

Document Number: BSCONPPRM
Rev. 1.2
09/2011

BeeStack Consumer Private
Profile

Reference Manual

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights
of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase
or use Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008, 2009, 2010, 2011. All rights reserved.

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor i

Contents
About This Book. iii
Audience . iii
Organization . iii
Revision History . iii
Conventions . iii
Definitions, Acronyms, and Abbreviations . iv

Chapter 1
Private Profile Overview

1.1 Private Profile Introduction . 1-1
1.2 Private Profile Libraries . 1-2

Chapter 2
Private Profile Software Usage

2.1 Private Profile Service Specifications. 2-1
2.1.1 FSLProfile_GetSupportedFeatures . 2-3
2.1.2 Get Supported Features Confirm . 2-4
2.1.3 FSLProfile_InitRmtPairOrigProcedure . 2-6
2.1.4 FSLProfile_InitRmtPairRecipProcedure . 2-7
2.1.5 FSLProfile_RmtPairRequest . 2-8
2.1.6 Remote Pair Confirm . 2-11
2.1.7 Remote Pair Indication . 2-12
2.1.8 FSLProfile_RmtPairResponse . 2-13
2.1.9 Remote Pair Response Confirm . 2-14
2.1.10 FSLProfile_InitFragTxOrigProcedure . 2-15
2.1.11 FSLProfile_InitFragTxRecipProcedure . 2-16
2.1.12 FSLProfile_SetFragTxRxBufferStateRequest . 2-17
2.1.13 FSLProfile_GetFragTxRxBufferStateRequest . 2-19
2.1.14 FSLProfile_FragTxRequest . 2-19
2.1.15 Fragmented Transmission Confirm . 2-21
2.1.16 Fragmented Transmission Start Indication . 2-22
2.1.17 Fragmented Transmission Indication . 2-23
2.1.18 FSLProfile_InitPollOrigProcedure . 2-24
2.1.19 FSLProfile_InitPollRecipProcedure . 2-25
2.1.20 FSLProfile_PollConfigRequest . 2-26
2.1.21 FSLProfile_PollRequest . 2-27
2.1.22 Poll Confirm . 2-29
2.1.23 Poll Indication. 2-30
2.1.24 FSLProfile_PollDataAvailable . 2-31
2.1.25 Poll Event . 2-32
2.1.26 FSLProfile_InitMenuBrowserProcedure . 2-33
2.1.27 FSLProfile_InitMenuOwnerLightProcedure . 2-34
2.1.28 FSLProfile_InitMenuDisplayerProcedure . 2-35

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

ii Freescale Semiconductor

2.1.29 FSLProfile_BrowseMenuRequest . 2-36
2.1.30 Menu Browse Confirm . 2-37
2.1.31 Menu Browse Complete Indication . 2-38
2.1.32 Display Menu Header Indication . 2-39
2.1.33 Display Menu Entry Indication. 2-40
2.1.34 Display Menu Complete Indication . 2-41
2.1.35 Display Menu Message Indication . 2-42
2.1.36 Display Menu Exit Indication. 2-43
2.1.37 FSLProfile_DisplayMenuHeaderRequest . 2-44
2.1.38 FSLProfile_DisplayMenuEntryRequest . 2-46
2.1.39 FSLProfile_DisplayMenuMessageRequest . 2-47
2.1.40 FSLProfile_DisplayMenuExitRequest . 2-49
2.1.41 Display Menu Confirm . 2-50
2.1.42 Menu Browse Indication. 2-51
2.1.43 FSLProfile_DisplayCompleteIndToBrowserRequest . 2-52
2.1.44 FSLProfile_InitOtapServerProcedure. 2-53
2.1.45 FSLProfile_InitOtapClientProcedure . 2-54
2.1.46 OTAP Server Query Next Image Indication. 2-54
2.1.47 OTAP Server Query Next Block Request Indication . 2-55
2.1.48 OTAP Server Upgrade End Request Indication . 2-56
2.1.49 FSLProfile_OtapServerSend . 2-57
2.1.50 OTAP Server Confirm . 2-61
2.1.51 OTAP Client Image Notify Indication . 2-62
2.1.52 FSLProfile_OtapQueryNextImageRequest . 2-63
2.1.53 Over the Air Programming (OTAP) Client Query Next Image Confirm 2-65

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor iii

About This Book
This reference manual describes the Freescale BeeStack Consumer Private Profile layer (Private Profile)
which allows users to simplify the development of ZigBee BeeStack Consumer applications.

The Private Profile resides on top of the BeeStack Consumer layer and implements functionality designed
to automate specific tasks.

Audience
This reference manual is intended for application designers and users of the Freescale BeeStack Consumer
protocol stack.

Organization
This document contains the following chapters:
Chapter 1 Private Profile Overview - Provides an introduction to the Private Profile.
Chapter 2 Private Profile Software Usage - Provides a description of the Private Profile

interfaces.

Revision History
The following table summarizes revisions to this manual since the previous release (Rev. 1.1).

Conventions
This document uses the following notational conventions:

• Courier monospaced type is used to identify commands, explicit command parameters, code
examples, expressions, data types, and directives.

• Italic type is used for emphasis, to identify new terms, and for replaceable command parameters.

Revision History

Doc. Version Date / Author Description / Location of Changes

1.2 Sept. 2011, Dev Team Updates for OTAP.

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

iv Freescale Semiconductor

Definitions, Acronyms, and Abbreviations
The following list defines the abbreviations used in this document.
API Application Programming Interface
PAN Personal Area Network
NWK Network Layer
NLDE Network Layer Data Entity
NLME Network Layer Management Entity
SAP Service Access Point
OTAP Over The Air Programming
Polling list Map (8 bit array) in which each bit corresponds to a location in the Pair Table.

When a bit in the array is set, a poll request will be sent to device represented by
this bit in the Pair Table.

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 1-1

Chapter 1
Private Profile Overview
This chapter provides a brief overview of the Private Profile Layer.

1.1 Private Profile Introduction
To aid in the development of applications based on the BeeStack Consumer protocol stack, Freescale has
created a Private Profile which implements functionality useful for automating specific tasks. The Private
Profile resides in the protocol stack between the BeeStack Consumer layer and the application layer. The
application can still access the network layer directly.

The Private Profile implements the following functions:
• Fragmented transmission — Allows the application to easily transmit more data than can fit in the

payload of a NLDE data request. The profile fragments the data into pieces small enough for NLDE
data request and transmits them one by one to the recipient. The fragmented transmission
functionality on the recipient reassembles the data and presents it to the application as a whole.

• Remote pairing — Allows the application to request that a pairing link be created between two
nodes in its pair table (e.g. a remote can request that a Video Player and a TV, both already paired
with the remote, pair with each other).

• Polling — Allows the application to periodically poll specific devices from its pair table for any
data they might have to send back.

• Over the air menus — Provides the application with the ability to send menu content information
to a remote device. The remote device can navigate (browse) and/or display the menu information
for the device sending menu information. Intended to provide remote user interface capabilities to
remote devices.

• Over the air programming : provides the application with the ability to upgrade its program image
over the air. A device that stores updated images, called the server, is able to serve these images to
clients that wish to update their image.

The following figure shows the software architecture of an application using the Private Profile.

Private Profile Overview

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

1-2 Freescale Semiconductor

Figure 1-1. Figure 1-1 Private Profile Application Structure

1.2 Private Profile Libraries
This section describes the suite of Private Profile libraries and the functionality they implement. To use the
Private Profile, the application must link to the profile framework library and the libraries implementing
the desired functions.

Table 1-1. Private Profile Libraries

Library Description

RF4CE_FSLProfile_Framework Contains the framework to support all the Private Profile functionality.
Must be included in any project using the Private Profile. The
functionality it provides is always active and doesn’t need to be
initialized.

RF4CE_FSLProfile_RmtPairOrig Contains the remote pair originator functionality (the ability to initiate
remote pairing of two other nodes)

RF4CE_FSLProfile_RmtPairRecip Contains the remote pair recipient functionality (the ability to allow the
current node to be paired remotely)

RF4CE_FSLProfile_FragTxOrig Contains the fragmented transmission originator functionality (the
ability to transmit fragmented data)

RF4CE_FSLProfile_FragTxRecip Contains the fragmented transmission recipient functionality (the ability
to receive fragmented data)

RF4CE_FSLProfile_PollOrig Contains the poll originator functionality (the ability to poll other devices)

RF4CE_FSLProfile_PollRecip Contains the poll recipient functionality (the ability to respond to poll
requests from other devices)

RF4CE_FSLProfile_MenuBrowser Contains the over the air menu browser functionality

RF4CE_FSLProfile_MenuOwner Contains the over the air menu owner functionality

RF4CE_FSLProfile_MenuDisplayer Contains the over the air menu displayer functionality

RF4CE_FSLProfile_MenuOwnerLight Contains a lightweight version of the over the air menu owner
functionality (intended to be used in conjunction with the BeeStack
Consumer BlackBox application)

Private Profile Overview

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 1-3

RF4CE_FSLProfile_OtapServer Contains the over the air programming server functionality

RF4CE_FSLProfile_OtapClient Contains the over the air programming client functionality

Table 1-1. Private Profile Libraries (continued)

Library Description

Private Profile Overview

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

1-4 Freescale Semiconductor

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-1

Chapter 2
Private Profile Software Usage
The Private Profile performs the following functions:

• Remote device pairing
• Fragmented transmission
• Device polling
• Over the air menus
• Over the air programming

2.1 Private Profile Service Specifications
The Private Profile relies completely on the underlying network layer to perform its tasks. The profile
layers of different nodes communicate with each other through the NLDE. Data is sent by issuing the
NLDE_DataRequest primitive with vendor specific data (utilizing Freescale’s vendor Id and profile Id.
Communication is encrypted if the pairing link between the nodes is secured. The NLDE SAP must be
configured to redirect messages intended for the profile layer to the profile SAP, so that these don’t
erroneously reach the application. Refer to the BeeStack Consumer Private Profile User's Guide for a
description on how this is accomplished.

NOTE
The BeeStack Consumer network layer handles one request at a time,
whether it comes directly from the application or from the profile. Take care
to ensure that the application and the profile never make a simultaneous
request to the network layer.

The Private Profile system is shown in Figure 2-1.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-2 Freescale Semiconductor

Figure 2-1. Private Profile Layer Components and Interfaces

The Private Profile provides four services accessed through the profile layer API and listed in Table 2-1.
These services have the following characteristics:

• Profile API function calls configure or start the services
• The execution status is communicated to the application using confirmation messages
• When information arrives over the network the profile layer informs the application layer using

indication messages
• Responses allow the application to react the information arrived over the network

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-3

The Private Profile layer SAP provides the interface for confirmation and indication messages.

The Private Profile layer reuses the error codes from the network layer. For a detailed list of all the error
codes check the BeeStack Consumer Reference Manual. The description of each function call/message
also includes a list of the error codes it can return and their significance.

2.1.1 FSLProfile_GetSupportedFeatures
FSLProfile_GetSupportedFeatures instructs the profile layer to interrogate another device about the FSL
Private Profile features it supports. This function is included in the main framework library,
RF4CE_FSLProfile_Framework.

2.1.1.1 Prototype
FSLProfile_GetSupportedFeatures has the following prototype:

uint8_t FSLProfile_GetSupportedFeatures(
uint8_t deviceId,
bool_t bUseSecurity

);

The following table specifies the parameters for FSLProfile_GetSupportedFeatures.

Table 2-1. Private Profile Services List

Freescale Profile Service Initialization Request Confirm Indication Response

Remote Pairing Section 2.1.3
Section 2.1.4

Section 2.1.5 Section 2.1.6
Section 2.1.9

Section 2.1.7 Section 2.1.9

Fragmented Transmission Section 2.1.10
Section 2.1.11

Section 2.1.12
Section 2.1.13
Section 2.1.14

Section 2.1.15 Section 2.1.16
Section 2.1.17

Polling Section 2.1.18
Section 2.1.19

Section 2.1.20
Section 2.1.21
Section 2.1.24

Section 2.1.22 Section 2.1.23
Section 2.1.25

Over The Air Menus Section 2.1.26
Section 2.1.27
Section 2.1.28

Section 2.1.29
Section 2.1.37
Section 2.1.38
Section 2.1.39
Section 2.1.40

Section 2.1.30
Section 2.1.41

Section 2.1.31
Section 2.1.32
Section 2.1.33
Section 2.1.34
Section 2.1.35
Section 2.1.42

Section 2.1.43

Over The Air Programming Section 2.1.44
Section 2.1.45

Section 2.1.49
Section 2.1.52

Section 2.1.50
Section 2.1.53

Section 2.1.46
Section 2.1.47
Section 2.1.48
Section 2.1.51

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-4 Freescale Semiconductor

The possible return values for the FSLProfile_GetSupportedFeatures API Call Return Values API call are
shown in the following table.

2.1.1.2 Functionality
FSLProfile_GetSupportedFeatures is used to find out what functionality of the Private Profile is supported
by another node.

NOTE
No Freescale Profile process performs any feature interrogation on its own,
e.g when initiating a fragmented transmission the originator node does not
ask the recipient whether it supports fragmented reception. To ensure that
the recipient node(s) support(s) the desired features the application must
request the interrogation itself.

2.1.1.3 Effect on Receipt
On receipt of FSLProfile_RmtPairRequest, the profile layer first verifies if all the conditions to begin an
interrogation process are met.

If the profile layer is busy with another request the function exits with gNWDenied_c. Otherwise the
function returns gNWSuccess_c and the interrogation process begins. The receiver is enabled indefinitely
and the value of the receiver’s initial active period is stored in an internal variable. The profile layer will
transmit the interrogation command to the target node and wait for the response. The target node will
respond automatically if it has the Private Profile. When the interrogation process is complete the
application will be notified via a Get Supported Features Confirm message.

2.1.2 Get Supported Features Confirm
The Get Supported Features Confirm message informs the application that the target interrogation process
previously started by calling FSLProfile_GetSupportedFeatures has been completed.

Table 2-2. FSLProfile_GetSupportedFeatures Parameters

Name Type Valid Range Description

deviceId uint8_t 0 –
(gMaxPairTableEntries_c - 1)

Pair table entry index of the node to be interrogated

bUseSecurity bool_t {FALSE;TRUE} Whether to send the interrogation command encrypted or not.
Only applicable for a secured pairing link.

Table 2-3. FSLProfile_GetSupportedFeatures API Call Return Values

Type Possible Values Description

uint8_t gNWDenied_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.1.3, “Effect on Receipt”.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-5

2.1.2.1 Message Structure
The Get Supported Features Confirm message has the following structure:

typedef struct fslProfileGetSupportedFeaturesCnf_tag
{
 uint8_t status;
 uint8_t deviceId;
 uint8_t supportedFeaturesMap[4];
}fslProfileGetSupportedFeaturesCnf_t;

The following table specifies the fields available in the Get Supported Features Confirm message.

2.1.2.2 When Generated
The Get Supported Features is generated by the profile layer when a previously started interrogation
process has ended.

The interrogation process can end under the following circumstances:
• An interrogation command could not be transmitted over the air – the status field will contain the

network layer error code.
• An interrogation response has not been received in a timely fashion – status will be

gNWNoResponse_c.
• The interrogation process was completed successfully – status will be gNWSuccess_c.

2.1.2.3 Effect on Receipt
On receipt of the Get Supported Features message, the application layer is notified about the completion
of the interrogation process. If the reported status is gNWSuccess_c the supportedMap field will contain
the list of features supported by the interrogated node. The supported features map is a bit map with each
set bit indicated a supported and initialized feature and each cleared bit indicating a not supported feature.
Bit numbering starts with the right-most, least significant bit (which is bit 0). The following table shows
the correspondence between the bits and the supported features:

Table 2-4. Get Supported Features Confirm Message Structure

Field Type Possible Values Description

status uint8_t gNWNoResponse_c
gNWSuccess_c
or the network layer error code

Indicates either the successful completion of the
interrogation process or identifies the error that has
occured.

deviceId uint8_t 0 – (gMaxPairTableEntries_c – 1) or 0xFF The interrogated node’s device ID

Supported
Features

Map

uint8_t[4] - The list of features supported by the interrogated
node; should be ignored if status is not
gNWSuccess_c

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-6 Freescale Semiconductor

2.1.3 FSLProfile_InitRmtPairOrigProcedure
FSLProfile_InitRmtPairOrigProcedure initializes the remote pair originator functionality in the profile
layer. To use this function, the application must link to the RF4CE_FSLProfile_RmtPairOrig library.

2.1.3.1 Prototype
FSLProfile_InitRmtPairOrigProcedure has the following prototype:

uint8_t FSLProfile_InitRmtPairOrigProcedure(void);

FSLProfile_InitRmtPairOrigProcedure has no parameters.

The possible return values for the FSLProfile_InitRmtPairOrigProcedure API call are shown in the
following table.

Table 2-5. Bit index - Supported Features Correspondence

Bit Index Feature

0 Fragmented transmission

1 Fragmented reception

2 Poll originator

3 Poll recipient

4 Remote pair originator

5 Remote pair recipient

6 OTA menu browser

7 OTA menu owner

8 OTA menu displayer

9 OTAP server

10 OTAP client

11 – 31 Reserved

Table 2-6. FSLProfile_InitRmtPairOrigProcedure API Call Return Values

Type Possible Values Description

uint8_t gNWNoTimers_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.3.3, “Effect on Receipt”.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-7

2.1.3.2 Functionality
FSLProfile_InitRmtPairOrigProcedure is used to enable the remote pair originator functionality in the
profile layer, so that the application can initiate remote pairing.

2.1.3.3 Effect on Receipt
On receipt of the FSLProfile_InitRmtPairOrigProcedure function call the profile layer configures itself to
be able to handle the remote pair originator procedure (pairing two devices from the pair table). It also tries
to allocate the timers needed by the profile layer (if not already allocated). If no timers can be allocated
the function call returns gNWNoTimers_c and no additional configuration is done. Otherwise the function
call returns gNWSuccess_c and the remote pair originator functionality is now ready to be used.

2.1.4 FSLProfile_InitRmtPairRecipProcedure
FSLProfile_InitRmtPairRecipProcedure initializes the remote pair recipient functionality in the profile
layer. To use this function, the application must link to the RF4CE_FSLProfile_RmtPairRecip library.

2.1.4.1 Prototype
FSLProfile_InitRmtPairRecipProcedure has the following prototype:

uint8_t FSLProfile_InitRmtPairRecipProcedure(void);

FSLProfile_InitRmtPairRecipProcedure has no parameters.

The possible return values for the FSLProfile_InitRmtPairRecipProcedure API call are shown in the
following table.

2.1.4.2 Functionality
FSLProfile_InitRmtPairRecipProcedure is used to enable the remote pair recipient functionality in the
profile layer, so that the application can process a remote pairing request.

2.1.4.3 Effect on Receipt
On receipt of the FSLProfile_InitRmtPairRecipProcedure function call the profile layer configures itself
to be able to handle the remote pair recipient procedure (being able to handle remote pairing requests). It
also tries to allocate the timers needed by the profile layer (if not already allocated). If no timers can be

Table 2-7. FSLProfile_InitRmtPairRecipProcedure API Call Return Values

Type Possible Values Description

uint8_t gNWNoTimers_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.4.3, “Effect on Receipt”.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-8 Freescale Semiconductor

allocated the function call returns gNWNoTimers_c and no additional configuration is done. Otherwise the
function call returns gNWSuccess_c and the remote pair recipient functionality is now ready to be used.

2.1.5 FSLProfile_RmtPairRequest
FSLProfile_RmtPairRequest instructs the profile layer to attempt to pair together two devices from its
pairing table. To use this function, the application must link to the RF4CE_FSLProfile_RmtPairOrig
library.

2.1.5.1 Prototype
FSLProfile_RmtPairRequest has the following prototype:

uint8_t FSLProfile_RmtPairRequest(
 uint16_t appRecipRspTimeOut,
 uint8_t deviceId1,
 appCapabilities_t dev1AppCapabilities,
 uint8_t* pDev1DeviceTypeList,
 uint8_t* pDev1ProfileIdList,
 uint8_t deviceId2,
 appCapabilities_t dev2AppCapabilities,
 uint8_t* pDev2DeviceTypeList,
 uint8_t* pDev2ProfileIdList
);

The following table specifies the parameters for FSLProfile_RmtPairRequest.
Table 2-8. FSLProfile_RmtPairRequest Parameters

Name Type Valid range Description

appRecipRspTimeOut uint16_t 1 - 65535 The amount of time (in milliseconds) each
device has to respond to the remote pair
request.

deviceId1 uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the first node

dev1AppCapabilities appCapabilities_t The RF4CE application capabilities of the first
node

pDev1DeviceTypeList uint8_t* - The list of device types supported by the first
node

pDev1ProfileIdList uint8_t* - The list of profiles supported by the first node

deviceId2 uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the second node

dev2AppCapabilities appCapabilities_t The RF4CE application capabilities of the
second node

pDev2DeviceTypeList uint8_t* - The list of device types supported by the
second node

pDev2ProfileIdList uint8_t* - The list of profiles supported by the second
node

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-9

The possible return values for the FSLProfile_RmtPairRequest API call are shown in the following table.

2.1.5.2 Functionality
FSLProfile_RmtPairRequest is used to establish a pairing link between two nodes in the requester’s
pairing table (e.g. a remote that is paired with a TV and a DVD can pair the TV and the DVD together).
The established pairing link is a standard ZigBee RF4CE pairing link. All its restrictions apply:

• Two controllers cannot be paired together
• At least one device must be a target

2.1.5.3 Effect on Receipt
On receipt of FSLProfile_RmtPairRequest, the profile layer first verifies if all the conditions to begin a
remote pairing process are met.

First the remote pair originator functionality must have been initialized (by calling
FSLProfile_InitRmtPairOrigProcedure). If the functionality is uninitialized the function exits with
gNWNotPermitted_c. If the profile layer is busy with another request the function returns gNWDenied_c.

The parameters are then checked for validity. If deviceId1 has the same value as deviceId2, either pair table
entry is non-existent, both devices are controllers or one of the provided application capabilities are
invalid, the function exits with the gNWInvalidParam_c error code.

• If no timers could be allocated for the remote pairing process the function returns gNWNoTimers_c.
• If no memory buffers could be allocated for the remote pairing process the function returns

gNWNoMemory_c.
• Otherwise the remote pairing process is initiated.

If both nodes to be paired are security capable a security key is generated. The remote pair initiator
generates the entire pair table entries for both devices to be paired, with the exception that, if one of the
two devices is a controller, no short address is generated for it (this must be left for the target, as the remote
pair originator does not know what short addresses the target has already allocated).

Remote pair request frames are sent, in turn, to each of the devices to be paired. Each remote pair request
frame sent to one device to be paired contains the pair table entry of the other device. Each device has the
opportunity to reject pairing, and its negative response will terminate the process. If both devices accept
pairing, the second device to receive the remote pair request will send a standard RF4CE ping frame to the
first device to test the new pairing link, to which the first device will reply with an RF4CE ping response.
The second device will only send its affirmative response to the remote pair originator after the arrival of

Table 2-9. FSLProfile_RmtPairRequest API Call Return Values

Type Possible Values Description

uint8_t gNWNotPermitted_c
gNWInvalidParam_c
gNWNoMemory_c
gNWDenied_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.5.3, “Effect on Receipt”.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-10 Freescale Semiconductor

the ping response (if the second device rejects pairing it will reply immediately). A field in the pair request
frame informs the receiving device whether it is the first or the second device to receive the remote pair
request frame.

If both devices are targets, remote pair request frames are sent in order (i.e. device 1 will receive the first
remote pair request frame and device 2 the second). The ping request payload is completely random.

If one of the two devices to be paired is a controller, that device will be the first to receive the remote pair
request frame. The second device will be a target. It will recognize from the pair table entry received with
the remote pair request frame that the first device is a controller and will generate a short address for it.
The controller’s short address will be included in the ping request frame payload (the ping request frame
is sent using the controller’s IEEE extended address as the destination address). Upon receiving the ping
frame, the controller extracts the short address from the payload and uses it for all further communication
with the target, including the ping response frame.

The timeout for the first device’s response is appRecipRspTimeOut plus a predefined jitter time(60 ms).

The timeout for the second device’s response takes into account the fact that it is send after the ping
exchange, for which an extra 200 ms are allowed.

When the remote pairing process is complete the originator application will receive a remote pair confirm
message through the profile SAP.

The following message chart illustrates a successful remote pairing:

Figure 2-2. Successful Remote Pairing Example

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-11

2.1.6 Remote Pair Confirm
The Remote Pair Confirm message informs the application that the remote pairing process previously
started by calling FSLProfile_RemotePairRequest has been completed.

2.1.6.1 Message Structure
The remote pair confirm message has the following structure:

typedef struct fslProfileRmtPairCnf_tag
{
 uint8_t status;
}fslProfileRmtPairCnf_t;

The following table specifies the fields available in the Remote Pair Confirm message.

2.1.6.2 When Generated
The Remote Pair Confirm message is generated by the profile layer when a previously started remote
pairing process has ended.

The remote pairing process can end under the following circumstances:
• A remote pair request frame could not be transmitted over the air – the status field will contain the

network error code.
• A remote pair response has not been received in a timely fashion from one of the devices or the

pairing link test (i.e. the ping frame exchange) failed – status will be gNWNoResponse_c.
• One of the devices has rejected pairing – status will contain the reason for the rejection (either

gNWNotPermitted_c or gNWNoRecipCapacity_c).
• If all information has been exchanged before the expiration of the abort timer interval, the

RemotePair process is considered successful and a Remote Pair Confirm message with the status
set to gNWSuccess_c value is sent to the application.

2.1.6.3 Effect on Receipt
On receipt of the Remote Pair Confirm message, the application layer is notified about the completion of
the remote pairing process.

Table 2-10. Remote Pair Confirm Message Structure

Field Type Possible Values Description

status uint8_t gNWNoResponse_c
gNWSuccess_c
gNWNotPermitted_c
gNWNoRecipCapacity_c
or the network layer error code

Indicates either the successful completion of the remote
pairing process or identifies the error that has occured.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-12 Freescale Semiconductor

2.1.7 Remote Pair Indication
The remote pair indication message informs the application of a just arrived remote pair request frame and
also specifies whether pairing can be accepted (depending on whether any free entries are in the pair table)
and the amount of time the application has to respond to the request.

2.1.7.1 Message Structure
The Remote Pair Indication message has the following structure:

typedef struct fslProfileRmtPairInd_tag
{
 uint8_t status;
 uint8_t deviceId;
 uint16_t appRspTimeOut;
 appCapabilities_t devAppCapabilities;
 uint8_t* pDeviceTypeList;
 uint8_t* pProfilesList;
}fslProfileRmtPairInd_t;

The following table specifies the the fields available in the Remote Pair Indication message.

2.1.7.2 When Generated
The Remote Pair Indication message is generated by the arrival of a remote pair request frame at the profile
layer. The profile layer first checks if the device to pair with is already in the pairing table. If it is, status
will be gNWDuplicatePairing_c and the deviceId will point to the existing pairing table entry. If the
pairing table is full, status will be gNWNoRecipCapacity_c and deviceId will be 0xFF. Otherwise status
will be gNWSuccess_c and the deviceID will indicate the free position in the pair table where the new entry
will be placed.

Table 2-11. Remote Pair Indication Message Structure

Field Type Possible Values Description

status uint8_t gNWSuccess_c
gNWDuplicatePairing_c
gNWNoRecipCapacity_c

Specifies whether pairing can be accepted, the
device to pair with is already in the pair table or
the pair table is full

deviceId uint8_t 1 – (gMaxPairTableEntries_c – 1) The position in the pair table where the new
entry will reside

appRspTimeOut uint16_t 1 – 65535 The amount of time (in milliseconds) the
application has to respond

devAppCapabilities appCapabilities_t The application capabilities of the device to
pair with

pDeviceTypeList uint8_t* The list of supported device types of the device
to pair with

pProfilesList uint8_t* The list of supported profiles of the device to
pair with

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-13

The appRspTimeOut value and the application capabilities, supported device types and supported profiles
of the device to pair with are taken from the remote pair request frame.

2.1.7.3 Effect on Receipt
On receipt of the Remote Pair Indication message the application is informed of a request to pair with
another device. The application has a limited amount of time (appRspTimeOut) to respond to the request
by calling FSLProfile_RemotePairResponse. If it does not respond within that time frame the remote
pairing process times out (no remote pair response is sent to the originator) and the remote pair originator
receives a Remote Pair Confirm message with a status of gNWNoResponse_c.

2.1.8 FSLProfile_RmtPairResponse
The FSLProfile_RemotePairResponse function call instructs the profile layer to respond to a previously
arrived remote pair request frame. To use this function, the application must link to the
RF4CE_FSLProfile_RmtPairRecip library.

2.1.8.1 Prototype
FSLProfile_RmtPairResponse has the following prototype:

uint8_t FSLProfile_RmtPairResponse(
 uint8_t status
);

The following table specifies the parameters for the FSLProfile_RmtPairResponse application service.

The possible return values for the FSLProfile_RmtPairResponse API call are shown in the following table.

Table 2-12. FSLProfile_RmtPairResponse Application Service Parameters

Name Type Possible Values Description

status uint8_t gNWSuccess_c
gNWNotPermitted_c
gNWNoRecipCapacity_c

Specifies whether the application accepts pairing or not.

Table 2-13. FSLProfile_RmtPairResponse API Call Return Values

Type Possible Values Description

uint8_t gNWNotPermitted_c
gNWInvalidParam_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.8.3, “Effect on Receipt”.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-14 Freescale Semiconductor

2.1.8.2 Functionality
FSLProfile_RemotePairResponse is used to respond to a previously received Remote Pair Indication. The
application informs the profile layer whether it accepts the pairing or not.

2.1.8.3 Effect on Receipt
Upon receipt of FSLProfile_RemotePairResponse the profile layer first checks whether the remote pair
response can be sent. If the remote pair recipient functionality has not been initialized or no Remote Pair
Indication was previously received the function exits with gNWNotPermitted_c.

Then parameter validity is verified. If status isn’t either gNWSuccess_c or gNWNotPermitted_c or
gNWNoRecipCapacity_c the function will exit with gNWInvalidParameter_c. Otherwise, the profile layer
prepares to respond to the remote pair request frame.

If this is the first device receiving the remote pair request frame, as indicated in the remote pair request
frame, the profile layer sends back the remote pair response with the status provided by the application. If
the application has rejected pairing the remote pairing process is complete.

 If the application has accepted pairing the profile layer starts to wait for an RF4CE ping request frame
from the second device. The total amount of time the profile layer will wait for the ping request frame is
appRspTimeout + 160 milliseconds. If no ping request frame arrives in this time period the ping exchange
and the entire remote pairing process considered to have failed.

 If the ping request arrives, a ping response is sent back. If the device is a controller the short address is
extracted from the ping request frame and used in all further communications with the second device
(including the ping response). The remote pairing is completed when the MAC layer acknowledgement
for the ping response arrives.

If this is the second device receiving the remote pair request frame and the application has accepted the
pairing, the profile layer will send an RF4CE ping request frame to the first device and wait for the ping
response. The total amount of time the profile layer will wait the ping response is 100 milliseconds. If the
first device is a controller, as indicated by the pair table entry received with the remote pair request frame,
a short address will be generated for it and it will be included in the ping request frame payload. After the
ping response is received the profile layer will send the remote pair response to the remote pair originator.
If the application has rejected pairing, then no ping request will be sent and the remote pair response will
be sent to the originator directly. The other device will time out waiting for the ping request.

2.1.9 Remote Pair Response Confirm
The Remote Pair Response Confirm message informs the application of the final status of a remote pairing
process initiated by another device.

2.1.9.1 Message Structure
The Remote Pair Response Confirm message has the following Message Structure:

typedef struct fslProfileRmtPairRspCnf_tag
{

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-15

 uint8_t status;
 uint8_t deviceId;
}fslProfileRmtPairRspCnf_t;

The following table specifies the fields available in the Remote Pair Response Confirm message.

2.1.9.2 When Generated
The Remote Pair Response Confirm message is generated by the profile layer in response to an
FSLProfile_RemotePairResponse function call and signals the end of the remote pairing process.

The remote pairing process on a recipient can end under the following circumstances:
• Remote Pairing is completed successfully; the new pairing link is successfully tested with a ping

frame exchange – status is gNWSuccess_c
• Pairing is rejected, either by the application or because the pair table is full. The response is sent

back to the originator immediately and the process ends when the network layer confirms the
delivery of the response. The status field in the confirm message informs the application about the
response delivery. It will be gNWSuccess_c if the response was successfully sent over the air,
otherwise it will contain the error reported by the network layer.

• The pairing link test fails, i.e. the ping frame exchange fails – status is gNWNoResponse_c or the
network layer error code.

2.1.9.3 Effect on Receipt
On receipt of the Remote Pair Response Confirm message, the application layer of a remote pair recipient
is notified about the completion of a Remote Pairing Process. If remote pairing was accepted and the
process was successfully completed (i.e. status is gNWSuccess_c) the provided device Id points to the new
entry in the pair table. Otherwise the pair table is un-modified.

2.1.10 FSLProfile_InitFragTxOrigProcedure
FSLProfile_InitFragTxOrigProcedure initializes the fragmented transmission functionality in the profile
layer. To use this function, the application must link to the RF4CE_FSLProfile_FragTx library.

Table 2-14. Remote Pair Response Confirm Message Structure

Field Type Possible Values Description

status uint8_t gNWSuccess_c
gNWNoResponse_c
or the error code returned by the
network layer

Specifies the final result of a remote pairing process

deviceId uint8_t 0 – (gMaxPairTableEntries_c – 1) Position in the table where information about the remotely paired
node can be found, in case the Remote Pair process has
completed successfully. If remote pairing was not successful, this
value should be ignored.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-16 Freescale Semiconductor

2.1.10.1 Prototype
FSLProfile_InitFragTxOrigProcedure has the following prototype:

uint8_t FSLProfile_InitFragTxOrigProcedure(void);

FSLProfile_InitFragTxOrigProcedure has no parameters.

The possible return values for the FSLProfile_InitFragTxOrigProcedure API call are shown in the
following table.

2.1.10.2 Functionality
FSLProfile_InitFragTxOrigProcedure is used to enable fragmented transmission functionality in the
profile layer, so that the application can transmit fragmented data.

2.1.10.3 Effect on Receipt
On receipt of the FSLProfile_InitFragTxOrigProcedure function call the profile layer configures itself to
be able to handle transmission of fragmented data. It also tries to allocate the timers needed by the profile
layer (if they are not already allocated). If no timers can be allocated the function returns gNWNoTimers_c
and no additional configuration is done. Otherwise the function returns gNWSuccess_c and the application
can initiate the transmission of fragmented data.

2.1.11 FSLProfile_InitFragTxRecipProcedure
FSLProfile_InitFragTxRecipProcedure initializes the fragmented reception functionality in the profile
layer. To use this function, the application must link to the RF4CE_FSLProfile_FragTxRecip library.

2.1.11.1 Prototype
FSLProfile_InitFragTxRecipProcedure has the following prototype:

uint8_t FSLProfile_InitFragTxRecipProcedure(void);

FSLProfile_InitFragTxRecipProcedure has no parameters.

The possible return values for the FSLProfile_InitFragTxRecipProcedure API call are shown in the
following table.

Table 2-15. FSLProfile_InitFragTxOrigProcedure API Call Return Values

Type Possible Values Description

uint8_t gNWNoTimers_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.10.3, “Effect on Receipt”

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-17

2.1.11.2 Functionality
FSLProfile_InitFragTxRecipProcedure is used to enable the fragmented reception functionality in the
profile layer, so that the application can receive fragmented data.

Table 2-17. FSLProfile_DisplayCompleteIndToBrowserRequest API Call Return Values

2.1.11.3 Effect on Receipt
On receipt of the FSLProfile_InitFragTxRecipProcedure function call the profile layer configures itself to
be able to reception of fragmented data. It also tries to allocate the timers needed by the profile layer (if
not already allocated). If no timers can be allocated the function returns gNWNoTimers_c and no
additional configuration is done. Otherwise the function returns gNWSuccess_c and the node is ready to
receive fragmented data.

2.1.12 FSLProfile_SetFragTxRxBufferStateRequest
The FSLProfile_SetFragTxRxBufferStateRequest service makes a request for the profile layer to change
the fragmented transmission buffer state. To use this function, the application must link to either the
RF4CE_FSLProfile_FragTxOrig library or the RF4CE_FSLProfile_FragTxRecip library.

The fragmented transmission buffer is an application buffer used by the Freescale profile layer in
fragmented transmissions. Its maximum length is specified by the application and must be less than 64
Kbytes. This buffer can be in one of the following states:

• gFragTxRxBufferFree_c - The buffer is free/available
• gFragTxRxBufferBusyApp_c - The buffer is reserved for the application. No fragmented reception

can begin when the buffer is in this state (fragmented transmission requests are discarded by the
profile layer). When the profile layer receives the last fragment of a transmission, it sets the buffer
state to gFragTxRxBufferBusyApp_c and notifies the application that a fragmented reception has
been completed and the received data is in the buffer. Also, before requesting a fragmented
transmission the application should set the buffer state to gFragTxRxBufferBufferBusyApp_c, write
the data to be transmitted in the buffer, and then pass the control to the profile layer.

• gFragTxRxBufferBusyProfile_c – The buffer is reserved by the profile (when profile is busy either
sending or receiving fragmented data, the buffer state is set to gFragTxRxBufferBusyProfile_c).
The application should neither read from, nor write to the buffer when it is in this state.

Table 2-16. FSLProfile_InitFragTxRecipProcedure API Call Return Values

Type Possible Values Description

uint8_t gNWNoTimers_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.11.3, “Effect on Receipt”

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-18 Freescale Semiconductor

2.1.12.1 Prototype
The FSLProfile_SetFragTxRxBufferStateRequest API function call has the following prototype:

uint8_t FSLProfile_SetFragTxRxBufferStateRequest(

 profileFragTxRxBufferState_t newBufferState
);

The following table specifies the parameters for the FSLProfile_SetFragTxRxBufferStateRequest service.

The possible return values for the FSLProfile_SetFragTxRxBufferStateRequest function calll are shown
in the following table.

2.1.12.2 Functionality
The FSLProfile_SetFragTxRxBufferStateRequest function changes the state of the fragmented
transmission buffer to the requested value.

2.1.12.3 Effect on Receipt
On receipt of FSLProfile_SetFragTxRxBufferStateRequest service, the profile layer will check if the new
state requested can be set by the application and if the current state can be changed. After that the previous
fragmented transmission buffer state will be replaced with the requested one.

2.1.12.4 Returns
• gNWInvalidParam_c – when the desired buffer state is neither gFragTxRxBufferBusyProfile_c nor

gFragTxRxBufferBusyApp_c nor gFragTxRxBufferFree_c

• gNWNotPermitted_c – when the desired state can’t be set by the application (the application can’t
set the buffer state to gFragTxRxBufferBusyProfile_c)

• gNWDenied_c – when the application is not allowed to change the buffer state because it is in use
by the profile layer (the application can’t change the buffer state from
gFragTxRxBufferBusyProfile_c)

Table 2-18. FSLProfile_SetFragTxRxBufferStateRequest Service Parameters

Name Type Valid values Description

newBufferState profileFragTxRxBufferState_t gFragTxRxBufferFree_c
 gFragTxRxBufferBusyApp_c

Specifies the new fragmented
transmission buffer state.

Table 2-19. FSLProfile_SetFragTxRxBufferStateRequest API Call Return Values

Type Possible Values Description

uint8_t gNWInvalidParam_c
gNWNotPermitted_c
gNWDenied_c
gNWSuccess_c

All error codes are discussed in Section 2.1.12.3, “Effect on Receipt”

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-19

• gNWSuccess_c – when the fragmented transmission buffer state was changed to the requested
value

2.1.13 FSLProfile_GetFragTxRxBufferStateRequest
FSLProfile_GetFragTxRxBufferStateRequest makes a request to the profile layer to return the current
fragmented transmission buffer state. To use this function, the application must link to either the
RF4CE_FSLProfile_FragTxOrig library or the RF4CE_FSLProfile_FragTxRecip library.

2.1.13.1 Prototype
The FSLProfile_GetFragTxRxBufferStateRequest function has the following prototype:

profileFragTxRxBufferState_t FSLProfile_GetFragTxRxBufferStateRequest(void);

FSLProfile_GetFragTxRxBufferStateRequest does not pass any parameters to profile layer.

The possible return values for the FSLProfile_GetFragTxRxBufferStateRequest Request service API call
are shown in the following table.

2.1.13.2 Functionality
FSLProfile_GetFragTxRxBufferStateRequest is used to find out the current state of the fragmented
transmission buffer.

2.1.13.3 Effect on Receipt
On receipt of FSLProfile_GetFragTxRxBufferStateRequest, the profile layer will return the current
fragmented transmission buffer state.

2.1.14 FSLProfile_FragTxRequest
The FSLProfile_FragTxRequest API function allows an application to request the transmission of data to
another node from the pair table. To use this function, the application must link to the
RF4CE_FSLProfile_FragTxOrig library.

Table 2-20. FSLProfile_GetFragTxRxBufferStateRequest API Call Return Values

Type Possible Values Description

uint8_t gFragTxRxBufferFree_c
gFragTxRxBufferBusyApp_c
gFragTxRxBufferBusyProfile_c

gFragTxRxBufferFree_c - The buffer is free
gFragTxRxBufferBusyApp_c – The buffer is reserved for the application
gFragTxRxBufferBusyProfile_c – The buffer is reserved for the profile

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-20 Freescale Semiconductor

2.1.14.1 Prototype
The FSLProfile_FragTxRequest function has the following prototype:

uint8_t FSLProfile_FragTxRequest(
uint8_t deviceId,
uint16_t dataLen,
uint8_t* pData,
bool_t bUseSecurity

);

The following table specifies the parameters for FSLProfile_FragTxRequest.

The possible return values for the FSLProfile_FragTxRequest API call are shown in the following table.

2.1.14.2 Functionality
FSLProfile_FragTxRequest is used to start a fragmented transmission to a node in the pairing table.

2.1.14.3 Effect on Receipt
On receipt of FSLProfile_FragTxRequest, the profile layer verifies if all the conditions to begin a
fragmented transmission are met.

If the fragmented transmission functionality has not been initialized the function exits with
gNWNotPermitted_c. If the profile layer is busy with another request the function exits with
gNWDenied_c. If the profile layer is not busy with another application request but the buffer state is
gFragTxRxBufferBusyProfile_c (i.e. a fragmented reception is in progress) the function exits with
gNWNotPermitted_c.

Table 2-21. FSLProfile_FragTxRequest Request Service Parameters

Name Type Valid range Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c – 1) Pair table entry index of the data recipient

data uint8_t* - A pointer to the data to transmit

length uint16_t 1 – 65535 The amount of data to transmit

bUseSecurity bool_t Whether to use secured transmission or not. This only
applies for secured pairing links.

Table 2-22. FSLProfile_FragTxRequest API Call Return Values

Type Possible Values Description

uint8_t gNWDenied_c
gNWNotPermitted_c
gNWInvalidParam_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.14.3, “Effect on Receipt”

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-21

The profile layer then checks the validity of the parameters. If the data length is 0 or the data pointer is
null, the function exits with gNWInvalidParameter_c error code.

The profile layer then checks its internal state machine and status variables, to determine if it can accept
the request or not. Once the validity of all parameters has been verified, the profile layer accepts the request
for processing, and the gNWSuccess_c value is returned. The fragmented transmission buffer state is
changed to gFragTxRxBufferBusyProfile_c.

When the fragmented transmission is complete, the profile layer will inform the application about the
status of the operation using a fragmented transmission confirm message. Power saving is disabled during
fragmented transmission.

2.1.15 Fragmented Transmission Confirm
The fragmented transmission confirm message informs the application about the completion of a
previously started fragmented transmission process.

2.1.15.1 Message Structure
The fragmented confirm message has the following structure:

typedef struct fslProfileFragCnf_tag
{
 uint8_t status;
 uint16_t fragRxMaxAcceptedLen;
}fslProfileFragCnf_t;

The following table specifies the fields available in the Fragmented Transmission Confirm message.
Table 2-23. Fragmented Transmission Confirm Message Structure

Field Type Possible Values Description

status uint8_t gNWNoTimers_c
gNWTimeOut_c
gNWNoMemory_c
gNWNoResponse_c
gNWNoRecipCapacity_c
gNWSuccess_c
or any error returned by the network layer

Specifies how the fragmented transmission
was completed

fragRxMaxAcceptedLen uint16_t 1 – 65535 The maximum amount of data the recipient
can receive in a single transmission. This
field should be ignored if the status is
neither gNWSuccess_c not
gNWNoRecipCapacity_c

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-22 Freescale Semiconductor

2.1.15.2 When Generated
The Fragmented Transmission Confirm message is generated by the profile layer entity at the conclusion
of a fragmented transmission request.

When the profile layer is processing a fragmented transmission request, it performs the following:
• Sends a fragmented transmission start packet to the destination node (the packet contains the

transfer length) and waits for the the response (which contains the maximum amount of data the
receiver can accept and a status of gNWSuccess_c or gNWNoRecipCapacity_c depending on
whether the requested transmission length exceeds the receivers capacity or not).

• If timeout occurs, the profile layer sends the fragmented transmission confirm message with a
status of gNWNoResponse_c.

• If the response status is gNWNoRecipCapacity_c, the profile layer sends the fragmented transmission
confirm message with a status of gNWNoRecipCapacity_c.

• If the response status is gNWSuccess_c, the profile layer begins sending the fragments
• The fragments are sent using single-channel, unacknowledged transmission. Periodically, status

updates about what fragments have been received are requested from the recipient. If a timeout
occurs while waiting for any of the status updates, the fragmented transmission process is aborted
and the profile layer sends the fragmented transmission confirm message with a status of
gNWNoResponse_c. Otherwise, any fragments that have been reported as not received are retransmitted,
this time using multiple-channel, acknowledged transmission.

• When the recipient reports that all fragments have arrived, the profile layer sends the fragmented
transmission confirm message with a status of gNWSuccess_c.

• If at any point the profile layer fails to transmit any frame over the air, the fragmented transmission process
is aborted and the fragmented transmission confirm message contains the network layer error code.

2.1.15.3 Effect on Receipt
On receipt of the Fragmented Transmission Confirm message, the application layer of the initiating device
is notified of the result of the fragmented transmission. The state of the fragmented transmission buffer is
set to gFragTxRxBufferFree_c by the profile layer. Power saving is restored to the state it was before the
fragmented transmission process.

2.1.16 Fragmented Transmission Start Indication
The Fragmented Transmission Start Indication message informs the application layer about the start of a
fragmented reception initiated by one of the nodes in its Pair Table. The incoming data will be saved in the
fragmented transmission buffer.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-23

2.1.16.1 Message Structure
The Fragmented Transmission Start Indication message has the following structure:

typedef struct fslProfileFragStartInd_tag
{
 uint8_t deviceId;
 uint16_t fragDataLen;
}fslProfileFragStartInd_t;

The following table specifies the fields available in the Fragmented Transmission Start Indication
message.

2.1.16.2 When Generated
The Fragmented Transmission Start Indication message is generated by the profile layer upon the arrival
of a fragmented transmission start packet from a paired device but only if the transmission can proceed. If
the data cannot be received (e.g. because the buffer is not in the gFragTxRxBufferFree_c state, or the buffer
is too small to hold all the data to be received) no indication message is generated.

2.1.16.3 Effect on Receipt
On receipt of the Fragmented Transmission Start Indication message, the application layer is notified about
the start of a fragmented reception, initiated by one of the nodes in its pairing table.

A fragmented transmission start response frame has been sent back to the originator. The state of the
fragmented transmission buffer has been changed to gFragTxRxBufferBusyProfile_c.

2.1.17 Fragmented Transmission Indication
The Fragmented Transmission Indication message informs the application layer on the receiving end of
the transfer about the end of a fragmented transmission initiated by one of the nodes in its pairing table.

2.1.17.1 Message Structure
The fragmented transmission indication message has the following structure:

typedef struct fslProfileFragInd_tag
{
 uint8_t status;
 uint8_t deviceId;
 bool_t bFragSecured;

Table 2-24. Fragmented Transmission Start Indication Message Structure

Field Type Possible Values Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c – 1) The pair table entry index of the fragmented transmission
originator

fragDataLen uin16_t 1 – 65535 The amount of data that will arrive

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-24 Freescale Semiconductor

 uint16_t fragDataLen;
}fslProfileFragInd_t;

The following table specifies the fields available in the Fragmented Transmission Indication message.

2.1.17.2 When Generated
The Fragmented Transmission Indication message is generated by the profile layer when the last data
fragment from one of the nodes in its pairing table is received.

2.1.17.3 Effect on Receipt
On receipt of the Fragmented Transmission Indication message, the application layer is notified about the
end of a fragmented reception, initiated by one of the nodes in its pairing table. The Fragmented
Transmission Indication message will always be received after a Fragmented Transmission Start
Indication message. The received data is placed in the fragmented transmission buffer, starting with
position 0. At the moment when this message is received by application, the state of the buffer is already
set, by the profile layer, to gFragTxRxBufferBusyApp_c.

2.1.18 FSLProfile_InitPollOrigProcedure
FSLProfile_InitPollOrigProcedure initializes poll originator functionality in the profile layer. To use this
function, the application must link to the RF4CE_FSLProfile_PollOrig library.

2.1.18.1 Prototype
FSLProfile_InitPollOrigProcedure has the following prototype:

uint8_t FSLProfile_InitPollOrigProcedure(void);

FSLProfile_InitPollOrigProcedure has no parameters.

The possible return values for the FSLProfile_InitPollOrigProcedure API call are shown in the following
table.

Table 2-25. Fragmented Transmission Indication Message Structure

Field Type Possible Values Description

status uint8_t gNWTimeOut_c
gNWNoMemory_c
gNWFailed_c
gNWSuccess_c

Indicates how the fragmented transmission has ended

deviceId uint8_t 0 – (gMaxPairTableEntries_c – 1) Specifies the position in the Pair Table of the originator node

bFragSecured uint8_t {TRUE, FALSE} Indicates whether the transmission was secured or not

fragDataLen uin16_t 1 – 65535 The total amount of data received.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-25

2.1.18.2 Functionality
FSLProfile_InitPollOrigProcedure is used to enable the polling originator functionality in the profile layer,
so that the application can initiate the polling operation.

2.1.18.3 Effect on Receipt
On receipt of the FSLProfile_InitPollOrigProcedure function call the profile layer configures itself to be
able to handle the polling originator procedure. It also tries to allocate the timers needed by the profile layer
(if not already allocated). If no timers can be allocated the function call returns gNWNoTimers_c and no
additional configuration is done. Otherwise the function returns gNWSuccess_c and the node can poll other
devices.

2.1.19 FSLProfile_InitPollRecipProcedure
FSLProfile_InitPollRecipProcedure initializes the poll recipient functionality in the profile layer. To use
this function, the application must link to the RF4CE_FSLProfile_PollRecip library.

2.1.19.1 Prototype
FSLProfile_InitPollRecipProcedure has the following prototype:

uint8_t FSLProfile_InitPollRecipProcedure(void);

FSLProfile_InitPollRecipProcedure has no parameters.

The possible return values for the FSLProfile_InitPollRecipProcedure API call are shown in the following
table.

Table 2-26. FSLProfile_InitPollOrigProcedure API Call Return Values

Type Possible Values Description

uint8_t gNWNoTimers_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.18.3, “Effect on Receipt”

Table 2-27. FSLProfile_InitPollRecipProcedure API Call Return Values

Type Possible Values Description

uint8_t gNWNoTimers_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.19.3, “Effect on Receipt”

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-26 Freescale Semiconductor

2.1.19.2 Functionality
FSLProfile_InitPollRecipProcedure is used to enable the polling recipient functionality in the profile layer,
so that the application can respond to polling requests.

2.1.19.3 Effect on Receipt
On receipt of the FSLProfile_InitPollRecipProcedure function call the profile layer configures itself to be
able to handle the polling recipient procedure. It also tries to allocate the timers needed by the profile layer
(if not already allocated). If no timers can be allocated the function call returns gNWNoTimers_c and no
additional configuration is done. Otherwise the function call returns gNWSuccess_c and the poll recipient
functionality is now ready to be used (the node can respond to poll request frames from other devices).

2.1.20 FSLProfile_PollConfigRequest
FSLProfile_PollConfigRequest instructs the profile layer to configure the polling period and the amount
of time the receiver is enabled during polling. A node starts with polling un-configured. Polling must be
configured first before any polling is started. To use this function, the application must link to the
RF4CE_FSLProfile_PollOrig library.

2.1.20.1 Prototype
FSLProfile_PollConfigRequest has the following prototype:

uint8_t FSLProfile_PollConfigRequest(
 uint32_t pollInterval,
 uint16_t rxOnInterval
);

The following table specifies the parameters for FSLProfile_PollConfigRequest.

The possible return values for the FSLProfile_PollConfigRequest API call are shown in the following
table.

Table 2-28. FSLProfile_PollConfigRequest Parameters

Name Type Dir Valid range Description

pollInterval uint32_t IN 100 – 262000(miliseconds) The polling period.

rxOnInterval uint16_t IN 0 - pollInterval (milliseconds) The amount of time the receiver will be enabled in
order to wait for incoming data

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-27

2.1.20.2 Functionality
FSLProfile_PollConfigRequest configures the poll parameters. It neither stops an existing polling process
nor does it start a new one. Polling must be stopped and restarted for the new parameters to take effect.

2.1.20.3 Effect on Receipt
On receipt of FSLProfile_PollConfigRequest, the profile layer verifies if all the conditions to set the
polling period and receiver enabled interval are met.

If pollInterval is out of bounds, or rxOnInterval is larger than pollInterval the function returns
gNWInvalidParameter_c. If no timer could be allocated for the polling process, the function exits with
gNWNoTimers_c.

Once the validity of the parameters has been verified, the profile layer saves the poll parameters in its
internal variables and exits with gNWSuccess_c.

2.1.21 FSLProfile_PollRequest
FSLProfile_PollRequest starts or stops the polling process for a specified device Id. This function cannot
be called without previously having configured the poll parameters. To use this function, the application
must link to the RF4CE_FSLProfile_PollOrig library.

2.1.21.1 Prototype
FSLProfile_PollRequest has the following prototype:

uint8_t FSLProfile_PollRequest(
 uint8_t deviceId,
 bool_t bPollEnable
);

Table 2-29. FSLProfile_PollConfigRequest API Call Return Values

Type Possible Values Description

uint8_t gNWNoTimers_c
gNWInvalidParam_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.20.3, “Effect on Receipt”

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-28 Freescale Semiconductor

The following table specifies the parameters for FSLProfile_PollRequest.

The possible return values of the FSLProfile_PollRequest call are shown in the following table.

2.1.21.2 Functionality
FSLProfile_PollRequest is used to start or stop polling either a specific device or all devices in the pair
table.

2.1.21.3 Effect on Receipt
On receipt of FSLProfile_PollRequest, the profile layer first verifies if all the conditions to handle the
request are met.

If the poll originator functionality has not been enabled the function exits with gNWNotPermitted_c.

If there is no information in the Pair Table at the position indicated by deviceId parameter, then the function
exits with gNWDeviceIdNotPaired_c. If the deviceId parameter exceeds the boundaries of the Pair Table,
but is different from 0xFF, the function returns the gNWInvalidParameter_c value. If the poll interval and
the receiver enabled interval were not already set, the function returns the gNWInvalidParameter_c value.

After the validity of the parameters has been verified, the profile layer accepts the FSLProfile_PollRequest
for processing, and the gNWSuccess_c value is returned.

If the application has requested that polling be enabled (bPollEnable is TRUE) then the device with the
given device ID is added to the internal list of devices to be polled (the poll list). If the device ID is 0xFF
then all devices in the pair table are added to the poll list. An interval timer is started with pollInterval
(configured with FSLProfile_PollConfigRequest) as its period. Its callback function triggers a polling
attempt which polls all devices in the poll list in sequence. (Even if the poll list was not empty prior to the
call to FSLProfile_PollRequest, the timer is restarted).

If the application has requested that polling be disabled (bPollEnable is FALSE) then the device with the
given device ID is removed from the poll list. If deviceId is 0xFF then the entire poll list is emptied. If the

Table 2-30. FSLProfile_PollRequest Parameters

Name Type Valid range Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c – 1)
or 0xFF

Pair table index of the entry of the device to poll. If deviceId is
0xFF polling is enabled or disabled for all devices in the pairing
table

bPollEnable bool_t {TRUE,FALSE} Enables / disables polling the given device.

Table 2-31. FSLProfile_PollRequest Return Values

Type Possible Values Description

uint8_t gNWNotPermitted_c
gNWDeviceIdNotPaired_c
gNWInvalidParam_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.21.3, “Effect on Receipt”

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-29

poll list is empty (either because deviceId was given as 0xFF or because the given device was the last is
the poll list) the polling timer is stopped.

A polling attempt consists of sending a poll request frame to all devices in the poll list one at a time and
then waiting for their responses. If the response indicates that data is not available the profile layer will
move to the next device in the list. If the response indicates that data is available the profile layer keeps
the receiver enabled for a period of time equal to rxOnInterval (configured with
FSLProfile_PollConfigRequest) before moving on to the next device. The initial receiver active period is
stored in an internal variable and restored at the end of a polling attempt.

A special case occurs when rxOnInterval is configured to 0. In this case, a special poll event message is
sent to the application for each poll response frame received. A field in the poll event message indicates
whether data is available or not.

2.1.22 Poll Confirm
The FSL Profile Poll Confirm message informs the application that polling has stopped without the
application requesting it or that an error has occured during poling.

2.1.22.1 Message Structure
The poll confirm message has the following structure:

typedef struct fslProfilePollCnf_tag
{
 uint8_t status;
 uint8_t deviceId;
} fslProfilePollCnf_t;

The following table specifies the fields available in the Confirm message.

2.1.22.2 When Generated
The Poll Confirm message is generated by the profile layer when polling has stopped for some reason or
when an error has occured during polling.

Table 2-32. Poll Confirm Message Structure

Field Type Possible Values Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Which device the profile layer was currently attempting to poll

status uint8_t gNWAborted_c
gNWNoMemory_c

The reason why polling has stopped or the error that has occured

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-30 Freescale Semiconductor

2.1.22.3 Effect on Receipt
The poll confirm message can arrive in two situations:

1. The application has requested the BeeStack Consumer layer to un-pair with all devices in the
polling list. Whenever the profile layer detects that the node is no longer paired with a device in
the polling list that device is removed from the polling list. If the polling list is empty the polling
timer is stopped and a poll confirm message is sent to the application with a status of
gNWAborted_c and a deviceId of 0xFF.

2. No message buffers could be allocated for the poll request frame. The application receives a poll
confirm message with a status of gNWNoMemory_c and the pair table entry index of the device the
profile layer just failed to poll. Polling continues with the next device in the list.

2.1.23 Poll Indication
The Poll Indication message informs the application layer about the arrival of a poll request from one of
the nodes in the Pair Table.

2.1.23.1 Message Structure
The Poll Indication message has the following structure:

typedef struct fslProfilePollInd_tag
{
 uint8_t deviceId;
 uint8_t rxOnInterval;
} fslProfilePollInd_t;

The following table specifies the fields available in the Poll Indication message.

2.1.23.2 When Generated
The poll indication message is generated whenever a poll request frame arrives from a device for which
the application has indicated that data is available, using FSLProfile_PollDataAvailable. Also a poll
response frame is sent back to the poll originator, informing it that data is available and causing it to keep
its receiver enabled for a predetermined period of time (configured by the originator application using
FSLProfile_PollConfigRequest). If data is not available, no indication message is generated and the poll
response frame informs the originator that data is not available, causing it to move on to the next device
in its poll list.

Table 2-33. Poll Indication Message Structure

Field Type Possible Values Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c – 1) The device that sent the poll request

rxOnInterval uint8_t - The amount of time the poll originator will keep its receiver
enabled

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-31

2.1.23.3 Effect on Receipt
On receipt of the Poll Indication message, the application is informed that it has a window of opportunity
to transmit data to the device conducting the poll, as the device will keep its receiver enabled the period of
time indicated by rxOnInterval. The data available status is not modified, the application will continue to
receive poll indications whenever a poll request arives.

2.1.24 FSLProfile_PollDataAvailable
FSLProfile_PollDataAvailable service is used by the application layer to inform the network layer that it
has data to send to a device already in the pairing table. To use this function, the application must link to
the RF4CE_FSLProfile_PollRecip library.

2.1.24.1 Prototype
FSLProfile_PollDataAvailable has the following prototype:

uint8_t FSLProfile_PollDataAvailable(
 uint8_t deviceId,
 bool_t bDataAvailable
);

The following table specifies the parameters for FSLProfile_PollDataAvailable.

The possible return values for the FSLProfile_PollDataAvailable call are shown in the following table.

2.1.24.2 Functionality
FSLProfile_PollDataAvailable is used to configure the way the network layer responds to incoming poll
request frames.

Table 2-34. FSLProfile_PollDataAvailable Parameters

Name Type Valid range Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c – 1)
or 0xFF

the position in the Pair Table of the node which needs to be
informed about the presence of application data designated to
it.. If deviceId is 0xFF, all nodes in the pair table are affected.

bDataAvailable bool_t {TRUE, FALSE} whether data is available or not

Table 2-35. FSLProfile_PollDataAvailable Call Return Values

Type Possible Values Description

uint8_t gNWDeviceIdNotPaired_c
gNWInvalidParam_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.24.3, “Effect on Receipt”.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-32 Freescale Semiconductor

2.1.24.3 Effect on Receipt
On receipt of FSLProfile_PollDataAvailable, the profile layer first checks parameter validity.

If the deviceId parameter exceeds the boundaries of the Pair Table, the function returns the
gNWInvalidParameter_c value. If there is no information in the Pair Table at the position indicated by
deviceId parameter, then the function exits with the gNWDeviceIdNotPaired_c value.

Otherwise, the internal data available map is modified according to the function call parameters.

If bDataAvailable is TRUE the given device is added to the data available map, otherwise it is removed
from the map. If deviceId is 0xFF then either all devices in the pair table are added to the map (if
bDataAvailable is TRUE) or the entire map is cleared. The function returns gNWSuccess_c.

Whenever a poll request frame is received by the profile layer, if the originator is in the data available map,
the profile layer sends an automatic response informing the originator that data is available. Also, a poll
indication message is sent to the application. If the originator is not in the data available map the automatic
response informs the originator that data is not available and no poll indication message is sent to the
application.

The data available map is not modified in any way by incoming poll requests. The data available map can
only be modified by the application by calling FSLProfile_PollDataAvailable.

2.1.25 Poll Event
The Poll Event message informs the application of the arrival of a poll response when rxOnInterval is set
to 0.

2.1.25.1 Message Structure
The Poll Event message has the following structure:

typedef struct fslProfilePollEvent_tag
{
 uint8_t deviceId;
 bool_t bDataAvailable;
} fslProfilePollEvent_t;

The following table specifies the fields available in the Poll Event message.

2.1.25.2 When Generated
The poll event message is generated whenever rxOnInterval is set to 0 and the profile layer receives a poll
response frame.

Table 2-36. Poll Event Message Structure

Field Type Possible Values Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c – 1) The device that responded to the poll request

bDataAvailable bool_t {TRUE, FALSE} Indicates whether data is available

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-33

2.1.25.3 Effect on Receipt
On receipt of the Poll Event message, the application is informed whether the responding device has data
available for it.

2.1.26 FSLProfile_InitMenuBrowserProcedure
FSLProfile_InitMenuBrowserProcedure initializes menu browsing functionality in the profile layer. To
use this function, the application must link to the RF4CE_FSLProfile_MenuBrowser library.

2.1.26.1 Prototype
FSLProfile_InitMenuBrowserProcedure has the following prototype:

uint8_t FSLProfile_InitMenuBrowserProcedure(void);

FSLProfile_InitMenuBrowserProcedure has no parameters.

The possible return values for the FSLProfile_InitMenuBrowserProcedure API call are shown in the
following table.

2.1.26.2 Functionality
FSLProfile_InitMenuBrowserProcedure is used to enable the menu browsing functionality in the profile
layer.

2.1.26.3 Effect On Receipt
On receipt of the FSLProfile_InitMenuBrowserProcedure function call the profile layer configures itself
to be able to transmit menu browsing requests over the air. It also tries to allocate the timers needed by the
profile layer (if not already allocated). If no timers can be allocated the function call returns
gNWNoTimers_c and no additional configuration is done. Otherwise the function call returns
gNWSuccess_c and the menu browsing functionality is ready to be used.

Table 2-37. FSLProfile_InitMenuBrowserProcedure API Call Return Values

Type Possible Values Description

uint8_t gNWNoTimers_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.26.3, “Effect On Receipt”.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-34 Freescale Semiconductor

2.1.27 FSLProfile_InitMenuOwnerLightProcedure
FSLProfile_InitMenuOwnerLighProcedure initializes the light menu owner functionality in the profile
layer. To use this function, the application must link to the RF4CE_FSLProfile_MenuOwnerLight library.

2.1.27.1 Prototype
FSLProfile_InitMenuOwnerLightProcedure has the following prototype:

uint8_t FSLProfile_InitMenuOwnerLightProcedure(void);

FSLProfile_InitMenuOwnerLightProcedure has no parameters.

The possible return values for the FSLProfile_InitMenuOwnerLightProcedure API call are shown in the
following table.

2.1.27.2 Functionality
FSLProfile_InitMenuOwnerLightProcedure is used to enable the light menu owner functionality in the
profile layer, allowing the application to receive menu browsing requests messages from the menu browser
and to send menu displaying requests to the menu displayer.

2.1.27.3 Effect on receipt
On receipt of the FSLProfile_InitMenuOwnerLightProcedure function call the profile layer configures
itself to be able to pass menu browsing request frames received over the air to the application and to send
menu displaying requests from the application in turn. It also tries to allocate the timers needed by the
profile layer (if not already allocated). If no timers can be allocated the function call returns
gNWNoTimers_c and no additional configuration is done. Otherwise the function call returns
gNWSuccess_c and the light menu owner functionality is ready to be used.

Table 2-38. FSLProfile_InitMenuOwnerLightProcedure API Call Return Values

Type Possible Values Description

uint8_t gNWNoTimers_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.27.3, “Effect on receipt”

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-35

2.1.28 FSLProfile_InitMenuDisplayerProcedure
FSLProfile_InitMenuDisplayerProcedure initializes the menu displaying functionality in the profile layer.
To use this function, the application must link to the RF4CE_FSLProfile_MenuDisplayer library.

2.1.28.1 Prototype
FSLProfile_InitMenuDisplayerProcedure has the following prototype:

uint8_t FSLProfile_InitMenuDisplayerProcedure(uint16_t waitMenuEntryTimeout);

The following table specifies the parameters for FSLProfile_InitMenuDisplayerProcedure.

The possible return values for the FSLProfile_InitMenuDisplayerProcedure API call are shown in the
following table:

2.1.28.2 Functionality
FSLProfile_InitMenuDisplayerProcedure is used to enable the menu displaying functionality in the profile
layer.

2.1.28.3 Effect on receipt
On receipt of the FSLProfile_InitMenuDisplayerProcedure function call the profile layer configures itself
to be able to handle incoming menu display request frames and sets the maximum amount of time to wait
between two menu entry frames. It also tries to allocate the timers needed by the profile layer (if not
already allocated). If no timers can be allocated the function call returns gNWNoTimers_c and no
additional configuration is done. Otherwise the function call returns gNWSuccess_c and the menu
displayer functionality is then ready to be used.

Table 2-39. FSLProfile_InitMenuDisplayerProcedure Parameters

Name Type Valid range Description

waitMenuEntry
Timeout

uint16_t 0 - 65535 The maximum amount of time in milliseconds to wait for
the next menu entry when receiving a menu window

Table 2-40. FSLProfile_InitMenuDisplayerProcedure API Call Return Values

Type Possible Values Description

uint8_t gNWNoTimers_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.28.3, “Effect on receipt”.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-36 Freescale Semiconductor

2.1.29 FSLProfile_BrowseMenuRequest
FSLProfile_BrowseMenuRequest instructs the profile layer to transmit a menu browse command frame to
a menu owner. To use this function, the application must link to the RF4CE_FSLProfile_MenuBrowser
library.

2.1.29.1 Prototype
FSLProfile_BrowseMenuRequest has the following prototype:

uint8_t FSLProfile_BrowseMenuRequest(
uint8_t deviceId,
menuBrowseDirection_t direction,
bool_t bUseSecurity

);

The following table specifies the parameters for FSLProfile_BrowseMenuRequest Parameters.

The possible return values for the FSLProfile_BrowseMenuRequest API call are shown in the following
table.

2.1.29.2 Functionality
FSLProfile_BrowseMenuRequest is used to transmit a menu navigation command from a menu browser
to a menu owner, usually in response to a user pressing a menu navigation key.

Table 2-41. FSLProfile_BrowseMenuRequest Parameters

Name Type Valid range Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the menu owner

direction menuBrowse
Direction_t

 menuBrowseUp_c
 menuBrowseDown_c
 menuBrowseLeft_c
 menuBrowseRight_c
 menuBrowseOk_c
 menuBrowseExit_c
 menuBrowseRefresh_c
 menuBrowseMax_c

The menu navigation direction

bUseSecurity bool_t {FALSE, TRUE} Whether to use secured transmission or not

Table 2-42. FSLProfile_BrowseMenuRequest API Call Return Values

Type Possible Values Description

uint8_t gNWNotPermitted_c
gNWDenied_c
gNWInvalidParam_c
gNWDeviceIdNotPaired_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.29.3, “Effect on Receipt”.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-37

2.1.29.3 Effect on Receipt
On receipt of FSLProfile_BrowseMenuRequest, the profile layer verifies if all the conditions to transmit
a menu browse command are met.

If the menu browsing functionality has not been initialized the function exits with gNWNotPermitted_c. If
the profile layer is busy with another request the function exits with gNWDenied_c.

The profile layer then checks the validity of the parameters. If the menu owner’s deviceId is outside the
pair table the function returns gNWInvalidParam_c. If there is no information in the pair table at the
position indicated by deviceId parameter, then the function exits with gNWDeviceIdNotPaired_c. If the
direction is invalid, the function exits with gNWInvalidParam_c. If a secured transmission has been
requested but the pairing link is not secured the function exits with gNWInvalidParam_c.

Otherwise the request is accepted for processing and the function returns gNWSuccess_c.

The profile layer now constructs a menu browse command frame and sends it to the menu owner using
acknowledged transmission. Once the menu owner’s MAC layer replies with an ack the application will
be notified via a menu browse confirm message.

2.1.30 Menu Browse Confirm
The Menu Browse Confirm message informs the application about the transmission status of a menu
browse command frame.

2.1.30.1 Message Structure
The menu browse confirm message has the following structure:

typedef struct fslProfileMenuBrowseCnf_tag
{
 uint8_t status;
 uint8_t deviceId;
}fslProfileMenuBrowseCnf_t;

The following table specifies the fields available in the Menu Browse Confirm message.

2.1.30.2 When Generated
The Menu Browse Confirm message is generated by the profile layer when the previously requested
transmission of a menu browse request command frame has been completed.

Table 2-43. Menu Browse Confirm Message Structure

Field Type Possible Values Description

status uint8_t gNWSuccess_c
or the network layer error code

Indicates either the successful transmission of the menu browse
command frame or identifies the error that has occured.

deviceId uint8_t 0 –
(gMaxPairTableEntries_c - 1)

Identifies the menu owner to which the menu browse command
was transmitted.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-38 Freescale Semiconductor

2.1.30.3 Effect on receipt
When the Menu Browse Confirm message arrives the application is notified of the completion status of
the menu browse command frame transmission. The status field is copied from the NLDE Data Confirm
message.

2.1.31 Menu Browse Complete Indication
The Menu Browse Complete Indication message informs the application about the result of its menu
browsing request.

2.1.31.1 Message Structure
The menu Browse Complete Indication message has the following structure:

typedef struct fslProfileMenuBrowseCompleteInd_tag
{
 uint8_t status;
 uint8_t deviceId;
 uint8_t userString[gSizeOfUserString_c];
}fslProfileMenuBrowseCompleteInd_t;

The following table specifies the fields available in the Menu Browse Complete Indication message.

2.1.31.2 When Generated
The Menu Browse Complete Indication message is generated by the profile layer when the menu owner
informs it about the result of a previous menu browsing request.

2.1.31.3 Effect on receipt
When the Menu Browse Complete Indication message arrives the application is notified about how its
menu browsing request was handled by the menu owner and the menu displayer. The status field will
contain the status reported by the menu owner. Typically the status will be either gNWSuccess_c, if the
menu browsing command was successfully executed, or gNWNoResponse_c if the menu display frames
could not be sent to the displayer. However the menu owner is free to send any value here.

Table 2-44. Menu Browse Complete Indication Message Structure

Field Type Possible Values Description

status uint8_t - The status reported by the menu owner

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Identifies the menu owner to which the menu browsing
command was transmitted.

userString uint8_t[gSiz
eOfUserStri

ng_c]

gNWSuccess_c or the network
layer error code

The menu displayer’s user string.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-39

2.1.32 Display Menu Header Indication
The Display Menu Header Indication message informs the application of a menu displayer about the
arrival of display menu header request from a menu owner.

2.1.32.1 Message Structure
The Display Menu Header indication message has the following structure:

typedef struct fslProfileDisplayMenuHeaderInd_tag
{
 uint8_t deviceId;
 uint8_t idxSelectedEntry;
 uint8_t nrMenuItemsInWindow;
 uint16_t nrMenuItemsInMenu;
 uint16_t firstEntryNumber;
 uint8_t contentType;
 uint8_t menuTextLength;
 uint8_t* pMenuText;
}fslProfileDisplayMenuHeaderInd_t;

The following table specifies the fields available in the Display Menu Header Indication message.

2.1.32.2 When Generated
The Display Menu Header Indication message is generated by the profile layer when it receives a display
menu header request frame.

Table 2-45. Display Menu Header Indication Message Structure

Field Type Possible Values Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Identifies the menu owner which has sent the menu header.

idxSelected
Entry

uint8_t - Identifies the menu entry that is selected

nrMenuItem
sInWindow

uint8_t - The number of menu items in a window

nrMenuItem
sInMenu

uint16_t - The total number of items in the menu

firstEntryNu
mber

uint16_t - The number of the first entry

contentType uint8_t - The type of content in the menu

menuTextlen
gth

uint8_t - The length of the text describing the menu

pMenuText uint8_t* - Some text describing the menu

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-40 Freescale Semiconductor

2.1.32.3 Effect on receipt
When the Display Menu Header Indication message arrives the application is notified about the arrival of
a display menu header request. The profile layer prepares for the reception of a number of display menu
entry request frames equal to nrMenuItemsInWindow, an entire menu window. The receiver is enabled
indefinitely and the initial value of the receiver’s active period is stored in an internal variable. Each menu
entry frame has a finite amount of time to arrive, equal to the value of the waitMenuEntryTimeout set by
the call to FSLProfile_InitMenuDisplayerProcedure, otherwise the process times out. When the menu
window reception process has been completed (either because all menu entries have been received or
because the process has timed out) the application will be notified via a Display Menu Complete Indication
message.

2.1.33 Display Menu Entry Indication
The Display Menu Entry Indication message informs the application of the arrival of display menu entry
request from a menu owner.

2.1.33.1 Message Structure
The Display Menu Entry indication message has the following structure:

typedef struct fslProfileDisplayMenuEntryInd_tag
{
 uint8_t deviceId;
 uint8_t entryIndex;
 uint8_t entryType;
 uint8_t contentType;
 uint8_t entryValueLength;
 uint8_t entryTextLength;
 uint8_t* pEntryValue;
 uint8_t* pEntryText;
}fslProfileDisplayMenuEntryInd_t;

The following table specifies the fields available in the Display Menu Header Indication message.
Table 2-46. Display Menu Entry Indication Message Structure

Field Type Possible Values Description

deviceId uint8_t 0 –
(gMaxPairTableEntries_c - 1)

Identifies the menu owner which has sent the menu entry.

entryIndex uint8_t - Where in the menu window this entry should reside

entryType uint8_t - The type of the menu entry

contentType uint8_t - The type of content in the menu entry

entryValueL
ength

uint8_t - The length of the entry value

entryTextLe
ngth

uint8_t - The length of text in the menu entry

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-41

2.1.33.2 When Generated
The Display Menu Entry Indication message is generated by the profile layer when it receives a display
menu entry request frame. The display menu entry request frame can arrive either as part of the
transmission of a complete menu window (a menu header and all the menu entries in window) or on its
own (e.g. when a single menu entry is updated).

2.1.33.3 Effect on Receipt
On receipt of the Display Menu Entry Indication message the application has been provided with the
necessary information to display the menu entry described by the indication message.

2.1.34 Display Menu Complete Indication
The Display Menu Complete Indication message informs the application of the reception of complete
menu window (one menu header and multiple menu entries).

2.1.34.1 Message Structure
The Display Menu Entry indication message has the following structure:

typedef struct fslProfileDisplayMenuCompleteInd_tag
{
 uint8_t status;
 uint8_t deviceId;
}fslProfileDisplayMenuCompleteInd_t;

The following table specifies the fields available in the Display Menu Header Indication message.

2.1.34.2 When Generated
The Display Menu Complete Indication message is generated by the profile layer when the process to
receive a menu window has been completed.

pEntryValue uint8_t* - The menu entry value

pEntryText uint8_t* - The menu entry text

Table 2-47. Display Menu Complete Indication Message Structure

Field Type Possible Values Description

status uint8_t gNWSuccess_c
gNWNotPermitted_c
gNWNoResponse_c
or the network layer error code

The status of the menu window reception process

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Identifies the menu owner which has sent the menu window.

Table 2-46. Display Menu Entry Indication Message Structure (continued)

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-42 Freescale Semiconductor

2.1.34.3 Effect on Receipt
When the Display Menu Header Indication message arrives the application is notified that a menu window
has been received. The receiver’s active period is restored to the initial state.

The possible values of the status field have the following significance:
• gNWSuccess_c – all display menu entry request frames have been received
• gNWNoResponse_c – the display menu entry request frames have not arrived in a timely fashion

or have not been received in order
• gNWNotPermitted_c – the menu header specified a menu window greater than what the current

device can display (i.e. greater than gMaxMenuEntriesToDisplay)

2.1.35 Display Menu Message Indication
The Display Menu Message Indication message informs the application of the reception of a display menu
message request frame.

2.1.35.1 Message Structure
The Display Menu Message indication message has the following structure:

typedef struct fslProfileDisplayMenuMessageInd_tag
{
 uint8_t deviceId;
 menuMessageType_t messageType;
 uint8_t messageLength;
 uint8_t* pMessage;
}fslProfileDisplayMenuMessageInd_t;

The following table specifies the fields available in the Display Menu Header Indication message.

2.1.35.2 When Generated
The Display Menu Message Indication message is generated by the profile layer when it receives a display
menu message request frame.

Table 2-48. Display Menu Message Indication Message Structure

Field Type Possible Values Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Identifies the menu owner which has sent
the menu message.

messageType menuMessageType_t - The message type

messageLength uint8_t - The message length

pMessage uint8_t* - The message

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-43

2.1.35.3 Effect on Receipt
On receipt of the Display Menu Message Indication message the application has been provided with the
type and content of the message and the device Id of the message originator.

2.1.36 Display Menu Exit Indication
The Display Menu Exit Indication message informs the application of the reception of a display menu exit
request frame.

2.1.36.1 Message Structure
The Display Menu Message indication message has the following structure:

typedef struct fslProfileDisplayMenuExitInd_tag
{
 uint8_t deviceId;
}fslProfileDisplayMenuExitInd_t;

The following table specifies the fields available in the Display Menu Exit Indication message.

2.1.36.2 When Generated
The Display Menu Exit Indication message is generated by the profile layer when it receives a display
menu exit request frame.

2.1.36.3 Effect on Receipt
On receipt of the Display Menu Exit Indication message the application has been informed that the menu
on the owner has become inactive.

Table 2-49. Display Menu Exit Indication Message Structure

Field Type Possible Values Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Identifies the menu owner which has sent the menu message.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-44 Freescale Semiconductor

2.1.37 FSLProfile_DisplayMenuHeaderRequest
FSLProfile_BrowseMenuRequest instructs the profile layer of a menu owner with a light menu-owner
library to transmit a display menu header request frame to a menu displayer. To use this function, the
application must link to the RF4CE_FSLProfile_MenuOwnerLight library.

2.1.37.1 Prototype
FSLProfile_DisplayMenuHeaderRequest has the following prototype:

uint8_t FSLProfile_DisplayMenuEntryRequest(uint8_t deviceId,
 bool_t bUseSecurity,
 uint8_t entryIndex,
 uint8_t entryType,
 uint8_t contentType,
 uint8_t entryValueLength,
 uint8_t entryTextLength,
 uint8_t* pEntryValue,
 uint8_t* pEntryText);

The following table specifies the parameters for FSLProfile_DisplayMenuHeaderRequest.

The possible return values for the FSLProfile_DisplayMenuHeaderRequest API call are shown in the
following table.

Table 2-50. FSLProfile_DisplayMenuHeaderRequest Parameters

Name Type Valid range Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the menu displayer

bUseSecurity bool_t {FALSE, TRUE} Whether to use secured transmission or not

idxSelectedEntry uint8_t - Identifies the menu entry that is selected

nrMenuItemsInWindow uint8_t - The number of menu items in a window

nrMenuItemsInMenu uint16_t - The total number of items in the menu

firstEntryNumber uint16_t - The number of the first entry

contentType uint8_t - The type of content in the menu

menuTextlength uint8_t - The length of the text describing the menu

pMenuText uint8_t* - Some text describing the menu

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-45

2.1.37.2 Functionality
FSLProfile_DisplayMenuHeaderRequest is used to transmit a display menu header frame to a menu
displayer. This is the initial request in the process of sending a full menu window.

2.1.37.3 Effect on Receipt
On receipt of FSLProfile_DisplayMenuHeaderRequest, the profile layer verifies if all the conditions to
transmit a display menu header frame are met.

If the light menu owner functionality has not been initialized the function exits with gNWNotPermitted_c.
If the profile layer is busy with another request the function exits with gNWDenied_c. If the menu
displayer’s device Id is outside the bounds of the pair table the function exits with gNWInvalidParams_c.
If the menu displayer’s device Id points to an empty pair table entry index the function exits with
gNWDeviceIdNotPaired_c. If a secured transmission is requested but the pairing link is not secured the
function exits with gNWInvalidParams_c. If no memory could be allocated to construct the display menu
header frame payload the function exits with gNWNoMemory_c.

Otherwise the request is accepted for processing and the function returns gNWSuccess_c.

The profile layer now constructs a display menu header frame and sends it to the menu displayer using
acknowledged transmission. Once the menu owner’s MAC layer replies with an ack the application will
be notified via a display menu confirm message. The receiver is enabled indefinitely and the value of the
receiver’s initial active period is stored in an internal variable.

Table 2-51. FSLProfile_DisplayMenuHeaderRequest API Call Return Values

Type Possible Values Description

uint8_t gNWNotPermitted_c
gNWDenied_c
gNWInvalidParam_c
gNWDeviceIdNotPaired_c
gNWNoMemory_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.37.3, “Effect on Receipt”

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-46 Freescale Semiconductor

2.1.38 FSLProfile_DisplayMenuEntryRequest
FSLProfile_DisplayMenuEntryRequest instructs the profile layer of a menu owner with a light
menu-owner library to transmit a display menu header request frame to a menu displayer. To use this
function, the application must link to the RF4CE_FSLProfile_MenuOwnerLight library.

2.1.38.1 Prototype
FSLProfile_DisplayMenuEntryRequest has the following prototype:

uint8_t FSLProfile_DisplayMenuEntryRequest(uint8_t deviceId,
 bool_t bUseSecurity,
 uint8_t entryIndex,
 uint8_t entryType,
 uint8_t contentType,
 uint8_t entryValueLength,
 uint8_t entryTextLength,
 uint8_t* pEntryValue,
 uint8_t* pEntryText);

The following table specifies the parameters for FSLProfile_DisplayMenuEntryRequest.

The possible return values for the FSLProfile_DisplayMenuEntryRequest API call are shown in the
following table.

Table 2-52. FSLProfile_DisplayMenuEntryRequest Parameters

Name Type Valid range Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the menu displayer

bUseSecurity bool_t {FALSE, TRUE} Whether to use secured transmission or not

entryIndex uint8_t - Where in the menu window this entry should reside

entryType uint8_t - The type of the menu entry

contentType uint18_t - The type of content in the menu entry

entryValueLength uint18_t - The length of the entry value

entryTextLength uint8_t - The length of text in the menu entry

pEntryValue uint8_t* - The menu entry value

pEntryText uint8_t* - The menu entry text

Table 2-53. FSLProfile_DisplayMenuEntryRequest API Call Return Values

Type Possible Values Description

uint8_t gNWNotPermitted_c
gNWDenied_c
gNWInvalidParam_c
gNWDeviceIdNotPaired_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.38.3, “Effect on Receipt”

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-47

2.1.38.2 Functionality
FSLProfile_DisplayMenuEntryRequest is used to transmit a display menu header frame to a menu
displayer, either during the process of sending a full menu window or when a single menu entry needs to
be updated.

2.1.38.3 Effect on Receipt
On receipt of FSLProfile_DisplayMenuEntryRequest, the profile layer verifies if all the conditions to
transmit a display menu entry frame are met.

If the light menu owner functionality has not been initialized the function exits with gNWNotPermitted_c.
If the profile layer is busy with another request the function exits with gNWDenied_c. If the menu
displayer’s device Id is outside the bounds of the pair table the function exits with gNWInvalidParams_c.
If the menu displayer’s device Id points to an empty pair table entry index the function exits with
gNWDeviceIdNotPaired_c. If a secured transmission is requested but the pairing link is not secured the
function exits with gNWInvalidParams_c. If no memory could be allocated to construct the display menu
entry frame payload the function exits with gNWNoMemory_c.

Otherwise the request is accepted for processing and the function returns gNWSuccess_c.

The profile layer now constructs a display menu message frame and sends it to the menu displayer using
acknowledged transmission. Once the menu owner’s MAC layer replies with an ack the application will
be notified via a display menu confirm message. The receiver is enabled indefinitely and the value of the
receiver’s initial active period is stored in an internal variable.

2.1.39 FSLProfile_DisplayMenuMessageRequest
FSLProfile_DisplayMenuMessageRequest instructs the profile layer of a menu owner with a light
menu-owner library to transmit a display menu message request frame to a menu displayer. To use this
function, the application must link to the RF4CE_FSLProfile_MenuOwnerLight library.

2.1.39.1 Prototype
FSLProfile_DisplayMenuMessageRequest has the following prototype:

uint8_t FSLProfile_DisplayMenuMessageRequest(uint8_t deviceId,
 bool_t bUseSecurity,
 menuMessageType_t messageType,
 uint8_t messageLength,
 uint8_t* pMessage);

The following table specifies the parameters for FSLProfile_DisplayMenuMessageRequest.
Table 2-54. FSLProfile_DisplayMenuMessageRequest Parameters

Name Type Valid range Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the menu displayer

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-48 Freescale Semiconductor

The possible return values for the FSLProfile_DisplayMenuMessageRequest API call are shown in the
following table.

2.1.39.2 Functionality
FSLProfile_DisplayMenuMessageRequest is used to tramsmit a display menu message frame to a menu
displayer.

2.1.39.3 Effect on Receipt
On receipt of FSLProfile_DisplayMenuMessageRequest, the profile layer verifies if all the conditions to
transmit a display menu message frame are met.

If the light menu owner functionality has not been initialized the function exits with gNWNotPermitted_c.
If the profile layer is busy with another request the function exits with gNWDenied_c. If the menu
displayer’s device Id is outside the bounds of the pair table the function exits with gNWInvalidParams_c.
If the menu displayer’s device Id points to an empty pair table entry index the function exits with
gNWDeviceIdNotPaired_c. If a secured transmission is requested but the pairing link is not secured the
function exits with gNWInvalidParams_c. If no memory could be allocated to construct the display menu
message frame payload the function exits with gNWNoMemory_c.

Otherwise the request is accepted for processing and the function returns gNWSuccess_c.

The profile layer now constructs a display menu message frame and sends it to the menu displayer using
acknowledged transmission. Once the menu owner’s MAC layer replies with an ack the application will
be notified via a display menu confirm message. The receiver is enabled indefinitely and the value of the
receiver’s initial active period is stored in an internal variable.

bUseSecurity bool_t {FALSE, TRUE} Whether to use secured transmission or not

messageType menuMessageType_t - The type of the message

messageLength uint8_t - The length of the message

pMessage uint8_t* - The message to send

Table 2-55. FSLProfile_DisplayMenuEntryRequest API Call Return Values

Type Possible Values Description

uint8_t gNWNotPermitted_c
gNWDenied_c
gNWInvalidParam_c
gNWDeviceIdNotPaired_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.39.3, “Effect on Receipt”.

Table 2-54. FSLProfile_DisplayMenuMessageRequest Parameters (continued)

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-49

2.1.40 FSLProfile_DisplayMenuExitRequest
FSLProfile_DisplayMenuExitRequest instructs the profile layer of a menu owner with a light menu-owner
library to inform the menu displayer that the menu has become inactive. To use this function, the
application must link to the RF4CE_FSLProfile_MenuOwnerLight library.

2.1.40.1 Prototype
FSLProfile_DisplayMenuExitRequest has the following prototype:

uint8_t FSLProfile_DisplayMenuExitRequest(uint8_t deviceId,
 bool_t bUseSecurity);

The following table specifies the parameters for FSLProfile_DisplayMenuExitRequest.

The possible return values for the FSLProfile_DisplayMenuExitRequest API call are shown in the
following table.

2.1.40.2 Functionality
FSLProfile_DisplayMenuExitRequest is used to inform the menu displayer that the menu on the owner
has become idle.

2.1.40.3 Effect on Receipt
On receipt of FSLProfile_DisplayMenuExitRequest, the profile layer verifies if all the conditions to
transmit a display menu exit frame are met.

If the light menu owner functionality has not been initialized the function exits with gNWNotPermitted_c.
If the profile layer is busy with another request the function exits with gNWDenied_c. If the menu
displayer’s device Id is outside the bounds of the pair table the function exits with gNWInvalidParams_c.
If the menu displayer’s device Id points to an empty pair table entry index the function exits with
gNWDeviceIdNotPaired_c. If a secured transmission is requested but the pairing link is not secured the

Table 2-56. FSLProfile_DisplayMenuExitRequest Parameters

Name Type Valid range Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the menu displayer

bUseSecurity bool_t {FALSE, TRUE} Whether to use secured transmission or not

Table 2-57. FSLProfile_DisplayMenuExitRequest API Call Return Values

Type Possible Values Description

uint8_t gNWNotPermitted_c
gNWDenied_c
gNWInvalidParam_c
gNWDeviceIdNotPaired_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.40.3, “Effect on Receipt”.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-50 Freescale Semiconductor

function exits with gNWInvalidParams_c. If no memory could be allocated to construct the menu browse
complete frame payload the function exits with gNWNoMemory_c.

Otherwise the request is accepted for processing and the function returns gNWSuccess_c.

The profile layer now constructs a display menu exit frame and sends it to the menu displayer using
acknowledged transmission. Once the menu displayer’s MAC layer replies with an ack the application will
be notified via a display menu confirm message. The receiver is enabled indefinitely and the value of the
receiver’s initial active period is stored in an internal variable. The original value for the active period will
be re-instated once the display confirm message is received.

2.1.41 Display Menu Confirm
The Display Menu Confirm message informs the application about the transmission status of a display
menu frame (menu header, menu entry or menu message).

2.1.41.1 Message Structure
The Display Menu Confirm message has the following structure:

typedef struct fslProfileDisplayMenuCnf_tag
{
 uint8_t status;
 uint8_t deviceId;
}fslProfileDisplayMenuCnf_t;

The following table specifies the fields available in the Display Menu Confirm message.

2.1.41.2 When Generated
The Display Menu Confirm message is generated by the profile layer when the previously requested
transmission of a display menu frame has been completed. This can be either a display menu header frame
or a display menu entry frame or a display menu message frame

2.1.41.3 Effect on Receipt
When the Display Menu Confirm message arrives the application is notified of the completion status of a
request to transmit a display menu frame. The status field is copied from the NLDE Data Confirm message.
The profile layer can accept new requests and receiver’s active period is restored to the value it had before
transmission began.

Table 2-58. Display Menu Confirm Message Structure

Field Type Possible Values Description

status uint8_t gNWSuccess_c
or the network layer error code

Indicates either the successful transmission of the display menu
frame or identifies the error that has occured.

deviceId uint8_t 0 –
(gMaxPairTableEntries_c - 1)

Identifies the menu displayer to which the display menu frame
was transmitted.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-51

2.1.42 Menu Browse Indication
The Menu Browse Indication message informs the application of a light menu owner about the arrival of
a menu browse request frame from a menu browser.

2.1.42.1 Message Structure
The Menu Browse Indication message has the following structure:

typedef struct fslProfileMenuBrowseInd_tag
{
 uint8_t deviceId;
 menuBrowseDirection_t direction;
 bool_t bUseSecurity;
}fslProfileMenuBrowseInd_t;

The following table specifies the fields available in the Menu Browse Indication message.

2.1.42.2 When Generated
The Menu Browse Indication message is generated by the profile layer of a light menu owner when a menu
browse request frame is received from a menu browser.

2.1.42.3 Effect on Receipt
When the Menu Browse Indication message arrives the application is notified that the menu browser
device has made a menu browsing request.

Table 2-59. Menu Browse Indication Message Structure

Field Type Possible Values Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the menu browser

direction menuBrowseDirection_t menuBrowseUp_c
 menuBrowseDown_c
 menuBrowseLeft_c
 menuBrowseRight_c
 menuBrowseOk_c
 menuBrowseExit_c
 menuBrowseRefresh_c
 menuBrowseMax_c

The menu browsing direction

bUseSecurity bool_t {FALSE;TRUE} Indicates whether the menu browse request
was received encrypted or not

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-52 Freescale Semiconductor

2.1.43 FSLProfile_DisplayCompleteIndToBrowserRequest
FSLProfile_DisplayCompleteIndToBrowserRequest instructs the profile layer of a menu owner with a
light menu-owner library to inform the menu browser whether the menu displayer has acknowledged the
display menu frame requests. To use this function, the application must link to the
RF4CE_FSLProfile_MenuOwnerLight library.

2.1.43.1 Prototype
FSLProfile_DisplayCompleteIndToBrowserRequest has the following prototype:

uint8_t FSLProfile_DisplayCompleteIndToBrowserRequest(
 uint8_t browserDeviceId,
 uint8_t displayerDeviceId,
 bool_t bUseSecurity,
 uint8_t status
);

The following table specifies the parameters for FSLProfile_DisplayCompleteIndToBrowserRequest.

The possible return values for the FSLProfile_DisplayMenuMessageRequest API call are shown in the
following table:

2.1.43.2 Functionality
FSLProfile_DisplayMenuMessageRequest is used to inform the menu browser whether the menu
displayer has received the display menu requests generated by the owner in response to the browser’s
menu navigation requests.

Table 2-60. FSLProfile_DisplayCompleteIndToBrowserRequest Parameters

Name Type Valid range Description

browserDeviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the menu displayer

displayerDeviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the menu displayer

bUseSecurity bool_t {FALSE, TRUE} Whether to use secured transmission or not

status uint8_t gNWSuccess_cgNWNoResponse_c The status of the browsing request

Table 2-61. FSLProfile_DisplayCompleteIndToBrowserRequest API Call Return Values

Type Possible Values Description

uint8_t gNWNotPermitted_c
gNWDenied_c
gNWInvalidParam_c
gNWDeviceIdNotPaired_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.43.3, “Effect on Receipt”.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-53

2.1.43.3 Effect on Receipt
On receipt of FSLProfile_DisplayMenuMessageRequest, the profile layer verifies if all the conditions to
transmit a menu browse complete frame are met.

If the light menu owner functionality has not been initialized the function exits with gNWNotPermitted_c.
If the profile layer is busy with another request the function exits with gNWDenied_c. If the menu
displayer’s device Id is outside the bounds of the pair table the function exits with gNWInvalidParams_c.
If the menu displayer’s device Id points to an empty pair table entry index the function exits with
gNWDeviceIdNotPaired_c. If a secured transmission is requested but the pairing link is not secured the
function exits with gNWInvalidParams_c. If no memory could be allocated to construct the menu browse
complete frame payload the function exits with gNWNoMemory_c.

Otherwise the request is accepted for processing and the function returns gNWSuccess_c.

The profile layer now constructs a menu browse complete message frame and sends it to the menu browser
using acknowledged transmission. Once the menu owner’s MAC layer replies with an ack the application
will be notified via a display menu confirm message. The receiver is enabled indefinitely and the value of
the receiver’s initial active period is stored in an internal variable.

2.1.44 FSLProfile_InitOtapServerProcedure
FSLProfile_InitOtapServerProcedure initializes the over the air programming server functionality in the
profile layer. To use this function, the application must link to the RF4CE_FSLProfile_OtapServer library.

2.1.44.1 Function prototype
FSLProfile_InitOtapServerProcedure has the following prototype:

uint8_t FSLProfile_InitOtapServerProcedure(void);

FSLProfile_InitOtapServerProcedure has no parameters.

The possible return values for the FSLProfile_InitOtapServerProcedure API call are shown in the
following table:

2.1.44.2 Functionality
FSLProfile_InitOtapServerProcedure is used to enable the over the air programming functionality in the
profile layer on the server side.

Table 2-62. FSLProfile_InitOtapServerProcedure API Call Return Values

Type Possible Values Description

uint8_t gNWSuccess_c The function call always returns gNwSuccess_c

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-54 Freescale Semiconductor

2.1.44.3 Effect on Receipt
On receipt of the FSLProfile_InitOtapServerProcedure function call the profile layer initializes the over
the air programming functionality.

2.1.45 FSLProfile_InitOtapClientProcedure
FSLProfile_InitOtapClientProcedure initializes the over the air programming client functionality in the
profile layer. To use this function, the application must link to the RF4CE_FSLProfile_OtapClient library.

2.1.45.1 Function prototype
FSLProfile_InitOtapClientProcedure has the following prototype:

uint8_t FSLProfile_InitOtapClientProcedure(void);

FSLProfile_InitOtapClientProcedure has no parameters.

The possible return values for the FSLProfile_InitOtapClientProcedure API call are shown in the
following table:

2.1.45.2 Functionality
FSLProfile_InitOtapClientProcedure is used to enable the client over the air programming functionality in
the profile layer.

2.1.45.3 Effect on Receipt
On receipt of the FSLProfile_InitOtapClientProcedure function call the profile layer configures itself to
be able to handle the client over the air programming functionality. Timers are required for the profile layer
for the OTAP client functionality and the the function call tries to allocate them (taking care to avoid
double allocation in case of repeated calls). If no timers are available the function exits with
gNWNoTimers_c. Otherwise the function call returns gNWSuccess_c and the client over the air
programming functionality is available for use.

2.1.46 OTAP Server Query Next Image Indication
The OTAP Server Query Next Image Indication message informs the server application layer of the arrival
of a query next image command frame from a client, requesting a new image.

Table 2-63. FSLProfile_InitOtapClientProcedure API Call Return Values

Type Possible Values Description

uint8_t gNWSuccess_c
gNWNoTimers_c

All possible return values are fully described in Section 2.1.45.3

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-55

2.1.46.1 Message Structure
The OTAP Server Query Next Image Indication message has the following structure:

typedef struct fslProfileOtapServerQueryNextImageInd_tag
{
 uint8_t deviceId;
 uint8_t fileVersion[4];
 uint8_t hardwareVersion[2];
}fslProfileOtapServerQueryNextImageInd_t;

The following table specifies the fields available in the OTAP Server Query Next Image Indication
message.

2.1.46.2 When Generated
The OTAP Server Query Next Image Indication message is generated by the arrival of a query next image
request frame from a paired device at the profile layer. The message contains the requester’s deviceId,
current firmware version and hardware version.

2.1.46.3 Effect on Receipt
On receipt of the OTAP Server Query Next Image Indication message the application is informed that a
paired device is looking for an upgraded firmware image. The application is also informed of the
requester’s current firmware and hardware version.

2.1.47 OTAP Server Query Next Block Request Indication
The OTAP Server Query Next Block Request Indication message informs the server application layer of
the arrival of query next block frame from a paired client device. The client is requesting a new block
(fragment) from the firmware image. The message specifies the firmware image version and block offset
the client is requesting, plus the maximum block size it can accept.

2.1.47.1 Message Structure
The OTAP Server Query Next Block Request Indication message has the following structure:

typedef struct fslProfileOtapServerNextBlockReqInd_tag
{
 uint8_t deviceId;

Table 2-64. OTAP Server Query Next Image Indication message structure

Field Type Possible Values Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the device requesting
a new flash image

fileVersion uint8_t[4] - The client’s current firmware version

hardwareVersion uint8_t[2] - The client’s hardware version

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-56 Freescale Semiconductor

 uint8_t fileVersion[4];
 uint8_t fileOffset[4];
 uint8_t maxDataSize;
}fslProfileOtapOrigNextBlockReqInd_t;

The following table specifies the fields available in the OTAP Server Query Next Block Request Indication
message.

2.1.47.2 When Generated
The OTAP Server Query Next Block Request Indication message is generated by the arrival of a query
next block request frame from a paired device at the profile layer.

2.1.47.3 Effect of Receipt
On receipt of the OTAP Server Query Next Block Request Indication message the application is informed
that a paired client is requesting the next fragment of the upgraded firmware image. The application should
check if it can provide the requested block, and, if so, respond by calling FSLProfile_OtapServerSend with
a message type of gFslProfileOtapNextBlockRespCmd_c. The client times out waiting for the response in
10 seconds after sending the Query Next Block frame over the air.

2.1.48 OTAP Server Upgrade End Request Indication
The OTAP Server Upgrade End Request Indication message informs the server application layer that a
client has received a complete new firmware image.

2.1.48.1 Message Structure
The OTAP Server Upgrade End Request Indication message has the following structure:

typedef struct fslProfileOtapServerUpgradeEndReqInd_tag
{
 uint8_t deviceId;
 uint8_t status;
 uint8_t fileVersion[4];
}fslProfileOtapServerUpgradeEndReqInd_t;

Table 2-65. OTAP Server Query Next Block Request Indication message structure

Field Type Possible Values Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the device requesting
a new block

fileVersion uint8_t[4] - The requested image’s version

fileOffset uint8_t[4] - The offset from the start of the requested block

maxDataSize uint8_t 0x01-0xff The maximum data size the client can accept

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-57

The following table specifies the fields available in the OTAP Server Upgrade End Request Indication
message:

2.1.48.2 When Generated
The OTAP Server Upgrade End Request Indication message is generated by the arrival of an upgrade end
request frame from a client, signaling that it has received the the entire new firmware image.

2.1.48.3 Effect of Receipt
On receipt of the OTAP Server UPgrade End Request Indication message the application is informed that
a client has completed the image transfer process. The application should respond with a call to
FSLProfile_OtapServerSend and a message of type gProfileCmfIdOtapUpgradeEndReq.

2.1.49 FSLProfile_OtapServerSend
The FSLProfile_OtapServerSend function call allows a server application to transmit a message to the
client. This includes information about available firmware images and actual pieces of the firmware
images.

2.1.49.1 Function prototype
FSLProfile_OtapServerSend has the following prototype:

uint8_t FSLProfile_OtapOrigSend(
 uint8_t deviceId,
 fslProfileApptoOtapCmd_t* otapCmdMsg
);

The following table specifies the parameters for FSLProfile_OtapServerSend

Table 2-66. OTAP Server Upgrade End Request Indication message structure

Field Type Possible Values Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the device requesting
a new flash image

status uint8_t gNWSuccess_c Implemented for later use

fileVersion uint8_t[4] - The new firmware version of the client

Table 2-67. FSLProfile_OtapServerSend Parameters

Name Type Valid range Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) or
0xFF

Pair table entry index of the client, or 0xFF if the
server is multicasting a new image notification
to all paired devices

otapCmdMsg fslProfileAppToOtapCmd_t* - Pointer to a structure describing the message
to send

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-58 Freescale Semiconductor

The possible return values for the FSLProfile_OtapServerSend API call are shown in the following table.

2.1.49.2 Functionality
FSLProfile_OtapServerSend is used to by the server application to send a message to one or more OTAP
clients. The following messages can be sent:

• Notification that a new firmware image is available for download
• Information about the firmware image available for download
• Firmware image block
• The time when the client must start using the new firmware, measured

from the moment it reports that it has received the entire image.

The otapCmdMsg parameter specifies the type of message that will be transmitted. It is a pointer to a
structure with the following format:

typedef struct fslProfileApptoOtapCmd_tag
{
 fslProfileOTAPOrigCommand_t cmdType;
 union {
 imageNotify_t imageNotify;
 queryNextImgResp_t queryNextImgResp;
 imageBlockResp_t imageBlockResp;
 upgradeEndResp_t upgradeEndResp;
 } cmdData;
}fslProfileApptoOtapCmd_t;

The fields in the structure are described in the following table:

The otapCmdMsg parameter may point to a structure either on the stack, or in an allocated message buffer.
The function will not free the message before exiting. If the structure is in an allocated buffer, it is the
application’s responsibility to free it.

Table 2-68. FSLProfile_OtapServerSend API Call Return Values

Type Possible Values Description

uint8_t gNWSuccess_c
gNWNotPermitted_c
gNWNoMemory_c
gNWDenied_c

All possible return values are fully described in Section 2.1.49.3

Table 2-69. fslProfileApptoOtapCmd_t

Name Type Possible values Description

cmdType enumeration gFslProfileOtapImageNotifyCmd
gFslProfileOtapQueryNextImageRespCmd

gFlsProfileOtapNextBlockRespCmd
gFlsProfileOtapUpgradeEndRespCmd

Message type, identifies the valid union member

cmdData union - Each union member is described below

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-59

To send a message of a particular type set the cmdType parameter to the appropriate message type, and fill
in the fields of the corresponding cmdData union member. Each message type and union member are
described below.

2.1.49.2.1 Image notify message

The image notify message is used to announce that a new firmware image is available for download.

The corresponding command type is gFslProfileOtapImageNotifyCmd and the msgData union member is
imageNotify of type imageNotify_t, which has the following format:

typedef struct imageNotify_tag
{
 uint8_t jitterVal;
 uint8_t imageType[2];
 uint8_t fileVersion[4];
}imageNotify_t;

The fields of the imageNotify_t structure are described in the following table:

2.1.49.2.2 Query next image response

The query next image response is used to send a block of a firmware image to a client, in response to its
request for it (i.e. the reception by the server of a Query Next Image Indication message).

The corresponding command type is gFslProfileOtapQueryNextImageRespCmd and the msgData union
member is queryNextImageResp of type queryNextImageResp_t, which has the following format:

typedef struct queryNextImgResp_tag
{
 queryCmdStatusCode_t status;
 uint8_t fileVersion[4];
 uint8_t imageSize[4];
 uint8_t crc[4];
 uint8_t bitmapLength;
 #if (defined(PROCESSOR_QE128) || defined(PROCESSOR_MC1323X))
 uint8_t bitmap[32];
 #else
 uint8_t bitmap[15];

Table 2-70. imageNotifiy_t fields

Name Type Possible
values Description

jitterVal uint8_t 0x01 - 0x64 Server selected value used to avoid flooding the server with image
requests. Receiving clients generate a random value between 0x01 and
0x64 and if it is larger than the received jitter value it will ignore the
message. Setting the jitter to 0x32 will cause approximately half the
clients to request the new image, 0x16 one quarter, and setting it to 0x64
will remove any restriction

imageType uint8_t[2] - Image type, application specific

fileVersion uint8_t[2] - New image firmware version

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-60 Freescale Semiconductor

 #endif
}queryNextImgResp_t;

The fields of the queryNextImageResp_t structure are described in the following table:

2.1.49.2.3 Image Block Response

The Image Block Response message is used to send a block of the upgraded firmware image to the client,
in response to the client’s request for that particular block (i.e. the reception by the server of an Image
Block Request message).

The corresponding command type is gFslProfileOtapImageBlockRespCmd and the msgData union
member is imageBlockResp of type imageBlockResp_t, which has the following format:

typedef struct imageBlockResp_tag
{
 nextBlockStatusCode_t status;
 uint8_t fileOffset[4];
 uint8_t dataSize;
 uint32_t addressImage;
 uint8_t* pData;
}imageBlockResp_t;

The fields of the imageBlockResp_t structure are described in the following table:

Table 2-71. queryNextImageResp_t fields

Name Type Possible values Description

status enumeration gNWSuccess_c
gFSLProfile_NotAuthorized

gFSLProfile_NotImageAvailable

Query status: either success, or the server is
not authorized to transmit the image, or the
request was invalid

fileVersion uint8_t[2] - Available firmware version

imageSize uint8_t[4] - Available firmware image size in little endian

crc uint8_t[4] 0x00000000 - 0x0000ffff The 16 bit CRC-CCITT (0x1021) of the image

bitmapLength uint8_t 0x00-0xFF Bitmap string length

bitmap uint8_t[32] - Bitmap of the flash pages which must/must
not be overwritten by the new image. If the bit
is 1, the corresponding flash page must be
overwritten from the new image, if 0 it must
remain the same. The size of the flash page
depends on the MCU.

Table 2-72. imageBlockResp_t fields

Name Type Possible values Description

status enumeration gNWSuccess_c
gFSLProfile_BlockStateAbort

Request status: either success, or the server
is aborting the process

fileOffset uint8_t[2] - Image file offset of the block to be sent

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-61

2.1.49.2.4 Upgrade End Response

This message is sent in response to a notification from the client that it has received the entire new
firmware image (i.e. the reception by the server of an Upgrade End Request message). It instructs the client
to switch to the new image after a specified delay.

The corresponding command type is gFslProfileOtapUpgradeEndRespCmd and the msgData union
member is upgradeEndResp of type upgradeEndResp_t, which has the following format:

typedef struct upgradeEndResp_tag
{
 uint8_t delayUntilUpgrade[4];
}upgradeEndResp_t;

The fields of the upgradeEndResp_t structure are described in the following table:

2.1.49.3 Effect on receipt
On Receipt of the FSLProfile_OtapOrigSend, the profile layer checks if can transmit the requested
message. If the OTAP server functionality has not been initialized the function exits with
gNWNotPermitted_c. If the profile layer is currently busy the function exits with gNWDenied_c. If no
message buffers could be allocated for transmission the function exits with gNWNoMemory_c. Otherwise,
the message frame is constructed and passed to the network layer for over the air transmission and the
function returns gNWSuccess_c. When transmission is complete, the application will be notified via an
OTAP Server Confirm message.

2.1.50 OTAP Server Confirm
The OTAP Server confirm message informs the server application about the completion of an OTAP
transmission initiated by a call to FSLProfile_OtapServerSend.

2.1.50.1 Message Structure
The OTAP Server Confirm message has the following structure:

dataSize uint8_t[4] 0x00-0x46 Size of the block to be sent, in bytes

addressImage uint32_t - Reserved for future use

pData uint8_t* - Pointer to the actual firmware image block

Table 2-73. upgradeEndResp_t fields

Name Type Possible values Description

delayUntilUpgrade uint8_t[4] - The time in milliseconds and in little endian format, when the client must
switch to using the new firmware.

Table 2-72. imageBlockResp_t fields

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-62 Freescale Semiconductor

typedef struct upgradeEndResp_tag
{
 uint8_t delayUntilUpgrade[4];
}upgradeEndResp_t;

The following table specifies the fields available in the OTAP Server Confirm message.

2.1.50.2 When Generated
The OTAP Server Confirm message is generated by the profile layer at the conclusion of an OTAP
message transmission process.

2.1.50.3 Effect on Receipt
On receipt of an OTAP Server Confirm message the application layer is notified of the result of the OTAP
message transmission process.

2.1.51 OTAP Client Image Notify Indication
The OTAP Client Image Notify Indication message is generated by the arrival of an OTAP Image Notify
message from a paired device.

2.1.51.1 Message Structure
The OTAP Client Image Notify Indication message has the following structure:

typedef struct fslProfileOtapClientImageNotifyInd_tag
{
 uint8_t deviceId;
 uint8_t fileVersion[4];
} fslProfileOtapClientImageNotifyInd_t;

The following table specifies the fields in the OTAP Client Image Notify message:

Table 2-74. OTAP Server Confirm message structure

Field Type Possible Values Description

status uint8_t gNWSuccess_c or the network
layer error code

Indicates either the successful transmission of
the OTAP message or the error that has
occured

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1)
or 0xFF

OTAP message destination

Table 2-75. OTAP Server Confirm message structure

Field Type Possible Values Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) device Id of the server

fileVersion uint8_t[4] - The available firmware version

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-63

2.1.51.2 When Generated
The OTAP Client Image Notify Indication message is generated by the arrival of and OTAP Client Image
frame from a paired OTAP server. The profile layer first generates a random value in the [0x01, 0x64]
interval and compares it to the jitter value in the OTAP Client Image frame. The indication message is only
sent to the application if the generated value is less than the jitter; otherwise the the received frame is
silently discarded.

2.1.51.3 Effect on Receipt
On receipt of the OTAP Client Image Notify Indication message the client application is informed that a
new firmware image with the specified version is available from the server with the specified device Id.

2.1.52 FSLProfile_OtapQueryNextImageRequest
FSLProfile_OtapQueryNextImageRequest is used by clients to initiate an upgrade image download
process.

2.1.52.1 Function Prototype
FSLProfileOtapQueryNextImageRequest has the following prototype:

uint8_t FSLProfile_OtapQueryNextImageRequest(
 uint8_t deviceId,
 const uint8_t fileVersion[4],
 const uint8_t hardwareVersion[2]
);

The following table specifies the parameters for FSLProfile_OtapQueryNextImageRequest:

The possible return values for the FSLProfile_OtapQueryNextImageRequest API call are shown in the
following table:

Table 2-76. FSLProfile_OtapQueryNextImageRequest parameters

Name Type Valid range Description

deviceId uint8_t 0 – (gMaxPairTableEntries_c - 1) Pair table entry index of the OTAP server

fileVersion const uint8_t[4] - the client’s current firmware version

hardwareVersion const uint8_t[4] - the client’s hardware version

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-64 Freescale Semiconductor

2.1.52.2 Functionality
FSLProfile_OtapQueryNextImageRequest is used on an OTAP client to start the process of downloading
a new firmware image from an OTAP server.

First a query next image frame will be sent to the server to inquire about available upgrade images. If none
are available, the application will receive an OTAP Query Next Image Confirm message with a status of
gFSLProfile_NotImageAvailable. If the server replies that the client is not authorized to receive an
upgrade, the application will receive and OTAP Query Next Image Confirm message with a status of
gFSLProfile_NotAuthorized.

If there is an upgrade firmware image available the actual download process will begin. The profile layer
will ask for the firmware image, block by block and write it into the external EEPROM. Once download
is complete the CRC will be checked. If the CRC is invalid, the process is aborted and the application
will.receive an OTAP Query Next Image Confirm message with a status of gNWAborted_c. Otherwise the
server will be notified that download is complete and it will reply with the time when the client must switch
to the new firmware. The application will receive an OTAP Query Next Image Confirm message with a
status of gNWSuccess_c and the delayUntilUpgrade field will contain the time, in milliseconds, when the
client must switch to using the new firmware.

If there is a lower layer error at any point during the process, it will be aborted and the application will
receive an OTAP Query Next Image Confirm message with a status containing the lower layer error code.

2.1.52.3 Effect on receipt
When the FSLProfile_OtapQueryNextImageRequest function is called, the profile layer checks whether
it can transmit the query next image frame to the specified OTAP server. If the OTAP client functionality
has not been initialized the function exits with gNWNotPermitted_c. If the profile layer is currently busy
the function exits with gNWDenied_c. If needed message buffers could not be allocated the function exits
with gNWNoMemory_c. Otherwise, the query next image frame is constructed and passed to the network
layer for transmission, and the function exits with gNWSuccess_c.

Table 2-77. FSLProfile_OtapQueryNextImageRequest API call return Values

Type Possible Values Description

uint8_t gNWDenied_c
gNWNotPermitted_c
gNWInvalidParam_c
gNWNoMemory_c
gNWSuccess_c

All possible return values are fully described in Section 2.1.52.3.

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

Freescale Semiconductor 2-65

2.1.53 Over the Air Programming (OTAP) Client Query Next Image Confirm
The OTAP Client Query Next Image Confirm message informs the application about the completion of an
upgrade firmware image download process initiated by a FSLProfile_QueryNextImageRequest function
call.

2.1.53.1 Message structure
The OTAP Client Query Next Image Confirm message has the following structure:

typedef struct fslProfileOtapClientQueryNextImgCnf_tag
{
 uint8_t status;
 uint8_t delayUntilUpgrade[4];
}fslProfileOtapClientQueryNextImgCnf_t;

The following table describes the fields in the OTAP Client Query Next Image Confirm message:

2.1.53.2 When Generated
The OTAP Client Query Next Image Confirm message is generated when an upgrade image download is
finished (successfully or not). See Section 2.1.52.2 for a description of the download process.

2.1.53.3 Effect on Receipt
On receipt of the OTAP Client Query Next Image Confirm message the application is notified about the
completion of an upgrade image download process. If the process was successful, the application is also
informed about the time when it must re-boot with the new firmware image.

Table 2-78. OTAP Server Confirm message structure

Field Type Possible Values Description

status uint8_t gNWSuccess_c
gNWAborted_c
gFSLProfile_NotAuthorized
gFSLProfile_NotImageAvailable
or the network layer error code

All status codes are fully described in Section 2.1.52.2

fileVersion uint8_t[4] - The time when the client needs to switch to using the new firmware.
Unused when the status is different than gNWSuccess_c

Private Profile Software Usage

BeeStack Consumer Private Profile Reference Manual, Rev. 1.2

2-66 Freescale Semiconductor

	About This Book
	Audience
	Organization
	Revision History
	Conventions
	Definitions, Acronyms, and Abbreviations
	Chapter 1 Private Profile Overview
	1.1 Private Profile Introduction
	1.2 Private Profile Libraries

	Chapter 2 Private Profile Software Usage
	2.1 Private Profile Service Specifications
	2.1.1 FSLProfile_GetSupportedFeatures
	2.1.1.1 Prototype
	2.1.1.2 Functionality
	2.1.1.3 Effect on Receipt

	2.1.2 Get Supported Features Confirm
	2.1.2.1 Message Structure
	2.1.2.2 When Generated
	2.1.2.3 Effect on Receipt

	2.1.3 FSLProfile_InitRmtPairOrigProcedure
	2.1.3.1 Prototype
	2.1.3.2 Functionality
	2.1.3.3 Effect on Receipt

	2.1.4 FSLProfile_InitRmtPairRecipProcedure
	2.1.4.1 Prototype
	2.1.4.2 Functionality
	2.1.4.3 Effect on Receipt

	2.1.5 FSLProfile_RmtPairRequest
	2.1.5.1 Prototype
	2.1.5.2 Functionality
	2.1.5.3 Effect on Receipt

	2.1.6 Remote Pair Confirm
	2.1.6.1 Message Structure
	2.1.6.2 When Generated
	2.1.6.3 Effect on Receipt

	2.1.7 Remote Pair Indication
	2.1.7.1 Message Structure
	2.1.7.2 When Generated
	2.1.7.3 Effect on Receipt

	2.1.8 FSLProfile_RmtPairResponse
	2.1.8.1 Prototype
	2.1.8.2 Functionality
	2.1.8.3 Effect on Receipt

	2.1.9 Remote Pair Response Confirm
	2.1.9.1 Message Structure
	2.1.9.2 When Generated
	2.1.9.3 Effect on Receipt

	2.1.10 FSLProfile_InitFragTxOrigProcedure
	2.1.10.1 Prototype
	2.1.10.2 Functionality
	2.1.10.3 Effect on Receipt

	2.1.11 FSLProfile_InitFragTxRecipProcedure
	2.1.11.1 Prototype
	2.1.11.2 Functionality
	2.1.11.3 Effect on Receipt

	2.1.12 FSLProfile_SetFragTxRxBufferStateRequest
	2.1.12.1 Prototype
	2.1.12.2 Functionality
	2.1.12.3 Effect on Receipt
	2.1.12.4 Returns

	2.1.13 FSLProfile_GetFragTxRxBufferStateRequest
	2.1.13.1 Prototype
	2.1.13.2 Functionality
	2.1.13.3 Effect on Receipt

	2.1.14 FSLProfile_FragTxRequest
	2.1.14.1 Prototype
	2.1.14.2 Functionality
	2.1.14.3 Effect on Receipt

	2.1.15 Fragmented Transmission Confirm
	2.1.15.1 Message Structure
	2.1.15.2 When Generated
	2.1.15.3 Effect on Receipt

	2.1.16 Fragmented Transmission Start Indication
	2.1.16.1 Message Structure
	2.1.16.2 When Generated
	2.1.16.3 Effect on Receipt

	2.1.17 Fragmented Transmission Indication
	2.1.17.1 Message Structure
	2.1.17.2 When Generated
	2.1.17.3 Effect on Receipt

	2.1.18 FSLProfile_InitPollOrigProcedure
	2.1.18.1 Prototype
	2.1.18.2 Functionality
	2.1.18.3 Effect on Receipt

	2.1.19 FSLProfile_InitPollRecipProcedure
	2.1.19.1 Prototype
	2.1.19.2 Functionality
	2.1.19.3 Effect on Receipt

	2.1.20 FSLProfile_PollConfigRequest
	2.1.20.1 Prototype
	2.1.20.2 Functionality
	2.1.20.3 Effect on Receipt

	2.1.21 FSLProfile_PollRequest
	2.1.21.1 Prototype
	2.1.21.2 Functionality
	2.1.21.3 Effect on Receipt

	2.1.22 Poll Confirm
	2.1.22.1 Message Structure
	2.1.22.2 When Generated
	2.1.22.3 Effect on Receipt

	2.1.23 Poll Indication
	2.1.23.1 Message Structure
	2.1.23.2 When Generated
	2.1.23.3 Effect on Receipt

	2.1.24 FSLProfile_PollDataAvailable
	2.1.24.1 Prototype
	2.1.24.2 Functionality
	2.1.24.3 Effect on Receipt

	2.1.25 Poll Event
	2.1.25.1 Message Structure
	2.1.25.2 When Generated
	2.1.25.3 Effect on Receipt

	2.1.26 FSLProfile_InitMenuBrowserProcedure
	2.1.26.1 Prototype
	2.1.26.2 Functionality
	2.1.26.3 Effect On Receipt

	2.1.27 FSLProfile_InitMenuOwnerLightProcedure
	2.1.27.1 Prototype
	2.1.27.2 Functionality
	2.1.27.3 Effect on receipt

	2.1.28 FSLProfile_InitMenuDisplayerProcedure
	2.1.28.1 Prototype
	2.1.28.2 Functionality
	2.1.28.3 Effect on receipt

	2.1.29 FSLProfile_BrowseMenuRequest
	2.1.29.1 Prototype
	2.1.29.2 Functionality
	2.1.29.3 Effect on Receipt

	2.1.30 Menu Browse Confirm
	2.1.30.1 Message Structure
	2.1.30.2 When Generated
	2.1.30.3 Effect on receipt

	2.1.31 Menu Browse Complete Indication
	2.1.31.1 Message Structure
	2.1.31.2 When Generated
	2.1.31.3 Effect on receipt

	2.1.32 Display Menu Header Indication
	2.1.32.1 Message Structure
	2.1.32.2 When Generated
	2.1.32.3 Effect on receipt

	2.1.33 Display Menu Entry Indication
	2.1.33.1 Message Structure
	2.1.33.2 When Generated
	2.1.33.3 Effect on Receipt

	2.1.34 Display Menu Complete Indication
	2.1.34.1 Message Structure
	2.1.34.2 When Generated
	2.1.34.3 Effect on Receipt

	2.1.35 Display Menu Message Indication
	2.1.35.1 Message Structure
	2.1.35.2 When Generated
	2.1.35.3 Effect on Receipt

	2.1.36 Display Menu Exit Indication
	2.1.36.1 Message Structure
	2.1.36.2 When Generated
	2.1.36.3 Effect on Receipt

	2.1.37 FSLProfile_DisplayMenuHeaderRequest
	2.1.37.1 Prototype
	2.1.37.2 Functionality
	2.1.37.3 Effect on Receipt

	2.1.38 FSLProfile_DisplayMenuEntryRequest
	2.1.38.1 Prototype
	2.1.38.2 Functionality
	2.1.38.3 Effect on Receipt

	2.1.39 FSLProfile_DisplayMenuMessageRequest
	2.1.39.1 Prototype
	2.1.39.2 Functionality
	2.1.39.3 Effect on Receipt

	2.1.40 FSLProfile_DisplayMenuExitRequest
	2.1.40.1 Prototype
	2.1.40.2 Functionality
	2.1.40.3 Effect on Receipt

	2.1.41 Display Menu Confirm
	2.1.41.1 Message Structure
	2.1.41.2 When Generated
	2.1.41.3 Effect on Receipt

	2.1.42 Menu Browse Indication
	2.1.42.1 Message Structure
	2.1.42.2 When Generated
	2.1.42.3 Effect on Receipt

	2.1.43 FSLProfile_DisplayCompleteIndToBrowserRequest
	2.1.43.1 Prototype
	2.1.43.2 Functionality
	2.1.43.3 Effect on Receipt

	2.1.44 FSLProfile_InitOtapServerProcedure
	2.1.44.1 Function prototype
	2.1.44.2 Functionality
	2.1.44.3 Effect on Receipt

	2.1.45 FSLProfile_InitOtapClientProcedure
	2.1.45.1 Function prototype
	2.1.45.2 Functionality
	2.1.45.3 Effect on Receipt

	2.1.46 OTAP Server Query Next Image Indication
	2.1.46.1 Message Structure
	2.1.46.2 When Generated
	2.1.46.3 Effect on Receipt

	2.1.47 OTAP Server Query Next Block Request Indication
	2.1.47.1 Message Structure
	2.1.47.2 When Generated
	2.1.47.3 Effect of Receipt

	2.1.48 OTAP Server Upgrade End Request Indication
	2.1.48.1 Message Structure
	2.1.48.2 When Generated
	2.1.48.3 Effect of Receipt

	2.1.49 FSLProfile_OtapServerSend
	2.1.49.1 Function prototype
	2.1.49.2 Functionality
	2.1.49.3 Effect on receipt

	2.1.50 OTAP Server Confirm
	2.1.50.1 Message Structure
	2.1.50.2 When Generated
	2.1.50.3 Effect on Receipt

	2.1.51 OTAP Client Image Notify Indication
	2.1.51.1 Message Structure
	2.1.51.2 When Generated
	2.1.51.3 Effect on Receipt

	2.1.52 FSLProfile_OtapQueryNextImageRequest
	2.1.52.1 Function Prototype
	2.1.52.2 Functionality
	2.1.52.3 Effect on receipt

	2.1.53 Over the Air Programming (OTAP) Client Query Next Image Confirm
	2.1.53.1 Message structure
	2.1.53.2 When Generated
	2.1.53.3 Effect on Receipt

