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1. Introduction 
The ColdFire DSP Library contains digital signal processing algorithms optimized for the 

ColdFire architecture. These algorithms are implemented directly in assembly for 

computational efficiency and then encapsulated into a simple C interface. In addition, a 

large number of predefined and pretested filter configurations are provided in order to 

reduce the need for a user to design digital filters. 

 

The library is designed to enable embedded sensor applications with basic signal 

processing functionality, but without the need for a DSP co-processor. By taking 

advantage of an on-chip multiply-accumulate unit (MAC), a ColdFire microcontroller 

can efficiently execute DSP algorithms. A typical user may wish to sample an analog 

sensor (such as an accelerometer) with an analog-to-digital converter (ADC) at a 

particular rate, filter out unwanted signal components (such as high-frequency noise or 

other interfering signals), and then use the result in the target application for monitoring, 

status, data-logging, or control capabilities. The ColdFire DSP Library greatly simplifies 

the digital filtering part of the process. 

2.  Acronyms 
• DSP – digital signal processing 

• MCU – microcontroller unit 

• MAC – multiply-accumulate 

• EMAC – extended multiply-accumulate 

• ADC – analog-to-digital converter 

• DAC – digital-to-analog converter 

• IIR – infinite impulse response 

• FIR – finite impulse response 

• SRC – sample rate converter 

3. Background DSP Theory 
A brief discussion of basic DSP theory will help clarify the features and appropriate 

applications of the library. Sample rate is a key component to understanding digital 

frequency and aliasing, and its importance cannot be understated. 

3.1. Typical DSP Chain 
A typical DSP chain in a sensor system consists of an analog lowpass (anti-aliasing) filter 

at the front-end, an ADC, one or more digital filters, a DAC, and finally another analog 

lowpass filter at the back-end. The front-end analog lowpass filter attenuates frequencies 

above Nyquist before sampling, limiting aliasing effects. The ADC samples and 

quantizes the signal, the output of which can then be processed by the digital filters. If 

necessary, a DAC converts the resulting digital signal to an analog signal. Finally, an 

analog lowpass filter smoothes the output analog signal. 
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Figure 3-1: Typical DSP Chain 

 
 

3.2. Frequency Response 
The frequency response of a system describes how that system will respond to the 

frequency content of the input signal. Given an input signal comprised of one or more 

frequency components, the response shows how the system modifies each component 

independently. Frequency is plotted on the x-axis and magnitude on the y-axis, both on 

logarithmic scales. Because the y-axis units are typically dB, a value of zero indicates the 

system allows a signal to pass through without any change in magnitude. Negative 

numbers on the y-axis indicate attenuation or a reduced output signal, while positive 

numbers indicate amplification. A value of -40 dB corresponds to 100x reduction in 

amplitude, while +60 dB corresponds to 1000x amplification. 

 

Examining the figure below, the magnitude of the response decreases as frequency 

increases, demonstrating a lowpass filter. Signals with frequencies between DC and 

approximately 100 Hz will be modified with a gain of approximately 1.  Signal 

components at a frequency of 10 kHz will be attenuated either by a factor of 0.01 (red 

response) or 0.0001 (blue response).  The blue line corresponds to a Butterworth filter, 

while the red line is a Chebyshev filter. Both are lowpass filters, but they behave 

somewhat differently. The Chebyshev filter falls off (decreases in magnitude) faster than 

the Butterworth, but comes back up at higher frequencies. 
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Figure 3-2: Lowpass Filter Frequency Response 

 
 

The next figure illustrates the frequency response of a highpass filter. The behavior is 

opposite to before, attenuating low frequencies and passing high frequencies. Again, the 

blue and red lines correspond to Butterworth and Chebyshev filters respectively. 

 
Figure 3-3: Highpass Filter Frequency Response 

 
In either case, the range of unattenuated frequencies is called the passband, and the range 

of attenuated frequencies is called the stopband. By definition, the cutoff frequency 

separates the two, at -3 dB. 
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3.3. Sample Rate and Aliasing 
The process of sampling an analog signal limits the range of frequencies resolvable in the 

digital domain. This limit is known as the Nyquist frequency and equals half the 

sampling frequency.  If the original analog signal contains any components above the 

Nyquist frequency, they will be aliased after sampling. Aliasing causes high frequency 

signals to appear as low frequency signals, an effect that cannot be undone. It is 

impossible to determine which components of a sampled signal were present in the 

original analog signal below Nyquist and which were folded into the resolvable 

frequency range as a result of aliasing. 

 

The following picture illustrates the effect of aliasing. The original analog signal contains 

sinusoidal components at 2 Hz and 100 Hz, therefore sampling at any frequency less than 

200 Hz causes aliasing. For example, if the signal is sampled at 110 Hz, the 100 Hz 

component will alias to 10 Hz.  Likewise, if the signal is sampled at 105 Hz, the 100 Hz 

component will alias to 5 Hz. In both cases, the 2 Hz component is unaffected.  

 
Figure 3-4: Aliasing 
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The exact nature of how signals are aliased is beyond the scope of this paper, but it is 

sufficient in many applications to simply understand which signals will alias, i.e., 

anything above the Nyquist frequency. 

 

Two solutions exist to the aliasing problem: sample at least twice as fast as the highest 

possible frequency, or attenuate signals above the Nyquist frequency before sampling. 

The first solution is computationally expensive and often unnecessary overkill, so the 
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second solution is usually preferred. An analog anti-aliasing filter reduces or removes 

signals above the Nyquist frequency before sampling. It is important to note that this 

must occur in the analog domain before sampling. Going back to the above example, this 

would mean filtering out the 100 Hz component from the analog signal before sampling 

at anything less than 200 Hz. 

 
Figure 3-5: Anti-aliasing Filter 

 
 

3.4. Digital Frequency 
Digital signals have no concept of time – they are just a sequence of numbers. Likewise, 

digital systems, such as the filters in the ColdFire DSP Library, process this sequence of 

numbers (samples). Time and frequency are relative to the sampling rate, governed by the 

following important relationship:  

 
Equation 3-6: Relationship between Analog and Digital Frequency 
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In other words, digital frequency is normalized by the Nyquist frequency and ranges from 

zero to one
1
. 

3.5. Analog vs. Digital Filters 
An analog filter is realized by discrete circuit components such as amplifiers, resistors, 

inductors and capacitors. Its frequency response is a function of these component values. 

Tuning or adjusting an analog filter response requires replacing circuit components. In 

                                                 
1
 Some references may use digital frequencies that range from zero to π or 0.5, the upper limit 

corresponding to the Nyquist frequency in both cases. 
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addition, parameter variations, temperature and other possibly time-varying sources can 

significantly affect the frequency response of the analog filter. 

 

A digital filter, on the other hand, is realized by data registers and an ALU. Tuning or 

adjusting the filter is as simple as modifying register values. Frequency response is a 

function of coefficient quantization and does not vary with time. 

 

A significant advantage to digital filters is a consequence of normalized digital 

frequency: the same filter can be used in very different applications because frequency is 

relative. For example, consider sampling an analog signal at several different rates and 

then processing with the same digital lowpass filter, defined by the filter cutoff at 0.2 

(digital frequency). Depending on the sample rate, the signal may fall in the passband or 

the stopband of the filter. 

 
Table 3-1: Effects of Lowpass Digital Filter 

Analog 

Frequency 

Sample 

Rate 

Digital 

Frequency 

Filter 

Cutoff 

Filter Effect 

200 Hz 500 Hz 200/(500/2)=0.8 0.2 signal above cutoff, attenuated 

200 Hz 1 kHz 200/(1000/2)=0.4 0.2 signal above cutoff, attenuated 

200 Hz 4 kHz 200/(4000/2)=0.1 0.2 signal below cutoff, passed 

through 

 

3.6. IIR vs. FIR Filters 
The current ColdFire DSP Library contains only IIR filters because of their significant 

computational advantage over FIR filters. The major difference between FIR and IIR 

filters is that the latter includes feedback terms. 

 
Equation 3-1: IIR vs. FIR Filter Equations 
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The presence of feedback terms enables an IIR filter to achieve higher frequency 

isolation with fewer operations and fewer coefficients (lower order N) than an FIR filter. 

In general, IIR filters provide a higher rate of attenuation/unit frequency than FIR filters, 

but at the cost of potential instability or high sensitivity of filter response to small 

changes in filter coefficients.  In the ColdFire DSP Library, this stability or sensitivity 

issue has been eliminated by our pre-testing of every filter, running on ColdFire hardware 

(not simulators). 

4. Software Architecture 
The core component of the ColdFire DSP Library is a group of DSP algorithms 

implemented in assembly for optimal computational performance. In order to make these 
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assembly functions more user-friendly, custom data structures and initialization functions 

are included. As a result, the assembly functions are C-callable with a minimum number 

of arguments. The user must only initialize a data structure through the use of its 

associated initialization routine, requiring no intimate knowledge of the data structure 

implementation or the assembly code. With the assembly algorithms implemented as 

functions rather than macros, the instruction code is not replicated in memory even if 

called multiple times. 

4.1. Supported Platforms 
ColdFire ISA_A platforms with an on-board MAC are supported. The library was 

developed and tested using M52221DEMO hardware evaluation board and Freescale 

CodeWarrior 6.4 Integrated Development Environment (IDE). EMAC platforms are 

supported as long as the assembler consistently uses the same accumulator (typically 

ACC0). This was tested with CodeWarrior 6.4 on MCF5227x. 

4.2. Data Types 
The ColdFire DSP Library implements a 16-bit datapath, since most ADCs utilized in 

sensor applications quantize analog data to 12 bits or less. In addition, the ColdFire MAC 

is optimized for 16-bit multiply-accumulate operations. Longer or shorter word lengths 

may be used, but must first be cast to a signed 16-bit integer.  

 

It is important to remember that signed 16-bit integers use twos-complement format. Any 

other data types, including floating-point or unsigned integers, are not compatible with 

the library. Since sensors and ADCs often operate only on positive voltages, producing 

an unsigned integer result, it may be required to add an offset to convert to signed twos-

complement format. 

 

The DSP algorithms included in this library are linear systems, meaning that 

superposition and scaling properties apply. The latter property, scaling, allows any fixed-

point scale factor to propagate through the system. That is, if an input is scaled by a 

certain constant value, the output will also be scaled by that value. The system requires 

no knowledge of the scaling constant. 

4.3. Data Structures 
In order to make DSP functions configurable across a variety of applications, they require 

the ability to parse multiple parameters. For example, an IIR filter algorithm evaluates an 

equation whose form does not change for different types of filters such as lowpass or 

highpass or even different frequency cutoffs, as long as the order does not change. The 

filter coefficients govern this behavior and are therefore supplied to the IIR function as 

parameters, enabling the same instruction code to execute multiple filters with different 

frequency responses. Note, however, that different order IIR filters are implemented 

separately, so a 3
rd

 order IIR filter does not use the same assembly code as a 4
th

 order IIR 

filter. 
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Each assembly routine uses its own custom data structure in order to maximize data 

memory efficiency. It parses the data structure elements internally since it is aware of 

element sizes, offsets, and relative order. An important consequence of this assembly-

level parsing is that data structure definitions cannot be modified in any way, including 

element order and size. 

 

In general, DSP algorithms utilize state, which means that data structures must be 

maintained outside the scope of the assembly functions. For example, a 3
rd

 order IIR filter 

uses three previous input and output values to compute the next output. Consequently, the 

data structure associated with a 3
rd

 order IIR filter includes an input/output buffer to save 

these previous values for the subsequent assembly function call. 

 

Although every data structure is different, two common elements exist – input address 

and output value. The input address points to the location of the input data sample, while 

the output value contains the actual output data. The use of a pointer for the input allows 

various DSP functions to be chained together in numerous series or parallel 

configurations. As a result, the output of a 3
rd

 order IIR filter can be cascaded to the input 

of a 4
th

 order IIR filter or even another instance of a 3
rd

 order IIR filter. 

4.4. Initialization 
The most visible component of the library is the set of data structure initialization 

functions. These functions allow a user to configure DSP algorithms by setting options 

such as filter coefficients and fixed-point scale factors. In addition, they load the input 

pointer entry and clear any buffer entries. Because every data structure is implemented 

differently, each has a separate initialization function that performs specific operations. 

Note that initialization should occur only once for each instance of a data structure, prior 

to executing the assembly algorithm. 

4.5. Algorithm Execution 
The actual DSP algorithms are implemented in optimized assembly, but have a simple C-

callable interface. They accept just a single argument, a pointer to the appropriate type of 

data structure, and return void. Algorithms preserve core register state (D0-D7/A0-A7) 

but do not preserve MAC state (ACCx/MACSR). In general, one call to a DSP algorithm 

produces one new output value. While the initialization routine executes once, the 

assembly function usually executes in a loop. It parses the elements in the data structure 

as necessary, evaluates the algorithm, and then places the result back into the data 

structure. 

4.6. Putting It All Together 
A typical real-time sensor application will first initialize a data structure, enable a timer-

based interrupt handler, and fall into an infinite-wait loop or background process. The 

DSP work then occurs in the timer-based interrupt handler – periodically sampling an 

ADC and calling the assembly function. The rate of the interrupt defines the sample rate 

and therefore Nyquist frequency. 
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5. Directory Structure 
The files included in the library are organized as follows: 

 
Table 5-1: Directory Structure 

Directory Filename Description 

dsp_library.h top-level header file 

dsp_library_defines.h pre-processor defines 

dsp_library_structures.h data structure definitions 

dsp_library_init.h initialization function prototypes 

dsp_library_asm_macros.h assembly-level macros 

dsp_library_asm_functions.h assembly function prototypes 

headers 

dsp_library_c_functions.h miscellaneous C function prototypes 

iir_filters.h external declarations for IIR filter 

configuration parameters 

filters 

iir_filters.c definitions of IIR filter configuration 

parameters 

dsp_library_init.c initialization functions 

dsp_library_c_functions.c miscellaneous C functions 

iir2_asm.s 2
nd

 order IIR filter assembly code 

iir3_asm.s 3
rd

 order IIR filter assembly code 

iir4_asm.s 4
th

 order IIR filter assembly code 

iir5_asm.s 5
th

 order IIR filter assembly code 

functions 

iir6_asm.s 6
th

 order IIR filter assembly code 

 

6. DSP Routines 
The following sections describe the DSP algorithms included in the library, their 

associated data structures, and function calls. 

6.1. IIR Filters: 2nd-6th Orders 
Separate assembly routines exist for each order of IIR filter between two and six 

inclusive. Consequently, separate data structures and initialization routines exist as well, 

although the general form of each is essentially the same. Each IIR filter order evaluates 

the following equation where N is the order. 

 
Equation 6-1: N

th
 Order IIR Filter 
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Table 6-1: Nth Order IIR Data Structure 

Name Type Offset Description, N={2,3,4,5,6} 

output int16 0 Filter output data 

diff_sf uint8 2 Difference between numerator and denominator 

coefficient scale factors 
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Name Type Offset Description, N={2,3,4,5,6} 

ABsfdiff −=_  

den_sf uint8 3 Denominator coefficient scale factor 

Asfden =_  

input int16 * 4 Pointer to filter input data 

flags uint32 8 Not used 

coef int32 * 12 Pointer to coefficient array 

{ }010 ,,,,...,)]1(2[* aaabbNcoef NN=+  

order uint32 16 Filter order, N 

buffer[2N] int16 20 Buffer to hold previous input and output values 

{ }NnNnnnnn yxyxyxNbuffer
−−−−−−

= ,,...,,,,]2[ 2211  

 

There exist two types of routines that accept an IIR data structure argument, one to 

initialize the data structure and another to evaluate the IIR filter equation in assembly. 

Although these functions are implemented separately for each order, the prototypes all 

use the same format. 

 
Table 6-2: N

th
 Order IIR Function Calls 

Purpose Prototype, N={2,3,4,5,6} 

Data Structure Initialization void iirN_init(IIRN_STRUCT *x, int16 *input, int16 

*coef, uint8 num_sf, uint8 den_sf, uint8 order) 

Assembly Algorithm void iirN_asm(IIRN_STRUCT *x) 

 

The following table delineates IIR order-specific names for data structures, initialization 

functions, and assembly routines. 

 
Table 6-3: IIR Order-Specific Structures and Functions 

Order Data Structure Initialization Assembly Algorithm 

2 IIR2_STRUCT iir2_init iir2_asm 

3 IIR3_STRUCT iir3_init iir3_asm 

4 IIR4_STRUCT iir4_init iir4_asm 

5 IIR5_STRUCT iir5_init iir5_asm 

6 IIR6_STRUCT iir6_init iir6_asm 

7. IIR Filter Configurations 
The ColdFire DSP Library includes a large set of IIR filter configurations that span a 

wide range of applications.  These predefined configurations allow a user to quickly 

select a specific frequency response by making three simple decisions. 

 
Table 7-1: IIR Filter Decisions 

Parameter Options Implications 

Shape lowpass, highpass, 

bandpass, notch 

Shape of frequency response, i.e., are high 

frequencies passed through or attenuated  

Order 2,3,4,5,6 Rolloff steepness. Higher orders roll off faster 
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Parameter Options Implications 

but require more MCU bandwidth 

Cutoff varies by order, most 

cover 0.20-0.80 range 

in 0.05 increments 

Digital cutoff frequency (-3dB). Related to 

analog frequency by sample rate, 
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The following table identifies all filter configurations included in the library. Each 

combination of filter shape, order and cutoff constitutes a single filter configuration. Each 

configuration comes with four parameters – filter coefficients array, numerator scale 

factor, denominator scale factor, and filter order. The configurations below are all 

characterized as Butterworth IIR filters. 

 
Table 7-2: IIR Filter Configurations 

Shape Order Minimum Cutoff Cutoff Increment Maximum Cutoff 

2 0.20 0.05 0.85 

3 0.20 0.05 0.85 

4 0.25 0.05 0.80 

5 0.25 0.05 0.80 

lowpass 

6 0.25 0.05 0.75 

2 0.20 0.05 0.80 

3 0.20 0.05 0.80 

4 0.25 0.05 0.75 

5 0.25 0.05 0.75 

highpass 

6 0.25 0.05 0.75 

bandpass 4 0.20 0.05 0.80 

notch 4 0.20 0.05 0.80 

 

A straightforward naming convention identifies the order, shape, and frequency cutoff of 

each filter: butter[ORDER]_[SHAPE]_[CUTOFF(S)]. Rather than listing the name of 

every filter parameter included in the library, the following table demonstrates several 

examples. For each of four parameters that constitute a single filter configuration, the 

base name is appended by the parameter name. 

 
Table 7-3: Naming Convention Examples 

Parameter Name Description 

butter2_lp_0_20_coef array of coefficients for a 2
nd

 order Butterworth lowpass 

filter, digital cutoff frequency is 0.20 

butter3_hp_0_75_num_sf numerator coefficients scale factor for a 3rd order 

Butterworth highpass filter, digital cutoff frequency is 

0.75 

butter4_bp_0_20_0_25_den_sf denominator coefficients scale factor for a 4
th

 order 

Butterworth bandpass filter, digital cutoff frequencies 

are 0.20 and 0.25 
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Parameter Name Description 

butter4_nt_0_30_0_35_order order of a 4
th

 order Butterworth notch filter, digital 

cutoff frequencies are 0.30 and 0.35 

 

Accumulator saturation can cause the filter response to become nonlinear, therefore input 

magnitudes of 12 bits or less are recommended for 4-6
th

 order filters and 13 bits or less 

for 2-3
rd

 order filters. This is not a strict requirement since occasional spikes in the input 

data will be tolerated. A large persistent input (i.e. a step with 15 bits of magnitude), on 

the other hand, will see a large steady-state error in the output. 

8. Hardware Validation 
All filter definitions have been tested in hardware for the recommended input ranges. 

They have been validated against a floating-point model to have minimal fixed-point 

errors, in both the RMS and absolute maximum measures. Filter definitions that are 

highly susceptible to fixed-point errors are intentionally excluded from the library. 

Hence, very low or very high digital frequency cutoffs, especially for higher order filters, 

are excluded. 

9. Performance and Memory 
The following table outlines the execution latencies and memory footprints for each 

assembly-level algorithm included in the library. Execution time is measured at the 

parent function level, including latencies required to jump into and out of the subroutine 

as well as overhead from saving and restoring processor state. The instruction code is 

instantiated in SRAM for minimal memory latency. Performance was measured with a 

M52221DEMO board. Note that execution times may vary on an EMAC platform. 

 
Table 9-1: Algorithm Performance and Memory 

Assembly 

Algorithm 

Execution Time 

(cycles) 

Assembly Code Size 

(Bytes) 

Data Structure Size 

(Bytes) 

iir2_asm 126 142 28 

iir3_asm 135 154 32 

iir4_asm 139 164 36 

iir5_asm 148 174 40 

iir6_asm 149 176 44 
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