

Freescale Semiconductor

 Library of Macros for Optimization
Using eMAC and MAC

Programmer’s Manual

Document Number: CFLMOPM

Rev. 1.0

10/2005

Freescale Semuconductor

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does not
convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which
the failure of the Freescale Semiconductor product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer
shall indemnify and hold Freescale Semiconductor and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages,
and expenses, and reasonable attorney fees arising out of, directly or indirectly, any
claim of personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Learn More: For more information about Freescale products, please visit
www.freescale.com.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2005. All rights reserved.

emac

Contents

 Library of Macros for Optimization, Rev 1.0 iii

Freescale Semiconductor

About This Book ... 1-1

Audience ..1-1

Organization...1-1

Conventions ...1-2

Definitions, Acronyms, and Abbreviations..1-2

References..1-2

Revision History ..1-2

Chapter 1 Overview .. 1-3

1.1 Project Resources ...1-3

1.2 Structure of the Project and Installation ...1-4

Chapter 2 Macros for 1D Array Operations .. 2-5

2.1 ARR1D_SUM_UL, ARR1D_SUM_SL...2-5

2.2 ARR1D_ADD2_UL, ARR1D_ADD2_SL...2-7

2.3 ARR1D_ADD3_UL, ARR1D_ADD3_SL...2-9

2.4 ARR1D_ADDSC_UL, ARR1D_ADDSC_SL ...2-11

2.5 ARR1D_PROD_UL, ARR1D_PROD_SL...2-13

2.6 ARR1D_MUL2_SL, ARR1D_MUL2_UL ..2-15

2.7 ARR1D_MUL3_SL, ARR1D_MUL3_UL ..2-19

2.8 ARR1D_MULSC_SL, ARR1D_MULSC_UL...2-23

2.9 ARR1D_MAX_S, ARR1D_MAX_U ..2-26

2.10 ARR1D_MIN_S, ARR1D_MIN_U ...2-29

2.11 ARR1D_CAST_SWL, ARR1D_CAST_UWL ..2-31

Chapter 3 Macros for 2D Array Operations .. 3-33

iv Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

3.1 ARR2D_SUM_UL, ARR2D_SUM_SL...3-33

3.2 ARR2D_ADD2_UL, ARR2D_ADD2_SL...3-35

3.3 ARR2D_ADD3_UL, ARR2D_ADD3_SL...3-38

3.4 ARR2D_ADDSC_UL, ARR2D_ADDSC_SL ...3-40

3.5 ARR2D_PROD_UL, ARR2D_PROD_SL...3-42

3.6 ARR2D_MUL2_SL, ARR2D_MUL2_UL ..3-44

3.7 ARR2D_MUL3_SL, ARR2D_MUL3_UL ..3-48

3.8 ARR2D_MULSC_SL, ARR2D_MULSC_UL...3-52

3.9 ARR2D_MAX_S, ARR2D_MAX_U ..3-56

3.10 ARR2D_MIN_S, ARR2D_MIN_U ...3-59

3.11 ARR2D_CAST_SWL, ARR2D_CAST_UWL ..3-61

Chapter 4 Macros for DSP Algorithms.. 4-64

4.1 DOT_PROD_UL, DOT_PROD_SL...4-64

4.2 RDOT_PROD_UL, RDOT_PROD_SL ...4-66

4.3 MATR_MUL_UL, MATR_MUL_SL ...4-67

4.4 CONV...4-70

4.5 FIRST_DIFF...4-73

4.6 RUNN_SUM ..4-75

4.7 LPASS_1POLE_FLTR ..4-77

4.8 HPASS_1POLE_FLTR..4-81

4.9 LPASS_4STG_FLTR...4-84

4.10 BANDPASS_FLTR..4-87

4.11 BANDREJECT_FLTR...4-90

4.12 MOV_AVG_FLTR ..4-92

Chapter 5 Macros for Mathematical Functions ... 5-95

 Library of Macros for Optimization, Rev 1.0 v

Freescale Semiconductor

5.1 SIN..5-95

5.2 COS ..5-96

5.3 SIN_F ...5-97

5.4 COS_F ..5-99

5.5 MUL ...5-102

Chapter 6 QuickStart for CodeWarrior .. 6-104

6.1 Creating a new project..6-104

6.2 Modifying the settings of your project ...6-105

6.3 Adding the Library of Macros ..6-106

6.4 Using a macro...6-107

vi Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 Library of Macros for Optimization, Rev 1.0 1-1

Freescale Semiconductor

About This Book

This programmer’s manual provides a detailed description of a set of macros used for optimizations.

The information in this book is subject to change without notice, as described in the disclaimers on the
title page. As with any technical documentation, it is the reader’s responsibility to be sure he is using the
most recent version of the documentation.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.freescale.com/coldfire.

Audience

This manual is intended for system software developers and applications programmers who want to
develop products with ColdFire processors. It is assumed that the reader understands microprocessor
system design, basic principles of software and hardware, and basic details of the ColdFire® architecture.

Organization

This document is organized into five chapters.

Chapter 1 “Overview” includes a general description of the library of Macros.
Chapter 2 “Macros for 1D Array Operations” describes the macros used for 1D Array

operations.
Chapter 3 “Macros for 2D Array Operations” describes the macros used for 2D Array

operations.
Chapter 4 “Macros for DSP Algorithms” includes the description of several macros used

for DSP algorithms.
Chapter 5 “Macros for Mathematical Functions” includes the description of several

macros used for common mathematical operations.
Chapter 6 “QuickStart for CodeWarrior” includes a step-by-step description of how to

create a new project in CodeWarrior using the library of Macros.

1-2 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Conventions

This document uses the following notational conventions:

CODE Courier in box indicates code examples.

Prototypes Courier is used for code in function prototypes.

formulas Italics is used for formulas.

• All source code examples are in C and Assembly.

Definitions, Acronyms, and Abbreviations

The following list defines the abbreviations used in this document.

FRAC32 Data type that represents 32-bit signed fractional value
FIXED64 Data type that represents 64-bit signed value, with 32 bits in integer part and 32

bits in fractional part

References

The following documents were referenced to write this document:

1. ColdFire Family Programmer’s Reference, Rev. 3

2. MCF5249 ColdFire User’s Manual, Rev. 0

3. MCF5282 ColdFire User’s Manual, Rev. 2.3

4. The Scientist and Engineer’s Guide to Digital Signal Processing, Steven W. Smith, Ph.D.
California Technical Publishing (http://www.dspguide.com/)

Revision History

The following table summarizes revisions to this manual since the previous release (Rev. 1.4).

Revision History

Revision Number Date of release Substantive Changes

1.0 10/2005 Initial Public Release

 Library of Macros for Optimization, Rev 1.0 1-3

Freescale Semiconductor

Chapter 1
Overview

The Library of Macros was designed to ensure efficient programming of the ColdFire processor by using
MAC and eMAC units where applicable.

This document is the main document describing the Library of Macros and it provides information on
each macro in the library:

• “Macros Description” provides general information about a macro, including a description and its
purpose.

• “Parameters Description” provides information on the invoking technique of a macro, as well as
its parameters and returned value.

• “Description of Optimization” provides information on techniques that were used during macro
optimization.

1.1 Project Resources

The following resources were used in the project:

• Targets
 MCF5249 Evaluation board (M5249C3)
 MCF5206 Evaluation board (M5206EC3)
 MCF5282 Evaluation board (M5282EVB)

• Compilation tools
 Metrowers Codewarrior for ColdFire V4.0
 Metrowers Codewarrior for ColdFire V5.0
 WindRiver Diab RTA 4.4b Suite
 gcc 3.3.3 GNU compiler

1-4 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

1.2 Structure of the Project and Installation

The Library of Macros has the following structure:

Figure 1-1. Structure of Macro Library

There are two main parts for the library:

 The library for the eMAC unit
 The library for the MAC unit

Each part has its own header file: “mac_macro.h” and “emac_macro.h,” respectively. Each part also
includes some common macros and can be logically divided in four sections:

- 1D array operations

- 2D array operations

- DSP algorithms

- Mathematical functions

To use the library of macros within your project, first of all you have to include the appropriate C header
file. Include file mac_macro.h if you use the MAC unit, or file emac_macro.h if you use the eMAC unit
in your program. To avoid macroname conflict, you shouldn't include both headers in the same program.
Moreover, there is no need to include them both, because macros for the same functions are doubled in
these headers.

Macro

emac_macro.h mac_macro.h common

Common
headers

mac emac

emac headers Mac headers
Folder

File(s)

 Library of Macros for Optimization, Rev 1.0 2-5

Freescale Semiconductor

Chapter 2
Macros for 1D Array Operations

2.1 ARR1D_SUM_UL, ARR1D_SUM_SL

2.1.1 Macros Description

These macros compute the sum of the array elements of unsigned/signed values. This sum is computed
by the following formula:

∑
−

=

=
1

0

size

i
ixres

where xi, – element of the input vector, size – number of elements in the input vector

2.1.2 Parameters Description

Call(s):

int ARR1D_SUM_UL(unsigned long *src, int size)

int ARR1D_SUM_SL(signed long* src, int size)

Parameters:

Table 2-1 ARR1D_SUM Parameters

src in Pointer to the source vector

size in Number of elements in vector

Returns: The ARR1D_SUM macros return the unsigned/signed sum of array elements.

2-6 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

2.1.3 Description of Optimization

С code:

 for(i = 0; i < SIZE; i++)

 res += arr1[i];

Optimization can be done using the following techniques:

1. Loop unrolling by four

2. Postincrement addressing mode to access input array elements

3. Descending loop organization

The following should be noticed:

• The d0 register always holds the sum of array elements.

• The a0 register holds the pointer to input array.

• The d1 register is the counter.

Optimized code:

 loop1:

 add.l (a0)+,d0

 add.l (a0)+,d0

 add.l (a0)+,d0

 add.l (a0)+,d0

 subq.l #1,d1

 bne loop1

2.1.4 Differences Between the ARR1D_SUM_UL and the
ARR1D_SUM_SL Macros

The type of ARR1D_SUM_UL parameters (*src) is unsigned long.

The type of ARR1D_SUM_SL parameters (*src) is signed long.

 Library of Macros for Optimization, Rev 1.0 2-7

Freescale Semiconductor

2.2 ARR1D_ADD2_UL, ARR1D_ADD2_SL

2.2.1 Macros Description

These macros compute the elementwise sum of two vector arrays with unsigned/signed values. The
elementwise sum is computed by the following formula:

];1,0[,, −∈∈∈
+=

sizeiYyXx
yxx

ii

iii

where X, Y – input vectors, xi, yi – element of the corresponding vector, size – number of elements in the
input vectors

2.2.2 Parameters Description

Call(s):

int ARR1D_ADD2_UL(unsigned long *dest, unsigned long *src, int size)

int ARR1D_ADD2_SL(signed long* dest,signed long* src, int size)

Parameters:

Table 2-2 ARR1D_ADD2 Parameters

dest in/out Pointer to the destinstion vector

src in Pointer to the source vector

size in Number of elements in vector

Returns: The ARR1D_ADD2 macro generates unsigned/signed output values, which are stored in the
array pointed to by the parameter dest.

2.2.3 Description of Optimization

С code:

 for(i = 0; i < SIZE; i++)

 arr_c[i] += arr1[i];

2-8 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Optimization can be done using the following techniques:

1. Loop unrolling by four.

2. Every four values of array dest used in each iteration are loaded with only one movem
instruction.

3. Every four values of array src used in each iteration are loaded using postincrement addressing
mode while performing additons.

4. After perfoming additions, the resulting four values in each iteration are stored with only one
movem instruction.

5. If the number of elements is not divisible by 4, the tail elements are processed in regular order.

Optimized code:

 move.l size,d1

 move.l d1,d2

 asr.l #2,d1

 beq l1

 l2:

 movem.l (a0),d3-d6

 add.l (a1)+,d3

 add.l (a1)+,d4

 add.l (a1)+,d5

 add.l (a1)+,d6

 movem.l d3-d6,(a0)

 add.l #16,a0

 subq.l #1,d1

 bne l2

 l1:

 and.l #3,d2

 beq l4

 l3:

 move.l (a0),d3

 add.l (a1)+,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne l3

 l4:

 Library of Macros for Optimization, Rev 1.0 2-9

Freescale Semiconductor

2.2.4 Differences Between the ARR1D_ADD2_UL and the
ARR1D_ADD2_SL Macros

The type of ARR1D_ADD2_UL parameters (*dest, *src) is unsigned long.

The type of ARR1D_ADD2_SL parameters (*dest, *src) is signed long.

2.3 ARR1D_ADD3_UL, ARR1D_ADD3_SL

2.3.1 Macros Description

These macros compute the elementwise sum of two vector arrays with unsigned/signed values, and store
the results to a third vector with unsigned/signed values. The elementwise sum is computed by the
formula:

];1,0[,,, −∈∈∈∈
+=

sizeiZzYyXx
yxz

iii

iii

where X, Y – input vectors, xi, yi – elements of the corresponding vectors, Z – resultant vector, zi – element
of vector Z, size – number of elements in the input vectors

2.3.2 Parameters Description

Call(s):

int ARR1D_ADD3_UL(unsigned long* dest, unsigned long* src1, unsigned long*
src2, int size)

int ARR1D_ADD3_SL(signed long* dest, signed long* src1, signed long* src2, int
size)

Parameters:

Table 2-3. ARR1D_ADD3 Parameters

dest in/out Pointer to the destinstion vector

src1 in Pointer to the source vector1

src2 in Pointer to the source vector2

size in Number of elements in vector

2-10 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Returns: The ARR1D_ADD3 macro generates unsigned/signed output values, which are stored in the
array pointed to by the parameter dest.

2.3.3 Description of Optimization

С code:

 for(i = 0; i < SIZE; i++)

 arr_c[i] += arr1[i];

Optimization can be done using the following techniques:

1. Loop unrolling by four.

2. Every four values of array dest used in each iteration are loaded with only one movem
instruction.

3. Every four values of array src used in each iteration are loaded using postincrement addressing
mode while performing additons.

4. After perfoming additions, the resulting four values in each iteration are stored with only one
movem instruction.

5. If the number of elements is not divisible by 4, the tail elements are processed in regular order.

Optimized code:

 move.l size,d1

 move.l d1,d2

 asr.l #2,d1

 beq l1

 l2:

 movem.l (a0),d3-d6

 add.l (a1)+,d3

 add.l (a1)+,d4

 add.l (a1)+,d5

 add.l (a1)+,d6

 movem.l d3-d6,(a0)

 add.l #16,a0

 subq.l #1,d1

 bne l2

 Library of Macros for Optimization, Rev 1.0 2-11

Freescale Semiconductor

 l1:

 and.l #3,d2

 beq l4

 l3:

 move.l (a0),d3

 add.l (a1)+,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne l3

 l4:

2.3.4 Differences Between the ARR1D_ADD3_UL and the
ARR1D_ADD3_SL Macros

The type of ARR1D_ADD3_UL parameters (*dest, *src1, *src2) is unsigned long.

The type of ARR1D_ADD3_SL parameters (*dest, *src1, *src2) is signed long.

2.4 ARR1D_ADDSC_UL, ARR1D_ADDSC_SL

2.4.1 Macros Description

This macro computes the elementwise sum of a vector array of unsigned/signed values with a scalar
unsigned/signed value. The elementwise sum is computed by the formula:

];1,0[, −∈∈
+=

sizeiXx
scalarxx

i

ii

where X – input vector, xi – element of vector X, scalar – variable with an unsigned/signed value, size –
number of elements in the input vectors

2.4.2 Parameters Description

Call(s):

int ARR1D_ADDSC_UL(unsigned long* arr, int size, unsigned long scal)

int ARR1D_ADDSC_SL(signed long* arr, int size, signed long scal)

Parameters:

2-12 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Table 2-4. ARR1D_ADDSC Parameters

arr in/ou
t

Pointer to the vector

size in Number of elements in vector

scal in Scalar value

Returns: The ARR1D_ADDSC macro generates unsigned/signed output values, which are stored in the
array pointed to by the parameter arr.

2.4.3 Description of Optimization

С code:

 for(i = 0; i < SIZE; i++)

 arr_c[i] += scalar;

Optimization can be done using the following techniques:

1. Loop unrolling by four.

2. Every four values of array arr used in each iteration are stored using postincrement addressing
mode while performing additons.

3. If the number of elements is not divisible by 4, the tail elements are processed in regular order.

Optimized code:

 move.l d1,d2

 asr.l #2,d1

 beq l1

 l2:

 add.l d0,(a0)+

 add.l d0,(a0)+

 add.l d0,(a0)+

 add.l d0,(a0)+

 subq.l #1,d1

 bne l2

 l1:

 and.l #3,d2

 beq l4

 l3:

 add.l d0,(a0)+

 Library of Macros for Optimization, Rev 1.0 2-13

Freescale Semiconductor

 subq.l #1,d2

 bne l3

 l4:

2.4.4 Differences Between the ARR1D_ADDSC_UL and the
ARR1D_ADDSC_SL Macros

The type of ARR1D_ADDSC_UL parameters (*arr, scale) is unsigned long.

The type of ARR1D_ADDSC_SL parameters (*arr, scale) is signed long.

2.5 ARR1D_PROD_UL, ARR1D_PROD_SL

2.5.1 Macros Description

These macros compute the product of the vector array of unsigned/signed values. The product is
computed by the formula:

;

1

0

Xx

xres

i

sizei

i
i

∈

=
−=

=
I

where res – result value, X – input vector, xi – element of the X vector, size – number of elements in the
input vectors

2.5.2 Parameters Description

Call(s):

int ARR1D_PROD_UL(unsigned long *arr, int size)

int ARR1D_PROD_SL(signed long *arr, int size)

Parameters:

2-14 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Table 2-5. ARR1D_PROD Parameters

arr in/out Pointer to the vector

size in Number of elements in vector

Returns: The ARR1D_PROD macro generates an unsigned/signed output value, which is returned by the
macro.

2.5.3 Description of Optimization

С code:

 for(i = 0; i < SIZE; i++)

 res_c *= arr1[i];

Optimization can be done using the following techniques:

1. Loop unrolling by four.

2. Every four values of array arr used in each iteration are loaded using postincrement addressing
mode while performing multiplications.

3. If the number of elements is not divisible by 4, the tail elements are processed in regular order.

Optimized code:

 move.l size,d1

 move.l d1,d2

 moveq.l #1,d0

 asr.l #2,d1

 beq out1

 loop1:

 mulu.l (a0)+,d0

 mulu.l (a0)+,d0

 mulu.l (a0)+,d0

 mulu.l (a0)+,d0

 subq.l #1,d1

 bne loop1

 out1:

 and.l #3,d2

 beq out2

 loop2:

 Library of Macros for Optimization, Rev 1.0 2-15

Freescale Semiconductor

 mulu.l (a0)+,d0

 subq.l #1,d2

 bne loop2

 out2:

2.5.4 Differences Between the ARR1D_PROD_UL and the
ARR1D_PROD_SL Macros

The type of ARR1D_PROD_UL parameters (*arr) is unsigned long.

The type of ARR1D_PROD_SL parameters (*arr) is signed long.

ARR1D_PROD_UL uses the mulu instruction for multiplication.

ARR1D_PROD_SL uses the muls instruction for multiplication to keep the signs of operands.

2.6 ARR1D_MUL2_SL, ARR1D_MUL2_UL

2.6.1 Macros Description

These macros perform multiplication of two vector arrays of unsigned/signed values.

2.6.2 Parameters Description

Call(s):

int ARR1D_MUL2_UL(unsigned long* dest,unsigned long* src,long size)

int ARR1D_MUL2_SL(long* dest,long* src,long size)

Parameters:

Table 2-6. ARR1D_MUL2 Parameters

dest in Pointer to the destination vector

src in Pointer to the source vector

size in Number of elements in vectors

2-16 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Returns: The ARR1D_MUL2 macro generates an unsigned/signed output vector, which is the result of
dest and src multiplication, and is pointed to by dest.

2.6.3 Description of Optimization

С code:

 for(i = 0; i < SIZE; i++)

 arr_c[i] *= arr1[i];

Optimization for MAC unit can be done using the following techniques:

1. Loop unrolling by four.

2. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

3. The first four values are loaded using one movem instruction.

Optimized code (uses MAC unit):

 lea -60(a7),a7

 movem.l d2-d7/a2-a5,(a7)

 move.l #0,d0

 move.l d0,MACSR

 moveq.l #16,d0

 move.l dest,a0

 move.l src,a1

 move.l size,d1

 move.l d1,d2

 asr.l #2,d1

 beq out1

 move.l #0,ACC0

 movem.l (a1),d7/a3-a5

 add.l d0,a1

 loop1:

 movem.l (a0),d3-d6

 macl.l d7,d3,(a1)+,d7,ACC0

 move.l ACC0,d3

 move.l #0,ACC0

 macl.l a3,d4,(a1)+,a3,ACC0

 move.l ACC0,d4

 Library of Macros for Optimization, Rev 1.0 2-17

Freescale Semiconductor

 move.l #0,ACC0

 macl.l a4,d5,(a1)+,a4,ACC0

 move.l ACC0,d5

 move.l #0,ACC0

 macl.l a5,d6,(a1)+,a5,ACC0

 move.l ACC0,d6

 move.l #0,ACC0

 movem.l d3-d6,(a0)

 add.l d0,a0

 subq.l #1,d1

 bne loop1

 out1:

 and.l #3,d2

 beq out2

 sub.l d0,a1

 loop2:

 move.l (a0),d3

 muls.l (a1)+,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne loop2

 out2:

 movem.l (a7),d2-d7/a2-a5

 lea 60(a7),a7

Optimization for eMAC unit can be done using the following techniques:

1. Loop unrolling by four.

2. Using four accumulators for pipelining.

3. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

4. The first four values are loaded using one movem instruction.

Optimized code (uses eMAC unit):

 lea -60(a7),a7

 movem.l d2-d7/a2-a5,(a7)

 moveq.l #16,d0

 move.l dest,a0

2-18 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 move.l src,a1

 move.l size,d1

 move.l d1,d2

 asr.l #2,d1

 beq out1

 move.l #0,ACC0

 move.l #0,ACC1

 move.l #0,ACC2

 move.l #0,ACC3

 movem.l (a1),d7/a3-a5

 add.l d0,a1

 loop1:

 movem.l (a0),d3-d6

 macl.l d7,d3,(a1)+,d7,ACC0

 macl.l a3,d4,(a1)+,a3,ACC1

 macl.l a4,d5,(a1)+,a4,ACC2

 macl.l a5,d6,(a1)+,a5,ACC3

 movclr.l ACC0,d3

 movclr.l ACC1,d4

 movclr.l ACC2,d5

 movclr.l ACC3,d6

 movem.l d3-d6,(a0)

 add.l d0,a0

 subq.l #1,d1

 bne loop1

 out1:

 and.l #3,d2

 beq out2

 sub.l d0,a1

 loop2:

 move.l (a0),d3

 muls.l (a1)+,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne loop2

 out2:

 movem.l (a7),d2-d7/a2-a5

 lea 60(a7),a7

 Library of Macros for Optimization, Rev 1.0 2-19

Freescale Semiconductor

2.6.4 Differences Between ARR1D_MUL2_UL and
ARR1D_MUL2_SL

The ARR1D_MUL2_UL macro uses the unsigned mode of the MAC unit, while ARR1D_MUL2_SL
macro uses signed mode.

2.7 ARR1D_MUL3_SL, ARR1D_MUL3_UL

2.7.1 Macros Description

The ARR1D_MUL2_UL macro uses the unsigned mode of the MAC unit, while ARR1D_MUL2_SL
macro uses signed mode.

2.7.2 Parameters Description

Call(s):

int ARR1D_MUL3_UL(unsigned long *dest, unsigned long *src, unsigned long
*src2, int size)

int ARR1D_MUL3_SL(long *dest, long *src1, long *src2, int size)

Parameters:

Table 2-7. ARR1D_MUL3 Parameters

dest in Pointer to the destination vector

src1 in Pointer to the source1 vector

src2 in Pointer to the source2 vector

size in Number of elements in vectors

Returns: The ARR1D_MUL3 macro generates an unsigned/signed output vector, which is the result of
the src1 and src2 multiplication, and is pointed to by dest.

2.7.3 Description of Optimization

С code:

 for(i = 0; i < SIZE; i++)

2-20 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 arr_c[i] = arr1[i] * arr2[i];

Optimization for MAC unit can be done using the following techniques:

1. Loop unrolling by four.

2. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

3. First four values are loaded using one movem instruction.

Optimized code (uses MAC unit):

 lea -60(a7),a7

 movem.l d2-d7/a2-a5,(a7)

 move.l #0x40,d0

 move.l d0,MACSR

 moveq.l #16,d0

 move.l dest,a0

 move.l src1,a1

 move.l src2,a2

 move.l size,d1

 move.l d1,d2

 asr.l #2,d1

 beq out1

 move.l #0,ACC0

 movem.l (a1),d7/a3-a5

 add.l d0,a1

 loop1:

 movem.l (a2),d3-d6

 macl.l d7,d3,(a1)+,d7,ACC0

 move.l ACC0,d3

 move.l #0,ACC0

 macl.l a3,d4,(a1)+,a3,ACC0

 move.l ACC0,d4

 move.l #0,ACC0

 macl.l a4,d5,(a1)+,a4,ACC0

 move.l ACC0,d5

 move.l #0,ACC0

 macl.l a5,d6,(a1)+,a5,ACC0

 move.l ACC0,d6

 move.l #0,ACC0

 movem.l d3-d6,(a0)

 Library of Macros for Optimization, Rev 1.0 2-21

Freescale Semiconductor

 add.l d0,a2

 add.l d0,a0

 subq.l #1,d1

 bne loop1

 out1:

 and.l #3,d2

 beq out2

 sub.l d0,a1

 loop2:

 move.l (a2)+,d3

 mulu.l (a1)+,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne loop2

 out2:

 movem.l (a7),d2-d7/a2-a5

 lea 60(a7),a7

Optimization for eMAC unit can be done using the following techniques:

1. Loop unrolling by four.

2. Using 4 accumulators for pipelining.

3. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

4. The first four values are loaded using one movem instruction.

Optimized code (uses eMAC unit):

 lea -60(a7),a7

 movem.l d2-d7/a2-a5,(a7)

 moveq.l #16,d0

 move.l dest,a0

 move.l src1,a1

 move.l src2,a2

 move.l size,d1

 move.l d1,d2

 asr.l #2,d1

 beq out1

 move.l #0,ACC0

 move.l #0,ACC1

2-22 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 move.l #0,ACC2

 move.l #0,ACC3

 movem.l (a1),d7/a3-a5

 add.l d0,a1

 loop1:

 movem.l (a2),d3-d6

 macl.l d7,d3,(a1)+,d7,ACC0

 macl.l a3,d4,(a1)+,a3,ACC1

 macl.l a4,d5,(a1)+,a4,ACC2

 macl.l a5,d6,(a1)+,a5,ACC3

 movclr.l ACC0,d3

 movclr.l ACC1,d4

 movclr.l ACC2,d5

 movclr.l ACC3,d6

 movem.l d3-d6,(a0)

 add.l d0,a2

 add.l d0,a0

 subq.l #1,d1

 bne loop1

 out1:

 and.l #3,d2

 beq out2

 sub.l d0,a1

 loop2:

 move.l (a2)+,d3

 mulu.l (a1)+,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne loop2

 out2:

 movem.l (a7),d2-d7/a2-a5

 lea 60(a7),a7

2.7.4 Differences Between ARR1D_MUL3_UL and
ARR1D_MUL3_SL

The ARR1D_MUL3_UL macro uses unsigned mode of the MAC unit, while the ARR1D_MUL3_SL
macro uses signed mode.

 Library of Macros for Optimization, Rev 1.0 2-23

Freescale Semiconductor

2.8 ARR1D_MULSC_SL, ARR1D_MULSC_UL

2.8.1 Macros Description

These macros perform multiplication of one vector array by scalar unsigned/signed value.

2.8.2 Parameters Description

Call(s):

int ARR1D_MULSC_UL (long* arr,long size,unsigned long scal)

int ARR1D_MULSC_SL (long* arr,long size, long scal)

Parameters:

Table 2-8. ARR1D_MULSC Parameters

arr in Pointer to the destination vector

size in Number of elements in vectors

scal in Scalar value

Returns: The ARR1D_MULSC macro generates an unsigned/signed output vector, which is the result of
the arr multiplication by scal, and is pointed to by arr.

2.8.3 Description of Optimization

С code:

 for(i = 0; i < SIZE; i++)

 arr_c[i] *= scalar;

Optimization for MAC unit can be done using the following techniques:

1. Loop unrolling by four.

2-24 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

2. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

3. The first four values are loaded using one movem instruction.

Optimized code (uses MAC unit):

 lea -60(a7),a7

 movem.l d2-d6/a2-a5,(a7)

 move.l #0,d0

 move.l d0,MACSR

 move.l arr,a0

 move.l scal,d0

 move.l size,d1

 move.l d1,d2

 asr.l #2,d1

 beq out1

 move.l #0,ACC0

 moveq.l #16,d7

 loop1:

 movem.l (a0),d3-d6

 mac.l d0,d3,ACC0

 move.l ACC0,d3

 move.l #0,ACC0

 mac.l d0,d4,ACC0

 move.l ACC0,d4

 move.l #0,ACC0

 mac.l d0,d5,ACC0

 move.l ACC0,d5

 move.l #0,ACC0

 mac.l d0,d6,ACC0

 move.l ACC0,d6

 move.l #0,ACC0

 movem.l d3-d6,(a0)

 add.l d7,a0

 subq.l #1,d1

 bne loop1

 out1:

 and.l #3,d2

 beq out2

 loop2:

 move.l (a0),d3

 muls.l d0,d3

 move.l d3,(a0)+

 Library of Macros for Optimization, Rev 1.0 2-25

Freescale Semiconductor

 subq.l #1,d2

 bne loop2

 out2:

 movem.l (a7),d2-d6/a2-a5

 lea 60(a7),a7

Optimization for eMAC unit can be done using the following techniques:

1. Loop unrolling by four.

2. Using 4 accumulators for pipelining.

3. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

4. The first four values are loaded using one movem instruction.

5.

Optimized code (uses eMAC unit):

 lea -60(a7),a7

 movem.l d2-d6/a2-a5,(a7)

 move.l arr,a0

 move.l scal,d0

 move.l size,d1

 move.l d1,d2

 asr.l #2,d1

 beq out1

 move.l #0,ACC0

 move.l #0,ACC1

 move.l #0,ACC2

 move.l #0,ACC3

 moveq.l #16,d7

 loop1:

 movem.l (a0),d3-d6

 mac.l d0,d3,ACC0

 mac.l d0,d4,ACC1

 mac.l d0,d5,ACC2

 mac.l d0,d6,ACC3

 movclr.l ACC0,d3

 movclr.l ACC1,d4

 movclr.l ACC2,d5

 movclr.l ACC3,d6

2-26 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 movem.l d3-d6,(a0)

 add.l d7,a0

 subq.l #1,d1

 bne loop1

 out1:

 and.l #3,d2

 beq out2

 loop2:

 move.l (a0),d3

 muls.l d0,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne loop2

 out2:

 movem.l (a7),d2-d6/a2-

2.8.4 Differences Between ARR1D_MULSC_UL and
ARR1D_MULSC_SL

The ARR1D_MULSC_UL macro uses unsigned mode of the MAC unit, while the ARR1D_MULSC_SL
macro uses signed mode.

2.9 ARR1D_MAX_S, ARR1D_MAX_U

2.9.1 Macros Description

Macro search for a maximum element in 1D array of signed or unsigned integer values.

2.9.2 Parameters Description

Call(s):

ARR1D_MAX_S(signed long *src, int size)

ARR1D_MAX_U(unsigned long *src, int size)

The elements are held in array src[]. The src[] array is searched for a maximum from 0 to size-1. Prior to
any call of ARR1D_MAX_S and ARR1D_MAX_U macros, the user must allocate memory for src[]
array either in static or in dynamic memory. The types of the array and the invoking macro must
correspond.

 Library of Macros for Optimization, Rev 1.0 2-27

Freescale Semiconductor

Parameters:

Table 2-9. ARR1D_MAX_S, ARR1D_MAX_U Parameters

src In Pointer to the input array.

size In Number of elements in the input array.

Returns: The ARR1D_MAX_S and ARR1D_MAX_U macros return the maximum element’s index as
their result, which is why they can be used in an assignment operation.

2.9.3 Description of Optimization

These macros do not use any multiplication operations. Therefore, it is not suitable to use MAC and
eMAC instructions for optimization of these macros. This is why instructions from the Integer Instruction
Set were used for optimization. For signed and unsigned values, appropriate comparison insructions were
used. All optimization issues are the same for both macros.

The following optimization techniques were used:

1. Multiple load/store operations for accessing array elements

2. Loop unrolling by four

3. Descending loop organization

Particular techniques of optimization are reviewed below.

С code:

 for(i = 0; i <= SIZE; i++)

 {

 if (arr_c[i]>max)

 { max = arr_c[i];

 index = i;

 }

 }

Optimized code :

 l2: ; taken from ARR1D_MAX_S macro

 movem.l (a0),d1-d4 ;multiple load operations to access

 cmp.l d1,d5 ;source array elements

 bge c1 ;making comparisons beetwen four

 move.l d1,d5 ;elements because of loop unrolling

2-28 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 addq.l #1,d6

 move.l d6,a3 ;index is accumulated in d6

 bra c2

 c1:

 addq.l #1,d6

 c2:

 cmp.l d2,d5

 bge c3

 move.l d2,d5

 addq.l #1,d6

 move.l d6,a3

 bra c4

 c3:

 addq.l #1,d6

 c4:

 cmp.l d3,d5

 bge c5

 move.l d3,d5

 addq.l #1,d6

 move.l d6,a3

 bra c6

 c5:

 addq.l #1,d6

 c6:

 cmp.l d4,d5

 bge c7

 move.l d4,d5

 addq.l #1,d6

 move.l d6,a3

 bra c8

 c7:

 addq.l #1,d6

 c8:

 add.l #16,a0

 subq.l #1,d0 ;descending loop organization
 bne l2

 l1:

2.9.4 Differences Btween ARR1D_MAX_U and ARR1D_MAX_S

For signed and unsigned values, appropriate comparison insructions were used.

 Library of Macros for Optimization, Rev 1.0 2-29

Freescale Semiconductor

2.10 ARR1D_MIN_S, ARR1D_MIN_U

2.10.1 Macros Description

Macros search for a minimum element in 1D array of signed or unsigned integer values.

2.10.2 Parameters Description

Call(s):

ARR1D_MIN_S(signed long *src, int size)

ARR1D_MIN_U(unsigned long *src, int size)

The elements are held in array src[]. The src[] array is searched for minimum from 0 to size-1. Prior to
any call of ARR1D_MIN_S and ARR1D_MIN_U macros, the user must allocate memory for src[] array
either in static or in dynamic memory. The types of the array and the invoking macro must correspond.

Parameters:

Table 2-10. ARR1D_MIN_S, ARR1D_MIN_U Parameters

src in Pointer to the input array.

size in Number of elements in the input array.

Returns: The ARR1D_MIN_S and ARR1D_MIN_U macros return the minimum element’s index as
their result, which is why they can be used in an assignment operation.

2.10.3 Description of Optimization

These macros do not use any multiplication operations. Therefore, it is not suitable to use MAC and
eMAC instructions to optimize these macros. This is why instructions from the Integer Instruction Set
were used for optimization. For signed and unsigned values, appropriate comparison insructions were
used. All optimization issues are the same for both macros.

The following optimization techniques were used:

1. Multiple load/store operations to access to array’s elements

2. Loop unrolling by four

3. Decsending loop organization

Particular techniques of optimization are reviewed below.

2-30 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

С code:

 for(i = 0; i <= SIZE; i++)

 {

 if (arr_c[i]<min)

 { min = arr_c[i];

 index = i;

 }

 }

Optimized code :

 l2: ;taken from ARR1D_MIN_U macro

 movem.l (a0),d1-d4 ; multiple load operations to access

 cmp.l d1,d5 ; source array elements

 bls c1

 move.l d1,d5 ;making comparisons beetwen four

 addq.l #1,d6 ;elements because of loop unrolling

 move.l d6,a3

 bra c2

 c1:

 addq.l #1,d6 ;index is accumulated in d6

 c2:

 cmp.l d2,d5

 bls c3

 move.l d2,d5

 addq.l #1,d6

 move.l d6,a3

 bra c4

 c3:

 addq.l #1,d6

 c4:

 cmp.l d3,d5

 bls c5

 move.l d3,d5

 addq.l #1,d6

 move.l d6,a3

 bra c6

 c5:

 addq.l #1,d6

 c6:

 cmp.l d4,d5

 Library of Macros for Optimization, Rev 1.0 2-31

Freescale Semiconductor

 bls c7

 move.l d4,d5

 addq.l #1,d6

 move.l d6,a3

 bra c8

 c7:

 addq.l #1,d6

 c8:

 add.l #16,a0

 subq.l #1,d0 ;descending loop organization

 bne l2

2.10.4 Differences Between ARR1D_MIN_U and ARR1D_MIN_S

For signed and unsigned values, appropriate comparison insructions were used.

2.11 ARR1D_CAST_SWL, ARR1D_CAST_UWL

2.11.1 Macros Description

These macros convert an array of word data elements to an array of long data elements.
ARR1D_CAST_SWL is used for signed values, and ARR1D_CAST_UWL for unsigned values. The
Library of Macros only supports long data element arrays, so these macros need to be used when a
programmer wants to use the library with word data element arrays. After these macros complete their
conversion, any macro from this library can be used for word data.

2.11.2 Parameters Description

Call(s):

ARR1D_CAST_SWL(signed short *src, signed long *dest, int size)

ARR1D_CAST_UWL(unsigned short *src, unsigned long *dest, int size)

The original elements are held in array src[], and the converted elements are stored in array dest[]. Both
arrays run from 0 to size-1. Prior to any call of ARR1D_CAST_SWL or ARR1D_CAST_UWL, the user
must allocate memory for both src[] and dest[] arrays, either in static or dynamic memory.

Parameters:

2-32 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Table 2-11. ARR1D_CAST_SWL, ARR1D_CAST_UWL Parameters

dest out Pointer to the output array of size of signed or unsigned
long data elements, depending on the type of a macro.

src In Pointer to the input array of of size of signed or
unsigned long data elements, depending on the type of a
macro.

size in Number of elements in input and output arrays

Returns: The ARR1D_CAST_SWL and ARR1D_CAST_UWL macros generate output values, which
are stored in the array pointed to by dest.

2.11.3 Description of Optimization

These macros do not use any multiplication operations. Therefore, it is not suitable to use MAC and
eMAC instructions to optimize these macros. This is why instructions from the Integer Instruction Set
were used for optimization.

The following optimization techniques were used:

1. Multiple load/store operations to access array elements

2. Loop unrolling by four

3. Decsending loop organization

Particular techniques of optimization are reviewed below.

С code:

 for(i = 0; i < SIZE; i++)

 arr_c[i] = (long)arr1[i];

Optimized code :

 l2: ;taken from ARR1D_CAST_SWL

 movem.l (a0),d2/d4 ; multiple load operations to access

 move.l d2,d3 ; source array elements

 move.l d4,d5 ;convertion performed by four elements
 swap.w d2 ;because of loop unrolling

 swap.w d4

 ext.l d2

 Library of Macros for Optimization, Rev 1.0 3-33

Freescale Semiconductor

 ext.l d3 ; in ARR1D_CAST_UWL andi.l #0xffff,d2

 ext.l d4 ; instruction was used

 ext.l d5

 movem.l d2-d5,(a1) ;multiple store operation

 addq.l #8,a0

 add.l #16,a1

 subq.l #1,d0 ;descending loop organization

 bne l2

2.11.4 Differences Between ARR1D_CAST_SWL and
ARR1D_CAST_UWL

ARR1D_CAST_SWL is used for signed values, and ARR1D_CAST_UWL is used for unsigned values.
For ARR1D_CAST_SWL, ext.l instruction is used, and for ARR1D_CAST_UWL, andi.l instruction is
used.

Chapter 3
Macros for 2D Array Operations

3.1 ARR2D_SUM_UL, ARR2D_SUM_SL

3.1.1 Macros Description

These macros compute the sum of the array elements of unsigned/signed values. This sum is computed
by the formula:

∑ ∑
−

=

−

=

=
11

0

12

0

size

i

size

j
ijxres

where xij, – element of the input array, size1 – number of rows of input array, size1 – number of columns
in the input array

3-34 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

3.1.2 Parameters Description

Call(s):

int ARR2D_SUM_UL(unsigned long *src, int size1, int size2)

int ARR2D_SUM_SL(signed long* src, int size1, size2)

Parameters:

Table 3-1. ARR2D_SUM Parameters

src in Pointer to the source vector

size1 in Number of raws in array

size2 In Number of colomn in array

Returns: The ARR2D_SUM macros return the unsigned/signed sum of the array elements.

3.1.3 Description of Optimization

С code:

 for(i = 0; i < SIZE1; i++)

 for(j = 0; j < SIZE2; j++)

 res += arr1[i][j];

Optimization can be done using the following techniques:

1. The elements are accessed as 1d-array elements with number of elements: size1*size2, because
elements of 2d-array are located in memory sequentally.

2. Loop unrolling by four.

3. Postincrement addressing mode to access input array elements.

4. Descending loop organization.

The following should be noticed:

• The d0 register always holds the sum of array elements.

• The a0 register holds the pointer to input array.

 Library of Macros for Optimization, Rev 1.0 3-35

Freescale Semiconductor

• The d1 register is the counter.

Optimized code:

 loop1:

 add.l (a0)+,d0

 add.l (a0)+,d0

 add.l (a0)+,d0

 add.l (a0)+,d0

 subq.l #1,d1

 bne loop1

3.1.4 Differences Between the ARR2D_SUM_UL and the
ARR2D_SUM_SL Macros

The type of ARR2D_SUM_UL parameters (*src) is unsigned long.

The type of ARR2D_SUM_SL parameters (*src) is signed long.

3.2 ARR2D_ADD2_UL, ARR2D_ADD2_SL

3.2.1 Macros Description

These macros compute the elementwise sum of two 2d-arrays of unsigned/signed values. The
elementwise sum is computed by the formula:

];12,0[],11,0[,, ,,

,,,

−∈−∈∈∈

+=

sizejsizeiYyXx

yxx

jiji

jijiji

where X, Y – input arrays, xi,j, yi,j – elements of the corresponding arrays, size1 – number of rows, size2 –
number of columns

Note:

The type of elements of arrays in the ARR2D_ADD2_UL macro must be unsigned long, and the type of
elements of arrays in the ARR2D_ADD2_SL macro must be signed long.

3-36 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

3.2.2 Parameters Description

Call(s):

int ARR2D_ADD2_UL(void* dest, void* src, int size1, int size2)

int ARR2D_ADD2_SL(void* dest, void* src, int size1, int size2)

Parameters:

Table 3-2. ARR2D_ADD2 Parameters

dest in/out Pointer to the destinstion array

src in Pointer to the source array

size1 in Number of rows of matrices

size2 in Number of columns of matrices

Returns: The ARR2D_ADD2 macro generates unsigned/signed output values, which are stored in the
array pointed to by the parameter dest.

3.2.3 Description of Optimization

С code:

 for(i = 0; i < SIZE1; i++)

 for(j = 0; j < SIZE2; j++)

 arr_c[i][j] += arr1[i][j];

Optimization can be done using the following techniques:

1. The elements are accessed as 1d-array elements with number of elements: size1*size2, because
elements of 2d-array are located in memory sequentially.

2. Loop unrolling by four.

3. Every four values of array dest used in each iteration are loaded with only one movem
instruction.

4. Every four values of array src used in each iteration are loaded using postincrement addressing
mode while performing additons.

 Library of Macros for Optimization, Rev 1.0 3-37

Freescale Semiconductor

5. After perfoming additions, the resulting four values in each iteration are stored with only one
movem instruction.

6. If the number of elements is not divisible by four, the tail elements are processed in regular order.

Optimized code:

 move.l size1,d1

 move.l size2,d2

 mulu.l d2,d1

 move.l d1,d2

 asr.l #2,d1

 beq l1

 l2:

 movem.l (a0),d3-d6

 add.l (a1)+,d3

 add.l (a1)+,d4

 add.l (a1)+,d5

 add.l (a1)+,d6

 movem.l d3-d6,(a0)

 add.l #16,a0

 subq.l #1,d1

 bne l2

 l1:

 and.l #3,d2

 beq l4

 l3:

 move.l (a0),d3

 add.l (a1)+,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne l3

 l4:

 add.l (a1)+,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne l3

 l4:

3-38 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

3.2.4 Differences Between the ARR2D_ADD2_UL and the
ARR2D_ADD2_SL Macros

There are no differences. The macro was written in two versions to preserve library uniformity.

3.3 ARR2D_ADD3_UL, ARR2D_ADD3_SL

3.3.1 Macros Description

These macros compute the elementwise sum of two 2d-arrays of unsigned/signed values, and store the
results in a third 2d-array of unsigned/signed values. The elementwise sum is computed by the formula:

];12,0[],11,0[,,, ,,,

,,,

−∈−∈∈∈∈

+=

sizejsizeiZzYyXx

yxz

jijiji

jijiji

where X, Y – input arrays, xi,j, yi,j – elements of the corresponding arrays, Z – resultant vestor, zi,j –
element of vector Z, size1 – number of rows, size2 – number of columns

Note:

The type of elements of arrays in the ARR2D_ADD3_UL macro must be unsigned long, and the type of
elements of arrays in the ARR2D_ADD3_SL macro must be signed long.

3.3.2 Parameters Description

Call(s):

int ARR2D_ADD3_UL(void* dest, void* src1, void* src2, int size1, int size2);

int ARR2D_ADD3_SL(void* dest, void* src1, void* src2, int size1, int size2);

Parameters:

Table 3-3. ARR2D_ADD3 Parameters

dest in/out Pointer to the destinstion array

src1 in Pointer to the source array1

src2 in Pointer to the source array2

size1 in Number of rows of matrices

size2 in Number of columns of matrices

 Library of Macros for Optimization, Rev 1.0 3-39

Freescale Semiconductor

Returns: The ARR2D_ADD3 macro generates unsigned/signed output values, which are stored in the
array pointed to by the parameter dest.

3.3.3 Description of Optimization

С code:

 for(i = 0; i < SIZE1; i++)

 for(j = 0; j < SIZE2; j++)

 arr_c[i][j] = arr1[i][j] + arr2[i][j];

Optimization can be done using the following techniques:

1. The elements are accessed as 1d-array elements with number of elements: size1*size2, because
elements of 2d-array are located in memory sequentially.

2. Loop unrolling by four.

3. Every four values of array src1 used in each iteration are loaded with only one movem
instruction.

4. Every four values of array src2 used in each iteration are loaded using postincrement addressing
mode while performing additons.

5. After perfoming additions, the resulting four values in each iteration are stored into the dest array
with only one movem instruction;

6. If the number of elements is not divisible by four, the tail elements are processed in regular order.

Optimized code:

 move.l size1,d1

 move.l size2,d2

 mulu.l d2,d1

 move.l d1,d2

 asr.l #2,d1

 beq l1

 l2:

 movem.l (a1),d3-d6

 add.l (a2)+,d3

 add.l (a2)+,d4

 add.l (a2)+,d5

 add.l (a2)+,d6

 movem.l d3-d6,(a0)

3-40 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 add.l #16,a0

 add.l #16,a1

 subq.l #1,d1

 bne l2

 l1:

 and.l #3,d2

 beq l4

 l3:

 move.l (a1)+,d3

 add.l (a2)+,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne l3

 l4:

3.3.4 Differences Between the ARR2D_ADD3_UL and the
ARR2D_ADD3_SL Macros

There are no differences. The macro was written in two versions in order to preserve library uniformity.

3.4 ARR2D_ADDSC_UL, ARR2D_ADDSC_SL

3.4.1 Macros Description

These macros compute the elementwise sum of 2d-array of unsigned/signed values with a scalar
unsigned/signed value. The elementwise sum is computed by the formula:

];12[],11,0[,,

,,

−∈−∈∈

+=

sizejsizeiXx

scalarxx

ji

jiji

where X – input array, xi,j – element of the array X, scalar – variable with unsigned/signed value, size1 –
number of rows, size2 – number of columns

Note:

The type of elements of array in the ARR2D_ADDSC_UL macro must be unsigned long, and the type of
elements of array in the ARR2D_ADDSC_SL macro must be signed long.

 Library of Macros for Optimization, Rev 1.0 3-41

Freescale Semiconductor

3.4.2 Parameters Description

Call(s):

int ARR2D_ADDSC_UL(void* arr, int size1, int size2, unsigned long scal);

int ARR2D_ADDSC_SL(void* arr, int size1, int size2, signed long scal)

Parameters:

Table 3-4. ARR2D_ADDSC Parameters

arr in/out Pointer to the array

size1 in Number of rows of matrix

size2 in Number of columns of matrix

scal in Scalar value

Returns: The ARR2D_ADDSC macro generates unsigned/signed output values, which are stored in the
array pointed to by the parameter arr.

3.4.3 Description of Optimization

С code:

 for(i = 0; i < SIZE1; i++)

 for(j = 0; j < SIZE2; j++)

 arr_c[i][j] += scalar;

Optimization can be done using the following techniques:

1. The elements are accessed as 1d-array elements with number of elements: size1*size2, because
elements of 2d-array are located in memory sequentially.

2. Loop unrolling by four.

3. Every four values of array arr used in each iteration are stored using postincrement addressing
mode while performing additons.

4. If the number of elements is not divisible by four, the tail elements are processed in regular order.

Optimized code:

3-42 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 move.l size1,d1

 move.l size2,d2

 mulu.l d2,d1

 move.l d1,d2

 asr.l #2,d1

 beq l1

 l2:

 add.l d0,(a0)+

 add.l d0,(a0)+

 add.l d0,(a0)+

 add.l d0,(a0)+

 subq.l #1,d1

 bne l2

 l1:

 and.l #3,d2

 beq l4

 l3:

 add.l d0,(a0)+

 subq.l #1,d2

 bne l3

 l4:

3.4.4 Differences Between the ARR2D_ADDSC_UL and the
ARR2D_ADDSC_SL Macros

There are no differences. The macro was written in two versions in order to preserve library uniformity.

3.5 ARR2D_PROD_UL, ARR2D_PROD_SL

3.5.1 Macros Description

These macros compute the product of 2d-array with unsigned/signed values. The product is computed by
the formula:

;,

12;11

0,
,

Xx

xres

ji

sizejsizei

ji
ji

∈

=
−=−=

=
I

 Library of Macros for Optimization, Rev 1.0 3-43

Freescale Semiconductor

where res – result value, X – input array, xi,j – element of array X, size1 – number of rows, size2 – number
of columns

Notes:

The type of elements of array in the ARR2D_PROD_UL macro must be unsigned long, and the type of
elements of array in the ARR2D_PROD_SL macro must be signed long.

3.5.2 Parameters Description

Call(s):

int ARR2D_PROD_SL(void *arr, int size1, int size2);

int ARR2D_PROD_UL(void *arr, int size1, int size2);

Parameters:

Table 3-5. ARR2D_PROD Parameters

arr in/out Pointer to the array

size1 in Number of rows of matrix

size2 in Number of columns of matrix

Returns: The ARR2D_PROD macro generates an unsigned/signed output value, which is returned by
macro.

3.5.3 Description of Optimization

С code:

 for(i = 0; i < SIZE1; i++)

 for(j = 0; j < SIZE2; j++)

 prod_c *= arr1[i][j];

Optimization can be done using the following techniques:

1. The elements are accessed as 1d-array elements with number of elements: size1*size2, because
elements of 2d-array are located in memory sequentially.

2. Loop unrolling by four.

3. Every four values of array arr used in each iteration are loaded using post increment addressing
mode while performing multiplications.

3-44 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

4. If the number of elements is not divisible by four, the tail elements are processed in regular order.

Optimized code:

 move.l size1,d1

 move.l size2,d2

 mulu.l d2,d1

 move.l d1,d2

 moveq.l #1,d0

 asr.l #2,d1

 beq out1

 loop1:

 muls.l (a0)+,d0

 muls.l (a0)+,d0

 muls.l (a0)+,d0

 muls.l (a0)+,d0

 subq.l #1,d1

 bne loop1

 out1:

 and.l #3,d2

 beq out2

 loop2:

 muls.l (a0)+,d0

 subq.l #1,d2

 bne loop2

 out2:

3.5.4 Differences Between the ARR2D_PROD_UL and the
ARR2D_PROD_SL Macros

ARR2D_PROD_UL uses instruction mulu for multiplication.

ARR2D_PROD_SL uses instruction muls for multiplication to keep the signs of operands.

3.6 ARR2D_MUL2_SL, ARR2D_MUL2_UL

3.6.1 Macros Description

These macros perform multiplication of two 2D arrays of unsigned/signed values.

 Library of Macros for Optimization, Rev 1.0 3-45

Freescale Semiconductor

3.6.2 Parameters Description

Call(s):

int ARR2D_MUL2_UL(unsigned long* dest,unsigned long* src,long size1, ,long
size2)

int ARR2D_MUL2_SL(long* dest,long* src,long size1,long size2)

Parameters:

Table 3-6. ARR2D_MUL2 Parameters

dest in Pointer to the destination array

src in Pointer to the source array

size1 in Number of rows in arrays

size2 in Number of columns in arrays

Returns: The ARR2D_MUL2 macro generates an unsigned/signed output matrix, which is the result of
dest and src multiplication, and is pointed to by dest.

3.6.3 Description of Optimization

С code:

 for(i = 0; i < SIZE1; i++)

 for(j = 0; j < SIZE2; j++)

 arr_c[i][j] *= arr1[i][j];

Optimization for MAC unit can be done using the following techniques:

1. Loop unrolling by four.

2. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

3. The first four values are loaded using one movem instruction.

Optimized code (uses MAC unit):

 lea -60(a7),a7

 movem.l d2-d7/a2-a5,(a7)

3-46 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 move.l #0,d0

 move.l d0,MACSR

 moveq.l #16,d0

 move.l dest,a0

 move.l src,a1

 move.l size1,d1

 move.l size2,d2

 mulu.l d2,d1

 move.l d1,d2

 asr.l #2,d1

 beq out1

 move.l #0,ACC0

 movem.l (a1),d7/a3-a5

 add.l d0,a1

 loop1:

 movem.l (a0),d3-d6

 macl.l d7,d3,(a1)+,d7,ACC0

 move.l ACC0,d3

 move.l #0,ACC0

 macl.l a3,d4,(a1)+,a3,ACC0

 move.l ACC0,d4

 move.l #0,ACC0

 macl.l a4,d5,(a1)+,a4,ACC0

 move.l ACC0,d5

 move.l #0,ACC0

 macl.l a5,d6,(a1)+,a5,ACC0

 move.l ACC0,d6

 move.l #0,ACC0

 movem.l d3-d6,(a0)

 add.l d0,a0

 subq.l #1,d1

 bne loop1

 out1:

 and.l #3,d2

 beq out2

 sub.l d0,a1

 loop2:

 move.l (a0),d3

 muls.l (a1)+,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne loop2

 Library of Macros for Optimization, Rev 1.0 3-47

Freescale Semiconductor

 out2:

 movem.l (a7),d2-d7/a2-a5

 lea 60(a7),a7

Optimization for eMAC unit can be done using the following techniques:

1. Loop unrolling by four.

2. Using four accumulators for pipelining.

3. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

4. First four values are loaded using one movem instruction.

Optimized code (uses eMAC unit):

 lea -60(a7),a7

 movem.l d2-d7/a2-a5,(a7)

 moveq.l #16,d0

 move.l dest,a0

 move.l src,a1

 move.l size1,d1

 move.l size2,d2

 mulu.l d2,d1

 move.l d1,d2

 asr.l #2,d1

 beq out1

 move.l #0,ACC0

 move.l #0,ACC1

 move.l #0,ACC2

 move.l #0,ACC3

 movem.l (a1),d7/a3-a5

 add.l d0,a1

 loop1:

 movem.l (a0),d3-d6

 macl.l d7,d3,(a1)+,d7,ACC0

 macl.l a3,d4,(a1)+,a3,ACC1

 macl.l a4,d5,(a1)+,a4,ACC2

 macl.l a5,d6,(a1)+,a5,ACC3

 movclr.l ACC0,d3

 movclr.l ACC1,d4

 movclr.l ACC2,d5

3-48 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 movclr.l ACC3,d6

 movem.l d3-d6,(a0)

 add.l d0,a0

 subq.l #1,d1

 bne loop1

 out1:

 and.l #3,d2

 beq out2

 sub.l d0,a1

 loop2:

 move.l (a0),d3

 muls.l (a1)+,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne loop2

 out2:

 movem.l (a7),d2-d7/a2-a5

 lea 60(a7),a7

3.6.4 Differences Between ARR2D_MUL2_UL and
ARR2D_MUL2_SL

ARR2D_MUL2_UL macro uses unsigned mode of the MAC unit, while ARR2D_MUL2_SL macro uses
signed mode.

3.7 ARR2D_MUL3_SL, ARR2D_MUL3_UL

3.7.1 Macros Description

These macros perform multiplication of two 2D arrays of unsigned/signed values.

3.7.2 Parameters Description

Call(s):

int ARR2D_MUL3_UL(unsigned long *dest, unsigned long *src1, unsigned long
*src2, int size1, int size2)

int ARR2D_MUL3_SL(long *dest, long *src1, long *src2, int size, int size2)

 Library of Macros for Optimization, Rev 1.0 3-49

Freescale Semiconductor

Parameters:

Table 3-7. ARR2D_MUL3 Parameters

dest in Pointer to the destination array

src1 in Pointer to the source1 array

src2 in Pointer to the source2 array

size1 In Number of rows in arrays

size2 In Number of columns in arrays

Returns: The ARR2D_MUL3 macro generates an unsigned/signed output matrix, which is the result of
src1 and src2 multiplication, and is pointed to by dest.

3.7.3 Description of Optimization

С code:

 for(i = 0; i < SIZE1; i++)

 for(j = 0; j < SIZE2; j++)

 arr_c[i][j] = arr1[i][j] * arr2[i][j];

Optimization for MAC unit can be done using the following techniques:

1. Loop unrolling by four.

2. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

3. The first four values are loaded using one movem instruction.

Optimized code (uses MAC unit):

 lea -60(a7),a7

 movem.l d2-d7/a2-a5,(a7)

 move.l #0x40,d0

 move.l d0,MACSR

 moveq.l #16,d0

 move.l dest,a0

 move.l src1,a1

 move.l src2,a2

 move.l size1,d1

3-50 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 move.l size2,d2

 mulu.l d2,d1

 move.l d1,d2

 asr.l #2,d1

 beq out1

 move.l #0,ACC0

 movem.l (a1),d7/a3-a5

 add.l d0,a1

 loop1:

 movem.l (a2),d3-d6

 macl.l d7,d3,(a1)+,d7,ACC0

 move.l ACC0,d3

 move.l #0,ACC0

 macl.l a3,d4,(a1)+,a3,ACC0

 move.l ACC0,d4

 move.l #0,ACC0

 macl.l a4,d5,(a1)+,a4,ACC0

 move.l ACC0,d5

 move.l #0,ACC0

 macl.l a5,d6,(a1)+,a5,ACC0

 move.l ACC0,d6

 move.l #0,ACC0

 movem.l d3-d6,(a0)

 add.l d0,a2

 add.l d0,a0

 subq.l #1,d1

 bne loop1

 out1:

 and.l #3,d2

 beq out2

 sub.l d0,a1

 loop2:

 move.l (a2)+,d3

 mulu.l (a1)+,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne loop2

 out2:

 movem.l (a7),d2-d7/a2-a5

 lea 60(a7),a7

Optimization for eMAC unit can be done using the following techniques:

 Library of Macros for Optimization, Rev 1.0 3-51

Freescale Semiconductor

1. Loop unrolling by four.

2. Using four accumulators for pipelining.

3. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

4. The first four values are loaded using one movem instruction.

Optimized code (uses eMAC unit):

 lea -60(a7),a7

 movem.l d2-d7/a2-a5,(a7)

 moveq.l #16,d0

 move.l dest,a0

 move.l src1,a1

 move.l src2,a2

 move.l size1,d1

 move.l size2,d2

 mulu.l d2,d1

 move.l d1,d2

 asr.l #2,d1

 beq out1

 move.l #0,ACC0

 move.l #0,ACC1

 move.l #0,ACC2

 move.l #0,ACC3

 movem.l (a1),d7/a3-a5

 add.l d0,a1

 loop1:

 movem.l (a2),d3-d6

 macl.l d7,d3,(a1)+,d7,ACC0

 macl.l a3,d4,(a1)+,a3,ACC1

 macl.l a4,d5,(a1)+,a4,ACC2

 macl.l a5,d6,(a1)+,a5,ACC3

 movclr.l ACC0,d3

 movclr.l ACC1,d4

 movclr.l ACC2,d5

 movclr.l ACC3,d6

 movem.l d3-d6,(a0)

 add.l d0,a2

 add.l d0,a0

 subq.l #1,d1

 bne loop1

3-52 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 out1:

 and.l #3,d2

 beq out2

 sub.l d0,a1

 loop2:

 move.l (a2)+,d3

 mulu.l (a1)+,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne loop2

 out2:

 movem.l (a7),d2-d7/a2-a5

 lea 60(a7),a7

3.7.4 Differences Between ARR2D_MUL3_UL and
ARR2D_MUL3_SL

ARR2D_MUL3_UL macro uses unsigned mode of the MAC unit, while ARR2D_MUL3_SL macro uses
signed mode.

3.8 ARR2D_MULSC_SL, ARR2D_MULSC_UL

3.8.1 Macros Description

These macros perform multiplication of one 2D array by scalar unsigned/signed value.

3.8.2 Parameters Description

Call(s):

int ARR2D_MULSC_UL (long* arr, long size1,long size2, unsigned long scal)

int ARR2D_MULSC_SL (long* arr, long size1,long size2, long scal)

Parameters:

Table 3-8. ARR2D_MULSC Parameters

Arr in Pointer to the destination array

 Library of Macros for Optimization, Rev 1.0 3-53

Freescale Semiconductor

size1 in Number of rows in arrays

Size2 in Number of columns in arrays

scal in Scalar value

Returns: The ARR2D_MULSC macro generates an unsigned/signed output matrix, which is the result of
arr multiplication by scal and is pointed to by arr.

3.8.3 Description of Optimization

С code:

 for(i = 0; i < SIZE1; i++)

 for(j = 0; j < SIZE2; j++)

 arr_c[i][j] *= scalar;

Optimization for MAC unit can be done using the following techniques:

1. Loop unrolling by four.

2. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

3. The first four values are loaded using one movem instruction.

Optimized code (uses MAC unit):

 lea -60(a7),a7

 movem.l d2-d6/a2-a5,(a7)

 move.l #0,d0

 move.l d0,MACSR

 move.l arr,a0

 move.l scal,d0

 move.l size1,d1

 move.l size2,d2

 mulu.l d2,d1

 move.l d1,d2

 asr.l #2,d1

 beq out1

 move.l #0,ACC0

 moveq.l #16,d7

 loop1:

 movem.l (a0),d3-d6

3-54 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 mac.l d0,d3,ACC0

 move.l ACC0,d3

 move.l #0,ACC0

 mac.l d0,d4,ACC0

 move.l ACC0,d4

 move.l #0,ACC0

 mac.l d0,d5,ACC0

 move.l ACC0,d5

 move.l #0,ACC0

 mac.l d0,d6,ACC0

 move.l ACC0,d6

 move.l #0,ACC0

 movem.l d3-d6,(a0)

 add.l d7,a0

 subq.l #1,d1

 bne loop1

 out1:

 and.l #3,d2

 beq out2

 loop2:

 move.l (a0),d3

 muls.l d0,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne loop2

 out2:

 movem.l (a7),d2-d6/a2-a5

 lea 60(a7),a7

Optimization for eMAC unit can be done using the following techniques:

1. Loop unrolling by four.

2. Using four accumulators for pipelining.

3. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

4. The first four values are loaded using one movem instruction.

Optimized code (uses eMAC unit):

 Library of Macros for Optimization, Rev 1.0 3-55

Freescale Semiconductor

 lea -60(a7),a7

 movem.l d2-d6/a2-a5,(a7)

 move.l arr,a0

 move.l scal,d0

 move.l size1,d1

 move.l size2,d2

 mulu.l d2,d1

 move.l d1,d2

 asr.l #2,d1

 beq out1

 move.l #0,ACC0

 move.l #0,ACC1

 move.l #0,ACC2

 move.l #0,ACC3

 moveq.l #16,d7

 loop1:

 movem.l (a0),d3-d6

 mac.l d0,d3,ACC0

 mac.l d0,d4,ACC1

 mac.l d0,d5,ACC2

 mac.l d0,d6,ACC3

 movclr.l ACC0,d3

 movclr.l ACC1,d4

 movclr.l ACC2,d5

 movclr.l ACC3,d6

 movem.l d3-d6,(a0)

 add.l d7,a0

 subq.l #1,d1

 bne loop1

 out1:

 and.l #3,d2

 beq out2

 loop2:

 move.l (a0),d3

 muls.l d0,d3

 move.l d3,(a0)+

 subq.l #1,d2

 bne loop2

 out2:

 movem.l (a7),d2-d6/a2-a5

 lea 60(a7),a7

3-56 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

3.8.4 Differences Between ARR2D_MULSC_UL and
ARR2D_MULSC_SL

ARR2D_MULSC_UL macro uses unsigned mode of the MAC unit, while ARR2D_MULSC_SL macro
uses signed mode.

3.9 ARR2D_MAX_S, ARR2D_MAX_U

3.9.1 Macros Description

These macros search for a maximum element in a 2D array of signed or unsigned integer values.

3.9.2 Parameters Description

Call(s):

ARR2D_MAX_S(void *src, int size1, int size2)

ARR2D_MAX_U(void *src, int size1, int size2)

The elements are held in src[] array. The src[] array is searched for maximum from 0 to size-1, where size
= size1×size2. Prior to any call of ARR2D_MAX_S and ARR2D_MAX_U macros, the user must
allocate memory for src[] array either in static or in dynamic memory. Types of the array and the
invoking macro must correspond. In declaration, src[] array is declared as void for compatibility.

Parameters:

Table 3-9. ARR2D_MAX_S, ARR2D_MAX_U Parameters

src In Pointer to the input array.

size1 In Number of rows

size2 In Number of columns

Returns: The ARR2D_MAX_S and ARR2D_MAX_U macros return maximum element’s index as their
result, which is why they can be used in an assignment operation. The index is linear and must be
converted to two indices to access C array. The convertion can be done in the following way: index1 =
[index/size2] ; index2 = index – index1 × size2, where index1 – first C index (row), index2 – second C
index (column), index – linear index, size1 – number of rows, size2 – number of columns.

 Library of Macros for Optimization, Rev 1.0 3-57

Freescale Semiconductor

3.9.3 Description of Optimization

These macros do not use any multiplication operations. Therefore, it is not suitable to use MAC and
eMAC instructions to optimize these macros. This is why instructions from the Integer Instruction Set
were used for optimization. For signed and unsigned values, appropriate comparison insructions were
used. All optimization issues are the same for both macros.

The following optimization techniques were used:

1. Multiple load/store operations to access array elements.

2. Loop unrolling by four.

3. Descending loop organization.

4. Particular techniques of optimization are reviewed below.

С code:

 for(i = 0; i <= SIZE1; i++)

 for(j = 0; j <= SIZE2; j++)

 {

 if (arr_c[i][j]>max)

 { max = arr_c[i][j];

 i1 = i;

 i2 = j;

 }

 }

Optimized code :

;this code is similar to 1D array macro but in preloop operations linear size must be
;calculated and stored

 l2: ; taken from ARR2D_MAX_S macro

 movem.l (a0),d1-d4 ;multiple load operations to access

 cmp.l d1,d5 ;source array elements

 bge c1 ;making comparisons beetwen four

 move.l d1,d5 ;elements because of loop unrolling

 addq.l #1,d6

 move.l d6,a3 ;index is accumulated in d6

 bra c2

 c1:

3-58 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 addq.l #1,d6

 c2:

 cmp.l d2,d5

 bge c3

 move.l d2,d5

 addq.l #1,d6

 move.l d6,a3

 bra c4

 c3:

 addq.l #1,d6

 c4:

 cmp.l d3,d5

 bge c5

 move.l d3,d5

 addq.l #1,d6

 move.l d6,a3

 bra c6

 c5:

 addq.l #1,d6

 c6:

 cmp.l d4,d5

 bge c7

 move.l d4,d5

 addq.l #1,d6

 move.l d6,a3

 bra c8

 c7:

 addq.l #1,d6

 c8:

 add.l #16,a0

 subq.l #1,d0 ;descending loop organization
 bne l2

 l1:

3.9.4 Differences Between ARR2D_MAX_U and ARR2D_MAX_S

For signed and unsigned values, appropriate comparison insructions were used.

 Library of Macros for Optimization, Rev 1.0 3-59

Freescale Semiconductor

3.10 ARR2D_MIN_S, ARR2D_MIN_U

3.10.1 Macros Description

The macros search for a minimum element in 2D array of signed or unsigned integer numbers.

3.10.2 Parameters Description

Call(s):

ARR2D_MIN_S(void *src, int size1, int size2)

ARR2D_MIN_U(void *src, int size1, int size2)

The elements are held in src[] array. The src[] array is searched for maximum from 0 to size-1, where size
= size1×size2. Prior to any call of ARR2D_MIN_S and ARR2D_MIN_U user must allocate memory for
src[] array either in static or in dynamic memory. Types of the array and the invoking macro must
correspond. In declaration, src[] array is declared as void for compatibility.

Parameters:

Table 3-10. ARR2D_MIN_S, ARR2D_MIN_U Parameters

src in Pointer to the input array.

size1 in Number of rows

size2 in Number of columns

Returns: ARR2D_MIN_S and ARR2D_MIN_U macros return minimum element’s index as their result,
which is why they can be used in an assignment operation. The index is linear and must be converted to
two indices to access C array. The convertion can be done in the following way: index1 = [index/size2] ;
index2 = index – index1 × size2, where index1 – first C index (row), index2 – second C index (column),
index – linear index, size1 – number of rows, size2 – number of columns.

3.10.3 Description of Optimization

These macros does not use any multiply operations. So, it is not suitable to use MAC and eMAC
instructions to optimize these macros. This is why instructions from the Integer Instruction Set were used
for optimization. For signed and unsigned values, appropriate comparison insructions were used. All
optimization issues are the same for both macros.

The following optimization techniques were used:

1. Multiple load/store operations to access array elements.

3-60 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

2. Loop unrolling by four.

3. Decsending loop organization.

Particular techniques of optimization are reviewed below.

С code:

 for(i = 0; i <= SIZE1; i++)

 for(j = 0; j <= SIZE2; j++)

 {

 if (arr_c[i][j]<min)

 { min = arr_c[i][j];

 i1 = i;

 i2 = j;

 }

 }

Optimized code :

 ;this code is similar to 1D array macro but in preloop operations linear size ;must be
calculated and stored

 l2: ;taken from ARR2D_MIN_U macro

 movem.l (a0),d1-d4 ; multiple load operations to access

 cmp.l d1,d5 ; source array elements

 bls c1

 move.l d1,d5 ;making comparisons beetwen four

 addq.l #1,d6 ;elements because of loop unrolling

 move.l d6,a3

 bra c2

 c1:

 addq.l #1,d6 ;index is accumulated in d6

 c2:

 cmp.l d2,d5

 bls c3

 move.l d2,d5

 addq.l #1,d6

 move.l d6,a3

 bra c4

 Library of Macros for Optimization, Rev 1.0 3-61

Freescale Semiconductor

 c3:

 addq.l #1,d6

 c4:

 cmp.l d3,d5

 bls c5

 move.l d3,d5

 addq.l #1,d6

 move.l d6,a3

 bra c6

 c5:

 addq.l #1,d6

 c6:

 cmp.l d4,d5

 bls c7

 move.l d4,d5

 addq.l #1,d6

 move.l d6,a3

 bra c8

 c7:

 addq.l #1,d6

 c8:

 add.l #16,a0

 subq.l #1,d0 ;decsending loop organization

 bne l2

3.10.4 Differences Between ARR2D_MIN_U and ARR2D_MIN_S

For signed and unsigned values, appropriate comparison insructions were used.

3.11 ARR2D_CAST_SWL, ARR2D_CAST_UWL

3.11.1 Macros Description

These macros convert arrays of word data elements to arrays of long data elements. ARR2D_CAST_SWL
is used for signed values, and ARR2D_CAST_UWL for unsigned values. This library of macros only
supports arrays of long data elements, so these macros should be used when the programmer needs to use
this library with arrays of word data elements. After convertion with these macros, any macro from this
library can be used for word.

3-62 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

3.11.2 Parameters Description

Call(s):

ARR2D_CAST_SWL(void *src,void *dest, int size1, int size2)

ARR2D_CAST_UWL(void *src,void *dest, int size1, int size2)

The original elements are held in src[] array, and the converted elements are stored in array dest[]. Both
arrays run from 0 to size-1. Prior to any call of ARR1D_CAST_SWL or ARR1D_CAST_UWL, the user
must allocate memory for both src[] and dest[] arrays either in static or dynamic memory. Type void in
declaration of these macros is used only for compatibility, so the macro must be called with array of
appropriate type.

Parameters:

Table 3-11. ARR2D_CAST_SWL, ARR2D_CAST_UWL Parameters

dest out Pointer to the output array of size void data elements,
but array must have appropriate type depending on the
type of a macro.

src In Pointer to the input array of size signed or unsigned long
data elements, but array must have appropriate type
depending on the type of a macro.

size1 in Number of columns

Size2 in Number of rows

Returns: The ARR2D_CAST_SWL and ARR2D_CAST_UWL macros generate output values, which
are stored in the array pointed to by dest.

3.11.3 Description of Optimization

These macros do not use any multiplication operations. So it is not suitable to use MAC and eMAC
instructions to optimize these macros. This is why instructions from the Integer Instruction Set were used
for optimization.

The following optimization techniques were used:

1. Multiple load/store operations to access array elements.

2. Loop unrolling by four.

3. Descending loop organization.

Particular techniques of optimization are reviewed below.

 Library of Macros for Optimization, Rev 1.0 3-63

Freescale Semiconductor

С code:

 for(i = 0; i < SIZE1; i++) {

 for(j = 0; j < SIZE2; j++) {

 arr_c[i][j] = (long)arr1[i][j];

 }

 }

Optimized code :

;this code is similar to 1D array macro but in preloop operations linear size

;must be calculated and stored

 l2: ;taken from ARR1D_CAST_SWL

 movem.l (a0),d2/d4 ; multiple load operations to access

 move.l d2,d3 ; source array elements

 move.l d4,d5 ;convertion performed by four elements
 swap.w d2 ;because of loop unrolling

 swap.w d4

 ext.l d2

 ext.l d3 ; in ARR1D_CAST_UWL andi.l #0xffff,d2

 ext.l d4 ; instruction was used

 ext.l d5

 movem.l d2-d5,(a1) ;multiple stor operation

 addq.l #8,a0

 add.l #16,a1

 subq.l #1,d0 ;decsending loop organization

 bne l2

3.11.4 Differences Between the ARR1D_SUM_UL and the
ARR1D_SUM_SL Macros

ARR2D_CAST_SWL is used for signed values, and ARR2D_CAST_UWL is used for unsigned values.
For ARR1D_CAST_SWL, ext.l instruction is used, and for ARR1D_CAST_UWL, andi.l instruction.

4-64 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Chapter 4
Macros for DSP Algorithms

4.1 DOT_PROD_UL, DOT_PROD_SL

4.1.1 Macros Description

These macros compute the dot product of two vector arrays with unsigned/signed values. The dot product
is computed by the following formula:

i

n

i
i yxYX ∑

=

=⋅
1 ,

where X, Y – input vectors, xi, yi – elements of the corresponding vectors, n – size of the vectors

4.1.2 Parameters Description

Call(s):

unsigned long DOT_PROD_UL(unsigned long *arr1, unsigned long *arr2, int size)

signed long DOT_PROD_SL(signed long *arr1, signed long *arr2, int size)

Parameters:

Table 4-1. DOT_PROD Parameters

arr1 in Pointer to the first vector

arr2 in Pointer to the second vector

size in Number of elements in vectors

Returns: The DOT_PROD macro generates an unsigned/signed output value, which is returned by
macro.

4.1.3 Description of Optimization

С code:

for(i = 0; i < SIZE; i++)

 Library of Macros for Optimization, Rev 1.0 4-65

Freescale Semiconductor

 res_c += arr1[i] * arr2[i];

Optimization for MAC unit can be done using the following techniques:

1. Loop unrolling by four.

2. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

3. The first four values are loaded using one movem instruction.

Optimized code (uses MAC unit):

 movem.l (a0), d1-d4

 lea 16(a0),a0

 subq.l #1, d0

 beq L2

 L3:

 movem.l (a1), a2-a5

 lea 16(a1),a1

 macl.l d1, a2, (a0)+, d1, ACC0

 macl.l d2, a3, (a0)+, d2, ACC0

 macl.l d3, a4, (a0)+, d3, ACC0

 macl.l d4, a5, (a0)+, d4, ACC0

 subq.l #1, d0

 bne L3

 L2:

There is no need for optimization of the eMAC unit, because there is only one multiply-accumulate
sequence in the computations.

4.1.4 Differences Between DOT_PROD_UL and DOT_PROD_SL

DOT_PROD_UL macro uses the unsigned mode of the MAC unit, while DOT_PROD_SL macro uses
signed mode.

4-66 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

4.2 RDOT_PROD_UL, RDOT_PROD_SL

4.2.1 Macros Description

These macros compute the reverse dot product of two vector arrays with unsigned/signed values. The
reverse dot product is computed by the following formula:

1
1

+−
=
∑=⋅ in

n

i
i yxYX ,

where X, Y – input vectors, xi, yi – elements of the corresponding vectors, n – size of the vectors.

4.2.2 Parameters Description

Call(s):

unsigned long RDOT_PROD_UL(unsigned long *arr1, unsigned long *arr2, int size)

signed long RDOT_PROD_SL(signed long *arr1, signed long *arr2, int size)

Parameters:

Table 4-2. RDOT_PROD Parameters

arr1 in Pointer to the first vector

arr2 in Pointer to the second vector

size in Number of elements in vectors

Returns: The RDOT_PROD macro generates an unsigned/signed output value, which is returned by
macro.

4.2.3 Description of Optimization

Particular techniques of optimization are reviewed below.

С code:

for(i = 0; i < SIZE; i++)

 res_c += arr1[i] * arr2[SIZE - i - 1];

Optimization for MAC unit can be done using the following techniques:

 Library of Macros for Optimization, Rev 1.0 4-67

Freescale Semiconductor

1. Loop unrolling by four.

2. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

3. The first four values are loaded using one movem instruction.

Optimized code (uses MAC unit):

 lea -16(a0), a0

 movem.l (a0), d1-d4

 subq.l #1, d0

 beq L2

 L3:

 movem.l (a1), a2-a5

 lea 16(a1),a1

 macl.l d4, a2, -(a0), d4, ACC0

 macl.l d3, a3, -(a0), d3, ACC0

 macl.l d2, a4, -(a0), d2, ACC0

 macl.l d1, a5, -(a0), d1, ACC0

 subq.l #1, d0

 bne L3

 L2:

There is no need for optimization of the eMAC unit, because there is only one multiply-accumulate
sequence in computations.

4.2.4 Differences Between RDOT_PROD_UL and RDOT_PROD_SL

RDOT_PROD_UL macro uses unsigned mode of the MAC unit, while RDOT_PROD_SL macro uses
signed mode.

4.3 MATR_MUL_UL, MATR_MUL_SL

4.3.1 Macros Description

These macros compute the product of two matrices with unsigned/signed values. Matrix multiplication is
computed by the following formula:

∑
=

=
n

k
jkkiji bac

1
,,, ,

4-68 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

where ci,j is an element of resultant matrix C, ai,k, and bk,j are elements of the input matrices A and B
respectively.

4.3.2 Parameters Description

Call(s):

void MATR_MUL_UL(void *arrr, void *arr1, void *arr2, int m, int n, int p)

void MATR_MUL_SL(void *arrr, void *arr1, void *arr2, int m, int n, int p)

Parameters:

Table 4-3. MATR_MUL Parameters

arrr out Pointer to the resulting matrix (size must be m*p)

arr1 in Pointer to the first matrix (size must be m*n)

arr1 in Pointer to the second matrix (size must be n*p)

m in Number of raws in the first matrix

n in Number of columns in first matrix (number of raws in
second matrix)

p in Number of columns in second matrix

Returns: The MATR_MUL macro generates an output matrix with unsigned/signed values, which is
pointed to by arrr.

4.3.3 Description of Optimization

С code:

 for(i = 0; i < MSIZE; i++)

 for(j = 0; j < PSIZE; j++)

 for(k = 0; k < NSIZE; k++)

 arr_c[i][j] += arr1[i][k] * arr2[k][j];

Optimization for MAC unit: performing multiplication and addition at the same time due to mac
instruction.

Optimized code (uses MAC unit):

lea (a0), a1

 Library of Macros for Optimization, Rev 1.0 4-69

Freescale Semiconductor

 lea (a2), a3

 lea 4(a2), a2

 move.l n, d2

IN3:

 move.l (a3), d4

 add.l d3, a3

 move.l (a1)+, a4

 mac.l d4, a4, ACC0

 subq.l #1, d2

 bne IN3

Optimization for MAC unit can be done using the following techniques:

1. Loop unrolling by four.

2. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

3. Postincremental addressing mode is used for sequential access to matix elements.

Optimized code (uses eMAC unit):

OUT1:

 lea (a0), a1

 lea (a2), a3

 lea 16(a2), a2

 move.l n, d2

IN2:

 movem.l (a3), d4-d7

 add.l d3, a3

 move.l (a1)+, a4

 mac.l d4, a4, ACC0

 mac.l d5, a4, ACC1

 mac.l d6, a4, ACC2

 mac.l d7, a4, ACC3

 subq.l #1, d2

 bne IN2

 movclr.l ACC0, d4

 movclr.l ACC1, d5

 movclr.l ACC2, d6

 movclr.l ACC3, d7

4-70 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 movem.l d4-d7, (a5)

 lea 16(a5), a5

 subq.l #1, d1

 bne OUT1

4.3.4 Differences Between MATR_MUL_UL and MATR_MUL_SL

MATR_MUL_UL macro uses unsigned mode of the MAC unit, while MATR_MUL_SL macro uses
signed mode.

4.4 CONV

4.4.1 Macro Description

This macro computes convolution using array of samples and array of coefficients. Convolution is
computed by the following formula:

[] [] []jixjhiy
M

j
−= ∑

−

=

1

0 ,

where y[i] is an output sample, x[i-j] is an input sample, and h[j] is coefficient

There are two algorithms of convolution computing the following:

• Input side algorithm

• Output side algorithm

The macro uses output side algorithm for implementation using MAC unit, because it is more suitable.

To learn more about convolution and its properties, refer to The Scientist and Engineer’s Guide to
Digital Signal Processing, Steven W. Smith, Ph.D. California Technical Publishing
(http://www.dspguide.com/).

Notes:

• Array elements must be of the FRAC32 type.

 Library of Macros for Optimization, Rev 1.0 4-71

Freescale Semiconductor

• The size of the output array must equal the sum of sizes of the input array and array of
coefficients.

4.4.2 Parameters Description

Call(s):

void CONV(void *y, void *x, void *h, int xsize, int hsize)

Parameters:

Table 4-4. CONV Parameters

y out Pointer to the output vector, containing computed values

x in Pointer to the input vector (array of samples)

h in Pointer to the array of coefficients

xsize in Size of the input vector

hsize in Size of array of coefficients

Returns: The CONV macro generates output samples which are pointed to by y.

4.4.3 Description of Optimization

С code:

 for(i = 0; i < XSIZE + HSIZE - 1; i++) {

 for(j = 0; j < HSIZE; j++) {

 if((i - j >= 0) && (i - j < XSIZE)) {

 arr_d[i] += xarr_d[i - j] * harr_d[j];

 }

 }

Optimization for MAC unit: performing multiplication and addition at the same time due to mac
instruction.

Optimized code (uses MAC unit):

4-72 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

_OUT1:

 addq.l #4, d6

 move.l d6, d2

 movea.l a0, a1

 movea.l a2, a3

 add.l d2, a3

_IN1:

 move.l (a1)+, d4

 move.l -(a3), d5

 mac.w d4.u, d5.u, <<, acc0

 subq.l #4, d2

 bne _IN1

 move.l acc0, d7

 move.l #0, acc0

 move.l d7, (a4)+

 subq.l #1, d1

 bne _OUT1

Optimization for eMAC unit can be done using the following techniques:

1. Loop unrolling by four.

2. Reduction of the number of instructions for fetching operand from memory (one element can be
used in computation of several output elements).

3. Using macl instruction, which allows multiplying simultaneously with loading four values for the
next iteration.

4. Using movclr instruction instead of two instructions to store value in memory and clear the
accumulator.

5. Sequential mac operations allow use of eMAC unit pipeline efficiently.

Optimized code (uses eMAC unit):

_OUT2:

 movea.l a1, a0

 movea.l a3, a5

 move.l d0, d5

_IN2:

 move.l -(a0), d3

 move.l (a5)+, d4

 macl.l d3, d4, (a5)+, d4, acc0

 macl.l d3, d4, (a5)+, d4, acc1

 Library of Macros for Optimization, Rev 1.0 4-73

Freescale Semiconductor

 macl.l d3, d4, (a5)+, d4, acc2

 mac.l d3, d4, acc3

 lea -12(a5), a5

 subq.l #1, d5

 bne _IN2

 movclr.l acc0, d5

 move.l d5, (a4)+

 movclr.l acc1, d5

 move.l d5, (a4)+

 movclr.l acc2, d5

 move.l d5, (a4)+

 movclr.l acc3, d5

 move.l d5, (a4)+

 lea 16(a3), a3

 subq.l #1, d1

 bne _OUT2

4.5 FIRST_DIFF

4.5.1 Macro Description

This macro peforms a calculation of the first differences on input fractional operands, commonly known
as discrete derivation. More details on this linear system’s characteristic may be found in The Scientist
and Engineer’s Guide to Digital Signal Processing, Steven W. Smith, Ph.D. California Technical
Publishing (http://www.dspguide.com/).

4.5.2 Parameters Description

Call(s):

FIRST_DIFF(FRAC32* dst, FRAC32* src, long size)

The original signals are held in array src[], and the first differences are stored in array dst[] . Both arrays
run from 0 to size-1. Prior to any call of FIRST_DIFF, the user must allocate memory for both src[] and
dst[] arrays, either in static or in dynamic memory.

Parameters:

4-74 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Table 4-5. FIRST_DIFF Parameters

dst out Pointer to the output array of size FRAC32 data
elements

src In Pointer to the input array of of size FRAC32 data
elements

size in Number of elements in input and output arrays

Returns: The FIRST_DIFF macro generates output values, which are stored in the array pointed to by
dst.

4.5.3 Description of Optimization

This macro does not use any multiplication operations. So it is not suitable to use MAC and eMAC
instructions to optimize this macro. Thus, instructions from the Integer Instruction Set were used for
optimization.

The following optimization techniques were used:

1. Multiple load/store operations to access arrays elements.

2. Loop unrolling by four.

3. Descending loop organization.

Discussions on particular techniques of optimization is shown below.

С code:

 for(i = 1; i < SIZE; i++)

 arr_c[i] = arr1d[i] - arr1d[i-1];

The following should be noticed:

• The loop is unrolled by four.

• The input operands are fetched from memory in fours and stored in registers d4, d5, d6, d7, a2,
a3, a4, and a5.

• The d0 register contains the previously computed value.

• Results are stored in registers a2, a3, a4, and a5.

• The a0 register holds the pointer to output array; the a1 register holds the pointer to input array.

Optimized code :

 Library of Macros for Optimization, Rev 1.0 4-75

Freescale Semiconductor

 loop1:

 movem.l (a1),d4-d7 ; multiple load operations to access source

 movem.l (a1),a2-a5 ; array’s elements

 sub.l d0,a2 ; performing loop body that unrolled by four

 sub.l d4,a3

 sub.l d5,a4

 sub.l d6,a5

 movem.l a2-a5,(a0) ; multiple store operation to save results

 move.l d7,d0

 add.l #16,a1

 add.l #16,a0

 subq.l #1,d1 ; decsending loop organization

 bne loop1

4.6 RUNN_SUM

4.6.1 Macro Description

This macro performs a calculation of the running sum of the input fractional operands, commonly known
as discrete integration. More details on this linear system’s characteristic may be found in The Scientist
and Engineer’s Guide to Digital Signal Processing, Steven W. Smith, Ph.D. California Technical
Publishing (http://www.dspguide.com/).

4.6.2 Parameters Description

Call(s):

RUNN_SUM(FRAC32* dst, FRAC32* src, long size)

The original signals are held in array src[], and the running sum up to the n-th element is stored in the
corresponding n-th element of array dst[]. Both arrays run from 0 to size-1. Prior to any call of
RUNN_SUM, the user must allocate memory for both the src[] and dst[] arrays, either in static or in
dynamic memory.

4-76 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Parameters:

Table 4-6. RUNN_SUM Parameters

dst Out Pointer to the output array of size FRAC32 data
elements

src In Pointer to the input array of of size FRAC32 data
elements

size In Number of elements in input and output arrays

Returns: The RUNN_SUM macro generates output values that are stored in the array, pointed to by dst.

4.6.3 Description of Optimization

This macro does not use any multiplication operations. So it is not suitable to use MAC and eMAC
instructions to optimize this macro. Thus, instructions from the Integer Instruction Set were used for
optimization.

The following optimization techniques were used:

1. Multiple load operations to access array src elements.

2. Postincrement addressing mode to store results in array dst.

3. Loop unrolling by four.

4. Descending loop organization.

Particular techniques for optimization are reviewed below.

С code:

for(i = 1; i < SIZE; i++)

 arr_c[i] = arr_c[i-1] + arr1d[i];

The following should be noticed:

• The loop is unrolled by four.

• The input operands are fetched from memory in fours and stored in registers d4, d5, d6, and d7.

• The d0 register contains the latest computed value,

• The a0 register holds the pointer to the output array; register a1 holds the pointer to the input
array.

 Library of Macros for Optimization, Rev 1.0 4-77

Freescale Semiconductor

Optimized code :

 loop1:

 movem.l (a1),d4-d7 ; multiple load operations to access source

 ; array’s elements

 add.l d4,d0 ; cdomputing output value

 move.l d0,(a0)+ ; storing value on output array

 add.l d5,d0

 move.l d0,(a0)+

 add.l d6,d0

 move.l d0,(a0)+

 add.l d7,d0

 move.l d0,(a0)+

 add.l #16,a1

 subq.l #1,d1 ; decsending loop organization

 bne loop1

4.7 LPASS_1POLE_FLTR

4.7.1 Macros Description

This macro computes a single pole low-pass filter. This recursive filter uses just two coefficients: a0 and
b1, so the filter can be represented in the following form:

yn = a0 * xn + b1 * yn -1

The filter's response characteristics are controlled by the parameter x, a value between zero and one.
Physically, x is the amount of decay between adjacent samples.

a0 = 1 - x

b1 = x

Note: The filter becomes unstable if x is made greater than one. Thus, any non zero value on the input
will increase the output until an overflow occurs.

More details on this digital recursive filter's characteristic may be found in The Scientist and
Engineer’s Guide to Digital Signal Processing, Steven W. Smith, Ph.D. California Technical
Publishing (http://www.dspguide.com/).

4-78 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

4.7.2 Parameters Description

Call(s):

LPASS_1POLE_FLTR(FRAC32 *dst,FRAC32 *src,long size, FRAC32 x)

The input signals to the filter are held in array src[], and the output values are stored in array dst[]. Both
arrays run from 0 to size-1. The x parameter controls the computation of the a0 and b1 filter coefficients.
Prior to any call of LPASS_1POLE_FLTR, the user must allocate memory for both the src[] and dst[]
arrays, in either static or dynamic memory.

Parameters:

Table 4-7. LPASS_1POLE_FLTR Parameters

dst out Pointer to the output array of size FRAC32 data
elements

src In Pointer to the input array of of size FRAC32 data
elements

size in Number of elements in input and output arrays

x in FRAC32 value between zero and one that controls filter
coefficients computation

Returns: The LPASS_1POLE_FLTR macro generates output values, which are stored in the array,
pointed to by dst.

4.7.3 Description of Optimization

This macro frequently performs multiplication and addition operations on fractional values. It is suitable
for the eMAC unit, because the eMAC has a fractional mode.

Optimization for the MAC unit is performed as an emulation of the fractional mode, using mac.w with
shift to left instruction on the upper 16 bits of operands. So only the upper 16 bits of the resulting signals
are valuable.

The following optimization techniques were used:

1. Multiple load operations to access input array elements.

2. Postincrement addressing mode to store output array elements.

3. Loop unrolling by four.

4. Descending loop organization.

Particular techniques for optimization are reviewed below.

 Library of Macros for Optimization, Rev 1.0 4-79

Freescale Semiconductor

С code:

arr_c[i] = a0 * arr1d[i] + b1 * arr_c[i-1];

Optimization for the MAC unit.

The following should be noticed:

• The loop is unrolled by four.

• Coefficients a0 and b1 are pre-computed and held in registers a3 and d6 correspondingly.

• Register d0 always holds the last computed output signal.

• Input operands are fetched from memory in fours, and stored in registers d3, d4, d5, and a2.

The MAC unit has only one accumulator and all output elements must be computed sequentially, so the
mac instruction pipelining is worse than in the eMAC case. Another aspect is that the MAC unit has no
movclr instruction, so the accumulator must be cleared explicitly.

Optimized code (uses MAC unit):

mac.w a3.u,d3.u,<<,ACC0 ; computes a[0]*x[i] for y[i] ouput element

mac.w d6.u,d0.u,<<,ACC0 ; computes b[1] * y[i-1] to produce y[i]

move.l ACC0,d0 ; moves y[i] to d0

move.l #0,ACC0 ; clear accumulator

move.l d0,(a0)+ ; and stores y[i] to memory

mac.w a3.u,d4.u,<<,ACC0 ; computes a[0]*x[i+1] for y[i+1] ouput element

mac.w d6.u,d0.u,<<,ACC0 ; computes b[1] * y[i] to produce y[i+1]

move.l ACC0,d0 ; moves y[i+1] to d0

move.l #0,ACC0 ; clear accumulator

move.l d0,(a0)+ ; and stores y[i+1] to memory

mac.w a3.u,d5.u,<<,ACC0 ; computes a[0]*x[i+2] for y[i+2] ouput elemen

mac.w d6.u,d0.u,<<,ACC0 ; computes b[1] * y[i+1] to produce y[i+2]

move.l ACC0,d0 ; moves y[i+2] to d0

move.l #0,ACC0 ; clear accumulator

move.l d0,(a0)+ ; and stores y[i+2] to memory

mac.w a3.u,a2.u,<<,ACC0 ; computes a[0]*x[i+3] for y[i+3] ouput element

mac.w d6.u,d0.u,<<,ACC0 ; computes b[1] * y[i+2] to produce y[i+3]

move.l ACC0,d0 ; moves y[i+3] to d0

move.l #0,ACC0 ; clear accumulator

move.l d0,(a0)+ ; and stores y[i+3] to memory

4-80 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Optimization for eMAC unit.

The following should be noticed:

• The loop is unrolled by four.

• Coefficients a0 and b1 are pre-computed and held in registers a3 and d6 correspondingly.

• The d0 register always holds the last computed output signal.

• Input operands are fetched from memory in fours and stored in registers d3, d4, d5, and a2.

The eMAC unit has four accumulators, so for better pipelining, (a0*xi) parts of each output element is
computed for all four output elements at the beginning of loop. The rest of the output element
computation is performed sequentially, because computation of each output element depends on the value
of the previous element.

Optimized code (uses eMAC unit):

 mac.l a3,d3,ACC0 ; computes a[0]*x[i] for y[i] ouput element

 mac.l a3,d4,ACC1 ; computes a[0]*x[i+1] for y[i+1] ouput element

 mac.l a3,d5,ACC2 ; computes a[0]*x[i+2] for y[i+2] ouput element

 mac.l a3,a2,ACC3 ; computes a[0]*x[i+3] for y[i+3] ouput element

 mac.l d6,d0,ACC0 ; computes b[1] * y[i-1] to produce y[i]

 movclr.l ACC0,d0 ; moves y[i] to d0

 move.l d0,(a0)+ ; and stores y[i] to memory

 mac.l d6,d0,ACC1 ; computes b[1] * y[i] to produce y[i+1]

 movclr.l ACC1,d0 ; moves y[i+1] to d0

 move.l d0,(a0)+ ; and stores y[i+1] to memory

 mac.l d6,d0,ACC2 ; computes b[1] * y[i+1] to produce y[i+2]

 movclr.l ACC2,d0 ; moves y[i+2] to d0

 move.l d0,(a0)+ ; and stores y[i+2] to memory

 mac.l d6,d0,ACC3 ; computes b[1] * y[i+2] to produce y[i+3]

 movclr.l ACC3,d0 ; moves y[i+3] to d0

 move.l d0,(a0)+ ; and stores y[i+3] to memory

 Library of Macros for Optimization, Rev 1.0 4-81

Freescale Semiconductor

4.8 HPASS_1POLE_FLTR

4.8.1 Macro Description

The macro computes a single pole high-pass filter. This recursive filter uses three coefficients: a0, a1, and
b1, so the filter can be represented in the form:

yn = a0 * xn + a1 * xn - 1 +b1 * yn -1

The filter's response characteristics are controlled by the parameter x, a value between zero and one.
Physically, x is the amount of decay between adjacent samples.

a0 = (1 + x) / 2

a1 = - (1 + x) / 2

b1 = x

Note: The filter becomes unstable if x is made greater than one. Thus, any non zero value on the input
will increase the output until an overflow occurs.

More details on this digital recursive filter's characteristic may be found in The Scientist and
Engineer’s Guide to Digital Signal Processing, Steven W. Smith, Ph.D. California Technical
Publishing (http://www.dspguide.com/).

4.8.2 Parameters Description

Call(s):

HPASS_1POLE_FLTR(FRAC32 *dst,FRAC32 *src,long size, FRAC32 x)

The input signals to the filter are held in array src[], and the output values are stored in array dst[]. Both
arrays run from 0 to size-1. The x parameter controls the computation of the a0, a1, and b1 filter
coefficients. Prior to any call to HPASS_1POLE_FLTR, the user must allocate memory for both the src[]
and dst[] arrays either in static or in dynamic memory.

Parameters:

Table 4-8. HPASS_1POLE_FLTR Parameters

dst Out Pointer to the output array of size FRAC32 data
elements

src In Pointer to the input array of of size FRAC32 data
elements

4-82 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

size In Number of elements in input and output arrays

x In FRAC32 value between zero and one that controls filter
coefficients computation

Returns: The HPASS_1POLE_FLTR macro generates output values, which are stored in the array,
pointed to by dst.

4.8.3 Description of Optimization

This macro frequently performs multiplication and addition operations on fractional values It is suitable
for the eMAC unit, because it has a fractional mode.

Optimization for the MAC unit is performed as an emulation of the fractional mode, using mac.w with
shift to left instruction on the upper 16 bits of operands. So only the upper 16 bits of the resulting signals
are valuable.

The following optimization techniques were used:

1. Mac with load operations to access input array elements.

2. Post-increment addressing mode to store output array elements.

3. Loop unrolling by two.

4. Descending loop organization.

Particular techniques for optimization are reviewed below.

С code:

arr_c[i] = a0 * arr1d[i] + a1 * arr1d[i-1] + b1 * arr_c[i-1];

Optimization for the MAC unit.

The following should be noticed:

• The loop is unrolled by two.

• Coefficients a0 and b1 are pre-computed and held in registers a3 and d6 correspondingly.

• The a1 coefficient is not computed, because a1 = -a0, so the msac operation is used.

• The d0 register always holds the last computed output signal.

• Input operands are fetched from memory in msac instructions and stored in registers d3 and d4.

• The a0 register holds the pointer to the output array; the a1 register holds the pointer to the input
array.

 Library of Macros for Optimization, Rev 1.0 4-83

Freescale Semiconductor

The MAC unit has only one accumulator and all output elements must be computed sequentially, so mac
instruction pipelining is worse than in the eMAC unit case. Another aspect is that the MAC unit has no
movclr instruction, so the accumulator must be cleared explicitly.

Optimized code (uses MAC unit):

mac.w a3.u,d3.u,<<,ACC0 ; computes a[0]*x[i] for y[i] ouput element

msac.w a3.u,d4.u,<<,ACC0 ; computes a[1]*x[i-1] for y[i] ouput element

macl.w d6.u,d0.u,<<,(a1)+,d4,ACC0 ; computes b[1] * y[i-1] to produce y[i]

 ; loads the next input operand

move.l ACC0,d0 ; moves y[i] to d0

move.l #0,ACC0 ; clears accumulator

move.l d0,(a0)+ ; and stores y[i] to memory

mac.w a3.u,d4.u,<<,ACC0 ; computes a[0]*x[i+1] for y[i+1] ouput element

msac.w a3.u,d3.u,<<,ACC0 ; computes a[1]*x[i] for y[i+1] ouput element

macl.w d6.u,d0.u,<<,(a1)+,d3,ACC0 ; computes b[1] * y[i] to produce y[i+1]

 ; loads the next input operand

move.l ACC0,d0 ; moves y[i+1] to d0

move.l #0,ACC0 ; clears accumulator

move.l d0,(a0)+ ; and stores y[i] to memory

Optimization for the eMAC unit.

The following should be noticed:

• The loop is unrolled by two.

• Coefficients a0 and b1 are pre-computed and held in registers a3 and d6 correspondingly.

• The a1 coefficient is not computed, because a1 = -a0, so thr msac operation is used.

• d0 register always holds the last computed output signal.

• Input operands are fetched from memory in msac instructions and stored in registers d3 and d4.

• The a0 register holds the pointer to the output array; the a1 register holds the pointer to the input
array.

As the loop is unrolled by two, the output values are computed in two eMAC accumulators. The movclr
instruction is used to clear the accumulators.

Optimized code (uses eMAC unit):

 mac.l a3,d3,ACC0 ; computes a[0]*x[i] for y[i] ouput element

 msac.l a3,d4,ACC0 ; computes a[1]*x[i-1] for y[i] ouput element

 macl.l d6,d0,(a1)+,d4,ACC0 ; computes b[1] * y[i-1] to produce y[i]

 ; loads the next input operand

4-84 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 movclr.l ACC0,d0 ; moves y[i] to d0

 move.l d0,(a0)+ ; and stores y[i] to memory

 mac.l a3,d4,ACC1 ; computes a[0]*x[i+1] for y[i+1] ouput element

 msac.l a3,d3,ACC1 ; computes a[1]*x[i] for y[i+1] ouput element

 macl.l d6,d0,(a1)+,d3,ACC1 ; computes b[1] * y[i] to produce y[i+1]

 ; loads the next input operand

 movclr.l ACC1,d0 ; moves y[i+1] to d0

 move.l d0,(a0)+ ; and stores y[i+1] to memory

4.9 LPASS_4STG_FLTR

4.9.1 Macros Description

This macro computes a four-stage, low-pass filter. This recursive filter uses five coefficients: a0, b1, b2, b3,
and b4, so the filter can be represented in the following form:

yn = a0 * xn + b1 * yn -1+ b2 * yn -2+ b3 * yn -3+ b4 * yn -4

The filter's response characteristics are controlled by the parameter x, a value between zero and one. The
four-stage, low-pass filter is comparable to the Blackman and Gaussian filters (relatives of the moving
average), but with a much faster execution speed. The design equations for a four-stage, low-pass filter
are the following:

a0 = (1 - x)4

b1 = 4x

b2 = -6x2

b3 = 4x3

b4 = -x4

Note: The filter becomes unstable if x is made greater than one. Thus, any nonzerovalue on the input will
increase the output until an overflow occurs.

More details on this digital recursive filter's characteristic may be found in The Scientist and
Engineer’s Guide to Digital Signal Processing, Steven W. Smith, Ph.D. California Technical
Publishing (http://www.dspguide.com/).

 Library of Macros for Optimization, Rev 1.0 4-85

Freescale Semiconductor

4.9.2 Parameters Description

Call(s):

LPASS_4STG_FLTR (FRAC32 *dst, FRAC32 *src, long size, FRAC32 x)

The input signals to the filter are held in array src[], and the output values are stored in array dst[]. Both
arrays run from 0 to size-1. The x parameter controls the computation of the a0, b1, b2, b3, and b4 filter
coefficients. Prior to any call of LPASS_4STG_FLTR, the user must allocate memory for both the src[]
and dst[] arrays, either in static or in dynamic memory.

Parameters:

Table 4-9. LPASS_4STG_FLTR Parameters

dst Out Pointer to the output array of size FRAC32 data
elements

src In Pointer to the input array of of size FRAC32 data
elements

size In Number of elements in input and output arrays

x In FRAC32 value between zero and one that controls filter
coefficients computation

Returns: The LPASS_4STG_FLTR macro generates output values, which are stored in the array, pointed
to by dst.

4.9.3 Description of Optimization

This macro frequently performs multiplication and addition operations on fractional values. It is suitable
for the MAC unit, because the eMAC has a fractional mode.

Optimization for the MAC unit is performed as an emulation of the fractional mode, using mac.w with
shift to left instruction on the upper 16 bits of operands. So only the upper 16 bits of the resulting signals
are valuable.

The following optimization techniques were used:

1. Mac with load instructions to access input array elements.

2. Post-increment addressing mode to store output array elements.

3. Loop unrolling by four.

4. Descending loop organization.

Particular techniques for optimization are reviewed below.

4-86 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

С code:

 arr_c[i] = a0 * arr1d[i] + b1 * arr_c[i-1] +

 b2 * arr_c[i-2] + b3 * arr_c[i-3] + b4 * arr_c[i-4];

Optimization for the MAC unit.

The following should be noticed:

• The loop is unrolled by four.

• Coefficients a0 , b1 , b2 , b3 , and b4 are pre-computed and held in registers a3 , d6, d7, a4, and a5
correspondingly.

• The a2 register always holds the output sample per each iteration.

• Input operands are fetched from memory one by one and stored in registers d5, d4, d3, and d0.

All add-multiply instructions are performed by the MAC unit. The MAC unit has no movclr instruction,
so the accumulator must be cleared explicitly. After each computation of an output sample, the data from
the accumulator is stored in the register, and the accumulator is cleared explicitly. After, the result is
stored into memory.

Optimized code (uses MAC unit):

 mac.w a3.u,a2.u,<<,ACC0 ; computes a[0]*x[i] for y[i] ouput element

 macl.w d6.u,d0.u,<<,(a1)+,a2,ACC0 ; computes b[1]*y[i-1] for y[i+1] ouput

 ; element and loads the next input operand

 msac.w d7.u,d3.u,<<,ACC0 ; computes b[2]*y[i-2] for y[i] ouput element

 mac.w a4.u,d4.u,<<,ACC0 ; computes b[3]*y[i-3] for y[i] ouput element

 msac.w a5.u,d5.u,<<,ACC0 ; computes b[4]*y[i-4] to produce y[i]

 move.l ACC0,d5 ; moves y[i] to d5

 move.l #0,ACC0 ; clear accumulator

 move.l d5,(a0)+ ; and stores y[i] to memory

Optimization for eMAC unit.

The following should be noticed:

• The loop is unrolled by four.

• Coefficients a0 , b1 , b2 , b3 , and b4 are pre-computed and held in registers a3 , d6, d7, a4, and a5
correspondingly.

• The a2 register always holds the input sample per each iteration.

• Input operands are fetched from memory one by one and stored in registers d5, d4, d3, and d0.

 Library of Macros for Optimization, Rev 1.0 4-87

Freescale Semiconductor

All add-multiply instructions are performed by the eMAC unit. After each computation of an output
sample, the movclr instruction is used to clear the accumulator and store the result into the general
purpose register. After, the result is stored into memory.

Optimized code (uses eMAC unit):

 mac.l a3,a2,ACC0 ; computes a[0]*x[i] for y[i] ouput element

 macl.l d6,d0,(a1)+,a2,ACC0 ; computes b[1]*y[i-1] for y[i+1] ouput element

 ; loads the next input operand

 msac.l d7,d3,ACC0 ; computes b[2]*y[i-2] for y[i] ouput element

 mac.l a4,d4,ACC0 ; computes b[3]*y[i-3] for y[i] ouput element

 msac.l a5,d5,ACC0 ; computes b[4]*y[i-4] to produce y[i]

 movclr.l ACC0,d5 ; moves y[i] to d5

 move.l d5,(a0)+ ; and stores y[i] to memory

4.10 BANDPASS_FLTR

4.10.1 Macro Description

This macro computes a band-pass filter. This recursive filter uses five coefficients: a0, a1, a2, b1, and b2.
The filter can be represented in the following form:

yn = a0 * xn + a1 *xn -1+ a2 * xn -2+ b1 * yn -1+ b2 * yn -2

The filter's response characteristics are controlled by the parameter f, a value of center frequency, and
BW, the bandwidth. Both parameters values must be in the range 0 to 0.5. The design equations for a
bandpath filter are the following:

a0 = 1 – K

a1 = 2(K-R)cos(2πf)

a2 = R2 - K

b1 = 2R cos(2πf)

b2 = - R2

4-88 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

where:

()
()f

RfRK
π

π
2cos22

2cos21 2

−
+−

=

R = 1 – 3BW

More details on this digital recursive filter's characteristic may be found in The Scientist and
Engineer’s Guide to Digital Signal Processing, Steven W. Smith, Ph.D. California Technical
Publishing (http://www.dspguide.com/).

4.10.2 Parameters Description

Call(s):

BANDPASS_FLTR(FRAC32 *dst, FRAC32 *src, long size, FRAC32 freq, FRAC32 bandw)

The input signals to the filter are held in array src[], and the output values are stored in array dst[]. Both
arrays run from 0 to size-1. The freq and bandw parameters control the computation of the a0, a1, a2, b1,
and b2 filter coefficients. Prior to any call of BANDPASS_FLTR, the user must allocate memory for both
the src[] and dst[] arrays, in either static or dynamic memory.

Parameters:

Table 4-10. BANDPASS_FLTR Parameters

dst Out Pointer to the output array of size FRAC32 data
elements

src In Pointer to the input array of of size FRAC32 data
elements

size In Number of elements in input and output arrays

 freq In FRAC32 value in range of 0 to 0.5 that controls filter
coefficients computation

bandw In FRAC32 value in range of 0 to 0.5 that controls filter
coefficients computation

Returns: The BANDPASS_FLTR macro generates output values, which are stored in the array, pointed
to by dst.

 Library of Macros for Optimization, Rev 1.0 4-89

Freescale Semiconductor

4.10.3 Description of Optimization

This macro frequently performs multiplication and addition operations on fractional values. It is suitable
for the eMAC unit, because the eMAC has a fractional mode.

The optimization for the MAC unit is performed as an emulation of the fractional mode, using mac.w
with shift to left instruction on the upper 16 bits of operands. Therefore, only the upper 16 bits of the
resulting signals are valuable.

The coefficients are pre-computed using standard C subroutines in the BANDPASS_FLTR macro. Then
this macro uses the __IMPL_BAND_FLTR macro to compute output samples.

The following optimization techniques were used:

1. Postincrement addressing mode to load input and store output array elements.

2. Loop unrolling by two.

3. Descending loop organization.

Particular techniques for optimization are reviewed below.

С code:

 arr_c[i] = a0 * arr1d[i] + a1 * arr1d[i-1] + a2 * arr1d[i-2] +

 b1 * arr_c[i-1] + b2 * arr_c[i-2];

Optimization for MAC unit.

The following should be noticed:

• The loop is unrolled by two.

• Coefficients a0 , a1 , a2 , b1 , and b2 are pre-computed and held in registers a3 , a4, a5, d6, and d7
correspondingly.

• The a2 and d5 registers always hold the input samples per each iteration.

• The d3 and d0 registers always hold the output samples per each iteration.

• The a1 and a0 registers hold pointers to the src[] and dst[] arrays.

All add-multiply instructions are performed by the MAC unit. The MAC unit has no movclr instruction,
so the accumulator must be cleared explicitly. After each computation of the output sample, the data the
from accumulator is stored into the register, and the accumulator is cleared explicitly. After, the result is
stored into memory.

Optimized code (uses MAC unit):

 mac.w a3.u,a2.u,<<,ACC0 ; computes a[0]*x[i] for y[i] ouput element

4-90 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 mac.w a4.u,d4.u,<<,ACC0 ; computes a[1]*x[i-1] for y[i] ouput element

 mac.w a5.u,d5.u,<<,ACC0 ; computes a[2]*x[i-2] for y[i] ouput element

 mac.w d6.u,d0.u,<<,ACC0 ; computes b[1]*y[i-1] for y[i] ouput element

 mac.w d7.u,d3.u,<<,ACC0 ; computes b[2]*y[i-2] to produce y[i]

 move.l ACC0,d3 ; moves y[i] to d3

 move.l #0,ACC0 ; clears accumulator

 move.l d3,(a0)+ ; and stores y[i] to memory

Optimization for eMAC unit.

The following should be noticed:

• The loop is unrolled by two.

• Coefficients a0 , a1 , a2 , b1 , and b2 are pre-computed and held in registers a3 , a4, a5, d6, and d7
correspondingly.

• The a2 and d5 registers always hold the input samples per each iteration.

• The d3 and d0 registers always hold the output samples per each iteration.

• The a1 and a0 registers hold pointers to the src[] and dst[] arrays.

All add-multiply instructions are performed by the eMAC unit. After each computation of an output
sample, the movclr instruction is used to clear the accumulator and store the result into the general
purpose register. After, the result is stored into memory.

Optimized code (uses eMAC unit):

 mac.l a3,a2,ACC0 ; computes a[0]*x[i] for y[i] ouput element

 mac.l a4,d4,ACC0 ; computes a[1]*x[i-1] for y[i] ouput element

 mac.l a5,d5,ACC0 ; computes a[2]*x[i-2] for y[i] ouput element

 mac.l d6,d0,ACC0 ; computes b[1]*y[i-1] for y[i] ouput element

 mac.l d7,d3,ACC0 ; computes b[2]*y[i-2] to produce y[i]

 movclr.l ACC0,d3 ; moves y[i] to d3

 move.l d3,(a0)+ ; and stores y[i] to memory

4.11 BANDREJECT_FLTR

4.11.1 Macro Description

This macro computes a band-reject filter. This recursive filter uses five coefficients: a0, a1, a2, b1, and b2,
so the filter can be represented in the following form:

yn = a0 * xn + a1 *xn -1+ a2 * xn -2+ b1 * yn -1+ b2 * yn -2

 Library of Macros for Optimization, Rev 1.0 4-91

Freescale Semiconductor

The filter's response characteristics are controlled by the parameter f, a value of center frequency, and
BW, the bandwidth. Both parameters values must be in the range 0 to 0.5. The design equations for a
bandpath filter are the following:

a0 = K

a1 = -2Kcos(2πf)

a2 = K

b1 = 2R cos(2πf)

b2 = - R2

where:

()
()f

RfRK
π

π
2cos22

2cos21 2

−
+−

=

R = 1 – 3BW

More details on this digital recursive filters characteristic may be found in The Scientist and Engineer’s
Guide to Digital Signal Processing, Steven W. Smith, Ph.D. California Technical Publishing
(http://www.dspguide.com/).

4.11.2 Parameters Description

Call(s):

BANDREJECT_FLTR(FRAC32 *dst, FRAC32 *src, long size, FRAC32 freq, FRAC32
bandw)

The input signals to the filter are held in array src[], and the output values are stored in array dst[]. Both
arrays run from 0 to size-1. The freq and bandw parameters control the computation of the a0, a1, a2, b1,
and b2 filter coefficients. Prior to any call of BANDREJECT_FLTR, the user must allocate memory for
both the src[] and dst[] arrays, either in static or dynamic memory.

Parameters:

Table 4-11. BANDREJECT_FLTR Parameters

dst Out Pointer to the output array of size FRAC32 data
elements

src In Pointer to the input array of of size FRAC32 data
elements

size In Number of elements in input and output arrays

4-92 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 freq In FRAC32 value in range of 0 to 0.5 that controls filter
coefficients computation

bandw In FRAC32 value in range of 0 to 0.5 that controls filter
coefficients computation

Returns: The BANDREJECT_FLTR macro generates output values, which are stored in the array
pointed to by dst.

4.11.3 Description of Optimization

This macro frequently performs multiplication and addition operations on fractional values. It is suitable
for the eMAC unit, because the eMAC has a fractional mode.

The optimization for the MAC unit is performed as an emulation of the fractional mode, using mac.w
with shift to left instruction on the upper 16 bits of operands. So only the upper 16 bits of the resulting
signals are valuable.

The coefficients are pre-computed using standard C subroutines in the BANDREJECT_FLTR macro.
Then this macro uses the __IMPL_BAND_FLTR macro to compute output samples.

4.12 MOV_AVG_FLTR

4.12.1 Macros Description

This macro computes the moving average filter. As the name implies, the moving average filter operates
by averaging a number of points from the input signal to produce each point in the output signal. In the
equation form, this filter can be represented as the following:

[] []∑
−

=

+=
1

0

1 M

j
jix

M
iy

M is the number of points used in the moving average.

More details on this digital filter's characteristic may be found in The Scientist and Engineer’s Guide
to Digital Signal Processing, Steven W. Smith, Ph.D. California Technical Publishing
(http://www.dspguide.com/).

4.12.2 Parameters Description

Call(s):

MOV_AVG_FLTR(FRAC32 *dst, FRAC32 *src, long size, long M)

 Library of Macros for Optimization, Rev 1.0 4-93

Freescale Semiconductor

The input signals to the filter are held in array src[], and the output values are stored in array dst[]. Both
arrays run from 0 to size-1. M is the number of points used in the moving average. Prior to any call of
MOV_AVG_FLTR, the user must allocate memory for both the src[] and dst[] arrays, either in static or
dynamic memory.

Parameters:

Table 4-12. MOV_AVG_FLTR Parameters

dst out Pointer to the output array of size FRAC32 data
elements

src In Pointer to the input array of of size FRAC32 data
elements

size in Number of elements in input and output arrays

M in M is the number of points used in moving average.

Returns: The MOV_AVG_FLTR macro generates output values, which are stored in the array, pointed
to by dst.

4.12.3 Description of Optimization

This macro frequently performs multiplication and addition operations on fractional values. It is suitable
for the eMAC unit, because the eMAC has a fractional mode.

Optimization for the MAC unit is performed as an emulation of the fractional mode, using mac.w with
shift to left instruction on the upper 16 bits of operands. So only the upper 16 bits of the resulting signals
are valuable.

The standard C macro MOV_AVG_FLTR computes the 1/M value and uses the
IMPL_MOV_AVG_FLTR macro to compute output samples.

- Optimization of IMPL_MOV_AVG_FLTR macro:

The following optimization techniques were used:

1. Post-increment addressing mode to load input and store output array elements.

2. Descending loop organization.

Particular techniques for optimization are reviewed below.

С code:

for(i = 0; i < SIZE - M + 1; i++)

 {

4-94 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 for (j = 0; j < M; j++)

 arr_c[i] += arr1d[i+j];

 arr_c[i] /= md;

 }

Optimization for MAC unit.

The following should be noticed:

• The 1/M value is stored in register a3.

• To calculate the y[i+1] value, the y[i] value is used. The first item of y[i] value is subtracted from
the accumulator, and the last item of y[i+1] is added to the accumulator. Then the accumulator
value is stored as y[i+1].

• The a1 and a0 registers hold pointers to the src[] and dst[] arrays.

All add-multiply instructions are performed by the MAC unit.

Optimized code (uses MAC unit):

 mac.w d4.u,a3.u,<<,ACC0 ; adds the last item of y[i+1] to accumulator

 msac.w d0.u,a3.u,<<,ACC0 ; substructs the first item of y[i] from

 ; accumulator

 ...

 move.l ACC0,d5 ; stores the y[i] to d5 from accumulator

 move.l d5,(a0)+ ; stores the y[i] into memory

Optimization for eMAC unit.

The following should be noticed:

• The 1/M value is stored in register a3;.

• To calculate the y[i+1] value, the y[i] value is used. The first item of y[i] value is subtracted from
the accumulator and the last item of y[i+1] is added to the accumulator. Then accumulator value
is stored as y[i+1]

• The a1 and a0 registers hold pointers to the src[] and dst[] arrays.

All add-multiply instructions are performed by the eMAC unit.

Optimized code (uses eMAC unit):

 mac.l d4,a3,ACC0 ; adds the last item of y[i+1] to accumulator

 Library of Macros for Optimization, Rev 1.0 5-95

Freescale Semiconductor

 msac.l d0,a3,ACC0 ; substructs the first item of y[i] from accumulator

 ...

 move.l ACC0,d5 ; stores the y[i] to d5 from accumulator

 move.l d5,(a0)+ ; stores the y[i] into memory

Chapter 5
Macros for Mathematical Functions

5.1 SIN

5.1.1 Macro Description

This macro performs some arithmetical operations with the angle parameter to reduce the angle value to
the range of [0.. π/4], and then calls the SIN_F or COS_F macro to compute the sine function.

Notes:

• Value of the angle parameter must be in [0..2*π].

• SIN and COS macros have a common header file “sin_cos.h.”

5-96 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

5.1.2 Parameters Description

Call(s):

FIXED64 SIN(FIXED64 ang)

Parameters:

Table 5-1. SIN Parameters

ang in an angle value

Returns: sine value of the angle.

5.1.3 Description of Optimization

Because the SIN macro only performs some simple arithmetical operations with the ang parameter before
invoking the SIN_F/COS_F functions, no optimization is needed.

5.2 COS

5.2.1 Macro Description

This macro performs some arithmetical operations with the angle parameter to reduce the angle value to
the range of [0.. π/4], and then calls the SIN_F or COS_F macro to compute the cosine function.

Notes:

• Value of the angle parameter must be in [0..2*π].

• SIN and COS macros have a common header file “sin_cos.h.”

5.2.2 Parameters Description

Call(s):

FIXED64 COS(FIXED64 ang)

Parameters:

Table 5-2. COS Parameters

ang In an angle value

Returns: cosine value of the angle.

 Library of Macros for Optimization, Rev 1.0 5-97

Freescale Semiconductor

5.2.3 Description of Optimization

Because the COS macro only performs some simple arithmetical operations with the ang parameter before
invoking the SIN_F/COS_F functions, no optimization is needed.

5.3 SIN_F

5.3.1 Macro Description

This macro computes the sine of an angle from the range [0..π/4]. Computation is done by Teylor’s series
consisting of 6 elements:

!11!9!7!5!3
sin

119753 xxxxxxx −+−+−=

 Notes:

• Value of the angle parameter must be in [0..π/4].

• SIN_F and COS_F macros have a common header file “sin_cos.h.”

5.3.2 Parameters Description

Call(s):

FRAC32 SIN_F(FRAC32 ang)

Parameters:

Table 5-3. SIN_F Parameters

ang in An angle value

Returns: value of the sine function of the angle.

5.3.3 Description of Optimization

С code:

 res_c = sin(tstvalc);

Optimization for the MAC unit can be done using the following techniques:

5-98 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

1. Sequential mac instructions that allow efficient use of the MAC pipeline.

2. Quick multiplication and subtraction due to the msac instruction.

3. Quick multiplication due to the MAC unit.

Optimized code (uses MAC unit):

 move.l #0, ACC0

 mac.w d0.u, d0.u, <<, ACC0

 move.l ACC0, d1

 move.l #0, ACC0

 mac.w d1.u, d0.u, <<, ACC0

 move.l ACC0, d2

 move.l #0, ACC0

 mac.w d1.u, d2.u, <<, ACC0

 move.l ACC0, d3

 move.l #0, ACC0

 mac.w d1.u, d3.u, <<, ACC0

 move.l ACC0, d4

 move.l #0, ACC0

 mac.w d1.u, d4.u, <<, ACC0

 move.l ACC0, d5

 move.l #0, ACC0

 mac.w d1.u, d5.u, <<, ACC0

 move.l ACC0, d6

 dc.w 0xa100 //move.l d0, ACC0

 movea.l #357913941, a0

 movea.l #17895697, a1

 movea.l #426088, a2

 movea.l #5917, a3

 movea.l #53, a4

 msac.w d2.u, a0.u, <<, ACC0

 mac.w d3.u, a1.u, <<, ACC0

 msac.w d4.u, a2.u, <<, ACC0

 mac.w d5.u, a3.u, <<, ACC0

 msac.w d6.u, a4.u, <<, ACC0

 move.l ACC0, d0

Optimization for the eMAC unit includes the same optimization techniques as the MAC unit, as well as
the following:

1. Using fractional mode of the eMAC unit, which allows using 32x32 multiplication without lack
of precision.

 Library of Macros for Optimization, Rev 1.0 5-99

Freescale Semiconductor

2. Using the movclr instruction to store a value in a register and clear an accumulator at the same
time.

Optimized code (uses eMAC unit):

 mac.l d0, d0, ACC0

 movclr.l ACC0, d1

 mac.l d1, d0, ACC0

 movclr.l ACC0, d2

 mac.l d1, d2, ACC0

 movclr.l ACC0, d3

 mac.l d1, d3, ACC0

 movclr.l ACC0, d4

 mac.l d1, d4, ACC0

 movclr.l ACC0, d5

 mac.l d1, d5, ACC0

 movclr.l ACC0, d6

 dc.w 0xa100 //move.l d0, ACC0

 movea.l #357913941, a0

 movea.l #17895697, a1

 movea.l #426088, a2

 movea.l #5917, a3

 movea.l #53, a4

 msac.l d2, a0, ACC0

 mac.l d3, a1, ACC0

 msac.l d4, a2, ACC0

 mac.l d5, a3, ACC0

 msac.l d6, a4, ACC0

 move.l ACC0, d0

5.4 COS_F

5.4.1 Macro Description

This macro computes the cosine of an angle from the range [0..π/4]. Computation is done by Teylor’s
series consisting of 7 elements:

!12!10!8!6!4!2
1cos

12108642 xxxxxxx +−+−+−=

Notes:

5-100 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

• Value of the angle parameter must be in [0..π/4].

• SIN_F and COS_F macros have a common header file “sin_cos.h.”

5.4.2 Parameters Description

Call(s):

FRAC32 COS_F(FRAC32 ang)

Parameters:

Table 5-4. COS_F Parameters

ang in An angle value

Returns: value of the cosine function of the angle.

5.4.3 Description of Optimization

С code:

 res_c = cos(tstvalc);

Optimization for the MAC unit can be done using the following techniques:

1. Sequential mac instructions that allow efficient use of the MAC pipeline.

2. Quick multiplication and subtraction due to the msac instruction.

3. Quick multiplication due to the MAC unit.

Optimized code (uses MAC unit):

 move.l #0, ACC0

 mac.w d0.u, d0.u, <<, ACC0

 move.l ACC0, d1

 move.l #0, ACC0

 mac.w d1.u, d1.u, <<, ACC0

 move.l ACC0, d2

 move.l #0, ACC0

 mac.w d1.u, d2.u, <<, ACC0

 move.l ACC0, d3

 Library of Macros for Optimization, Rev 1.0 5-101

Freescale Semiconductor

 move.l #0, ACC0

 mac.w d2.u, d2.u, <<, ACC0

 move.l ACC0, d4

 move.l #0, ACC0

 mac.w d2.u, d3.u, <<, ACC0

 move.l ACC0, d5

 move.l #0, ACC0

 mac.w d3.u, d3.u, <<, ACC0

 move.l ACC0, d6

 move.l #0x7fffffff, ACC0

 movea.l #1073741824, a0

 movea.l #89478485, a1

 movea.l #2982616, a2

 movea.l #53261, a3

 movea.l #591, a4

 movea.l #4, a5

 msac.w d1.u, a0.u, <<, ACC0

 mac.w d2.u, a1.u, <<, ACC0

 msac.w d3.u, a2.u, <<, ACC0

 mac.w d4.u, a3.u, <<, ACC0

 msac.w d5.u, a4.u, <<, ACC0

 mac.w d6.u, a5.u, <<, ACC0

 move.l ACC0, d0

Optimization for the eMAC unit includes the same optimization techniques as the MAC unit, as well as
following:

1. Using fractional mode of the eMAC unit, which allows using 32x32 multiplication without lack
of precision.

2. Using the movclr instruction to store a value in a register and clear an accumulator at the same
time.

3. Using two accumulators for quickly raising the operand to the needed power.

Optimized code (uses eMAC unit):

 move.l #0, ACC0

 move.l #0, ACC1

 mac.l d0, d0, ACC0

 movclr.l ACC0, d1

 mac.l d1, d1, ACC0

 movclr.l ACC0, d2

5-102 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

 mac.l d1, d2, ACC0

 mac.l d2, d2, ACC1

 movclr.l ACC0, d3

 movclr.l ACC1, d4

 mac.l d2, d3, ACC0

 mac.l d3, d3, ACC1

 movclr.l ACC0, d5

 movclr.l ACC1, d6

 move.l #0x7fffffff, ACC0

 movea.l #1073741824, a0

 movea.l #89478485, a1

 movea.l #2982616, a2

 movea.l #53261, a3

 movea.l #591, a4

 movea.l #4, a5

 msac.l d1, a0, ACC0

 mac.l d2, a1, ACC0

 msac.l d3, a2, ACC0

 mac.l d4, a3, ACC0

 msac.l d5, a4, ACC0

 mac.l d6, a5, ACC0

 move.l ACC0, d0

5.5 MUL

5.5.1 Macro Description

This macro computes a product of two fixed point numbers.

5.5.2 Parameters Description

Call(s):

FIXED64 MUL(FIXED64 m1, FIXED64 m2)

Parameters:

Table 5-5. MUL Parameters

m1 in Multiplicand

 Library of Macros for Optimization, Rev 1.0 5-103

Freescale Semiconductor

m2 in Multiplier

Returns: product of m1 and m2.

5.5.3 Description of Optimization

С code:

 res_c = a * b;

Optimization for the MAC unit is unsuitable, because of the absence of fractional mode in the MAC unit.

Optimization for the eMAC unit can be done using the following techniques:

1. Using both integer and fractional modes of the eMAC unit to get all 64 bits of the result with only
6 mac instructions.

2. Using the eMAC rounding mode to gain a suitable precision without additional mac instructions.

Optimized code (uses eMAC unit):

 lsr.l %1, d1

 lsr.l %1, d3

 mac.l d1, d3, ACC0

 mac.l d0, d3, ACC1

 move.l %0, ACCEXT01

 mac.l d1, d2, ACC1

 lsl.l %1, d1

 lsl.l %1, d3

 move.l %0x40, d5

 move.l d5, MACSR

 mac.l d0, d3, ACC2

 mac.l d1, d2, ACC3

 mac.l d0, d2, ACC1

6-104 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Chapter 6
QuickStart for CodeWarrior

The Library of Macros is very easy to use and test. Altough all macros are written in assembly, they were
developed in such a way that they can be easily integrated in a C program.

The purpose of this chapter is to guide an user on the steps required to add, compile, test, and use the
Library of Macros. The CONV function will be used for demonstration purposes. The example was
developed in CodeWarrior for ColdFire V6.0 using the MCF5282 microprocessor, and the same steps
may be applied to other derivatives and versions.

6.1 Creating a New Project

a) Open CodeWarrior. Usually in “Start Programs Metrowerks CodeWarrior CW for ColdFire
6.0 CodeWarrior IDE.” CodeWarrior main window should appear.

b) From the main menu bar, select File New. The “New” dialog box should appear.

Figure 6-1. “New” Dialog Box

c) Select ColdFire Stationery as the type of project.

d) Select a project name in the “Project name” textbox. I.e. eMAC_CONV_test.

e) Select an appropiate location for your project using the “Location” textbox.

f) Click “OK.” The “New Project” Dialog Box should appear.

 Library of Macros for Optimization, Rev 1.0 6-105

Freescale Semiconductor

g) Select the appropiate stationary. I.e: expand CF_M5282EVB and select “C.”

Figure 6-2. “New Project” Dialog Box

h) Click OK. A new folder will be created for your project and the project window appears, docked
at the left side of the main window.

6.2 Modifying the Settings of your Project

a) Select an appropiate target to debug your code. I.e. “M5282EVB UART Debug.”

b) Open the Settings window of your project by selecting “Menu Edit your_target Settings” or

Alt+F7 or clicking the button. The Settings window should appear.

c) Enable the processor to use MAC or eMAC by selecting clicking on the appropiate checkbox in
the “Language Settins ColdFire Assembler” section. I.e. check the “Processor has EMAC”
checkbox.

6-106 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Figure 6-3. “Settings” Window in “ColdFire Assembler” Selection

d) Change to the “Debugger Remote Debugging” section.

e) A message will appear informing that the project must be rebuilt. Click OK.

f) Select an appropiate Connection for your EVB. I.e. “PEMICRO USB” if you are using the P&E
USB wiggler.

g) Click OK. Your project is now configured to use and debug the Library of Macros.

6.3 Adding the Library of Macros

h) Using windows explorer, copy the unzipped folder “library_macros” into your project. I.e. the
final path for your libraries can be “..\eMAC_CONV_test\Source\library_macros.”

i) Drag-and-drop the copied “library_macros” folder from windows explorer to your CodeWarrior
project window inside the “source folder.” This will add all files and folders from the library of
macros to your current project. You can also add each file and folder by right-clicking in the
project window and selecting “Add files” and “Create Group.”

 Library of Macros for Optimization, Rev 1.0 6-107

Freescale Semiconductor

Figure 6-4. Library of Macros added to Project Explorer

j) Click on the “Make” button in order to compile and link your project.

k) You shouldn’t get any errors. Otherwise verify previous steps.

l) Now you can use any desired macro from the library.

6.4 Using a Macro

a) Include the appropate header into your main.c file

o Using a microprocessor with eMAC:

 #include “emac_macro.h”

o Using a microprocessor with MAC:

 #include “mac_macro.h”

b) Using the prototype declaration described in this document, add the your function call. I.e. using
the CONV macro, described in Section 4.4 CONV the prototype is the following:

void CONV(void *y, void *x, void *h, int xsize, int hsize)

6-108 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

So, the call of your function can be something like:

 CONV(f32_y, f32_x, f32_h, X_SIZE, H_SIZE);

c) Create the arrays for testing purposes. I.e:

#define X_SIZE 20

#define H_SIZE 10

FRAC32 f32_y[X_SIZE+H_SIZE-1];

FRAC32 f32_x[X_SIZE] = {

 D_TO_F32(0), D_TO_F32(0.309016994374947),

 D_TO_F32(0.587785252292473), D_TO_F32(0.809016994374947),

 D_TO_F32(0.951056516295154), D_TO_F32(0.99999),

 D_TO_F32(0.951056516295154), D_TO_F32(0.809016994374947),

 D_TO_F32(0.587785252292473), D_TO_F32(0.309016994374948),

 D_TO_F32(1.22514845490862E-16), D_TO_F32(-0.309016994374948),

 D_TO_F32(-0.587785252292473), D_TO_F32(-0.809016994374947),

 D_TO_F32(-0.951056516295154), D_TO_F32(-1),

 D_TO_F32(-0.951056516295154), D_TO_F32(-0.809016994374948),

 D_TO_F32(-0.587785252292473), D_TO_F32(-0.309016994374948) };

FRAC32 f32_h[H_SIZE] = {

 D_TO_F32(.1), D_TO_F32(.2), D_TO_F32(.3), D_TO_F32(.4),

 D_TO_F32(.5), D_TO_F32(.6), D_TO_F32(.7), D_TO_F32(.8),

 D_TO_F32(.9), D_TO_F32(.99) };

d) Click the Make button. You shouldn’t have any errors. Otherwise, review the errors and fix them.

e) Now you can debug or execute your application. You can also use the serial terminal to display
the results of your function as follows:

for (i=0; i < (X_SIZE+H_SIZE-1); i++){

 printf("Y%d = %d\n\r", i, f32_y[i]);

}

Note that this printf function will send output data in FRAC32 format (multiplied by 231). In order
to get the real value, the result must be divided by 231.

 Library of Macros for Optimization, Rev 1.0 6-109

Freescale Semiconductor

f) For this example, the result will be as follows:

f32_x f32_h f32_y

 frac32 decimal frac32
decima

l frac32 decimal

X0 0 0
H
0

2147483
6 0.01 Y0 0 0

X1
6.64E+0

8
0.30901

7
H
1

4294967
2 0.02 Y1 6636089 0.00309

X2
1.26E+0

9
0.58778

5
H
2

6442450
9 0.03 Y2

2589477
0

0.01205
8

X3
1.74E+0

9
0.80901

7
H
3

8589934
5 0.04 Y3

6252695
9

0.02911
6

X4
2.04E+0

9
0.95105

7
H
4 1.07E+08 0.05 Y4 1.2E+08

0.05568
5

X5
2.15E+0

9 0.99999
H
5 1.29E+08 0.06 Y5 1.98E+08

0.09225
4

X6
2.04E+0

9
0.95105

7
H
6 1.5E+08 0.07 Y6 2.97E+08

0.13833
3

X7
1.74E+0

9
0.80901

7
H
7 1.72E+08 0.08 Y7 4.13E+08

0.19250
2

X8
1.26E+0

9
0.58778

5
H
8 1.93E+08 0.09 Y8 5.42E+08 0.25255

X9
6.64E+0

8
0.30901

7
H
9 2.15E+08 0.1 Y9 6.78E+08

0.31568
7

X10 0 0 Y10 8.14E+08
0.37882

4
X11 -6.6E+08 -0.30902 Y11 8.69E+08 0.40488

X12 -1.3E+09 -0.58779 Y12 8.4E+08
0.39130

3

X13 -1.7E+09 -0.80902 Y13 7.29E+08
0.33942

2

X14 -2E+09 -0.95106 Y14 5.46E+08
0.25431

6

X15 -2.1E+09 -1 Y15 3.1E+08
0.14431

7

X16 -2E+09 -0.95106 Y16
4335878

9
0.02019

1
X17 -1.7E+09 -0.80902 Y17 -2.3E+08 -0.10591
X18 -1.3E+09 -0.58779 Y18 -4.8E+08 -0.22165
X19 -6.6E+08 -0.30902 Y19 -6.8E+08 -0.31569
 Y20 -8.1E+08 -0.37883
 Y21 -8.8E+08 -0.40797
 Y22 -8.7E+08 -0.40336
 Y23 -7.9E+08 -0.36854
 Y24 -6.7E+08 -0.31
 Y25 -5.1E+08 -0.23657
 Y26 -3.4E+08 -0.15852
 Y27 -1.9E+08 -0.08659
 Y28 -6.6E+07 -0.0309

6-110 Library of Macros for Optimization, Rev 1.0

Freescale Semiconductor

Table 6-1. Result of CONV Example

-1.5

-1

-0.5

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

f32_x
f32_h
f32_y

Figure 6-5. Resulting Graph of CONV Example

