Utility (SREC) - S-Record File Format
name> is the filename of the input object file without extension. The -M and -S options are
mutually exclusive.

Address fields in DSP section records are copied as is to the appropriate S1, S2, or S3
record. Subsequent S1, S2, or S3 record addresses are byte incremented until a new sec-
tion is encountered or end-of-file is reached. In some cases the starting S1/S2/S3 record
address must be adjusted for byte addressing by multiplying the section start address by
the number of bytes in a DSP word. When the -B option is given, any section address
fields are adjusted to begin on a byte-multiple address. If the -W option is specified (the
default) byte-incrementing is not done when generating S-record addresses, e.g. the S-
record addresses are word-oriented rather than byte-oriented. The -B and -W options
have no effect when used in conjunction with the -M mode, since in that case byte and
word address mappings are 1:1.

Section records for L space memory contain words which are loaded into adjacent X and
Y memory locations. In these cases performing the default strict word addressing may be
inappropriate. The -L option may be given to indicate that double-word addressing should
be used to generate subsequent S1/S2/S3 addresses after the initial load address. In ad-
dition the -L option should be used when doing byte addressing since the initial load ad-
dresses must be adjusted to account for double-word addressing in the object file. In
general, it is a good idea to use the -L option whenever the input object file contains sec-
tions which refer to L memory space.

5.5 S-Record File Format

An S-record file consists of a sequence of specially formatted ASCII character strings.
These character strings are made up of several fields which identify the record type,
record length, memory address, code or data, and checksum. Each byte of binary data
is encoded as a 2-character hexadecimal number, the first character representing the
high-order 4 bits, and the second the low-order 4 bits of the byte.

5.5.1 S-Record Content

An S-record consists of 5 distinct fields: the TYPE field, the RECORD LENGTH, AD-
DRESS field, CODE/DATA, and the CHECKSUM field.
38 DSP Linker/Librarian Reference Manual Freescale

Chapter 5 Freescale DSP S-Record Conversion Utility (SREC) - S-Record File Format
 Printable
Field Characters Contents
Type 2 S-record type: S0, S1, etc.
Record length 2 The count of the character pairs in the

record, excluding the type and record
length.

Address 4, 6, or 8 The 2-, 3-, or 4-byte address at which the
data field is to be loaded into memory.

Code/data 0-2n From 0 to n bytes of executable code,
memory loadable data, or descriptive in-
formation.

Checksum 2 The least significant byte of the one’s
complement of the sum of the values rep-
resented by the pairs of characters mak-
ing up the record length, address, and
the code/data fields.

5.5.2 S-Record Types

There are ten possible Freescale S-record types. The following sections discuss the S-
record types used by the Freescale DSP SREC utility.

5.5.2.1 S0 Record

The S0 record is the header record (sometimes called the ‘sign-on’ record) for a block of
Freescale S-records. The address field is always 4 printable characters representing a
2-byte address. It is normally zero, but when the SREC -S option is used, the program
generates a code corresponding to the DSP memory space of the subsequent S-record
data block:

Value DSP Memory Space
 1 X
 2 Y
 3 L
 4 P
 5 E

With the -S option whenever a memory change occurs a new S0 header record is pro-
duced. In this case if a data block were to be located in X memory, the address field would
contain ‘30303031’ (note that such use of the S0 address field is a DSP-specific extension
to the standard S0 record format). The code/data field may contain any descriptive infor-
mation identifying the following block of S-records. This is followed by the normal two-
character checksum.
Freescale DSP Linker/Librarian Reference Manual 39

Chapter 5 Freescale DSP S-Record Conversion Utility (SREC) - S-Record File Format
5.5.2.2 S1, S2, S3 Records

Each data record begins with the start characters S1, S2, or S3 followed by a byte count.
These record types vary only by the length of their respective address fields. An S1 record
has a 2-byte address field represented by 4 hexadecimal characters. An S2 record has a
3-byte address field represented by 6 hexadecimal characters. An S3 record has a 4-byte
address field represented by 8 hexadecimal characters. Data bytes follow the address
field and are represented by hexadecimal character pairs. A two-character checksum ter-
minates the data record. The SREC program guarantees that the number of bytes in an
S1, S2, or S3 data record is an integral multiple of the word size of the target DSP.

5.5.2.3 S7, S8, S9 Records

These are end-of-file records and may appear only once in the S-record file. Each trailer
record begins with the start characters S7, S8, or S9 followed by a byte count. As with the
data records these record types vary only by the length of their respective address fields.
An S7 record has a 4-byte address field represented by 8 hexadecimal characters. An S8
record has a 3-byte address field represented by 6 hexadecimal characters. An S9 record
has a 2-byte address field represented by 4 hexadecimal characters. The address field in
the trailer record is used by the SREC program to store the end address given in the object
file optional header record. A two-character checksum immediately follows the address
field.
40 DSP Linker/Librarian Reference Manual Freescale

Chapter 6 Freescale DSP COFF File Dump Utility (COFDMP)

6.1 Introduction

The Freescale DSP COFF file dump program COFDMP is a stand-alone utility that reads
an absolute or relocatable Common Object File Format (COFF) file and produces a for-
matted display of the object file contents. The entire file or only selected portions may be
processed depending on command line options. The program also can generate either
codes or symbolic references to entities such as symbol type and storage class.

6.2 Installing COFDMP

The COFDMP program is distributed on various media and in different formats depending
on the host operating system environment. See Appendix G in the Freescale DSP As-
sembler Reference Manual, HOST-DEPENDENT INFORMATION, for details on install-
ing and operating COFDMP on your particular machine.

6.3 Running COFDMP

The general format of the command line to invoke COFDMP is:

COFDMP [options] <files>

where:

[options]

Any of the following command line options. The options must precede the
file name. Option letters may be specified in either upper or lower case. If
no option is supplied the entire input file is dumped.
Freescale DSP Linker/Librarian Reference Manual 41

Chapter 6 Freescale DSP COFF File Dump Utility (COFDMP) - Running COFDMP
-C

Dump the string table of the specified file. This information may not be
present if the object file has been stripped.

Example: COFDMP -C fft16.cld

In this example, the symbol table is listed from the absolute object file
FFT16.CLD.

-D<dmpfil>

This option specifies that a dump file is to be created for cofdmp output.
<dmpfil> can be any legal operating system filename, including an optional
pathname.

If the -D option is not specified, then the program will route dump output to
the standard output (usually the console or terminal screen) by default. The
-D option should be specified only once. If the file named in the -D option
already exists, it will be overwritten.

Example: COFDMP -D filter.dmp filter.cld

In this example, the absolute load file FILTER.CLD will be dumped to
the output file FILTER.DMP.

-F

Dump the file header of the specified file.

Example: COFDMP -F fft16.cln

In this example, the file header is listed from the relocatable object
file FFT16.CLN.

-H

Dump the section headers of the specified file.

Example: COFDMP -H fft16.cld

In this example, the section headers are listed from the absolute ob-
ject file FFT16.CLD.
42 DSP Linker/Librarian Reference Manual Freescale

Chapter 6 Freescale DSP COFF File Dump Utility (COFDMP) - Running COFDMP
-L

Dump the source file line number information from the specified file. This
information may not be present if the object file has been stripped.

Example: COFDMP -L fft16.cln

In this example, the source file line number information is listed from
the relocatable object file FFT16.CLN.

-O

Dump the optional header of the specified file.

Example: COFDMP -O fft16.cln

In this example, the optional header is listed from the relocatable ob-
ject file FFT16.CLN.

-Q

On some hosts COFDMP displays a banner on the console when invoked.
This option inhibits the banner display. It has no effect on hosts where the
signon banner is not displayed by default.

Example: COFDMP -Q myprog.cld

Dump the file MYPROG.CLD but do not display the signon banner on
the console.

-R

Dump section relocation entries from the specified file. Only relocatable ob-
ject files will contain this information.

Example: COFDMP -R fft16.cln

In this example, the section relocation information is listed from the
relocatable object file FFT16.CLN.

-S

Dump the section raw data from the specified file.

Example: COFDMP -S fft16.cld

In this example, the section raw data is listed from the absolute object
file FFT16.CLD.
Freescale DSP Linker/Librarian Reference Manual 43

Chapter 6 Freescale DSP COFF File Dump Utility (COFDMP) - COFDMP Processing
-T

Dump the symbol table from the specified file. This information may not be
present if the object file has been stripped.

Example: COFDMP -T fft16.cln

In this example, the symbol table is listed from the relocatable object
file FFT16.CLN.

-V

Dump the specified file symbolically, using names for bit flags, symbol
types, and storage classes.

Example: COFDMP -V fft16.cld

In this example, the entire contents of the absolute object file
FFT16.CLD is dumped symbolically.

<files>

A list of operating system compatible filenames. If no pathname is specified
for a file, the program will look for that file in the current directory. An explicit
filename must be provided; there is no default extension for the input file.

6.4 COFDMP Processing

The COFDMP program reads the input file and writes a formatted dump of the file con-
tents to the standard output (unless the -D command line option is given). I/O redirection
may be used to send the output to a file if the host operating system supports it.

The program currently will not dump individual modules from library files; they must be ex-
tracted and then dumped. Also note that if the file has been stripped some information
may no longer be available in the file, such as relocation information, line number entries,
and symbol and string table data.

The input file must be a Freescale DSP COFF object file, either absolute or relocatable.
See Appendix D in the Freescale DSP Assembler Reference Manual, Freescale DSP
OBJECT FILE FORMAT, for more information on Freescale DSP COFF object files.
44 DSP Linker/Librarian Reference Manual Freescale

Appendix A Linker Messages

A.1 Introduction

Linker messages are grouped into four categories:

Command Line Errors

These errors indicate invalid command line options, missing filenames, file open
errors, or other invocation errors. Command line errors generally cause the linker
to stop processing.

Warnings

Warnings notify the programmer of suspect constructs but do not otherwise affect
the object file output.

Errors

These errors indicate problems with object file format, size of address fields, and
syntax. In these cases the resulting object code is generally not valid.

Fatal

Fatal errors signify serious problems encountered during the link process such as
lack of memory, file not found, or other internal errors. The linker halts immediate-
ly.

The linker also will provide information on the file name, module ID, and section location
of the error, if it can be ascertained. Messages are always routed to standard output.
Freescale DSP Linker/Librarian Reference Manual 45

Appendix A Linker Messages - Command Line Errors
A.2 Command Line Errors

Align not valid with incremental link - ignored

Both the -I and -A options were given on the command line. The -A option auto-
aligns circular buffers in the output file, but an incrementally linked file (-I) must re-
tain original buffer placement for future linking. If both are specified, the linker does
not auto-align.

Cannot open command file
Cannot open library file
Cannot open map file
Cannot open memory control file
Cannot open object file

The file associated with a -F, -L, -M, -R, or -B command line option was not found
or could not be opened.

Default object file not allowed in incremental link

When performing an incremental link using the -I option the -B option must be used
in order to name the output object file. The default naming convention cannot be
used because it might overwrite one of the input files.

Duplicate map file specified - ignored
Duplicate memory control file specified - ignored
Duplicate object file specified - ignored

More than one -M, -R, or -B option was encountered on the command line.

Illegal command line option

The option specified on the command line was not recognized by the linker.

Illegal command line -X option argument

The argument given with the -X command line option was not recognized by the
linker.

Illegal memory map character

The memory map indicator must be I for internal memory, E for external memory,
R for ROM, A for port A, B for port B, or absent for no explicit mapping.

Illegal memory space specified

The memory space specifier must indicate one of the DSP memory spaces (X, Y,
L, E, or P).
46 DSP Linker/Librarian Reference Manual Freescale

Appendix A Linker Messages - Command Line Errors
Missing command line option argument

The expected arguments following a command line specifier were missing.

Missing object filename

There must be at least one object filename specified on the command line.

No modules linked - empty object file

An object file header record was never found in the input.

Object file name same as executable file name
Object file name same as map file name

One of the object files appeared to the linker to have the same name as the spec-
ified executable or map file. The linker aborts rather than potentially writing over an
input object file.

Options for both debug and strip specified - strip ignored

Both the -G and -Z options were given on the command line. The -G option takes
precedence.

Seek failure

An attempt to seek randomly to verify a library file has failed.

Strip not valid with incremental link - ignored

Both the -I and -Z options were given on the command line. The -I option takes pre-
cedence.
Freescale DSP Linker/Librarian Reference Manual 47

Appendix A Linker Messages - Warnings
A.3 Warnings

Actual length of section greater than specified size

The length of a section is greater than the absolute size given in a memory control
file SECSIZE directive.

Duplicate global symbol

A global symbol in one object file was also defined by the same name in a different
module.

Duplicate XDEF symbol

An external symbol in one object file was also defined by the same name in a dif-
ferent module.

Empty bit mask field

The first operand of a BFxxx-type instruction was zero.

Expression value outside fractional domain

The expected fractional value was not within the range -1.0 <= m < 1.

Memory model mismatch

An object file produced by the C compiler is incompatible with other files in the input
stream. This can result when C source files compiled using X memory for data stor-
age and others compiled using Y memory for data storage are linked. The linker
cannot reconcile the memory differences.

No modules linked - empty object file

An object file header record was never found in the input.

Options for both debug and strip specified - strip ignored

Both the -G and -Z options were given on the command line. The -G option takes
precedence.

Overlay buffer not aligned

A circular buffer inside a relocatable overlay will be misaligned when the overlay is
transferred at runtime. The linker makes no attempt to realign buffers located inside
relative overlay blocks.

Remapping region
Remapping section

A REGION or SECTION directive set an existing memory space to a different map-
ping attribute.
48 DSP Linker/Librarian Reference Manual Freescale

Appendix A Linker Messages - Warnings
Section already set as absolute

A section listed as ordered in a memory control file SECTION record was found to
be already located absolutely.

String truncated in expression evaluation

Only the first four characters of a string constant are used during expression eval-
uation.

Strip not valid with incremental link - ignored

The -I and -Z command line options are mutually exclusive. The -I option takes pre-
cedence.
Freescale DSP Linker/Librarian Reference Manual 49

Appendix A Linker Messages - Errors
A.4 Errors

Arithmetic exception

An internal floating point exception occurred while evaluating an expression. The
result of the evaluation is probably not valid.

Autoaligned buffer not allowed in overlay

A circular buffer inside a relocatable overlay cannot be auto-aligned because the
overlay block will be moved, voiding any benefit of optimal buffer placement.

Binary constant expected

A character other than ASCII '0' or '1' either followed the binary constant delimiter
(%) or appeared in an expression where a binary value was expected by default.

Bit mask cannot span more than eight bits

If the first operand of a BFxxx-type instruction was shifted one bit to the right until
the low-order bit was a 1, the resulting value must not exceed $FF hexadecimal.

Buffer block too large

The runtime location counter overflowed while the linker was attempting to allocate
storage for a data buffer. The linker automatically advances the program counter
to the next valid base address given the size of the modulo or reverse carry buffer.

Buffer out of order

The buffer sequence numbers in the input stream are out of phase.

Cannot nest regions

A REGION directive in the memory control file may not appear between another
REGION/ENDR pair.

Cannot open include file

The file specified in a memory control file INCLUDE directive was not found or
could not be opened.

Decimal constant expected

A character other than ASCII '0' through '9' either followed the decimal constant de-
limiter (`) or appeared in an expression where a decimal value was expected by
default.

Divide by zero

The expression evaluator detected a divide by zero.
50 DSP Linker/Librarian Reference Manual Freescale

Appendix A Linker Messages - Errors
Duplicate global symbol

Two identically named global symbols have been found.

Duplicate local symbol

Two identically named symbols have been found which are local to the same sec-
tion.

Duplicate region assignment for section

A memory control file SECTION directive with the same name and memory at-
tributes was assigned to more than one region.

Duplicate special symbol

The linker reserves a few symbol names to deal with certain floating point entities
such as Infinity and Not-a-Number. These symbols are Inf, Nan, Tiny, and Huge.

Expression cannot have a negative value

The MAP PAGE directive does not allow negative expression arguments.

Expression contains forward references

The expression representing a location counter number contains a term which the
expression evaluation logic cannot resolved (e.g. an undefined symbol).

Expression involves incompatible memory spaces

The memory space attribute is regarded by the linker as a type, in the same sense
that high level languages use type for variables. Symbols may have memory space
attributes of X, Y, L, P(rogram), E(MI), or N(one); only N is fully compatible with all
other attributes. In this case, two operands were evaluated with different memory
space attributes, neither of which was N.

Expression result must be absolute

Certain directives and some linker usage require absolute values as arguments or
operands.

Expression result must be integer

The expression refers to an address; therefore the result must be an integer within
the address range of the target DSP.

External reference not allowed in expression

The expression contained an undefined symbol which the expression evaluation
logic cannot resolve.
Freescale DSP Linker/Librarian Reference Manual 51

Appendix A Linker Messages - Errors
Extra characters beyond expression

The expression evaluator found extra characters after the end of a valid expres-
sion. Unbalanced parentheses can cause this error.

Extra characters in function argument or missing ')' for function

Mismatched parentheses or wrong number of parameters in a function invocation.

Floating point constant expected

A character other than ASCII '0' through '9', 'e' or 'E', or '.' appeared in an expres-
sion where a floating point value was expected by default.

Floating point not allowed in relative expression

Relative expressions are generally used for address computation, therefore a float-
ing point value would not be appropriate.

Hex constant expected

A character other than ASCII '0' through '9', 'a' through 'f', or 'A' through 'F' either
followed the hexadecimal constant delimiter ($) or appeared in an expression
where a hexadecimal value was expected by default.

Illegal memory counter specified

The memory counter specifier must be H for the high counter, L for the low counter,
or absent for the default counter.

Illegal memory map character

The memory map indicator must be I for internal memory, E for external memory,
R for ROM, A for port A, B for port B, or absent for no explicit mapping.

Illegal operator for floating point element

Bitwise operators are invalid for floating point values.

Illegal option

A bad argument was provided with the -X command line option.

Invalid address expression

The memory space attributes of the expression operands are incompatible.

Invalid address relocation field

Either a new record began or end-of-file was reached when the linker was reading
the address specification in a memory file BASE or SECTION record.
52 DSP Linker/Librarian Reference Manual Freescale

Appendix A Linker Messages - Errors
Invalid function name

The linker could not match an internal function name.

Invalid global section

A section with a sequence number of zero did not have the proper global section
name.

Invalid include file name

The filename associated with a memory control file INCLUDE directive is missing
or malformed.

Invalid MAP option
Invalid MAP option field
Invalid MAP page field
Invalid MAP record field

One of the options or fields in a memory control file MAP record was not recog-
nized by the linker.

Invalid module name field

The module name field associated with a memory control file IDENT directive is
missing or malformed.

Invalid overlay base address

An overlay base address was given that specified an address within another over-
lay segment.

Invalid page length specified

The minimum page length allowed by the MAP PAGE directive is 10 lines per
page. The maximum is 255.

Invalid page width specified

The minimum page width allowed by the MAP PAGE directive is 1 column per line.
The maximum is 255.

Invalid region name field

The region name associated with a memory control file REGION directive is miss-
ing or malformed.

Invalid relative expression

The terms of a relative expression may only participate in addition and subtraction
operations and must have opposing signs.
Freescale DSP Linker/Librarian Reference Manual 53

Appendix A Linker Messages - Errors
Invalid relocation type field

An invalid record type was encountered in the memory control file.

Invalid reserve range syntax

The syntax for the memory control file RESERVE is such that the range is given as
two values from the same memory space and mapping, separated by two periods
in succession (..).

Invalid revision number field

The revision number field in a memory control file IDENT record is not valid. The
value must be a decimal integer number.

Invalid section name field

The section name associated with a memory control file SECTION directive is
missing or malformed.

Invalid section number

A new section encountered by the linker does not have a unique section number.

Invalid shift amount

A shift expression must evaluate to within the range 0 <= n <= 32.

Invalid source line number

The source line number in a relocation expression must be an integer.

Invalid start address expression

The end address expression in the optional header record is malformed.

Invalid start address field

The start address field in a memory control file START record is not valid. The con-
tents must be a positive numeric value.

Invalid symbol

Symbols are limited to 512 characters. The first character must be alphabetic or the
underscore character (A-Z, a-z, _). The remaining characters must be alphanu-
meric, including the underscore character (A-Z, a-z, 0-9, _).

Invalid symbol memory mapping

The memory type for a symbol in the symbol table does match a valid linker mem-
ory configuration.
54 DSP Linker/Librarian Reference Manual Freescale

Appendix A Linker Messages - Errors
Invalid symbol name field

Either a new record began or end-of-file was reached when the linker was reading
the name specification in a memory file SYMBOL record.

Invalid symbol value field

Either a new record began or end-of-file was reached when the linker was reading
the value specification in a memory file SYMBOL record.

Invalid version number field

The version number field in a memory control file IDENT record is not valid. The
value must be a decimal integer number.

Left margin exceeds page width

The blank left margin value in the MAP PAGE directive exceeds the default or
specified page width parameter.

Missing '(' for function

Parentheses are not balanced in an internal function call.

Missing ')' in expression

Parentheses are not balanced in an expression.

Missing ']' in expression

Square brackets are not balanced in an expression.

Missing '}' in expression

Curly braces are not balanced in an expression.

Missing expression

An expression was expected by the expression evaluator.

Missing filename

The filename associated with a memory control file INCLUDE directive is missing.

Missing option

The argument associated with the -X command line option is missing.

Missing quote in string

A single or double quote character was expected by the string parsing routines.
Freescale DSP Linker/Librarian Reference Manual 55

Appendix A Linker Messages - Errors
Missing string after concatenation operator

The string concatenation operator (++) must be followed by another quoted string.

No previous function declaration

An end-of-function symbol record was encountered without a corresponding func-
tion type symbol record.

Operation not allowed with address term

Only addition and subtraction are allowed in expressions with address terms.

Overlay address involves incompatible memory spaces

The memory space attribute is regarded by the linker as a type, in the same sense
that high level languages use type for variables. Symbols may have memory space
attributes of X, Y, L, P(rogram), E(MI), or N(one); only N is fully compatible with all
other attributes. In this case, the runtime overlay address was found to be incom-
patible with the memory space used as the overlay origin.

Overlay out of order

The overlay sequence numbers in the input stream are out of phase.

Page length too small for specified top and bottom margins

The sum of the top and bottom margins specified in the MAP PAGE directive is
greater than the page length - 10.

Page length too small to allow default bottom margin

The bottom margin exceeds the page length specified in the MAP PAGE directive.

Region high address lower than base address

A memory control file BASE directive had a greater value than a corresponding
MEMORY directive for a given region.

Region size/address mismatch

The size field in a memory control file REGION directive does not correlate with the
computed size derived from BASE and MEMORY directives for the same region.

Relative expression must be integer

A relative expression must evaluate to an integer value.
56 DSP Linker/Librarian Reference Manual Freescale

Appendix A Linker Messages - Errors
Relative terms from different sections not allowed

Two relative terms from different sections may not participate in an arithmetic op-
eration since the result might not be meaningful. This error may be disabled with
the linker XC option.

Section not found

The section named in a SECTION, SBALIGN, or SECSIZE directive could not be
found by the linker.

Section padding percentage too small

The percentage of padding in a memory control file SECSIZE record must be
greater than 100.0.

Specified address greater than maximum memory address

The directive address is greater than the argument given in a previously encoun-
tered MEMORY directive for this region.

Specified size greater than maximum memory address

The size given in a memory control file SECSIZE directive is greater than the argu-
ment given in a previously encountered MEMORY directive for this region.

Symbol already defined

A symbol assumed to be unresolved and named in a memory file SYMBOL record
has already been defined.

Symbol name too long

Symbols are limited to 512 characters. The first character must be alphabetic or the
underscore character (A-Z, a-z, _). The remaining characters must be alphanumer-
ic, including the underscore character (A-Z, a-z, 0-9, _).

Symbol tag mismatch

A matching tag reference could not be found for a tagged symbol table entry.

Syntax error - expected ':'
Syntax error - expected '):'

The linker was expecting the end of either a memory space designator or a location
counter expression while parsing a memory attribute string.

Syntax error - expected comma

The linker was expecting a comma while parsing the arguments of a function.
Freescale DSP Linker/Librarian Reference Manual 57

Appendix A Linker Messages - Errors
Syntax error - expected quote

The linker was expecting the start of a quoted string.

Syntax error in address field

The syntax in a memory file BASE or SECTION record is not correct (possibly
missing a colon before the address specification).

Too many sections in module

There is a limit of 255 sections in a single link processing phase.

Unresolved overlay base address

The symbol used as the runtime overlay address was never resolved during the fix-
up phase.
58 DSP Linker/Librarian Reference Manual Freescale

Appendix A Linker Messages - Fatal Errors
A.5 Fatal Errors

Arithmetic exception

An internal floating point exception occurred while evaluating an expression.

Cannot determine file size

The size of the input link module could not be determined.

Cannot find GLOBAL section

The memory control file processing logic could not locate a GLOBAL section
record.

Cannot find section record

The linker was unable to locate a previously accessed section record. This is a se-
rious internal error that should be reported to Freescale.

Cannot open library file
Cannot open object file

The linker attempted to open a library or object file for reprocessing on the second
pass and the open failed.

Cannot read file header from library module
Cannot read file header from object module

An I/O error occurred which prevented the linker from reading the file headers in a
library or object file.

Cannot read line number entries from object module
Cannot read module string table size
Cannot read object module section headers
Cannot read object module string table
Cannot read object module symbol entries
Cannot read raw data from object module
Cannot read relocation entries from object module

An I/O error occurred which prevented the linker from reading entities in the input
object file.

Cannot read optional header from library module
Cannot read optional header from object module

An I/O error occurred which prevented the linker from reading the optional headers
in a library or object file.
Freescale DSP Linker/Librarian Reference Manual 59

Appendix A Linker Messages - Fatal Errors
Cannot seek to library module symbol table

An I/O error occurred which prevented the linker from positioning correctly when
attempting to read a library module symbol table.

Cannot seek to object module line number entries
Cannot seek to object module raw data
Cannot seek to object module relocation entries
Cannot seek to object module section headers
Cannot seek to object module symbol table

An I/O error occurred which prevented the linker from positioning correctly in the
input object file.

Cannot seek to start of line number entries
Cannot seek to start of object data
Cannot seek to start of object file
Cannot seek to start of object module
Cannot seek to start of section headers
Cannot seek to start of string table
Cannot seek to start of symbol table

An I/O error occurred which prevented the linker from positioning correctly in the
output object file.

Cannot set current section

The current module section map has been corrupted. This is a serious internal er-
ror that should be reported to Freescale.

Cannot set section counter

The current module counter map has been corrupted. This is a serious internal er-
ror that should be reported to Freescale.

Cannot write left margin to map file
Cannot write new line to map file
Cannot write new page to map file
Cannot write page header to map file
Cannot write string to map file

An I/O error occurred which prevented the linker from writing data to the output
map file.

Cannot write .text/.data headers to object file
Cannot write file header to object file
Cannot write line number entries to object file
Cannot write optional header to object file
Cannot write padding to object file
60 DSP Linker/Librarian Reference Manual Freescale

Appendix A Linker Messages - Fatal Errors
Cannot write raw data to object module
Cannot write relocation entries to object module
Cannot write section headers to object module
Cannot write string table to object file
Cannot write symbols to object file

An I/O error occurred which prevented the linker from writing data to the output ob-
ject file.

Compare select failure

The comparison indicator passed to the evaluator selection logic was not valid.
This is a serious internal error that should be reported to Freescale.

Current relocation map not available

A valid relocation map could not be accessed. This is a serious internal error that
should be reported to Freescale.

Current relocation section not available

A valid relocation section could not be accessed. This is a serious internal error that
should be reported to Freescale.

Current section not available

A valid current section could not be accessed. This is a serious internal error that
should be reported to Freescale.

Duplicate section entry

An attempt was made to place two sections with the same name and memory at-
tributes into a single region.

Expression operator failure

Expression operator lookup has failed. This is a serious internal error that should
be reported to Freescale.

Expression stack underflow

The internal expression evaluation list is out of sequence. This is a serious internal
error that should be reported to Freescale.

Fatal segmentation or protection fault
Contact Motorola DSP Operation

A program error has caused the linker to access an invalid host system address.
This generally indicates a bug in the linker software.
Freescale DSP Linker/Librarian Reference Manual 61

Appendix A Linker Messages - Fatal Errors
File contains no relocation information

An absolute object file was specified as input to the linker.

Invalid data block type

Internal section type information has been corrupted.

Invalid library module header

An I/O error occurred when attempting to read a library module header.

Invalid library module header format

The module header for a file contained in a library has been corrupted.

Invalid object file for target processor

Incompatible target processor object files were specified as input to the linker.

Invalid operand bit size

The bit size operand in an object file expression was not recognized.

Invalid section number data

The section number in a section symbol record is out of range.

Map option select failure

The value returned from the mapping selection logic was not valid. This is a serious
internal error that should be reported to Freescale.

No current counter map

A valid counter map was not available. This is a serious internal error that should
be reported to Freescale.

Offset failure

An attempt to save the object file offset has failed.

Option select failure

The value returned from the option selection logic was not valid. This is a serious
internal error that should be reported to Freescale.

Ordered section list failure

Attempting to scan the ordered section list has failed.
62 DSP Linker/Librarian Reference Manual Freescale

Appendix A Linker Messages - Fatal Errors
Out of memory - link aborted

There is not enough internal memory to perform dynamic allocation. Since the link-
er stores all working information in memory, including symbol and section informa-
tion, there is the possibility that memory will be exhausted if many symbols or
sections are defined in a single linker run.

Relocation type select failure

A value returned from the memory control file function select logic is bad. This is
a serious internal error that should be reported to Freescale.

Section map lookup failure

A valid section map could not be accessed. This is a serious internal error that
should be reported to Freescale.

Section nesting error

The section nesting count is out of phase.

Seek failure

An attempt to seek randomly in the object file has failed.

Symbol map lookup failure

A valid symbol map could not be accessed. This is a serious internal error that
should be reported to Freescale.
Freescale DSP Linker/Librarian Reference Manual 63

Appendix A Linker Messages - Fatal Errors
64 DSP Linker/Librarian Reference Manual Freescale

Appendix B Librarian Messages

B.1 Introduction

Librarian messages are grouped into three categories:

Command Line Errors

These errors indicate invalid command line options, missing filenames, file open
errors, or other invocation errors. Command line errors generally cause the librar-
ian to stop processing.

Warnings

Warnings indicate that a file cannot be open, or that a module already exists or
does not exist in the library. The librarian continues processing.

Fatal Errors

Fatal errors signify serious problems encountered during library processing such
as lack of memory, file not found, or other internal errors. The librarian halts imme-
diately.
Freescale DSP Linker/Librarian Reference Manual 65

Appendix B Librarian Messages - Command Line Errors
B.2 Command Line Errors

argument missing

A necessary argument, such as a module name, was missing from the librarian
command line.

unknown option

The given command line option is not recognized. The librarian continues as if the
-U option had been given.
66 DSP Linker/Librarian Reference Manual Freescale

Appendix B Librarian Messages - Warnings
B.3 Warnings

<module> already in library

In an add operation a module with the same name as the one specified already ex-
ists in the library.

<module> not in library

The named module was not found in the specified library. This error can occur for
example during a replace operation.

ambiguous command

The interactive command issued at the librarian prompt was not unique to the set
of characters entered.

cannot open module file

The named module file could not be open. Either the file does not exist or there was
an I/O error.

command requires library name

All interactive commands require that the library name follow the command name
on the input line.

duplicate module name

The same module name was entered twice on the command line.

invalid command

The librarian did not recognize an interactive command.
Freescale DSP Linker/Librarian Reference Manual 67

Appendix B Librarian Messages - Fatal Errors
B.4 Fatal Errors

add requires explicit module names

At least one module name must be given for an add operation.

cannot allocate argument vector
cannot allocate copy buffer
cannot allocate input buffer
cannot allocate module structure
cannot allocate module vector
cannot allocate output buffer

The librarian did not have enough memory to allocate internal data structures.

cannot create temporary file name

The librarian was unable to create a temporary file name for the library scratch file.

cannot open command file

The named command line option file does not exist, or there was an I/O error.

cannot open library file

The named library file does not exist, or there was an I/O error.

cannot open temporary file

An I/O error prevented the librarian from opening the temporary library scratch file.

cannot read module header

The librarian could not read the module header in the specified library. Either an I/
O error occurred, or the library file is empty.

cannot rename <file>

An error occurred while attempting to rename a library file.

cannot save command file arguments

The librarian could not obtain enough memory to store the module names given in
the command line option file.

cannot stat module

The librarian could not obtain date and time information for the named module.
68 DSP Linker/Librarian Reference Manual Freescale

Appendix B Librarian Messages - Fatal Errors
cannot write end of module marker

An I/O error occurred preventing the librarian from writing the end of module mark-
er to the library file.

cannot write header to library file

An I/O error occurred preventing the librarian from writing the module header to the
library file.

delete requires explicit module names

At least one module name must be given for a delete operation.

error reading file

An I/O error occurred while reading a file.

error writing file

An I/O error occurred while writing a file.

fatal errors - <library> not altered

This is an informative message indicating that the named library was not changed
because of previous fatal errors.

file I/O error

An I/O error occurred while either reading or writing a file.

improper module header format

A module header in the library file has been corrupted, or the specified file is not a
library file.

library file already exists

In a create operation the named library file already exists.

missing command filename

The required argument on a -F command line option was missing.

out of memory - librarian aborted

There is not enough internal memory to perform dynamic allocation. Since the li-
brarian stores all working information in memory, there is the possibility that mem-
ory will be exhausted if many modules are processed in a single library operation.
Freescale DSP Linker/Librarian Reference Manual 69

Appendix B Librarian Messages - Fatal Errors
70 DSP Linker/Librarian Reference Manual Freescale

Appendix C Linker Map File Format

C.1 Introduction

The linker optionally produces a memory map listing file when the command line -M is
specified. See Chapter 1, Running the Linker for more information on command line and
map listing options. If the -M command line option is given, the map listing goes to the file
named as the option argument; if no argument is specified, the map listing file takes the
name of the first object file on the command line and changes the extension to .MAP (see
Chapter 1).

C.2 Map File Commentary

Figure C-1 is a linker-generated map listing of a sample application. The listing illustrates
a selection of the format and reporting features provided by the linker. The following sec-
tion highlights some of those features.

At the top of every map listing page is a banner which identifies the linker and lists its ver-
sion number, the date and time of linking, the current input file name, and the page num-
ber. The map file page length, width, and margins can be controlled by the memory control
file MAP PAGE record (see Chapter 3, MAP PAGE Map File Format Control).

The first titled grouping in the report is a list of sections sorted by starting address. This
list of sections is subdivided by DSP memory and ordered by counter such that all X de-
fault (counter 0) memory references are grouped together, followed by X low (counter 1)
memory, and so forth. Each line gives the starting address, ending address, and length of
every uniquely-named section in the linker input stream if that section contained code or
data for the current memory space. The length reflects the total of all section fragments
assimilated from separate input files. As a result there is only one line for each section
even if the section appears in different files. If sections are located such that they overlap
in memory the linker will flag the overlap in the map file to the right of the section name.
The link map also shows any unused memory areas between allocated blocks. These
lines may be disabled using the MAP OPT NOUNUSED directive (see Chapter 3, MAP
OPT Map File Contents Control).

A section name may be repeated for a given memory space if that section contains buff-
ers, overlays, or absolute blocks. In this case the start, end, and size of the block is re-
ported and the type of block is placed to the right of the section name. On page 1 of the
Freescale DSP Linker/Librarian Reference Manual 71

Appendix C Linker Map File Format - Map File Commentary
example listing section SECT1 contains a modulo buffer of length 32 starting at address
20 hexadecimal in X memory. On the same page the section SECT2 has an overlay seg-
ment of length 7 that is loaded at address 12 hexadecimal in P memory. The listing of sec-
tions by address can be turned off with the memory control file MAP OPT NOSECADDR
directive (see Chapter 3, MAP OPT Map File Contents Control).

The next titled grouping on the map report (page 2) is a list of sections sorted by name.
The name of the section is given along with the start, end, and length of blocks in each
DSP memory space. As in the section by address listing special blocks such as buffers or
overlays are shown on a line by themselves. The section by name report can be disabled
by using the memory control file MAP OPT NOSECNAME directive (see Chapter 3, MAP
OPT Map File Contents Control).

After the section-oriented reports there appears on page 3 of the map file a symbol listing
ordered by name. Each line starts with the symbol name (truncated to 16 characters), fol-
lowed by the symbol type (integer or floating point), the memory space if any and value,
the name of the section in which the symbol is defined, and the symbol attributes. A sym-
bol can be absolute or relative (REL), local, XDEFed (EXTERN), or global, and possibly
associated with a buffer or overlay. This portion of the map listing may be omitted through
the memory control file MAP OPT NOSYMNAME directive (see Chapter 3, MAP OPT
Map File Contents Control).

The last page of the listing shows a symbol listing sorted by value. The listing by value can
be turned off with the memory control file MAP OPT NOSYMVAL directive (see Chapter
3, MAP OPT Map File Contents Control).

The final report group lists the unresolved externals found during the link phase. This con-
sists of all the symbol references for which there was no corresponding definition found in
the link input. The linker indicates the symbol name and the module in which the refer-
ence was made.
72 DSP Linker/Librarian Reference Manual Freescale

Appendix C - Linker Map File Format

Fr
F
re

es
ca

le
 D

S
P

 L
in

ke
r

 V
er

si
on

 5
.0

 9
2/

06
/2

5
 1

5:
44

:2
0

 s
am

pl
e.

m
ap

 P
ag

e
1

S

ec
tio

n
Li

nk
 M

ap
 b

y
A

dd
re

ss

 X
 M

em
or

y
(0

 -
 d

ef
au

lt)

 S
ta

rt
E

nd
Le

ng
th

S
ec

tio
n

00
00

00
40

65
se

ct
1

00
20

00
3F

32
se

ct
1

M
od

00
41

00
5F

31
U

N
U

S
E

D

00
60

00
82

35
se

ct
1a

00

60
00

7F
32

se
ct

1a

M
od

00

83
00

89
 7

se
ct

2
00

89
F

F
F

F
65

39
9

U
N

U
S

E
D

 P
 M

em
or

y
(0

 -
 d

ef
au

lt)

 S
ta

rt
E

nd
Le

ng
th

S
ec

tio
n

00
00

00
06

7
se

ct
1

A
bs

00

07
00

0D
7

se
ct

1
00

0E
00

11
4

se
ct

1a

00
12

00
18

7
se

ct
2

O
vl

00

12
00

17
6

se
ct

2
00

19
02

F
F

 7
43

U
N

U
S

E
D

03

00
03

02
3

se
ct

1a
A

bs

03
03

F
F

F
F

64
76

5
U

N
U

S
E

D

F
ig

ur
e

C
-1

 L
in

ke
r

M
ap

 F
or

m
at
eescale DSP Linker/Librarian Reference Manual 73

Appendix C - Linker Map File Format

74
F
re

es
ca

le
 D

S
P

 L
in

ke
r

 V
er

si
on

 5
.0

 9
2/

06
/2

5
 1

5:
44

:2
0

 s
am

pl
e.

m
ap

 P
ag

e
2

S

ec
tio

n
Li

nk
 M

ap
 b

y
N

am
e

 S
ec

tio
n

M
em

or
y

S
ta

rt
E

nd
Le

ng
th

G

LO
B

A
L

N
on

e
se

ct
1

X
 d

ef
au

lt
00

00
00

40
65

M

od
X

 d
ef

au
lt

00
20

00
3F

32

A
bs

P
 d

ef
au

lt
00

00
00

06
 7

P

 d
ef

au
lt

00
07

00
0D

 7

se
ct

1a
X

 d
ef

au
lt

00
60

00
82

35

M
od

X
 d

ef
au

lt
00

60
00

7F
32

Y

 d
ef

au
lt

00
00

00
20

33

P
 d

ef
au

lt
00

0E
00

11
 4

A

bs
P

 d
ef

au
lt

03
00

03
02

 3

se
ct

2
X

 d
ef

au
lt

00
83

00
89

 7

Y
 d

ef
au

lt
00

21
00

31
17

O

vl
P

 d
ef

au
lt

00
12

00
18

 7

P
 d

ef
au

lt
00

12
00

17
 6

F
ig

ur
e

C
-1

 L
in

ke
r

M
ap

 F
or

m
at

 (
co

nt
in

ue
d)
DSP Linker/Librarian Reference Manual Freescale

Appendix C - Linker Map File Format

Fr
F
re

es
ca

le
 D

S
P

 L
in

ke
r

 V
er

si
on

 5
.0

 9
2/

06
/2

5
 1

5:
44

:2
0

 s
am

pl
e.

m
ap

 P
ag

e
3

S

ym
bo

l L
is

tin
g

by
 N

am
e

 N
am

e
T

yp
e

V
al

ue
S

ec
tio

n
A

ttr
ib

ut
es

ne

xt
...

...
...

...
...

...
..i

nt
P

:0
00

00
7

se
ct

1
R

E
L

G
LO

B
A

L
ov

la
b1

...
...

...
...

...
.in

t
P

:0
00

01
2

se
ct

2
R

E
L

O
V

E
R

LA
Y

ov

la
b2

...
...

...
...

...
.in

t
P

:0
00

01
6

se
ct

2
R

E
L

E
X

T
E

R
N

 O
V

E
R

LA
Y

se

ct
1_

ds
...

...
...

...
in

t
X

:0
00

00
0

se
ct

1
R

E
L

G
LO

B
A

L
se

ct
1a

12
3.

...
...

...
in

t
X

:0
00

08
0

se
ct

1a
R

E
L

se
ct

1a
_d

s.
...

...
...

in
t

Y
:0

00
00

0
se

ct
1a

R
E

L
se

ct
1a

bu
f..

...
...

...
in

t
X

:0
00

06
0

se
ct

1a
R

E
L

B
U

F
F

E
R

se

ct
1b

uf
...

...
...

...
.in

t
X

:0
00

02
0

se
ct

1
R

E
L

G
LO

B
A

L
B

U
F

F
E

R

se
ct

2_
ds

...
...

...
...

in
t

Y
:0

00
02

1
se

ct
2

R
E

L
se

ct
2_

ov
...

...
...

...
in

t
P

:0
00

01
2

se
ct

2
R

E
L

sy
m

1.
...

...
...

...
...

..i
nt

X
:0

00
04

0
se

ct
1

R
E

L
G

LO
B

A
L

sy
m

2.
...

...
...

...
...

..i
nt

Y
:0

00
02

0
se

ct
1a

R
E

L
E

X
T

E
R

N

sy
m

3.
...

...
...

...
...

..i
nt

Y
:0

00
03

1
se

ct
2

R
E

L

F
ig

ur
e

C
-1

 L
in

ke
r

M
ap

 F
or

m
at

 (
co

nt
in

ue
d)
eescale DSP Linker/Librarian Reference Manual 75

Appendix C - Linker Map File Format

76
F
re

es
ca

le
 D

S
P

 L
in

ke
r

 V
er

si
on

 5
.0

 9
2/

06
/2

5
 1

5:
44

:2
0

 s
am

pl
e.

m
ap

 P
ag

e
4

S

ym
bo

l L
is

tin
g

by
 V

al
ue

 V

al
ue

N
am

e
V

al
ue

N
am

e
V

al
ue

N
am

e
00

00
00

se
ct

1_
ds

00
00

00
se

ct
1a

_d
s

00
00

07
ne

xt

00
00

12
ov

la
b1

00
00

12
se

ct
2_

ov
00

00
16

ov
la

b2

00
00

20
se

ct
1b

uf
00

00
20

sy
m

2
00

00
21

se
ct

2_
ds

00

00
31

sy
m

3
00

00
40

sy
m

1
00

00
60

se
ct

1a
bu

f
00

00
80

se
ct

1a
12

3
 U

nr
es

ol
ve

d
E

xt
er

na
ls

:
 ov

la
b2

 (
sa

m
pl

e.
ln

k)

un
de

f1
 (

sa
m

pl
e.

ln
k)

un

de
f2

 (
sa

m
pl

e.
ln

k)

F
ig

ur
e

C
-1

 L
in

ke
r

M
ap

 F
or

m
at

 (
co

nt
in

ue
d)
DSP Linker/Librarian Reference Manual Freescale

Index
— B —

Buffer
auto-align 2
circular 13

— C —

Case significance 6
COFDMP

installation 41
operation 41
processing 44

Command line 1
Command line option 1, 25, 31, 41

-A 2, 25, 31, 34
-B 3, 32
-C 26, 42
-D 26, 42
-EA 3, 26
-EW 3, 26
-F 3, 4, 26, 42
-G 4
-H 42
-I 4
-L 4, 27, 32, 43
-M 5, 6, 32
-N 6
-O 33, 43
-P 6, 33
-Q 7, 27, 33, 43
-R 7, 27, 33, 43
-S 34, 43

-T 44
-U 7, 27, 34
-V 8, 28, 44
-W 34
-X 8, 28, 35
-Z 8

— D —

Debug 4
DSPLNKOPT 2

— E —

Environment variable 2
Error

command line 46, 66
fatal 59, 68
output 3, 26

— F —

File
object 9

— I —

Incremental link 4

— L —

Librarian
operation 25

Library 28
create 26
Freescale DSP Linker/Librarian Reference Manual 77

Index
list 27
path 6
processing 4, 29

Link file 9
Linker

command line 1
directive 15
operation 1
option 8
pass 12
region 13, 19
section 13

Linking 11
Listing file

commentary 71
format 71

— M —

Map file 5
commentary 71
format 71

Memory
maximum 18
origin 6
region 13, 19
reserve 19

Memory control file 7, 15
BALIGN directive 16
BASE directive 16
IDENT directive 16
INCLUDE directive 17
MAP OPT directive 18
MAP PAGE directive 17
MEMORY directive 18
REGION directive 19
RESERVE directive 19
SBALIGN directive 19
SECSIZE directive 20
SECTION directive 20
SET directive 21

SIZSYM directive 21
START directive 22
SYMBOL directive 22

Module
add 25
delete 26
extract 28
replace 27
update 27

— O —

Object file 3, 9
data 43
file header 42
line number 43
optional header 43
relocation 43
section header 42
string table 42
symbol table 44

Overlay 14

— R —

Region 13, 19
Relocation 11

— S —

Section 13
address 20
size 20

SREC
installation 31
operation 31
processing 35

S-record
content 38
format 38
type 39
78 DSP Linker/Librarian Reference Manual Freescale

Index
— W —

Warning 48, 67
Freescale DSP Linker/Librarian Reference Manual 79

	Freescale DSP Linker/Librarian Reference Manual
	Contact Information
	Preface
	Contents
	Chapter 1 Freescale DSP Linker
	1.1 Introduction
	1.2 Running the Linker
	DSPLNK [options] <filenames>

	Chapter 2 Linker Operation
	2.1 Introduction
	2.2 Relocation and Linking
	2.3 Linker Passes
	2.4 Linking With Regions and Sections
	2.5 Linking With Circular Buffers
	2.6 Linking With Overlays

	Chapter 3 Linker Directives
	3.1 Memory Control File
	3.2 Linker Directives
	BALIGN Auto-align Circular Buffers
	BASE Set Region Base Address
	IDENT Object Module Identification
	INCLUDE Include Directive File
	MAP PAGE Map File Format Control
	MAP OPT Map File Contents Control
	MEMORY Set Region High Memory Address
	REGION Establish Memory Region
	RESERVE Reserve Memory Block
	SBALIGN Auto-align Section Buffers
	SECSIZE Pad Section Length
	SECTION Set Section Base Address
	SET Set Symbol Value
	SIZSYM Set Size Symbol
	START Establish Start Address
	SYMBOL Set Symbol Value

	3.3 Memory Control File Example

	Chapter 4 Freescale DSP Librarian
	4.1 Introduction
	4.2 Running the Librarian
	DSPLIB [options] [<library>] [<files>]

	4.3 Library Processing

	Chapter 5 Freescale DSP S-Record Conversion Utility (SREC)
	5.1 Introduction
	5.2 Installing SREC
	5.3 Running SREC
	SREC [options] <files>

	5.4 SREC Processing
	5.5 S-Record File Format
	5.5.1 S-Record Content
	5.5.2 S-Record Types

	Chapter 6 Freescale DSP COFF File Dump Utility (COFDMP)
	6.1 Introduction
	6.2 Installing COFDMP
	6.3 Running COFDMP
	COFDMP [options] <files>

	6.4 COFDMP Processing

	Appendix A Linker Messages
	A.1 Introduction
	A.2 Command Line Errors
	A.3 Warnings
	A.4 Errors
	A.5 Fatal Errors

	Appendix B Librarian Messages
	B.1 Introduction
	B.2 Command Line Errors
	B.3 Warnings
	B.4 Fatal Errors

	Appendix C Linker Map File Format
	C.1 Introduction
	C.2 Map File Commentary

	Index
	- B -
	- C -
	- D -
	- E -
	- F -
	- I -
	- L -
	- M -
	- O -
	- R -
	- S -
	- W -

