
Freescale Semiconductor, Inc.
CodeWarrior™
Development Studio

Assembler Reference

 Revised 07/17/2003
For more information: www.freescale.com

Freescale Semiconductor, Inc.
Metrowerks, the Metrowerks logo, and CodeWarrior are registered trademarks of Metrowerks Corp. in the US and/or
other countries. All other tradenames and trademarks are the property of their respective owners.

Copyright © Metrowerks Corporation. 2003. ALL RIGHTS RESERVED.

The reproduction and use of this document and related materials are governed by a license agreement media,
it may be printed for non-commercial personal use only, in accordance with the license agreement related to the
product associated with the documentation. Consult that license agreement before use or reproduction of any
portion of this document. If you do not have a copy of the license agreement, contact your Metrowerks repre-
sentative or call 800-377-5416 (if outside the US call +1-512-996-5300). Subject to the foregoing non-commercial
personal use, no portion of this documentation may be reproduced or transmitted in any form or by any means,
electronic or mechanical, without prior written permission from Metrowerks.

Metrowerks reserves the right to make changes to any product described or referred to in this document without further
notice. Metrowerks makes no warranty, representation or guarantee regarding the merchantability or fitness of its prod-
ucts for any particular purpose, nor does Metrowerks assume any liability arising out of the application or use of any
product described herein and specifically disclaims any and all liability. Metrowerks software is not authorized for
and has not been designed, tested, manufactured, or intended for use in developing applications where the fail-
ure, malfunction, or any inaccuracy of the application carries a risk of death, serious bodily injury, or damage
to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities,
nuclear facilities, aircraft navigation or communication, emergency systems, or other applications with a simi-
lar degree of potential hazard.

USE OF ALL SOFTWARE, DOCUMENTATION AND RELATED MATERIALS ARE SUBJECT TO THE
METROWERKS END USER LICENSE AGREEMENT FOR SUCH PRODUCT.

How to Contact Metrowerks

Corporate Headquarters Metrowerks Corporation
7700 West Parmer Lane
Austin, TX 78729
U.S.A.

World Wide Web http://www.metrowerks.com

Sales Voice: 800-377-5416
Fax: 512-996-4910
Email: sales@metrowerks.com

Technical Support Voice: 800-377-5416
Email: support@metrowerks.com
For more information: www.freescale.com

http://www.metrowerks.com

Contents

1 Introduction 5
Read the Release Notes! . 5

What’s in This Book . . 5

Chapter Descriptions . 6

Code Examples. . 6

Conventions Used in This Manual . 7

Where to Learn More . 7

2 Assembly Language Syntax 9
Assembly Language Statements Description 9

Assembly Language Statement Syntax. 10

Symbols . 11

Labels . 12

Equates . 14

Case-sensitive identifiers . 16

Constants . 16

Integer Constants . 17

Floating-Point Constants . 18

Character Constants . 18

Expressions . 19

Comments . 21

Data Alignment. 22

3 Using Directives 23
Macro Directives . 23

Conditional Preprocessor Directives. 25

Other conditional preprocessor directives 29

Section Control Directives . 30

Scope Control Directives . 35

Symbol Definition Directives . 36

Data Declaration Directives . 37

Freescale Semiconductor, Inc.
3Assembler Reference

For more information: www.freescale.com

Contents Freescale Semiconductor, Inc.
Integer Directives . 37

String Directives . 38

Floating-Point Directives . 39

Assembler Control Directives . 40

Debugging Directives . 43

4 Using Macros 47
Defining Macros . 47

Macro Definition Syntax . 47

Using Macro Arguments . 50

Using Local Labels in a Macro 52

Creating Unique Labels and Equates 52

Referring to the Number of Arguments 53

Invoking Macros . 53

5 Common Assembler Settings 55
Displaying Assembler Target Settings Panel 55

Common Assembler Settings Descriptions 56

Labels must end with : . 56

Directives begin with . . 57

Case-sensitive identifiers . 57

Allow space in operand field . 57

Generate listing file . 58

Prefix file . 58

6 PowerPC-Specific Information 59
Related Documentation. 59

PowerPC-Specific Examples . 59

Index 65
4 Assembler Reference

For more information: www.freescale.com

Freescale Semiconductor, Inc.
1
Introduction

This manual describes the assembly language syntax and the CodeWarrior IDE
settings for the processor-specific assemblers provided by CodeWarrior.

This chapter includes the following topics:

• Read the Release Notes!

• What’s in This Book

• Conventions Used in This Manual

• Where to Learn More

Read the Release Notes!
The release notes contain important information about new features, bug fixes, and
incompatibilities and reside in the following directory:

{CodeWarrior directory}\Release_Notes

What’s in This Book
CodeWarrior provides several assemblers, depending on the processor for which you
are developing code. This manual describes the syntax for assembly language
statements, including macros and directives, used by the CodeWarrior assemblers.

NOTE Refer to the Targeting manual for your target processor and C
Compilers Reference for information on the inline assembler
provided by the CodeWarrior C/C++ compiler.

The basic syntax of assembly language statements is identical among the processor-
specific assemblers (which this manual describes). However, the instruction
mnemonics and register names for each processor differ.
5Assembler Reference

For more information: www.freescale.com

Introduction
What’s in This Book

Freescale Semiconductor, Inc.
This manual assumes you are familiar with assembly language and the processor for
which you are developing code.

Unless otherwise stated, all the information in this manual applies to all the
assemblers.

NOTE When this manual states that information applies to the assembler,
the information refers to all the assemblers unless otherwise stated.

Chapter Descriptions
 Table 1.1 describes each chapter.

Code Examples
The code examples in the general chapters of this manual (Table 1.1 on page 6) are for
x86 processors. Any processor-specific chapters included in this manual contain
corresponding examples wherever the code differs for the processor discussed in that
chapter. Each processor-specific example also is cross-referenced to the corresponding
example in the general chapters.

Table 1.1 Chapter descriptions

Chapter Title Description

Introduction This chapter, which describes this
manual.

Assembly Language Syntax Describes the main syntax of
assembly language statements.

Using Directives Describes the assembler directives.

Using Macros Describes how to define and invoke
macros.

Common Assembler Settings Describes the assembler settings that
are common among the assemblers
6 Assembler Reference

For more information: www.freescale.com

Introduction
Conventions Used in This Manual

PC505, and the IBM40x processors. It also supports both big-endian and

Freescale Semiconductor, Inc.
Conventions Used in This Manual
This manual includes syntax statements that describe how to use assembly language
statements. Table 1.2 describes how to interpret the syntax.

Where to Learn More
Each assembler uses the standard assembly language mnemonics and register names
defined by the manufacturer of the applicable processor. For information on related
documentation, see the processor-specific chapters of this manual.

• PowerPC Assembler: The PowerPC Architecture, IBM Inc.

The PowerPC Assembler supports all instructions for the Freescale MPC8xx, Freescale M
little-endian code. It generates only 32-bit code.

Table 1.2 Understanding Syntax Examples

Syntax Description

literal Include the item in your statement as shown.

metasymbol Replace the symbol with an appropriate value.
The text after the syntax example describes
what the appropriate values are.

a | b | c Use one of the items in the group: either a, b, or
c.

Do not type the | character because it is not part
of the statement being defined.

[a] Include the item, which is optional, when
needed. The text after the syntax example
describes when to include it.

Do not type the square brackets ([]) because
they are not part of the statement being defined.

a ::= b | c Substitute one or more items on the right side of
the ::= symbol for the item on the left side as
indicated by the syntax on the right side. In the
example, a is defined as either b or c.
7Assembler Reference

For more information: www.freescale.com

Introduction
Where to Learn More

Freescale Semiconductor, Inc.
8 Assembler Reference

For more information: www.freescale.com

Freescale Semiconductor, Inc.
2
Assembly Language
Syntax

This chapter describes the syntax of assembly language statements and includes the
following topics:

• Assembly Language Statements Description

• Assembly Language Statement Syntax

• Symbols

• Constants

• Expressions

• Comments

• Data Alignment

Assembly Language Statements
Description

Three types of assembly language statements exist:

• Instruction statement

• Macro statement

• Directive statement

The type of the assembly language statement differs depending on whether the
operation performed by the statement is a machine instruction, a macro call, or an
assembler directive.

Instruction, directive, and macro names are case insensitive. For example, MOV, Mov,
and mov all name the same instruction.

When creating assembly language statements, you must be aware of the following
information:
9Assembler Reference

For more information: www.freescale.com

Assembly Language Syntax
Assembly Language Statement Syntax

Freescale Semiconductor, Inc.
• The maximum length of a statement or an expanded macro is 1000 characters.

• A statement must reside on a single line. However, you can concatenate two or
more lines by typing a backslash (\) character at the end of the line.

• Each line of the source file can contain only one statement unless the assembler is
running in GNU mode, which allows multiple statements to reside on one line,
separated by semicolons.

Refer to the processor-specific chapters of this manual for information on where to
find machine instructions for a particular chip. For more information on assembler
directives, refer to “Using Directives”. For more information on macros, refer to
“Using Macros”.

Assembly Language Statement Syntax
Listing 2.1 shows the syntax of an assembly language statement.

Listing 2.1 Statement syntax

statement ::= [symbol] operation [operand] [,operand]... [comment]

operation ::= machine_instruction | assembler_directive | macro_call

operand ::= symbol | constant | expression | register_name

Table 2.1 provides information related to the syntax shown in Listing 2.1.

Table 2.1 Syntax-related information

Syntax Element Description

symbol A symbol is a combination of characters that represents a
value. For more information, see “Symbols” on page 11.

machine_instruction A machine instruction for your target processor. For
information on where to find machine instructions for a
particular processor, see the processor-specific chapters
of this manual.

assembler_directive Assembler directives are special instructions that tell the
assembler how to process other assembly language
statements. For example, certain assembler directives tell
the assembler where the beginning and end of a macro is.
For more information on assembler directives, see “Using
Directives”.
10 Assembler Reference

For more information: www.freescale.com

Assembly Language Syntax
Symbols

Freescale Semiconductor, Inc.
Symbols
A symbol is a group of characters that represents a value, such as an address, numeric
constant, string constant, or character constant. The length of a symbol name is
unlimited.

The syntax of a symbol follows:

symbol ::= label | equate

NOTE For the complete syntax of an assembly language statement, see
Listing 2.1 on page 10.

In general, a symbol has file-wide scope. File-wide scope means that you can access
the symbol anywhere within the file where you defined the symbol and only within
that file. However, symbols sometimes have a different scope. For more information,
see “Local labels” on page 13.

This section discusses the following topics:

• Labels

macro_call A call to a previously specified macro. For information on
macro-related assembler directives, see “Macro
Directives”. For more information on macros, see “Using
Macros”.

constant A defined value such as a string of characters or a
numeric value. For more information, see “Constants” on
page 16.

expression A mathematical expression. For more information, see
“Expressions” on page 19.

register_name The name of a register; these names are processor-
specific. For information on related processor-specific
documentation, see the processor-specific chapters of this
manual.

comment A comment is text that the assembler ignores. You can use
comments to document your code. For more information,
see “Comments” on page 21.

Table 2.1 Syntax-related information

Syntax Element Description
11Assembler Reference

For more information: www.freescale.com

Assembly Language Syntax
Symbols

Freescale Semiconductor, Inc.
• Equates

• Case-sensitive identifiers

Labels
A label is a symbol that represents an address. The assembler provides local labels and
non-local labels. Whether a label is local or non-local determines its scope.

The syntax of a label follows:

label ::= local_label [:] | non-local_label[:]

By default, a label ends with a colon (:) and can begin in any column. However, if you
are porting existing code that does not follow this convention, clear the Labels must
end with ':' checkbox on the Assembler settings panel. After you clear the checkbox,
a label must either begin in column 1 or end with a colon (:).

NOTE For more information, see “Common Assembler Settings”.

This section contains the following topics:

• Non-local labels

• Local labels

• Relocatable labels

Non-local labels
A non-local label is a symbol that represents an address and has file-wide scope.

The first character of a non-local label must be one of the following:

• A letter (a-z or A-Z)

• A period (.)

• A question mark (?)

• An underscore (_)

The subsequent characters of a non-local label can be either a character from the
preceding list or one of the following:

• A numeral between zero and nine (0-9)

• A dollar sign ($)
12 Assembler Reference

For more information: www.freescale.com

Assembly Language Syntax
Symbols

Freescale Semiconductor, Inc.
Local labels
A local label is a symbol that represents an address and has local scope. Local scope
means that the scope of the label extends forward and backward within the file until
the point where the assembler encounters a non-local label.

The first character of a local label must be an at-sign (@). The subsequent characters
of a local label must be one of the following:

• A letter (a-z or A-Z)

• A numeral between zero and nine (0-9)

• An underscore (_)

• A question mark (?)

• A dollar sign ($)

• A period (.)

NOTE You cannot export local labels. In addition, local labels do not appear
in debugging tables.

Within an expanded macro, the scope of local labels works differently:

• The scope of local labels defined in macros does not extend outside the macro.

• A non-local label in an expanded macro does not end the scope of locals in the
unexpanded source.

Listing 2.2 shows the scope of local labels in macros.

Listing 2.2 The scope of local labels in a macro

MAKEPOS .MACRO
 cmp eax, 1
 jne @SKIP
 neg eax
@SKIP: ;Scope of this label is within the macro
 .ENDM
START:
 mov eax, COUNT
 cmp eax, 1
 jne @SKIP
 MAKEPOS
@SKIP: ;Scope of this label is START to END
 ;excluding lines arising from
 ;macro expansion
13Assembler Reference

For more information: www.freescale.com

Assembly Language Syntax
Symbols

Freescale Semiconductor, Inc.
 add eax, 1
END: ret

In Listing 2.2, the @SKIP label defined in the macro does not conflict with the @SKIP
label defined in the main body of code.

Relocatable labels
The assembler assumes a flat 32-bit memory space. You can specify the relocation of a
32-bit label with the expressions shown in Table 2.2.

NOTE Some expressions are not allowed in all assemblers.

Equates
An equate is a symbol that represents any value. You can create an equate with a .equ
or .set directive.

Table 2.2 Relocatable label expressions

This… Represents this

label The offset from the address of the label to the base of its
section, relocated by the section base address. It also is the
PC-relative target of a branch or call. It is a 32-bit address.

label@l The low 16-bits of the relocated address of the symbol.

label@h The high 16-bits of the relocated address of the symbol. You
can OR this with label@l to produce the full 32-bit relocated
address.

label@ha The adjusted high 16-bits of the relocated address of the
symbol. You can add this to label@l to produce the full 32-bit
relocated address.

label@sdax For labels in a small data section, the offset from the base of
the small data section to the label. This syntax is not allowed
for labels in other sections.

label@got For chips with a global offset table, the offset from the base of
the global offset table to the 32-bit entry for label.
14 Assembler Reference

For more information: www.freescale.com

Assembly Language Syntax
Symbols

Freescale Semiconductor, Inc.
NOTE For more information, see “equ” and “set”.

This section contains the following topics:

• Equate names

• Forward Equates

Equate names
The first character of an must be one of the following:

• A letter (a-z or A-Z)

• A period (.)

• A question mark (?)

• An underscore (_)

The subsequent characters of an equate can be either a character from the preceding
list or one of the following:

• A numeral between zero and nine (0-9)

• A dollar sign ($)

Forward Equates
The assembler allows forward equates. This means that you can refer to an equate in a
file before it is defined. When an assembler encounters an expression it cannot resolve
because the expression references a symbol whose value is not known, the assembler
retains the expression and marks it as unresolved. After the assembler reads the entire
file, it reevaluates unresolved expressions and, if necessary, repeatedly reevaluates
them until it resolves them all or it cannot resolve them any further. If the assembler
cannot resolve an expression, it raises an error.

However, the assembler must be able to immediately resolve any expression whose
value affects the location counter.

NOTE Note that if the assembler can make a reasonable assumption about
the location counter, the expression is allowed. For example, in a
forward branch instruction for a 68K processor, you can specify a
default assumption of 8, 16, or 32 bits.

Thus, the code in Listing 2.3 is valid.
15Assembler Reference

For more information: www.freescale.com

Assembly Language Syntax
Constants

Freescale Semiconductor, Inc.
Listing 2.3 Valid forward equate

.data

.long alloc_size
alloc_size .set rec_size + 4
; a valid forward equate on next line
rec_size .set table_start-table_end
.text;...
table_start:
; ...
table_end:

However, the code in Listing 2.4 is not valid. The assembler cannot immediately
resolve the expression in the .space directive. Consequently, the effect on the
location counter is unknown.

Listing 2.4 Invalid forward equate

;invalid forward equate on next line
rec_size .set table_start-table_end
 .space rec_size
 .text; ...
table_start:
; ...
table_end:

Case-sensitive identifiers
The Case-sensitive identifiers checkbox on the Assembler settings panel lets you
choose whether symbols are case-sensitive.

If you click the checkbox, symbols are case sensitive, so SYM1, sym1, and Sym1 are
three different symbols, for example.

If you clear the checkbox, symbols are not case-sensitive, so SYM1, sym1, and Sym1
are the same symbol, for example. By default, this option is on.

Constants
The assembler recognizes three kinds of constants:

• Integer Constants
16 Assembler Reference

For more information: www.freescale.com

Assembly Language Syntax
Constants

Freescale Semiconductor, Inc.
• Floating-Point Constants

• Character Constants

Integer Constants
Table 2.3 lists the preferred notation for integer constants.

To help you port existing code, the assembler also supports the notation in Table 2.4.

NOTE The assembler stores and manipulates integer constants using 32-bit
signed arithmetic.

Table 2.3 Preferred integer constant notation

For numbers
of this type… Use…

Decimal A string of decimal digits, such as 12345678.

Hexadecimal A dollar sign ($) followed by a string of hexadecimal digits,
such as $deadbeef.

Binary A percent sign (%) followed by a string of binary digits,
such as %01010001.

Table 2.4 Alternate integer constant notation

For numbers
of this type… Use…

Hexadecimal 0x followed by a string of hexadecimal digits, such as
0xdeadbeef.

Hexadecimal 0 followed by a string of hexadecimal digits, such as
0deadbeef, and ending with an h, such as
0deadbeefh.

Decimal A string of decimal digits followed by d, such as
12345678d.

Binary A string of binary digits followed by a b, such as
01010001b.
17Assembler Reference

For more information: www.freescale.com

Assembly Language Syntax
Constants

Freescale Semiconductor, Inc.
Floating-Point Constants
You can specify floating point constants in either hexadecimal or decimal format. A
floating point constant in decimal format must contain either a decimal point or an
exponent, e.g. 1E-10 or 1.0.

You can use floating point constants only in data generation directives like .float
and .double, or in floating point instructions. You cannot use them in expressions.

Character Constants
Enclose a character constant in single quotes unless the character constant includes a
single quote. In that case, enclose the character constant in double quotes.

NOTE A character constant cannot include both single and double quotes.

The maximum width of a character constant is 4 characters, depending on the context.
For example, the following items are character constants:

• 'A'

• 'ABC'

• 'TEXT'

A character constant can contain any of the escape sequences shown in Table 2.5.

A character constant is zero-extended to 32 bits during computation. You can use a
character constant anywhere you can use an integer constant.

Table 2.5 Escape sequences

Sequence Description

\b Backspace

\n Line feed (ASCII character 10)

\r Return (ASCII character 13)

\t Tab

\" Double quote

\\ Backslash

\nnn Octal value of \nnn
18 Assembler Reference

For more information: www.freescale.com

Assembly Language Syntax
Expressions

Freescale Semiconductor, Inc.
Expressions
The assembler evaluates expressions using 32-bit signed arithmetic and does not
check for arithmetic overflow.

Since there is no common set of operators in the existing assemblers for different
processors, the assembler uses an expression syntax similar to the one for the C
language. Expressions use the C language arithmetic rules for such things as
parentheses and associativity, and they use the same operators.

NOTE To refer to the program counter in an expression, use a period (.),
dollar sign ($), or asterisk (*).

The assembler supports the binary operators listed in Table 2.6.

Table 2.6 Binary operators

Operator Description

+ add

- subtract

* multiply

/ divide

% modulo

|| logical OR

&& logical AND

| bitwise OR

& bitwise AND

^ bitwise XOR

<< shift left

>> shift right (zeros are shifted into high order bits)

== equal to

!= not equal to

<= less than or equal to

>= greater than or equal to
19Assembler Reference

For more information: www.freescale.com

Assembly Language Syntax
Expressions

Freescale Semiconductor, Inc.
The assembler supports the unary operators listed in Table 2.7.

The assembler also supports the operations listed in Table 2.8.

The operators have the following precedence, with the highest priority first:

1. unary + - ~

2. * / %

3. binary + -

4. << >>

5. < <= > >=

6. == !=

7. &

< less than

> greater than

Table 2.7 Unary operators

Operator Description

+ unary plus

- unary minus

~ unary bitwise complement

Table 2.8 Alternate operators

Operator Description

<> not equal to

% modulo

| logical OR

|| logical XOR

Table 2.6 Binary operators

Operator Description
20 Assembler Reference

For more information: www.freescale.com

Assembly Language Syntax
Comments

Freescale Semiconductor, Inc.
8. ^

9. |

10. &&

11. ||

Comments
Comments are text that the assembler ignores. You can use them to document your
code.

There are several ways you can specify comments:

• Type a semicolon (;) followed by your text entry.

– In GNU Mode - The semicolon indicates multiple assembly instructions on
one line.

– Not in GNU Mode - The semicolon is interpreted as a comment.

• Use the following types of C-style comments, which can start in any column:

/* This is a comment. */

// This is a comment.

• Type an asterisk (*) as the first character of the line followed by your comment.

NOTE The asterisk (*) must be the first character of the line for it to specify
a comment. The asterisk has other meanings when it occurs
elsewhere in a line.

• Clear the Allow space in operand field checkbox on the Assembler settings
panel. In this case, the assembler ignores any text between a space character in
the operand field and the end of the line. Therefore, after you type a space in the
operand field, you can type a comment on the remainder of the line.

• Begin a comment with a pound sign (#), which can start in any column:

This is a comment.
21Assembler Reference

For more information: www.freescale.com

Assembly Language Syntax
Data Alignment

Freescale Semiconductor, Inc.
NOTE The assembler distinguishes between a comment that begins with a
pound sign (#) and a preprocessor directive that begins with a pound
sign.

The three immediately preceding comment methods are helpful for porting existing
code.

Data Alignment
By default, the assembler aligns all data on a natural boundary for the data size and for
the target processor family. You can turn off alignment with the alignment argument
to the .option directive, described in “option.”

The assembler does not align data automatically in the .debug section. For more
information on the .debug section, see “Debugging Directives.”
22 Assembler Reference

For more information: www.freescale.com

Freescale Semiconductor, Inc.
3
Using Directives

This chapter describes the directives that are available for the assembler.

NOTE Some directives are not available for every assembler.

By default, most directives must begin with a period (.). However if you clear the
Directives begin with '.' checkbox of the Assembler settings panel, you can omit
the period.

NOTE You can specify several preprocessor directives using the C/C++
preprocessor format.

This chapter discusses the following topics:

• Macro Directives

• Conditional Preprocessor Directives

• Section Control Directives

• Scope Control Directives

• Symbol Definition Directives

• Data Declaration Directives

• Assembler Control Directives

• Debugging Directives

Macro Directives
The following directives let you create macros:

• macro

• endm

• mexit

• #define
23Assembler Reference

For more information: www.freescale.com

Using Directives
Macro Directives

Freescale Semiconductor, Inc.
For more information on macros, see “Using Macros”.

macro
label .macro [parameter] [,parameter] ...

Begins the definition of a macro named label, with the specified parameters.

endm
.endm

Ends a macro definition.

mexit
.mexit

Causes the assembler to stop macro processing before the .endm statement is reached
and resume execution with the statement following the macro call.

#define

#define name [(parms)] assembly_statement [;] [\]
assembly_statement [;] [\]
assembly_statement
parms ::= parameter [,parameter]...

Defines a macro named name with the specified parameters. You can extend
assembly_statement by typing a backslash (\) and continuing the statement on the next
physical line. You also can specify multiple assembly statements in the macro by
typing a semicolon (;) followed by a backslash (\) and typing a new assembly
statement on the next physical line. The assembler must be in GNU mode for multiple
statements to reside on one line of code (refer to “Comments.”).

NOTE For more information, see “Defining a macro with the #define
directive”.
24 Assembler Reference

For more information: www.freescale.com

Using Directives
Conditional Preprocessor Directives

Freescale Semiconductor, Inc.
Conditional Preprocessor Directives
Conditional directives create a conditional assembly block. If you wrap some code
with ifdef and endif you can control whether that code is included in compilation.
This is useful for making several different builds that are slightly different.

You must use conditional directives together to form a complete block. The assembler
also contains several variations of .if to make it easier to make blocks that test
strings for equality, test whether a symbol is defined, and so on.

NOTE You can specify several of the conditional preprocessor directives
using the C/C++ preprocessor format:
#if

#ifdef

#ifndef

#else

#elif

#endif

These directives function identically whether preceded by a pound
sign (#) or a period with two exceptions. You cannot use the pound
sign form of the directive in a macro. The period (.) form of the
#elif directive is .elseif.

This section discusses the following topics:

• if

• ifdef

• ifndef

• ifc

• ifnc

• endif

• elseif

• else

• Other conditional preprocessor directives

if
.if bool-expr

Specifies the beginning of a conditional assembly block, where bool-expr is a Boolean
expression. If bool-expr is true, the assembler processes the statements associated with
25Assembler Reference

For more information: www.freescale.com

Using Directives
Conditional Preprocessor Directives

Freescale Semiconductor, Inc.
the .if directive. If bool-expr is false, the assembler skips the statements associated
with the .if directive.

Each .if directive must have a matching .endif directive.

NOTE A Boolean expression is a special type of arithmetic expression. The
assembler interprets a Boolean expression that evaluates to zero as
false and a Boolean expression that evaluates to a nonzero result as
true. For more information on expressions, see “Expressions”.

ifdef
#ifdef symbol

Specifies the beginning of a conditional assembly block and tests whether symbol is
already defined. If symbol was defined previously, the assembler processes the
statements associated with the .ifdef directive. If symbol is not yet defined, the
assembler skips the statements associated with the .ifdef directive.

Each .ifdef directive must have a matching .endif directive.

ifndef
.ifndef symbol

Specifies the beginning of a conditional assembly block and tests whether symbol is
not yet defined. If symbol is not yet defined, the assembler processes the statements
associated with the .ifndef directive. If symbol is already defined, the assembler
skips the statements associated with the .ifndef directive.

Each .ifndef directive must have a matching .endif directive.

ifc
.ifc string1, string2

Specifies the beginning of a conditional assembly block and tests whether string1 and
string2 are equal. The comparison is case-sensitive. If the strings are equal, the
assembler processes the statements associated with the .ifc directive. If the strings
are not equal, the assembler skips the statements associated with the .ifc directive.

Each .ifc directive must have a matching .endif directive.
26 Assembler Reference

For more information: www.freescale.com

Using Directives
Conditional Preprocessor Directives

Freescale Semiconductor, Inc.
ifnc
.ifnc string1, string2

Specifies the beginning of a conditional assembly block and tests whether string1 and
string2 are not equal. The comparison is case-sensitive. If the strings are not equal, the
assembler processes the statements associated with the .ifnc directive. If the strings
are equal, the assembler skips the statements associated with the .ifnc directive.

Each .ifnc directive must have a matching .endif directive.

endif
.endif

Specifies the end of a conditional assembly block. Each type of .if directive must
have a matching .endif directive.

elseif
.elseif bool-expr

You can use the .elseif directive to create a series of directives that together
comprise a logical multilevel if-then-else statement, the syntax of which follows:

.if bool-expr statement-group

[.elseif bool-expr statement-group]...

[.else statement-group]

.endif

In the preceding syntax statement, bool-expr is any Boolean expression and statement-
group is any group of assembly language statements.
27Assembler Reference

For more information: www.freescale.com

Using Directives
Conditional Preprocessor Directives

Freescale Semiconductor, Inc.
Expanding the syntax as follows helps to explain the flow of the statement:

.if bool-expr-1

statement-group-1

.elseif bool-expr-2

statement-group-2

.elseif bool-expr-3

statement-group-3

.elseif bool-expr-4

statement-group-4

.else

statement-group-5

.en

dif

In the preceding syntax statement, if bool-expr-1 is true, the assembler executes
statement-group-1 (the first group of conditional assembly language statements) and
goes to the .endif directive. If bool-expr-1 is false, the assembler skips statement-
group-1 and tests bool-expr-2 in the first .elseif directive.

If bool-expr-2 is true, the assembler executes statement-group-2 and goes to the
.endif directive. If bool-expr-2 is false, the assembler skips statement-group-2 and
tests bool-expr-3 in the second .elseif directive.

The assembler continues evaluating the Boolean expressions in succeeding .elseif
directives until it comes to a Boolean expression that evaluates to true. If none of the
.elseif directives have a Boolean expression that evaluates to true, the assembler
processes the statements associated with the .else directive, if there is one.

else
.else

Marks the beginning of a conditional assembly block to execute if the Boolean
expressions for an .if directive and its associated .elseif directives are false.

NOTE Using an .else directive is optional.
28 Assembler Reference

For more information: www.freescale.com

Using Directives
Conditional Preprocessor Directives

Freescale Semiconductor, Inc.
Other conditional preprocessor directives
For compatibility with other assemblers, the assembler also supports the following
directives:

.ifeq (if equal)
.ifeq string1, string2

Specifies the beginning of a conditional block, and tests whether string1 and string2
are equal to each other.

• If the strings are equal to each other, the assembler processes the statements
associated with this directive.

• If the strings are not equal to each other, the assembler skips over all associated
statements.

.ifne (if not equal)
Specifies the beginning of a conditional block, and tests whether string1 is not equal to
zero.

• If the string is not equal to zero, the assembler processes the statements
associated with this directive.

• If the string is equal to zero, the assembler skips over all associated statements.

.iflt (if less than)
Specifies the beginning of a conditional block, and tests whether string1 is less than
zero.

• If the string is is less than zero, the assembler processes the statements associated
with this directive.

• If the string is not less than zero, the assembler skips over all associated
statements.

.ifle (if less than or equal)
Specifies the beginning of a conditional block, and tests whether string1 is less than or
equal to string2.

• If string1 is less than or equal to string2, the assembler processes the statements
associated with this directive.
29Assembler Reference

For more information: www.freescale.com

Using Directives
Section Control Directives

Freescale Semiconductor, Inc.
• If string1 is not less than or equal to string2, the assembler skips over all
associated statements.

.ifgt (if greater than)
Specifies the beginning of a conditional block, and tests whether string1 is greater than
string2.

• If string1 is less greater than string2, the assembler processes the statements
associated with this directive.

• If string1 is not greater than string2, the assembler skips over all associated
statements.

.ifge (if greater than or equal)
Specifies the beginning of a conditional block, and tests whether string1 is greater than
or equal to string2.

• If string1 is greater than or equal to string2, the assembler processes the
statements associated with this directive.

• If string1 is not greater than or equal to string2, the assembler skips over all
associated statements.

Section Control Directives
The following directives identify the different sections of an assembly file:

• text

• data

• rodata

• bss

• sdata

• sdata2

• sbss

• debug

• previous

• offset

• section
30 Assembler Reference

For more information: www.freescale.com

Using Directives
Section Control Directives

Freescale Semiconductor, Inc.
text
.text

Specifies an executable code section. This must be in front of the actual code in a file.

data
.data

Specifies an initialized read-write data section.

rodata
.rodata

Specifies an initialized read-only data section.

bss
.bss

Specifies an uninitialized read-write data section.

sdata
.sdata

Specifies a small data section as initialized and read-write.

sdata2
.sdata2

Specifies a small data section as initialized and read-only.

sbss
.sbss

Specifies a small data section as uninitialized and read-write.

debug
.debug
31Assembler Reference

For more information: www.freescale.com

Using Directives
Section Control Directives

Freescale Semiconductor, Inc.
Specifies a debug section. If you enable the debugger, the assembler automatically
generates some debug information for your project. However, you use special
directives in the debug section that provide the debugger with more detailed
information. For more information on the debug directives, see “Debugging
Directives” on page 43.

previous
.previous

Reverts to the previous section. This switch toggles between the current section and
the previous section.

offset
.offset [expression]

Defines a record. The optional parameter expression specifies the initial location
counter. The record definition extends until the start of the next section.

Within a record, you can use only the following directives:

The data declaration directives (like .byte and .short) update the location counter
but do not allocate any storage.

Listing 3.1 shows a sample record definition.

Listing 3.1 A record definition with the offset directive

 .offset
top: .short 0
left: .short 0
bottom: .short 0
right: .short 0

Table 3.1 Directives within a record

.equ .set .textequ

.align .org .space

.byte .short .long

.space .ascii .asciz

.float .double
32 Assembler Reference

For more information: www.freescale.com

Using Directives
Section Control Directives

Freescale Semiconductor, Inc.
rectSize .equ *

section
For the ELF (Executable and Linkable Format) object file format, the .section
directive has the following syntax:

.section name [,alignment] [,type] [,flags]

Defines a section in an object file. Use this directive to create arbitrary relocatable
sections, including sections to be loaded at an absolute address.

Table 3.2 describes the syntax elements for the ELF .section directive.

The following example specifies a section named vector with an alignment of 4
bytes:

.section vector,4

Table 3.3 defines the ELF section types.

Table 3.2 Syntax descriptions for ELF .section directive

Syntax Element Description

name The name of the section.

alignment Specifies the alignment boundary of the section.

type Numeric value for the ELF section type, per Table
3.3 on page 33. The default type value is
SHT_PROGBITS.

flags Numeric value for the ELF section flags, per Table
3.4 on page 35. The default flags value is
SHF_ALLOC+SHF_WRITE.

Table 3.3 ELF section types

Type Name Description

0 NULL Indicates that the section header is
inactive.

1 PROGBITS Indicates that the section contains
information defined by the program.
33Assembler Reference

For more information: www.freescale.com

Using Directives
Section Control Directives

Freescale Semiconductor, Inc.
Table 3.4 defines the ELF section flags.

2 SYMTAB Indicates that the section contains a
symbol table.

3 STRTAB Indicates that the section contains a
string table.

4 RELA Indicates that the section contains
relocation entries with explicit addends.

5 HASH Indicates that the section contains a
symbol hash table.

6 DYNAMIC Indicates that the section contains
information used for dynamic linking.

7 NOTE Indicates that the section contains
information that marks the file, often for
compatibility purposes between
programs.

8 NOBITS Indicates that the section occupies no
space in the object file.

9 REL Indicates that the section contains
relocation entries without explicit
addends.

10 SHLIB Indicates that the section has unspecified
semantics and, therefore, does not
conform to the Application Binary
Interface (ABI) standard.

11 DYNSYM Indicates that the section contains a
minimal set of symbols used for dynamic
linking.

Table 3.3 ELF section types

Type Name Description
34 Assembler Reference

For more information: www.freescale.com

Using Directives
Scope Control Directives

Freescale Semiconductor, Inc.
Scope Control Directives
The assembler provides the following directives that let you import and export labels:

• global

• extern

• public

For more information on labels, see “Labels”.

NOTE You cannot import or export equates or local labels.

global
.global label [,label]…

Instructs the assembler to export the specified labels, that is, make them available to
other files.

Use the .extern or .public directive to reference the labels in another file.

extern
.extern label [,label]…

Table 3.4 ELF section flags

Flag Name Description

0x00000001 WRITE Indicates that the section
contains data that is writable
during execution.

0x00000002 ALLOC Indicates that the section
occupies memory during
execution.

0x00000004 EXECINSTR Indicates that the section
contains executable machine
instructions.

0xF0000000 MASKPROC Indicates that the bits specified in
this mask are reserved for
processor-specific purposes.
35Assembler Reference

For more information: www.freescale.com

Using Directives
Symbol Definition Directives

Freescale Semiconductor, Inc.
Instructs the assembler to import the specified labels, that is, to find the label
definitions in another file.

Use the .global or .public directive to export the labels from another file.

public
.public label [,label]…

Declares that the specified labels are public. If the labels are already defined in the
same file, the assembler exports them, that is, makes them available to other files. If
the equates are not already defined, the assembler imports them, that is, finds the label
definitions in another file.

Symbol Definition Directives
You can use the following directives to create equates:

• set

• equal sign (=)
• equ

• textequ

set
equate .set expression

Temporarily assigns the value expression to equate. You can change the value of
equate after defining it.

equal sign (=)
equate = expression

Temporarily assigns the value expression to equate. You can change the value of
equate after defining it.

NOTE This directive is equivalent to .set and is available only for
compatibility with assemblers provided by other companies.
36 Assembler Reference

For more information: www.freescale.com

Using Directives
Data Declaration Directives

Freescale Semiconductor, Inc.
equ
equate .equ expression

Permanently assigns the value expression to equate. You cannot change the value of
equate after defining it.

textequ
equate .textequ "string"

Substitutes equate with the text you specify in string. You can use this directive,
which helps to port existing code, to give new names to machine instructions,
directives, and operands.

Whenever you use equate, the assembler replaces it with string before performing any
other processing on that source line. Listing 3.2 shows examples of .textequ
statements.

Listing 3.2 textequ examples

dc.b .textequ ".byte"

endc .textequ ".endif"

Data Declaration Directives
The assembler provides the following types of directives that initialize data:

• Integer Directives

• String Directives

• Floating-Point Directives

Integer Directives
The following directives initialize blocks of integer data:

• byte

• short

• long

• space

• fill
37Assembler Reference

For more information: www.freescale.com

Using Directives
Data Declaration Directives

Freescale Semiconductor, Inc.
byte
[label] .byte expression [,expression]…

Declares an initialized block of bytes with the name label. The assembler allocates one
byte for each expression. Each expression must fit in a byte.

short
[label] .short expression [,expression]…

Declares an initialized block of 16-bit short integers with the name label. The
assembler allocates 16 bits for each expression. Each expression must fit in 16 bits.

long
[label] .long expression [,expression]…

Declares an initialized block of 32-bit short integers with the name label. The
assembler allocates 32 bits for each expression. Each expression must fit in 32 bits.

space
[label] .space expression

Declares a block of zero-initialized bytes with the name label. The assembler allocates
a block expression bytes long and initializes each byte to zero.

fill
[label] .fill expression

Declares a block of zero-initialized bytes with the name label. The assembler allocates
a block expression bytes long and initializes each byte to zero.

String Directives
The following directives initialize blocks of character data:

• ascii

• asciz

A string can contain any of the escape sequences shown in Table 3.5.
38 Assembler Reference

For more information: www.freescale.com

Using Directives
Data Declaration Directives

Freescale Semiconductor, Inc.
ascii
[label] .ascii "string"

Declares a block of storage for the string string with the name label. The assembler
allocates a byte for each character in string.

asciz
[label] .asciz "string"

Declares a zero-terminated block of storage for the string string with the name label.
The assembler allocates a byte for each character in string. The assembler then
allocates an extra byte at the end and initializes the byte to zero.

Floating-Point Directives
The following directives initialize blocks of floating-point data:

• float

• double

float
[label] .float value [,value]…

Declares an initialized block of 32-bit floating-point numbers with the name label. The
assembler allocates 32 bits for each value value. Each value must fit in the specified
size.

Table 3.5 Escape sequences

Sequence Description

\b Backspace

\n Line feed (ASCII character 10)

\r Return (ASCII character 13)

\t Tab

\" Double quote

\\ Backslash

\nnn Octal value of \nnn
39Assembler Reference

For more information: www.freescale.com

Using Directives
Assembler Control Directives

Freescale Semiconductor, Inc.
double
[label] .double value [,value]…

Declares an initialized block of 64-bit floating-point numbers with the name label. The
assembler allocates 64 bits for each value value. Each value must fit in the specified
size.

Assembler Control Directives
These directives let you control how the assembler emits code:

• align

• endian

• error

• include

• pragma

• org

• option

align
.align expression

Aligns the location counter to the next multiple of the expression. The expression must
be a power of 2, such as 2, 4, 8, 16, or 32.

endian
.endian big | little

Specifies the byte ordering for the target processor.

NOTE You can use this directive only for processors that allow you to
change the byte ordering.

error
.error "error"

Prints error to the Errors & Warnings window in the CodeWarrior IDE.
40 Assembler Reference

For more information: www.freescale.com

Using Directives
Assembler Control Directives

Freescale Semiconductor, Inc.
include
.include filename

Causes the assembler to switch input to filename. The assembler takes input from the
specified file. When the assembler reaches the end of the file, it begins taking input
from the assembly statement line that follows the .include directive.

The file specified by filename can contain an .include directive for another file.

pragma
.pragma pragma-type setting

Tells the assembler to assemble the code using a particular pragma setting.

org
.org expression

Changes the location counter to the value of expression, the value of which is relative
to the base of the current section. The addresses of the subsequent assembly statements
begin at the new location counter value. The value of expression must be greater than
the current value of the location counter.

The following code snipet is presented as an example.

.text

.org 0x1000

Foo:

...

blr

The label Foo reflects the value of .text + 0x1000. The runtime value of Foo
depends upon where the section defined by .text, is placed by the linker. For
example, if Foo is placed at 0x10000000, its final value is 0x10000000.

NOTE You must use the CodeWarrior IDE and Linker to place code at an
absolute address.

option
.option keyword setting
41Assembler Reference

For more information: www.freescale.com

Using Directives
Assembler Control Directives

Freescale Semiconductor, Inc.
Sets the assembler options as described in Table 3.6. Specifying reset sets the option
to its previous setting. Using reset a second time resets the option to the setting before
the current setting.

Table 3.6 Option keywords

Keyword Description

alignment off | on | reset Controls whether data is aligned on natural boundary.
This does not correspond to any option in the Assembler
settings panel.

branchsize 8 | 16 | 32 Specifies the size of forward branch displacement. This
keyword applies only to the x86 and 68K assemblers.
This does not correspond any option in the Assembler
settings panel.

case off | on | reset Specifies whether identifiers are case sensitive. If this
option is on, identifiers are case sensitive. If this option is
off, identifiers are not case sensitive. This corresponds to
the Case-sensitive identifiers checkbox of the
Assembler settings panel, described in “Case-sensitive
identifiers”.

colon off | on | reset Specifies whether labels must end with a colon (:). If this
option is on, you must specify each label with a colon at
the end. If this option is off, you can omit the colon from
the end of label names that start in the first column. (This
option corresponds to the Labels must end with ':'
checkbox of the Assembler settings panel, described in
“Labels must end with :”.)

no_at_macros off | on If this option is on, the assembler does not allow macros
that use $AT. If this option is off, the assembler produces
a warning if a macro uses $AT. This option keyword
string applies only to the MIPS Assembler.

period off | on | reset Specifies whether the assembler requires a period (.) in
directive names. If this option is on, each directive must
start with a period. If this option is off, you can omit the
period in front of a directive. This corresponds to the
Directives begin with '.' checkbox of the Assembler
settings panel, described in “Directives begin with .”.
42 Assembler Reference

For more information: www.freescale.com

Using Directives
Debugging Directives

Freescale Semiconductor, Inc.
Debugging Directives
When you enable the debugger, the assembler automatically generates some debug
information for your project. However, you can use the following directives in the
debug section to provide the debugger with more detailed information:

• file

• function

• line

• size

• type

NOTE The preceding directives are allowed only in the .debug and .text
sections of an assembly file.

For the debugging directives to work, you must enable debugging for the particular
file that contains them (in the Project window).

file
.file "filename"

Specifies the name of the file containing the source code. This directive enables
generated assembly code to be correlated with the source code.

reorder off | on | reset Specifies whether the assembler inserts a NOP (no
operation) instruction after jumps and branches. If this
option is on, the assembler inserts a NOP instruction. If
this option is off, the assembler does not insert a NOP
instruction, and you can substitute an instruction of your
choice after jumps and branches. This option keyword
string applies only to the MIPS Assembler.

space off | on | reset Specifies whether the assembler allows a space in an
operand field. If this option is on, operand fields can
contain spaces. If this option is off, a space in the
operand field signals the start of a comment. (This option
corresponds to the Allow space in operand field
checkbox of the Assembler settings panel, described in
“Allow space in operand field”.)

Table 3.6 Option keywords

Keyword Description
43Assembler Reference

For more information: www.freescale.com

Using Directives
Debugging Directives

Freescale Semiconductor, Inc.
You must supply the .function and .line statements as well as the .file directive if you
plan on writing your own DWARF code. The following is an example of how to use
the .file directive when writing your own DWARF code.

.file “MyFile.c”

.text

.function “MyFunction”,start,end-start

start:

.line 1

lwz r3, 0(r3)

.line 2

blr

end:

NOTE The .file directive must precede the other debugging directives in
the assembly language file.

function
.function "func", label, length

Specifies that the subroutine func begins at label and is length bytes long. This
directive generates file debugging data.

line
.line number

Specifies the absolute line number in the current source file that generated the
subsequent code or data. The first line in the file is numbered 1.

size
.size symbol, expression

Specifies that symbol is expression bytes long.
44 Assembler Reference

For more information: www.freescale.com

Using Directives
Debugging Directives

Freescale Semiconductor, Inc.
type
.type symbol, type

Specifies that symbol is of type type, where type can be either @function (a
function) or @object (a variable).
45Assembler Reference

For more information: www.freescale.com

Using Directives
Debugging Directives

Freescale Semiconductor, Inc.
46 Assembler Reference

For more information: www.freescale.com

Freescale Semiconductor, Inc.
4
Using Macros

This chapter describes how to define and use macros. You can use the same macro
language regardless of your target processor.

This chapter includes the following topics:

• Defining Macros

• Invoking Macros

Defining Macros
This section, which describes how to define macros, includes the following topics:

• Macro Definition Syntax

• Using Macro Arguments

• Using Local Labels in a Macro

• Creating Unique Labels and Equates

• Referring to the Number of Arguments

Macro Definition Syntax
A macro definition is one or more assembly statements that define:

• the name of a macro

• the format of the macro call

• the assembly statements to process when you invoke the macro

You can use the following methods to define a macro:

• Defining a macro with the .macro directive

• Defining a macro with the #define directive
47Assembler Reference

For more information: www.freescale.com

Using Macros
Defining Macros

Freescale Semiconductor, Inc.
Defining a macro with the .macro directive
One way to define a macro is to use the .macro directive. Listing 4.1 shows the
syntax of a macro definition using the .macro directive.

Listing 4.1 Macro definition syntax using the .macro directive

name: .macro [parameter] [,parameter] ...
macro_body
.endm

The .macro directive indicates the first line of a macro definition. Every macro
definition must end with the .endm directive.

Table 4.1 describes the syntax elements shown in Listing 4.1.

You can specify a conditional assembly block within a macro. Based on the result of
the tested condition, you can use the .mexit directive to stop macro execution before
the assembler reaches the .endm directive.

Listing 4.2 shows a macro that uses the .mexit directive.

Listing 4.2 Conditional macro using the .mexit directive

#define a macro
addto .macro dest,val
 .if val==0
no-op
.mexit # execution goes to the statement
 # immediately after the .endm directive
.elseif val==1
use compact instruction

Table 4.1 Macro syntax descriptions for .macro directive

Syntax Element Description

name A label used to invoke the macro.

parameter Operands that are passed to the
macro and used in the macro body.

macro_body One or more assembly language
statements that are substituted for a
macro call when you invoke the
macro.
48 Assembler Reference

For more information: www.freescale.com

Using Macros
Defining Macros

Freescale Semiconductor, Inc.
inc dest
.mexit # execution goes to the statement
 # immediately after the .endm directive
.endif
if val is not equal to either 0 or 1,
add dest and val
add dest,val
end macro definition
.endm

Listing 4.3 shows assembly language code that calls the addto macro shown in
Listing 4.2.

Listing 4.3 Assembly code that calls the addto macro

specify an executable code section
.text
xor eax,eax
call the addto macro
addto eax,0
addto eax,1
addto eax,2
addto eax,3

Listing 4.4 shows the expanded addto macro calls shown in Listing 4.3 on page 49.

Listing 4.4 Expanded addto macro calls

xor eax,eax
nop
inc eax
add eax,2
add eax,3

Defining a macro with the #define directive
Another way to define a macro is to use the #define directive. Listing 4.5 shows the
syntax of a macro definition using the #define directive.

Listing 4.5 Macro definition syntax using the #define directive

#define name [(parms)] assembly_statement [;] [\]
49Assembler Reference

For more information: www.freescale.com

Using Macros
Defining Macros

Freescale Semiconductor, Inc.
assembly_statement [;] [\]
assembly_statement

parms ::= parameter [,parameter]...

NOTE If you specify parameters for a macro, you must enclose the
parameters in parentheses.

Table 4.2 describes the syntax elements shown in Listing 4.5.

Using Macro Arguments
You can refer to parameters directly by name. Listing 4.6 shows the setup macro,
which moves an integer into a register and branches to the label _final_setup.

Listing 4.6 The setup macro

setup: .macro name
 mov eax, name
 call _final_setup
 .endm

Table 4.2 Macro syntax descriptions for #define directive

Syntax Element Description

name A label used to invoke the macro.

parameter Operands that are passed to the macro.

assembly_statement An assembly language statement that is substituted
for a macro call when you invoke the macro. You
can extend the assembly language statement
beyond the length of one physical line by typing a
backslash (\) at the end of a line and continuing the
statement on the subsequent line.

You also can specify multiple assembly statements
in the macro by typing a semicolon (;) followed by a
backslash (\) and typing a new assembly statement
on the next physical line.
50 Assembler Reference

For more information: www.freescale.com

Using Macros
Defining Macros

Freescale Semiconductor, Inc.
Listing 4.7 shows one way to invoke the setup macro.

Listing 4.7 Calling setup

 #define VECT 0
 setup VECT

Listing 4.8 shows how the assembler expands the setup macro after the preceding
call.

Listing 4.8 Expanded setup

 move eax, VECT
 call _final_setup

When you refer to named macro parameters in the macro body, you can precede or
follow the macro parameter with &&. This lets you embed the parameter in a string.
For example, Listing 4.9 shows the smallnum macro, which creates a small float by
appending the string E-20 to the macro argument.

Listing 4.9 The smallnum macro

smallnum: .macro mantissa
 .float mantissa&&E-20
 .endm

Listing 4.10 shows one way to invoke the smallnum macro.

Listing 4.10 Invoking smallnum

smallnum 10

Listing 4.11 shows how the assembler expands the smallnum macro after the
preceding call.
51Assembler Reference

For more information: www.freescale.com

Using Macros
Defining Macros

Freescale Semiconductor, Inc.
Listing 4.11 Expanding smallnum

.float 10E-20

Using Local Labels in a Macro
When you use a local label (a label that begins with @) in a macro, the scope of the
label is limited to the expansion of the macro. For more information, see “Local
labels”.

Creating Unique Labels and Equates
You can generate unique labels and equates within a macro with the following
characters: \@. Each time you invoke the macro, the assembler generates a unique
symbol of the form ??nnnn, such as ??0001 or ??0002.

You refer to unique labels and equates (those that use \@) in your code with the same
methods used for regular labels and equates. The assembler replaces the \@ sequence
with a unique numeric string and increments the value of the string each time you
invoke the macro.

Listing 4.12 shows a macro that uses unique labels and equates.

Listing 4.12 Unique label macro

my_macro: .macro
 foo\@ = my_count
my_count .set my_count + 1
 add ebx, foo\@
 jmp label\@
 add eax, ebx
label\@:
 nop
 .endm

Listing 4.13 shows a call to the my_macro macro twice (with my_count initialized to
0).

Listing 4.13 Invoking my_macro

my_count .set 0
 my_macro
 my_macro
52 Assembler Reference

For more information: www.freescale.com

Using Macros
Invoking Macros

Freescale Semiconductor, Inc.
Listing 4.14 shows the expanded my_macro code after the calls in Listing 4.13 on
page 52.

Listing 4.14 Expanded my_macro calls

foo??0000 = my_count
my_count .set my_count + 1
 add ebx, foo??0000
 jmp label??0000
 add eax, ebx
label??0000
 nop
foo??0001 = my_count
my_count .set my_count + 1
 add ebx, foo??0001
 jmp label??0001
 add eax, ebx
label??0001
 nop

Referring to the Number of Arguments
To refer to the number of non-null arguments passed to a macro, use the special
symbol narg. You can use it only during macro expansion.

Invoking Macros
To invoke a macro, use its name in your assembler listing.

When invoking a macro, you must separate parameters with commas. To pass a
parameter that includes a comma, enclose the parameter in angle brackets.

For example, Listing 4.15 shows a macro named pattern, which repeats a pattern of
bytes passed to it the number of times specified in the macro call.

Listing 4.15 The pattern macro

pattern: .macro times,bytes
 .rept times
 .byte bytes
 .endr
53Assembler Reference

For more information: www.freescale.com

Using Macros
Invoking Macros

Freescale Semiconductor, Inc.
 .endm

Listing 4.16 shows a statement that calls pattern, passing a parameter that includes a
comma.

Listing 4.16 Calling a macro with an argument that contains commas

 .data

halfgrey: pattern 4,<0xAA,0x55>

The call in Listing 4.16 generates the same data as the code shown in Listing 4.17.

Listing 4.17 Alternate way to generate a repeating pattern of bytes

halfgrey: .byte 0xAA,0x55,0xAA,0x55,0xAA,0x55,0xAA,0x55
54 Assembler Reference

For more information: www.freescale.com

Freescale Semiconductor, Inc.
5
Common Assembler
Settings

This chapter describes the settings on the Assembler target settings panel that are
common to all the assemblers.

Displaying Assembler Target Settings
Panel

To modify the settings for an assembler:

1. Select Edit > Project Settings.

2. In the resulting dialog box, select the name of the assembler to see its settings
panel.

Figure 5.1 shows the settings on the Assembler target settings panel that are
common to all the assemblers. For information on settings that may be specific to
your assembler, see the processor-specific chapters of this manual.
55Assembler Reference

For more information: www.freescale.com

Common Assembler Settings
Common Assembler Settings Descriptions

Freescale Semiconductor, Inc.
Figure 5.1 Common assembler settings

Common Assembler Settings
Descriptions

The following common assembler settings exist:

• Labels must end with :

• Directives begin with .

• Case-sensitive identifiers

• Allow space in operand field

• Generate listing file

• Prefix file

Labels must end with :
You can use the Labels must end with ':' checkbox to specify whether labels must
end with a colon (:). If you select this checkbox, a label must end with a colon (:) and
can begin in any column. If you clear this checkbox, a symbol is a label if it starts in
column 1 or if it ends with a colon (:).
56 Assembler Reference

For more information: www.freescale.com

Common Assembler Settings
Common Assembler Settings Descriptions

Freescale Semiconductor, Inc.
By default, the Labels must end with ':' checkbox is selected. This checkbox
corresponds to the colon parameter of the .option directive, described in “option”.

NOTE The Labels must end with ':' checkbox is especially useful when
porting existing code that has symbols that do not end with a colon
(:).

For more information, see “Labels”.

Directives begin with .
You can use the Directives begin with '.' checkbox to specify whether a period (.)
must precede each directive name. If you select this checkbox, a period (.) must
precede each directive. If you clear this checkbox, you can omit the period. For more
information, see “Using Directives”.

By default, the Directives begin with '.' checkbox is selected. This checkbox
corresponds to the period parameter of the .option directive, described in
“option”.

Case-sensitive identifiers
You can use the Case-sensitive identifiers checkbox to specify whether symbols
are case-sensitive. If you select this checkbox, symbols are case sensitive. For
example, in this case, SYM1, sym1, and Sym1 are three different symbols.

If you clear this checkbox, symbols are not case-sensitive. Therefore, in this case,
SYM1, sym1, and Sym1 are the same symbol. For more information, see “Symbols.”

NOTE Instruction, directive, and macro names are always case insensitive.

By default, the Case-sensitive identifiers checkbox is selected. This checkbox
corresponds to the case parameter of the .option directive, described in “option”.

Allow space in operand field
You can use the Allow space in operand field checkbox to specify whether a
comment can start with a space in the operand field. If you select this checkbox, the
assembler allows spaces in the operand field. If you clear this checkbox, the assembler
ignores any text between a space character in the operand field and the end of the line
57Assembler Reference

For more information: www.freescale.com

Common Assembler Settings
Common Assembler Settings Descriptions

Freescale Semiconductor, Inc.
(which makes that text a comment). For more information, see “Comments”. By
default, the Allow space in operand field checkbox is selected. This checkbox
corresponds to the space parameter of the .option directive, described in “option”.

Generate listing file
You can use the Generate listing file checkbox to create a text file that you can use
to compare your source code with the machine code that the assembler produced. If
you select this checkbox, the assembler creates a listing file using the source name and
the following suffix:

.list

For example, for the file test.asm, the assembler assigns the following name to the
listing file:

test.asm.list

If you clear the Generate listing file checkbox, the assembler does not create a
listing file. By default, the Generate listing file checkbox is cleared.

Prefix file
You can use the Prefix file field to specify a file that the assembler processes before
every assembly file in your project. The effect of using a prefix file is similar to
putting the same .include directive at the beginning of every assembly file. By
default, no prefix file is specified.
58 Assembler Reference

For more information: www.freescale.com

Freescale Semiconductor, Inc.
6
PowerPC-Specific
Information

The CodeWarrior PowerPC assembler supports all instructions for the PowerPC
processor.

This chapter provides information specific to the PowerPC processor. For example,
this chapter discusses features and examples that differ from the information provided
in the other chapters of this manual.

This chapter includes the following topics:

• Related Documentation

• PowerPC-Specific Examples

Related Documentation
PowerPC Microprocessor Family: The Programming Environments for 32-Bit
Microprocessors (published by Freescale, Inc.) is helpful for writing PowerPC
assembly language code.

PowerPC-Specific Examples
This section contains examples shown in previous chapters that differ for the PowerPC
assembler. Table 6.1 lists the PowerPC-specific examples and the corresponding
examples shown in previous chapters.

Table 6.1 Corresponding example table

Original Example PowerPC-Specific Example

Listing 2.2 Listing 6.1 on page 60

Listing 4.2 Listing 6.2 on page 60
59Assembler Reference

For more information: www.freescale.com

PowerPC-Specific Information
PowerPC-Specific Examples

Freescale Semiconductor, Inc.
Listing 6.1 shows the scope of local labels in macros.

Listing 6.1 PowerPC example: the scope of local labels in a macro

MAKEPOS: .MACRO
 cmpdi r3, 1
 bne @SKIP
 neg r3,r3
@SKIP: ;Scope of this label is within the macro
 .ENDM
START:
 lis r2, COUNT@h ; COUNT is defined elsewhere
 ori r2,r2,COUNT@l
 cmpdi r3, 1
 bne @SKIP
 MAKEPOS
@SKIP: ;Scope of this label is START to END
 ;excluding lines arising from
 ;macro expansion
 add r2,r2,1
END:

Listing 6.2 shows a macro that uses the .mexit directive.

Listing 6.2 PowerPC example: conditional macro using the .mexit directive

; define a macro
addto: .macro val,dest
 .if val==0
 nop
 .mexit ; execution goes to the statement

Listing 4.3 Listing 6.3 on page 61

Listing 4.4 Listing 6.4 on page 61

Listing 4.6 Listing 6.5 on page 61

Listing 4.8 Listing 6.7 on page 62

Listing 4.12 Listing 6.8 on page 62

Listing 4.14 Listing 6.10 on page 63

Table 6.1 Corresponding example table

Original Example PowerPC-Specific Example
60 Assembler Reference

For more information: www.freescale.com

PowerPC-Specific Information
PowerPC-Specific Examples

Freescale Semiconductor, Inc.
 ; immediately after the .endm directive
 .elseif val==1
 addi dest,dest,1
 .mexit ; execution goes to the statement
 ; immediately after the .endm directive
 .endif
; if val is not equal to either 0 or 1,
; add dest and val
addi dest,dest,val
; end macro definition
.endm

Listing 6.3 shows assembly language code that calls the addto macro shown in
Listing 6.2.

Listing 6.3 PowerPC example: assembly code that calls the addto macro

; specify an executable code section
 .text
 xor r3,r3,r2
; call the addto macro
 addto r3,0
 addto r3,1
 addto r3,2
 addto r3,3

Listing 6.4 shows the listing file for the macro calls shown in Listing 6.3.

Listing 6.4 PowerPC example: Listing file contents for addto macro calls

.text
 nop
 addi r3,r3,1
 addi r3,r3,2
 addi r3,r3,3

Listing 6.5 shows the setup macro, which moves an integer into a register and
branches to the label _final_setup.

Listing 6.5 PowerPC example: the setup macro

setup: .macro name
 lis r3, name@h
61Assembler Reference

For more information: www.freescale.com

PowerPC-Specific Information
PowerPC-Specific Examples

Freescale Semiconductor, Inc.
 ori r3, name@l
 b _final_setup
 .endm

Listing 6.6 shows one way to invoke the setup macro. (Listing 6.6 shows the same
call as Listing 4.7.)

Listing 6.6 PowerPC example: calling setup

 #define VECT 0
 setup VECT

Listing 6.7 shows how the assembler expands the setup macro after a particular call.

Listing 6.7 PowerPC example: expanded setup

 lis r3,VECT
 b _final_setup

Listing 6.8 shows a macro that uses unique labels.

Listing 6.8 PowerPC example: unique label macro

my_macro: .macro
 foo\@ = my_count
my_count .set my_count + 1
 addi r3,r3,foo\@
 b label\@
 add r4,r4,r3
label\@:
 nop
 .endm

Listing 6.9 shows a call to the my_macro macro twice (with my_count initialized to
0). (Listing 6.9 shows the same calls as Listing 4.13.)

Listing 6.9 PowerPC example: invoking my_macro

mycount .set 0
 my_macro
 my_macro
62 Assembler Reference

For more information: www.freescale.com

PowerPC-Specific Information
PowerPC-Specific Examples

Freescale Semiconductor, Inc.
Listing 6.10 shows the assembler output for the unique label macro.

Listing 6.10 PowerPC example: expanded my_macro calls

foo??0000 = my_count
my_count .set my_count + 1
 addi r3,r3,foo??0000
 b label??f0000
 add r4,r4,r3
label??0000
 nop
foo??0001 = my_count
my_count .set my_count + 1
 addi r3,r3,foo??0001
 b label??0001
 add r4,r4,r3
label??0001
 nop
63Assembler Reference

For more information: www.freescale.com

PowerPC-Specific Information
PowerPC-Specific Examples

Freescale Semiconductor, Inc.
64 Assembler Reference

For more information: www.freescale.com

Index

Symbols
= (equal sign) symbol definition

directive 36
@ (at-sign) 13
\@ (unique label symbol) 52

A
align assembler control directive 40
alignment keyword 42
Allow space in operand field 21
alternate operators 20
ascii data declaration directive 39
asciz data declaration directive 39
assembler control directives 40–42

align 40
endian 40
error 40
include 41
option 41
org 41
pragma 41

at-sign (@) 13

B
binary operators 19
branchsize keyword 42
byte data declaration directive 37

C
case keyword 42
Case-sensitive identifiers checkbox 16, 42, 57
character constants 18
colon keyword 42
comments statement syntax 21
conditional directives 25–30

else 28
elseif 27
endif 27
if 25
ifc 26
ifdef 26
ifeq 29
ifge 30

ifgt 30
ifle 29
iflt 29
ifnc 27
ifndef 26
ifne 29

constants
character 18
floating-point 18
integer 17

D
data declaration directives 37–40

ascii 39
asciz 39
byte 37
double 39
fill 38
float 39
long 38
short 38
space 38

data section control directive 31
debug section 22
debug section control directive 31
debugging directives 43–45

file 43
function 44
line 44
size 44
type 45

#define macro directive 24
defining macros 47–53
Directives begin with '.' checkbox 23, 42, 57
double data declaration directive 39

E
ELF

section flags 34
section types 33
syntax of section directive 33

else conditional directive 28
elseif conditional directive 27
endian assembler control directive 40

Freescale Semiconductor, Inc.
65Assembler Reference

For more information: www.freescale.com

Freescale Semiconductor, Inc.
endif conditional directive 27
endm macro directive 24
equ symbol definition directive 36
equates

creating unique 52–??
definition 14

error assembler control directive 40
extern scope control directive 35

F
file debugging directive 43
fill data declaration directive 38
float data declaration directive 39
floating-point constants 18
forward equates, definition 15
function debugging directive 44

G
Generate listing file checkbox 58
global scope control directive 35

I
if conditional directive 25
ifc conditional directive 26
ifdef conditional directive 26
ifeq conditional directive 29
ifge conditional directive 30
ifgt conditional directive 30
ifle conditional directive 29
iflt conditional directive 29
ifnc conditional directive 27
ifndef conditional directive 26
ifne conditional directive 29
include assembler control directive 41
integer constants 17

L
labels

creating unique 52–??
definition 12
Labels must end with ':' checkbox 12, 42, 56

line debugging directive 44
literal 7
local label 13
long data declaration directive 38

M
macro directive 24
macro directives 23–??

#define directive 24
endm directive 24
macro directive 24
mexit directive 24

macros
arguments 50
defining with the #define directive 49
defining with the .macro directive 48
invoking 53–54
local labels in 52
macro definition syntax 47
number of arguments (narg) 53
unique equates in 52
unique labels in 52

metasymbol 7
mexit macro directive 24

N
no_at_macros keyword 42

O
offset section control directive 32
option 22
option assembler control directive 41
option keywords

alignment 42
branchsize 42
case 42
colon 42
no_at_macros 42
period 42
reorder 43
space 43

org assembler control directive 41

P
period keyword 42
PowerPC Assembler 7
pragma assembler control directive 41
Prefix file field 58
previous section control directive 32
pss section control directive 31
public scope control directive 36
66 Assembler Reference

For more information: www.freescale.com

Freescale Semiconductor, Inc.
R
release notes 5
reorder keyword 43
rodata section control directive 31

S
sbss section control directive 31
scope control directives 35–36

extern 35
global 35
public 36

scope, symbol 11
sdata section control directive 31
sdata2 section control directive 31
section control directives 30–35

data 31
debug 31
offset 32
previous 32
pss 31
rodata 31
sbss 31
sdata 31
sdata2 31
section 33
text 31

section section control directive 33
set symbol definition directive 36
short data declaration directive 38
size debugging directive 44
space data declaration directive 38
space keyword 43
symbol

definition 10, 11
scope 11

symbol definition directives 36–37
= (equal sign) 36
equ 36
set 36
textequ 37

syntax
assembly language statement 10–11
comments 21
constants 16–18
expression 19–21
forward equate 15–16
symbol 11–15

T
text section control directive 31
textequ symbol definition directive 37
type debugging directive 45

U
unary operators 20
unique label symbol (\@) 52
67Assembler Reference

For more information: www.freescale.com

Freescale Semiconductor, Inc.
68 Assembler Reference

For more information: www.freescale.com

	Introduction
	Read the Release Notes!
	What’s in This Book
	Chapter Descriptions
	Code Examples

	Conventions Used in This Manual
	Where to Learn More

	Assembly Language Syntax
	Assembly Language Statements Description
	Assembly Language Statement Syntax
	Symbols
	Labels
	Equates
	Case-sensitive identifiers

	Constants
	Integer Constants
	Floating-Point Constants
	Character Constants

	Expressions
	Comments
	Data Alignment

	Using Directives
	Macro Directives
	Conditional Preprocessor Directives
	Other conditional preprocessor directives

	Section Control Directives
	Scope Control Directives
	Symbol Definition Directives
	Data Declaration Directives
	Integer Directives
	String Directives
	Floating-Point Directives

	Assembler Control Directives
	Debugging Directives

	Using Macros
	Defining Macros
	Macro Definition Syntax
	Using Macro Arguments
	Using Local Labels in a Macro
	Creating Unique Labels and Equates
	Referring to the Number of Arguments

	Invoking Macros

	Common Assembler Settings
	Displaying Assembler Target Settings Panel
	Common Assembler Settings Descriptions
	Labels must end with :
	Directives begin with .
	Case-sensitive identifiers
	Allow space in operand field
	Generate listing file
	Prefix file

	PowerPC-Specific Information
	Related Documentation
	PowerPC-Specific Examples

	Index

