

AltiVec™ Technology
Programming Environments Manual

ALTIVECPEM
Rev. 3, 04/2006

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The PowerPC
name is a trademark of IBM Corp. and is used under license. All other product or service names are
the property of their respective owners.

© Freescale Semiconductor, Inc. 2001, 2003, 2006. All rights reserved.

Document Number: ALTIVECPEM
Rev. 3, 04/2006

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
(800) 521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Overview 1

AltiVec Register Set 2

Operand Conventions 3

Addressing Modes and Instruction Set Summary 4

Cache, Interrupts, and Memory Management 5

AltiVec Instructions 6

AltiVec Instruction Set Listings A

Revision History B

Glossary GLO

Index IND

1 Overview

2 AltiVec Register Set

3 Operand Conventions

4 Addressing Modes and Instruction Set Summary

5 Cache, Interrupts, and Memory Management

6 AltiVec Instructions

A AltiVec Instruction Set Listings

B Revision History

GLO Glossary

IND Index

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor v

Contents
Paragraph
Number Title

Page
Number

Contents

About This Book

Audience ..xx
Organization...xx
Suggested Reading... xxi

General Information... xxi
Related Documentation.. xxi

Conventions .. xxii
Acronyms and Abbreviations .. xxiii
Terminology Conventions..xxv

Chapter 1
Overview

1.1 Overview.. 1-1
1.2 AltiVec Technology Overview... 1-3
1.2.1 Levels of AltiVec ISA.. 1-4
1.2.2 Features Not Defined by AltiVec ISA ... 1-5
1.3 AltiVec Architectural Model.. 1-5
1.3.1 AltiVec Registers and Programming Model .. 1-5
1.3.2 Operand Conventions .. 1-6
1.3.2.1 Byte Ordering .. 1-6
1.3.2.2 Floating-Point Conventions ... 1-7
1.3.3 AltiVec Addressing Modes .. 1-7
1.3.4 AltiVec Instruction Set... 1-9
1.3.5 AltiVec Cache Model... 1-10
1.3.6 AltiVec Interrupt Model... 1-10
1.3.7 Memory Management Model .. 1-10

Chapter 2
AltiVec Register Set

2.1 Overview of AltiVec and PowerPC Registers ... 2-1
2.2 AltiVec Register Set Overview .. 2-3
2.3 Registers Defined by AltiVec ISA ... 2-3
2.3.1 AltiVec Vector Register File (VRF)... 2-4
2.3.2 Vector Status and Control Register (VSCR).. 2-4
2.3.3 Vector Save/Restore Register (VRSAVE) ... 2-6

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

vi Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

2.4 Additions to PowerPC UISA Registers ... 2-7
2.4.1 PowerPC Condition Register ... 2-7
2.5 Additions to PowerPC OEA Registers .. 2-8
2.5.1 AltiVec Field Added in the PowerPC Machine State Register (MSR)........................ 2-8
2.5.2 Machine Status Save/Restore Registers (SRRs) .. 2-9
2.5.2.1 Machine Status Save/Restore Register 0 (SRR0) .. 2-9
2.5.2.2 Machine Status Save/Restore Register 1 (SRR1) .. 2-10

Chapter 3
Operand Conventions

3.1 Data Organization in Memory ... 3-1
3.1.1 Aligned and Misaligned Accesses ... 3-1
3.1.2 AltiVec Byte Ordering ... 3-2
3.1.2.1 Big-Endian Byte Ordering... 3-2
3.1.2.2 Little-Endian Byte Ordering .. 3-2
3.1.3 Quad Word Byte Ordering Example.. 3-3
3.1.4 Aligned Scalars in Little-Endian Mode ... 3-4
3.1.5 Vector Register and Memory Access Alignment... 3-6
3.1.6 Quad-Word Data Alignment .. 3-6
3.1.6.1 Accessing a Misaligned Quad Word in Big-Endian Mode...................................... 3-7
3.1.6.2 Accessing a Misaligned Quad Word in Little-Endian Mode................................... 3-8
3.1.6.3 Scalar Loads and Stores... 3-9
3.1.6.4 Misaligned Scalar Loads and Stores.. 3-9
3.1.7 Mixed-Endian Systems .. 3-10
3.2 AltiVec Floating-Point Instructions—UISA.. 3-10
3.2.1 Floating-Point Modes .. 3-11
3.2.1.1 Java Mode.. 3-11
3.2.1.2 Non-Java Mode.. 3-11
3.2.2 Floating-Point Infinities... 3-12
3.2.3 Floating-Point Rounding ... 3-12
3.2.4 Floating-Point Exceptions.. 3-12
3.2.4.1 NaN Operand Exception.. 3-12
3.2.4.2 Invalid Operation Exception.. 3-13
3.2.4.3 Zero Divide Exception... 3-13
3.2.4.4 Log of Zero Exception... 3-14
3.2.4.5 Overflow Exception... 3-14
3.2.4.6 Underflow Exception... 3-14
3.2.5 Floating-Point NaNs .. 3-15
3.2.5.1 NaN Precedence... 3-15
3.2.5.2 SNaN Arithmetic ... 3-15

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor vii

Contents
Paragraph
Number Title

Page
Number

3.2.5.3 QNaN Arithmetic... 3-15
3.2.5.4 NaN Conversion to Integer.. 3-15
3.2.5.5 NaN Production ... 3-15

Chapter 4
Addressing Modes and Instruction Set Summary

4.1 Conventions ... 4-1
4.1.1 Execution Model.. 4-2
4.1.2 Computation Modes... 4-2
4.1.3 Classes of Instructions ... 4-2
4.1.4 Memory Addressing .. 4-2
4.1.4.1 Memory Operands ... 4-2
4.1.4.2 Effective Address Calculation ... 4-3
4.2 AltiVec UISA Instructions ... 4-3
4.2.1 Vector Integer Instructions... 4-3
4.2.1.1 Saturation Detection .. 4-4
4.2.1.2 Vector Integer Arithmetic Instructions .. 4-4
4.2.1.3 Vector Integer Compare Instructions ... 4-11
4.2.1.4 Vector Integer Logical Instructions ... 4-12
4.2.1.5 Vector Integer Rotate and Shift Instructions.. 4-13
4.2.2 Vector Floating-Point Instructions ... 4-14
4.2.2.1 Floating-Point Division and Square-Root ... 4-14
4.2.2.1.1 Floating-Point Division ... 4-14
4.2.2.1.2 Floating-Point Square-Root ... 4-15
4.2.2.2 Floating-Point Arithmetic Instructions .. 4-15
4.2.2.3 Floating-Point Multiply-Add Instructions ... 4-16
4.2.2.4 Floating-Point Rounding and Conversion Instructions ... 4-17
4.2.2.5 Floating-Point Compare Instructions... 4-18
4.2.2.6 Floating-Point Estimate Instructions ... 4-21
4.2.3 Load and Store Instructions ... 4-21
4.2.3.1 Alignment .. 4-21
4.2.3.2 Load and Store Address Generation .. 4-22
4.2.3.3 Vector Load Instructions.. 4-23
4.2.3.4 Vector Store Instructions.. 4-26
4.2.4 Control Flow.. 4-26
4.2.5 Vector Permutation and Formatting Instructions ... 4-27
4.2.5.1 Vector Pack Instructions .. 4-27
4.2.5.2 Vector Unpack Instructions.. 4-28
4.2.5.3 Vector Merge Instructions.. 4-29
4.2.5.4 Vector Splat Instructions.. 4-30

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

viii Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

4.2.5.5 Vector Permute Instruction .. 4-31
4.2.5.6 Vector Select Instruction.. 4-31
4.2.5.7 Vector Shift Instructions .. 4-31
4.2.5.7.1 Immediate Interelement Shifts/Rotates ... 4-32
4.2.5.7.2 Computed Interelement Shifts/Rotates .. 4-33
4.2.5.7.3 Variable Interelement Shifts .. 4-33
4.2.6 Processor Control Instructions—UISA ... 4-34
4.2.6.1 AltiVec Status and Control Register Instructions .. 4-34
4.2.7 Recommended Simplified Mnemonics.. 4-34
4.3 AltiVec VEA Instructions .. 4-35
4.3.1 Memory Control Instructions—VEA .. 4-35
4.3.2 User-Level Cache Instructions—VEA .. 4-35

Chapter 5
Cache, Interrupts, and Memory Management

5.1 PowerPC Shared Memory ... 5-1
5.2 AltiVec Memory Bandwidth Management .. 5-1
5.2.1 Software-Directed Prefetch.. 5-1
5.2.1.1 Data Stream Touch (dst).. 5-2
5.2.1.2 Transient Streams... 5-3
5.2.1.3 Storing to Streams (dstst) .. 5-4
5.2.1.4 Stopping Streams ... 5-4
5.2.1.5 Interrupt Behavior of Prefetch Streams ... 5-5
5.2.1.6 Synchronization Behavior of Streams ... 5-6
5.2.1.7 Address Translation for Streams.. 5-6
5.2.1.8 Stream Usage Notes... 5-6
5.2.1.9 Stream Implementation Assumptions.. 5-8
5.2.2 Prioritizing Cache Block Replacement.. 5-8
5.2.3 Partially Executed AltiVec Instructions... 5-8
5.3 Data Storage Interrupt—Data Address Breakpoint ... 5-9
5.4 AltiVec Unavailable Interrupt (0x00F20) .. 5-9

Chapter 6
AltiVec Instructions

6.1 Instruction Formats .. 6-1
6.1.1 Instruction Fields ... 6-1
6.1.2 Notation and Conventions ... 6-2
6.2 AltiVec Instruction Set... 6-7

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor ix

Contents
Paragraph
Number Title

Page
Number

Appendix A
AltiVec Instruction Set Listings

A.1 Instructions Sorted by Mnemonic in Decimal Format.. A-1
A.2 Instructions Sorted by Mnemonic in Binary Format .. A-6
A.3 Instructions Sorted by Opcode in Decimal Format ...A-11
A.4 Instructions Sorted by Opcode in Binary Format ... A-16
A.5 Instructions Sorted by Form ... A-21
A.6 Instruction Set Legend .. A-26

Appendix B
Revision History

B.1 Changes from Revision 2 to Revision 3 ..B-1
B.2 Changes from Revision 1 to Revision 2 ..B-1
B.3 Changes from Revision 0 to Revision 1 ..B-2

Glossary

Index

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

x Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor xi

Figures
Figure
Number Title

Page
Number

Figures

1-1 Overview of PowerPC Architecture with AltiVec Technology .. 1-4
1-2 AltiVec Top-Level Diagram.. 1-6
1-3 Big-Endian Byte Ordering for a Vector Register .. 1-6
1-4 Bit Ordering .. 1-7
1-5 Intra-Element Example, vaddsbs ... 1-8
1-6 Interelement Example, vperm .. 1-8
2-1 Programming Model—All Registers .. 2-2
2-2 AltiVec Register Set .. 2-3
2-3 Vector Registers (VRs).. 2-4
2-4 Vector Status and Control Register (VSCR) ... 2-4
2-5 32-Bit VSCR Moved to a 128-Bit Vector Register... 2-5
2-6 Vector Save/Restore Register (VRSAVE)... 2-6
2-7 Condition Register (CR) ... 2-7
2-8 Machine State Register (MSR) ... 2-8
2-9 Machine Status Save/Restore Register 0 (SRR0) ... 2-10
2-10 Machine Status Save/Restore Register 0 (SRR1) ... 2-10
3-1 Big-Endian Mapping of a Quad Word .. 3-3
3-2 Little-Endian Mapping of a Quad Word ... 3-3
3-3 Little-Endian Mapping of a Quad Word—Alternate View ... 3-3
3-4 Quad Word Load with PowerPC Munged Little-Endian Applied .. 3-5
3-5 AltiVec Little-Endian Double-Word Swap ... 3-5
3-6 Misaligned Vector in Big-Endian Mode ... 3-7
3-7 Misaligned Vector in Little-Endian Addressing Mode ... 3-7
3-8 Big-Endian Quad Word Alignment... 3-7
3-9 Little-Endian Alignment ... 3-9
4-1 Register Indirect with Index Addressing for Loads/Stores ... 4-23
5-1 Format of rB in dst Instruction... 5-2
5-2 Data Stream Touch.. 5-3
5-3 SRR1 Bit Settings After an AltiVec Unavailable Interrupt... 5-10
6-1 Format of rB in dst Instruction (32-Bit) ... 6-11
6-2 Format of rB in dst Instruction (32-Bit) ... 6-13
6-3 Effects of Example Load/Store Instructions ... 6-15
6-4 Load Vector for Shift Left ... 6-18
6-5 Instruction vperm Used in Aligning Data .. 6-19
6-6 vaddcuw—Determine Carries of Four Unsigned Integer Adds (32-Bit) 6-30
6-7 vaddfp—Add Four Floating-Point Elements (32-Bit) ... 6-31
6-8 vaddsbs—Add Saturating Sixteen Signed Integer Elements (8-Bit) 6-32
6-9 vaddshs—Add Saturating Eight Signed Integer Elements (16-Bit)..................................... 6-33
6-10 vaddsws—Add Saturating Four Signed Integer Elements (32-Bit) 6-34

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

xii Freescale Semiconductor

Figures
Figure
Number Title

Page
Number

6-11 vaddubm—Add Sixteen Integer Elements (8-Bit) .. 6-35
6-12 vaddubs—Add Saturating Sixteen Unsigned Integer Elements (8-Bit) 6-36
6-13 vadduhm—Add Eight Integer Elements (16-Bit).. 6-37
6-14 vadduhs—Add Saturating Eight Unsigned Integer Elements (16-Bit)................................ 6-38
6-15 vadduwm—Add Four Integer Elements (32-Bit) .. 6-39
6-16 vadduws—Add Saturating Four Unsigned Integer Elements (32-Bit) 6-40
6-17 vand—Logical Bitwise AND ... 6-41
6-18 vand—Logical Bitwise AND with Complement ... 6-42
6-19 vavgsb—Average Sixteen Signed Integer Elements (8-Bit) .. 6-43
6-20 vavgsh—Average Eight Signed Integer Elements (16-Bit).. 6-44
6-21 vavgsw—Average Four Signed Integer Elements (32-Bit) .. 6-45
6-22 vavgub—Average Sixteen Unsigned Integer Elements (8-Bit).. 6-46
6-23 vavguh—Average Eight Signed Integer Elements (16-Bit) ... 6-47
6-24 vavguw—Average Four Unsigned Integer Elements (32-Bit) ... 6-48
6-25 vcfsx—Convert Four Signed Integer Elements to Four Floating-Point

Elements (32-Bit) ... 6-49
6-26 vcfux—Convert Four Unsigned Integer Elements to Four Floating-Point

Elements (32-Bit) ... 6-50
6-27 vcmpbfp—Compare Bounds of Four Floating-Point Elements (32-Bit) 6-52
6-28 vcmpeqfp—Compare Equal of Four Floating-Point Elements (32-Bit) 6-53
6-29 vcmpequb—Compare Equal of Sixteen Integer Elements (8-Bit) 6-54
6-30 vcmpequh—Compare Equal of Eight Integer Elements (16-Bit).. 6-55
6-31 vcmpequw—Compare Equal of Four Integer Elements (32-Bit) .. 6-56
6-32 vcmpgefp—Compare Greater-Than-or-Equal of Four Floating-Point

Elements (32-Bit) ... 6-57
6-33 vcmpgtfp—Compare Greater-Than of Four Floating-Point Elements (32-Bit)................... 6-58
6-34 vcmpgtsb—Compare Greater-Than of Sixteen Signed Integer Elements (8-Bit)................ 6-59
6-35 vcmpgtsh—Compare Greater-Than of Eight Signed Integer Elements (16-Bit) 6-60
6-36 vcmpgtsw—Compare Greater-Than of Four Signed Integer Elements (32-Bit) 6-61
6-37 vcmpgtub—Compare Greater-Than of Sixteen Unsigned Integer Elements (8-Bit)........... 6-62
6-38 vcmpgtuh—Compare Greater-Than of Eight Unsigned Integer Elements (16-Bit) 6-63
6-39 vcmpgtuw—Compare Greater-Than of Four Unsigned Integer Elements (32-Bit) 6-64
6-40 vctsxs—Convert Four Floating-Point Elements to Four Signed Integer

Elements (32-Bit) ... 6-65
6-41 vctuxs—Convert Four Floating-Point Elements to Four Unsigned Integer

Elements (32-Bit) ... 6-66
6-42 vexptefp—Two Raised to the Exponent Estimate Floating-Point for Four

Floating-Point Elements (32-Bit) ... 6-68
6-43 vlogefp—Log2 Estimate Floating-Point for Four Floating-Point

Elements (32-Bit) ... 6-70
6-44 vmaddfp—Multiply-Add Four Floating-Point Elements (32-Bit)....................................... 6-71

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor xiii

Figures
Figure
Number Title

Page
Number

6-45 vmaxfp—Maximum of Four Floating-Point Elements (32-Bit) .. 6-72
6-46 vmaxsb—Maximum of Sixteen Signed Integer Elements (8-Bit) 6-73
6-47 vmaxsh—Maximum of Eight Signed Integer Elements (16-Bit)... 6-74
6-48 vmaxsw—Maximum of Four Signed Integer Elements (32-Bit) ... 6-75
6-49 vmaxub—Maximum of Sixteen Unsigned Integer Elements (8-Bit) 6-76
6-50 vmaxuh—Maximum of Eight Unsigned Integer Elements (16-Bit).................................... 6-77
6-51 vmaxuw—Maximum of Four Unsigned Integer Elements (32-Bit) 6-78
6-52 vmhaddshs—Multiply-High and Add Eight Signed Integer Elements (16-Bit) 6-79
6-53 vmhraddshs—Multiply-High Round and Add Eight Signed Integer

Elements (16-Bit) ... 6-80
6-54 vminfp—Minimum of Four Floating-Point Elements (32-Bit).. 6-81
6-55 vminsb—Minimum of Sixteen Signed Integer Elements (8-Bit)... 6-82
6-56 vminsh—Minimum of Eight Signed Integer Elements (16-Bit) .. 6-83
6-57 vminsw—Minimum of Four Signed Integer Elements (32-Bit) .. 6-84
6-58 vminub—Minimum of Sixteen Unsigned Integer Elements (8-Bit).................................... 6-85
6-59 vminuh—Minimum of Eight Unsigned Integer Elements (16-Bit) 6-86
6-60 vminuw—Minimum of Four Unsigned Integer Elements (32-Bit)...................................... 6-87
6-61 vmladduhm—Multiply-Add of Eight Integer Elements (16-Bit).. 6-88
6-62 vmrghb—Merge Eight High-Order Elements (8-Bit).. 6-89
6-63 vmrghh—Merge Four High-Order Elements (16-Bit)... 6-90
6-64 vmrghw—Merge Two High-Order Elements (32-Bit)... 6-91
6-65 vmrglb—Merge Eight Low-Order Elements (8-Bit) ... 6-92
6-66 vmrglh—Merge Four Low-Order Elements (16-Bit)... 6-93
6-67 vmrglw—Merge Four Low-Order Elements (32-Bit) .. 6-94
6-68 vmsummbm—Multiply-Sum of Integer Elements (8- to 32-Bit).. 6-95
6-69 vmsumshm—Multiply-Sum of Signed Integer Elements (16- to 32-Bit) 6-96
6-70 vmsumshs—Multiply-Sum of Signed Integer Elements (16- to 32-Bit) 6-97
6-71 vmsumubm—Multiply-Sum of Unsigned Integer Elements (8- to 32-Bit)......................... 6-98
6-72 vmsumuhm—Multiply-Sum of Unsigned Integer Elements (16- to 32-Bit)....................... 6-99
6-73 vmsumuhs—Multiply-Sum of Unsigned Integer Elements (16- to 32-Bit) 6-100
6-74 vmulesb—Even Multiply of Eight Signed Integer Elements (8-Bit) 6-101
6-75 vmulesh—Even Multiply of Four Signed Integer Elements (16-Bit) 6-102
6-76 vmuleub—Even Multiply of Eight Unsigned Integer Elements (8-Bit) 6-103
6-77 vmuleuh—Even Multiply of Four Unsigned Integer Elements (16-Bit) 6-104
6-78 vmulosb—Odd Multiply of Eight Signed Integer Elements (8-Bit) 6-105
6-79 vmuleuh—Odd Multiply of Four Unsigned Integer Elements (16-Bit)............................. 6-106
6-80 vmuloub—Odd Multiply of Eight Unsigned Integer Elements (8-Bit) 6-107
6-81 vmulouh—Odd Multiply of Four Unsigned Integer Elements (16-Bit) 6-108
6-82 vnmsubfp—Negative Multiply-Subtract of Four Floating-Point Elements (32-Bit)......... 6-109
6-83 vnor—Bitwise NOR of 128-Bit Vector .. 6-110
6-84 vor—Bitwise OR of 128-Bit Vector ..6-111

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

xiv Freescale Semiconductor

Figures
Figure
Number Title

Page
Number

6-85 vperm—Concatenate Sixteen Integer Elements (8-Bit)... 6-112
6-86 vpkpx—How a Word is Packed to a Half Word... 6-113
6-87 vpkpx—Pack Eight Elements (32-Bit) to Eight Elements (16-Bit) 6-114
6-88 vpkshss—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen Signed

Integer Elements (8-Bit)... 6-115
6-89 vpkshus—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen Unsigned

Integer Elements (8-Bit)... 6-116
6-90 vpkswss—Pack Eight Signed Integer Elements (32-Bit) to Eight Signed

Integer Elements (16-Bit)... 6-117
6-91 vpkswus—Pack Eight Signed Integer Elements (32-Bit) to Eight Unsigned

Integer Elements (16-Bit)... 6-118
6-92 vpkuhum—Pack Sixteen Unsigned Integer Elements (16-Bit) to Sixteen

Unsigned Integer Elements (8-Bit) .. 6-119
6-93 vpkuhus—Pack Sixteen Unsigned Integer Elements (16-Bit) to Sixteen

Unsigned Integer Elements (8-Bit) .. 6-120
6-94 vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit) to Eight Unsigned

Integer Elements (16-Bit)... 6-121
6-95 vpkuwus—Pack Eight Unsigned Integer Elements (32-Bit) to Eight Unsigned

Integer Elements (16-Bit)... 6-122
6-96 vrefp—Reciprocal Estimate of Four Floating-Point Elements (32-Bit)............................. 6-124
6-97 vrfim—Round to Minus Infinity of Four Floating-Point Integer Elements (32-Bit) 6-125
6-98 vrfin—Nearest Round to Nearest of Four Floating-Point Integer Elements (32-Bit) 6-126
6-99 vrfip—Round to Plus Infinity of Four Floating-Point Integer Elements (32-Bit) 6-127
6-100 vrfiz—Round-to-Zero of Four Floating-Point Integer Elements (32-Bit).......................... 6-128
6-101 vrlb—Left Rotate of Sixteen Integer Elements (8-Bit) .. 6-129
6-102 vrlh—Left Rotate of Eight Integer Elements (16-Bit) ... 6-130
6-103 vrlw—Left Rotate of Four Integer Elements (32-Bit).. 6-131
6-104 vrsqrtefp—Reciprocal Square Root Estimate of Four Floating-Point

Elements (32-Bit) ... 6-132
6-105 vsel—Bitwise Conditional Select of Vector Contents (128-Bit) .. 6-133
6-106 vsl—Shift Bits Left in Vector (128-Bit).. 6-134
6-107 vslb—Shift Bits Left in Sixteen Integer Elements (8-Bit).. 6-135
6-108 vsldoi—Shift Left by Bytes Specified .. 6-136
6-109 vslh—Shift Bits Left in Eight Integer Elements (16-Bit) ... 6-137
6-110 vslo—Left Byte Shift of Vector (128-Bit) .. 6-138
6-111 vslw—Shift Bits Left in Four Integer Elements (32-Bit) ... 6-139
6-112 vspltb—Copy Contents to Sixteen Elements (8-Bit) ... 6-140
6-113 vsplth—Copy Contents to Eight Elements (16-Bit)... 6-141
6-114 vspltisb—Copy Value into Sixteen Signed Integer Elements (8-Bit) 6-142
6-115 vspltish—Copy Value to Eight Signed Integer Elements (16-Bit)..................................... 6-143
6-116 vspltisw—Copy Value to Four Signed Elements (32-Bit).. 6-144

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor xv

Figures
Figure
Number Title

Page
Number

6-117 vspltw—Copy Contents to Four Elements (32-Bit) ... 6-145
6-118 vsr—Shift Bits Right for Vectors (128-Bit).. 6-147
6-119 vsrab—Shift Bits Right in Sixteen Integer Elements (8-Bit)... 6-148
6-120 vsrah—Shift Bits Right for Eight Integer Elements (16-Bit)... 6-149
6-121 vsraw—Shift Bits Right in Four Integer Elements (32-Bit)... 6-150
6-122 vsrb—Shift Bits Right in Sixteen Integer Elements (8-Bit)... 6-151
6-123 vsrh—Shift Bits Right for Eight Integer Elements (16-Bit)... 6-152
6-124 vsro—Vector Shift Right Octet... 6-153
6-125 vsrw—Shift Bits Right in Four Integer Elements (32-Bit)... 6-154
6-126 vsubcuw—Subtract Carryout of Four Unsigned Integer Elements (32-Bit) 6-155
6-127 vsubfp—Subtract Four Floating-Point Elements (32-Bit) ... 6-156
6-128 vsubsbs—Subtract Sixteen Signed Integer Elements (8-Bit)... 6-157
6-129 vsubshs—Subtract Eight Signed Integer Elements (16-Bit) .. 6-158
6-130 vsubsws—Subtract Four Signed Integer Elements (32-Bit)... 6-159
6-131 vsububm—Subtract Sixteen Integer Elements (8-Bit) .. 6-160
6-132 vsububs—Subtract Sixteen Unsigned Integer Elements (8-Bit) .. 6-161
6-133 vsubuhm—Subtract Eight Integer Elements (16-Bit).. 6-162
6-134 vsubuhs—Subtract Eight Unsigned Integer Elements (16-Bit) ... 6-163
6-135 vsubuwm—Subtract Four Integer Elements (32-Bit) .. 6-164
6-136 vsubuws—Subtract Four Signed Integer Elements (32-Bit) .. 6-165
6-137 vsumsws—Sum Four Signed Integer Elements (32-Bit) ... 6-166
6-138 vsum2sws—Two Sums in the Four Signed Integer Elements (32-Bit).............................. 6-167
6-139 vsum4sbs—Sum of Four Signed Integer Byte Elements with a

Word Element (32-Bit) ... 6-168
6-140 vsum4shs—Sum of Two Signed Integer Half-Word Elements with a

Word Element (32-Bit) ... 6-169
6-141 vsum4ubs—Sum of Four Unsigned Integer Byte Elements with an

Unsigned Integer Word Element (32-Bit) .. 6-170
6-142 vupkhpx—Unpack High-Order Elements (16-Bit) to Elements (32-Bit).......................... 6-171
6-143 vupkhsb—Unpack High-Order Signed Integer Elements (8-Bit) to Signed

Integer Elements (16-Bit)... 6-172
6-144 vupkhsh—Unpack Signed Integer Elements (16-Bit) to Signed Integer

Elements (32-Bit) ... 6-173
6-145 vupklpx—Unpack Low-Order Elements (16-Bit) to Elements (32-Bit)............................ 6-174
6-146 vupklsb—Unpack Low-Order Elements (8-Bit) to Elements (16-Bit) 6-175
6-147 vupklsh—Unpack Low-Order Signed Integer Elements (16-Bit) to Signed

Integer Elements (32-Bit)... 6-176
6-148 vxor—Bitwise XOR (128-Bit) ... 6-177

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

xvi Freescale Semiconductor

Figures
Figure
Number Title

Page
Number

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor xvii

Tables
Table
Number Title

Page
Number

Tables

i Acronyms and Abbreviated Terms.. xxiii
ii Terminology Conventions ..xxv
iii Instruction Field Conventions .. xxvi
2-1 VSCR Field Descriptions.. 2-5
2-2 VRSAVE Bit Settings ... 2-6
2-3 CR6 Field’s Bit Settings for Vector Compare Instructions ... 2-7
2-4 MSR Bit Settings .. 2-9
3-1 Memory Operand Alignment .. 3-1
3-2 Effective Address Modifications... 3-4
4-1 Vector Integer Arithmetic Instructions.. 4-5
4-2 CR6 Field Bit Settings for Vector Integer Compare Instructions ... 4-11
4-3 Vector Integer Compare Instructions .. 4-11
4-4 Vector Integer Logical Instructions... 4-12
4-5 Vector Integer Rotate Instructions... 4-13
4-6 Vector Integer Shift Instructions ... 4-13
4-7 Floating-Point Arithmetic Instructions ... 4-15
4-8 Floating-Point Multiply-Add Instructions .. 4-17
4-9 Floating-Point Rounding and Conversion Instructions... 4-17
4-10 Common Mathematical Predicates ... 4-18
4-11 Other Useful Predicates .. 4-19
4-12 Floating-Point Compare Instructions .. 4-20
4-13 Floating-Point Estimate Instructions... 4-21
4-14 Effective Address Alignment .. 4-22
4-15 Integer Load Instructions .. 4-24
4-16 Vector Load Instructions Supporting Alignment .. 4-25
4-17 Shift Values for lvsl Instruction .. 4-25
4-18 Shift Values for lvsr Instruction.. 4-25
4-19 Integer Store Instructions .. 4-26
4-20 Vector Pack Instructions.. 4-27
4-21 Vector Unpack Instructions ... 4-29
4-22 Vector Merge Instructions ... 4-30
4-23 Vector Splat Instructions ... 4-31
4-24 Vector Permute Instruction.. 4-31
4-25 Vector Select Instruction ... 4-31
4-26 Vector Shift Instructions.. 4-32
4-27 Coding Various Shifts and Rotates with the vsidoi Instruction .. 4-32
4-28 Move To/From Condition Register Instructions ... 4-34
4-29 Simplified Mnemonics for Data Stream Touch (dst).. 4-35
4-30 User-Level Cache Instructions.. 4-36

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

xviii Freescale Semiconductor

Tables
Table
Number Title

Page
Number

5-1 AltiVec Unavailable Interrupt—Register Settings .. 5-9
5-2 Interrupt Priorities (Synchronous/Precise Interrupts) ... 5-11
6-1 Instruction Syntax Conventions .. 6-1
6-2 Notation and Conventions... 6-2
6-3 Instruction Field Conventions... 6-7
6-4 Precedence Rules .. 6-7
6-5 Special Values of the Element in vB... 6-67
6-6 Special Values of the Element in vB... 6-69
6-7 Special Values of the Element in vB... 6-123
6-8 Special Values of the Element in vB... 6-132
A-1 Instructions Sorted by Mnemonic in Decimal Format... A-1
A-2 Instructions Sorted by Mnemonic in Binary Format ... A-6
A-3 Instructions Sorted by Opcode in Decimal Format...A-11
A-4 Instructions Sorted by Opcode in Binary Format .. A-16
A-5 VA-Form .. A-21
A-6 VX-Form.. A-21
A-7 X-Form... A-24
A-8 VXR-Form ... A-25
A-9 AltiVec Instruction Set Legend .. A-26

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor xix

About This Book
The primary objective of this manual is to help programmers provide software that is compatible with
processors that implement the PowerPC™ architecture and the AltiVec™ technology. This book describes
how the AltiVec technology relates to the 32-bit portions of the PowerPC architecture.

To locate any published errata or updates for this document, refer to the web at http://www.freescale.com.

This book is one of two that discuss the AltiVec technology. The two books are as follows.
• AltiVec Technology Programming Interface Manual (ALTIVECPIM) is a reference guide for

high-level programmers. The AltiVec PIM describes how programmers can access AltiVec
functionality from programming languages such as C and C++. The AltiVec PIM defines a
programming model for use with the AltiVec instruction set. Processors that implement the
PowerPC architecture use the AltiVec instruction set as an extension of the PowerPC instruction
set.

• AltiVec Technology Programming Environments Manual (ALTIVECPEM) is used as a reference
guide for assembler programmers. The AltiVec PEM uses a standardized format instruction to
describe each instruction, showing syntax, instruction format, register translation language (RTL)
code that describes how the instruction works, and a listing of which, if any, registers are affected.
At the bottom of each instruction entry is a figure that shows the operations on elements within
source operands and where the results of those operations are placed in the destination operand.

Because it is important to distinguish between the levels of the PowerPC architecture to ensure
compatibility across multiple platforms, those distinctions are shown clearly throughout this book. This
document stays consistent with the PowerPC architecture in referring to three levels, or programming
environments, which are as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of the architecture
to which user-level software should conform. The UISA defines the base user-level instruction set,
user-level registers, data types, memory conventions, and the memory and programming models
seen by application programmers.

• PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest component of
the PowerPC architecture, defines additional user-level functionality that falls outside typical
user-level software requirements. The VEA describes the memory model for an environment in
which multiple processors or other devices can access external memory and defines aspects of the
cache model and cache control instructions from a user-level perspective. VEA resources are
particularly useful for optimizing memory accesses and for managing resources in an environment
in which other processors and other devices can access external memory.
Implementations that conform to the VEA also conform to the UISA but may not necessarily
adhere to the OEA.

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

xx Freescale Semiconductor

• PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level
resources typically required by an operating system. It defines the memory management model,
supervisor-level registers, and the exception model.
Implementations that conform to the OEA also conform to the UISA and VEA.

Most of the discussions on the AltiVec technology are at the UISA level. For ease in reference, this book
and the processor reference manuals have arranged the architecture information into topics that build on
one another, beginning with a description and complete summary of registers and instructions (for all three
environments) and progressing to more specialized topics such as the cache, exception, and memory
management models. As such, chapters may include information from multiple levels of the architecture,
but when discussing OEA and VEA, the level is noted in the text.

It is beyond the scope of this manual to describe individual AltiVec technology implementations on
processors that implement the PowerPC architecture. It must be kept in mind that each processor that
implements the PowerPC architecture and AltiVec technology is unique in its implementation.

The information in this book is subject to change without notice, as described in the disclaimers on the title
page of this book. As with any technical documentation, it is the readers’ responsibility to be sure they are
using the most recent version of the documentation. For more information, contact your sales
representative or visit our web site at http://www.freescale.com.

Audience
This manual is intended for system software and hardware developers and application programmers who
want to develop products using the AltiVec technology extension to the PowerPC architecture. It is
assumed that the reader understands operating systems, microprocessor system design, and the basic
principles of RISC processing and details of the PowerPC architecture.

This book describes how the AltiVec technology interacts with the 32-bit portions of the PowerPC
architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “Overview,” is useful for those who want a general understanding of the features and
functions of the AltiVec technology. This chapter provides an overview of how the AltiVec
technology defines the register set, operand conventions, addressing modes, instruction set, cache
model, and interrupt model.

• Chapter 2, “AltiVec Register Set,” is useful for software engineers who need to understand the
PowerPC programming model for the three programming environments. The chapter also
discusses the functionality of the AltiVec technology registers and how they interact with the other
PowerPC registers.

• Chapter 3, “Operand Conventions,” describes how the AltiVec technology interacts with the
PowerPC conventions for storing data in memory, including information regarding alignment,
single-precision floating-point conventions, and big- and little-endian byte ordering.

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor xxi

• Chapter 4, “Addressing Modes and Instruction Set Summary,” provides an overview of the AltiVec
technology addressing modes and a brief description of the AltiVec technology instructions
organized by function.

• Chapter 5, “Cache, Interrupts, and Memory Management,” provides a discussion of the cache and
memory model defined by the VEA and aspects of the cache model that are defined by the OEA.
It also describes the interrupt model defined in the UISA.

• Chapter 6, “AltiVec Instructions,” functions as a handbook for the AltiVec instruction set.
Instructions are sorted by mnemonic. Each instruction description includes the instruction formats
and figures where it helps in understanding what the instruction does.

• Appendix A, “AltiVec Instruction Set Listings,” list all of the AltiVec instructions, grouped
according to mnemonic, opcode, and form, in both decimal and binary order.

• Appendix B, “Revision History,” lists the major differences between revisions of the AltiVec
Technology Programming Environments Manual.

• This manual also includes a glossary and an index.

Suggested Reading
This section lists additional reading that provides background for the information in this manual as well as
general information about the AltiVec technology and PowerPC architecture.

General Information

The following documentation, available through Morgan-Kaufmann Publishers, 340 Pine Street, Sixth
Floor, San Francisco, CA, provides useful information about the PowerPC architecture and computer
architecture in general:

• The PowerPC Architecture: A Specification for a New Family of RISC Processors, Second Edition,
by International Business Machines, Inc.
For updates to the specification, see http://www.austin.ibm.com/tech/ppc-chg.html

• PowerPC Microprocessor Common Hardware Reference Platform: A System Architecture, by
Apple Computer, Inc., International Business Machines, Inc., and Freescale Semiconductor, Inc.

• Computer Architecture: A Quantitative Approach, Third Edition, by John L. Hennessy and
David A. Patterson.

• Computer Organization and Design: The Hardware/Software Interface, Third Edition,
David A. Patterson and John L. Hennessy.

Related Documentation

Freescale documentation is available from the sources listed on the back cover of this manual; the
document order numbers are included in parentheses for ease in ordering:

• Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture
(Programming Environments Manual)—Describes resources defined by the PowerPC architecture
(MPCFP32B).

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

xxii Freescale Semiconductor

• Reference manuals—These manuals provide details about individual implementations and are
intended for use with the Programming Environments Manual.

• Addenda/errata to reference manuals—Because some processors have follow-on parts, an
addendum is provided that describes the additional features and functionality changes. These
addenda are intended for use with the corresponding reference manuals.

• Hardware specifications—Hardware specifications provide specific data regarding bus timing,
signal behavior, and AC, DC, and thermal characteristics, as well as other design considerations.

• Product brief—Each device has a product brief that provides an overview of its features. This
document is roughly the equivalent to the overview (Chapter 1) of an implementation’s reference
manual.

• Application notes—These short documents address specific design issues useful to programmers
and engineers working with Freescale processors.

Additional literature is published as new processors become available. For a current list of documentation,
refer to http://www.freescale.com.

Conventions
This document uses the following notational conventions:
cleared/set When a bit takes the value zero, it is said to be cleared; when it takes a value of

one, it is said to be set.
mnemonics Instruction mnemonics are shown in lowercase bold
italics Italics indicate variable command parameters, for example, bcctrx

Book titles in text are set in italics
0x0 Prefix to denote hexadecimal number
0b0 Prefix to denote binary number
rA, rB Instruction syntax used to identify a source general-purpose register (GPR)
rD Instruction syntax used to identify a destination GPR
frA, frB, frC Instruction syntax used to identify a source floating-point register (FPR)
frD Instruction syntax used to identify a destination FPR
REG[FIELD] Abbreviations for registers are shown in uppercase text. Specific bits, fields, or

ranges appear in brackets. For example, MSR[LE] refers to the little-endian mode
enable bit in the machine state register.

vA, vB, vC Instruction syntax used to identify a source vector register (VR)
vD Instruction syntax used to identify a destination VR
x In some contexts, such as signal encodings, an unitalicized x indicates a don’t

care.
x An italicized x indicates an alphanumeric variable
n An italicized n indicates an numeric variable
¬ NOT logical operator

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor xxiii

& AND logical operator
| OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits may be written
to as ones or zeros, they are always read as zeros.

Additional conventions used with instruction encodings are described in Section 6.1, “Instruction
Formats.”

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this document. Note that the meanings for
some acronyms (such as SDR1 and XER) are historical, and the words for which an acronym stands may
not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

AltiVec PEM AltiVec Technology Programming Environments Manual

AltiVec PIM AltiVec Technology Programming Interface Manual

ALU Arithmetic logic unit

BAT Block address translation

CR Condition register

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DBAT Data BAT

DEC Decrementer register

DSISR Register used for determining the source of a data storage interrupt

EA Effective address

ECC Error checking and correction

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GPR General-purpose register

IABR Instruction address breakpoint register

IBAT Instruction BAT

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

IU Integer unit

0 0 0 0

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

xxiv Freescale Semiconductor

L2 Secondary cache

L3 Level 3 cache

LIFO Last-in-first-out

LR Link register

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

LSQ Least-significant quad-word

lsq Least-significant quad-word

LSU Load/store unit

MESI Modified/exclusive/shared/invalid—cache coherency protocol

MMCRn Monitor mode control registers

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSQ Most-significant quad-word

msq Most-significant quad-word

MSR Machine state register

NaN Not a number

NIA Next instruction address

No-op No operation

OEA Operating environment architecture

PEM Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture

PMCn Performance monitor counter register

PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RISC Reduced instruction set computing

RTL Register transfer language

RWITM Read with intent to modify

RWNITM Read with no intent to modify

SDA Sampled data address register

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor xxv

Terminology Conventions
Table ii lists certain terms used in this manual that differ from the architecture terminology conventions.

SIA Sampled instruction address register

SIMM Signed immediate value

SPR Special-purpose register

SRn Segment register

SRR0 Machine status save/restore register 0

SRR1 Machine status save/restore register 1

STE Segment table entry

TB Time base facility

TBL Time base lower register

TBU Time base upper register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

UMMCRn User monitor mode control registers

UPMCn User performance monitor counter registers

VA Virtual address

VEA Virtual environment architecture

VPU Vector permute unit

VR Vector register

VSCR Vector status and control register

VTQ Vector touch queue

XER Register used for indicating conditions such as carries and overflows for integer operations

Table ii. Terminology Conventions

The Architecture Specification This Manual

Extended mnemonics Simplified mnemonics

Fixed-point unit (FXU) Integer unit (IU)

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

xxvi Freescale Semiconductor

Table iii describes instruction field notation conventions used in this manual.

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Store in Write back

Store through Write through

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

/, //, /// 0...0 (shaded)

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

VA, VB, VT, VS vA, vB, vD, vS (respectively)

VEC AltiVec technology

Table ii. Terminology Conventions (continued)

The Architecture Specification This Manual

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 1-1

Chapter 1
Overview
This chapter provides an overview of the AltiVec™ technology, including general concepts which help in
understanding the features that AltiVec technology provides. There is also information on how AltiVec
technology works with PowerPC™ architecture.

1.1 Overview
AltiVec technology provides a software model that accelerates the performance of various software
applications as it runs on reduced instruction set computing (RISC) microprocessors. AltiVec technology
extends the instruction set architecture (ISA) of PowerPC architecture. AltiVec ISA is based on separate
vector/SIMD-style (single instruction stream, multiple data streams) execution units that have high data
parallelism. That is, AltiVec technology operates on multiple data items in a single instruction which
allows for a highly efficient way to process large quantities of information. High degrees of parallelism
are achievable with simple in-order instruction dispatch and low-instruction time processing. However, the
ISA is designed so as not to impede additional parallelism through dispatch to multiple execution units or
multithreaded execution unit pipelines.

AltiVec technology is an architecture that defines a set of registers and execution units which can be used
in conjunction with the PowerPC architecture. All instructions are designed to be easily pipelined with
pipeline latencies no greater than the scalar, double-precision, floating-point multiply-add. There are no
operating mode switches which make interleaving of instructions with the existing floating-point and
integer instructions possible. The vector unit minimizes exceptions and has few shared resources. This
requires it to be tightly synchronized with other execution units that prevent delays in executing
instructions.

AltiVec technology’s SIMD-style extension provides an approach to accelerating the processing of data
streams. That is, in SIMD parallel processing, the vector unit will fetch and interpret instructions and
process multiple pieces of data simultaneously. By processing whole streams of data at once, it provides a
fast and efficient was to manipulate large quantities of information. AltiVec instructions provide a
significant speedup for communications, multimedia, and other performance-driven applications by using
the data-level parallelism and keeping processing of data to the vector register file. By having separate
register files, the execution units data accesses by different register files can be done concurrently. The data
stream engine in AltiVec supports data-intensive prefetching, minimizing latency in memory access
bottlenecks. By using the SIMD parallelism in AltiVec technology, performance can be accelerated on
processors that implement the PowerPC architecture to a level that allows real-time processing of one or
more data streams at the same time.

Overview

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

1-2 Freescale Semiconductor

A majority of audio and visual applications require no more than 8- or 16-bit data types to represent
satisfactory color and sound. AltiVec ISA can help accelerate the processing of the following types of
applications:

• Voice over IP (VoIP). VoIP transmits voice as compressed digital data packets over the Internet.
• Access Concentrators/DSLAMS. An access concentrator strips data traffic off POTS lines and

inserts it onto the Internet. Digital subscriber loop access multiplexer (DSLAM) pulls data off at a
switch and immediately routes it to the Internet. This allows it to concentrate ADSL digital traffic
at the switch and off-load the network.

• Speech recognition. Speech processing allows voice recognition for use in applications such as
directory assistance and automatic dialing.

• Voice/sound processing (audio encode and decode): Voice processing uses signal processing to
improve sound quality on lines.

• Communications:
— Multi-channel modems
— Modem banks can use AltiVec technology to replace signal processors in DSP farms

• 2D and 3D graphics: Arcade-type games
• Image and video processing: JPEG, filters
• Echo cancellation. Echo cancellation is used to eliminate echo on long delay calls

(250–500 milliseconds, as in satellite communications).
• Array number processing
• Basestation processing: Cellular basestation compresses digital voice data for transmission within

the Internet.
• Video conferencing: H.261, H.263

In this document, the term ‘implementation’ refers to a hardware device (typically a microprocessor) that
complies with PowerPC architecture.

AltiVec technology can be used as an extension to various RISC microprocessors; however, in this book
it is discussed within the context of PowerPC architecture, described as follows:

• Programming model
— Instruction set. The AltiVec instruction set specifies instructions that extend the PowerPC

instruction set. These instructions are organized similar to PowerPC instructions (vector
integer, vector floating-point, vector load/store, and vector permutation and formatting
instructions). The specific instructions, and the forms used for encoding them, are provided in
Appendix A, “AltiVec Instruction Set Listings.”

— Register set. The AltiVec programming model defines new AltiVec registers, additions to the
PowerPC register set, and how existing PowerPC registers are affected by the AltiVec
technology. The model also addresses memory conventions including details regarding the byte
ordering for quad words.

• Memory model. AltiVec technology specifies additional cache management instructions. That is,
AltiVec instructions can control software-directed data prefetching.

Overview

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 1-3

• Interrupt model. AltiVec technology provides very few interrupts, so processing is efficient.
Among the few interrupts are an AltiVec unavailable (VUI) interrupt and a data storage interrupt.

• Memory management model. The memory model for AltiVec technology is the same as for
PowerPC architecture. AltiVec memory accesses are always assumed to be aligned. If an operand
is misaligned, additional AltiVec instructions can be used to ensure that the operand is placed
correctly in the vector register.

• Time-keeping model. The PowerPC time-keeping model is not affected by AltiVec technology.

To locate published errata or updates for this document, refer to the website at http://www.freescale.com.

1.2 AltiVec Technology Overview
AltiVec technology expands PowerPC architecture through the addition of a 128-bit vector execution unit,
which operates concurrently with the existing integer- and floating-point units. The dispatch unit can issue
more than one instruction at a time so there is no penalty for mingling different types of instructions. A
new vector execution unit can provide both a vector permute unit (VPERM) and vector arithmetic logical
unit (VALU). By having a separate permute unit, data reorganization instructions can proceed concurrently
with arithmetic instructions.

AltiVec technology can be thought of as a set of registers and execution units that can be added to PowerPC
architecture in a manner analogous to the addition of floating-point units. Floating-point units were added
to provide support for high-precision scientific calculations, and AltiVec technology is added to PowerPC
architecture to accelerate the next level of performance-driven, high-bandwidth communications and
computing applications. Figure 1-1 provides a high-level overview of the PowerPC architecture with the
AltiVec technology.

AltiVec technology is purposefully simple so that there are minimal exceptions, no hardware misaligned
access support, and no complex functions. AltiVec technology is scaled down to the necessary pieces only,
in order to facilitate efficient cycle time, latency, and throughput on hardware implementations.

AltiVec technology defines the following:
• Fixed 128-bit-wide vector length that can be subdivided into sixteen 8-bit bytes, eight 16-bit

half-words, or four 32-bit words
• Vector register file (VRF) architecturally separate from floating-point registers (FPRs) and

general-purpose registers (GPRs)
• Vector integer and floating-point arithmetic
• Four operands for most instructions (three source operands and one result)
• Saturation clamping, that is, unsigned results are clamped to zero on underflow and to the

maximum positive integer value (2n–1), for example, 255 for byte fields on overflow. For signed
results, saturation clamps results to the smallest representable negative number (–2n–1, for
example, –128 for byte fields) on underflow, and to the largest representable positive number
(2n–01–1), for example, +127 for byte fields on overflow.

• Operations selected based on utility to digital signal processing algorithms (including 3D)

Overview

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

1-4 Freescale Semiconductor

.

Figure 1-1. Overview of PowerPC Architecture with AltiVec Technology

• AltiVec instructions provide a vector compare and select mechanism to implement conditional
execution as the preferred way to control data flow in AltiVec programs.

• Instructions that enhance the cache/memory interface

1.2.1 Levels of AltiVec ISA

AltiVec ISA follows the layering of PowerPC architecture. PowerPC architecture has three levels, defined
as follows:

• User instruction set architecture (UISA) —The UISA defines the level of the architecture to which
user-level (referred to as problem state in the architecture specification) software should conform.
The UISA defines the base user-level instruction set, user-level registers, data types, floating-point
memory conventions, and interrupt model as seen by user programs, and the memory and
programming models.

• Virtual environment architecture (VEA)—The VEA defines additional user-level functionality that
falls outside typical user-level software requirements. The VEA describes the memory model for
an environment in which multiple devices can access memory, defines aspects of the cache model,
defines cache control instructions, and defines the time base facility from a user-level perspective.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily adhere
to the OEA.

• Operating environment architecture (OEA)—The OEA defines supervisor-level (referred to as
privileged state in the architecture specification) resources typically required by an operating
system. The OEA defines the memory management model, supervisor-level registers,

Dispatch Unit

Integer Floating-Point
Vector UnitsUnit

VRs

INST INST INST

Cache/Memory

Unit

FPRs
(32 Bits) (64 Bits) (128 Bits)

Instruction Stream

GPRs

Overview

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 1-5

synchronization requirements, and the exception model. The OEA also defines the time base
feature from a supervisor-level perspective.
Implementations that conform to the OEA also conform to the UISA and VEA.

AltiVec technology defines instructions at the UISA and VEA levels. There are no AltiVec instructions
defined at the OEA level. The distinctions between the levels are noted in the text throughout this book.
The PowerPC architecture mode and instructions are described from a 32-bit perspective.

1.2.2 Features Not Defined by AltiVec ISA

Because flexibility is an important design goal of AltiVec technology, there are many aspects of the
microprocessor design, typically relating to the hardware implementation, that AltiVec ISA does not
define. For example, the number and the nature of execution units are not defined. AltiVec ISA is a
vector/SIMD architecture, and as such makes it easier to implement pipelining instructions and parallel
execution units to maximize instruction throughput. However, AltiVec ISA does not define the internal
hardware details of implementations. For example, one processor may use a simple implementation having
two vector execution units, whereas another may provide a bigger, faster microprocessor design with
several concurrently pipelined vector arithmetic logical units (ALUs) with separate load/store units
(LSUs) and prefetch units.

1.3 AltiVec Architectural Model
This section provides overviews of aspects defined by AltiVec ISA, following the same order as the rest
of this book. The topics are as follows:

• Registers and programming model
• Operand conventions
• Addressing modes and instruction set
• Cache, interrupts, and memory management models

1.3.1 AltiVec Registers and Programming Model

In AltiVec technology, the ALU operates on from one to three source vectors and produces a single
destination vector on each instruction. The ALU is a SIMD-style arithmetic unit that performs the same
operation on all the data elements comprising each vector. This scheme allows efficient code scheduling
in a highly parallel processor. Load and store instructions are the only instructions that transfer data
between registers and memory. The vector unit and vector register file are shown in Figure 1-2.

The ALU is a SIMD-style unit in which an instruction performs operations in parallel with the data
elements that comprise each vector. Architecturally, the vector register file (VRF) is separate from the
GPRs and FPRs. The AltiVec programming model incorporates the 32 registers of the VRFs; each register
is 128 bits wide.

Overview

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

1-6 Freescale Semiconductor

Figure 1-2. AltiVec Top-Level Diagram

1.3.2 Operand Conventions

Operand conventions define how data is stored in vector registers and memory.

1.3.2.1 Byte Ordering

The default mapping for AltiVec ISA is PowerPC big-endian, but AltiVec ISA provides the option of
operating in either big- or little-endian mode. The endian support of PowerPC architecture does not
address any data element larger than a double word; the basic memory unit for vectors is a quad word.

Big-endian byte ordering is shown in Figure 1-3.
.

Quad Word

Word 0 Word 1 Word 2 Word 3

Half-Word 0 Half-Word 1 Half-Word 2 Half-Word 3 Half-Word 4 Half-Word 5 Half-Word 6 Half-Word 7

Byte
0

Byte
1

Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

Byte
13

Byte
14

Byte
15

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

↑
MSB
(High
Order)

↑
LSB
(Low

Order)
Figure 1-3. Big-Endian Byte Ordering for a Vector Register

Vector Register File (VRF)

128

VR0

VR1

VR2

VR30

VR31

128 128 128

Result/Destination

Vector Unit

 Vector Register

Overview

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 1-7

As shown in Figure 1-3, the elements in vector registers are numbered using big-endian byte ordering. For
example, the high-order (or most significant) byte element is numbered 0 and the low-order (or least
significant) byte element is numbered 15.

When defining high order and low order for elements in a vector register, be careful not to confuse its
meaning based on the bit numbering. That is, in Figure 1-4, the high-order half-word for word 0 (bits 0–31)
would be half-word 0 (bits 0–15), and the low-order half-word for word 0 would be half-word 1
(bits 16–31).

In big-endian mode, an AltiVec quad word load instruction for which the effective address (EA) is
quad-word aligned places the byte addressed by EA into byte element 0 of the target vector register. The
byte addressed by EA + 1 is placed in byte element 1, and so forth. Similarly, an AltiVec quad word store
instruction for which the EA is quad word-aligned places byte element 0 of the source vector register into
the byte addressed by EA. Byte element 1 is placed into the byte addressed by EA + 1, and so forth.

1.3.2.2 Floating-Point Conventions

AltiVec ISA basically has two modes for floating-point, that is a Java-/IEEE-/C9X-compliant mode or a
possibly faster non-Java/non-IEEE mode. AltiVec ISA conforms to the Java Language Specification 1
(hereafter referred to as Java), that is a subset of the default environment specified by the IEEE standard
(ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic). For aspects of
floating-point behavior that are not defined by Java but are defined by the IEEE standard, AltiVec ISA
conforms to the IEEE standard. For aspects of floating-point behavior that are defined neither by Java nor
by the IEEE standard but are defined by the C9X Floating-Point Proposal WG14/N546 X3J11/96-010
(Draft 2/26/96) (hereafter, referred to as C9X), AltiVec ISA conforms to C9X when in Java-compliant
mode.

1.3.3 AltiVec Addressing Modes

As with PowerPC instructions, AltiVec instructions are encoded as single-word (32-bit) instructions.
Instruction formats are consistent among all instruction types, permitting decoding to be parallel with
operand accesses. This fixed instruction length and consistent format simplifies instruction pipelining.
AltiVec load, store, and stream prefetch instructions use secondary opcodes in primary opcode 31
(0b011111). AltiVec ALU-type instructions use primary opcode 4 (0b000100).

AltiVec ISA supports both intra-element and interelement operations. In an intra-element operation,
elements work in parallel with the corresponding elements from multiple source operand registers and
place the results in the corresponding fields in the destination operand register. An example of an
intra-element operation is the Vector Add Signed Word Saturate (vaddsws) instruction shown in
Figure 1-5.

Word 0

High-Order Half-Word Low-Order Half-Word
0 15 16 31

Figure 1-4. Bit Ordering

Overview

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

1-8 Freescale Semiconductor

Figure 1-5. Intra-Element Example, vaddsbs

In this example, the 16 elements (8 bits per element) in register vA are added to the corresponding
16 elements (8 bits per element) in register vB and the 16 results are placed in the corresponding elements
in register vD.

In interelement operations data paths cross over. That is, different elements from each source operand are
used in the resulting destination operand. An example of an interelement operation is the Vector Permute
(vperm) instruction shown in Figure 1-6.

Figure 1-6. Interelement Example, vperm

In this example, vperm allows any byte in the two source vector registers (vA and vB) to be copied to any
byte in the destination vector register, vD. The bytes in a third source vector register (vC) specify from
which byte in the first two source vector registers the corresponding target byte is to be copied. So in the
interelement example, the elements from the source vector registers do not have corresponding elements
that operate on the destination register.

Most arithmetic and logical instructions are intra-element operations. The crossover data paths have been
restricted as much as possible to the interelement manipulation instructions (unpack, pack, permute, etc.)
with the idea to implement the ALU and shift/permute as separate execution units. The following list of
instructions distinguishes between intra-element and interelement instructions:

• Vector intra-element instructions
— Vector integer instructions

– Vector integer arithmetic instructions
– Vector integer compare instructions
– Vector integer rotate and shift instructions

— Vector floating-point instructions
– Vector floating-point arithmetic instructions

0Element→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+ +++++++++++++++

vA

vB

vD

0Element→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vC1 14 18 10 16 15 19 1A 1C 1C 1C 13 8 1D 1B E

vA

vB

vD

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1F11 1E

Overview

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 1-9

– Vector floating-point rounding and conversion instructions
– Vector floating-point compare instruction
– Vector floating-point estimate instructions

— Vector memory access instructions
• Vector interelement instructions

— Vector alignment support instructions
— Vector permutation and formatting instructions

– Vector pack instructions
– Vector unpack instructions
– Vector merge instructions
– Vector splat instructions
– Vector permute instructions
– Vector shift left/right instructions

1.3.4 AltiVec Instruction Set

Although these categories are not defined by AltiVec ISA, AltiVec instructions can be grouped as follows:
• Vector integer arithmetic instructions—These instructions are defined by the UISA. They include

computational, logical, rotate, and shift instructions.
— Vector integer arithmetic instructions
— Vector integer compare instructions
— Vector integer logical instructions
— Vector integer rotate and shift instructions

• Vector floating-point arithmetic instructions—These include floating-point arithmetic instructions
defined by the UISA.
— Vector floating-point arithmetic instructions
— Vector floating-point multiply/add instructions
— Vector floating-point rounding and conversion instructions
— Vector floating-point compare instruction
— Vector floating-point estimate instructions

• Vector load and store instructions—These include load and store instructions for vector registers
defined by the UISA.

• Vector permutation and formatting instructions—These instructions are defined by the UISA.
– Vector pack instructions
– Vector unpack instructions
– Vector merge instructions
– Vector splat instructions
– Vector permute instructions

Overview

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

1-10 Freescale Semiconductor

– Vector select instructions
– Vector shift instructions

• Processor control instructions—These instructions are used to read and write from the AltiVec
status and control register (VSCR). These instructions are defined by the UISA.

• Memory control instructions—These instructions are used for managing of caches (user level and
supervisor level). The instructions are defined by VEA and include data stream instructions.

1.3.5 AltiVec Cache Model

AltiVec ISA defines several instructions for enhancements to cache management. These instructions allow
software to indicate to the cache hardware how it should prefetch and prioritize writeback of data. The
AltiVec ISA does not define hardware aspects of cache implementations.

1.3.6 AltiVec Interrupt Model

AltiVec vector instructions generate very few interrupts. Data stream instructions will never cause an
interrupt themselves. Vector load and store instructions that attempt to access a direct-store segment will
cause a data storage interrupt.

The AltiVec unit does not report IEEE interrupts; there are no status flags and the unit has no
architecturally visible traps. Default results are produced for all exception conditions as specified first by
the Java specification. If no default exists, the IEEE standard’s default is used. Then, if no default exists,
the C9X default is used.

Interrupts have been minimized so that the vector unit does not have to be tightly synchronized with the
existing floating-point and integer units. By simplifying the communications path with other units there
can be fine grain interleaving of instructions that increases the instruction throughput.

1.3.7 Memory Management Model

In a processor that implement the PowerPC architecture the MMU’s primary functions are to translate
logical (effective) addresses to physical addresses for memory accesses and I/O accesses (most I/O
accesses are assumed to be memory-mapped) and to provide access protection on a block or page basis.
Some protection is also available even if translation is disabled. Typically, it is not programmable. The
AltiVec ISA does not provide any additional instructions to the PowerPC memory management model, but
AltiVec instructions have options to ensure that an operand is correctly placed in a vector register or in
memory.

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 2-1

Chapter 2
AltiVec Register Set
This chapter describes the register organization defined by AltiVec technology. It also describes how
AltiVec instructions affect some of the registers in the PowerPC architecture. AltiVec Instruction Set
Architecture (ISA) defines register-to-register operations for all computational instructions. Source data
for these instructions is accessed from the on-chip vector registers (VRs) or are provided as immediate
values embedded in the opcode. Architecturally, the VRs are separate from the general-purpose registers
(GPRs) and floating-point registers (FPRs). Data is transferred between memory and vector registers with
explicit AltiVec load and store instructions only.

Note that the handling of reserved bits in any register is implementation-dependent. Software is permitted
to write any value to a reserved bit in a register. However, a subsequent reading of the reserved bit returns
0 if the value last written to the bit was 0 and returns an undefined value (may be 0 or 1), otherwise. This
means that even if the last value written to a reserved bit was 1, reading that bit may return 0.

NOTE
It is strongly encouraged that software does not write to reserved bit
registers.

2.1 Overview of AltiVec and PowerPC Registers
The addition of AltiVec technology adds some additional new registers as well as affecting bit settings in
some of the PowerPC registers when AltiVec instructions are executed. Figure 2-1 shows a graphic
representation of the entire PowerPC register set and how the AltiVec register set resides within the
PowerPC architecture. The PowerPC registers affected by AltiVec instructions are shaded and the AltiVec
registers are highlighted as well. Note that a processor that implements the PowerPC architecture may have
additional registers specific only to that processor.

AltiVec Register Set

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

2-2 Freescale Semiconductor

Figure 2-1. Programming Model—All Registers

IBAT0U (32)

IBAT0L (32)

IBAT1U (32)

IBAT1L (32)

IBAT2U (32)

IBAT2L (32)

IBAT3U (32)

IBAT3L (32)

GPR0 (32)

GPR1 (32)

GPR31 (32)

DBAT0U (32)

DBAT0L (32)

DBAT1U (32)

DBAT1L (32)

DBAT2U (32)

DBAT2L (32)

DBAT3U (32)

DBAT3L (32)

1 These registers are defined as optional by the
PowerPC architecture.

2 These registers are defined by AltiVec technology.

DSISRData Address Register

SPRGs

Interrupt Handling Registers

Save and Restore Registers

Instruction BAT
Registers

Data BAT
Registers

Memory Management Registers

Machine State Register

MSR (32)

Processor Version Register
(Read Only)

SPR 287PVR (32)

Configuration Registers

USER MODEL—UISA

Condition Register

General-Purpose
Registers

SPR 8

Link Register

LR (32)

SUPERVISOR MODEL—OEA

Decrementer 1

External Address Register1

EAR (32)

SPR 9

Count Register

Miscellaneous Registers

Segment
Registers

CR (32)

Vector Registers 2

Time Base Facility
(For Writing) 1

USER MODEL—VEA

TBL (32) TBR 268

Time Base Facility (For Reading)

CTR (32)

TBU (32) TBR 269

SPR 528

SPR 529

SPR 530

SPR 531

SPR 532

SPR 533

SPR 534

SPR 535

SPR 536

SPR 537

SPR 538

SPR 539

SPR 540

SPR 541

SPR 542

SPR 543

SDR1 (32) SPR 25

SPRG0 (32)

SPRG1 (32)

SPRG2 (32)

SPRG3 (32)

SPR 272

SPR 273

SPR 274

SPR 275

DAR (32) DSISR (32)SPR 19 SPR 18

SRR0 (32) SPR 26

SRR1 (32) SPR 27

SPR 282

TBL (32) TBR 284

TBU (32) TBR 285

DEC (32) SPR 22

Data Address
Breakpoint Register 1

DABR (32) SPR 1013

Vector Status and
Control Register 2

VSCR (32)

Processor ID Register 1

PIR (32) SPR 1023

AltiVec Registers

AltiVec Save
Register 2

SPR 256

Floating-Point Registers

FPR0 (64)

FPR1 (64)

FPR31 (64)

2

VR0 (128)

VR1 (128)

VR31 (128)

= AltiVec registers

= PowerPC registers used in AltiVec technology

SDR1

Floating-Point Exception
Cause Register 1

FPECR (32) SPR 1022

SPR 1

XER

XER (32)

Floating-Point
Status and Control
Register

FPSCR (32)

Memory Management Registers

VRSAVE (32)

SR0 (32)

SR1 (32)

SR15 (32)

AltiVec Register Set

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 2-3

2.2 AltiVec Register Set Overview
AltiVec registers, shown in Figure 2-2, can be accessed by user- or supervisor-level instructions. The
vector registers (VRs) are accessed as instruction operands. Access to the registers can be explicit (that is,
through the use of specific instructions for that purpose such as Move from Vector Status and Control
Register (mfvscr) and Move to Vector Status and Control Register (mtvscr) instructions) or implicit as
part of the execution of an instruction. The VRs are accessed both explicitly and implicitly.

The number to the right of the register name indicates the number used in the syntax of the instruction
operands to access the register (for example, the number used to access the VRSAVE is SPR 256).

Figure 2-2. AltiVec Register Set

The user-level registers can be accessed by all software with either user or supervisor privileges. The
user-level register set for AltiVec technology includes the following:

• Vector registers (VRs): The vector register file consists of 32 VRs designated as VR0–VR31. The
VRs serve as vector source and vector destination registers for all vector instructions. See
Section 2.3.2, “Vector Status and Control Register (VSCR),” for more information.

• Vector status and control register (VSCR): The VSCR contains the non-Java and saturation bit with
the remaining bits being reserved. See Section 2.3.2, “Vector Status and Control Register
(VSCR),” for more details.

• Vector save/restore register (VRSAVE): The VRSAVE assists the application and operating system
software in saving and restoring the architectural state across context-switched events. The bits in
the VRSAVE can indicate whether the vector register is live (1) or dead (0). See Section 2.3.3,
“Vector Save/Restore Register (VRSAVE),” for more information.

2.3 Registers Defined by AltiVec ISA
AltiVec ISA has defined several registers. The new AltiVec registers for the most part only interact with
AltiVec instructions, with the exception of the VRSAVE register that is read or written by the PowerPC
instructions mfspr or mtspr, respectively.

Vector Registers

VR1

Vector Status and Control Register

VSCR

Vector Save/Restore Register

VRSAVE SPR 256

0 31

310

0 128

VR0

VR31

AltiVec Register Set

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

2-4 Freescale Semiconductor

2.3.1 AltiVec Vector Register File (VRF)

The VRF, shown in Figure 2-3, has 32 registers, each 128 bits wide. Each vector register can hold sixteen
8-bit elements, eight 16-bit elements, or four 32-bit elements.

Figure 2-3. Vector Registers (VRs)

The vector registers are accessed as vector instruction operands. Access to registers are explicit as part of
the execution of an AltiVec instruction.

2.3.2 Vector Status and Control Register (VSCR)

The vector status and control register (VSCR) is a 32-bit vector register (not an SPR) that is read and
written in a manner similar to the FPSCR in the PowerPC scalar floating-point unit. The VSCR is shown
in Figure 2-4.

0 1 2 3 4 5

Field Reserved NJ Reserved SAT

Reset Implementation Specific

R/W R/W with mfvscr or mtvscr Instruction

Figure 2-4. Vector Status and Control Register (VSCR)

VR0

VR1

VR2

VR30

VR31

VR3

32 Bits

16 Bits

8 Bits

128 Bits

32
Vector

Registers

1 9 10 11 12 13 14 15 16

1

1

2

2

2

3

3

3

4

4

4

5

5

6

6

7

7

8

8

0 128

Sixteen 8-Bit Elements

Eight 16-Bit Elements

Four 32-Bit Elements

VR4

VR5

AltiVec Register Set

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 2-5

The VSCR has two defined bits, the AltiVec non-Java mode (NJ) bit (VSCR[15]) and the AltiVec
saturation (SAT) bit (VSCR[31]); the remaining bits are reserved.

Special instructions Move from Vector Status and Control Register (mfvscr) and Move to Vector Status
and Control Register (mtvscr) are provided to move the contents of VSCR from and to a vector register.
When moved to or from a vector register, the 32-bit VSCR is right-justified in the 128-bit vector register.
When moved to a vector register, the upper 96 bits VRn [0–95] of the vector register are cleared, so the
VSCR in a vector register looks as shown in Figure 2-5.

VSCR bit settings are shown in Table 2-1.

0 95 96 110 111 112 126 127

Reserved Reserved NJ Reserved SAT

Figure 2-5. 32-Bit VSCR Moved to a 128-Bit Vector Register

Table 2-1. VSCR Field Descriptions

Bit Name Description

0–14 — Reserved
The handling of reserved bits is the same as that for other PowerPC registers. Software is permitted to write
any value to such a bit. A subsequent reading of the bit returns 0, if the value last written to the bit was 0 and
returns an undefined value (0 or 1), otherwise.

15 NJ Non-Java
This bit determines whether AltiVec floating-point operations are performed in a Java-IEEE-C9X-compliant
mode or a possibly faster non-Java/non-IEEE mode.
0 The Java-IEEE-C9X-compliant mode is selected. Denormalized values are handled as specified by Java,

IEEE, and the C9X standard.
1 The non-Java/non-IEEE-compliant mode is selected. If an element in a source vector register contains a

denormalized value, the value 0 is used instead. If an instruction causes an underflow exception, the
corresponding element in the target VR is cleared to 0. In both cases, the 0 has the same sign as the
denormalized or underflowing value.

This mode is described in detail in the floating–point overview, Section 3.2.1, “Floating-Point Modes.”

16–30 — Reserved
The handling of reserved bits is the same as that for other PowerPC registers. Software is permitted to write
any value to such a bit. A subsequent reading of the bit returns 0, if the value last written to the bit was 0 and
returns an undefined value (0 or 1), otherwise.

31 SAT Saturation
A sticky status bit indicating that some field in a saturating instruction saturated since the last time SAT was
cleared. In other words, when SAT = 1 it remains set to 1 until it is cleared to 0 by an mtvscr instruction. For
further discussion refer to Section 4.2.1.1, “Saturation Detection.”
0 Indicates no saturation occurred; mtvscr can explicitly clear this bit.
1 The AltiVec saturate instruction is set when saturation occurs for the results of one of AltiVec instructions

having saturate in its name as follows:
Move to VSCR (mtvscr)
Vector Add Integer with Saturation (vaddubs, vadduhs, vadduws, vaddsbs, vaddshs, vaddsws)
Vector Subtract Integer with Saturation (vsububs, vsubuhs, vsubuws, vsubsbs, vsubshs, vsubsws)
Vector Multiply-Add Integer with Saturation (vmhaddshs, vmhraddshs)
Vector Multiply-Sum with Saturation (vmsumuhs, vmsumshs, vsumsws)
Vector Sum-Across with Saturation (vsumsws, vsum2sws, vsum4sbs, vsum4shs, vsum4ubs)
Vector Pack with Saturation (vpkuhus, vpkuwus, vpkshus, vpkswus, vpkshss, vpkswss)
Vector Convert to Fixed-Point with Saturation (vctuxs, vctsxs)

AltiVec Register Set

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

2-6 Freescale Semiconductor

The mtvscr is context synchronizing. This implies that all AltiVec instructions logically preceding an
mtvscr in the program flow execute in the architectural context (NJ mode) that existed before completion
of mtvscr, and that all instructions logically following after mtvscr execute in the new context (NJ mode)
established by the mtvscr.

After an mfvscr instruction executes, the result in the target vector register is architecturally precise. That
is, it reflects all updates to the SAT bit that could have been made by vector instructions logically preceding
it in the program flow, and further, it will not reflect any SAT updates that may be made to it by vector
instructions logically following it in the program flow. Because it is context synchronizing, mfvscr can be
much slower than typical AltiVec instructions, and, therefore, care must be taken in reading it to avoid
performance problems.

2.3.3 Vector Save/Restore Register (VRSAVE)

The VRSAVE register, shown in Figure 2-6, is a user-level 32-bit SPR used to assist in application and
operating system software in saving and restoring the architectural state across process context-switched
events. The VRSAVE is SPR 256 and is entirely maintained and managed by software.

VRSAVE bit settings are shown in Figure 2-2.

The VRSAVE register can be accessed only by the mfspr and mtspr instructions. Each bit in this register
corresponds to a vector register (VR) and indicates whether the corresponding register contains data that
is currently in use by the executing process. Therefore, the operating system needs to save and restore only
those VRs when an interrupt occurs. If this approach is taken, it must be applied rigorously; if a program
fails to indicate that a given VR is in use, software errors may occur that are difficult to detect and correct

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field VR0 VR1 VR2 VR3 VR4 VR5 VR6 VR7 VR8 VR9 VR10 VR11 VR12 VR13 VR14 VR15

Reset 0000_0000_0000_0000

R/W R/W with mfspr or mtspr Instruction

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field VR16 VR17 VR18 VR19 VR20 VR21 VR22 VR23 VR24 VR25 VR26 VR27 VR28 VR29 VR30 VR31

Reset 0000_0000_0000_0000

R/W R/W with mfspr or mtspr Instructions

SPR SPR 256

Figure 2-6. Vector Save/Restore Register (VRSAVE)

Table 2-2. VRSAVE Bit Settings

Bits Name Description

0–31 VRn Each bit in the VRSAVE register indicates whether the corresponding VR contains data in use by the
executing process.
0 VRn is not being used for the current process
1 VRn is using VRn for the current process

AltiVec Register Set

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 2-7

because they are timing-dependent. Some operating systems save and restore VRSAVE only for programs
that also use other AltiVec registers.

2.4 Additions to PowerPC UISA Registers
The PowerPC UISA registers can be accessed by either user- or supervisor-level instruction. The one
register affected by AltiVec architecture is the condition register (CR). The CR is a 32-bit register, divided
into eight 4-bit fields, CR0–CR7, that reflects the results of certain arithmetic operations and provides a
mechanism for testing and branching. For more details refer to Chapter 2, “Register Set,” in the
Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture.

2.4.1 PowerPC Condition Register

The PowerPC condition register (CR) is a 32-bit register that reflects the result of certain operations and
provides a mechanism for testing and branching. For AltiVec ISA, the CR6 field can optionally be used,
that is, if an AltiVec instruction field’s record bit (Rc) is set in a vector compare instruction. The CR6 field
is updated. The CR is divided into eight 4-bit fields, CR0–CR7, as shown in Figure 2-7.

For more details on the CR see Chapter 2, “Register Set,” in the Programming Environments Manual for
32-Bit Implementations of the PowerPC Architecture.

To control program flow based on vector data, all vector compare instructions can optionally update CR6.
If the instruction field’s record bit (Rc) is set in a vector compare instruction, CR6 is updated according to
Table 2-3.

0 3 4 7 8 11 12 15

Field CR0 CR1 CR2 CR3

Reset Implementation Specific

R/W R/W with mtcrf or mfcr Instructions (CR6 can be the implicit result of vector compare instructions)

16 19 20 23 24 27 28 31

Field CR4 CR5 CR6 CR7

Reset Implementation Specific

R/W R/W with mtcrf or mfcr Instructions (CR6 can be the implicit result of vector compare instructions)

Figure 2-7. Condition Register (CR)

Table 2-3. CR6 Field’s Bit Settings for Vector Compare Instructions

CR Bit
CR6

Field Bit
Vector Compare Vector Compare Bounds

24 0 1 Relation is true for all element
pairs

0

25 1 0 0

AltiVec Register Set

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

2-8 Freescale Semiconductor

The Rc bit should be used sparingly because when Rc = 1 it can cause a somewhat longer latency or be
more disruptive to instruction pipeline flow than when Rc = 0. Therefore, techniques of accumulating
results and testing infrequently are advised.

2.5 Additions to PowerPC OEA Registers
The PowerPC operating environment architecture (OEA) can be accessed only by supervisor-level
instructions. Any attempt to access these SPRs with user-level instructions results in an interrupt. For more
details on the MSR and SRR, see Chapter 2, “Register Set,” in the Programming Environments Manual
for 32-Bit Implementations of the PowerPC Architecture.

2.5.1 AltiVec Field Added in the PowerPC Machine State Register (MSR)

An AltiVec available field is added to the PowerPC machine state register (MSR). The MSR is 32 bits wide
as shown in Figure 2-8.

In 32-bit PowerPC implementations, bit 6, the VEC field, is added to the MSR as shown in Figure 2-8.
Also, AltiVec data stream prefetching instructions will be suspended and resumed based on MSR[PR] and
MSR[DR]. The Data Stream Touch (dst) and Data Stream Touch for Store (dstst) instructions are
supported whenever MSR[DR] = 1. If either instruction is executed when MSR[DR] = 0 (real addressing
mode), the results are boundedly undefined. For each existing data stream, prefetching is enabled if
MSR[DR] = 1 and MSR[PR] has the value it had when the dst or dstst instruction that specified the data
stream was executed. Otherwise, prefetching for the data stream is suspended. In particular, the occurrence
of an interrupt suspends all data stream prefetching.

26 2 1 Relation is false for all element
pairs

0 All fields were in bounds

1 All fields are in bounds for the vcmpbfp instruction so the result
code of all fields is 0b00

0 One of the fields is out of bounds for the vcmpbfp instruction

27 3 0 0

0 5 6 7 12 13 14 15

Field Reserved VEC Reserved POW Res. ILE

Reset Implementation Specific

R/W R with mfmsr, W with interrupt occurrence, mtmsr, sc, or rfi Instructions

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field EE PR FP ME FE0 SE BE FE1 Res. IP IR DR Res. RI LE

Reset Implementation Specific

R/W R with mfmsr, W with interrupt occurrence, mtmsr, sc, or rfi Instructions

Figure 2-8. Machine State Register (MSR)

Table 2-3. CR6 Field’s Bit Settings for Vector Compare Instructions (continued)

CR Bit
CR6

Field Bit
Vector Compare Vector Compare Bounds

AltiVec Register Set

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 2-9

Table 2-4 shows AltiVec bit definitions for the MSR as well as how the PR and DR bits are affected by
AltiVec data stream instructions.

For more detailed information including the other bit settings for MSR, refer to Chapter 2, “Register Set,”
in the Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture.

2.5.2 Machine Status Save/Restore Registers (SRRs)

The machine status save/restore registers (SRRs) are part of the PowerPC OEA supervisor-level registers.
The SRR0 and SRR1 registers are used to save machine status on interrupts and to restore machine status
when an rfi instruction is executed. For more detailed information, refer to Chapter 2, “Register Set,” in
the Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture.

2.5.2.1 Machine Status Save/Restore Register 0 (SRR0)

The SRR0 is a 32-bit register in 32-bit implementation. SRR0 is used to save machine status on interrupts
and restore machine status when an rfi instruction is executed. For AltiVec ISA, it holds the effective
address (EA) for the instruction that caused the AltiVec unavailable interrupt. The AltiVec unavailable
interrupt occurs when no higher priority interrupt exists, and an attempt is made to execute an AltiVec
instruction when MSR[VEC] = 0. The format of SRR0 is shown in Figure 2-9.

Table 2-4. MSR Bit Settings

Bits Name Description

6 VEC AltiVec available
0 AltiVec is disabled
1 AltiVec is enabled
Note: Any attempt to execute a non-stream AltiVec instruction when the bit is cleared causes the processor
to execute an ‘AltiVec Unavailable Interrupt’ when the instruction accesses the VRF or VSCR register. This
interrupt does not happen for data streaming instructions (dst(t), dstst(t), and dss), that is, the VRF and
VSCR registers are available to the data streaming instructions even when the MSR[VEC] is cleared.
The VRSAVE register is not protected by MSR [VEC], that is, it can be accessed, even when MSR[VEC] is
cleared.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions
1 The processor can only execute user-level instructions
Note: Care should be taken if data stream prefetching is used in supervisor mode (MSR[PR] = 0). For each
existing data stream, prefetching is enabled if MSR[DR] = 1 and MSR[PR] has the value it had when the
dst or dstst instruction that specified the data stream was executed. Otherwise, prefetching for the data
stream is suspended.

27 DR Data address translation
0 Data address translation is disabled. If data stream touch (dst) and data stream touch for store (dstst)

instructions are executed whenever DR = 0, the results are boundedly undefined.
1 Data address translation is enabled. Data stream touch (dst) and data stream touch for store (dstst)

instructions are supported whenever DR = 1.

AltiVec Register Set

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

2-10 Freescale Semiconductor

2.5.2.2 Machine Status Save/Restore Register 1 (SRR1)

The SRR1 is a 32-bit register in 32-bit implementation. SRR1 is used to save machine status on interrupts
and to restore machine status when an rfi instruction is executed. The format of SRR1 is shown in
Figure 2-10.

When an AltiVec unavailable interrupt occurs, SRR1[1–4] and SRR[10–15] are cleared and all other SRR1
bits are loaded from the MSR as it was just prior to the interrupt. So MSR[0], MSR[5–9], and MSR[16–31]
are placed into the corresponding bit positions of SRR1 as they were before the interrupt was taken.

0 31

Field Holds effective address (EA) for instruction in interrupted program flow

Reset Implementation Specific

R/W R/W with rfi

Figure 2-9. Machine Status Save/Restore Register 0 (SRR0)

0 31

Field Interrupt-specific information and MSR bit values

Reset Implementation Specific

R/W R/W with rfi

Figure 2-10. Machine Status Save/Restore Register 0 (SRR1)

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 3-1

Chapter 3
Operand Conventions
This chapter describes the operand conventions as they are represented in AltiVec technology at the user
instruction set architecture (UISA) level. Detailed descriptions are provided of conventions used for
transferring data between vector registers and memory, and representing data in these vector registers
using both big- and little-endian byte ordering. Additionally, the floating-point default conditions for
exceptions are described.

3.1 Data Organization in Memory
In addition to supporting byte, half-word, and word operands, as defined in the PowerPC architecture
UISA, AltiVec instruction set architecture (ISA) supports quad-word (128-bit) operands.

The following sections describe the concepts of alignment and byte ordering of data for quad words,
otherwise alignment is the same as described in Chapter 3, “Operand Conventions,” in the Programming
Environments Manual for 32-Bit Implementations of the PowerPC Architecture.

3.1.1 Aligned and Misaligned Accesses

Vectors are accessed from memory with instructions such as Vector Load Indexed (lvx) and Store Vector
Indexed (stvx) instructions. The operand of a vector register to memory access instruction has a natural
alignment boundary equal to the operand length. In other words, the natural address of an operand is an
integral multiple of the operand length. A memory operand is said to be aligned if it is aligned at its natural
boundary; otherwise it is misaligned. Each AltiVec instruction is a 4-byte word and is word-aligned like
PowerPC instructions.

Operands for vector register to memory access instructions have the characteristics shown in Table 3-1.

The concept of alignment is also applied more generally to data in memory. For example, an 8-byte data
item is said to be half-word aligned if its address is a multiple of 2; that is, the effective address (EA) points

Table 3-1. Memory Operand Alignment

Operand Length
32-Bit Aligned

Address (28–31) 1

1 An x in an address bit position indicates that the bit can be 0 or 1
independent of the state of other bits in the address.

Byte 8 bits (1 byte) xxxx

Half-word 2 bytes xxx0

Word 4 bytes xx00

Quad word 16 bytes 0000

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

3-2 Freescale Semiconductor

to the next effective address that is 2 bytes (a half-word) past the current effective address (EA + 2 bytes),
and then the next being the EA + 4 bytes, and effective address would continue skipping every 2 bytes
(2 bytes = 1 half-word). This ensures that the effective address is half-word aligned as it points to each
successive half-word in memory.

It is important to understand that AltiVec memory operands are assumed to be aligned, and AltiVec
memory accesses are performed as if the appropriate number of low-order bits of the specified effective
address were zero. This assumption is different from PowerPC integer and floating-point memory access
instructions where alignment is not always assumed. Thus, for AltiVec ISA, the low-order bit of the
effective address is ignored for half-word AltiVec memory access instructions, and the low-order 4 bits of
the effective address are ignored for quad-word AltiVec memory access instructions. The effect is to load
or store the memory operand of the specified length that contains the byte addressed by the effective
address.

If a memory operand is misaligned, additional instructions must be used to correctly place the operand in
a vector register or in memory. AltiVec technology provides instructions to shift and merge the contents of
two vector registers. These instructions facilitate copying misaligned quad-word operands between
memory and the vector registers.

3.1.2 AltiVec Byte Ordering

For processors that implement the PowerPC architecture and AltiVec technology, the smallest addressable
memory unit is the byte (8 bits), and scalars are composed of one or more sequential bytes. AltiVec ISA
supports both big- and little-endian byte ordering. The default byte ordering is big-endian. However, the
code sequence used to switch from big- to little-endian mode may differ among processors.

The PowerPC architecture uses the machine state register (MSR) for specifying byte ordering in
little-endian mode (LE). A value of 0 specifies big-endian mode and a value of 1 specifies little-endian
mode. For further details on byte ordering in the PowerPC architecture, refer to Chapter 3, “Operand
Conventions,” in the Programming Environments Manual for 32-Bit Implementations of the PowerPC
Architecture.

AltiVec ISA follows the endian support of the PowerPC architecture for elements up to double words with
additional support for quad words. In AltiVec ISA when a 64-bit scalar is moved from a register to
memory, it occupies 8 consecutive bytes in memory and a decision must be made regarding byte ordering
in these 8 addresses.

3.1.2.1 Big-Endian Byte Ordering

For big-endian scalars, the most-significant byte (MSB) is stored at the lowest (or starting) address while
the least-significant byte (LSB) is stored at the highest (or ending) address. This is called big-endian
because the big end of the scalar comes first in memory.

3.1.2.2 Little-Endian Byte Ordering

For little-endian scalars, the LSB is stored at the lowest (or starting) address while the MSB is stored at
the highest (or ending) address. This is called little-endian because the little end of the scalar comes first
in memory.

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 3-3

3.1.3 Quad Word Byte Ordering Example

The idea of big- and little-endian byte ordering is best illustrated in an example of a quad word such as
0x0011_2233_4455_6677_8899_AABB_CCDD_EEFF located in memory. This quad word is used
throughout this section to demonstrate how the bytes that comprise a quad word are mapped into memory.

The quad word (0x0011_2233_4455_6677_8899_AABB_CCDD_EEFF) is shown in big-endian mapping
in Figure 3-1. A hexadecimal representation is used for showing address values and the values in the
contents of each byte. The address is shown below each byte’s contents. The big-endian model addresses
the quad word at address 0x00, which is the MSB (0x00), proceeding to the address 0x0F, which contains
the LSB (0xFF).

Figure 3-2 shows the same quad word using little-endian mapping. In the little-endian model, the quad
word’s 0x00 address specifies the LSB (0xFF) and proceeds to address 0x0F which contains its MSB
(0x00).

Figure 3-2 shows the sequence of bytes laid out with addresses increasing from left to right. Programmers
familiar with little-endian byte ordering may be more accustomed to viewing quad words laid out with
addresses increasing from right to left, as shown in Figure 3-3.

This allows the little-endian programmer to view each scalar in its natural byte order of MSB to LSB. This
section uses both conventions based on ease of understanding for the specific example.

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

↑
MSB

↑
LSB

Figure 3-1. Big-Endian Mapping of a Quad Word

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 00

Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

↑
LSB

↑
MSB

Figure 3-2. Little-Endian Mapping of a Quad Word

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

Address 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

↑
MSB

↑
LSB

Figure 3-3. Little-Endian Mapping of a Quad Word—Alternate View

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

3-4 Freescale Semiconductor

3.1.4 Aligned Scalars in Little-Endian Mode

The effective address (EA) calculation for the load and store instructions is described in Chapter 4,
“Addressing Modes and Instruction Set Summary.” For processors that implement the PowerPC
architecture in little-endian mode, the effective address is modified before being used to access memory.
In the PowerPC architecture, the three low-order address bits of the effective address are exclusive-ORed
(XOR) with a three-bit value that depends on the length of the operand (1, 2, 4, or 8 bytes), as shown in
Table 3-2. This address modification is called munging.

The munged physical address is passed to the cache or to main memory, and the specified width of the data
is transferred (in big-endian order—that is, MSB at the lowest address, LSB at the highest address)
between a GPR or FPR and the addressed memory locations (as modified).

Munging makes it appear to the processor that individual aligned scalars are stored as little-endian, when
in fact they are stored in big-endian order but at different byte addresses within double words. Only the
address is modified, not the byte order. For further details on how to align scalars in little-endian mode,
see Chapter 3, “Operand Conventions,” in the Programming Environments Manual for 32-Bit
Implementations of the PowerPC Architecture.

The PowerPC address munging is performed on double-word units. In the PowerPC architecture,
little-endian mode would have the double words of a quad word appear swapped. When the quad word in
memory shown at the top of Figure 3-4, loads from address 0x00, the bottom of Figure 3-4 shows how it
appears to the processor as it munges the address.

Table 3-2. Effective Address Modifications

Data Width (Bytes) EA Modification

1 XOR with 0b111

2 XOR with 0b110

4 XOR with 0b100

8 No change

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 3-5

Note that double words are swapped. The byte element addressed by the quad word’s base address, 0x0F,
contains 0x28, while its MSB at address 0x00 contains 0x27. This is due to the PowerPC munging being
applied to offsets within double words; AltiVec ISA requires a munge within quad words.

To accommodate the quad-word operands, the PowerPC architecture cannot simply be extended by
munging an extra address bit. It would break existing code or platforms. Processors that implement
AltiVec technology could not be mixed with non-AltiVec processors. Instead, AltiVec processors
implement a double-word swap when moving quad words between vector registers and memory.

Figure 3-5 shows how this swapping could be implemented. This diagram represents the load path
double-word swapping; the store path looks the same, except that the memory and internal boxes are
reversed.

Figure 3-5. AltiVec Little-Endian Double-Word Swap

In the diagram, the numbers at the bottom of the byte boxes represent the offset address of that byte; the
numbers at the top are the values of the bytes at that offset.The little-endian ordering is discontinuous
because the PowerPC munging is performed only on double-word units. The purpose of the double-word
swap within the AltiVec unit is to perform an additional swap that is not part of the PowerPC architecture.

When MSR[LE] = 1, double words are swapped and the bytes appear in their expected ordering. When
MSR[LE] = 0, no swapping occurs.

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

↑
LSB

↑
MSB

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Quad Word

Contents 27 26 25 24 23 22 21 20 2F 2E 2D 2C 2B 2A 29 28

Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Figure 3-4. Quad Word Load with PowerPC Munged Little-Endian Applied

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

27 26 25 24 23 22 21 20 2F 2E 2D 2C 2B 2A 29 28

0 1MSR[LE] 0 1MSR[LE]

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Memory Image

Internal Image
Contents
Address

Contents
Address

2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 23 22 21 202D

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

3-6 Freescale Semiconductor

To summarize, in little-endian mode, the load vector element indexed instructions (lvebx, lvehx, and
lvewx) and the store vector element indexed instructions (stvebx, stvehx, and stvewx) have the same 3-bit
address munge applied to the memory address as is specified by the PowerPC architecture for integer and
floating-point loads and stores. For the quad word load vector indexed instructions (lvx and lvxl) and the
store vector indexed instructions (stvx, stvxl), the two double words of the quad-word scalar data are
munged and swapped as they are moved between the vector register and memory.

3.1.5 Vector Register and Memory Access Alignment

When loading an aligned byte, half-word, or word memory operand into a vector register, the element that
receives the data is the element that would have received the data had the entire aligned quad word
containing the memory operand addressed by the effective address been loaded. Similarly, when an
element in a vector register is stored into an aligned memory operand, the element selected to be stored is
the element that would have been stored into the memory operand addressed by the effective address had
the entire vector register been stored to the aligned quad word containing the memory operand addressed
by the effective address. The position of the element in the target or source vector register depends on the
endian mode, as described above. (Byte memory operands are always aligned.)

For aligned byte, half-word, and word memory operands, if the corresponding element number is known
when the program is written, the appropriate vector splat and vector permute instructions can be used to
copy or replicate the data contained in the memory operand after loading the operand into a vector register.
Vector splat instructions will take the contents of an element in a vector register and replicates them into
each element in the destination vector register. A vector permute instruction is the concatenation of the
contents of two vectors. An example of this is given in detail in Section 3.1.6, “Quad-Word Data
Alignment.” Another method is to replicate the element across an entire vector register before storing it
into an arbitrary aligned memory operand of the same length; the replication ensures that the correct data
is stored regardless of the offset of the memory operand in its aligned quad word in memory.

Because vector loads and stores are size-aligned, application binary interfaces (ABIs) should specify, and
programmers should take care to align data on quad-word boundaries for maximum performance.

3.1.6 Quad-Word Data Alignment

AltiVec ISA does not provide for alignment interrupts for loading and storing data. When performing
vector loads and stores, the effect is as if the low-order four bits of the address are 0x0, regardless of the
actual effective address generated. Because vectors may often be misaligned due to the nature of the
algorithm, AltiVec ISA provides support for post-alignment of quad-word loads and pre-alignment for
quad-word stores. Note that in the following diagrams, the effect of the swapping described above is
assumed and the memory diagrams will be shown with respect to the logical mapping of the data.

Figure 3-6 and Figure 3-7 show misaligned vectors in memory for both big- and little-endian ordering. The
big-endian and little-endian examples assumes that the desired vector begins at address 0x03. In the figure,
HI denotes high-order quad word, and LO means low-order quad word.

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 3-7

Figure 3-6 and Figure 3-7 show how such misaligned data causes data to be split across aligned quad
words; only aligned quad words are loaded or stored by AltiVec load/store instructions. To align this
vector, a program must load both (aligned) quad words that contain a portion of the misaligned vector data
and then execute a Vector Permute (vperm) instruction to align the result.

3.1.6.1 Accessing a Misaligned Quad Word in Big-Endian Mode

Figure 3-1 shows the big-endian alignment model. Using the example in Figure 3-8, vHI and vLO
represent vector registers that contain the misaligned quad words containing the MSBs and LSBs,
respectively, of the misaligned quad word; vD is the target vector register.

Figure 3-8. Big-Endian Quad Word Alignment

Alignment is performed by left-rotating the combined 32-byte quantity (vHI:vLO) by an amount
determined by the address of the first byte of the desired data. This left-rotation is done by means of a
vperm instruction whose control vector is generated by a Load Vector for Shift Left (lvsl) instruction after
loading the most-significant quad word (MSQ) and least-significant quad word (LSQ) that contain the
desired vector. Note that a vector load is always safe to do if at least one byte in the vector is known to
exist. The lvsl instruction uses the same address specification as the load vector indexed that loads the vHI
component, which for big-endian ordering is the address of the desired vector.

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Quad Word HI Quad Word LO

Contents 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

↑
MSB

↑
LSB

Figure 3-6. Misaligned Vector in Big-Endian Mode

Byte 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Quad Word HI Quad Word LO

Contents 2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 23 22 21 20

Address 1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

↑
MSB

↑
LSB

Figure 3-7. Misaligned Vector in Little-Endian Addressing Mode

10
vHI

00

0F00

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

vLO

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

vD

0F 1F

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

3-8 Freescale Semiconductor

The complete C code sequence for an unaligned load case is as follows:
vector unsigned char vectorLoadUnaligned(vector unsigned char *where)
{

vector unsigned char permuteVector = vec_lvsl(0,where);
vector unsigned char low = vec_ld(0, where);
vector unsigned char high = vec_ld(15, where);
return vec_perm(low, high, permuteVector);

}

Note that when data streaming is used, the overhead of generating the alignment permute vector can be
spread out and the latency of the loads may be absorbed by using loop unrolling.

The process of storing a misaligned vector is a bit different. It is possible to have data change in the process
of storing two aligned vectors. To avoid a thread safety problem the data is stored using vector element
stores.

The complete C code sequence for an unaligned store case is as follows:
void StoreUnaligned(vector unsigned char v, unsigned char *where)
{

vector unsigned char tmp;
tmp = vec_perm(v, v, vec_lvsr(0, where));
vec_ste((vector unsigned char) tmp, 0, (unsigned char*) where);
vec_ste((vector unsigned short)tmp,1,(unsigned short*) where);
vec_ste((vector unsigned int) tmp, 3, (unsigned int*) where);
vec_ste((vector unsigned int) tmp, 4, (unsigned int*) where);
vec_ste((vector unsigned int) tmp, 8, (unsigned int*) where);
vec_ste((vector unsigned int) tmp, 12, (unsigned int*) where);
vec_ste((vector unsigned short)tmp,14,(unsigned short*) where);
vec_ste((vector unsigned char) tmp,15,(unsigned char*) where);

}

3.1.6.2 Accessing a Misaligned Quad Word in Little-Endian Mode

The instruction sequences used to access misaligned quad-word operands in little-endian mode are similar
to those used in big-endian mode. The following instruction sequence can be used to load the misaligned
quad word shown in Figure 3-7 into a vector register in little-endian mode. The load alignment case is
shown in Figure 3-9. The vector register vHI and vLO receive the MSQ and LSQ, respectively; vD is the
target vector register. The lvsr instruction uses the same address specification as an lvx that loads vLO; in
little-endian byte ordering this is the address of the desired misaligned quad word.

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 3-9

lvx vLO,rA,rB # load the LSQ

lvsr vP,rA,rB # set the permute vector

addi rB,rB,15 # address of MSQ

lvx vHI,rA,rB # load MSQ component

vperm vD,vHI,vLO,vP # align the data

Figure 3-9. Little-Endian Alignment

3.1.6.3 Scalar Loads and Stores

No alignment is performed for scalar load or store instructions in AltiVec ISA. If a vector load or store
address is not properly size aligned, the suitable number of least significant bits are ignored and a size
aligned transfer occurs instead. Data alignment must be performed explicitly after being brought into the
registers. No assistance is provided for aligning individual scalar elements that are not aligned on their
natural boundary. The placement of scalar data in a vector element depends upon its address. That is, the
placement of the addressed scalar is the same as if a load vector indexed instruction has been performed,
except that only the addressed scalar is accessed (for cache-inhibited space); the values in the other vector
elements are boundedly undefined. Also, data in the specified scalar is the same as if a store vector indexed
instruction had been performed, except that only the scalar addressed is affected. No instructions are
provided to assist in aligning individual scalar elements that are not aligned on their natural size boundary.

When a program knows the location of a scalar, it can perform the correct vector splats and vector permutes
to move data to where it is required. For example, if a scalar is to be used as a source for a vector multiply
(that is, each element multiplied by the same value), the scalar must be splatted into a vector register.
Likewise, a scalar stored to an arbitrary memory location must be splatted into a vector register, and that
register must be specified as the source of the store. This guarantees that the data appears in all possible
positions of that scalar size for the store.

3.1.6.4 Misaligned Scalar Loads and Stores

Although no direct support of misaligned scalars is provided, the load-aligning sequence for big-endian
vectors described in Section 3.1.6.1, “Accessing a Misaligned Quad Word in Big-Endian Mode,” can be
used to position the scalar to the left vector element, which can then be used as the source for a splat. That
is, the address of a scalar is also the address of the left-most element of the quad word at that address.
Similarly, the read-modify-write sequences, with the mask adjusted for the scalar size, can be used to store
misaligned scalars. The same is true for little-endian mode, the load-aligning sequence for little-endian
vectors described Section 3.1.6.2, “Accessing a Misaligned Quad Word in Little-Endian Mode,” can be
used to position the scalar to the right vector element, which can then be used as the source for a splat. That
is, the address of a scalar is also the address of the right-most element of the quad word at that address.

0F
vHI

1F

0F 00

2122232425262728292A2C2D2E2F

vLO

2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 22 21 20

vD

0010

23

202B

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

3-10 Freescale Semiconductor

Note that while these sequences work in cache-inhibited space, the physical accesses are not guaranteed
to be atomic.

3.1.7 Mixed-Endian Systems

In many systems, the memory model is not as simple as the examples in this chapter. In particular,
big-endian systems with subordinate little-endian buses (such as PCI) comprise a mixed-endian
environment.

The basic mechanism to handle this is to use the Vector Permute (vperm) instruction to swap bytes within
data elements. The value of the permute control vector depends on the size of the elements (8, 16, 32). That
is, the permute control vector performs a parallel equivalent of the Load Word Byte-Reverse Indexed
(lwbrx) PowerPC instruction within the vector registers.

The ultimate problem occurs when there are misaligned, mixed-endian vectors. This can be handled by
applying a vector permute of the data as required for the misaligned case, followed by the swapping vector
permute on that result. Note that for streaming cases, the effect of this double permute can be accomplished
by computing the swapping permute of the alignment permute vector and then applying the resulting
permute control vector to incoming data.

3.2 AltiVec Floating-Point Instructions—UISA
There are two kinds of floating-point instructions defined for the PowerPC ISA and AltiVec ISA:

• Computational
• Noncomputational

Computational instructions are defined by the IEEE-754 standard for 32-bit arithmetic (those that perform
addition, subtraction, multiplication, and division) and the multiply-add defined by the architecture.
Noncomputational floating-point instructions consist of the floating-point load and store instructions.
Only the computational instructions are considered floating-point operations throughout this chapter.

The single-precision format, value representations, and computational model to be defined in Chapter 3,
“Operand Conventions,” in the Programming Environments Manual for 32-Bit Implementations of the
PowerPC Architecture, apply to AltiVec floating-point except as follows:

• In general, no status bits are set to reflect the results of floating-point operations. The only
exception is that VSCR[SAT] may be set by the Vector Convert to Fixed-Point Word instructions.

• With the exception of the two Vector Convert to Fixed-Point Word (vctuxs, vctsxs) instructions
and three of the four Vector Round to Floating-Point Integer (vrfiz, vrfip, vrfim) instructions, all
AltiVec floating-point instructions that round use the round-to-nearest rounding mode.

• Floating-point exceptions cannot cause the system error handler to be invoked.

If a function is required that is specified by the IEEE standard, is not supported by AltiVec ISA, and cannot
be emulated satisfactorily using the functions that are supported by AltiVec ISA, the functions provided
by the floating-point processor should be used; see Chapter 4, “Addressing Modes and Instruction Set
Summary,” in the Programming Environments Manual for 32-Bit Implementations of the PowerPC
Architecture.

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 3-11

3.2.1 Floating-Point Modes

AltiVec ISA supports two floating-point modes of operation—a Java mode and a non-Java mode of
operation that is useful in circumstances where real-time performance is more important than strict Java
and IEEE-standard compliance.

When VSCR[NJ] is 0 (default), operations are performed in Java mode. When VSCR[NJ] is 1, operations
are carried out in the non-Java mode.

3.2.1.1 Java Mode

Java compliance requires compliance with only a subset of the Java/IEEE/C9X standard. The Java subset
helps simplify floating-point implementations, as follows:

• Reducing the number of operations that must be supported
• Eliminating exception status flags and traps
• Producing results corresponding to all disabled exceptions, thus eliminating enabling control flags
• Requiring only round-to-nearest rounding mode eliminates directed rounding modes and the

associated rounding control flags.

Java compliance requires the following aspects of the IEEE standard:
• Supporting denorms as inputs and results (gradual underflow) for arithmetic operations
• Providing NaN results for invalid operations
• NaNs compare unordered with respect to everything, so that the result of any comparison of any

NaN to any data type is always false.

In some implementations, floating-point operations in Java mode may have somewhat longer latency on
normal operands and possibly much longer latency on denormalized operands than operations in non-Java
mode. This means that in Java mode overall real-time response may be somewhat worse and deadline
scheduling may be subject to much larger variance than non-Java mode.

3.2.1.2 Non-Java Mode

In the non-Java/non-IEEE/non-C9X mode (VSCR[NJ] = 1), gradual underflow is not performed. Instead,
any instruction that would have produced a denormalized result in Java mode substitutes a correctly signed
zero (±0.0) as the final result. Also, denormalized input operands are flushed to the correctly signed zero
(±0.0) before being used by the instruction.

The intent of this mode is to give programmers a way to assure optimum, data-insensitive, real-time
response across implementations. Another way to improved response time would be to implement
denormalized operations through software emulation.

It is architecturally permitted, but strongly discouraged, for an implementation to implement only
non-Java mode. In such an implementation, the VSCR[NJ] does not respond to attempts to clear it and is
always read back as a 1.

No other architecturally visible, implementation-specific deviations from this specification are permitted
in either mode.

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

3-12 Freescale Semiconductor

3.2.2 Floating-Point Infinities

Valid operations on infinities are processed according to the IEEE standard.

3.2.3 Floating-Point Rounding

All AltiVec floating-point arithmetic instructions use the IEEE default rounding mode, round-to-nearest.
The IEEE directed rounding modes are not provided.

3.2.4 Floating-Point Exceptions

The following floating-point exceptions may occur during execution of AltiVec floating-point
instructions.

• NaN operand exception
• Invalid operation exception
• Zero divide exception
• Log of zero exception
• Overflow exception
• Underflow exception

If an exception occurs, a result is placed into the corresponding target element as described in the following
subsections. This result is the default result specified by Java, the IEEE standard, or C9X, as applicable.
Recall that denormalized source values are treated as if they were zero when VSCR[NJ] =1. The
consequences regarding exceptions are as follows:

• Exceptions that can be caused by a zero source value can be caused by a denormalized source value
when VSCR[NJ] = 1.

• Exceptions that can be caused by a nonzero source value cannot be caused by a denormalized
source value when VSCR[NJ] = 1.

3.2.4.1 NaN Operand Exception

If the exponent of a floating-point number is 255 and the fraction is non-zero, then the value is a NaN. If
the most significant bit of the fraction field of a NaN is zero, then the value is a signaling NaN (SNaN),
otherwise it is a quiet NaN (QNaN). In all cases the sign of a NaN is irrelevant.

A NaN operand exception occurs when a source value for any of the following instructions is a NaN:
• An AltiVec instruction that would normally produce floating-point results
• Either of the two, Vector Convert to Unsigned Fixed-Point Word Saturate (vctuxs) or Vector

Convert to Signed Fixed-Point Word Saturate (vctsxs) instructions
• Any of the four vector floating-point compare instructions.

The following actions can be taken:
• If the AltiVec instruction would normally produce floating-point results, the corresponding result

is a source NaN selected as follows. In all cases, if the selected source NaN is an SNaN, it is

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 3-13

converted to the corresponding QNaN (by setting the high-order bit of the fraction field to 1 before
being placed into the target element).

if the element in register vA is a NaN

then the result is that NaN

else if the element in register vB is a NaN

then the result is that NaN

else if the element in register vC is a NaN

then the result is that NaN

• If the instruction is either of the two vector convert to fixed-point word instructions (vctuxs,
vctsxs), the corresponding result is 0x0000_0000. VSCR[SAT] is not affected.

• If the instruction is Vector Compare Bounds Floating-Point (vcmpbfp[.]), the corresponding result
is 0xC000_0000.

• If the instruction is one of the other three vector floating-point compare instructions (vcmpeqfp[.],
vcmpfgefp[.], vcmpbfp[.]), the corresponding result is 0x0000_0000.

3.2.4.2 Invalid Operation Exception

An invalid operation exception occurs when a source value is invalid for the specified operation. The
invalid operations are as follows:

• Magnitude subtraction of infinities
• Multiplication of infinity by zero
• Vector Reciprocal Square Root Estimate Float (vrsqrtefp) of a negative, nonzero number or –X
• Log base 2 estimate (vlogefp) of a negative, nonzero number or –X

The corresponding result is the QNaN 0x7FC0_0000. This is the single-precision format analogy of the
double precision format generated QNaN described in Chapter 3, “Operand Conventions,” in the
Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture.

3.2.4.3 Zero Divide Exception

A zero divide exception occurs when a Vector Reciprocal Estimate Floating-Point (vrefp) or Vector
Reciprocal Square Root Estimate Floating-Point (vrsqrtefp) instruction is executed with a source value
of zero.

The corresponding result is infinity, where the sign is the sign of the source value, as follows:
• 1/+0.0 → +∞
• 1/–0.0 → –∞
•
•

1 +0.0()⁄ +∞→

1 0.0–()⁄ ∞–→

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

3-14 Freescale Semiconductor

3.2.4.4 Log of Zero Exception

A log of zero exception occurs when a Vector Log Base 2 Estimate Floating-Point instruction (vlogefp) is
executed with a source value of zero. The corresponding result is infinity. The exception cases are as
follows:

• vlogefp log2(±0.0) → –∞
• vlogefp log2(–x) → QNaN, where x ≠ 0

3.2.4.5 Overflow Exception

An overflow exception happens when either of the following conditions occurs:
• For an AltiVec instruction that would normally produce floating-point results, the magnitude of

what would have been the result if the exponent range were unbounded exceeds that of the largest
finite single-precision number.

• For either of the two Vector Convert To Fixed-Point Word instructions (vctuxs, vctsxs), either a
source value is an infinity or the product of a source value and 2 unsigned immediate value
(UIMM) is a number too large to be represented in the target integer format.

The following actions can be taken:
• If the AltiVec instruction would normally produce floating-point results, the corresponding result

is infinity, where the sign is the sign of the intermediate result.
• If the instruction is Vector Convert to Unsigned Fixed-Point Word Saturate (vctuxs), the

corresponding result is 0xFFFF_FFFF if the source value is a positive number or +X, and is
0x0000_0000 if the source value is a negative number or –X. VSCR[SAT] is set.

• If the instruction is Vector Convert to Signed Fixed-Point Word Saturate (vcfsx), the corresponding
result is 0x7FFF_FFFF if the source value is a positive number or +X, and is 0x8000_0000 if the
source value is a negative number or –X. VSCR[SAT] is set.

3.2.4.6 Underflow Exception

Underflow exceptions occur only for AltiVec instructions that would normally produce floating-point
results. Underflow is detected before rounding. Underflow occurs when a nonzero intermediate result,
computed as though both the precision and the exponent range were unbounded, is less in magnitude than
the smallest normalized single-precision number (2–126).

The following actions can be taken:
• If VSCR[NJ] = 0, the corresponding result is the value produced by denormalizing and rounding

the intermediate result.
• If VSCR[NJ] = 1, the corresponding result is a zero, where the sign is the sign of the intermediate

result.

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 3-15

3.2.5 Floating-Point NaNs

The AltiVec floating-point data format is compliant with the Java/IEEE/C9X single-precision format. A
quantity in this format can represent a signed normalized number, a signed denormalized number, a signed
zero, a signed infinity, a quiet not a number (QNaN), or a signaling NaN (SNaN).

3.2.5.1 NaN Precedence

Whenever only one source operand of an instruction that returns a floating-point result is a NaN, then that
NaN is selected as the input NaN to the instruction. When more than one source operand is a NaN, the
precedence order for selecting the NaN is first from vA then from vB and then from vC. If the selected
NaN is an SNaN, it is processed as described in Section 3.2.5.2, “SNaN Arithmetic.” QNaNs, are
processed according to Section 3.2.5.3, “QNaN Arithmetic.”

3.2.5.2 SNaN Arithmetic

Whenever the input NaN to an instruction is an SNaN, a QNaN is delivered as the result, as specified by
the IEEE standard when no trap occurs. The delivered QNaN is an exact copy of the original SNaN except
that it is quieted; that is, the most-significant bit (msb) of the fraction is a one.

3.2.5.3 QNaN Arithmetic

Whenever the input NaN to an instruction is a QNaN, it is propagated as the result according to the IEEE
standard. All information in the QNaN is preserved through all arithmetic operations.

3.2.5.4 NaN Conversion to Integer

All NaNs convert to zero on conversions to integer instructions such as vctuxs and vctsxs.

3.2.5.5 NaN Production

Whenever the result of an AltiVec operation is a NaN (for example, an invalid operation), the NaN
produced is a QNaN with the sign bit = 0, exponent field = 255, msb of the fraction field = 1, and all other
bits = 0.

Operand Conventions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

3-16 Freescale Semiconductor

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-1

Chapter 4
Addressing Modes and Instruction Set Summary
This chapter describes instructions and addressing modes defined by AltiVec instruction set architecture
(ISA) and according to the levels used by PowerPC architecture—user instruction set architecture (UISA)
and virtual environment architecture (VEA). AltiVec instructions are primarily UISA; if otherwise, they
are noted in the chapter. These instructions are divided into the following categories:

• Vector integer arithmetic instructions—These include arithmetic, logical, compare, rotate, and
shift instructions, described in Section 4.2.1, “Vector Integer Instructions.”

• Vector floating-point arithmetic instructions—These include floating-point arithmetic instructions
as well as a discussion on floating-point modes, described in Section 4.2.2, “Vector Floating-Point
Instructions.”

• Vector load and store instructions—These include load and store instructions for vector registers,
described in Section 4.2.3, “Load and Store Instructions.”

• Vector permutation and formatting instructions—These include pack, unpack, merge, splat,
permute, select, and shift instructions, described in Section 4.2.5, “Vector Permutation and
Formatting Instructions.”

• Processor control instructions—These instructions are used to read and write from the AltiVec
Status and Control Register, described in Section 4.2.6, “Processor Control Instructions—UISA.”

• Memory control instructions—These instructions are used for managing caches (user level and
supervisor level), described in Section 4.3.1, “Memory Control Instructions—VEA.”

This grouping of instructions does not necessarily indicate the execution unit that processes a particular
instruction or group of instructions within a processor implementation.

AltiVec integer instructions operate on byte, half-word, and word operands. Floating-point instructions
operate on single-precision operands. AltiVec ISA uses word-length instructions that are word-aligned. It
provides for byte, half-word, and word operand fetches and stores between memory and the vector
registers (VRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory
location in a computation for an arithmetic or logical instruction, the following steps are taken:

1. The memory contents must be loaded into a register with a load instruction.
2. The contents are then modified.
3. The modified contents are written to the target location using a store instruction.

4.1 Conventions
This section describes conventions used for the AltiVec instruction set. Descriptions of memory
addressing, synchronization, and the AltiVec interrupt summary follow.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-2 Freescale Semiconductor

4.1.1 Execution Model

When used with PowerPC instructions, AltiVec instructions can be viewed as simply new PowerPC
instructions that are freely intermixed with existing ones to provide additional functionality. Processors
that implement the PowerPC architecture appear to execute instructions in program order. Some AltiVec
implementations may not allow out-of-order execution and completion. Non-data dependent vector
instructions may issue and execute while longer latency instructions issued previously are still in the
execute stage. Register renaming avoids stalling dispatch on false dependencies and allows maximum
register name reuse in heavily unrolled loops. The execution of a sequence of instructions will not be
interrupted because the unit does not report IEEE exceptions, but rather produces the default results as
specified in the Java/IEEE/C9X standards. The execution of a sequence of instructions may be interrupted
only by a vector load or store instruction; otherwise, AltiVec instructions do not generate any interrupts.

4.1.2 Computation Modes

AltiVec ISA supports the PowerPC ISA. The AltiVec ISA supports the 32-bit implementation of the
PowerPC architecture in that all registers except FPRs and VRs are 32 bits long and the effective addresses
are 32 bits long.

This chapter describes only the instructions defined for 32-bit implementations of the PowerPC
architecture.

4.1.3 Classes of Instructions

AltiVec instructions follow the illegal instruction class defined by PowerPC architecture in the section,
“Classes of Instructions,” in Chapter 4, “Addressing Modes and Instruction Set Summary,” of the
Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture. For
AltiVec ISA, all unspecified encodings within the major opcode (04) that are not defined are illegal
PowerPC instructions. The only exclusion in defining an unspecified encoding is an unused bit in an
immediate field or specifier field (///).

4.1.4 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it
executes a load, store, or cache instruction, and when it fetches the next sequential instruction.

4.1.4.1 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the address of the
corresponding byte.

Memory operands may be bytes, half-words, words, or quad words for AltiVec instructions. The address
of a memory operand is the address of its first byte (that is, of its most significant bit (MSB)). Operand
length is implicit for each instruction. AltiVec ISA supports both big- and little-endian byte ordering. The
default byte and bit ordering is big-endian; see Section 3.1.2, “AltiVec Byte Ordering,” for more
information.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-3

The natural alignment boundary of an operand of a single-register memory access instruction is equal to
the operand length. In other words, the natural address of an operand is an integral multiple of the operand
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise, it is
misaligned. For a detailed discussion about memory operands, see Section 3.1, “Data Organization in
Memory.”

4.1.4.2 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor when executing a memory access
or when fetching the next sequential instruction. For a memory access instruction, if the sum of the EA
and the operand length exceeds the maximum EA, the memory operand is considered to wrap around from
the maximum EA through EA 0, as described in Chapter 4, “Addressing Modes and Instruction Set
Summary,” in the Programming Environments Manual for 32-Bit Implementations of the PowerPC
Architecture.

A zero in the rA field indicates the absence of the corresponding address component. For the absent
component, a value of zero is used for the address. This is shown in the instruction description as (rA|0).

In all implementations of processors that support the PowerPC architecture, the processor can modify the
three low-order bits of the calculated effective address before accessing memory if the system is operating
in little-endian mode. The double words of a quad word may be swapped as well. See Section 3.1.2,
“AltiVec Byte Ordering,” for more information about little-endian mode.

AltiVec load and store operations use register indirect with index mode and boundary align to generate
effective addresses. For further details see Section 4.2.3.2, “Load and Store Address Generation.”

4.2 AltiVec UISA Instructions
AltiVec instructions can provide additional supporting instructions to PowerPC architecture. This section
discusses the instructions defined in AltiVec user instruction set architecture (UISA).

4.2.1 Vector Integer Instructions

The following are categories for vector integer instructions:
• Arithmetic
• Compare
• Logical
• Rotate and shift

Integer instructions use the content of the vector registers (VRs) as source operands and place results into
VRs as well. Setting the Rc bit of a vector compare instruction causes the PowerPC condition register (CR)
to be updated.

AltiVec integer instructions treat source operands as signed integers unless the instruction is explicitly
identified as performing an unsigned operation. For example, Vector Add Unsigned Word Modulo
(vadduwm) and Vector Multiply Odd Unsigned Byte (vmuloub) instructions interpret both operands as
unsigned integers.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-4 Freescale Semiconductor

4.2.1.1 Saturation Detection

Most integer instructions have both signed and unsigned versions and many have both modulo
(wrap-around) and saturating clamping modes. Saturation occurs whenever the result of a saturating
instruction does not fit in the result field. Unsigned saturation clamps results to zero on underflow and to
the maximum positive integer value (2n – 1, for example, 255 for byte fields) on overflow. Signed
saturation clamps results to the smallest representable negative number (–2n–1, for example, –128 for byte
fields) on underflow, and to the largest representable positive number (2n–1–1, for example, +127 for byte
fields) on overflow. When a modulo instruction is used, the resultant number truncates overflow or
underflow for the length (byte, half-word, word, quad word) and type of operand (unsigned, signed). The
AltiVec ISA provides a way to detect saturation and sets the SAT bit in the Vector Status and Control
Register (VSCR[SAT]) in a saturating instruction.

Borderline cases that generate results equal to saturation values, for example unsigned 0 + 0 → 0 and
unsigned byte 1 + 254 → 255, are not considered saturation conditions and do not cause VSCR[SAT] to
be set.

The VSCR[SAT] can be set by the following types of integer, floating-point, and formatting instructions:
• Move to VSCR (mtvscr)
• Vector add integer with saturation (vaddubs, vadduhs, vadduws, vaddsbs, vaddshs, vaddsws)
• Vector subtract integer with saturation (vsububs, vsubuhs, vsubuws, vsubsbs, vsubshs, vsubsws)
• Vector multiply-add integer with saturation (vmhaddshs, vmhraddshs)
• Vector multiply-sum with saturation (vmsumuhs, vmsumshs, vsumsws)
• Vector sum-across with saturation (vsumsws, vsum2sws, vsum4sbs, vsum4shs, vsum4ubs)
• Vector pack with saturation (vpkuhus, vpkuwus, vpkshus, vpkswus, vpkshss, vpkswss)
• Vector convert to fixed-point with saturation (vctuxs, vctsxs)

Note that only instructions that explicitly call for saturation can set VSCR[SAT]. Modulo integer
instructions and floating-point arithmetic instructions never set VSCR[SAT]. For further details see
Section 2.3.2, “Vector Status and Control Register (VSCR).”

4.2.1.2 Vector Integer Arithmetic Instructions

Table 4-1 lists the integer arithmetic instructions for processors that implement the PowerPC architecture.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-5

Table 4-1. Vector Integer Arithmetic Instructions

Name Mnemonic Syntax Operation

Vector Add
Unsigned

Integer [b,h,w]
Modulo

vaddubm
vadduhm
vadduwm

vD,vA,
vB

Places the sum (vA[unsigned integer elements]) + (vB[unsigned integer elements])
into vD[unsigned integer elements] using modulo arithmetic.
For b, byte, integer length = 8 bits = 1 byte, add 16 unsigned integers from vA to
the corresponding 16 unsigned integers from vB.
For h, half-word, integer length =16 bits = 2 bytes, add 8 unsigned integers from vA
to the corresponding 8 unsigned integers from vB.
For w, word, integer length = 32 bits = 4 bytes, add 4 unsigned integers from vA to
the corresponding 4 unsigned integers from vB.
Note: unsigned or signed integers can be used with these instructions.

Vector Add
Unsigned

Integer [b,h,w]
Saturate

vaddubs
vadduhs
vadduws

vD,vA,
vB

Place the sum (vA[unsigned integer elements]) + (vB[unsigned integer elements])
into vD[unsigned integer elements] using saturate clamping mode. Saturate
clamping mode means if the resulting sum is >(2n–1) saturate to (2n–1), where
n = b,h,w.
For b, byte, integer length = 8 bits = 1 byte, add 16 unsigned integers from vA to
the corresponding 16 unsigned integers from vB.
For h, half-word, integer length = 16 bits = 2 bytes, add 8 unsigned integers from
vA to the corresponding 8 unsigned integers formable.
For w, word, integer length = 32 bits = 4 bytes, add 4 unsigned integers from vA to
the corresponding 4 unsigned integers from vB.
If the result saturates, VSCR[SAT] is set.

Vector Add
Signed

Integer[b,h,w]
Saturate

vaddsbs
vaddshs
vddsws

vD,vA,
vB

Place the sum (vA[signed integer elements]) + (vB[signed integer elements]) into
vD[signed integer elements] using saturate clamping mode. Saturate clamping
mode means:
if the sum is >(2n–1–1) saturate to (2n–1–1), and
if < (–2n–1) saturate to (–2n–1), where n = b,h,w.
For b, byte, integer length = 8 bits = 1 byte, add 16 signed integers from vA to the
corresponding 16 signed integers from vB.
For h, half-word, integer length = 16 bits = 2 bytes, add 8 signed integers from vA
to the corresponding 8 signed integers from vB.
For w, word, integer length = 32 bits = 4 bytes, add 4 signed integers from vA to the
corresponding 4 signed integers from vB.
If the result saturates, VSCR[SAT] is set.

Vector Add
and Write
Carry-Out
Unsigned

Word

vaddcuw vD,vA,
vB

Take the carry out of summing (vA) + (vB) and place it into vD.
For w, word, integer length = 32 bits = 4 bytes, add 4 unsigned integers from vA to
the corresponding 4 unsigned integers from vB and the resulting carry outs are
correspondingly placed in vD.

Vector
Subtract
Unsigned

Integer
Modulo
[b,h,w]

vsububm
vsubuhm
vsubuwm

vD,vA,
vB

Place the unsigned integer sum (vA) – (vB) into vD using modulo arithmetic.
For b, byte, integer length = 8 bits =1 byte, subtract 16 unsigned integers in vB from
the corresponding 16 unsigned integers in vA.
For h, half-word, integer length = 16 bits = 2 bytes, subtract 8 unsigned integers in
vB from the corresponding 8 unsigned integers in vA.
For w, word, integer length = 32 bits = 4 bytes, subtract 4 unsigned integers in vB
from the corresponding 4 unsigned integers in vA.
Note that unsigned or signed integers can be used with these instructions.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-6 Freescale Semiconductor

Vector
Subtract
Unsigned

Integer
Saturate
[b,h,w]

vsububs
vsubuhs
vsubuws

vD,vA,
vB

Place the unsigned integer sum vA – vB into vD using saturate clamping mode, that
is, if the sum <0, it saturates to 0 corresponding to b,h,w.
For b, byte, integer length = 8 bits = 1 byte, subtract 16 unsigned integers in vB from
the corresponding 16 unsigned integers in vA.
For h, half-word, integer length =16 bits = 2 bytes, subtract 8 unsigned integers in
vB from the corresponding 8 unsigned integers in vA.
For w, word, integer length = 32 bits = 4 bytes, subtract 4 unsigned integers in vB
from the corresponding 4 unsigned integers in vA.
If the result saturates, VSCR[SAT] is set.

Vector
Subtract

Signed Integer
Saturate
[b,h,w]

vsubsbs
vsubshs
vsubsws

vD,vA,
vB

Place the signed integer sum (vA) – (vB) into vD using saturate clamping mode.
Saturate clamping mode means:
if the sum is >(2n-1–1) saturate to (2n–1–1) and
if < (–2n–1) saturate to (–2n–1), where n = b,h,w.
For b, byte, integer length = 8 bits = 1 byte, subtract 16 signed integers in vB from
the corresponding sixteen signed integers in vA.
For h, half-word, integer length = 16 bits = 2 bytes, subtract 8 signed integers in vB
from the corresponding 8 signed integers in vA.
For w, word, integer length = 32 bits = 4 bytes, subtract 4 signed integers in vB from
the corresponding 4 signed integers in vA.

Vector
Subtract and

Write
Carry-Out
Unsigned

Word

vsubcuw vD,vA,
vB

Take the carry out of the sum (vA) – (vB) and place it into vD.
For w, word, integer length = 32 bits = 4 bytes, subtract 4 unsigned integers in vB
from the corresponding 4 unsigned integers in vA and place the resulting carry outs
into vD.

Vector Multiply
Odd Unsigned
Integer [b,h]

Modulo

vmuloub
vmulouh

vD,vA,
vB

Place the unsigned integer products of (vA) * (vB) into vD using modulo arithmetic
mode.
For b, byte, integer length = 8 bits =1 byte, multiply 8 odd-numbered unsigned
integer byte elements from vA to the corresponding 8 odd-numbered unsigned
integer byte elements from vB resulting in 8 unsigned integer half-word products in
vD.
For h, half-word, integer length =16 bits = 2 bytes, multiply 4 odd-numbered
unsigned integer half-word elements from vA to the corresponding 4 odd numbered
unsigned integer half-word elements from vB resulting in 4 unsigned integer word
products in vD.

Vector Multiply
Odd Signed
Integer [b,h]

Modulo

vmulosb
vmulosh

vD,vA,
vB

Place the signed integer product of (vA) * (vB) into vD using modulo arithmetic
mode.
For b, byte, integer length = 8 bits = 1 byte, multiply 8 odd-numbered signed integer
byte elements from vA to 8 odd-numbered signed integer byte elements from vB
resulting in 8 signed integer half-word products in vD.
For h, half-word, integer length = 16 bits = 2 bytes, multiply 4 odd-numbered signed
integer half-word elements from vA to 4 odd-numbered signed integer half-word
elements from vB resulting in 4 signed integer word products in vD.

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-7

Vector Multiply
Even

Unsigned
Integer [b,h]

Modulo

vmuleub
vmuleuh

vD,vA,
vB

Place the unsigned integer products of (vA) * (vB) into vD using modulo arithmetic
mode.
For b, byte, integer length = 8 bits =1 byte, multiply 8 even-numbered unsigned
integer byte elements from vA to 8 even-numbered unsigned integer byte elements
from vB resulting in 8 unsigned integer half-word products in vD.
For h, half-word, integer length = 16 bits = 2 bytes, multiply 4 even-numbered
unsigned integer half-word elements from vA to 4 even-numbered unsigned integer
half-word elements from vB resulting in 4 unsigned integer word products in vD.

Vector Multiply
Even Signed
Integer [b,h]

Modulo

vmulesb
vmulesh

vD,vA,
vB

Place the signed integer product of (vA) * (vB) into vD using modulo arithmetic
mode.
For b, byte, integer length = 8 bits = 1 byte, multiply 8 even-numbered signed
integer byte elements from vA to 8 even-numbered signed integer byte elements
from vB resulting in 8 signed integer half-word products in vD.
For h, half-word, integer length = 16 bits = 2 bytes, multiply 4 even-numbered
signed integer half-word elements from vA to 4 even-numbered signed integer
half-word elements from vB resulting in 4 signed integer word products in vD.

Vector
Multiply-High

and Add
Signed

Half-Word
Saturate

vmhaddshs vD,vA,
vB,vC

The 17 most significant bits (msb’s)of the product of (vA) * (vB) adds to
sign-extended vC and places the result into vD.
For h, half-word, integer length = 16 bits = 2 bytes, multiply the 8 signed half-words
from vA with the corresponding 8 signed half-words from vB to produce a 32-bit
intermediate product and then take the 17 msbs (bits 0–16) of the 8 intermediate
products and add them to the 8 sign-extended half-words in vC, place the
8 half-word saturated results in vD. If the intermediate product is as follows:
> (215–1) saturate to (215–1) and if
< –215 saturate to –215.
If the results saturates, VSCR[SAT] is set.

Vector
Multiply-High
Round and
Add Signed
Half-Word
Saturate

vmhraddshs vD,vA,
vB,vC

Add the rounded product of (vA) * (vB) to sign-extended vC and place the result
into vD.
For h, half-word, integer length = 16 bits = 2 bytes, multiply the eight signed integers
from vA to the corresponding eight signed integers from vB and then round the
8 immediate products by adding the value 0x0000_4000 to it. Then add the most
significant bits (msb), bits 0–16, of the 8 rounded immediate products to the
8 sign-extended values in vC and place the eight signed half-word saturated results
into vD. If the intermediate product is:
> (215–1) saturate to (215–1), or if
< –215 saturate to –215.
If the result saturates, VSCR[SAT] is set.

Vector
Multiply-Low

and Add
Unsigned
Half-Word

Modulo

vmladduhm vD,vA,
vB,vC

Add the product of (vA) * (vB) to zero-extended vC and place into vD.
For h, half-word, integer length =16 bits = 2 bytes, multiply the 8 signed integers
from vA to the corresponding 8 signed integers from vB to produce a 32-bit
intermediate product. The 16-bit value in vC is zero-extended to 32 bits and added
to the intermediate product and the lower 16 bits of the sum (bit 16–31) is placed in
vD.
Note that unsigned or signed integers can be used with these instructions.

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-8 Freescale Semiconductor

Vector
Multiply-Sum

Unsigned
Integer [b,h]

Modulo

vmsumubm
vmsumuhm

vD,vA,
vB,vC

The product of (vA) * (vB) is added to zero-extended vC and placed into vD using
modulo arithmetic.
For b, byte, integer length = 8 bits = 1 byte, multiply 4 unsigned integer bytes from
a word element in vA by the corresponding 4 unsigned integer bytes in a word
element in vB and the sum of these products are added to the zero-extended
unsigned integer word element in vC and then placed the unsigned integer word
result into vD, following this process for each 4-word element in vA and vB.
For h, half-word, integer length = 16 bits = 2 bytes, multiply 2 unsigned integer
half-words from a word element in vA by the corresponding 2 unsigned integer
half-words in a word element in vB and the sum of these products are added to
zero-extended unsigned integer word element in vC and then place the unsigned
integer word result into vD, following this process for each 4-word element in vA and
vB.

Vector
Multiply-Sum

Signed
Half-Word
Saturate

vmsumshs vD,vA,
vB,vC

Add the product of (vA) * (vB) to vC and place the result into vD using saturate
clamping mode.
For h, half-word, integer length = 16 bits = 2 bytes, multiply 2 signed integer
half-words from a word element in vA by the corresponding 2 signed integer
half-words in a word element in vB. Add the sum of these products to the signed
integer word element in vC and then place the signed integer word result into vD
(following this process for each 4-word element in vA and vB). If the intermediate
result is >(231–1), saturate to (231–1) and if the result is <–231, saturate to –231.
If the result saturates, VSCR[SAT] is set.

Vector
Multiply-Sum

Unsigned
Half-Word
Saturate

vmsumuhs vD,vA,
vB,vC

Add the product of (vA) * (vB) to zero-extended vC and place the result into vD
using saturate clamping mode.
For h, half-word, integer length = 16 bits = 2 bytes, multiply 2 unsigned integer
half-words from a word element in vA by the corresponding 2 unsigned integer
half-words in a word element in vB. Add the sum of these products to the
zero-extended unsigned integer word element in vC and then place the unsigned
integer word result into vD, (following this process for each 4-word element in vA
and vB). If the intermediate result is >(232–1) saturate to (232–1).
If the result saturates, VSCR[SAT] is set.

Vector
Multiply-Sum
Mixed Sign

Byte Modulo

vmsummbm vD,vA,
vB,vC

Add the product of (vA) * (vB) to vC and place into vD using modulo arithmetic.
For b, byte, integer length = 8 bits = 1 byte, multiply 4 signed integer bytes from a
word element in vA by the corresponding 4 unsigned integer bytes from a word
element in vB. Add the sum of these 4 signed products to the signed integer word
element in vC and then place the signed integer word result into vD, following this
process for each 4-word element in vA and vB.

Vector
Multiply-Sum

Signed
Half-Word

Modulo

vmsumshm vD,vA,
vB,vC

Add the product of (vA) * (vB) to vC and place into vD using modulo arithmetic.
For h, half-word, integer length = 16 bits = 2 bytes, multiply 2 signed integer
half-words from a word element in vA by the corresponding 2 signed integer
half-words in a word element in vB. Add the sum of these 2 products to the signed
integer word element in vC and then place the signed integer word result into vD,
following this process for each 4-word element in vA and vB.

Vector Sum
Across Signed
Word Saturate

vsumsws vD,vA,
vB

Place the sum of signed word elements in vA and the word in vB[96–127] into vD.
For w, word, integer length = 32 bits = 4 bytes, add the sum of the 4 signed integer
word elements in vA to the word element in vB[96–127]. If the intermediate product
is >(231–1) saturate to (231–1) and if <–231 saturate to –231. Place the signed
integer result in vD[96–127],vD[0–95] are cleared.

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-9

Vector Sum
Across Partial
(1/2) Signed

Word Saturate

vsum2sws vD,vA,
vB

Add vA[word 0 + word 1] + vB[word 1] and place in vD[word 1]. Repeat only add
vA[word 2 + word 3] + vB[word 3] and place in vD[word 3].
word 0 = bits 0–31
word 1 = bits 32–63
word 2 = bits 64–95
word 3 = bits 96–127
Figure 1-2 shows a picture of what the word elements would look like in a vector
register.
Add the sum of word 0 and word 1 of vA to word 1 of vB using saturate clamping
mode and place the result is into word 1of vD. Then add the sum of word 2 and word
3 of (vA) to word 3 of vB using saturate clamping mode and place those results into
word 3 in vD. If the intermediate result for either calculation is >(231–1) then
saturate to (231–1) and if <–231 then saturate to –231.
If the result saturates, VSCR[SAT] is set.

Vector Sum
Across Partial
(1/4) Unsigned
Byte Saturate

vsum4ubs vD,vA,
vB

Add vA[4 byte elements sum to a word] and vB[word element] then place in
vD[word element] using saturate clamping mode.
For b, byte, integer length = 8 bits = 1 byte, for each word element in vB, add the
sum of 4 unsigned bytes in the word in vA to the unsigned word element in vB and
then place the results into the corresponding unsigned word element in vD. If the
intermediate result for is >(232–1) it saturates to (232–1).
If the result saturates, VSCR[SAT] is set.

Vector Sum
Across Partial
(1/4) Signed

Integer
Saturate

vsum4sbs
vsum4shs

vD,vA,
vB

Add vA[sum of signed integer elements in word] and vB[word element] then place
in vD[word element] using saturate clamping mode.
For b, byte, integer length = 8 bits = 1 byte, for each word element in vB, add the
sum of 4 signed bytes in the word in vA to the signed word element in vB and then
place the results into the corresponding signed word element in vD. If the
intermediate result is > (231–1) then saturate to (231–1) and if <–231 then saturate
to –231.
For h, half-word, integer length = 16 bits = 2 bytes, for each word element in vB,
add the sum of 2 signed half-words in the word in vA to the signed word element in
vB and then place the results into the corresponding signed word element in vD. If
the intermediate result is >(231–1) then saturate to (231–1) and if <–231 then
saturate to –231.
If the result saturates, VSCR[SAT] is set.

Vector
Average

Unsigned
Integer [b,h,w]

vavgub
vavguh
vavguw

vD,vA,
vB

Add the sum of (vA[unsigned integer elements]+ vB[unsigned integer elements])
+1 and place into vD using modulo arithmetic.
For b, byte, integer length = 8 bits = 1 byte, add 16 unsigned integers from vA to
16 unsigned integers from vB and then add 1 to the sums and place the high order
result in vD.
For h, half-word, integer length = 16 bits = 2 bytes, add 8 unsigned integers from
vA to 8 unsigned integers from vB and then add 1 to the sums and place the high
order result in vD.
For w, word, integer length = 32 bits = 4 bytes, add 4 unsigned integers from vA to
4 unsigned integers from vB and then add 1 to the sums and place the high order
result in vD.
If the result saturates, VSCR[SAT] is set.

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-10 Freescale Semiconductor

Vector
Average

Signed Integer
[b,h,w]

vavgsb
vavgsh
vavgsw

vD,vA,
vB

Add the sum of (vA[signed integer elements]+ vB[signed integer elements]) +1 and
place into vD using modulo arithmetic.
For b, byte, integer length = 8 bits = 1 byte, add 16 signed integers from vA to
16 signed integers from vB and then add 1 to the sums and place the high order
result in vD.
For h, half-word, integer length = 16 bits = 2 bytes, add 8 signed integers from vA
to 8 signed integers from vB and then add 1 to the sums and place the high order
result in vD.
For w, word, integer length = 32 bits = 4 bytes, add 4 signed integers from vA to
4 signed integers from vB and then add 1 to the sums and place the high order
result in vD.

Vector
Maximum
Unsigned

Integer [b,h,w]

vmaxub
vmaxuh
vmaxuw

vD,vA,
vB

Compare the maximum of vA and vB unsigned integers for each integer value and
which ever value is larger, place that unsigned integer value into vD.
For b, byte, integer length = 8 bits = 1 byte, compare 16 unsigned integers from vA
with 16 unsigned integers from vB.
For h, half-word, integer length = 16 bits = 2 bytes, compare 8 unsigned integers
from vA with 8 unsigned integers from vB.
For w, word, integer length = 32 bits = 4 bytes, compare 4 unsigned integers from
vA with 4 unsigned integers from vB.

Vector
Maximum

Signed Integer
[b,h,w]

vmaxsb
vmaxsh
vmaxsw

vD,vA,
vB

Compare the maximum of vA and vB signed integers for each integer value and
which ever value is larger, place that signed integer value into vD.
For b, byte, integer length = 8 bits =1 byte, compare 16 signed integers from vA with
16 signed integers from vB.
For h, half-word, integer length =16 bits = 2 bytes, compare 8 signed integers from
vA with 8 signed integers from vB.
For w, word, integer length = 32 bits = 4 bytes, compare 8 signed integers from vA
with 8 signed integers from vB.

Vector
Minimum
Unsigned

Integer [b,h,w]

vminub
vminuh
vminuw

vD,vA,
vB

Compare the minimum of vA and vB unsigned integers for each integer value and
which ever value is smaller, place that unsigned integer value into vD.
For b, byte, integer length = 8 bits = 1 byte, compare 16 unsigned integers from vA
with 16 unsigned integers from vB.
For h, half-word, integer length = 16 bits = 2 bytes, compare 8 unsigned integers
from vA with 8 unsigned integers from vB.
For w, word, integer length = 32 bits = 4 bytes, compare 4 unsigned integers from
vA with 4 unsigned integers from vB.

Vector
Minimum

Signed Integer
[b,h,w]

vminsb
vminsh
vminsw

vD,vA,
vB

Compare the minimum of vA and vB signed integers for each integer value and
which ever value is smaller, place that signed integer value into vD.
For b, byte, integer length = 8 bits = 1 byte, compare 16 signed integers from vA
with 16 signed integers from vB.
For h, half-word, integer length = 16 bits = 2 bytes, compare 8 signed integers from
vA with 8 signed integers from vB.
For w, word, integer length = 32 bits = 4 bytes, compare 4 signed integers from vA
with 4 signed integers from vB.

Table 4-1. Vector Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-11

4.2.1.3 Vector Integer Compare Instructions

The vector integer compare instructions algebraically or logically compare the contents of the elements in
vector register vA with the contents of the elements in vB. Each compare result vector is comprised of
TRUE (0xFF, 0xFFFF, 0xFFFFFFFF) or FALSE (0x00, 0x0000, 0x00000000) elements of the size
specified by the compare source operand element (byte, half-word, or word). The result vector can be
directed to any vector register and can be manipulated with any of the instructions as normal data, for
example, combining condition results. Vector compares provide equal-to and greater-than predicates.
Others are synthesized from these by logically combining or inverting result vectors.

If the record bit (Rc) is set in the integer compare instructions (shown in Table 4-3), it can optionally set
the CR6 field of the PowerPC condition register. If Rc = 1 in the vector integer compare instruction, then
CR6 reflects the result of the comparison, as shown in Table 4-2.

Table 4-3 summarizes the vector integer compare instructions.

Table 4-2. CR6 Field Bit Settings for Vector Integer Compare Instructions

CR Bit CR6 Bit Vector Compare

24 0 1 Relation is true for all element pairs (that is, vD is set to all ones).

25 1 0

26 2 1 Relation is false for all element pairs (that is, register vD is cleared).

27 3 0

Table 4-3. Vector Integer Compare Instructions

Name Mnemonic Syntax Operation

Vector
Compare

Greater Than
Unsigned

Integer [b,h,w]

vcmpgtub[.]
vcmpgtuh[.]
vcmpgtuw[.]

vD,vA,
vB

Compare the value in vA with the value in vB, treating the operands as unsigned
integers. Place the result of the comparison into the vD field specified by operand
vD.
If vA > vB then vD = 1s; otherwise vD = 0s.
If the record bit (Rc) is set in the vector compare instruction, then
vD == 1s, (all elements true) then CR6[0] is set
vD == 0s, (all elements false) then CR6[2] is set.
For b, byte, integer length = 8 bits = 1 byte, compare 16 unsigned integers from
vA to 16 unsigned integers from vB and place the results in the corresponding
16 elements in vD.
For h, half-word, integer length = 16 bits = 2 bytes, compare 8 unsigned integers
from vA to 8 unsigned integers from vB and place the results in the corresponding
8 elements in vD.
For w, word, integer length = 32 bits = 4 bytes, compare 4 unsigned integers from
vA to 4 unsigned integers from vB and place the results in the corresponding
4 elements in vD.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-12 Freescale Semiconductor

4.2.1.4 Vector Integer Logical Instructions

The vector integer logical instructions shown in Table 4-4 perform bit-parallel operations on the operands.

Vector
Compare

Greater Than
Signed Integer

[b,h,w]

vcmpgtsb[.]
vcmpgtsh[.]
vcmpgtsw[.]

vD,vA,
vB

Compare the value in vA with the value in vB, treating the operands as signed
integers. Place the result of the comparison into the vD field specified by operand
vD.
If vA > vB then vD =1s; otherwise vD = 0s
If the record bit (Rc) is set in the vector compare instruction, then
vD == 1s, (all elements true) then CR6[0] is set
vD == 0s, (all elements false) then CR6[2] is set.
For b, byte, integer length = 8 bits = 1 byte, compare 16 signed integers from vA
to 16 signed integers from vB and place the results in the 16 corresponding
elements in vD.
For h, half-word, integer length = 16 bits = 2 bytes, compare 8 signed integers
from vA to 8 signed integers from vB and place the results in the 8 corresponding
elements in vD.
For w, word, integer length = 32 bits = 4 bytes, compare 4 signed integers from
vA to 4 signed integers from vB and place the results in the 4 corresponding
elements in vD.

Vector
Compare
Equal To
Unsigned

Integer [b,h,w]

vcmpequb[.]
vcmpequh[.]
vcmpequw[.]

vD,vA,
vB

Compare the value in vA with the value in vB, treating the operands as unsigned
integers. Place the result of the comparison into the vD field specified by operand
vD.
If vA = vB then vD = 1s; otherwise vD = 0s.
If the record bit (Rc) is set in the vector compare instruction then
vD == 1s, (all elements true) then CR6[0] is set
VD == 0s, (all elements false) then CR6[2] is set.
For b, byte, integer length = 8 bits = 1 byte, compare 16 unsigned integers from
vA to 16 unsigned integers from vB and place the results in the corresponding
16 elements in vD.
For h, half-word, integer length = 16 bits = 2 bytes, compare 8 unsigned integers
from vA to 8 unsigned integers from vB and place the results in the corresponding
8 elements in vD.
For w, word, integer length = 32 bits = 4 bytes, compare 4 unsigned integers from
vA to 4 unsigned integers from vB and place the results in the corresponding
4 elements in vD.
Note: vcmpequb[.], vcmpequh[.], and vcmpequw[.] can use both unsigned and
signed integers.

Table 4-4. Vector Integer Logical Instructions

Name Mnemonic Syntax Operation

Vector Logical AND vand vD,vA,vB AND the contents of vA with vB and place the result into vD.

Vector Logical OR vor vD,vA,vB OR the contents of vA with vB and place the result into vD.

Vector Logical XOR vxor vD,vA,vB XOR the contents of vA with vB and place the result into vD.

Vector Logical AND
with Complement

vandc vD,vA,vB AND the contents of vA with the complement of vB and place the result into
vD.

Vector Logical NOR vnor vD,vA,vB NOR the contents of vA with vB and place the result into vD.

Table 4-3. Vector Integer Compare Instructions (continued)

Name Mnemonic Syntax Operation

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-13

4.2.1.5 Vector Integer Rotate and Shift Instructions

The vector integer rotate instructions are summarized in Table 4-5.

The vector integer shift instructions are summarized in Table 4-6.

Table 4-5. Vector Integer Rotate Instructions

Name Mnemonic Syntax Operation

Vector Rotate
Left Integer

[b,h,w]

vrlb
vrlh
vrlw

vD,vA,
vB

Rotate each element in vA left by the number of bits specified in the low-order
log2(n) bits of the corresponding element in vB. Place the result into the
corresponding element of vD.
For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with
16 integers from vB.
For h, half-word, integer length = 16 bits = 2 bytes, use 8 integers from vA with
8 integers from vB.
For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with
4 integers from vB.

Table 4-6. Vector Integer Shift Instructions

Name Mnemonic Syntax Operation

Vector Shift
Left Integer

[b,h,w]

vslb
vslh
vslw

vD,vA,
vB

Shift each element in vA left by the number of bits specified in the low-order
log2(n) bits of the corresponding element in vB. If bits are shifted out of bit 0 of
the element they are lost. Supply zeros to the vacated bits on the right. Place the
result into the corresponding element of vD.
For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with
16 integers from vB.
For h, half-word, integer length = 16 bits = 2 bytes, use 8 integers from vA with
8 integers from vB.
For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with
4 integers from vB.

Vector Shift
Right Integer

[b,h,w]

vsrb
vsrh
vsrw

vD,vA,
vB

Shift each element in vA right by the number of bits specified in the low-order
log2(n) bits of the corresponding element in vB. If bits are shifted out of bit n–1 of
the element they are lost. Supply zeros to the vacated bits on the left. Place the
result into the corresponding element of vD.
For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with
16 integers from vB.
For h, half-word, integer length = 16 bits = 2 bytes, use 8 integers from vA with
8 integers from vB.
For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with
4 integers from vB.

Vector Shift
Right

Algebraic
Integer [b,h,w]

vsrab
vsrah
vsraw

vD,vA,
vB

Shift each element in vA right by the number of bits specified in the low-order
log2(n) bits of the corresponding element in vB. If bits are shifted out of bit n–1 of
the element they are lost. Replicate bit 0 of the element to fill the vacated bits on
the left. Place the result into the corresponding element of vD.
For b, byte, integer length = 8 bits = 1 byte, use 16 integers from vA with
16 integers from vB.
For h, half-word, integer length = 16 bits = 2 bytes, use 8 integers from vA with
8 integers from vB.
For w, word, integer length = 32 bits = 4 bytes, use 4 integers from vA with
4 integers from vB.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-14 Freescale Semiconductor

4.2.2 Vector Floating-Point Instructions

This section describes the vector floating-point instructions, which include the following:
• Arithmetic
• Rounding and conversion
• Compare
• Estimate

The AltiVec floating-point data format complies with the ANSI/IEEE-754 standard. A quantity in this
format represents a signed normalized number, a signed denormalized number, a signed zero, a signed
infinity, a quiet not a number (QNaN), or a signaling NaN (SNaN). Operations perform to a
Java/IEEE/C9X-compliant subset of the IEEE standard, for further details on the Java or Non-Java mode
see Section 3.2.1, “Floating-Point Modes.” AltiVec ISA does not report IEEE exceptions but rather
produces default results as specified by the Java/IEEE/C9X Standard. For further details on exceptions,
see Section 3.2.4, “Floating-Point Exceptions.”

4.2.2.1 Floating-Point Division and Square-Root

AltiVec instructions do not have division or square-root instructions. AltiVec ISA implements Vector
Reciprocal Estimate Floating-Point (vrefp) and Vector Reciprocal-Square-Root Estimate Floating-Point
(vrsqrtefp) instructions along with a Vector Negative Multiply-Subtract Floating-Point (vnmsubfp)
instruction assisting in the Newton-Raphson refinement of the estimates. To accomplish division, simply
multiply by the reciprocal estimate of the dividend (x/y = x * 1/y) and square-root by multiplying the
original number by the reciprocal of the square root estimate (√x = x * 1/√x). In this way, AltiVec ISA
provides inexpensive divides and square-roots that are fully pipelined, sub-operation scheduled, and faster
even than many hardware dividers. Software methods are available to further refine these to correct IEEE
results.

4.2.2.1.1 Floating-Point Division

The Newton-Raphson refinement step for the reciprocal 1/B looks like this:
y1 = y0 + y0*(1 - B*y0), where y0 = recip_est(B)

This is implemented in the AltiVec ISA as follows:
y0 = vrefp(B)

 t = vnmsubfp(y0,B,1)

y1 = vmaddfp(y0,t,y0)

This produces a result accurate to almost 24 bits of precision, except where B is a sufficiently small
denormalized number that vrefp generates an infinity that, if important, must be explicitly guarded against.

To get a correctly rounded IEEE quotient from the above result, a second Newton-Raphson iteration is
performed to get a correctly rounded reciprocal (y2) to the required 24 bits of precision, then the residual.

R = A - B*Q

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-15

is computed with vnmsubfp (where A is the dividend, B the divisor, and Q an approximation of the
quotient from A * y2). The correctly rounded quotient can then be obtained.

Q' = Q + R*y2

The additional accuracy provided by the fused nature of the AltiVec instruction multiply-add is essential
to producing the correctly rounded quotient by this method.

The second Newton-Raphson iteration may ultimately not be needed but more work must be done to show
that the absolute error after the first refinement step would always be less than 1 ulp, which is a
requirement of this method.

4.2.2.1.2 Floating-Point Square-Root

The Newton-Raphson refinement step for reciprocal square root looks like the following:
y1 = y0 + 0.5*y0*(1 - B*y0*y0), where y0 = recip_sqrt_est(B)

That can be implemented as follows:
y0 = vrsqrtefp(B)

t0 = vmaddfp(y0,y0,0.0)

t1 = vmaddfp(y0,0.5,0.0)

t0 = vnmsubfp(B,t0,1)

y1 = vmaddfp(t0,t1,y0)

Various methods can further refine a correctly rounded IEEE result, all more elaborate than the simple
residual correction for division, and, therefore, are not presented here, but most of which also benefit from
the negative multiply-subtract instruction.

4.2.2.2 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are summarized in Table 4-7.
Table 4-7. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax Operation

Vector Add
Floating-Point

vaddfp vD,vA,
vB

Add the 4-word (32-bit) floating-point elements in vA to the 4-word (32-bit)
floating-point elements in vB. Round the 4 intermediate results to the nearest
single-precision number and placed into vD.

Vector
Subtract

Floating-Point

vsubfp vD,vA,
vB

The 4-word (32-bit) floating-point values in vB are subtracted from the four 32-bit
values in vB. The 4 intermediate results are rounded to the nearest single-precision
floating-point and placed into vD.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-16 Freescale Semiconductor

4.2.2.3 Floating-Point Multiply-Add Instructions

Vector multiply-add instructions are critically important to performance because multiply followed by a
data-dependent addition is the most common idiom in DSP algorithms. In most implementations,
floating-point multiply-add instructions perform with the same latency as either a multiply or add alone,
thus, doubling performance in comparing to the otherwise serial multiply and adds. This will make
performance twice as fast as using separate multiply and add instructions.

AltiVec floating-point multiply-adds instructions fuse (a multiply-add fuse implies that the full product
participates in the add operation without rounding; only the final result rounds). This not only simplifies
the implementation and reduces latency (by eliminating the intermediate rounding) but also increases the
accuracy compared to separate multiply and adds.

Be careful as Java-compliant programs cannot use multiply-add instructions fused directly because Java
requires both the product and sum to round separately. Thus, to achieve strict Java compliance, perform
the multiply and add with separate instructions.

To realize multiply in AltiVec ISA use multiply-add instructions with a zero addend (for example,
vmaddfp vD,vA,vC,vB where (vB = 0.0).

Note that to use multiply-add instructions to perform an IEEE- or Java-compliant multiply, the addend
must be –0.0. This is necessary to ensure that the sign of a zero result is correct when the product is either
+0.0 or –0.0 (+0.0 + –0.0 ⇒ +0.0, and –0.0 + -0.0 ⇒ –0.0). When the sign of a resulting 0.0 is not
important, then use +0.0 as the addend that may, in some cases, avoiding the need for a second register to
hold a –0.0 in addition to the integer 0/floating-point +0.0 that may already be available.

Vector
Maximum

Floating-Point

vmaxfp vD,vA,
vB

Compare each of the 4 single-precision word elements in vA to the corresponding
4 single-precision word elements in vB and place the larger value within each pair
into the corresponding word element in vD.
vmaxfp is sensitive to the sign of 0.0. When both operands are ±0.0:
max(+0.0,±0.0) = max(±0.0,+0.0) ⇒ +0.0
max(–0.0,–0.0) ⇒ –0.0
max(NaN,x) ⇒ QNaN, where x = any value

Vector
Minimum

Floating-Point

vminfp vD,vA,
vB

Compare each of the 4 single-precision word elements in vA to the corresponding
4 single-precision word elements in vB
For each of the four elements, place the smaller value within each pair into vD.
vminfp is sensitive to the sign of 0.0. When both operands are ±0.0:
min(–0.0,±0.0) = min(±0.0,-0.0) ⇒ –0.0
min(+0.0,+0.0) ⇒ +0.0
min(NaN,x) ⇒ QNaN where x = any value

Table 4-7. Floating-Point Arithmetic Instructions (continued)

Name Mnemonic Syntax Operation

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-17

The floating-point multiply-add instructions are summarized in Table 4-8.

4.2.2.4 Floating-Point Rounding and Conversion Instructions

All AltiVec floating-point arithmetic instructions use the IEEE default rounding mode, round-to-nearest.
AltiVec ISA does not provide the IEEE directed rounding modes.

AltiVec ISA provides separate instructions for converting floating-point numbers to integral floating-point
values for all IEEE rounding modes as follows:

• Round-to-nearest (vrfin) (round)
• Round-toward-zero (vrfiz) (truncate)
• Round-toward-minus-infinity (vrfim) (floor)
• Round-toward-positive-infinity (vrfip) (ceiling)

Floating-point conversions to integers (vctuxs, vctsxs) use round-toward-zero (truncate). The
floating-point rounding instructions are described in Table 4-9.

Table 4-8. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax Operation

Vector
Multiply-Add

Floating-Point

vmaddfp vD,vA,
vC,vB

Multiply the 4-word floating-point elements in vA by the corresponding 4-word
elements in vC. Add the 4-word elements in vB to the 4 intermediate products.
Round the results to the nearest single-precision numbers and place the
corresponding word elements into vD.

Vector
Negative
Multiply-
Subtract

Floating-Point

vnmsubfp vD,vA,
vC,vB

Multiply the 4-word floating-point elements in vA by the corresponding 4-word
elements in vC. Subtract the 4-word floating-point elements in vB from the
4 intermediate products and invert the sign of the difference. Round the results to
the nearest single-precision numbers and place the corresponding word elements
into vD.

Table 4-9. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax Operation

Vector Round
to

Floating-Point
Integer
Nearest

vrfin vD,vB Round to the nearest the 4-word floating-point elements in vB and place the
4 corresponding word elements into vD.

Vector Round
to

Floating-Point
Integer Toward

Zero

vrfiz vD,vB Round towards zero the 4-word floating-point elements in vB and place the
4 corresponding word elements into vD.

Vector Round
to

Floating-Point
Integer Toward
Positive Infinity

vrfip vD,vB Round towards +Infinity the 4-word floating-point elements in vB and place the
4 corresponding word elements into vD.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-18 Freescale Semiconductor

4.2.2.5 Floating-Point Compare Instructions

This section describes floating-point unordered compare instructions.

All AltiVec floating-point compare instructions (vcmpeqfp, vcmpgtfp, vcmpgefp, and vcmpbfp) return
FALSE if either operand is a NaN. Not equal-to, not greater-than, not greater-than-or-equal-to, and
not-in-bounds NaNs compare to everything, including themselves.

Compares always return a Boolean mask (TRUE = 0xFFFF_FFFF, FALSE = 0x0000_0000) and never
return a NaN. The vcmpeqfp instruction is recommended as the Isnan(vX) test. No explicit unordered
compare instructions or traps are provided. However, the greater-than-or-equal-to predicate
(≥) (vcmpgefp) is provided—in addition to the > and = predicates available for integer comparison—
specifically to enable IEEE unordered comparison that would not be possible with just the > and =
predicates. Table 4-10 lists the six common mathematical predicates and how they would be realized in
AltiVec code.

Vector Round
to

Floating-Point
Integer Toward
Minus Infinity

vrfim vD,vB Round towards –Infinity the 4-word floating-point elements in vB and place the
4 corresponding word elements into vD.

Vector Convert
from Unsigned

Fixed-Point
Word

vcfux vD,vB,
UIMM

Convert each of the 4 unsigned fixed-point integer word elements in vB to the
nearest single-precision value. Divide the result by 2UIMM and place into the
corresponding word element of vD.

Vector Convert
from Signed
Fixed-Point

Word

vcfsx vD,vB,
UIMM

Convert each signed fixed-point integer word element in vB to the nearest
single-precision value. Divide the result by 2UIMM and place into the corresponding
word element of vD.

Vector Convert
to Unsigned
Fixed-Point

Word Saturate

vctuxs vD,vB,
UIMM

Multiply each of the 4 single-precision word elements in vB by 2UIMM. The products
are converted to unsigned fixed-point integers using the Round toward Zero mode.
If the intermediate results are >232–1 saturate to 232–1 and if it is <0 saturate to 0.
Place the unsigned integer results into the corresponding word elements of vD.

Vector Convert
to Signed

Fixed-Point
Word Saturate

vctsxs vD,vB,
UIMM

Multiply each of the 4 single-precision word elements in vB by 2UIMM. The
products are converted to signed fixed-point integers using Round toward Zero
mode. If the intermediate results are >232–1 saturate to 232–1 and if it is <–231
saturate to –231. Place the unsigned integer results into the corresponding word
elements of vD.

Table 4-10. Common Mathematical Predicates

Case
Mathematical

Predicate
AltiVec

Realization

Relations

a > b a < b a = b ?

1 a = b a = b F F T F

2 a ≠ b (?<>) ¬ (a = b) T T F T

Table 4-9. Floating-Point Rounding and Conversion Instructions (continued)

Name Mnemonic Syntax Operation

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-19

Table 4-11 shows the remaining eight useful predicates and how they might be realized in AltiVec code.

The vector floating-point compare instructions compare the elements in two vector registers
word-by-word, interpreting the elements as single-precision numbers. With the exception of the Vector
Compare Bounds Floating-Point (vcmpbfp) instruction they set the target vector register, and CR[6] if
Rc = 1, in the same manner as do the vector integer compare instructions.

The Vector Compare Bounds Floating-Point (vcmpbfp) instruction sets the target vector register, and
CR[6] if Rc = 1, to indicate whether the elements in vA are within the bounds specified by the
corresponding element in vB, as explained in the instruction description. A single-precision value x is said
to be within the bounds specified by a single-precision value y if (–y ≤ x ≤ y).

3 a > b a > b T F F F

4 a < b b > a F T F F

5 a ≥ b ¬ (b > a) T F T *T

6 a ≤ b ¬ (a > b) F T T *T

5a a ≥ b a ≥ b T F T F

6a a ≤ b b ≥ a F T T F

Note: Cases 5 and 6 implemented with greater-than (vcmpgtfp and vnor) would not
yield the correct IEEE result when the relation is unordered.

Table 4-11. Other Useful Predicates

Case Predicate
AltiVec

Realization

Relations

a > b a < b a = b ?

7 a ? b ¬ ((a = b) ∨ (b > a) ∨ (a > b)) F F F T

8 a <> b (a ≥ b) ⊕ (b ≥ a) T T F F

9 a <=> b (a ≥ b) ∨ (b ≥ a) T T T F

10 a ?> b ¬ (b ≥ a) T F F T

11 a ?>= b ¬ (b > a) T F T T

12 a ?< b ¬ (a ≥ b) F T F T

13 a ?<= b ¬ (a > b) F T T T

14 a ?= b ¬ ((a > b) ∨ (b > a)) F F T T

Table 4-10. Common Mathematical Predicates (continued)

Case
Mathematical

Predicate
AltiVec

Realization

Relations

a > b a < b a = b ?

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-20 Freescale Semiconductor

The floating-point compare instructions are summarized in Table 4-12.
Table 4-12. Floating-Point Compare Instructions

Name Mnemonic Syntax Operation

Vector
Compare

Greater Than
Floating-Point

[Record]

vcmpgtfp[.] vD,vA,
vB

Compare each of the 4 single-precision word elements in vA to the corresponding
4 single-precision word elements in vB.
For each element, if vA > vB, then set the corresponding element in vD to all 1s,
otherwise clear the element in vD to all 0s.
If the record bit is set (Rc = 1) in the vector compare instruction, then
vD ==1, (all elements true) then CR6[0] is set
vD == 0, (all elements false) then CR6[2] is set

Vector
Compare
Equal to

Floating-Point
[Record]

vcmpeqfp[.] vD,vA,
vB

Compare each of the 4 single-precision word elements in vA to the corresponding
4 single-precision word elements in vB.
For each element, if vA = vB, then set the corresponding element in vD to all 1s,
otherwise clear the element in vD to all 0s.
If the record bit is set (Rc = 1) in the vector compare instruction then
vD ==1, (all elements true) then CR6[0] is set
vD == 0, (all elements false) then CR6[2] is set

Vector
Compare

Greater Than
or Equal to

Floating-Point
[Record]

vcmpgefp[.] vD,vA,
vB

Compare each of the 4 single-precision word elements in vA to the corresponding
4 single-precision word elements in vB.
For each element, if vA >= vB, then set the corresponding element in vD to all 1s,
otherwise clear the element in vD to all 0s.
If the record bit is set (Rc = 1) in the vector compare instruction then
vD ==1, (all elements true) then CR6[0] is set
vD == 0, (all elements false) then CR6[2] is set

Vector
Compare
Bounds

Floating-Point
[Record]

vcmpbfp[.] vD,vA,
vB

Compare each of the 4 single-precision word elements in vA to the corresponding
single-precision word elements in vB. A 2-bit value is formed that indicates whether
the element in vA is within the bounds specified by the element in vB, as follows.
Bit 0 of the 2-bit value is cleared if the element in vA is <= to the element in vB, and
is set otherwise.
Bit 1 of the 2-bit value is cleared if the element in vA is >= to the negation of the
element in vB, and is set otherwise.
The 2-bit value is placed into the high-order 2 bits of the corresponding word
element of vD and the remaining bits of the element are cleared to 0.
If Rc = 1, CR6[2] is set when all 2 elements in vA are within the bounds specified
by the corresponding element in vB.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-21

4.2.2.6 Floating-Point Estimate Instructions

The floating-point estimate instructions are summarized in Table 4-13.

4.2.3 Load and Store Instructions

Only very basic load and store operations are provided in AltiVec ISA. This keeps the circuitry in the
memory path fast so the latency of memory operations will be low. Instead, a powerful set of field
manipulation instructions are provided to manipulate data into the desired alignment and arrangement after
the data has been brought into the vector registers.

Load vector indexed (lvx, lvxl) and store vector indexed (stvx, stvxl) instructions transfer an aligned
quad-word vector between memory and vector registers. Load vector element indexed (lvebx, lvehx,
lvewx) and store vector element indexed instructions (stvebx, stvehx, stvewx) transfer byte, half-word,
and word scalar elements between memory and vector registers.

All vector loads and vector stores use the index (rA|0 + rB) addressing mode to specify the target memory
address. AltiVec ISA does not provide any update forms. An lvebx, lvehx, or lvewx instruction transfers
a scalar data element from memory into the destination vector register, leaving other elements in the vector
with boundedly-undefined values. A stvebx, stvehx, or stvewx instruction transfers a scalar data element
from the source vector register to memory leaving other elements in the quad word unchanged. No data
alignment occurs, that is, all scalar data elements are transferred directly on their natural memory
byte-lanes to or from the corresponding element in the vector register. Quad-word memory accesses made
by lvx, lvxl, stvx, and stvxl instructions are not guaranteed to be atomic. Direct-store segments (T = 1) are
not supported by AltiVec ISA. Any vector load or store that attempts to access a direct-store segment will
cause a data storage interrupt.

4.2.3.1 Alignment

All memory references must be size aligned. If a vector load or store address is not properly size-aligned,
the suitable number of least significant bits are ignored, and a size-aligned transfer occurs instead. Data

Table 4-13. Floating-Point Estimate Instructions

Name Mnemonic Syntax Operation

Vector Reciprocal
Estimate

Floating-Point

vrefp vD,vB Place estimates of the reciprocal of each of the 4-word floating-point source
elements in vB in the corresponding 4-word elements in vD.

Vector Reciprocal
Square Root

Estimate
Floating-Point

vrsqrtefp vD,vB Place estimates of the reciprocal square-root of each of the 4-word source
elements in vB in the corresponding 4-word elements in vD.

Vector Log2
Estimate

Floating-Point

vlogefp vD,vB Place estimates of the base 2 logarithm of each of the 4-word source elements
in vB in the corresponding 4-word elements in vD.

Vector 2 Raised to
the Exponent

Estimate
Floating-Point

vexptefp vD,vB Place estimates of 2 raised to the power of each of the 4-word source elements
in vB in the corresponding 4-word elements in vD.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-22 Freescale Semiconductor

alignment must be performed by software after being brought into the registers. No assistance is provided
for aligning individual scalar elements that are not aligned on their natural size boundary. However,
assistance is provided for justifying non-size-aligned vectors. This is provided through the Load Vector for
Shift Left (lvsl) and Load Vector for Shift Right (lvsr) instructions that compute the proper Vector Permute
(vperm) control vector from the misaligned memory address. For details on how to use these instructions
to align data see Section 3.1.6, “Quad-Word Data Alignment.”

The lvx, lvxl, stvx, and stvxl instructions can be used to move data, not just multimedia data, in PowerPC
environments. Therefore, because vector loads and stores are size-aligned, care should be taken to align
data on even quad-word boundaries for maximum performance.

4.2.3.2 Load and Store Address Generation

Vector load and store operations generate effective addresses using register indirect with index mode.

All AltiVec load and store instructions use register indirect with index addressing mode that cause the
contents of two GPRs (specified as operands rA and rB) to be added in the generation of the effective
address (EA). A 0 in place of the rA operand causes a 0 to be added to the value specified by rB. The
option to specify rA or 0 is shown in the instruction descriptions as (rA|0). If the address becomes
misaligned, for a half-word, word, or quad word when combining addresses (rA|0 + rB), the effective
address is ANDed with the appropriate 0 values to boundary align the address and is summarized in
Table 4-14.

Table 4-14. Effective Address Alignment

Operand Effective Address Bit Setting

Indexed half-word EA[63] 0b0

Indexed word EA[62–63] 0b00

Indexed quad word EA[60–63] 0b0000

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-23

Figure 4-1 shows how an effective address is generated when using register indirect with index addressing.

Figure 4-1. Register Indirect with Index Addressing for Loads/Stores

4.2.3.3 Vector Load Instructions

For vector load instructions, the byte, half-word, or word addressed by the EA (effective address) is loaded
into rD.

The default byte and bit ordering is big-endian as in the PowerPC architecture; see Section 3.1.2, “AltiVec
Byte Ordering,” for information about little-endian byte ordering.

No

0 63

GPR (rA)

0

+

0 63

VR (vD)
Memory
Interface

Store
Load

Yes

0 63

GPR (rB)

Instruction Encoding:

rA=0?

0 63

Effective Address

0 5 6 1011 1516 20 21 30 31

Opcode vD/vS rA rB Subopcode 0Reserved

Boundary
Align EA

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-24 Freescale Semiconductor

Table 4-15 summarizes the vector load instructions.

The lvsl and lvsr instructions can be used to create the permute control vector to be used by a subsequent
vperm instruction. Let X and Y be the contents of vA and vB specified by vperm. The control vector
created by lvsl causes the vperm to select the high-order 16 bytes of the result of shifting the 32-byte value
X || Y left by sh bytes (sh = the value in EA[60–63]). The control vector created by lvsr causes the vperm
to select the low-order 16 bytes of the result of shifting X || Y right by sh bytes.

These instructions can also be used to rotate or shift the contents of a vector register left lvsl or right lvsr
by sh bytes. The sh values for the lvsl instruction are shown in Table 4-17, and those for the lvsr instruction
are shown in Table 4-18. For rotating, the vector register to be rotated should be specified as both the vA
and the vB register for vperm. For shifting left, the vB register for vperm should be a register containing
all zeros and vA should contain the value to be shifted, and vice versa for shifting right. For further
examples on how to align the data see Section 3.1.6, “Quad-Word Data Alignment.” The default byte and
bit ordering is big-endian as in the PowerPC architecture; see Section 3.1.2.2, “Little-Endian Byte
Ordering,” for information about little-endian byte ordering.

Table 4-15. Integer Load Instructions

Name Mnemonic Syntax Operation

Load Vector
Element Integer
Indexed [b,h,w]

lvebx
lvehx
lvewx

vD,rA,
rB

The EA is the sum (rA|0) + (rB). Load the byte, half-word, or word in memory
addressed by the EA into the low-order bits of vD. The remaining bits in vD are
set to boundedly-undefined values.
Because memory must stay aligned, the EA is set to default to alignment:
For b, byte, integer length = 8 bits = 1 byte,
For h, half-word, integer length = 16 bits = 2 bytes, EA[62–63] is set to 0b0
For w, word, integer length = 32 bits = 4 bytes, EA[61–63] is set to 0b00

Load Vector
Indexed

lvx vD,rA,
rB

The EA is the sum (rA|0) + (rB). Load the double word in memory addressed by
the EA into vD.
Because memory needs to stay aligned, the EA is set to default to alignment:
For a quad word, integer length = 128 bits = 16 bytes, EA[60–63] is set to 0b0000
LRU = 0
If the processor is in little-endian mode, load the double word in memory
addressed by EA into vD[64–127] and load the double word in memory
addressed by EA + 8 into vD[0–63].

Load Vector
Indexed LRU

lvxl vD,rA,
rB

The EA is the sum (rA|0) + (rB). Load the double word in memory addressed by
the EA into vD.
For the double word, integer length = 64 bits = 8 bytes, the EA[60–63] is set to
0b0000.
LRU = 1, least recently used, hints that the quad word in the memory addressed
by EA will probably not be needed again by the program in the near future.
If the processor is in little-endian mode, load the double word in memory
addressed by EA into vD[64–127] and load the double word in memory
addressed by EA + 8 into vD[0–63].

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-25

Table 4-16 summarizes the vector alignment instructions.
Table 4-16. Vector Load Instructions Supporting Alignment

Name Mnemonic Syntax Operation

Load Vector for
Shift Left

lvsl vD,rA,
rB

The EA is the sum (rA|0) + (rB). The EA[60–63] = sh, then based on Table 4-17,
place the value in vD

Load Vector for
Shift Right

lvsr vD,rA,
rB

The EA is the sum (rA|0) + (rB). The EA[60–63] = sh, then based on Table 4-18,
place the value in vD

Table 4-17. Shift Values for lvsl Instruction

Shift (sh) vD[0–127]

0x0 0x000102030405060708090A0B0C0D0E0F

0x1 0x0102030405060708090A0B0C0D0E0F10

0x2 0x02030405060708090A0B0C0D0E0F1011

0x3 0x0D0E0F101112131415161718191A1B1C

0x4 0x0405060708090A0B0C0D0E0F10111213

0x5 0x05060708090A0B0C0D0E0F1011121314

0x6 0x060708090A0B0C0D0E0F101112131415

0x7 0x0708090A0B0C0D0E0F10111213141516

0x8 0x08090A0B0C0D0E0F1011121314151617

0x9 0x090A0B0C0D0E0F101112131415161718

0xA 0x0A0B0C0D0E0F10111213141516171819

0xB 0x0B0C0D0E0F101112131415161718191A

0xC 0x0C0D0E0F101112131415161718191A1B

0xD 0x0D0E0F101112131415161718191A1B1C

0xE 0x0E0F101112131415161718191A1B1C1D

0xF 0x0F101112131415161718191A1B1C1D1E

Table 4-18. Shift Values for lvsr Instruction

Shift (sh) vD[0–127]

0x0 0x101112131415161718191A1B1C1D1E1F

0x1 0x0F101112131415161718191A1B1C1D1E

0x2 0x0E0F101112131415161718191A1B1C1D

0x3 0x0D0E0F101112131415161718191A1B1C

0x4 0x0C0D0E0F101112131415161718191A1B

0x5 0x0B0C0D0E0F101112131415161718191A

0x6 0x0A0B0C0D0E0F10111213141516171819

0x7 0x090A0B0C0D0E0F101112131415161718

0x8 0x08090A0B0C0D0E0F1011121314151617

0x9 0x0708090A0B0C0D0E0F10111213141516

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-26 Freescale Semiconductor

4.2.3.4 Vector Store Instructions

For vector store instructions, the contents of vector register used as a source (vS) are stored into the byte,
half-word, word, or quad word in memory addressed by the effective address (EA). Table 4-19 provides a
summary of the vector store instructions.

4.2.4 Control Flow

AltiVec instructions can be freely intermixed with existing PowerPC instructions to form a complete
program. AltiVec instructions do provide a vector compare and select mechanism to implement
conditional execution as a mechanism to control data flow in AltiVec programs. Also, the AltiVec vector

0xA 0x060708090A0B0C0D0E0F101112131415

0xB 0x05060708090A0B0C0D0E0F1011121314

0xC 0x0405060708090A0B0C0D0E0F10111213

0xD 0x030405060708090A0B0C0D0E0F101112

0xE 0x02030405060708090A0B0C0D0E0F1011

0xF 0x0102030405060708090A0B0C0D0E0F10

Table 4-19. Integer Store Instructions

Name Mnemonic Syntax Operation

Store Vector
Element
Integer
Indexed
[b,h,w]

stvebx
stvehx
stvewx

vS,rA,
rB

The EA is the sum (rA|0) + (rB). Store the contents of the low-order bits of vS into
the integer in memory addressed by the EA.
Because memory needs to stay aligned, the EA is set to default to alignment:
For b, byte, integer length = 8 bits = 1 byte
For h, half-word, integer length = 16 bits = 2 bytes, EA[62–63] is set to 0b0
For w, word, integer length = 32 bits = 4 bytes, EA[61–63] is set to 0b00

Store Vector
Indexed

stvx vS,rA,
rB

The EA is the sum (rA|0) + (rB). Store the contents of vS into the quad word in
memory addressed by the EA.
For q, quad word, integer length = 128 bits = 16 bytes, the EA[60–63] is set to
0b0000
LRU = 0
If the processor is in little-endian mode, store the contents of vS[64–127] into the
double word in memory addressed by EA, and store the contents of vS[0–63] into
the double word in memory addressed by EA + 8.

Store Vector
Indexed LRU

stvxl vD,rA,
rB

The EA is the sum (rA|0) + (rB). Store the contents of vS into the quad word in
memory addressed by the EA.
For d, double word, integer length = 64 bits = 8 bytes, the EA[60–63] is set to
0b0000
LRU = 1, least recently used, hints that the quad word in the memory addressed by
EA will probably not be needed again by the program in the near future.
If the processor is in little-endian mode, store the contents of vS[64–127] into the
double word in memory addressed by EA, and store the contents of vS[0–63] into
the double word in memory addressed by EA + 8.

Table 4-18. Shift Values for lvsr Instruction (continued)

Shift (sh) vD[0–127]

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-27

compare instructions can update the condition register, thus, providing the communication from AltiVec
execution units to PowerPC branch instructions necessary to modify program flow based on vector data.

4.2.5 Vector Permutation and Formatting Instructions

Vector pack, unpack, merge, splat, permute, and select can be used to accelerate various vector math and
vector formatting. Details of the various instructions follow.

4.2.5.1 Vector Pack Instructions

Half-word vector pack instructions (vpkuhum, vpkuhus, vpkshus, vpkshss) truncate the 16 half-words
from 2 concatenated source operands producing a single result of 16 bytes (quad word) using either
modulo(28), 8-bit signed-saturation, or 8-bit unsigned-saturation to perform the truncation. Similarly,
word vector pack instructions (vpkuwum, vpkuwus, vpkswus, and vpksws) truncate the 8 words from
2 concatenated source operands producing a single result of 8 half-words using modulo(2^16), 16-bit
signed-saturation, or 16-bit unsigned-saturation to perform the truncation.

One special form of Vector Pack Pixel (vpkpx) instruction packs eight 32-bit (8/8/8/8) pixels from two
concatenated source operands into a single result of eight 16-bit 1/5/5/5 αRGB pixels. The least significant
bit of the first 8-bit element becomes the 1-bit α field, and each of the three 8-bit R, G, and B fields are
reduced to 5 bits by ignoring the 3 lsbs.

Table 4-20 describes the vector pack instructions.
Table 4-20. Vector Pack Instructions

Name Mnemonic Syntax Operation

Vector Pack
Unsigned

Integer [h,w]
Unsigned
Modulo

vpkuhum
vpkuwum

vD,vA,
vB

Concatenate the low-order unsigned integers of vA and the low-order unsigned
integers of vB and place into vD using unsigned modulo arithmetic. vA is placed in
the lower order double word of vD and vB is placed into the higher order double
word of vD.
For h, half-word, integer length = 16 bits = 2 bytes, 8 unsigned integers, in other
words, the 8 low-order bytes of the half-words from vA and vB.
For w, word, integer length = 32 bits = 4 bytes, 4 unsigned integers, in other words,
the 4 low-order half-words of the words from vA and vB.

Vector Pack
Unsigned

Integer [h,w]
Unsigned
Saturate

vpkuhus
vpkuwus

vD,vA,
vB

Concatenate the low-order unsigned integers of vA and the low-order unsigned
integers of vB and place into vD using unsigned saturate clamping mode. vA is
placed in the lower order double word of vD and vB is placed into the higher order
double word of vD.
For h, half-word, integer length = 16 bits = 2 bytes, 8 unsigned integers, in other
words, the 8 low-order bytes of the half-words from vA and vB.
For w, word, integer length = 32 bits = 4 bytes, 4 unsigned integers, in other words,
the 4 low-order words of the half-words from vA and vB.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-28 Freescale Semiconductor

4.2.5.2 Vector Unpack Instructions

Byte vector unpack instructions unpack the 8 low bytes (or 8 high bytes) of one source operand into
8 half-words using sign extension to fill the MSBs. Half-word vector unpack instructions, unpack the
4 low half-words (or 4 high half-words) of one source operand into 4 words using sign extension to fill the
MSBs.

A special purpose form of vector unpack is provided, the Vector Unpack Low Pixel (vupklpx) and the
Vector Unpack High Pixel (vupkhpx) instructions for 1/5/5/5 αRGB pixels. The 1/5/5/5 pixel vector
unpack, unpacks the four low 1/5/5/5 pixels (or four 1/5/5/5 high pixels) into four 32-bit (8/8/8/8) pixels.
The 1-bit α element in each pixel is sign extended to 8 bits, and the 5-bit R, G, and B elements are each
zero extended to 8 bits.

Vector Pack
Signed Integer

[h,w]
Unsigned
Saturate

vpkshus
vpkswus

vD,vA,
vB

Concatenate the low-order signed integers of vA and the low-order signed integers
of vB and place into vD using unsigned saturate clamping mode. vA is placed in
the lower order double word of vD and vB is placed into the higher order double
word of vD.
For h, half-word, integer length = 16 bits = 2 bytes, 8 signed integers, in other words,
the 8 low-order bytes of the half-word from vA and vB.
For w, word, integer length = 32 bits = 4 bytes, 4 signed integers, in other words,
the 4 low-order half-words of the words from vA and vB.

Vector Pack
Signed Integer
[h,w] Signed

Saturate

vpkshss
vpkswss

vD,vA,
vB

Concatenate the low-order signed integers of vA and the low-order signed integers
of vB are concatenated and place into vD using signed saturate clamping mode.
vA is placed in the lower order double word of vD and vB is placed into the higher
order double word of vD.
For h, half-word, integer length = 16 bits = 2 bytes, 8 signed integers, in other words,
the 8 low-order bytes of the half-word from vA and vB.
For w, word, integer length = 32 bits = 4 bytes, 4 signed integers, in other words,
the 4 low-order half-words of the words from vA and vB.

Vector Pack
Pixel

vpkpx vD,vA,
vB

Each word element in vA and vB is packed to 16 bits and the half-word is placed
into vD. Each word from vA and vB is packed to 16 bits in the following order:
[bit 7 of the first byte (bit 7 of the word)]
[bits 0–4 of the second byte (bits 8–12 of the word)
[bits 0–4 of the third byte (bits 16–20 of the word)]
[bits 0–4 of the fourth byte (bits 24–28 of the word)]
vA half-words are placed in the lower order double word of vD and vB half-words
are placed into the higher order double word of vD.
For h, half-word, integer length = 16 bits = 2 bytes, 8 signed integers, in other words,
the 8 low-order bytes of the half-word from vA and vB.
For w, word, integer length = 32 bits = 4 bytes, 4 signed integers, in other words,
the 4 low-order half-words of the words from vA and vB.

Table 4-20. Vector Pack Instructions (continued)

Name Mnemonic Syntax Operation

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-29

Table 4-21 describes the unpack instructions.

4.2.5.3 Vector Merge Instructions

Byte vector merge instructions interleave the 8 low bytes (or 8 high bytes) from two source operands
producing a result of 16 bytes. Similarly, half-word vector merge instructions interleave the 4 low
half-words (or 4 high half-words) of two source operands producing a result of 8 half-words, and word
vector merge instructions interleave the 2 low words (or t2wo high words) from two source operands
producing a result of 4 words. The vector merge instruction has many uses, notable among them is a way
to efficiently transpose SIMD vectors. Table 4-22 describes the merge instructions.

Table 4-21. Vector Unpack Instructions

Name Mnemonic Syntax Operation

Vector Unpack
High Signed
Integer [b,h]

vupkhsb
vupkhsh

vD,vB Each signed integer element in the high order double word of vB is sign extended
to fill the MSBs in a signed integer and then is placed into vD.
For b, byte, integer length = 8 bits = 1 byte, 8 signed bytes from the high order
double word of vB are unpacked and sign extended to 8 half-words into vD.
For h, half-word, integer length = 16 bits = 2 bytes, 8 signed half-words from the
high order double word of vB are unpacked and sign extended to 4 words into vD

Vector Unpack
High Pixel

vupkhpx vD,vB Each half-word element in the high order double word of vB is unpacked to produce
a 32-bit word that is then placed in the same order into vD.
A half-word element is unpacked to 32 bits by concatenating, in order, the results
of the following operations.

sign-extend bit 0 of the half-word to 8 bits
zero-extend bits 1–5 of the half-word to 8 bits
zero-extend bits 6–10 of the half-word to 8 bits
zero-extend bits 11–15 of the half-word to 8 bits

Vector Unpack
Low Signed
Integer [b,h]

vupklsb
vupklsh

vD,vB Each signed integer element in the low-order double word of vB is sign extended to
fill the MSBs in a signed integer and then is placed into vD.
For b, byte, integer length = 8 bits = 1 byte, 8 signed bytes from the low-order double
word of vB are unpacked and sign extended to 8 half-words into vD.
For h, half-word, integer length = 16 bits = 2 bytes, 8 signed half-words from the
low-order double word of vB are unpacked and sign extended into 4 words in vD.

Vector Unpack
Low Pixel

vupklpx vD,vB Each half-word element in the low-order double word of vB is unpacked to produce
a 32-bit word that is then placed in the same order into vD.
A half-word element is unpacked to 32 bits by concatenating, in order, the results
of the following operations.

sign-extend bit 0 of the half-word to 8 bits
zero-extend bits 1–5 of the half-word to 8 bits
zero-extend bits 6–10 of the half-word to 8 bits
zero-extend bits 11–15 of the half-word to 8 bits

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-30 Freescale Semiconductor

4.2.5.4 Vector Splat Instructions

When a program needs to perform arithmetic vector, the vector splat instructions can be used in
preparation for performing arithmetic for which one source vector is to consist of elements that all have
the same value (for example, multiplying all elements of a Vector Register by a constant). Vector splat
instructions can be used to move data where it is required. For example, to multiply all elements of a vector
register by a constant, the vector splat instructions can be used to splat the scalar into the vector register.
Likewise, when storing a scalar into an arbitrary memory location, it must be splatted into a vector register,
and that register must be specified as the source of the store. This will guarantee that the data appears in
all possible positions of that scalar size for the store. Table 4-23 describes the vector splat instructions.

Table 4-22. Vector Merge Instructions

Name Mnemonic Syntax Operation

Vector Merge
High Integer

[b,h,w]

vmrghb
vmrghh
vmrghw

vD,vA,
vB

Each integer element in the high order double word of vA is placed into the
low-order integer element in vD. Each integer element in the high order double
word of vB is placed into the high order integer element in vD.
For b, byte, integer length = 8 bits = 1 byte, 8 bytes from the high order double
word of vA are placed into the low-order byte of each half-word in vD and 8 bytes
from the high order double word of vB are placed into the high order byte of each
half-word in vD.
For h, half-word, integer length = 16 bits = 2 bytes, 4 half-words from the high
order double word of vA are placed into the low-order half-word of each word in
vD and four half-words from the high order double word of vB are placed into the
high order half-word of each word in vD.
For w, word, integer length = 32 bits = 4 bytes, 2 words from the high order double
word of vA are placed into the low-order word of each double word in vD and
2 words from the high order double word of vB are placed into the high order word
of each double word in vD.

Vector Merge
Low Integer

[b,h,w]

vmrglb
vmrglh
vmrglw

vD,vA,
vB

Each integer element in the low-order double word of vA is placed into the
low-order integer element in vD. Each integer element in the low-order double
word of vB is placed into the high order integer element in vD.
For b, byte, integer length = 8 bits = 1 byte, 8 bytes from the low-order double word
of vA are placed into the low-order byte of each half-word in vD and 8 bytes from
the low-order double word of vB are placed into the high order byte of each
half-word in vD.
For h, half-word, integer length = 16 bits = 2 bytes, 4 half-words from the low-order
double word of vA are placed into the low-order half-word of each word in vD and
4 half-words from the low-order double word of vB are placed into the high order
half-word of each word in vD.
For w, word, integer length = 32 bits = 4 bytes, 2 words from the low-order double
word of vA are placed into the low-order word of each double word in vD and
2 words from the low-order double word of vB are placed into the high order word
of each double word in vD.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-31

4.2.5.5 Vector Permute Instruction

Permute instructions allow any byte in any two source vector registers to be directed to any byte in the
destination vector. The fields in a third source operand specify from which field in the source operands the
corresponding destination field will be taken. The Vector Permute (vperm) instruction is a very powerful
one that provides many useful functions. For example, it provides a good way to perform table-lookups
and data alignment operations. An example of how to use the command in aligning data is shown in
Section 3.1.6, “Quad-Word Data Alignment.” Table 4-24 describes the vector permute instruction.

4.2.5.6 Vector Select Instruction

Data flow in the vector unit can be controlled without branching by using a vector compare and the vector
select (vsel) instructions. In this use, the compare result vector is used directly as a mask operand to vector
select instructions.The vsel instruction selects one field from one or the other of two source operands under
control of its mask operand. Use of the TRUE/FALSE compare result vector with select in this manner
produces a two instruction equivalent of conditional execution on a per-field basis. Table 4-25 describes
the vsel instruction.

4.2.5.7 Vector Shift Instructions

The vector shift instructions shift the contents of a vector register or of a pair of vector registers left or right
by a specified number of bytes (vslo, vsro, vsldoi) or bits (vsl, vsr). Depending on the instruction, this shift
count is specified either by low-order bits of a vector register or by an immediate field in the instruction.

Table 4-23. Vector Splat Instructions

Name Mnemonic Syntax Operation

Vector Splat
Integer [b,h,w]

vspltb
vsplth
vspltw

vD,vB,
UIMM

Replicate the contents of element UIMM in vB and place into each element in vD.
For b, byte, integer length = 8 bits = 1 byte, each element is a byte.
For h, half-word, integer length = 16 bits = 2 bytes, each element is a half-word.
For w, word, integer length = 32 bits = 4 bytes, two words each element is a word.

Vector Splat
Immediate

Signed Integer
[b,h,w]

vspltisb
vspltish
vspltisw

vD,
SIMM

Sign-extend the value of the SIMM field to the length of the element and replicate
that value and place into each element in vD.
For b, byte, integer length = 8 bits = 1 byte, each element is a byte.
For h, half-word, integer length = 16 bits = 2 bytes, each element is a half-word.
For w, word, integer length = 32 bits = 4 bytes, 2 words each element is a word.

Table 4-24. Vector Permute Instruction

Name Mnemonic Syntax Operation

Vector
Permute

vperm vD,vA,
vB,vC

vC specifies which bytes from vA and vB are to be copied and placed into the byte
elements in vD.

Table 4-25. Vector Select Instruction

Name Mnemonic Syntax Operation

Vector
Select

vsel vD,vA,
vB,vC

For each bit, compare the value in vC to the value 0b0 and if it equals 0b0, then load
vD with vA’s corresponding bit value, otherwise compare the value in vC to the value
0b1 and if it equals 0b1, then load vD with vB’s corresponding bit value.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-32 Freescale Semiconductor

In the former case, the low-order 7 bits of the shift count register give the shift count in bits (0 ≤ count ≤
127). Of these 7 bits, the high-order 4 bits give the number of complete bytes by which to shift and are
used by vslo and vsro; the low-order 3 bits give the number of remaining bits by which to shift and are
used by vsl and vsr.

There are two methods of specifying an interelement shift or rotate of two source vector registers,
extracting 16 bytes as the result vector. There is also a method for shifting a single source vector register
left or right by any number of bits.

Table 4-26 describes the various vector shift instructions.

4.2.5.7.1 Immediate Interelement Shifts/Rotates

The Vector Shift Left Double by Octet Immediate (vsidoi) instruction provides the basic mechanism that
can be used to provide inter-element shifts and/or rotates. This instruction is like a vperm, except that the
shift count is specified as a literal in the instruction rather than as a control vector in another vector register,
as is required by vperm. The result vector consists of the left-most 16 bytes of the rotated 32-byte
concatenation of vA:vB, where shift (SH) is the rotate count. Table 4-27 below enumerates how various
shift functions can be achieved using the vsidoi instruction.

Table 4-26. Vector Shift Instructions

Name Mnemonic Syntax Operation

Vector Shift Left vsl vD,vA,
vB

Shift vA left by the 3 lsbs of vB, and place the result into vD.
If vB value in invalid, the default result is boundedly undefined.

Vector Shift
Right

vsr vD,vA,
vB

Shift vA right by the 3 lsbs of vB, and place the result into vD.
If vB value in invalid, the default result is boundedly undefined.

Vector Shift Left
Double by Octet

Immediate

vsldoi vD,vA,
vB,SH

Shift vB left by the 3 lsbs of SH value and then OR with vA, place the result
is into vD.
If vB value in invalid, the default result is 0.

Vector Shift Left
by Octet

vslo vD,vA,
vB

Shift vA left by the 3 lsbs of vB, and place the result into vD.
If vB value in invalid, the default result is 0b000.

Vector Shift
Right by Octet

vsro vD,vA,
vB

Shift vA right by the 3 lsbs of vB, and place the result into vD.
If vB value in invalid, the default result is 0b000.

Table 4-27. Coding Various Shifts and Rotates with the vsidoi Instruction

To Get This: Code This:

Operation sh Instruction Immediate vA vB

Rotate left double 0–15 vsidoi 0–15 MSV LSV

Rotate left double 16–31 vsidoi mod16(SH) LSV MSV

Rotate right double 0–15 vsidoi 16–sh MSV LSV

Rotate right double 16–31 vsidoi 16–mod16(SH) LSV MSV

Shift left single, zero fill 0–15 vsidoi 0–15 MSV 0x0

Shift right single, zero fill 0–15 vsidoi 16–SH 0x0 MSV

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-33

4.2.5.7.2 Computed Interelement Shifts/Rotates

The Load Vector for Shift Left (lvsl) instruction and Load Vector for Shift Right (lvsr) instruction are
supplied to assist in shifting and/or rotating vector registers by an amount determined at run time. The
input specifications have the same form as the vector load and store instructions, that is, it uses register
indirect with index addressing mode(rA|0 + rB). This is because one of their primary purposes is to
compute the permute control vector necessary for post-load and pre-store shifting necessary for dealing
with misaligned vectors.

This lvsl instruction can be used to align a big-endian misaligned vector after loading the (aligned) vectors
that contain its pieces. The lvsl instruction can be used to misalign a vector register for use in a
read-modify-write sequence that will store an misaligned little-endian vector.

The lvsr instruction can be used to align a little-endian misaligned vector after loading the (aligned)
vectors that contain its pieces. The lvsl instruction can be used to misalign a vector register for use in a
read-modify-write sequence that will store an misaligned big-endian vector.

For an example on how the lvsl instruction is used to align a vector in big-endian mode, see
Section 3.1.6.1, “Accessing a Misaligned Quad Word in Big-Endian Mode.” For an example on how lvsr
is used to align a vector in little-endian mode, see Section 3.1.6.2, “Accessing a Misaligned Quad Word in
Little-Endian Mode.”

4.2.5.7.3 Variable Interelement Shifts

A vector register may be shifted left or right by a number of bits specified in a vector register. This
operation is supported with four instructions, two for right shift and two for left shift.

The Vector Shift Left by Octet (vslo) and Vector Shift Right by Octet (vsro) instructions shift a vector
register from 0 to 15 bytes as specified in bits 121–124 of another vector register. The Vector Shift Left
(vsl) and Vector Shift Right (vsr) instructions shift a vector register from 0 to 7 bits as specified in another
vector register (the shift count must be specified in the three lsbs of each byte in the vector and must be
identical in all bytes or the result is boundedly undefined). In all of these instructions, zeros are shifted into
vacated element and bit positions.

Used sequentially with the same shift-count vector register, these instructions will shift a vector register
left or right from 0 to 127 bits as specified in bits 121–127 of the shift-count vector register. For example:

vslo VZ, VX, VY

vspltb VY, VY, 15

vsl VZ, VZ, VY

Rotate left single 0–15 vsidoi 0–15 MSV =VA

Rotate right single 0–15 vsidoi 16–SH MSV =VA

Table 4-27. Coding Various Shifts and Rotates with the vsidoi Instruction (continued)

To Get This: Code This:

Operation sh Instruction Immediate vA vB

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-34 Freescale Semiconductor

will shift vX by the number of bits specified in vY and place the results in vZ.

With these instructions a full double-register shift can be performed in seven instructions. The following
code will shift vW||vX left by the number of bits specified in vY placing the result in vZ:

vslo t1, VW, VY ; shift the most significant. register left

vspltb VY, VY, 15

vsl t1, t1, VY

vsububm VY, V0, VY ; adjust count for right shift (V0=0)

vsro t2, VX, VY ; right shift least sign. register

vsr t2, t2, VY

vor VZ, t1, t2 ; merge to get the final result

4.2.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the PowerPC condition register (CR),
machine state register (MSR), and special-purpose registers (SPRs). See Chapter 4, “Addressing Mode and
Instruction Set Summary,” in the Programming Environments Manual for 32-Bit Implementations of the
PowerPC Architecture, for information about the instructions used for reading from and writing to the
MSR and SPRs.

4.2.6.1 AltiVec Status and Control Register Instructions

Table 4-28 summarizes the instructions for reading from or writing to the Vector Status and Control
Register (VSCR). For more information on VSCR see Section 2.3.2, “Vector Status and Control Register
(VSCR).”

4.2.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for some of the most
frequently used operations (such as no-op, load immediate, load address, move register, and complement
register). Assemblers could provide the simplified mnemonics listed below. Programs written to be
portable across the various assemblers for PowerPC architecture should not assume the existence of
mnemonics not described in this document.

Simplified mnemonics are provided for the Data Stream Touch (dst) and Data Stream Touch for Store

(dstst) instructions so that they can be coded with the transient indicator as part of the mnemonic rather
than as a numeric operand. Similarly, simplified mnemonics are provided for the Data Stream Stop (dss)
instruction so that it can be coded with the all streams indicator is part of the mnemonic. These are shown
as examples with the instructions in Table 4-29.

Table 4-28. Move To/From Condition Register Instructions

Name Mnemonic Syntax Operation

Move to Vector Status and Control Register mtvscr CRM,rS Place the contents of vB into VSCR.

Move from Vector Status and Control Register mfvscr vB Place the contents of VSCR into vB.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-35

4.3 AltiVec VEA Instructions
PowerPC virtual environment architecture (VEA) describes the semantics of thememory model that can
be assumed by software processes, and includes descriptions of the cache model, cache-control
instructions, address aliasing, and other related issues. Implementations that conform to the VEA also
adhere to the UISA, but may not necessarily adhere to the OEA. For further details see Chapter 4,
“Addressing Mode and Instruction Set Summary,” in the Programming Environments Manual for 32-Bit
Implementations of the PowerPC Architecture.

This section describes the additional AltiVec instructions defined for the VEA.

4.3.1 Memory Control Instructions—VEA

Memory control instructions include the following types:
• Cache management instructions (user-level and supervisor-level)
• Segment register manipulation instructions
• Segment lookaside buffer management instructions
• Translation lookaside buffer (TLB) management instructions

This section describes the user-level cache management instructions defined by the VEA. See Chapter 4,
“Addressing Mode and Instruction Set Summary,” in the Programming Environments Manual for 32-Bit
Implementations of the PowerPC Architecture for more information about supervisor-level cache, segment
register manipulation, and TLB management instructions.

4.3.2 User-Level Cache Instructions—VEA

The instructions summarized in this section provide user-level programs the ability to manage on-chip
caches if they are implemented. See Chapter 5, “Cache Model and Memory Coherency,” in the
Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture for more
information about cache topics.

Bandwidth between the processor and memory is managed explicitly by the programmer through the use
of cache management instructions. These instructions give software a way to communicate to the cache
hardware how it should prefetch and prioritize writeback of data. The principal instruction for this purpose

Table 4-29. Simplified Mnemonics for Data Stream Touch (dst)

Operation Simplified Mnemonic Equivalent to

Data Stream Touch (Non-Transient) dst rA, rB, STRM dst rA, rB, STRM,0

Data Stream Touch Transient dstt rA, rB, STRM dst rA, rB, STRM,1

Data Stream Touch for Store
(Non-Transient)

dstst rA, rB, STRM dstst rA, rB, STRM,0

Data Stream Touch for Transient dststt rA, rB, STRM dststt rA, rB, STRM,1

Data Stream Stop (One Stream) dss STRM dss STRM,0

Data Stream Stop All dssall dss 0,1

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-36 Freescale Semiconductor

is a software directed cache prefetch instruction called Data Stream Touch (dst). Other related instructions
are provided for complete control of the software directed cache prefetch mechanism.

Table 4-30 summarizes the directed prefetch cache instructions defined by the VEA. Note that these
instructions are accessible to user-level programs. See Section 5.2.1, “Software-Directed Prefetch,” for
further details on the prefetch cache instructions.

Table 4-30. User-Level Cache Instructions

Name Mnemonic Syntax Operation

Data Stream
Touch

dst rA,rB,
STRM,T

This instruction associates the data stream specified by the contents of rA and
rB with the stream ID specified by STRM.
The specified data stream is defined by the following:

EA: (rA), where rA ≠ 0
unit size: (rB)[3–7] if (rB)[3–7] ≠ 0; otherwise 32
count: (rB)[8–15] if (rB)[8–15] ≠ 0; otherwise 256
stride: (rB)[16–31] if (rB)[16–31] ≠ 0; otherwise 32768

The T bit of the instruction indicates whether the data stream is likely to be
stored into fairly frequently in the near future (T = 0) or to be transient (T = 1).
If rA = 0, the instruction form is invalid.
See Section 5.2.1.1, “Data Stream Touch (dst),” for further details on the dst
instruction.

Data Stream
Touch

dstt rA,rB,
STRM,T

This instruction associates the data stream specified by the contents of
registers rA and rB with the stream ID specified by STRM.
This instruction is a hint that performance will probably be improved if the cache
blocks containing the specified data stream are not fetched into the data cache,
because the program will probably not load from the stream.That is, the data
stream will be relatively transient in nature. That is, it will have poor locality and
is likely to be referenced a very few times or over a very short period of time.
The memory subsystem can use this persistent/transient knowledge to manage
the data as is most appropriate for the specific design of the cache/memory
hierarchy of the processor on which the program is executing. An
implementation is free to ignore dstt, in that case, it should simply be executed
as a dst. However, software should always attempt to use the correct form of
dst or dstt regardless of whether the intended processor implements dstt. In
this way the program will automatically benefit when run on processors that
support dstt.
The specified data stream is defined by the following:

EA: (rA), where rA ≠ 0
unit size: (rB)[3–7] if (rB)[3–7] ≠0; otherwise 32
count: (rB)[8–15] if (rB)[8–15] ≠ 0; otherwise 256
stride: (rB)[16–31] if (rB)[16–31] ≠ 0; otherwise 32768

The T bit of the instruction indicates whether the data stream is likely to be
accessed into fairly frequently in the near future (T = 0) or to be transient (T = 1).
If rA = 0, the instruction form is invalid.
See Section 5.2.1.2, “Transient Streams,” for further details on the dstt
instruction.

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 4-37

Data Stream
Touch for Store
(Non-Transient)

dstst rA,rB,
STRM,T

This instruction associates the data stream specified by the contents of
registers rA and rB with the stream ID specified by STRM.
This instruction is a hint that performance will probably be improved if the cache
blocks containing the specified data stream are fetched into the data cache,
because the program will probably soon access into the stream, and that
prefetching from any data stream that was previously associated with the
specified stream ID is no longer needed. The hint is ignored for blocks that are
caching inhibited.
The specified data stream is defined by the following:

EA: (rA), where rA ≠ 0
unit size: (rB)[3–7] if (rB)[3-7] ≠ 0; otherwise 32
count: (rB)[8–15] if (rB)[8–15] ≠ 0; otherwise 256
stride: (rB)[16–31] if (rB)[16–31] ≠ 0; otherwise 32768

The T bit of the instruction indicates whether the data stream is likely to be
stored into fairly frequently in the near future (T = 0) or to be transient (T = 1).
If rA = 0, the instruction form is invalid.
See Section 5.2.1.3, “Storing to Streams (dstst),” for further details on the dstst
instruction.

Data Stream
Touch for Store

dststt rA,rB,
STRM,T

This instruction associates the data stream specified by the contents of rA and
rB with the stream ID specified by STRM.
This instruction is a hint that performance will probably not be improved if the
cache blocks containing the specified data stream are fetched into the data
cache, because the program will probably not access the stream. That is, the
data stream will be relatively transient in nature. That is, it will have poor locality
and is likely to be referenced a very few times or over a very short period of time.
The memory subsystem can use this persistent/transient knowledge to manage
the data as is most appropriate for the specific design of the cache/memory
hierarchy of the processor on which the program is executing.
The specified data stream is defined by the following:

EA: (rA), where rA ≠ 0
unit size: (rB)[3–7] if (rB)[3-7] ≠ 0; otherwise 32
count: (rB)[8–15] if (rB)[8–15] ≠ 0; otherwise 256
stride: (rB)[16–31] if (rB)[16–31] ≠ 0; otherwise 32768

The T bit of the instruction indicates whether the data stream is likely to be
stored into fairly frequently in the near future (T = 0) or to be transient (T = 1).
If rA = 0, the instruction form is invalid.
See Section 5.2.1.3, “Storing to Streams (dstst),” for further details on the dststt
instruction.

Table 4-30. User-Level Cache Instructions (continued)

Name Mnemonic Syntax Operation

Addressing Modes and Instruction Set Summary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

4-38 Freescale Semiconductor

Data Stream
Stop

dss STRM,A If A = 0 and a data stream associated with the stream ID specified by STRM
exists, this instruction terminates prefetching of that data stream.
If A = 1, this instruction terminates prefetching of all existing data streams. (The
STRM field is ignored.)
In addition, executing a dss instruction ensures that all memory accesses
associated with data stream prefetching caused by preceding dst and dstst
instructions that specified the same stream ID as that specified by the dss
instruction (A = 0), or by all preceding dst and dstst instructions (A = 1), will be
in group G1 with respect to the memory barrier created by a subsequent sync
instruction.
dss serves as both a basic and an extended mnemonic. The assembler will
recognize a dss mnemonic with two operands as the basic form, and a dss
mnemonic with one operand as the extended form.
Execution of a dss instruction causes address translation for the specified data
stream(s) to cease. Prefetch requests for which the effective address has
already been translated may complete and may place the corresponding data
into the data cache.
See Section 5.2.1.4, “Stopping Streams,” for further details on the dss
instruction.

Data Stream
Stop All

dssall No operands Terminates prefetching of all existing data streams. All active streams may be
stopped.
If the optional data stream prefetch facility is implemented, dssall (extended
mnemonic for dss), to terminate any data stream prefetching requested by the
interrupted program, in order to avoid prefetching data in the wrong context,
consuming memory bandwidth fetching data that are not likely to be needed by
the other program, and interfering with data cache use by the other program.
The dssall must be followed by a sync, and additional software synchronization
may be required.
See Section 5.2.1.4, “Stopping Streams,” for further details on the dssall
instruction.

Table 4-30. User-Level Cache Instructions (continued)

Name Mnemonic Syntax Operation

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 5-1

Chapter 5
Cache, Interrupts, and Memory Management
This chapter summarizes details of AltiVec technology that pertain to cache and memory management
models. Note that AltiVec technology defines most of its instructions at the user level (UISA). Because
most AltiVec instructions are computational, there is little effect on the VEA and OEA portions of the
PowerPC architecture definition.

Because the AltiVec instruction set architecture (ISA) uses 128-bit operands, additional instructions are
provided to optimize cache and memory bus use.

5.1 PowerPC Shared Memory
To fully understand the data stream prefetch instructions for AltiVec, one needs a knowledge of PowerPC
architecture for shared memory. The PowerPC architecture supports the sharing of memory between
programs, between different instances of the same program, and between processors and other
mechanisms. It also supports access to memory by one or more programs using different effective
addresses. All these cases are considered memory sharing. Memory is shared in blocks that are an integral
number of pages.

When the same memory has different effective addresses, the addresses are called aliases. Each application
can be granted separate access privileges to aliased pages. For more details on how the PowerPC
architecture supports the sharing of memory see Chapter 5, “Cache Model and Memory Coherency,” in
the Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture.

5.2 AltiVec Memory Bandwidth Management
The AltiVec ISA provides a way for software to speculatively load larger blocks of data from memory.
That is, bandwidth otherwise idle can be used to permit software to take advantage of locality and reduces
the number of system memory accesses.

5.2.1 Software-Directed Prefetch

Bandwidth between the processor and memory is managed explicitly by the programmer using cache
management instructions. These instructions let software indicate to the cache hardware how to prefetch
and prioritize data writeback. The principle instruction for this purpose is a software-directed cache
prefetch instruction, Data Stream Touch (dst), described in the following section.

Cache, Interrupts, and Memory Management

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

5-2 Freescale Semiconductor

5.2.1.1 Data Stream Touch (dst)

The data stream prefetch facility permits a program to indicate that a sequence of units of memory is likely
to be accessed soon by memory access instructions. Such a sequence is called a data stream or, when the
context is clear, simply a stream. A data stream is defined by the following:

• EA—The effective address of the first unit in the sequence
• Unit size—The number of quad words in each unit; 0 < unit size ≤ 32
• Count—The number of units in the sequence; 0 < count ≤ 256
• Stride—The number of bytes between the effective address of one unit in the sequence and the

effective address of the next unit in the sequence (that is, the effective address of the nth unit in the
sequence is EA + (n – 1) × stride); (–32768 ≤ stride < 0 or 0 < stride ≤ 32,768).

The units need not be aligned on a particular memory boundary. The stride may be negative.

The dst instruction specifies a starting address, a block size (1–32 vectors), a number of blocks to prefetch
(1–256 blocks), and a signed stride in bytes (–32,768 to +32,768 bytes), The 2-bit tag, specified as an
immediate field in the opcode, identifies one of four possible touch streams. The starting address of the
stream is specified in rA (if rA=0, the instruction form is invalid). BlockSize, BlockCount, and
BlockStride are specified in rB. Do not confuse the term ‘cache block:’ the term ‘block’ always indicates
a PowerPC cache block.

The format of the rB register is shown in Figure 5-1.

Figure 5-1. Format of rB in dst Instruction

There is no zero-length block size, block count, or block stride. A BlockSize of 0 indicates 32 vectors, a
BlockCount of 0 indicates 256 blocks, and a BlockStride of 0 indicates +32,768 bytes. Otherwise, these
fields correspond to the numerical value of the size, count, and stride. Do not specify strides smaller than
1 block (16 bytes).

The programmer specifies block size in terms of vectors (16 bytes), regardless of the cache-block size.
Hardware automatically optimizes the number of cache blocks it fetches to bring a block into the cache.
The number of cache blocks fetched into the cache for each block is the fewest natural cache blocks needed
to fetch the entire block, including the effects of block misalignment to cache blocks, as shown in the
following:

The address of each block in a stream is a function of the stream’s starting address, the block stride, and
the block being fetched. The starting address may be any 32-bit byte address. Each block’s address is
computed as a full 32-bit byte address from the following:

BlockSize

31161587320

BlockCount Signed BlockStride0 0 0

CacheBlocksFetched = ceiling
BlockSize + mod(BlockAddr,CacheBlockSize)

CacheBlockSize

BlockAddrn = (rA) + n (rB)16–31
where n = {0 ... (BlockCount – 1)}
and if ((rB)16–31 = 0) then ((rB)16–31 32768)

Cache, Interrupts, and Memory Management

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 5-3

The address of the first cache block fetched in each block is that block’s address aligned to the next lower
natural cache-block boundary by ignoring log2(CacheBlockSize) least significant bits (lsbs) (for example,
for 32-byte cache-blocks, the five lsbs are ignored). Cache blocks are then fetched sequentially forward
until the entire block of vectors is brought into the cache. An example of a six-block data stream is shown
in Figure 5-2.

Figure 5-2. Data Stream Touch

Executing a dst instruction notifies the cache/memory subsystem that the program will soon need specified
data. If bandwidth is available, the hardware starts loading the specified stream into the cache. To the
extent that hardware can acquire the data, when the loads requiring the data finally execute, the target data
will be in the cache. Executing a second dst to the tag of a stream in progress aborts the existing stream
(at hardware’s earliest convenience) and establishes a new stream with the same stream tag ID.

The dst instruction is a hint to hardware and has no architecturally visible effects (in the PowerPC UISA
sense). The hardware is free to ignore it, to start the prefetch when it can, to abort the stream at any time,
or to prioritize other memory operations ahead of it. If a stream is aborted, the program still functions
properly, but subsequent loads experience the full latency of a cache miss.

The dst instruction does not introduce implementation problems like those of load/store multiple/string
instructions. Because dst does not affect the architectural state, it does not cause interlock problems
associated with load/store multiple/string instructions. Also, dst does take inerrupts and requires no
complex recovery mechanism.

Touch instructions should be considered strong hints. Using them in highly speculative situations could
waste considerable bandwidth. Implementations that do not implement the stream mechanism treat stream
instructions (dst, dstt, dsts, dstst, dss, and dssall) as no-ops. If the stream mechanism is implemented, all
four streams must be provided.

5.2.1.2 Transient Streams

The memory subsystem considers dst an indication that its stream data is likely to have some reasonable
degree of locality and be referenced several times or over some reasonably long period. This is called
persistence. The Data Stream Touch Transient instruction (dstt) indicates to the memory system that its
stream data is transient, that is, it has poor locality and is likely to be used very few times or only for a very
short time. A memory subsystem can use this knowledge to manage data for the processor’s cache/memory
design. An implementation may ignore the distinction between transience and persistence; in that case,
dstt acts like dst. However, portable software should always use the correct form of dst or dstt regardless
of whether the intended processor makes that distinction.

0 1 2 3 4 5

Starting Address = (rA)

BlockSize = (rB)3–7

BlockStride = (rB)16–31

BlockAdd rn (n = 3)

Memory

Stream

BlockCount = (rB)8–15 = 6

Cache, Interrupts, and Memory Management

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

5-4 Freescale Semiconductor

5.2.1.3 Storing to Streams (dstst)

A dst instruction brings a cache block into the cache subsystem in a state most efficient for subsequent
reading of data from it (load). The companion instruction, Data Stream Touch for Store (dstst), brings the
cache block into the cache subsystem in a state most efficient for subsequent writing to it (store). For
example, in a MESI cache subsystem, a dst might bring a cache block in shared (S) state, whereas a dstst
would bring the cache block in exclusive (E) state to avoid a subsequent demand-driven bus transaction to
take ownership of the cache block so the store can proceed.

The dstst streams are the same physical streams as dst streams, that is, dstst stream tags are aliases of dst
tags. If not implemented, dstst defaults to dst. If dst is not implemented, it is a no-op. The dststt
instruction is a transient version of dstst.

Data stream prefetching of memory locations is not supported when bit 57 of the segment table entry or
bit 0 of the segment register (SR) is set. If a dst or dstst instruction specifies a data stream containing these
memory locations, results are undefined.

5.2.1.4 Stopping Streams

The dst instructions have a counterpart called Data Stream Stop (dss). A program can stop any given
stream prefetch by executing dss with that stream’s tag. This is useful when a program speculatively starts
a stream prefetch but later determines that the instruction stream went the wrong way. The dss instruction
can stop the stream so that no more bandwidth is wasted. All active streams may be stopped by using
dssall. This is useful when the operating system needs to stop all active streams (process switch), but does
not know how many streams are in progress.

Because dssall does not specify the number of implemented streams, it should always be used instead of
a sequence of dss instructions to stop all streams.

Neither dss nor dssall is execution synchronizing; the time between when a dss is issued and the stream
stops is not specified. Therefore, when software must ensure that the stream is physically stopped before
continuing (for example, before changing virtual memory mapping), a special sequence of synchronizing
instructions is required. The sequence can differ for different situations, but the following sequence works
in all contexts:

dssall ; stop all streams
sync ; insert a barrier in memory pipe
lwz Rn,... ; stick one more operation in memory pipe
cmpd Rn,Rn ;
bne- *-4 ; make sure load data is back
isync ; wait for all previous instructions to

; complete to ensure
; memory pipe is clear and nothing is
; pending in the old context

Data stream prefetching for a given stream is terminated by executing the appropriate dss instruction. The
termination can be synchronized by executing a sync instruction after the dss instruction if the memory
barrier created by sync orders all address translation effects of the subsequent context-altering instructions.

Cache, Interrupts, and Memory Management

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 5-5

Otherwise, data dependencies are also required. For example, the following instruction sequence
terminates all data stream prefetching before altering the contents of an segment register (SR):

dssall ; stop all data stream prefetching
sync ; order dssall before load
lwz Ry,sr_y(Rx) ; load new SR value
mtsr y,Ry ; alter rY

The mtsr instruction cannot be executed until the lwz loads the SR value into rY. The memory access
caused by the lwz cannot be performed until the dssall instruction takes effect (that is, until address
translation stops for all data streams and all memory accesses associated with data stream prefetches for
which the effective address was translated before the translation stops are performed).

5.2.1.5 Interrupt Behavior of Prefetch Streams

In general, interrupts do not cancel streams. Streams are sensitive to whether the processor is in user or
supervisor mode (determined by MSR[PR]) and whether data address translation is used (determined by
MSR[DR]). This allows prefetch streams to behave predictably when an interrupt occurs.

Streams are suspended in real addressing mode (MSR[DR] = 0) and remain suspended until translation is
turned back on (MSR[DR] is set). A dst instruction issued while MSR[DR] = 0 produces boundedly
undefined results.

A stream is suspended whenever the MSR[PR] is different from what it was when the dst that established
it was issued. For example, if a dst is issued in user mode (MSR[PR] = 1), the resulting stream is suspended
when the processor enters supervisor mode (MSR[PR] = 0) and remains suspended until the processor
returns to user mode. Conversely, if the dst were issued in supervisor mode, it is suspended if the machine
enters user mode.

Because interrupts do not cancel streams automatically, the operating system must stop streams explicitly
when warranted, for example, when switching processes or changing virtual memory context. Care must
be taken if data stream prefetching is used in supervisor-level state (MSR[PR] = 0).

After an interrupt is taken, the supervisor-level program that next changes MSR[DR] from 0 to 1 causes
data-stream prefetching to resume for any data streams for which the corresponding dst or dstst instruction
was executed in supervisor mode; such streams are called supervisor-level data streams. This program is
unlikely to be the one that executed the corresponding dst or dstst instruction and is unlikely to use the
same address translation context as that in which the dst or dstst was executed. Suspension and resumption
of data stream prefetching work more naturally for user level data streams, because the next application
program to be dispatched after an interrupt occurs is likely to be the most recently interrupted program.
An interrupt handler that changes the context in which data addresses are translated may need to terminate
data-stream prefetching for supervisor-level data streams and to synchronize the termination before
changing MSR[DR] to 1.

Although terminating all data stream prefetching in this case would satisfy the requirements of the
architecture, doing so would adversely affect the performance of applications that use data-stream
prefetching. Thus, it may be better for the operating system to record stream IDs associated with any
supervisor-level data streams and to terminate prefetching for those streams only.

Cache, Interrupts, and Memory Management

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

5-6 Freescale Semiconductor

Cache effects of supervisor-level data-stream prefetching can also adversely affect performance of
applications that use data stream prefetching, as supervisor-level use of the associated stream ID can take
over an application’s data stream.

Data stream instructions cannot cause interrupts directly. Therefore, any event that would cause an
interrupt on a normal load or store, such as a page fault or protection violation, is instead aborted and
ignored.

Suspension or termination of data stream prefetching for a given data stream need not cancel prefetch
requests for that data stream for which the effective address has been translated and need not cause data
returned by such requests to be discarded. However, to improve software’s ability to pace data stream
prefetching with data consumption, it may be better to limit the number of these pending requests that can
exist simultaneously.

5.2.1.6 Synchronization Behavior of Streams

Streams are not affected (stopped or suspended) by execution of any PowerPC synchronization
instructions (sync, isync, or eieio). This permits these instructions to be used for synchronizing multiple
processors without disturbing background prefetch streams. Prefetch streams have no architecturally
observable effects and are not affected by synchronization instructions. Synchronizing the termination of
data stream prefetching is needed only by the operating system.

5.2.1.7 Address Translation for Streams

Like dcbt and dcbtst instructions, dst, dstst, dstt, and dststt are treated as loads with respect to address
translation, memory protection, and reference and change recording.

Unlike dcbt and dcbtst instructions, stream instructions that cause a TLB miss cause a page table search
and the page descriptor to be loaded into the TLB. Conceptually, address translation and protection
checking is performed on every cache-block access in the stream and proceeds normally across page
boundaries and TLB misses, terminating only on page faults or protection violations that cause a data
storage interupt.

Stream instructions operate like normal PowerPC cache instructions (such as dcbt) with respect to guarded
memory; they are not subject to normal restrictions against prefetching in guarded space because they are
program-directed. However, speculative dst instructions can not start a prefetch stream to guarded space.

If the effective address of a cache block within a data stream cannot be translated, or if loading from the
block would violate memory protection, the processor will terminate prefetching of that stream.
(Continuing to prefetch subsequent cache blocks within the stream might cause prefetching to get too far
ahead of consumption of prefetched data.) If the effective address can be translated, a TLB miss can cause
such termination, even on implementations for which TLBs are reloaded in software.

5.2.1.8 Stream Usage Notes

A given data stream exists if a dst or dstst instruction has been executed that specifies the stream and
prefetching of the stream has neither completed, terminated, or been supplanted. Prefetching of the stream
has completed, when all the memory locations within the stream that will ever be prefetched as a result of

Cache, Interrupts, and Memory Management

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 5-7

executing the dst or dstst instruction have been prefetched (for example, locations for which the effective
address cannot be translated will never be prefetched). Prefetching of the stream is terminated by executing
the appropriate dss instruction; it is supplanted by executing another dst or dstst instruction that specifies
the stream ID associated with the given stream. Because there are four stream IDs, as many as four data
streams may exist simultaneously.

The maximum block count of dst is small because of its preferred usage. It is not intended for a single dst
instruction to prefetch an entire data stream. Instead, dst instructions should be issued periodically, for
example on each loop iteration, for the following reasons:

• Short, frequent dst instructions better synchronize the stream with the consumption of data.
• With prefetch closely synchronized just ahead of consumption, another activity is less likely to

inadvertently evict prefetched data from the cache before it is needed.
• The prefetch stream is restarted automatically after an interrupt (that could have caused the stream

to be terminated by the operating system) with no additional complex hardware mechanisms
needed to restart the prefetch stream.

Issuing new dst instructions to stream tag IDs in progress terminates old streams—dst instructions cannot
be queued.

For example, when multiple dst instructions are used to prefetch a large stream, it would be poor strategy
to issue a second dst whose stream begins at the specified end of the first stream before it was certain that
the first stream had completed. This could terminate the first stream prematurely, leaving much of the
stream unprefetched.

Paradoxically, it would also be unwise to wait for the first stream to complete before issuing the second
dst. Detecting completion of the first stream is not possible, so the program would have to introduce a
pessimistic waiting period before restarting the stream and then incur the full start-up latency of the second
stream.

The correct strategy is to issue the second dst well before the anticipated completion of the first stream
and begin it at an address overlapping the first stream by an amount sufficient to cover any portion of the
first stream that could not yet have been prefetched. Issuing the second dst too early is not a concern
because blocks prefetched by the first stream hit in the cache and need not be refetched. Thus, even if
issued prematurely and overlapped excessively, the second dst rapidly advances to the point of prefetching
new blocks. This strategy allows a smooth transition from the first stream to the second without significant
breaks in the prefetch stream.

For the greatest performance benefit from data-stream prefetching, use the dst and dstst (and dss)
instructions so that the prefetched data is used soon after it is available in the data cache. Pacing data
stream prefetching with consumption increases the likelihood that prefetched data is not displaced from
the cache before it is used, and reduces the likelihood that prefetched data displaces other data needed by
the program.

Specifying each logical data stream as a sequence of shorter data streams helps achieve the desired pacing,
even in the presence of interrupts, and address translation failures. The components of a given logical data
stream should have the following attributes:

• The same stream ID should be associated with each component

Cache, Interrupts, and Memory Management

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

5-8 Freescale Semiconductor

• The components should partially overlap (that is, the first part of a component should consist of the
same memory locations as the last part of the preceding component).

• The memory locations that do not overlap with the next component should be large enough that a
substantial portion of the component is prefetched. That is, prefetch enough memory locations for
the current component before it is taken over by the prefetching being done for the next component.

5.2.1.9 Stream Implementation Assumptions

Some processors can treat dst instructions as no-ops. However, if a processor implements dst, a minimum
level of functionality is provided to create as consistent a programming model across different machines
as possible. A program can assume the following functionality in a dst instruction:

• Implements all four tagged streams
• Implements each tagged stream as a separate, independent stream with arbitration for memory

access performed on a round-robin basis.
• Searches the table for each stream access that misses in the TLB
• Does not abort streams on page boundary crossings
• Does not abort streams on interrupts (except data storage interrupts caused by the stream).
• Does not abort streams, or delay execution pending completion of streams, on PowerPC

synchronization instructions sync, isync, or eieio.
• Does not abort streams on TLB misses that occur on loads or stores issued concurrently with

running streams. However, a data storage interrupt from one of those loads or stores may cause
streams to abort.

5.2.2 Prioritizing Cache Block Replacement

Load Vector Indexed LRU (lvxl) and Store Vector Indexed LRU (stvxl) instructions provide explicit
control over cache block replacement by letting the programmer indicate whether an access is likely to be
the last reference made to the cache block containing this load or store. The cache hardware can then
prioritize replacement of this cache block over others with older but more useful data.

Data accessed by a normal load or store is likely to be needed more than once. Marking this data as
most-recently used (MRU) indicates that it should be a low-priority candidate for replacement. However,
some data, such as that used in DSP multimedia algorithms, is rarely reused and should be marked as the
highest priority candidate for replacement.

Normal accesses mark data MRU. Data unlikely to be reused can be marked LRU. For example, on
replacing a cache block marked LRU by one of these instructions, a processor may improve cache
performance by evicting the cache block without storing it in intermediate levels of the cache hierarchy
(except to maintain cache consistency).

5.2.3 Partially Executed AltiVec Instructions

The OEA permits certain instructions to be partially executed when an alignment or data storage interrupt
occurs. In the same way that the target register may be altered when floating-point load instructions cause

Cache, Interrupts, and Memory Management

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 5-9

a data storage interrupt, if the AltiVec facility is implemented, the target register (vD) may be altered when
lvx or lvxl is executed and the TLB entry is invalidated before the access completes.

Interrupts cause data stream prefetching to be suspended for all existing data streams. Prefetching for a
given data stream resumes when control is returned to the interrupted program, if the stream still exists (for
example, the operating system did not terminate prefetching for the stream).

5.3 Data Storage Interrupt—Data Address Breakpoint
A data address breakpoint register (DABR) match causes a data storage interrupt in implementations that
support the data breakpoint feature. When a DABR match occurs on a non-AltiVec processor that support
the PowerPC architecture, the DAR is set to any effective address between and including the word (for a
byte, half-word, or word access) specified by the effective address computed by the instruction and the
effective address of the last byte in the word or double word in which the match occurred. In processors
that support the AltiVec technology, this would include a quad-word access from an lvx, lvxl, stvx, or stvxl
instruction to a segment or BAT area.

5.4 AltiVec Unavailable Interrupt (0x00F20)
The AltiVec facility includes an additional instruction-caused, precise interrupt to those defined by the
OEA and discussed in Chapter 6, “Interrupts,” in the Programming Environments Manual for 32-Bit
Implementations of the PowerPC Architecture. An AltiVec unavailable interrupt occurs when no higher
priority interrupt exists (see Table 5-2), an attempt is made to execute an AltiVec instruction, and
MSR[VEC] = 0.

Register settings for AltiVec unavailable interrupts are described in Table 5-1 and shown in Figure 5-3.
Table 5-1. AltiVec Unavailable Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the interrupt

SRR1 32-Bit
0 Loaded with equivalent bits from the MSR
1–4 Cleared
5–9 Loaded with equivalent bits from the MSR
10–15 Cleared
16–31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, additional MSR bits may be copied to SRR1.

MSR SF 1
ISF —
VEC 0
POW 0
ILE —

EE 0
PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

Cache, Interrupts, and Memory Management

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

5-10 Freescale Semiconductor

When an AltiVec unavailable interrupt is taken, instruction execution resumes as offset 0x00F20 from the
base address determined by MSR[IP].

The dst and dstst instructions are supported if MSR[DR] = 1. If either instruction is executed when
MSR[DR] = 0 (real addressing mode), results are boundedly undefined.

Conditions that cause this interrupt are prioritized among instruction-caused (synchronous), precise
interrupts as shown in Table 5-2, taken from the section “Interrupt Priorities,” in Chapter 6, “Interrupts,”
in the Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture.

0 1 4 5 9 10 15

Setting After
Interrupt

MSR[0] 0000 MSR[5–9] 00_0000

16 31

Setting After
Interrupt

MSR[16–31]

Figure 5-3. SRR1 Bit Settings After an AltiVec Unavailable Interrupt

Cache, Interrupts, and Memory Management

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 5-11

Table 5-2. Interrupt Priorities (Synchronous/Precise Interrupts)

Priority Interrupt

3 1

1 The interrupts are third in priority after system reset and machine check interrupts.

Instruction dependent—When an instruction causes an interrupt, the interrupt mechanism waits for any
instructions prior to the excepting instruction in the instruction stream to complete. Any interrupts caused by
these instructions are handled first. It then generates the appropriate interrupt if no higher priority interrupt
exists when the interrupt is to be generated.
Note that a single instruction can cause multiple interrupts. When this occurs, those interrupts are ordered in
priority as indicated in the following:
A. Integer loads and stores

a. Alignment
b. Data storage interrupt
c. Trace (if implemented)

B. Floating-point loads and stores
a. Floating-point unavailable
b. Alignment
c Data storage interrupt
d. Trace (if implemented)

C. Other floating-point instructions
a. Floating-point unavailable
b. Program—Precise-mode floating-point enabled interrupt
c. Floating-point assist (if implemented)
d. Trace (if implemented)

D. AltiVec loads and stores (if AltiVec facility implemented)
a. AltiVec unavailable
b. Data storage interrupt
c. Trace (if implemented)

E. Other AltiVec Instructions (if AltiVec facility implemented)
a. AltiVec unavailable
b. Trace (if implemented)

F. The rfi and mtmsr
a. Program—Supervisor level Instruction
b. Program—Precise-mode floating-point enabled interrupt
c. Trace (if implemented), for mtmsr only
If precise-mode IEEE floating-point enabled interrupts are enabled and FPSCR[FEX] is set, a program
interrupt occurs no later than the next synchronizing event.

G. Other instructions
a. These interrupts are mutually exclusive and have the same priority:

— Program: Trap
— System call (sc)
— Program: Supervisor level instruction
— Program: Illegal Instruction

b. Trace (if implemented)
F. Instruction storage interrupt
The instruction storage interrupt has the lowest priority in this category. It is only recognized when all
instructions prior to the instruction causing this interrupt appear to have completed and that instruction is to
be executed. The priority of this interrupt is specified for completeness and to ensure that it is not given more
favorable treatment. An implementation can treat this interrupt as though it had a lower priority.

Cache, Interrupts, and Memory Management

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

5-12 Freescale Semiconductor

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-1

Chapter 6
AltiVec Instructions
This chapter lists the AltiVec instruction set in alphabetical order by mnemonic. Note that each entry
includes the instruction format and a graphical representation of the instruction. All the instructions are
32 bits and a description of the instruction fields and pseudocode conventions are also provided. For more
information on the AltiVec instruction set, refer to Chapter 4, “Addressing Modes and Instruction Set
Summary.” For more information on the PowerPC instruction set, refer to Chapter 8, “Instruction Set,” in
the Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture.

6.1 Instruction Formats
AltiVec instructions are 4 bytes (32 bits) long and are word-aligned. AltiVec instruction set architecture
(ISA) has four operands, three source vectors, and one result vector. Bits 0–5 always specify the primary
opcode for AltiVec instructions. AltiVec ALU-type instructions specify the primary opcode point 4
(0b00_01_00). AltiVec load, store, and stream prefetch instructions use secondary opcode in primary
opcode 31 (0b01_11_11).

Within a vector register, a byte, half word, or word element are referred to as follows:
• Byte elements, each byte = 8 bits; in the pseudocode, n = 8 with a total of 16 elements
• Half-word elements, each byte = 16 bits; in the pseudocode, n = 16 with a total of 8 elements
• Word elements, each byte = 32 bits; in the pseudocode, n = 32 with a total of 4 elements

Refer to Figure 1-3 for an example of how elements are placed in a vector register.

6.1.1 Instruction Fields

Table 6-1 describes the instruction fields used in the various instruction formats.

Table 6-1. Instruction Syntax Conventions

Field Description

OPCD (0–5) Primary opcode field

rA, A (11–15) Specifies a GPR to be used as a source or destination

rB, B (16–20) Specifies a GPR to be used as a source

Rc (31) Record bit
0 Does not update the condition register (CR).
1 For the optional AltiVec facility, set CR field 6 to control program flow as described in Section 2.4.1,

“PowerPC Condition Register.”

vA (11–15) Specifies a vector register to be used as a source

vB (16–20) Specifies a vector register to be used as a source

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-2 Freescale Semiconductor

6.1.2 Notation and Conventions

The operation of some instructions is described by a semiformal language (pseudocode). See Table 6-2 for
a list of additional pseudocode notation and conventions used throughout this chapter.

vC (21–25) Specifies a vector register to be used as a source

vD (6–10) Specifies a vector register to be used as a destination

vS (6–10) Specifies a vector register to be used as a source

SHB (22–25) Specifies a shift amount in bytes

SIMM (11–15) This immediate field is used to specify a (5-bit) signed integer

UIMM (11–15) This immediate field is used to specify a 4-, 8-, 12-, or 16-bit unsigned integer

Table 6-2. Notation and Conventions

Notation/Convention Meaning

← Assignment

¬ NOT logical operator

do i=X to Y by Z Do the following starting at X and iterating to Y by Z

+int 2’s complement integer add

-int 2’s complement integer subtract

+ui Unsigned integer add

-ui Unsigned integer subtract

*ui Unsigned integer multiply

+si Signed integer add

-si Signed integer subtract

*si Signed integer multiply

*sui Signed integer (first operand) multiplied by unsigned integer (second operand) producing
signed result

/ Integer divide

+fp Single-precision floating-point add

-fp Single-precision floating-point subtract

*fp Single-precision floating-point multiply

÷fp Single-precision floating-point divide

√ fp Single-precision floating-point square root

<ui, ≤ui, >ui, ≥ui Unsigned integer comparison relations

Table 6-1. Instruction Syntax Conventions (continued)

Field Description

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-3

<si, ≤si, >si, ≥si Signed integer comparison relations

<fp, ≤fp, >fp, ≥fp Single precision floating-point comparison relations

≠ Not equal

=int Integer equal to

=ui Unsigned integer equal to

=si Signed integer equal to

=fp Floating-point equal to

X >>ui Y Shift X right by Y bits extending Xs vacated bits with zeros

X >>si Y Shift X right by Y bits extending Xs vacated bits with the sign bit of X

X << ui Y Shift X left by Y bits inserting Xs vacated bits with zeros

|| Used to describe the concatenation of two values (that is, 010 || 111 is the same as
010111)

& AND logical operator

 | OR logical operator

⊕, ≡ Exclusive-OR, equivalence logical operators (for example, (a ≡ b) = (a ⊕ ¬ b))

0bnnnn A number expressed in binary format

0xnnnn A number expressed in hexadecimal format

? Unordered comparison relation

X0 X zeros

X1 X ones

XY X copies of Y

XY Bit Y of X

XY:Z Bits Y through Z, inclusive, of X

LENGTH(x) Length of x, in bits. If x is the word ‘element,’ LENGTH(x) is the length, in bits, of the
element implied by the instruction mnemonic.

ROTL(x,y) Result of rotating x left by y bits

UItoUImod(X,Y) Chop unsigned integer X- to Y-bit unsigned integer

UItoUIsat(X,Y) Result of converting the unsigned-integer x to a y-bit unsigned-integer with
unsigned-integer saturation

SItoUIsat(X,Y) Result of converting the signed-integer x to a y-bit unsigned-integer with unsigned-integer
saturation

SItoSImod(X,Y) Chop integer X- to Y-bit integer

SItoSIsat(X,Y) Result of converting the signed-integer x to a y-bit signed-integer with signed-integer
saturation

Table 6-2. Notation and Conventions (continued)

Notation/Convention Meaning

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-4 Freescale Semiconductor

RndToNearFP32 The single-precision floating-point number that is nearest in value to the infinitely-precise
floating-point intermediate result x (in case of a tie, the even single-precision floating-point
value is used).

RndToFPInt32Near The value x if x is a single-precision floating-point integer; otherwise the single-precision
floating-point integer that is nearest in value to x (in case of a tie, the even single-precision
floating-point integer is used).

RndToFPInt32Trunc The value x if x is a single-precision floating-point integer; otherwise the largest
single-precision floating-point integer that is less than x if x > 0, or the smallest
single-precision floating-point integer that is greater than x if x < 0.

RndToFPInt32Ceil The value x if x is a single-precision floating-point integer; otherwise the smallest
single-precision floating-point integer that is greater than x.

RndToFPInt32Floor The value x if x is a single-precision floating-point integer; otherwise the largest
single-precision floating-point integer that is less than x.

CnvtFP32ToUI32Sat(x) Result of converting the single-precision floating-point value x to a 32-bit unsigned-integer
with unsigned-integer saturation

CnvtFP32ToSI32Sat(x) Result of converting the single-precision floating-point value x to a 32-bit signed-integer
with signed-integer saturation

CnvtUI32ToFP32(x) Result of converting the 32-bit unsigned-integer x to floating-point single format

CnvtSI32ToFP32(x) Result of converting the 32-bit signed-integer x to floating-point single format

MEM(X,Y) Value at memory location X of size Y bytes

SwapDouble Swap the doublewords in a quad-word vector

ZeroExtend(X,Y) Zero-extend X on the left with zeros to produce Y-bit value

SignExtend(X,Y) Sign-extend X on the left with sign bits (that is, with copies of bit 0 of x) to produce Y-bit
value

RotateLeft(X,Y) Rotate X left by Y bits

mod(X,Y) Remainder of X/Y

UImaximum(X,Y) Maximum of 2 unsigned integer values, X and Y

SImaximum(X,Y) Maximum of 2 unsigned integer values, X and Y

FPmaximum(X,Y) Maximum of 2 floating-point values, X and Y

UIminimum(X,Y) Minimum of 2 unsigned integer values, X and Y

SIminimum(X,Y) Minimum of 2 unsigned integer values, X and Y

FPminimum(X,Y) Minimum of 2 floating-point values, X and Y

FPReciprocalEstimate12(X) 12-bit-accurate floating-point estimate of 1/X

FPReciprocalSQRTEstimate12(X) 12-bit-accurate floating-point estimate of 1/(sqrt(X))

FPLog2Estimate3(X) 3-bit-accurate floating-point estimate of log2(X)

FPPower2Estimate3(X) 3-bit-accurate floating-point estimate of 2**X

CarryOut(X + Y) Carry out of the sum of X and Y

Table 6-2. Notation and Conventions (continued)

Notation/Convention Meaning

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-5

ROTL[64](x, y) Result of rotating the 64-bit value x left y positions

ROTL[32](x, y) Result of rotating the 32-bit value x || x left y positions, where x is 32 bits long

0bnnnn A number expressed in binary format

0xnnnn A number expressed in hexadecimal format

(n)x The replication of x, n times (that is, x concatenated to itself n – 1 times).
(n)0 and (n)1 are special cases. A description of the special cases follows:
• (n)0 means a field of n bits with each bit equal to 0. Thus, (5)0 is equivalent to 0b00000.
• (n)1 means a field of n bits with each bit equal to 1. Thus, (5)1 is equivalent to 0b11111.

(rA|0) The contents of rA if the rA field has the value 1–31, or the value 0 if the rA field is 0.

(rX) The contents of rX

x[n] n is a bit or field within x, where x is a register

xn x is raised to the nth power

ABS(x) Absolute value of x

CEIL(x) Least integer ≥ x

Characterization Reference to the setting of status bits in a standard way that is explained in the text

CIA Current instruction address.
The 32-bit address of the instruction being described by a sequence of pseudocode. Used
by relative branches to set the next instruction address (NIA) and by branch instructions
with LK = 1 to set the link register. Does not correspond to any architected register.

Clear Clear the leftmost or rightmost n bits of a register to 0. This operation is used for rotate and
shift instructions.

Clear left and shift left Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can
be used to scale a known non-negative array index by the width of an element. These
operations are used for rotate and shift instructions.

Cleared Bits = 0

Do Do loop
• Indenting shows range
• ‘To’ and/or ‘by’ clauses specify incrementing an iteration variable
• ‘While’ clauses give termination conditions

DOUBLE(x) Result of converting x from floating-point single-precision format to floating-point
double-precision format

Extract Select a field of n bits starting at bit position b in the source register, right or left justify this
field in the target register, and clear all other bits of the target register to zero. This
operation is used for rotate and shift instructions.

EXTS(x) Result of extending x on the left with sign bits

GPR(x) General-purpose register x

if...then...else... Conditional execution, indenting shows range, else is optional

Table 6-2. Notation and Conventions (continued)

Notation/Convention Meaning

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-6 Freescale Semiconductor

Insert Select a field of n bits in the source register, insert this field starting at bit position b of the
target register, and leave other bits of the target register unchanged. (No simplified
mnemonic is provided for insertion of a field when operating on double words; such an
insertion requires more than one instruction.) This operation is used for rotate and shift
instructions. (Note that simplified mnemonics are referred to as extended mnemonics in
the architecture specification.)

Leave Leave innermost do loop, or the do loop described in leave statement

MASK(x, y) Mask having ones in positions x through y (wrapping if x > y) and zeros elsewhere

MEM(x, y) Contents of y bytes of memory starting at address x

NIA Next instruction address, which is the 32-bit address of the next instruction to be executed
(the branch destination) after a successful branch. In pseudocode, a successful branch is
indicated by assigning a value to NIA. For instructions which do not branch, the next
instruction address is CIA + 4. Does not correspond to any architected register.

OEA PowerPC operating environment architecture

Rotate Rotate the contents of a register right or left n bits without masking. This operation is used
for rotate and shift instructions.

ROTL[64](x, y) Result of rotating the 64-bit value x left y positions

ROTL[32](x, y) Result of rotating the 64-bit value x || x left y positions, where x is 32 bits long

Set Bits are set to 1

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical shift). This
operation is used for rotate and shift instructions.

SINGLE(x) Result of converting x from floating-point double-precision format to floating-point
single-precision format.

SPR(x) Special-purpose register x

TRAP Invoke the system trap handler

Undefined An undefined value. The value may vary from one implementation to another, and from one
execution to another on the same implementation.

UISA PowerPC user instruction set architecture

VEA PowerPC virtual environment architecture

Table 6-2. Notation and Conventions (continued)

Notation/Convention Meaning

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-7

Table 6-3 describes instruction field notation conventions used throughout this chapter.

Precedence rules for pseudocode operators are summarized in Table 6-4.

Operators higher in Table 6-4 are applied before those lower in the table. Operators at the same level in the
table associate from left to right, from right to left, or not at all, as shown in the Associativity column. For
example, ‘–’ (unary minus) associates from left to right, so a – b – c = (a – b) – c. Parentheses are used to
override the evaluation order implied by Table 6-4, or to increase clarity; parenthesized expressions are
evaluated before serving as operands.

6.2 AltiVec Instruction Set
The remainder of this chapter lists and describes the instruction set for the AltiVec architecture. The
instructions are listed in alphabetical order by mnemonic. The following diagram shows the format for
each instruction description page.

Table 6-3. Instruction Field Conventions

PowerPC Architecture
Specification

Equivalent in AltiVec Technology
PEM as:

RA, RB, RT, RS rA, rB, rD, rS

SI SIMM

U IMM

UI UIMM

VA, VB, VC, VT, VS vA, vB, vC, vD, vS

/, //, /// 0...0 (shaded)

Table 6-4. Precedence Rules

Operators Associativity

x[n], function evaluation Left to right

(n)x or replication,
x(n) or exponentiation

Right to left

unary –, ¬ Right to left

∗, ÷ Left to right

+, – Left to right

|| Left to right

=, ≠, <, ≤, >, ≥, <U, >U, ? Left to right

&, ⊕, ≡ Left to right

| Left to right

– (range), : (range) None

←, ←iea None

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-8 Freescale Semiconductor

vaddsbs vaddsbs
Vector Add Signed Byte Saturate

vaddsbs vD,vA,vB Form VX

do i=0 to 127 by 8

aop0:8 ← SignExtend((vA)i:i+7,9)
bop0:8 ← SignExtend((vB)i:i+7,9)
temp0:8← aop0:8 +int bop0:8
vDi:i+7 ← SItoSIsat(temp0:8,8)

end

Each element of vaddsbs is a byte.

Each signed-integer element in vA is added to the corresponding signed-integer element
in vB.

If the sum is greater than (27-1) it saturates to (27-1) and if it is less than -27 it saturates to
-27. If saturations occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:

Vector status and control register (VSCR):
Affected: SAT

Figure 6-11 shows the usage of the vaddsbs instruction. Each of the sixteen elements in the vectors, vA, vB, and
vD, is 8 bits long.

Figure 6-11. vaddsbs—Add Saturating Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 768

0 5 6 10 11 15 16 20 21 25 26 27 28 31

+ +++++++++++++++

vA

vB

vD

Instruction name

Instruction syntax
and form

Instruction encoding
in decimal

Pseudocode description
of instruction operation

Text description of
instruction operation

Figure showing
instruction usage

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-9

dss dss
Data Stream Stop

dss STRM (A=0) Form X
dssall STRM (A=1)

DataStreamPrefetchControl ← “stop” || STRM

Note that A does not represent rA in this instruction.

If A=0 and a data stream associated with the stream ID specified by STRM exists, this instruction
terminates prefetching of that data stream. It has no effect if the specified stream does not exist.

If A=1, this instruction terminates prefetching of all existing data streams (the STRM field is ignored).

In addition, executing a dss instruction ensures that all accesses associated with data stream prefetching
caused by preceding dst and dstst instructions that specified the same stream ID as that specified by the
dss instruction (A=0), or by all preceding dst and dstst instructions (A=1), will be in group G1 with respect
to the memory barrier created by a subsequent sync instruction, refer to Section 5.1, “PowerPC Shared
Memory,” for more information.

See Section 5.2.1, “Software-Directed Prefetch,” for more information on using the dss instruction.

Other registers altered:
• None

Simplified mnemonics:

dss STRM equivalent to dss STRM, 0

dssall equivalent to dss 0, 1

For more information on the dss instruction, refer to Chapter 5, “Cache, Interrupts, and Memory
Management.”

31 A 0_0 STRM 0_0000 0000_0 822 0

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 30 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-10 Freescale Semiconductor

dst dst
Data Stream Touch

dst rA,rB,STRM (T=0) Form X
dstt rA,rB,STRM (T=1)

addr0:63 ← (rA)
DataStreamPrefetchControl ← “start” || STRM || T || (rB) || addr

This instruction initiates a software directed cache prefetch. The instruction is a hint to hardware that
performance will probably be improved if the cache blocks containing the specified data stream are
fetched into the data cache because the program will probably soon load from the stream.

The instruction associates the data stream specified by the contents of rA and rB with the stream ID
specified by STRM. The instruction defines a data stream STRM as starting at an effective address (rA)
and having count units of size quad words separated by stride bytes (as specified in rB). The T bit of the
instruction indicates whether the data stream is likely to be loaded from fairly frequently in the near future
(T=0) or to be transient and referenced very few times (T=1).

The dst instruction does the following:
• Defines the characteristics of a data stream STRM by the contents of rA and rB
• Associates the stream with a specified stream ID, STRM (range for STRM is 0–3)
• Indicates that the data in the specified stream STRM starting at the address in rA may soon be

loaded
• Indicates whether memory locations within the stream are likely to be needed over a longer period

of time (T=0) or be treated as transient data (T=1)
• Terminates prefetching from any stream that was previously associated with the specified stream

ID, STRM.

The specified data stream encoded for 32-bit follows:
• Effective address: rA, where rA ≠ 0
• Block size: rB[3–7] if rB[3–7] ≠ 0; otherwise 32
• Block count: rB[8–15] if rB[8–15] ≠ 0; otherwise 256

31 T 0_0 STRM A B 342 0

0 5 6 7 8 9 10 11 15 16 20 21 30 31

0 1 2 3 4 5

StartingAddress

Block Size

BlockStride

BlockAddrn (n=3)

Memory

Stream

Block Block Block Block Block Block

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-11

• Block stride: rB[16–31] if rB[16–31] ≠ 0; otherwise 32768

Other registers altered:
• None

Simplified mnemonics:

dst rA,rB,STRM equivalent to dst rA,rB,STRM,0

dstt rA,rB,STRM equivalent to dst rA,rB,STRM,1

For more information on the dst instruction, refer to Chapter 5, “Cache, Interrupts, and Memory
Management.”

 /// Block Size Block Count Block Stride

0 2 3 7 8 15 16 31

Figure 6-1. Format of rB in dst Instruction (32-Bit)

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-12 Freescale Semiconductor

dstst dstst
Data Stream Touch for Store

dstst rA,rB,STRM (T=0) Form X
dststt rA,rB,STRM (T=1)

addr0:63 ← (rA)
DataStreamPrefetchControl ← “start” || T || static || (rB) || addr

This instruction initiates a software directed cache prefetch. The instruction is a hint to hardware that
performance will probably be improved if the cache blocks containing the specified data stream are
fetched into the data cache because the program will probably soon write to (store into) the stream.

The instruction associates the data stream specified by the contents of rA and rB with the stream ID
specified by STRM. The instruction defines a data stream STRM as starting at an effective address (rA)
and having count units of size quad words separated by stride bytes (as specified in rB). The T bit of the
instruction indicates whether the data stream is likely to be stored into fairly frequently in the near future
(T=0) or to be transient and referenced very few times (T=1).

The dstst instruction does the following:
• Defines the characteristics of a data stream STRM by the contents of rA and rB
• Associates the stream with a specified stream ID, STRM (range for STRM is 0–3)
• Indicates that the data in the specified stream STRM starting at the address in rA may soon be

stored in to memory
• Indicates whether memory locations within the stream are likely to be stored into fairly frequently

in the near future (T=0) or be treated as transient data (T=1)
• Terminates prefetching from any stream that was previously associated with the specified stream

ID, STRM.

The specified data stream encoded for 32-bit follows:
• Effective address: rA, where rA ≠ 0
• Block size: rB[3–7] if rB[3–7] ≠ 0; otherwise 32
• Block count: rB[8–15] if rB[8–15] ≠ 0; otherwise 256

31 T 0_0 STRM A B 374 0

0 5 6 7 8 9 10 11 15 16 20 21 30 31

0 1 2 3 4 5

StartingAddress

Block Size

BlockStride

BlockAddrn (n=3)

Memory

Stream

Block Block Block Block Block Block

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-13

• Block stride: rB[16–31] if rB[16–31] ≠ 0; otherwise 32768

Other registers altered:
• None

Simplified mnemonics:

dstst rA,rB,STRM equivalent to dstst rA,rB,STRM,0

dststt rA,rB,STRM equivalent to dstst rA,rB,STRM,1

For more information on the dstst instruction, refer to Chapter 5, “Cache, Interrupts, and Memory
Management.”

 /// Block Size Block Count Block Stride

0 2 3 7 8 15 16 31

Figure 6-2. Format of rB in dst Instruction (32-Bit)

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-14 Freescale Semiconductor

lvebx lvebx
Load Vector Element Byte Indexed

lvebx vD,rA,rB Form X

• For 32-bit:
if rA=0 then b ← 0
else b ← (rA)
EA ← b + (rB)
eb ← EA28:31
vD ← undefined
if the processor is in big-endian mode
 then vDeb*8:(eb*8)+7 ← MEM(EA,1)
 else vD120-(eb*8):127-(eb*8) ← MEM(EA,1)

— EA=(rA|0)+(rB); m=EA[28–31] (the offset of the byte in its aligned quad word).

For big-endian mode, the byte addressed by EA is loaded into byte m of vD. In little-endian mode, it is
loaded into byte (15-m) of vD. Remaining bytes in vD are undefined.

Other registers altered:
• None

31 vD A B 7 0

0 5 6 10 11 15 16 20 21 30 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-15

Figure 6-3. Effects of Example Load/Store Instructions

x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x

x x

x x

x x

x x

x x

x x

x x

x x

x x0x0000_0000

0x0000_0010

0x0000_0020

0x0000_0030

0x0000_0040

0x0000_0050

0x0000_0060

0x0000_0070

0x0000_0080

0x0000_0090

0x0000_00A0

0x0000_00B0

Byte at x1E

Half at x2A

Word at x54

Quad at A0

vR

vR

vR

vR

Load or Store:

Memory

x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x x

Note:In vector registers, x means boundedly undefined after a load and don’t care after a store.
In memory, x means don’t care after a load, and leave at current value after a store.

x x

x x x x x x x x x x x x x x x x

x x x x x x x x

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-16 Freescale Semiconductor

lvehx lvehx
Load Vector Element Half Word Indexed

lvehx vD,rA,rB Form X

• For 32-bit:
if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~1)
eb ← EA28:31
vD ← undefined
if the processor is in big-endian mode
 then vD(eb*8):(eb*8)+15 ← MEM(EA,2)
 else vD112-(eb*8):127-(eb*8) ← MEM(EA,2)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~1. Let m=EA[28–30]; m is the
half word offset of the half word in its aligned quad word in memory.

If the processor is in big-endian mode, the half word addressed by EA is loaded into half word m of vD.
If the processor is in little-endian mode, the half word addressed by EA is loaded into half word (7-m) of
vD. The remaining half words in vD are set to undefined values. Figure 6-3 shows this instruction.

Other registers altered:
• None

31 vD A B 39 0

0 5 6 10 11 15 16 20 21 30 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-17

lvewx lvewx
Load Vector Element Word Indexed

lvewx vD,rA,rB Form X

• For 32-bit:
if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~3)
eb ← EA28:31
vD ← undefined
if the processor is in big-endian mode
 then vDeb*8:(eb*8)+31 ← MEM(EA,4)
 else vD96-(eb*8):127-(eb*8) ← MEM(EA,4)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~3. Let m=EA[28–29]; m is the
word offset of the word in its aligned quad word in memory.

If the processor is in big-endian mode, the word addressed by EA is loaded into word m of vD. If the
processor is in little-endian mode, the word addressed by EA is loaded into word (3-m) of vD. The
remaining words in vD are set to undefined values. Figure 6-3 shows this instruction.

Other registers altered:
• None

31 vD A B 71 0

0 5 6 10 11 15 16 20 21 30 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-18 Freescale Semiconductor

lvsl lvsl
Load Vector for Shift Left

lvsl vD,rA,rB Form X

• For 32-bit:
if rA = 0 then b ← 0
 else b ← (rA)
addr0:31 ← b + (rB)
sh ← addr28-31
if sh = 0x0 then (vD)0:127 ← 0x000102030405060708090A0B0C0D0E0F
if sh = 0x1 then (vD)0:127 ← 0x0102030405060708090A0B0C0D0E0F10
if sh = 0x2 then (vD)0:127 ← 0x02030405060708090A0B0C0D0E0F1011
if sh = 0x3 then (vD)0:127 ← 0x030405060708090A0B0C0D0E0F101112
if sh = 0x4 then (vD)0:127 ← 0x0405060708090A0B0C0D0E0F10111213
if sh = 0x5 then (vD)0:127 ← 0x05060708090A0B0C0D0E0F1011121314
if sh = 0x6 then (vD)0:127 ← 0x060708090A0B0C0D0E0F101112131415
if sh = 0x7 then (vD)0:127 ← 0x0708090A0B0C0D0E0F10111213141516
if sh = 0x8 then (vD)0:127 ← 0x08090A0B0C0D0E0F1011121314151617
if sh = 0x9 then (vD)0:127 ← 0x090A0B0C0D0E0F101112131415161718
if sh = 0xA then (vD)0:127 ← 0x0A0B0C0D0E0F10111213141516171819
if sh = 0xB then (vD)0:127 ← 0x0B0C0D0E0F101112131415161718191A
if sh = 0xC then (vD)0:127 ← 0x0C0D0E0F101112131415161718191A1B
if sh = 0xD then (vD)0:127 ← 0x0D0E0F101112131415161718191A1B1C
if sh = 0xE then (vD)0:127 ← 0x0E0F101112131415161718191A1B1C1D
if sh = 0xF then (vD)0:127 ← 0x0F101112131415161718191A1B1C1D1E

— Let the EA be the sum (rA|0)+(rB). Let sh=EA[28–31].

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || ... || 0x1E || 0x1F. Bytes sh:sh+15 of X are placed into vD.
Figure 6-4 shows how this instruction works.

Other registers altered:
• None

Figure 6-4. Load Vector for Shift Left

The above lvsl instruction followed by a Vector Permute (vperm) would do a simulated alignment of a
four-element floating-point vector misaligned on quad-word boundary at address 0x0....C.

31 vD A B 6 0

0 5 6 10 11 15 16 20 21 30 31

0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B

rA0 0 0 0 0 0 0 8

rB

Temp

vD

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 CTable Lookup

+

=

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-19

Figure 6-5. Instruction vperm Used in Aligning Data

Refer, also, to the description of the lvsr instruction for suggested uses of the lvsl instruction.

vCC D E F 10 11 12 13 14 15 16 17 18 19 1A 1B

vA

vB

vD

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-20 Freescale Semiconductor

lvsr lvsr
Load Vector for Shift Right

lvsr vD,rA,rB Form X

• For 32-bit:
if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
sh ← EA28:31
if sh=0x0 then vD ← 0x101112131415161718191A1B1C1D1E1F
if sh=0x1 then vD ← 0x0F101112131415161718191A1B1C1D1E
if sh=0x2 then vD ← 0x0E0F101112131415161718191A1B1C1D
if sh=0x3 then vD ← 0x0D0E0F101112131415161718191A1B1C
if sh=0x4 then vD ← 0x0C0D0E0F101112131415161718191A1B
if sh=0x5 then vD ← 0x0B0C0D0E0F101112131415161718191A
if sh=0x6 then vD ← 0x0A0B0C0D0E0F10111213141516171819
if sh=0x7 then vD ← 0x090A0B0C0D0E0F101112131415161718
if sh=0x8 then vD ← 0x08090A0B0C0D0E0F1011121314151617
if sh=0x9 then vD ← 0x0708090A0B0C0D0E0F10111213141516
if sh=0xA then vD ← 0x060708090A0B0C0D0E0F101112131415
if sh=0xB then vD ← 0x05060708090A0B0C0D0E0F1011121314
if sh=0xC then vD ← 0x0405060708090A0B0C0D0E0F10111213
if sh=0xD then vD ← 0x030405060708090A0B0C0D0E0F101112
if sh=0xE then vD ← 0x02030405060708090A0B0C0D0E0F1011
if sh=0xF then vD ← 0x0102030405060708090A0B0C0D0E0F10

— Let the EA be the sum (rA|0)+(rB). Let sh=EA[28–31].
Let X be the 32-byte value 0x00 || 0x01 || 0x02 || ... || 0x1E || 0x1F. Bytes (16-sh):(31-sh) of X are placed
into vD.
Note that lvsl and lvsr can be used to create the permute control vector to be used by a subsequent vperm
instruction. Let X and Y be the contents of vA and vB specified by the vperm. The control vector created
by lvsl causes the vperm to select the high-order 16 bytes of the result of shifting the 32-byte value X || Y
left by sh bytes. The control vector created by vsr causes the vperm to select the low-order 16 bytes of the
result of shifting X || Y right by sh bytes.
These instructions can also be used to rotate or shift the contents of a vector register by sh bytes. For
rotating, the vector register to be rotated should be specified as both vA and vB for vperm. For shifting
left, the vB register for vperm should contain all zeros and vA should contain the value to be shifted, and
vice versa for shifting right. Figure 6-4 shows a similar instruction only in that figure the shift is to the left.
No other registers altered.

31 vD A B 38 0

0 5 6 10 11 15 16 20 21 30 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-21

lvx lvx
Load Vector Indexed

lvx vD,rA,rB (LRU=0) Form X

• For 32-bit:
if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~0xF)
if the processor is in big-endian mode
 then vD ← MEM(EA,16)
 else vD ← MEM(EA+8,8) || MEM(EA,8)

Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~0xF.

If the processor is in big-endian mode, the quad word in memory addressed by EA is loaded into vD.

If the processor is in little-endian mode, the doubleword addressed by EA is loaded into vD[64–127] and
the doubleword addressed by EA+8 is loaded into vD[0–63]. Note that normal little-endian PowerPC
address swizzling is also performed. See Section 3.1, “Data Organization in Memory,” for more
information.

Figure 6-4 shows this instruction.

Other registers altered:
• None

31 vD A B 103 0

0 5 6 10 11 15 16 20 21 30 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-22 Freescale Semiconductor

lvxl lvxl
Load Vector Indexed LRU

lvxl vD,rA,rB (LRU=1) Form X

• For 32-bit:
if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~0xF)
if the processor is in big-endian mode
 then vD ← MEM(EA,16)
 else vD ← MEM(EA+8,8) || MEM(EA,8)

Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~0xF.

If the processor is in big-endian mode, the quad word addressed by EA is loaded into vD.

If the processor is in little-endian mode, the doubleword addressed by EA is loaded into vD[64–127] and
the doubleword addressed by EA+8 is loaded into vD[0–63]. Note that normal little-endian PowerPC
address swizzling is also performed. See Section 3.1, “Data Organization in Memory,” for more
information.

lvxl provides a hint that the program may not need quad word addressed by EA again soon.

Note that on some implementations, the hint provided by the lvxl instruction and the corresponding hint
provided by the Store Vector Indexed LRU (stvxl) instruction (see Section 5.2.1.2, “Transient Streams”)
are applied to the entire cache block containing the specified quad word. On such implementations, the
effect of the hint may be to cause that cache block to be considered a likely candidate for reuse when space
is needed in the cache for a new block. Thus, on such implementations, the hint should be used with
caution if the cache block containing the quad word also contains data that may be needed by the program
in the near future. Also, the hint may be used before the last reference in a sequence of references to the
quad word if the subsequent references are likely to occur sufficiently soon that the cache block containing
the quad word is not likely to be displaced from the cache before the last reference. Figure 6-4 shows this
instruction.

Other registers altered:
• None

31 vD A B 359 0

0 5 6 10 11 15 16 20 21 30 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-23

mfvscr mfvscr
Move from Vector Status and Control Register

mfvscr vD Form VX

vD ← 960 || (VSCR)

The contents of the VSCR are placed into vD.

Note that the programmer should assume that mtvscr and mfvscr take substantially longer to execute than
other AltiVec instructions

Other registers altered:
• None

04 vD 0_0000 0000_0 1540

0 5 6 10 11 15 16 20 21 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-24 Freescale Semiconductor

mtvscr mtvscr
Move to Vector Status and Control Register

mtvscr vB Form VX

VSCR ← (vB)96:127

The contents of vB are placed into the VSCR.

Other registers altered:
• None

04 00_000 0_0000 vB 1604

0 5 6 10 11 15 16 20 21 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-25

stvebx stvebx
Store Vector Element Byte Indexed

stvebx vS,rA,rB Form X

• For 32-bit:
if rA=0 then b ← 0
else b ← (rA)
EA ← b + (rB)
eb ← EA28:31
if the processor is in big-endian mode
 then MEM(EA,1) ← (vS)eb*8:(eb*8)+7
 else MEM(EA,1) ← (vS)120-(eb*8):127-eb*8

— Let the EA be the sum (rA|0)+(rB). Let m=EA[28–31]; m is the byte offset of the byte in its
aligned quad word in memory.

If the processor is in big-endian mode, byte m of vS is stored into the byte in memory addressed by EA. If
the processor is in little-endian mode, byte (15-m) of vS is stored into the byte addressed by EA. Figure 6-3
shows how a store instruction is performed for a vector register.

Other registers altered:
• None

31 vS A B 135 0

0 5 6 10 11 15 16 20 21 30 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-26 Freescale Semiconductor

stvehx stvehx
Store Vector Element Half Word Indexed

stvehx vS,rA,rB Form X

• For 32-bit:
if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & (~0x1)
eb ← EA28:31
if the processor is in big-endian mode
 then MEM(EA,2) ← (vS)eb*8:(eb*8)+15
 else MEM(EA,2) ← (vS)112-eb*8:127-(eb*8)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with ~0x1. Let m=EA[28–30]; m is
the half word offset of the half word in its aligned quad word in memory.

If the processor is in big-endian mode, half word m of vS is stored into the half word addressed by EA. If
the processor is in little-endian mode, half word (7-m) of vS is stored into the half word addressed by EA.
Figure 6-3 shows how a store instruction is performed for a vector register.

Other registers altered:
• None

31 vS A B 167 0

0 5 6 10 11 15 16 20 21 30 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-27

stvewx stvewx
Store Vector Element Word Indexed

stvewx vS,rA,rB Form X

• For 32-bit:
if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFFC
eb ← EA28:31
if the processor is in big-endian mode
 then MEM(EA,4) ← (vS)eb*8:(eb*8)+31
 else MEM(EA,4) ← (vS)96-eb*8:127-(eb*8)

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFFC. Let
m=EA[28–29]; m is the word offset of the word in its aligned quad word in memory.

If the processor is in big-endian mode, word m of vS is stored into the word addressed by EA. If the
processor is in little-endian mode, word (3-m) of vS is stored into the word addressed by EA. Figure 6-3
shows how a store instruction is performed for a vector register.

Other registers altered:
• None

31 vS A B 199 0

0 5 6 10 11 15 16 20 21 30 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-28 Freescale Semiconductor

stvx stvx
Store Vector Indexed

stvx vS,rA,rB (LRU=0) Form X

• For 32-bit:
if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFF0
if the processor is in big-endian mode
 then MEM(EA,16) ← (vS)
 else MEM(EA,16) ← (vS)64:127 || (vS)0:63

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFF0.

If the processor is in big-endian mode, the contents of vS are stored into the quad word addressed by EA.
If the processor is in little-endian mode, the contents of vS[64–127] are stored into the doubleword
addressed by EA, and the contents of vS[0–63] are stored into the doubleword addressed by EA+8.

stvxl and stvxlt provide a hint that the quad word addressed by EA will probably not be needed again by
the program in the near future.

Figure 6-3 shows how a store instruction is performed for a vector register.

Other registers altered:
• None

31 vS A B 231 0

0 5 6 10 11 15 16 20 21 30 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-29

stvxl stvxl
Store Vector Indexed LRU

stvxl vS,rA,rB (LRU=1) Form X

• For 32-bit:
if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFF0
if the processor is in big-endian mode
 then MEM(EA,16) ← (vS)
 else MEM(EA,16) ← (vS)64:127 || (vS)0:63

— Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFF0.

Let the EA be the result of ANDing the sum (rA|0)+(rB) with 0xFFFF_FFFF_FFFF_FFF0. If the
processor is in big-endian mode, the contents of vS are stored into the quad word addressed by EA. If the
processor is in little-endian mode, the contents of vS[64–127] are stored into the doubleword addressed by
EA, and the contents of vS[0–63] are stored into the doubleword addressed by EA+8. The stvxl and stvxlt
instructions provide a hint that the quad word addressed by EA will probably not be needed again by the
program in the near future.

Note that on some implementations, the hint provided by the stvxl instruction (see Section 5.2.2,
“Prioritizing Cache Block Replacement”) is applied to the entire cache block containing the specified quad
word. On such implementations, the effect of the hint may be to cause that cache block to be considered a
likely candidate for reuse when space is needed in the cache for a new block. Thus, on such
implementations, the hint should be used with caution if the cache block containing the quad word also
contains data that may be needed by the program in the near future. Also, the hint may be used before the
last reference in a sequence of references to the quad word if the subsequent references are likely to occur
sufficiently soon that the cache block containing the quad word is not likely to be displaced from the cache
before the last reference. Figure 6-3 shows how a store instruction is performed on the vector registers.
Other registers altered:

• None

31 vS A B 487 0

0 5 6 10 11 15 16 20 21 30 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-30 Freescale Semiconductor

vaddcuw vaddcuw
Vector Add Carryout Unsigned Word

vaddcuw vD,vA,vB Form VX

do i=0 to 127 by 32
aop0:32 ← ZeroExtend((vA)i:i+31,33)
bop0:32 ← ZeroExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int bop0:32
vDi:i+31 ← ZeroExtend(temp0,32)

end

Each unsigned-integer word element in vA is added to the corresponding unsigned-integer word element
in vB. The carry out of bit 0 of the 32-bit sum is zero-extended to 32 bits and placed into the corresponding
word element of vD.

Other registers altered:
• None

Figure 6-6 shows the usage of the vaddcuw instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-6. vaddcuw—Determine Carries of Four Unsigned Integer Adds (32-Bit)

04 vD vA vB 384

0 5 6 10 11 15 16 20 21 31

vA

vB

33-Bit Intermediate

vD

+ + + +

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-31

vaddfp vaddfp
Vector Add Floating-Point

vaddfp vD,vA,vB Form VX

do i = 0,127,32
(vD)i:i+31 ← RndToNearFP32((vA)i:i+31 +fp (vB)i:i+31)

end

The four 32-bit floating-point values in vA are added to the four 32-bit floating-point values in vB. The
four intermediate results are rounded and placed in vD.

If VSCR[NJ]=1, every denormalized operand element is truncated to a 0 of the same sign before the
operation is carried out, and each denormalized result element truncates to a 0 of the same sign.

Other registers altered:
• None

Figure 6-7 shows the usage of the vaddfp instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-7. vaddfp—Add Four Floating-Point Elements (32-Bit)

04 vD vA vB 10

0 5 6 10 11 15 16 20 21 31

++++

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-32 Freescale Semiconductor

vaddsbs vaddsbs
Vector Add Signed Byte Saturate

vaddsbs vD,vA,vB Form VX

do i=0 to 127 by 8
aop0:8 ← SignExtend((vA)i:i+7,9)
bop0:8 ← SignExtend((vB)i:i+7,9)
temp0:8 ← aop0:8 +int bop0:8
vDi:i+7 ← SItoSIsat(temp0:8,8)

end

Each element of vaddsbs is a byte.

Each signed-integer element in vA is added to the corresponding signed-integer element in vB.

If the sum is greater than (27-1) it saturates to (27-1) and if it is less than -27 it saturates to -27. If saturation
occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:
• Vector status and control register (VSCR):

Affected: SAT

Figure 6-8 shows the usage of the vaddsbs instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-8. vaddsbs—Add Saturating Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 768

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-33

vaddshs vaddshs
Vector Add Signed Half Word Saturate

vaddshs vD,vA,vB Form VX

do i=0 to 127 by 16
aop0:16 ← SignExtend((vA)i:i+15,16)
bop0:16 ← SignExtend((vB)i:i+15,16)
temp0:16 ← aop0:16 +int bop0:16
vDi:i+15 ← SItoSIsat(temp0:16,16)

end

Each element of vaddshs is a half word.

Each signed-integer element in vA is added to the corresponding signed-integer element in vB.

If the sum is greater than (215-1) it saturates to (215-1) and if it is less than -215 it saturates to -215. If
saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:
• Vector status and control register (VSCR):

Affected: SAT

Figure 6-9 shows the usage of the vaddshs instruction. Each of the eight elements in the vectors, vA, vB,
and vD, is 16 bits long.

Figure 6-9. vaddshs—Add Saturating Eight Signed Integer Elements (16-Bit)

04 vD vA vB 832

0 5 6 10 11 15 16 20 21 31

++++++++

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-34 Freescale Semiconductor

vaddsws vaddsws
Vector Add Signed Word Saturate

vaddsws vD,vA,vB Form VX

do i=0 to 127 by 32
aop0:32 ← SignExtend((vA)i:i+31,33)
bop0:32 ← SignExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int bop0:32
vDi:i+31 ← SItoSIsat(temp0:32,32)

end

Each element of vaddsws is a word.

Each signed-integer element in vA is added to the corresponding signed-integer element in vB.

If the sum is greater than (231-1) it saturates to (231-1) and if it is less than (-231) it saturates to (-231). If
saturation occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:
• Vector status and control register (VSCR):

Affected: SAT

Figure 6-10 shows the usage of the vaddsws instruction. Each of the 4 elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-10. vaddsws—Add Saturating Four Signed Integer Elements (32-Bit)

04 vD vA vB 896

0 5 6 10 11 15 16 20 21 31

++++

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-35

vaddubm vaddubm
Vector Add Unsigned Byte Modulo

vaddubm vD,vA,vB Form VX

do i=0 to 127 by 8
vDi:i+7 ← (vA)i:i+7 +int (vB)i:i+7

end

Each element of vaddubm is a byte.

Each integer element in vA is modulo added to the corresponding integer element in vB. The integer result
is placed into the corresponding element of vD.

Note that the vaddubm instruction can be used for unsigned or signed integers.

Other registers altered:
• None

Figure 6-11 shows the vaddubm instruction usage. Each of the sixteen elements in the vectors, vA, vB,
and vD, is 8 bits long.

Figure 6-11. vaddubm—Add Sixteen Integer Elements (8-Bit)

04 vD vA vB 0

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-36 Freescale Semiconductor

vaddubs vaddubs
Vector Add Unsigned Byte Saturate

vaddubs vD,vA,vB Form VX

do i=0 to 127 by 8
aop0:8 ← ZeroExtend((vA)i:i+7,9)
bop0:8 ← ZeroExtend((vB)i:i+7,9)
temp0:8 ← aop0:8 +int bop0:8
vDi:i+7 ← UItoUIsat(temp0:8,8)

end

Each element of vaddubs is a byte.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer element in vB.

If the sum is greater than (28-1) it saturates to (28-1) and the SAT bit is set.

The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:
• Vector status and control register (VSCR):

Affected: SAT

Figure 6-12 shows the usage of the vaddubs instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-12. vaddubs—Add Saturating Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 512

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-37

vadduhm vadduhm
Vector Add Unsigned Half Word Modulo

vadduhm vD,vA,vB Form VX

do i=0 to 127 by 16
vDi:i+15 ← (vA)i:i+15 +int (vB)i:i+15

end

Each element of vadduhm is a half word.

Each integer element in vA is added to the corresponding integer element in vB. The integer result is
placed into the corresponding element of vD.

Note that the vadduhm instruction can be used for unsigned or signed integers.

Other registers altered:
• None

Figure 6-13 shows the usage of the vadduhm instruction. Each of the eight elements in the vectors, vA,
vB, and vD, is 16 bits long.

Figure 6-13. vadduhm—Add Eight Integer Elements (16-Bit)

04 vD vA vB 64

0 5 6 10 11 15 16 20 21 31

++++++++

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-38 Freescale Semiconductor

vadduhs vadduhs
Vector Add Unsigned Half Word Saturate

vadduhs vD,vA,vB Form VX

do i=0 to 127 by 16
aop0:16 ← ZeroExtend((vA)i:i+15,17)
bop0:16 ← ZeroExtend((vB)i:i+15,17)
temp0:16 ← aop0:16 +int bop0:16
vDi:i+15 ← UItoUIsat(temp0:16,16)

end

Each element of vadduhs is a half word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer element in vB.

If the sum is greater than (216-1) it saturates to (216-1) and the SAT bit is set.

The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:
• Vector status and control register (VSCR):

Affected: SAT

Figure 6-14 shows the usage of the vadduhs instruction. Each of the eight elements in the vectors, vA, vB,
and vD, is 16 bits long.

Figure 6-14. vadduhs—Add Saturating Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 576

0 5 6 10 11 15 16 20 21 31

++++++++

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-39

vadduwm vadduwm
Vector Add Unsigned Word Modulo

vadduwm vD,vA,vB Form: VX

do i=0 to 127 by 32
vDi:i+31 ← (vA)i:i+31 +int (vB)i:i+31

end

Each element of vadduwm is a word.

Each integer element in vA is modulo added to the corresponding integer element in vB. The integer result
is placed into the corresponding element of vD.

Note that the vadduwm instruction can be used for unsigned or signed integers.

Other registers altered:
• None

Form:
• VX

Figure 6-15 shows the usage of the vadduwm instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long.

Figure 6-15. vadduwm—Add Four Integer Elements (32-Bit)

04 vD vA vB 128

0 5 6 10 11 15 16 20 21 31

++++

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-40 Freescale Semiconductor

vadduws vadduws
Vector Add Unsigned Word Saturate

vadduws vD,vA,vB Form: VX

do i=0 to 127 by 3
aop0:32 ← ZeroExtend((vA)i:i+31,33)
bop0:32 ← ZeroExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int bop0:32
vDi:i+31 ← UItoUIsat(temp0:32,32)

end

Each element of vadduws is a word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer element in vB.

If the sum is greater than (232-1) it saturates to (232-1) and the SAT bit is set.

The unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:
• Vector status and control register (VSCR):

Affected: SAT

Figure 6-16 shows the usage of the vadduws instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-16. vadduws—Add Saturating Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 640

0 5 6 10 11 15 16 20 21 31

++++

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-41

vand vand
Vector Logical AND

vand vD,vA,vB Form: VX

vD ← (vA) & (vB)

The contents of vA are bitwise ANDed with the contents of vB and the result is placed into vD.

Other registers altered:
• None

Figure 6-17 shows usage of the vand instruction.

Figure 6-17. vand—Logical Bitwise AND

04 vD vA vB 1028

0 5 6 10 11 15 16 20 21 31

&

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-42 Freescale Semiconductor

vandc vandc
Vector Logical AND with Complement

vandc vD,vA,vB Form: VX

vD ← (vA) & ¬(vB)

The contents of vA are ANDed with the one’s complement of the contents of vB and the result is placed
into vD.

Other registers altered:
• None

Figure 6-17 shows usage of the vandc instruction.

Figure 6-18. vand—Logical Bitwise AND with Complement

04 vD vA vB 1092

0 5 6 10 11 15 16 20 21 31

&

vB

Intermediate

vA

vD

¬

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-43

vavgsb vavgsb
Vector Average Signed Byte

vavgsb vD,vA,vB Form: VX

do i=0 to 127 by 8
aop0:8 ← SignExtend((vA)i:i+7,9)
bop0:8 ← SignExtend((vB)i:i+7,9)
temp0:8 ← aop0:8 +int bop0:8 +int 1
vDi:i+7 ← temp0:7

end

Each element of vavgsb is a byte.

Each signed-integer byte element in vA is added to the corresponding signed-integer byte element in vB,
producing a 9-bit signed-integer sum. The sum is incremented by 1. The high-order 8 bits of the result are
placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-19 shows the usage of the vavgsb instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-19. vavgsb—Average Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 1282

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD

+1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

Temp

Temp

8 Bits

9 Bits

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-44 Freescale Semiconductor

vavgsh vavgsh
Vector Average Signed Half Word

vavgsh vD,vA,vB Form: VX

do i=0 to 127 by 16
aop0:16 ← SignExtend((vA)i:i+15,17)
bop0:16 ← SignExtend((vB)i:i+15,17)
temp0:16 ← aop0:15 +int bop0:15 +int 1
vDi:i+15 ← temp0:15

end

Each element of vavgsh is a half word.

Each signed-integer element in vA is added to the corresponding signed-integer element in vB, producing
an 17-bit signed-integer sum. The sum is incremented by 1. The high-order 16 bits of the result are placed
into the corresponding element of vD.

Other registers altered:
• None

Figure 6-20 shows the usage of the vavgsh instruction. Each of the eight elements in the vectors, vA, vB,
and vD, is 16 bits long.

Figure 6-20. vavgsh—Average Eight Signed Integer Elements (16-Bit)

04 vD vA vB 1346

0 5 6 10 11 15 16 20 21 31

+++++++

vA

vB

+1+1+1+1+1+1+1

Temp

16 Bits

17 Bits

+

+1

Temp

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-45

vavgsw vavgsw
Vector Average Signed Word

vavgsw vD,vA,vB Form: VX

do i=0 to 127 by 32
aop0:32 ← SignExtend((vA)i:i+31,33)
bop0:3 ← SignExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int bop0:32 +int 1
vDi:i+31 ← temp0:31

end

Each element of vavgsw is a word.

Each signed-integer element in vA is added to the corresponding signed-integer element in vB, producing
an 33-bit signed-integer sum. The sum is incremented by 1. The high-order 32 bits of the result are placed
into the corresponding element of vD.

Other registers altered:
• None

Figure 6-21 shows the usage of the vavgsw instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-21. vavgsw—Average Four Signed Integer Elements (32-Bit)

04 vD vA vB 1410

0 5 6 10 11 15 16 20 21 31

+++

vA

vB

+1+1+1

Temp

32 Bits

33 Bits

+

+1

Temp

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-46 Freescale Semiconductor

vavgub vavgub
Vector Average Unsigned Byte

vavgub vD,vA,vB Form: VX

do i=0 to 127 by 8
aop0:8 ← ZeroExtend((vA)i:i+7,9)
bop0:n ← ZeroExtend((vB)i:i+71,9)
temp0:n ← aop0:8 +int bop0:8 +int 1
vDi:i+7 ← temp0:7

end

Each element of vavgub is a byte.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer element in vB,
producing a 9-bit unsigned-integer sum. The sum is incremented by 1. The high-order 8 bits of the result
are placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-22 shows the usage of the vavgub instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

.

Figure 6-22. vavgub—Average Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 1026

0 5 6 10 11 15 16 20 21 31

+ +++++++++++++++

vA

vB

vD

+1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

Temp

Temp

8 Bits

9 Bits

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-47

vavguh vavguh
Vector Average Unsigned Half Word

vavguh vD,vA,vB Form: VX

do i=0 to 127 by 16
aop0:16 ← ZeroExtend((vA)i:i+15,17)
bop0:16 ← ZeroExtend((vB)i:i+15,17)
temp0:16 ← aop0:16 +int bop0:16 +int 1
vDi:i+15 ← temp0:15

end

Each element of vavguh is a half word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer element in vB,
producing a 17-bit unsigned-integer. The sum is incremented by 1. The high-order 16 bits of the result are
placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-23 shows the usage of the vavguh instruction. Each of the eight elements in the vectors, vA, vB,
and vD, is 16 bits long.

Figure 6-23. vavguh—Average Eight Signed Integer Elements (16-Bit)

04 vD vA vB 1090

0 5 6 10 11 15 16 20 21 31

+++++++

vA

vB

+1+1+1+1+1+1+1

Temp

16 Bits

17 Bits

+

+1

Temp

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-48 Freescale Semiconductor

vavguw vavguw
Vector Average Unsigned Word

vavguw vD,vA,vB Form: VX

do i=0 to 127 by 32
aop0:32 ← ZeroExtend((vA)i:i+31,33)
bop0:32 ← ZeroExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int bop0:32 +int 1
vDi:i+31 ← temp0:31

end

Each element of vavguw is a word.

Each unsigned-integer element in vA is added to the corresponding unsigned-integer element in vB,
producing a 33-bit unsigned-integer sum. The sum is incremented by 1. The high-order 32 bits of the result
are placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-24 shows the usage of the vavguw instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-24. vavguw—Average Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 1154

0 5 6 10 11 15 16 20 21 31

+++

vA

vB

+1+1+1

Temp

32 Bits

33 Bits

+

+1

Temp

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-49

vcfsx vcfsx
Vector Convert from Signed Fixed-Point Word

vcfsx vD,vB,UIMM Form: VX

do i=0 to 127 by 32
vDi:i+31 ← CnvtSI32ToFP32((vB)i:i+31) ÷fp 2

UIMM

end

Each signed fixed-point integer word element in vB is converted to the nearest single-precision
floating-point value. The result is divided by 2UIMM (UIMM=Unsigned immediate value) and placed into
the corresponding word element of vD.

Other registers altered:
• None

Figure 6-25 shows the usage of the vcfsx instruction. Each of the four elements in the vectors, vB and vD,
is 32 bits long.

Figure 6-25. vcfsx—Convert Four Signed Integer Elements to Four Floating-Point
Elements (32-Bit)

04 vD UIMM vB 842

0 5 6 10 11 15 16 20 21 31

vB

vD

÷÷÷÷

Scale Factor from Opcode (2UIMM)

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-50 Freescale Semiconductor

vcfux vcfux
Vector Convert from Unsigned Fixed-Point Word

vcfux vD,vB,UIMM Form: VX

do i=0 to 127 by 32
vDi:i+31 ← CnvtUI32ToFP32((vB)i:i+31) ÷fp 2

UIMM

end

Each unsigned fixed-point integer word element in vB is converted to the nearest single-precision
floating-point value. The result is divided by 2UIMM and placed into the corresponding word element of vD.

Other registers altered:
• None

Figure 6-26 shows the usage of the vcfux instruction. Each of the four elements in the vectors, vB and vD,
is 32 bits long.

Figure 6-26. vcfux—Convert Four Unsigned Integer Elements to Four Floating-Point
Elements (32-Bit)

04 vD UIMM vB 778

0 5 6 10 11 15 16 20 21 31

÷÷÷÷

Scale Factor from Opcode (2UIMM)

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-51

vcmpbfpx vcmpbfpx
Vector Compare Bounds Floating-Point

vcmpbfp vD,vA,vB (Rc=0) Form: VXR
vcmpbfp. vD,vA,vB (Rc=1)

do i=0 to 127 by 32
le ← ((vA)i:i+31 ≤fp (vB)i:i+31)
ge ← ((vA)i:i+31 ≥fp -(vB)i:i+31)
vDi:i+31 ← −le || −ge || 300

end
if Rc=1 then do

ib ← (vD = 1280)
CR24:27 ← 0b00 || ib || 0b0

end

Each single-precision word element in vA is compared to the corresponding element in vB. A 2-bit value
is formed that indicates whether the element in vA is within the bounds specified by the element in vB, as
follows.

Bit 0 of the 2-bit value is zero if the element in vA is less than or equal to the element in vB, and is one
otherwise. Bit 1 of the 2-bit value is zero if the element in vA is greater than or equal to the negative of the
element in vB, and is one otherwise.

The 2-bit value is placed into the high-order two bits of the corresponding word element (bits 0–1 for word
element 0, bits 32–33 for word element 1, bits 64–65 for word element 2, bits 96–97 for word element 3)
of vD and the remaining bits of the element are cleared.

If Rc=1, CR Field 6 is set to indicate whether all four elements in vA are within the bounds specified by
the corresponding element in vB, as follows.

• CR6=0b00 || all_within_bounds || 0

Note that if any single-precision floating-point word element in vB is negative; the corresponding element
in vA is out of bounds. Note that if a vA or a vB element is a NaN, the two high order bits of the
corresponding result will both have the value 1.

If VSCR[NJ]=1, every denormalized operand element is truncated to 0 before the comparison is made.

Other registers altered:
• Condition register (CR6):

Affected: Bit 2 (if Rc=1)

04 vD vA vB Rc 966

0 5 6 10 11 15 16 20 21 22 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-52 Freescale Semiconductor

Figure 6-27 shows the usage of the vcmpbfp instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-27. vcmpbfp—Compare Bounds of Four Floating-Point Elements (32-Bit)

≤

vA

vB

vD
0 32 64 961 33

≥ ≤ ≥

65 97

≤ ≥ ≤ ≥

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-53

vcmpeqfpx vcmpeqfpx
Vector Compare Equal-to-Floating Point

vcmpeqfp vD,vA,vB Form: VXR
vcmpeqfp. vD,vA,vB

do i=0 to 127 by 32

if (vA)i:i+31 =fp (vB)i:i+31
then vDi:i+31 ← 0xFFFF_FFFF
else vDi:i+31 ← 0x0000_0000

end

if Rc=1 then do
t ← (vD = 1281)
f ← (vD = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in vA is compared to the corresponding
single-precision floating-point word element in vB. The corresponding word element in vD is set to all 1s
if the element in vA is equal to the element in vB, and is cleared to all 0s otherwise.

If Rc=1. CR6 filed is set according to all, some, or none of the elements pairs compare equal.
• CR6=all_equal || 0b0 || none_equal || 0b0

Note that if a vA or vB element is a NaN, the corresponding result will be 0x0000_0000.

Other registers altered:
• Condition register (CR6):

Affected: Bits 0–3 (if Rc=1)

Figure 6-28 shows the usage of the vcmpeqfp instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long.

Figure 6-28. vcmpeqfp—Compare Equal of Four Floating-Point Elements (32-Bit)

04 vD vA vB Rc 198

0 5 6 10 11 15 16 20 21 22 31

====

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-54 Freescale Semiconductor

vcmpequbx vcmpequbx
Vector Compare Equal-to Unsigned Byte

vcmpequb vD,vA,vB Form: VXR
vcmpequb. vD,vA,vB

do i=0 to 127 by 8

if (vA)i:i+7 =int (vB)i:i+7
then vDi:i+7 ← 81
else vDi:i+7 ← 80

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24:27] ← t || 0b0 || f || 0b0

end

Each element of vcmpequb is a byte.

Each integer element in vA is compared to the corresponding integer element in vB. The corresponding
element in vD is set to all 1s if the element in vA is equal to the element in vB, and is cleared to all 0s
otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal.
• CR6=all_equal || 0b0 || none_equal || 0b0

Note that vcmpequb[.] can be used for unsigned or signed integers.

Other registers altered:
• Condition register (CR6):

Affected: Bits 0–3 (if Rc=1)

Figure 6-29 shows the usage of the vcmpequb instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-29. vcmpequb—Compare Equal of Sixteen Integer Elements (8-Bit)

04 vD vA vB Rc 6

0 5 6 10 11 15 16 20 21 22 31

 = = = = = = = = = = = = = == =

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-55

vcmpequhx vcmpequhx
Vector Compare Equal-to Unsigned Half Word

vcmpequh vD,vA,vB Form: VXR
vcmpequh. vD,vA,vB

do i=0 to 127 by 16

if (vA)i:i+15 =int (vB)i:i+15
then vDi:i+15 ← 161
else vDi:i+15 ← 160

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24:27] ← t || 0b0 || f || 0b0

end

Each element of vcmpequh is a half word.

Each integer element in vA is compared to the corresponding integer element in vB. The corresponding
element in vD is set to all 1s if the element in vA is equal to the element in vB, and is cleared to all 0s
otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal.
• CR6=all_equal || 0b0 || none_equal || 0b0.

Note that vcmpequh[.] can be used for unsigned or signed integers.

Other registers altered:
• Condition register (CR6):

Affected: Bits 0–3 (if Rc=1)

Figure 6-30 shows the usage of the vcmpequh instruction. Each of the eight elements in the vectors, vA,
vB, and vD, is 16 bits long.

Figure 6-30. vcmpequh—Compare Equal of Eight Integer Elements (16-Bit)

04 vD vA vB Rc 70

0 5 6 10 11 15 16 20 21 22 31

 = = ======

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-56 Freescale Semiconductor

vcmpequwx vcmpequwx
Vector Compare Equal-to Unsigned Word

vcmpequw vD,vA,vB Form: VXR
vcmpequw. vD,vA,vB

do i=0 to 127 by 32

if (vA)i:i+311 =int (vB)i:i+31
 then vDi:i+31 ← n1
 else vDi:i+31 ← n0

end

if Rc=1 then do
t ← (vD = 1281)
f ← (vD = 1280)

CR[24:27] ← t || 0b0 || f || 0b0

end

Each element of vcmpequw is a word.

Each integer element in vA is compared to the corresponding integer element in vB. The corresponding
element in vD is set to all 1s if the element in vA is equal to the element in vB, and is cleared to all 0s
otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal.
• CR6=all_equal || 0b0 || none_equal || 0b0

Note that vcmpequw[.] can be used for unsigned or signed integers.

Other registers altered:
• Condition register (CR6):

Affected: Bits 0–3 (if Rc=1)

Figure 6-31 shows the usage of the vcmpequw instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long.

Figure 6-31. vcmpequw—Compare Equal of Four Integer Elements (32-Bit)

04 vD vA vB Rc 134

0 5 6 10 11 15 16 20 21 22 31

 = = = =

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-57

vcmpgefpx vcmpgefpx
Vector Compare Greater-Than-or-Equal-to Floating-Point

vcmpgefp vD,vA,vB (Rc=0) Form: VXR
vcmpgefp. vD,vA,vB (Rc=1)

do i=0 to 127 by 32
if (vA)i:i+31 ≥fp (vB)i:i+31
then vDi:i+31 ← 0xFFFF_FFFF
else vDi:i+31 ← 0x0000_0000

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)

CR24:27 ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in vA is compared to the corresponding
single-precision floating-point word element in vB. The corresponding word element in vD is set to all 1s
if the element in vA is greater than or equal to the element in vB, and is cleared to all 0s otherwise.
If Rc=1, CR6 is set according to all_greater_or_equal || some_greater_or_equal || none_great_or_equal.

CR6=all_greater_or_equal || 0b0 || none greater_or_equal || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.
Other registers altered:

• Condition register (CR6):
Affected: Bits 0–3 (if Rc=1)

Figure 6-32 shows the usage of the vcmpgefp instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long

Figure 6-32. vcmpgefp—Compare Greater-Than-or-Equal of Four Floating-Point
Elements (32-Bit)

04 vD vA vB Rc 454

0 5 6 10 11 15 16 20 21 22 31

≥≥≥≥

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-58 Freescale Semiconductor

vcmpgtfpx vcmpgtfpx
Vector Compare Greater-Than Floating-Point

vcmpgtfp vD,vA,vB Form: VXR
vcmpgtfp. vD,vA,vB

do i=0 to 127 by 32
if (vA)i:i+31 >fp (vB)i:i+31
 then vDi:i+31 ← 0xFFFF_FFFF
 else vDi:i+31 ← 0x0000_0000

end
if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24:27] ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in vA is compared to the corresponding
single-precision floating-point word element in vB. The corresponding word element in vD is set to all 1s
if the element in vA is greater than the element in vB, and is cleared to all 0s otherwise.

If Rc=1, CR6 is set according to all_greater_than || some_greater_than || none_greater_than.
CR6=all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
• Condition register (CR6):

Affected: Bits 0–3 (if Rc=1)

Figure 6-33 shows the usage of the vcmpgtfp instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long.

Figure 6-33. vcmpgtfp—Compare Greater-Than of Four Floating-Point Elements (32-Bit)

04 vD vA vB Rc 710

0 5 6 10 11 15 16 20 21 22 31

>>>>

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-59

vcmpgtsbx vcmpgtsbx
Vector Compare Greater-Than Signed Byte

vcmpgtsb vD,vA,vB Form: VXR
vcmpgtsb. vD,vA,vB

do i=0 to 127 by 8
if (vA)i:i+7 >si (vB)i:i+7
 then vDi:i+7 ← 81
 else vDi:i+7 ← 80

end
if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each element of vcmpgtsb is a byte.

Each signed-integer element in vA is compared to the corresponding signed-integer element in vB. The
corresponding element in vD is set to all 1s if the element in vA is greater than the element in vB, and is
cleared to all 0s otherwise.

If Rc=1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.
CR6=all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
• Condition register (CR6):

Affected: Bits 0–3 (if Rc=1)

Figure 6-34 shows the usage of the vcmpgtsb instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-34. vcmpgtsb—Compare Greater-Than of Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB Rc 774

0 5 6 10 11 15 16 20 21 22 31

> >>>>>>>>>>>>>>>

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-60 Freescale Semiconductor

vcmpgtshx vcmpgtshx
Vector Compare Greater-Than Signed Half Word

vcmpgtsh vD,vA,vB Form: VXR
vcmpgtsh. vD,vA,vB

do i=0 to 127 by 16

if (vA)i:i+15 >si (vB)i:i+15
 then vDi:i+15 ← 161
 else vDi:i+15 ← 160

end
if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each element of vcmpgtsh is a half word.

Each signed-integer element in vA is compared to the corresponding signed-integer element in vB. The
corresponding element in vD is set to all 1s if the element in vA is greater than the element in vB, and is
cleared to all 0s otherwise.

If Rc=1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.
CR6=all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
• Condition register (CR6):

Affected: Bits 0–3 (if Rc=1)

Figure 6-35 shows the usage of the vcmpgtsh instruction. Each of the eight elements in the vectors, vA,
vB, and vD, is 16 bits long.

Figure 6-35. vcmpgtsh—Compare Greater-Than of Eight Signed Integer Elements (16-Bit)

04 vD vA vB Rc 838

0 5 6 10 11 15 16 20 21 22 31

>>>>>>>>

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-61

vcmpgtswx vcmpgtswx
Vector Compare Greater-Than Signed Word

vcmpgtsw vD,vA,vB Form: VXR
vcmpgtsw. vD,vA,vB

do i=0 to 127 by 32

if (vA)i:i+31 >si (vB)i:i+31
 then vDi:i+31 ← 321
 else vDi:i+31 ← 320

end
if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each element of vcmpgtsw is a word.

Each signed-integer element in vA is compared to the corresponding signed-integer element in vB. The
corresponding element in vD is set to all 1s if the element in vA is greater than the element in vB, and is
cleared to all 0s otherwise.

If Rc=1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6=all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
• Condition register (CR6):

Affected: Bits 0–3 (if Rc=1)

Figure 6-36 shows the usage of the vcmpgtsw instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long.

Figure 6-36. vcmpgtsw—Compare Greater-Than of Four Signed Integer Elements (32-Bit)

04 vD vA vB Rc 902

0 5 6 10 11 15 16 20 21 22 31

>>>>

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-62 Freescale Semiconductor

vcmpgtubx vcmpgtubx
Vector Compare Greater-Than Unsigned Byte

vcmpgtub vD,vA,vB Form: VXR
vcmpgtub. vD,vA,vB

do i=0 to 127 by 8
if (vA)i:i+7 >ui (vB)i:i+7
 then vDi:i+7 ← 81
 else vDi:i+7 ← 80

end
if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each element of vcmpgtub is a byte. Each unsigned-integer element in vA is compared to the
corresponding unsigned-integer element in vB. The corresponding element in vD is set to all 1s if the
element in vA is greater than the element in vB, and is cleared to all 0s otherwise.

If Rc=1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6=all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
• Condition register (CR6):

Affected: Bits 0–3 (if Rc=1)

Figure 6-37 shows the usage of the vcmpgtub instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-37. vcmpgtub—Compare Greater-Than of Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB Rc 518

0 5 6 10 11 15 16 20 21 22 31

> >>>>>>>>>>>>>>>

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-63

vcmpgtuhx vcmpgtuhx
Vector Compare Greater-Than Unsigned Half Word

vcmpgtuh vD,vA,vB Form: VXR
vcmpgtuh. vD,vA,vB

do i=0 to 127 by 16
if (vA)i:i+151 >ui (vB)i:i+15
 then vDi:i+15 ← 161
 else vDi:i+15 ← 160

end

if Rc=1 then do
t ← (vD = 1281)
f ← (vD = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each element of vcmpgtuh is a half word. Each unsigned-integer element in vA is compared to the
corresponding unsigned-integer element in vB. The corresponding element in vD is set to all 1s if the
element in vA is greater than the element in vB, and is cleared to all 0s otherwise.

If Rc=1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6=all_greater_than || 0b0 || none greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
• Condition register (CR6):

Affected: Bits 0–3 (if Rc=1)

Figure 6-38 shows the usage of the vcmpgtuh instruction. Each of the eight elements in the vectors, vA,
vB, and vD, is 16 bits long.

Figure 6-38. vcmpgtuh—Compare Greater-Than of Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB Rc 582

0 5 6 10 11 15 16 20 21 22 31

>>>>>>>>

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-64 Freescale Semiconductor

vcmpgtuwx vcmpgtuwx
Vector Compare Greater-Than Unsigned Word

vcmpgtuw vD,vA,vB Form: VXR
vcmpgtuw. vD,vA,vB

do i=0 to 127 by 32
if (vA)i:i+31 >ui (vB)i:i+31
 then vDi:i+31 ← 321
 else vDi:i+31 ← 320

end

if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each element of vcmpgtuw is a word. Each unsigned-integer element in vA is compared to the
corresponding unsigned-integer element in vB. The corresponding element in vD is set to all 1s if the
element in vA is greater than the element in vB, and is cleared to all 0s otherwise.

If Rc=1, CR6 is set according to all_greater_than || some_greater_than || none_great_than.

CR6=all_greater_than || 0b0 || none_greater_than || 0b0.

Note that if a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:
• Condition register (CR6):

Affected: Bits 0–3 (if Rc=1)

Figure 6-39 shows the usage of the vcmpgtuw instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long.

Figure 6-39. vcmpgtuw—Compare Greater-Than of Four Unsigned Integer Elements (32-Bit)

04 vD vA vB Rc 646

0 5 6 10 11 15 16 20 21 22 31

>>>>

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-65

vctsxs vctsxs
Vector Convert to Signed Fixed-Point Word Saturate

vctsxs vD,vB,UIMM Form: VX

do i=0 to 127 by 32

if (vB)i+1:i+8=255 | (vB)i+1:i+8 + UIMM ≤ 254 then
 vDi:i+31 ← CnvtFP32ToSI32Sat((vB)i:i+31 *fp 2

UIMM)
 else
 do

if (vB)i=0 then vDi:i+31 ← 0x7FFF_FFFF
 else vDi:i+31 ← 0x8000_0000
 VSCRSAT ← 1

end

end

Each single-precision word element in vB is multiplied by 2UIMM. The product is converted to a signed
integer using the rounding mode, Round toward Zero. If the intermediate result is greater than (231-1) it
saturates to (231-1); if it is less than -231 it saturates to -231. A signed-integer result is placed into the
corresponding word element of vD.
Fixed-point integers used by the vector convert instructions can be interpreted as consisting of 32-UIMM
integer bits followed by UIMM fraction bits. The vector convert to fixed-point word instructions support
only the rounding mode, Round toward Zero. A single-precision number can be converted to a fixed-point
integer using any of the other three rounding modes by executing the appropriate vector round to
floating-point integer instruction before the vector convert to fixed-point word instruction.

Other registers altered:
• Vector status and control register (VSCR):

Affected: SAT

Figure 6-40 shows the usage of the vctsxs instruction. Each of the four elements in the vectors, vB and vD,
is 32 bits long.

Figure 6-40. vctsxs—Convert Four Floating-Point Elements to Four Signed Integer
Elements (32-Bit)

04 vD UIMM vB 970

0 5 6 10 11 15 16 20 21 31

vB

vD

xxxx

Scale Factor from Opcode (2UIMM)

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-66 Freescale Semiconductor

vctuxs vctuxs
Vector Convert to Unsigned Fixed-Point Word Saturate

vctuxs vD,vB,UIMM Form: VX

do i=0 to 127 by 32
if (vB)i+1:i+8=255 | (vB)i+1:i+8 + UIMM ≤ 254 then
 vDi:i+31 ← CnvtFP32ToUI32Sat((vB)i:i+31 *fp 2

UIM)
 else
 do
 if (vB)i=0 thenvDi:i+31 ← 0xFFFF_FFFF
 elsevDi:i+31 ← 0x0000_0000
 VSCRSAT ← 1
end

end

Each single-precision floating-point word element in vB is multiplied by 2UIM. The product is converted to
an unsigned fixed-point integer using the rounding mode Round toward Zero.

If the intermediate result is greater than (232-1) it saturates to (232-1) and if it is less than 0 it saturates to 0.

The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:
• Vector status and control register (VSCR):

Affected: SAT

Figure 6-41 shows the usage of the vctuxs instruction. Each of the four elements in the vectors, vB and
vD, is 32 bits long.

Figure 6-41. vctuxs—Convert Four Floating-Point Elements to Four Unsigned Integer
Elements (32-Bit)

04 vD UIMM vB 906

0 5 6 10 11 15 16 20 21 31

vB

vD

xxxx

Scale Factor from Opcode (2UIMM)

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-67

vexptefp vexptefp
Vector 2 Raised to the Exponent Estimate Floating-Point

vexptefp vD,vB Form: VX

do i=0 to 127 by 32
x ← (vB)i:i+31
vDi:i+31 ← 2x

end

The single-precision floating-point estimate of 2 raised to the power of each single-precision floating-point
element in vB is placed into the corresponding element of vD.

The estimate has a relative error in precision no greater than one part in 16, that is,

where x is the value of the element in vB. The most significant 12 bits of the estimate's significant are
monotonic. Note that the value placed into the element of vD may vary between implementations, and
between different executions on the same implementation.

If an operation has an integral value and the resulting value is not 0 or +∞, the result is exact.

Operation with various special values of the element in vB is summarized in Table 6-5 below.

If VSCR[NJ]=1, every denormalized operand element is truncated to a 0 of the same sign before the
operation is carried out, and each denormalized result element truncates to a 0 of the same sign.

Other registers altered:
• None

04 vD 0_0000 vB 394

0 5 6 10 11 15 16 20 21 31

Table 6-5. Special Values of the Element in vB

Value of Element
in vB

Result

–∞ +0

–0 +1

+0 +1

+∞ +∞

NaN QNaN

estimate 2
x–

2
x

1
16
------≤

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-68 Freescale Semiconductor

Figure 6-42 shows the usage of the vexptefp instruction. Each of the four elements in the vectors, vB and
vD, is 32 bits long.

Figure 6-42. vexptefp—Two Raised to the Exponent Estimate Floating-Point for Four
Floating-Point Elements (32-Bit)

2x2x2x

vB

vD

x x x x

2x

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-69

vlogefp vlogefp
Vector Log2 Estimate Floating-Point

vlogefp vD,vB Form: VX

do i=0 to 127 by 32
x ← (vB)i:i+31
vDi:i+31 ← log2(x)

end

The single-precision floating-point estimate of the base 2 logarithm of each single-precision floating-point
element in vB is placed into the corresponding element of vD.

The estimate has an absolute error in precision (absolute value of the difference between the estimate and
the infinitely precise value) no greater than 2-5. The estimate has a relative error in precision no greater
than one part in 8, as described below:

where x is the value of the element in vB, except when |x-1| ≤ 1 ÷ 8. The most significant 12 bits of the
estimate's significant are monotonic. Note that the value placed into the element of vD may vary between
implementations, and between different executions on the same implementation.

Operation with various special values of the element in vB is summarized below in Table 6-6.

If VSCR[NJ]=1, every denormalized operand element is truncated to a 0 of the same sign before the
operation is carried out, and each denormalized result element truncates to a 0 of the same sign.

Other registers altered:
• None

04 vD 0_0000 vB 458

0 5 6 10 11 15 16 20 21 31

Table 6-6. Special Values of the Element in vB

Value Result

–∞ QNaN

less than 0 QNaN

±0 –∞

+∞ +∞

NaN QNaN

estimate - log2 x() 1
32
------≤⎝ ⎠

⎛ ⎞ unless x 1– 1
8
---≤

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-70 Freescale Semiconductor

Figure 6-43 shows the usage of the vlogefp instruction. Each of the four elements in the vectors, vB and
vD, is 32 bits long.

Figure 6-43. vlogefp—Log2 Estimate Floating-Point for Four Floating-Point
Elements (32-Bit)

log2(x)log2(x)log2(x)log2(x)

vB

vD

x x x x

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-71

vmaddfp vmaddfp
Vector Multiply Add Floating-Point

vmaddfp vD,vA,vC,vB Form: VA

do i=0 to 127 by 32

vDi:i+31 ← RndToNearFP32(((vA)i:i+31 *fp (vC)i:i+31) +fp (vB)i:i+31)
end

Each single-precision floating-point word element in vA is multiplied by the corresponding
single-precision floating-point word element in vC. The corresponding single-precision floating-point
word element in vB is added to the product. The result is rounded to the nearest single-precision
floating-point number and placed into the corresponding word element of vD.

Note that a vector multiply floating-point instruction is not provided. The effect of such an instruction can
be obtained by using vmaddfp with vB containing the value -0.0 (0x8000_0000) in each of its four
single-precision floating-point word elements. (The value must be -0.0, not +0.0, in order to obtain the
IEEE-conforming result of -0.0 when the result of the multiplication is -0.)

Other registers altered:
• None

If VSCR[NJ]=1, every denormalized operand element is truncated to a 0 of the same sign before the
operation is carried out, and each denormalized result element truncates to a 0 of the same sign.
Figure 6-44 shows the usage of the vmaddfp instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-44. vmaddfp—Multiply-Add Four Floating-Point Elements (32-Bit)

04 vD vA vB vC 46

0 5 6 10 11 15 16 20 21 26 31

+

Prod

vB

vD

* * * *

+ + +

vC

vA

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-72 Freescale Semiconductor

vmaxfp vmaxfp
Vector Maximum Floating-Point

vmaxfp vD,vA,vB Form: VX

do i=0 to 127 by 32
if (vA)i:i+31 ≥fp (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each single-precision floating-point word element in vA is compared to the corresponding
single-precision floating-point word element in vB. The larger of the two single-precision floating-point
values is placed into the corresponding word element of vD.

The maximum of +0 and -0 is +0. The maximum of any value and a NaN is a QNaN.

Other registers altered:
• None

Figure 6-45 shows the usage of the vmaxfp instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-45. vmaxfp—Maximum of Four Floating-Point Elements (32-Bit)

04 vD vA vB 1034

0 5 6 10 11 15 16 20 21 31

≥fp≥fp≥fp≥fp

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-73

vmaxsb vmaxsb
Vector Maximum Signed Byte

vmaxsb vD,vA,vB Form: VX

do i=0 to 127 by 8
if (vA)i:i+7 ≥si (vB)i:i+7
 then vDi:i+7 ← (vA)i:i+7
 else vDi:i+7 ← (vB)i:i+7

end

Each element of vmaxsb is a byte.

Each signed-integer element in vA is compared to the corresponding signed-integer element in vB. The
larger of the two signed-integer values is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-46 shows the usage of the vmaxsb instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-46. vmaxsb—Maximum of Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 258

0 5 6 10 11 15 16 20 21 31

≥si ≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si≥si

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-74 Freescale Semiconductor

vmaxsh vmaxsh
Vector Maximum Signed Half Word

vmaxsh vD,vA,vB Form: VX

do i=0 to 127 by 16
if (vA)i:i+7 ≥si (vB)i:i+15
 then vDi:i+15 ← (vA)i:i+15
 else vDi:i+15 ← (vB)i:i+15

end

Each element of vmaxsh is a half word.

Each signed-integer element in vA is compared to the corresponding signed-integer element in vB. The
larger of the two signed-integer values is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-47 shows the usage of the vmaxsh instruction. Each of the eight elements in the vectors, vA, vB,
and vD, is 16 bits long.

Figure 6-47. vmaxsh—Maximum of Eight Signed Integer Elements (16-Bit)

04 vD vA vB 322

0 5 6 10 11 15 16 20 21 31

≥si≥si≥si≥si≥si≥si≥si≥si

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-75

vmaxsw vmaxsw
Vector Maximum Signed Word

vmaxsw vD,vA,vB Form: VX

do i=0 to 127 by 32
if (vA)i:i+31 ≥si (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each element of vmaxsw is a word.

Each signed-integer element in vA is compared to the corresponding signed-integer element in vB. The
larger of the two signed-integer values is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-48 shows the usage of the vmaxsw instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-48. vmaxsw—Maximum of Four Signed Integer Elements (32-Bit)

04 vD vA vB 386

0 5 6 10 11 15 16 20 21 31

≥si≥si≥si≥si

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-76 Freescale Semiconductor

vmaxub vmaxub
Vector Maximum Unsigned Byte

vmaxub vD,vA,vB Form: VX

do i=0 to 127 by 8
if (vA)i:i+7 ≥ui (vB)i:i+7
 then vDi:i+7 ← (vA)i:i+7
 else vDi:i+7 ← (vB)i:i+7

end

Each element of vmaxub is a byte.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer element in vB.
The larger of the two unsigned-integer values is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-49 shows the usage of the vmaxub instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-49. vmaxub—Maximum of Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 2

0 5 6 10 11 15 16 20 21 31

≥ui ≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-77

vmaxuh vmaxuh
Vector Maximum Unsigned Half Word

vmaxuh vD,vA,vB Form: VX

do i=0 to 127 by 16
if (vA)i:i+15 ≥ui (vB)i:i+15
 then vDi:i+15 ← (vA)i:i+15
 else vDi:i+15 ← (vB)i:i+15

end

Each element of vmaxuh is a half word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer element in vB.
The larger of the two unsigned-integer values is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-50 shows the usage of the vmaxuh instruction. Each of the eight elements in the vectors, vA, vB,
and vD, is 16 bits long.

Figure 6-50. vmaxuh—Maximum of Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 66

0 5 6 10 11 15 16 20 21 31

≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-78 Freescale Semiconductor

vmaxuw vmaxuw
Vector Maximum Unsigned Word

vmaxuw vD,vA,vB Form: VX

do i=0 to 127 by 32
if (vA)i:i+31 ≥ui (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each element of vmaxuw is a word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer element in vB.
The larger of the two unsigned-integer values is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-51 shows the usage of the vmaxuw instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-51. vmaxuw—Maximum of Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 130

0 5 6 10 11 15 16 20 21 31

≥ui≥ui≥ui≥ui

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-79

vmhaddshs vmhaddshs
Vector Multiply High and Add Signed Half Word Saturate

vmhaddshs vD,vA,vB,vC Form: VA

do i=0 to 127 by 16

prod0:31 ← (vA)i:i+15 *si (vB)i:i+15
 temp0:16 ← prod0:16 +int SignExtend((vC)i:i+15,17)
 vDi:i+15 ← SItoSIsat(temp0:16,16)

end

Each signed-integer half-word element in vA is multiplied by the corresponding signed-integer half-word
element in vB, producing a 32-bit signed-integer product. Bits 0–16 of the intermediate product are added
to the corresponding signed-integer half-word element in vC after they have been sign extended to 17 bits.
The 16-bit saturated result from each of the eight 17-bit sums is placed in register vD.

If the intermediate result is greater than (215-1) it saturates to (215-1) and if it is less than (-215) it saturates
to (-215).
The signed-integer result is placed into the corresponding half-word element of vD.
Other registers altered:

• Vector status and control register (VSCR):
Affected: SAT

Figure 6-52 shows the usage of the vmhaddshs instruction. Each of the eight elements in the vectors, vA,
vB, vC, and vD, is 16 bits long.

Figure 6-52. vmhaddshs—Multiply-High and Add Eight Signed Integer Elements (16-Bit)

04 vD vA vB vC 32

0 5 6 10 11 15 16 20 21 25 26 31

+

S

vA

vB

Prod

vC

Temp

vD

* * * * * * * *

+

S

Sat

1716

16
+

S

+

S

+

S

+

S

+

S

+

S

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-80 Freescale Semiconductor

vmhraddshs vmhraddshs
Vector Multiply High Round and Add Signed Half Word Saturate

vmhraddshs vD,vA,vB,vC Form: VA

do i=0 to 127 by 16
prod0:31 ← (vA)i:i+15 *si (vB)i:i+15
prod0:31 ← prod0:31 +int 0x0000_4000
temp0:16 ← prod0:16 +int SignExtend((vC)i:i+15,17)
(vD)i:i+15 ← SItoSIsat(temp0:16,16)

end

Each signed integer half-word element in register vA is multiplied by the corresponding signed integer
half-word element in register vB, producing a 32-bit signed integer product. The value 0x0000_4000 is
added to the product, producing a 32-bit signed integer sum. Bits 0–16 of the sum are added to the
corresponding signed integer half-word element in register vD.

If the intermediate result is greater than (215-1) it saturates to (215-1) and if it is less than (-215) it saturates
to (-215).

The signed integer result is and placed into the corresponding half-word element of register vD.
Figure 6-53 shows the usage of the vmhraddshs instruction. Each of the eight elements in the vectors, vA,
vB, vC, and vD, is 16 bits long.

Figure 6-53. vmhraddshs—Multiply-High Round and Add Eight Signed Integer
Elements (16-Bit)

04 vD vA vB vC 33

0 5 6 10 11 15 16 20 21 25 26 31

+

vA

vB

Prod

Const

Temp

vD

* * * * * * * *

+

Sat

1716

16
+ + ++++

0......01

S vCS S S SSSS

18

0......01 0......01 0......01 0......01 0......01 0......01 0......01

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-81

vminfp vminfp
Vector Minimum Floating-Point

vminfp vD,vA,vB Form: VX

do i=0 to 127 by 32
if (vA)i:i+31 <fp (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each single-precision floating-point word element in register vA is compared to the corresponding
single-precision floating-point word element in register vB. The smaller of the two single-precision
floating-point values is placed into the corresponding word element of register vD.

The minimum of +0.0 and -0.0 is -0.0. The minimum of any value and a NaN is a QNaN.

If VSCR[NJ]=1, every denormalized operand element is truncated to 0 before the comparison is made.

Figure 6-54 shows the usage of the vminfp instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-54. vminfp—Minimum of Four Floating-Point Elements (32-Bit)

04 vD vA vB 1098

0 5 6 10 11 15 16 20 21 31

<fp<fp<fp<fp

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-82 Freescale Semiconductor

vminsb vminsb
Vector Minimum Signed Byte

vminsb vD,vA,vB Form: VX

do i=0 to 127 by 8
if (vA)i:i+7 <si (vB)i:i+7
 then vDi:i+7 ← (vA)i:i+7
 else vDi:i+7 ← (vB)i:i+7

end

Each element of vminsb is a byte.

Each signed-integer element in vA is compared to the corresponding signed-integer element in vB. The
larger of the two signed-integer values is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-55 shows the usage of the vminsb instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-55. vminsb—Minimum of Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 770

0 5 6 10 11 15 16 20 21 31

<si <si<si<si<si<si<si<si<si<si<si<si<si<si<si<si

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-83

vminsh vminsh
Vector Minimum Signed Half Word

vminsh vD,vA,vB Form: VX

do i=0 to 127 by 16
if (vA)i:i+15<si (vB)i:i+15
 then vDi:i+15 ← (vA)i:i+15
 else vDi:i+15 ← (vB)i:i+15

end

Each element of vminsh is a half word.

Each signed-integer element in vA is compared to the corresponding signed-integer element in vB. The
larger of the two signed-integer values is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-56 shows the usage of the vminsh instruction. Each of the eight elements in the vectors, vA, vB,
and vD, is 16 bits long.

Figure 6-56. vminsh—Minimum of Eight Signed Integer Elements (16-Bit)

04 vD vA vB 834

0 5 6 10 11 15 16 20 21 31

<si<si<si<si<si<si<si<si

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-84 Freescale Semiconductor

vminsw vminsw
Vector Minimum Signed Word

vminsw vD,vA,vB Form: VX

do i=0 to 127 by 32
if (vA)i:i+31 <si (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each element of vminsw is a word.

Each signed-integer element in vA is compared to the corresponding signed-integer element in vB. The
larger of the two signed-integer values is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-57 shows the usage of the vminsw instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-57. vminsw—Minimum of Four Signed Integer Elements (32-Bit)

04 vD vA vB 898

0 5 6 10 11 15 16 20 21 31

<si<si<si<si

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-85

vminub vminub
Vector Minimum Unsigned Byte

vminub vD,vA,vB Form: VX

do i=0 to 127 by 8
if (vA)i:i+7 <ui (vB)i:i+7
 then vDi:i+7 ← (vA)i:i+7
 else vDi:i+7 ← (vB)i:i+7

end

Each element of vminub is a byte.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer element in vB.
The larger of the two unsigned-integer values is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-58 shows the usage of the vminub instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-58. vminub—Minimum of Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 514

0 5 6 10 11 15 16 20 21 31

<ui <ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui<ui

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-86 Freescale Semiconductor

vminuh vminuh
Vector Minimum Unsigned Half Word

vminuh vD,vA,vB Form: VX

do i=0 to 127 by 16
if (vA)i:i+15 <ui (vB)i:i+15
 then vDi:i+15 ← (vA)i:i+15
 else vDi:i+15 ← (vB)i:i+15

end

Each element of vminuh is a half word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer element in vB.
The larger of the two unsigned-integer values is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-59 shows the usage of the vminuh instruction. Each of the eight elements in the vectors, vA, vB,
and vD, is 16 bits long.

Figure 6-59. vminuh—Minimum of Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 578

0 5 6 10 11 15 16 20 21 31

<ui<ui<ui<ui<ui<ui<ui<ui

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-87

vminuw vminuw
Vector Minimum Unsigned Word

vminuw vD,vA,vB Form: VX

do i=0 to 127 by 32
if (vA)i:i+31 <ui (vB)i:i+31
 then vDi:i+31 ← (vA)i:i+31
 else vDi:i+31 ← (vB)i:i+31

end

Each element of vminuw is a word.

Each unsigned-integer element in vA is compared to the corresponding unsigned-integer element in vB.
The larger of the two unsigned-integer values is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-60 shows the usage of the vminuw instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-60. vminuw—Minimum of Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 642

0 5 6 10 11 15 16 20 21 31

<ui<ui<ui<ui

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-88 Freescale Semiconductor

vmladduhm vmladduhm
Vector Multiply Low and Add Unsigned Half Word Modulo

vmladduhm vD,vA,vB,vC Form: VA

do i=0 to 127 by 16
prod0:31 ← (vA)i:i+15 *ui (vB)i:i+15
vDi:i+15 ← prod0:31 +int (vC)i:i+15

end

Each integer half-word element in vA is multiplied by the corresponding integer half-word element in vB,
producing a 32-bit integer product. The product is added to the corresponding integer half-word element
in vC. The integer result is placed into the corresponding half-word element of vD.

Note that vmladduhm can be used for unsigned or signed integers.

Other registers altered:
• None

Figure 6-61 shows the usage of the vmladduhm instruction. Each of the eight elements in the vectors, vA,
vB, vC, and vD, is 16 bits long.

Figure 6-61. vmladduhm—Multiply-Add of Eight Integer Elements (16-Bit)

04 vD vA vB vC 34

0 5 6 10 11 15 16 20 21 25 26 31

+

vA

vB

Prod

vC

Temp

vD

* * * * * * * *

+ + + ++++

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-89

vmrghb vmrghb
Vector Merge High Byte

vmrghb vD,vA,vB Form: VX

do i=0 to 63 by 8
vDi*2:(i*2)+15 ← (vA)i:i+7 || (vB)i:i+7

end

Each element of vmrghb is a byte.

The elements in the high-order half of vA are placed, in the same order, into the even-numbered elements
of vD. The elements in the high-order half of vB are placed, in the same order, into the odd-numbered
elements of vD.

Other registers altered:
• None

Figure 6-62 shows the usage of the vmrghb instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-62. vmrghb—Merge Eight High-Order Elements (8-Bit)

04 vD vA vB 12

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-90 Freescale Semiconductor

vmrghh vmrghh
Vector Merge High Half word

vmrghh vD,vA,vB Form: VX

do i=0 to 63 by 16
vDi*2:(i*2)+31 ← (vA)i:i+15 || (vB)i:i+15

end

Each element of vmrghh is a half word.

The elements in the high-order half of vA are placed, in the same order, into the even-numbered elements
of vD. The elements in the high-order half of vB are placed, in the same order, into the odd-numbered
elements of vD.

Other registers altered:
• None

Figure 6-63 shows the usage of the vmrghh instruction. Each of the eight elements in the vectors, vA, vB,
and vD, is 16 bits long.

Figure 6-63. vmrghh—Merge Four High-Order Elements (16-Bit)

04 vD vA vB 76

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-91

vmrghw vmrghw
Vector Merge High Word

vmrghw vD,vA,vB Form: VX

do i=0 to 63 by 32
vDi*2:(i*2)+63 ← (vA)i:i+31 || (vB)i:i+31

end

Each element of vmrghw is a word.

The elements in the high-order half of vA are placed, in the same order, into the even-numbered elements
of vD. The elements in the high-order half of vB are placed, in the same order, into the odd-numbered
elements of vD.

Other registers altered:
• None

Figure 6-64 shows the usage of the vmrghw instruction. Each of the two elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-64. vmrghw—Merge Two High-Order Elements (32-Bit)

04 vD vA vB 140

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-92 Freescale Semiconductor

vmrglb vmrglb
Vector Merge Low Byte

vmrglb vD,vA,vB Form: VX

do i=0 to 63 by 8
vDi*2:(i*2)+15 ← (vA)i+64:i+71 || (vB)i+64:i+71

end

Each element offer vmrglb is a byte.

The elements in the low-order half of vA are placed, in the same order, into the even-numbered elements
of vD. The elements in the low-order half of vB are placed, in the same order, into the odd-numbered
elements of vD.

Other registers altered:
• None

Figure 6-65 shows the usage of the vmrglb instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-65. vmrglb—Merge Eight Low-Order Elements (8-Bit)

04 vD vA vB 268

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-93

vmrglh vmrglh
Vector Merge Low Half Word

vmrglh vD,vA,vB Form: VX

do i=0 to 63 by 16
vDi*2:(i*2)+31 ← (vA)i+64:i+79 || (vB)i+64:i+79

end

Each element of vmrglh is a half word.

The elements in the low-order half of vA are placed, in the same order, into the even-numbered elements
of vD. The elements in the low-order half of vB are placed, in the same order, into the odd-numbered
elements of vD.

Other registers altered:
• None

Figure 6-66 shows the usage of the vmrglh instruction. Each of the eight elements in the vectors, vA, vB,
and vD, is 16 bits long.

Figure 6-66. vmrglh—Merge Four Low-Order Elements (16-Bit)

04 vD vA vB 332

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-94 Freescale Semiconductor

vmrglw vmrglw
Vector Merge Low Word

vmrglw vD,vA,vB Form: VX

do i=0 to 63 by 32
vDi*2:(i*2)+63 ← (vA)i+64:i+95 || (vB)i+64:i+95

end

Each element of vmrglw is a word.

The elements in the low-order half of vA are placed, in the same order, into the even-numbered elements
of vD. The elements in the low-order half of vB are placed, in the same order, into the odd-numbered
elements of vD.

Other registers altered:
• None

Figure 6-67 shows the usage of the vmrglw instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-67. vmrglw—Merge Four Low-Order Elements (32-Bit)

04 vD vA vB 396

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-95

vmsummbm vmsummbm
Vector Multiply Sum Mixed-Sign Byte Modulo

vmsummbm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32
temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 8

prod0:15 ← (vA)i+j:i+j+7 *sui (vB)i+j:i+j+7
temp0:31 ← temp0:31 +int SignExtend(prod0:15,32)
end

vDi:i+31 ← temp0:31
end

For each word element in vC the following operations are performed in the order shown.
• Each of the four signed-integer byte elements contained in the corresponding word element of vA

is multiplied by the corresponding unsigned-integer byte element in vB, producing a signed-integer
16-bit product.

• The signed-integer modulo sum of these four products is added to the signed-integer word element
in vC.

• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:
• None

Figure 6-68 shows the usage of the vmsummbm instruction. Each of the sixteen elements in the vectors,
vA and vB, are 8 bits long. Each of the four elements in the vectors, vC and vD, are 32 bits long.

Figure 6-68. vmsummbm—Multiply-Sum of Integer Elements (8- to 32-Bit)

04 vD vA vB vC 37

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vD

* * * * * * * * * * * * * * * *

+ + + +

vC

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-96 Freescale Semiconductor

vmsumshm vmsumshm
Vector Multiply Sum Signed Half Word Modulo

vmsumshm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *si (vB)i+j:i+j+15
temp0:31 ← temp0:31 +int prod0:31
vDi:i+31 ← temp0:31

end

end

For each word element in vC the following operations are performed in the order shown.
• Each of the two signed-integer half-word elements contained in the corresponding word element

of vA is multiplied by the corresponding signed-integer half-word element in vB, producing a
signed-integer 32-bit product.

• The signed-integer modulo sum of these two products is added to the signed-integer word element
in vC.

• The signed-integer result is placed into the corresponding word element of vD.
Other registers altered:

• None
Figure 6-69 shows the usage of the vmsumshm instruction. Each of the eight elements in the vectors, vA
and vB, are 16 bits long. Each of the four elements in the vectors, vC and vD, are 32 bits long.

Figure 6-69. vmsumshm—Multiply-Sum of Signed Integer Elements (16- to 32-Bit)

04 vD vA vB vC 40

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * *

+ + + +

*

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-97

vmsumshs vmsumshs
Vector Multiply Sum Signed Half Word Saturate

vmsumshs vD,vA,vB,vC Form: VA

do i=0 to 127 by 32
temp0:33 ← SignExtend((vC)i:i+31,34)
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *si (vB)i+j:i+j+15
temp0:33 ← temp0:33 +int SignExtend(prod0:31,34)
vDi:i+31 ← SItoSIsat(temp0:33,32)

end

end

For each word element in vC the following operations are performed in the order shown.
• Each of the two signed-integer half-word elements in the corresponding word element of vA is

multiplied by the corresponding signed-integer half-word element in vB, producing a
signed-integer 32-bit product.

• The signed-integer sum of these two products is added to the signed-integer word element in vC.
• If this intermediate result is greater than (231-1) it saturates to (231-1) and if it is less than -231 it

saturates to -231.
• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:
• SAT

Figure 6-70 shows the usage of the vmsumshs instruction. Each of the eight elements in the vectors, vA
and vB, are 16 bits long. Each of the four elements in the vectors, vC and vD, are 32 bits long.

Figure 6-70. vmsumshs—Multiply-Sum of Signed Integer Elements (16- to 32-Bit)

04 vD vA vB vC 41

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * *

+ + + +

*

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-98 Freescale Semiconductor

vmsumubm vmsumubm
Vector Multiply Sum Unsigned Byte Modulo

vmsumubm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 8

prod0:15 ← (vA)i+j:i+j+7 *ui (vB)i+j:i+j+7
temp0:32 ← temp0:32 +int ZeroExtend(prod0:15,32)
vDi:i+31 ← temp0:31

end

end

For each word element in vC the following operations are performed in the order shown.
• Each of the four unsigned-integer byte elements contained in the corresponding word element of

vA is multiplied by the corresponding unsigned-integer byte element in vB, producing an
unsigned-integer 16-bit product.

• The unsigned-integer modulo sum of these four products is added to the unsigned-integer word
element in vC.

• The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:
• None

Figure 6-71 shows the usage of the vmsumubm instruction. Each of the sixteen elements in the vectors,
vA and vB, are 8 bits long. Each of the four elements in the vectors, vC and vD, are 32 bits long.

Figure 6-71. vmsumubm—Multiply-Sum of Unsigned Integer Elements (8- to 32-Bit)

04 vD vA vB vC 36

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * * * * * * * * * * *

+ + + +

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-99

vmsumuhm vmsumuhm
Vector Multiply Sum Unsigned Half Word Modulo

vmsumuhm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *ui (vB)i+j:i+j+15
temp0:31 ← temp0:31 +int prod0:31
vDi:i+31 ← temp2:33

end

end

For each word element in vC the following operations are performed in the order shown.
• Each of the two unsigned-integer half-word elements contained in the corresponding word element

of vA is multiplied by the corresponding unsigned-integer half-word element in vB, producing a
unsigned-integer 32-bit product.

• The unsigned-integer sum of these two products is added to the unsigned-integer word element in
vC.

• The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:
• None

Figure 6-72 shows the usage of the vmsumuhm instruction. Each of the eight elements in the vectors, vA
and vB, are 16 bits long. Each of the four elements in the vectors, vC and vD, are 32 bits long.

Figure 6-72. vmsumuhm—Multiply-Sum of Unsigned Integer Elements (16- to 32-Bit)

04 vD vA vB vC 38

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * *

+ + + +

*

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-100 Freescale Semiconductor

vmsumuhs vmsumuhs
Vector Multiply Sum Unsigned Half Word Saturate

vmsumuhs vD,vA,vB,vC Form: VA

do i=0 to 127 by 32

temp0:33 ← ZeroExtend((vC)i:i+31,34)
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *ui (vB)i+j:i+j+15
temp0:33 ← temp0:33 +int ZeroExtend(prod0:31,34)
vDi:i+31 ← UItoUIsat(temp0:33,32)

end

end

For each word element in vC the following operations are performed in the order shown.
• Each of the two unsigned-integer half-word elements contained in the corresponding word element

of vA is multiplied by the corresponding unsigned-integer half-word element in vB, producing an
unsigned-integer 32-bit product.

• The unsigned-integer sum of these two products is saturate-added to the unsigned-integer word
element in vC.

• The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:
• SAT

Figure 6-73 shows the usage of the vmsumuhs instruction. Each of the eight elements in the vectors, vA
and vB, are 16 bits long. Each of the four elements in the vectors, vC and vD, are 32 bits long.

Figure 6-73. vmsumuhs—Multiply-Sum of Unsigned Integer Elements (16- to 32-Bit)

04 vD vA vB vC 39

0 5 6 10 11 15 16 20 21 25 26 31

vA

vB

Prod

vC

vD

* * * * * * *

+ + + +

*

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-101

vmulesb vmulesb
Vector Multiply Even Signed Byte

vmulesb vD,vA,vB Form: VX

do i=0 to 127 by 16
prod0:15 ← (vA)i:i+7 *si (vB)i:i+7
 vDi:i+15 ← prod0:15

end

Each even-numbered signed-integer byte element in vA is multiplied by the corresponding signed-integer
byte element in vB. The eight 16-bit signed-integer products are placed, in the same order, into the eight
half words of vD.

Other registers altered:
• None

Figure 6-74 shows the usage of the vmulesb instruction. Each of the sixteen elements in the vectors, vA
and vB, is 8 bits long. Each of the eight elements in the vector, vD, is 16 bits long.

Figure 6-74. vmulesb—Even Multiply of Eight Signed Integer Elements (8-Bit)

04 vD vA vB 776

0 5 6 10 11 15 16 20 21 31

** * * * * * *

vA

vB

vD

ØØØØØØØØ

ØØØØØØØØ

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-102 Freescale Semiconductor

vmulesh vmulesh
Vector Multiply Even Signed Half Word

vmulesh vD,vA,vB Form: VX

do i=0 to 127 by 32
prod0:31 ← (vA)i:i+15 *si (vB)i:i+15
vDi:i+31 ← prod0:31

end

Each even-numbered signed-integer half-word element in vA is multiplied by the corresponding
signed-integer half-word element in vB. The four 32-bit signed-integer products are placed, in the same
order, into the four words of vD.

Other registers altered:
• None

Figure 6-75 shows the usage of the vmulesh instruction. Each of the eight elements in the vectors, vA and
vB, is 16 bits long. Each of the four elements in the vector, vD, is 32 bits long.

Figure 6-75. vmulesh—Even Multiply of Four Signed Integer Elements (16-Bit)

04 vD vA vB 840

0 5 6 10 11 15 16 20 21 31

ØØØØ

*

vA

vB

vD

ØØØØ

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-103

vmuleub vmuleub
Vector Multiply Even Unsigned Byte

vmuleub vD,vA,vB Form: VX

do i=0 to 127 by 16
prod0:15 ← (vA)i:i+7 *ui (vB)i:i+7
(vD)i:i+15 ← prod0:15

end

Each even-numbered unsigned-integer byte element in register vA is multiplied by the corresponding
unsigned-integer byte element in register vB. The eight 16-bit unsigned-integer products are placed, in the
same order, into the eight half words of register vD.

Other registers altered:
• None

Figure 6-76 shows the usage of the vmuleub instruction. Each of the sixteen elements in the vectors, vA
and vB, is 8 bits long. Each of the eight elements in the vector, vD, is 16 bits long.

Figure 6-76. vmuleub—Even Multiply of Eight Unsigned Integer Elements (8-Bit)

04 vD vA vB 520

0 5 6 10 11 15 16 20 21 31

** * * * * * *

vA

vB

vD

ØØØØØØØØ

ØØØØØØØØ

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-104 Freescale Semiconductor

vmuleuh vmuleuh
Vector Multiply Even Unsigned Half Word

vmuleuh vD,vA,vB Form: VX

do i=0 to 127 by 32
prod0:31 ← (vA)i:i+15 *ui (vB)i:i+15
(vD)i:i+31 ← prod0:31

end

Each even-numbered unsigned-integer half-word element in register vA is multiplied by the corresponding
unsigned-integer half-word element in register vB. The four 32-bit unsigned-integer products are placed,
in the same order, into the four words of register vD.

Other registers altered:
• None

Figure 6-77 shows the usage of the vmuleuh instruction. Each of the eight elements in the vectors, vA and
vB, is 16 bits long. Each of the four elements in the vector, vD, is 32 bits long.

Figure 6-77. vmuleuh—Even Multiply of Four Unsigned Integer Elements (16-Bit)

04 vD vA vB 584

0 5 6 10 11 15 16 20 21 31

ØØØØ

*

vA

vB

vD

ØØØØ

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-105

vmulosb vmulosb
Vector Multiply Odd Signed Byte

vmulosb vD,vA,vB Form: VX

do i=0 to 127 by 16
prod0:15 ← (vA)i+8:i+15 *si (vB)i+8:i+15
vDi:i+15 ← prod0:15

end

Each odd-numbered signed-integer byte element in vA is multiplied by the corresponding signed-integer
byte element in vB. The eight 16-bit signed-integer products are placed, in the same order, into the eight
half words of vD.

Other registers altered:
• None

Figure 6-78 shows the usage of the vmulosb instruction. Each of the sixteen elements in the vectors, vA
and vB, is 8 bits long. Each of the eight elements in the vector, vD, is 16 bits long.

Figure 6-78. vmulosb—Odd Multiply of Eight Signed Integer Elements (8-Bit)

04 vD vA vB 264

0 5 6 10 11 15 16 20 21 31

* *******

vA

vB

vD

Ø Ø Ø Ø Ø Ø Ø Ø

Ø Ø Ø Ø Ø Ø Ø Ø

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-106 Freescale Semiconductor

vmulosh vmulosh
Vector Multiply Odd Signed Half Word

vmulosh vD,vA,vB Form: VX

do i=0 to 127 by 32
prod0:31 ← (vA)i+16:i+31 *si (vB)i+16:i+31
vDi:i+31 ← prod0:31

end

Each odd-numbered signed-integer half-word element in vA is multiplied by the corresponding
signed-integer half-word element in vB. The four 32-bit signed-integer products are placed, in the same
order, into the four words of vD.

Other registers altered:
• None

Figure 6-79 shows the usage of the vmuleuh instruction. Each of the eight elements in the vectors, vA and
vB, is 16 bits long. Each of the four elements in the vector, vD, is 32 bits long.

Figure 6-79. vmuleuh—Odd Multiply of Four Unsigned Integer Elements (16-Bit)

04 vD vA vB 328

0 5 6 10 11 15 16 20 21 31

Ø Ø Ø Ø

vA

vB

vD

Ø Ø Ø Ø

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-107

vmuloub vmuloub
Vector Multiply Odd Unsigned Byte

vmuloub vD,vA,vB Form: VX

do i=0 to 127 by 8
prod0:15 ← (vA)i+8:i+15 *ui (vB)i+n:i+15
vDi:i+15 ← prod0:15

end

Each odd-numbered unsigned-integer byte element in vA is multiplied by the corresponding
unsigned-integer byte element in vB. The eight 16-bit unsigned-integer products are placed, in the same
order, into the eight half words of vD.

Other registers altered:
• None

Figure 6-80 shows the usage of the vmuloub instruction. Each of the sixteen elements in the vectors, vA
and vB, is 8 bits long. Each of the eight elements in the vector, vD, is 16 bits long.

Figure 6-80. vmuloub—Odd Multiply of Eight Unsigned Integer Elements (8-Bit)

04 vD vA vB 8

0 5 6 10 11 15 16 20 21 31

* *******

vA

vB

vD

Ø Ø Ø Ø Ø Ø Ø Ø

Ø Ø Ø Ø Ø Ø Ø Ø

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-108 Freescale Semiconductor

vmulouh vmulouh
Vector Multiply Odd Unsigned Half Word

vmulouh vD,vA,vB Form: VX

do i=0 to 127 by 16
prod0:31 ← (vA)i+16:i+31 *ui (vB)i+n:i+311
vDi:i+31 ← prod0:31

end

Each odd-numbered unsigned-integer half-word element in vA is multiplied by the corresponding
unsigned-integer half-word element in vB. The four 32-bit unsigned-integer products are placed, in the
same order, into the four words of vD.

Other registers altered:
• None

Figure 6-81 shows the usage of the vmulouh instruction. Each of the eight elements in the vectors, vA and
vB, is 16 bits long. Each of the four elements in the vector, vD, is 32 bits long.

Figure 6-81. vmulouh—Odd Multiply of Four Unsigned Integer Elements (16-Bit)

04 vD vA vB 72

0 5 6 10 11 15 16 20 21 31

Ø Ø Ø Ø

vA

vB

vD

Ø Ø Ø Ø

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-109

vnmsubfp vnmsubfp
Vector Negative Multiply-Subtract Floating-Point

vnmsubfp vD,vA,vC,vB Form: VA

do i=0 to 127 by 32
vDi:i+31 ← -RndToNearFP32(((vA)i:i+31 *fp (vC)i:i+31) -fp (vB)i:i+31)

end

Each single-precision floating-point word element in vA is multiplied by the corresponding
single-precision floating-point word element in vC. The corresponding single-precision floating-point
word element in vB is subtracted from the product. The sign of the difference is inverted. The result is
rounded to the nearest single-precision floating-point number and placed into the corresponding word
element of vD.

Note that only one rounding occurs in this operation. Also note that a QNaN result is not negated.

Other registers altered:
• None

Figure 6-82 shows the usage of the vnmsubfp instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long.

Figure 6-82. vnmsubfp—Negative Multiply-Subtract of Four Floating-Point Elements (32-Bit)

04 vD vA vB vC 47

0 5 6 10 11 15 16 20 21 25 26 31

-

vA

vC

Prod

vB

Invert &

* * * *

- - -

vD

Round

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-110 Freescale Semiconductor

vnor vnor
Vector Logical NOR

vnor vD,vA,vB Form: VX

vD ← ¬((vA) | (vB))

The contents of vA are bitwise ORed with the contents of vB and the complemented result is placed into
vD.

Other registers altered:
• None

Simplified mnemonics:

vnot vD, vS equivalent to vnor vD, vS, vS

Figure 6-83 shows the usage of the vnor instruction.

Figure 6-83. vnor—Bitwise NOR of 128-Bit Vector

04 vD vA vB 1284

0 5 6 10 11 15 16 20 21 31

|

vB

Intermediate

vA

vD

¬

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-111

vor vor
Vector Logical OR

vor vD,vA,vB Form: VX

vD ← (vA) | (vB)

The contents of vA are ORed with the contents of vB and the result is placed into vD.

Other registers altered:
• None

Simplified mnemonics:

vmr vD, vS equivalent to vor vD, vS, vS

Figure 6-84 shows the usage of the vor instruction.

Figure 6-84. vor—Bitwise OR of 128-Bit Vector

04 vD vA vB 1156

0 5 6 10 11 15 16 20 21 31

|

vB

vA

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-112 Freescale Semiconductor

vperm vperm
Vector Permute

vperm vD,vA,vB,vC Form: VA

temp0:255 ← (vA) || (vB)
do i=0 to 127 by 8

b ← (vC)i+3:i+7 || 0b000
vDi:i+7 ← tempb:b+7

end

Let the source vector be the concatenation of the contents of vA followed by the contents of vB. For each
integer i in the range 0–15, the contents of the byte element in the source vector specified in bits 3–7 of
byte element i in vC are placed into byte element i of vD.

Other registers altered:
• None

Programming note: See the programming notes with the Load Vector for Shift Left and Load Vector for
Shift Right instructions for examples of usage on the vperm instruction.

Figure 6-85 shows the usage of the vperm instruction. Each of the sixteen elements in the vectors, vA, vB,
vC, and vD, is 8 bits long.

Figure 6-85. vperm—Concatenate Sixteen Integer Elements (8-Bit)

04 vD vA vB vC 43

0 5 6 10 11 15 16 20 21 25 26 31

vC1 14 18 10 16 15 19 1A 1C 1C 1C 13 8 1D 1B 0E

vA

vB

vD

0 1 2 3 4 5 6 7 8 9 A B C D E F

10 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1F11 1E

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-113

vpkpx vpkpx
Vector Pack Pixel32

vpkpx vD,vA,vB Form: VX

do i=0 to 63 by 16

vDi ← (vA)i*2+7
vDi+1:i+5 ← (vA)(i*2)+8:(i*2)+12
vDi+6:i+1 ← (vA)(i*2)+16:(i*2)+20
vDi+11:i+15 ← (vA)((i*2)+24:(i*2)+28
vDi+64 ← (vB)(i*2)+7
vDi+65:i+69 ← (vB)(i*2)+8:(i*2)+12
vDi+70:i+74 ← (vB)(i*2)+16:(i*2)+20
vDi+75:i+79 ← (vB)(i*2)+24:(i*2)+28

end

The source vector is the concatenation of the contents of vA followed by the contents of vB. Each 32-bit
word element in the source vector is packed to produce a 16-bit half-word value as described below and
placed into the corresponding half-word element of vD. A word is packed to 16 bits by concatenating, in
order, the following bits.

• Bit 7 of the first byte (bit 7 of the word)
• Bits 0–4 of the second byte (bits 8–12 of the word)
• Bits 0–4 of the third byte (bits 16–20 of the word)
• Bits 0–4 of the fourth byte (bits 24–28 of the word)

Figure 6-86 shows which bits of the source word are packed to form the half word in the destination
register.

Figure 6-86. vpkpx—How a Word is Packed to a Half Word

Other registers altered:
• None

04 vD vA vB 782

0 5 6 10 11 15 16 20 21 31

Source Word

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vD Packed Half Word

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 8 9 10 11 12 16 17 18 19 20 24 25 26 27 28

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-114 Freescale Semiconductor

Programming Note: Each source word can be considered to be a 32-bit pixel consisting of four 8-bit
channels. Each target half word can be considered to be a 16-bit pixel consisting of one 1-bit channel and
three 5-bit channels. A channel can be used to specify the intensity of a particular color, such as red, green,
or blue, or to provide other information needed by the application.

Figure 6-87 shows the usage of the vpkpx instruction. Each of the four elements in the vectors, vA and
vB, is 32 bits long. Each of the eight elements in the vector, vD, is 16 bits long.

Figure 6-87. vpkpx—Pack Eight Elements (32-Bit) to Eight Elements (16-Bit)

vA vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-115

vpkshss vpkshss
Vector Pack Signed Half Word Signed Saturate

vpkshss vD,vA,vB Form: VX

do i=0 to 63 by 8
vDi:i+7 ← SItoSIsat((vA)i*2:(i*2)+15,8)
vDi+64:i+71 ← SItoSIsat((vB)i*2:(i*2)+15,8)

end

Let the source vector be the concatenation of the contents of vA followed by the contents of vB.

Each signed integer half-word element in the source vector is converted to an 8-bit signed integer. If the
value of the element is greater than (2 7-1) the result saturates to (27-1) and if the value is less than -27 the
result saturates to -27. The result is placed into the corresponding byte element of vD.

Other registers altered:
• SAT

Figure 6-88 shows the usage of the vpkshss instruction. Each of the eight elements in the vectors, vA and
vB, is 16 bits long. Each of the sixteen elements in the vector, vD, is 8 bits long.

Figure 6-88. vpkshss—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen Signed
Integer Elements (8-Bit)

04 vD vA vB 398

0 5 6 10 11 15 16 20 21 31

vA vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-116 Freescale Semiconductor

vpkshus vpkshus
Vector Pack Signed Half Word Unsigned Saturate

vpkshus vD,vA,vB Form: VX

do i=0 to 63 by 8
vDi:i+7 ← SItoUIsat((vA)i*2:(i*2)+7,8)
vDi+64:i+71 ← SItoUIsat((vB)i*2:(i*2)+7,8)

end

Let the source vector be the concatenation of the contents of vA followed by the contents of vB.

Each signed integer half-word element in the source vector is converted to an 8-bit unsigned integer. If the
value of the element is greater than (28-1) the result saturates to (28-1) and if the value is less than 0 the
result saturates to 0. The result is placed into the corresponding byte element of vD.

Other registers altered:
• SAT

Figure 6-89 shows the usage of the vpkshus instruction. Each of the eight elements in the vectors, vA and
vB, is 16 bits long. Each of the sixteen elements in the vector, vD, is 8 bits long.

Figure 6-89. vpkshus—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen Unsigned
Integer Elements (8-Bit)

04 vD vA vB 270

0 5 6 10 11 15 16 20 21 31

vA vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-117

vpkswss vpkswss
Vector Pack Signed Word Signed Saturate

vpkswss vD,vA,vB Form: VX

do i=0 to 63 by 16
vDi:i+15 ← SItoSIsat((vA)i*2:(i*2)+31,16)
vDi+64:i+79 ← SItoSIsat((vB)i*2:(i*2)+31,16)

end

Let the source vector be the concatenation of the contents of vA followed by the contents of vB.

Each signed integer word element in the source vector is converted to a 16-bit signed integer half word. If
the value of the element is greater than (215-1) the result saturates to (215-1) and if the value is less than -215
the result saturates to -215. The result is placed into the corresponding half-word element of vD.

Other registers altered:
• SAT

Figure 6-90 shows the usage of the vpkswss instruction. Each of the four elements in the vectors, vA and
vB, is 32 bits long. Each of the eight elements in the vector, vD, is 16 bits long.

g

Figure 6-90. vpkswss—Pack Eight Signed Integer Elements (32-Bit) to Eight Signed
Integer Elements (16-Bit)

04 vD vA vB 462

0 5 6 10 11 15 16 20 21 31

vA vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-118 Freescale Semiconductor

vpkswus vpkswus
Vector Pack Signed Word Unsigned Saturate

vpkswus vD,vA,vB Form: VX

do i=0 to 63 by 16
vDi:i+15 ← SItoUIsat((vA)i*2:(i*2)+31,16)
vDi+64:i+79 ← SItoUIsat((vB)i*2:(i*2)+31,16)

end

Let the source vector be the concatenation of the contents of vA followed by the contents of vB.

Each signed integer word element in the source vector is converted to a 16-bit unsigned integer. If the value
of the element is greater than (216-1) the result saturates to (216-1) and if the value is less than 0 the result
saturates to 0. The result is placed into the corresponding half-word element of vD.

Other registers altered:
• SAT

Figure 6-91 shows the usage of the vpkswus instruction. Each of the four elements in the vectors, vA and
vB, is 32 bits long. Each of the eight elements in the vector, vD, is 16 bits long.

Figure 6-91. vpkswus—Pack Eight Signed Integer Elements (32-Bit) to Eight Unsigned
Integer Elements (16-Bit)

04 vD vA vB 334

0 5 6 10 11 15 16 20 21 31

vA vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-119

vpkuhum vpkuhum
Vector Pack Unsigned Half Word Unsigned Modulo

vpkuhum vD,vA,vB Form: VX

do i=0 to 63 by 8
vDi:i+7 ← (vA)(i*2)+8:(i*2)+15
vDi+64:i+71 ← (vB)(i*2)+8:(i*2)+15

end

Let the source vector be the concatenation of the contents of vA followed by the contents of vB.

The low-order byte of each half-word element in the source vector is placed into the corresponding byte
element of vD.

Other registers altered:
• None

Figure 6-92 shows the usage of the vpkuhum instruction. Each of the eight elements in the vectors, vA
and vB, is 16 bits long. Each of the sixteen elements in the vector, vD, is 8 bits long.

Figure 6-92. vpkuhum—Pack Sixteen Unsigned Integer Elements (16-Bit) to Sixteen
Unsigned Integer Elements (8-Bit)

04 vD vA vB 14

0 5 6 10 11 15 16 20 21 31

vA vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-120 Freescale Semiconductor

vpkuhus vpkuhus
Vector Pack Unsigned Half Word Unsigned Saturate

vpkuhus vD,vA,vB Form: VX

do i=0 to 63 by 8
vDi:i+7 ← UItoUIsat((vA)i*2:(i*2)+15,8)
vDi+64:i+71 ← UItoUIsat((vB)i*2:(i*2)+15,8)

end

Let the source vector be the concatenation of the contents of vA followed by the contents of vB.

Each unsigned integer half-word element in the source vector is converted to an 8-bit unsigned integer. If
the value of the element is greater than (28-1) the result saturates to (28-1). The result is placed into the
corresponding byte element of vD.

Other registers altered:
• SAT

Figure 6-93 shows the usage of the vpkuhus instruction. Each of the eight elements in the vectors, vA and
vB, is 16 bits long. Each of the sixteen elements in the vector, vD, is 8 bits long.

Figure 6-93. vpkuhus—Pack Sixteen Unsigned Integer Elements (16-Bit) to Sixteen
Unsigned Integer Elements (8-Bit)

04 vD vA vB 142

0 5 6 10 11 15 16 20 21 31

vD

UItoUIsat

vBvA

UItoUIsat UItoUIsat UItoUIsat UItoUIsat UItoUIsat UItoUIsat UItoUIsat UItoUIsat UItoUIsat UItoUIsat UItoUIsat UItoUIsat UItoUIsat UItoUIsat UItoUIsat

vTempA vTempB

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-121

vpkuwum vpkuwum
Vector Pack Unsigned Word Unsigned Modulo

vpkuwum vD,vA,vB Form: VX

do i=0 to 63 by 16
vDi:i+15 ← (vA)(i*2)+16:(i*2)+31
vDi+64:i+79 ← (vB)(i*2)+16:(i*2)+31

end

Let the source vector be the concatenation of the contents of vA followed by the contents of vB.

The low-order half word of each word element in the source vector is placed into the corresponding
half-word element of vD.

Other registers altered:
• None

Figure 6-94 shows the usage of the vpkuwum instruction. Each of the four elements in the vectors, vA
and vB, is 32 bits long. Each of the eight elements in the vector, vD, is 16 bits long.

Figure 6-94. vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit) to Eight Unsigned
Integer Elements (16-Bit)

04 vD vA vB 78

0 5 6 10 11 15 16 20 21 31

vA vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-122 Freescale Semiconductor

vpkuwus vpkuwus
Vector Pack Unsigned Word Unsigned Saturate

vpkuwus vD,vA,vB Form: VX

do i=0 to 63 by 16
vDi:i+15 ← UItoUIsat((vA)i*2:(i*2)+31,16)
vDi+64:i+79 ← UItoUIsat((vB)i*2:(i*2)+31,16)

end

Let the source vector be the concatenation of the contents of vA followed by the contents of vB.

Each unsigned integer word element in the source vector is converted to a 16-bit unsigned integer. If the
value of the element is greater than (216-1) the result saturates to (216-1). The result is placed into the
corresponding half-word element of vD.

Other registers altered:
• SAT

Figure 6-95 shows the usage of the vpkuwus instruction. Each of the four elements in the vectors, vA and
vB, is 32 bits long. Each of the eight elements in the vector, vD, is 16 bits long.

Figure 6-95. vpkuwus—Pack Eight Unsigned Integer Elements (32-Bit) to Eight Unsigned
Integer Elements (16-Bit)

04 vD vA vB 206

0 5 6 10 11 15 16 20 21 31

vA

vTempB

vD

vTempA

vB

UItoUIsat UItoUIsat UItoUIsat UItoUIsat UItoUIsatUItoUIsat UItoUIsat UItoUIsat

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-123

vrefp vrefp
Vector Reciprocal Estimate Floating-Point

vrefp vD,vB Form: VX

do i=0 to 127 by 32
x ← (vB)i:i+31
vDi:i+31 ← 1/x

end

The single-precision floating-point estimate of the reciprocal of each single-precision floating-point
element in vB is placed into the corresponding element of vD.

For results that are not a +0, -0, +∞, -∞, or QNaN, the estimate has a relative error in precision no greater
than one part in 4096, that is:

where x is the value of the element in vB. Note that the value placed into the element of vD may vary
between implementations, and between different executions on the same implementation.

Operation with various special values of the element in vB is summarized below in Table 6-7.

If VSCR[NJ]=1, every denormalized operand element is truncated to a 0 of the same sign before the
operation is carried out, and each denormalized result element truncates to a 0 of the same sign.

Other registers altered:
• None

04 vD 0_0000 vB 266

0 5 6 10 11 15 16 20 21 31

Table 6-7. Special Values of the Element in vB

Value Result

–∞ –0

– 0 – ∞

+0 +∞

+∞ +0

NaN QNaN

estimate 1 x⁄–
1 x⁄

--
1

4096
-------------≤

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-124 Freescale Semiconductor

Figure 6-96 shows the usage of the vrefp instruction. Each of the four elements in the vectors, vB and vD,
is 32 bits long.

Figure 6-96. vrefp—Reciprocal Estimate of Four Floating-Point Elements (32-Bit)

1/x1/x1/x1/x

vB

vD

x x x x

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-125

vrfim vrfim
Vector Round to Floating-Point Integer Toward Minus Infinity

vrfim vD,vB Form: VX

do i=0 to 127 by 32
vDi:i+31 ← RndToFPInt32Floor((vB)i:i+31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision floating-point
integer, using the rounding mode round toward minus infinity, and placed into the corresponding word
element of vD.

Other registers altered:
• None

Figure 6-97 shows the usage of the vrfim instruction. Each of the four elements in the vectors, vB and vD,
is 32 bits long.

Figure 6-97. vrfim—Round to Minus Infinity of Four Floating-Point Integer Elements (32-Bit)

04 vD 0_0000 vB 714

0 5 6 10 11 15 16 20 21 31

RndToFPInt32FloorRndToFPInt32FloorRndToFPInt32FloorRndToFPInt32Floor

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-126 Freescale Semiconductor

vrfin vrfin
Vector Round to Floating-Point Integer Nearest

vrfin vD,vB Form: VX

do i=0 to 127 by 32
vDi:i+31 ← RndToFPInt32Near((vB)i:i+31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision floating-point
integer, using the rounding mode round to nearest, and placed into the corresponding word element of vD.

Note the result is independent of VSCR[NJ].

Other registers altered:
• None

Figure 6-98 shows the usage of the vrfin instruction. Each of the four elements in the vectors, vB and vD,
is 32 bits long.

Figure 6-98. vrfin—Nearest Round to Nearest of Four Floating-Point Integer Elements (32-Bit)

04 vD 0_0000 vB 522

0 5 6 10 11 15 16 20 21 31

RndToFPInt32NearRndToFPInt32NearRndToFPInt32NearRndToFPInt32Near

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-127

vrfip vrfip
Vector Round to Floating-Point Integer Toward Plus Infinity

vrfip vD,vB Form: VX

do i=0 to 127 by 32
vDi:i+31 ← RndToFPInt32Ceil((vB)i:i+31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision floating-point
integer, using the rounding mode round toward plus infinity, and placed into the corresponding word
element of vD.

If VSCR[NJ]=1, every denormalized operand element is truncated to 0 before the comparison is made.

Other registers altered:
• None

Figure 6-99 shows the usage of the vrfip instruction. Each of the four elements in the vectors, vB and vD,
is 32 bits long.

Figure 6-99. vrfip—Round to Plus Infinity of Four Floating-Point Integer Elements (32-Bit)

04 vD 0_0000 vB 650

0 5 6 10 11 15 16 20 21 31

RndToFPInt32CeilRndToFPInt32CeilRndToFPInt32CeilRndToFPInt32Ceil

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-128 Freescale Semiconductor

vrfiz vrfiz
Vector Round to Floating-Point Integer Toward Zero

vrfiz vD,vB Form: VX

do i=0 to 127 by 32
vDi:i+31 ← RndToFPInt32Trunc((vB)i:i+31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision floating-point
integer, using the rounding mode round toward zero, and placed into the corresponding word element
of vD.

Note, the result is independent of VSCR[NJ].

Other registers altered:
• None

Figure 6-100 shows the usage of the vrfiz instruction. Each of the four elements in the vectors, vB and vD,
is 32 bits long.

Figure 6-100. vrfiz—Round-to-Zero of Four Floating-Point Integer Elements (32-Bit)

04 vD 0_0000 vB 586

0 5 6 10 11 15 16 20 21 31

RndToFPInt32TruncRndToFPInt32TruncRndToFPInt32TruncRndToFPInt32Trunc

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-129

vrlb vrlb
Vector Rotate Left Integer Byte

vrlb vD,vA,vB Form: VX

do i=0 to 127 by 8
sh ← (vB)i+5:i+7
vDi:i+7 ← ROTL((vA)i:i+7,sh)

end

Each element is a byte. Each element in vA is rotated left by the number of bits specified in the low-order
3 bits of the corresponding element in vB. The result is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-101 shows the usage of the vrlb instruction. Each of the sixteen elements in the vectors, vA, vB,
and vD, is 8 bits long.

Figure 6-101. vrlb—Left Rotate of Sixteen Integer Elements (8-Bit)

04 vD vA vB 4

0 5 6 10 11 15 16 20 21 31

vA

vD

Rotate left by the value specified in each
of vB element’s low-order 3 bits.

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-130 Freescale Semiconductor

vrlh vrlh
Vector Rotate Left Integer Half Word

vrlh vD,vA,vB Form: VX

do i=0 to 127 by 16
sh ← (vB)i+12:i+15
vDi:i+15 ← ROTL((vA)i:i+15,sh)

end

Each element is a half word.

Each element in vA is rotated left by the number of bits specified in the low-order 4 bits of the
corresponding element in vB. The result is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-102 shows the usage of the vrlh instruction. Each of the eight elements in the vectors, vA, vB,
and vD, is 16 bits long.

Figure 6-102. vrlh—Left Rotate of Eight Integer Elements (16-Bit)

04 vD vA vB 68

0 5 6 10 11 15 16 20 21 31

vA

vD

Rotate left by the value specified in each
of vB element’s low-order 4 bits.

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-131

vrlw vrlw
Vector Rotate Left Integer Word

vrlw vD,vA,vB Form: VX

do i=0 to 127 by 32
sh ← (vB)i+27:i+31
vDi:i+31 ← ROTL((vA)i:i+31,sh)

end

Each element is a word. Each element in vA is rotated left by the number of bits specified in the low-order
5 bits of the corresponding element in vB. The result is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-103 shows the usage of the vrlw instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-103. vrlw—Left Rotate of Four Integer Elements (32-Bit)

04 vD vA vB 132

0 5 6 10 11 15 16 20 21 31

vA

vD

Rotate left by the value specified in each
of vB element’s low-order 5 bits.

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-132 Freescale Semiconductor

vrsqrtefp vrsqrtefp
Vector Reciprocal Square Root Estimate Floating-Point

vrsqrtefp vD,vB Form: VX

do i=0 to 127 by 32

x ← (vB)i:i+31
vDi:i+31 ← 1 ÷fp (√fp(x))

end

The single-precision estimate of the reciprocal of the square root of each single-precision element in vB is
placed into the corresponding word element of vD. The estimate has a relative error in precision no greater
than one part in 4096, as explained below:

where x is the value of the element in vB. Note that the value placed into the element of vD may vary
between implementations and between different executions on the same implementation. Operation with
various special values of the element in vB is summarized below in Table 6-8.

Other registers altered:
• None

Figure 6-104 shows the usage of the vrsqrtefp instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long.

Figure 6-104. vrsqrtefp—Reciprocal Square Root Estimate of Four Floating-Point
Elements (32-Bit)

04 vD 0_0000 vB 330

0 5 6 10 11 15 16 20 21 31

Table 6-8. Special Values of the Element in vB

Value Result Value Result

–∞ QNaN +0 +∞

less than 0 QNaN +∞ +0

–0 –∞ NaN QNaN

estimate 1 x⁄–
1 x⁄

--
1

4096
-------------≤

1 / √x

vB

vD

1 / √x1 / √x 1 / √x

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-133

vsel vsel
Vector Conditional Select

vsel vD,vA,vB,vC Form: VA

do i=0 to 127
if (vC)i=0 then vDi ← (vA)i
 else vDi ← (vB)i

end

For each bit in vC that contains the value 0, the corresponding bit in vA is placed into the corresponding
bit of vD. For each bit in vC that contains the value 1, the corresponding bit in vB is placed into the
corresponding bit of vD.

Other registers altered:
• None

Figure 6-105 shows the usage of the vsel instruction. Each of the vectors, vA, vB, vC, and vD, is 128 bits
long.

Figure 6-105. vsel—Bitwise Conditional Select of Vector Contents (128-Bit)

04 vD vA vB vC 42

0 5 6 10 11 15 16 20 21 25 26 31

vB

vA

vC0 1 0 0 1 1 0 0 • • • • • • • • • • •

vD

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • • •

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-134 Freescale Semiconductor

vsl vsl
Vector Shift Left

vsl vD,vA,vB Form: VX

sh ← (vB)125:127
t ← 1
do i = 0 to 127 by 8

t ← t & ((vB)i+5:i+7 = sh)
if t = 1 then vD ← (vA) <<ui sh
else vD ← undefined

end

The contents of vA are shifted left by the number of bits specified in vB[125–127]. Bits shifted out of bit 0
are lost. Zeros are supplied to the vacated bits on the right. The result is placed into vD.

The contents of the low-order three bits of all byte elements in vB must be identical to vB[125–127];
otherwise the value placed into vD is undefined.

Other registers altered:
• None

Figure 6-106 shows the usage of the vsl instruction. In the example in Figure 6-106 the shift count
specificed in vB[125–127] is 7 (0b111), that shift count is then put in the low-order three bits of all the byte
elements in vB. In this example, the contents of vA are shifted left by 7 bits and replaced with zeros.

Figure 6-106. vsl—Shift Bits Left in Vector (128-Bit)

04 vD vA vB 452

0 5 6 10 11 15 16 20 21 31

vA

vD

• • • • • • • • • •

* 0b111 = 7 = sh = shift count

sh zeros

 0000000

Shift left by sh bits

125 127

vB111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111*

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-135

vslb vslb
Vector Shift Left Integer Byte

vslb vD,vA,vB Form: VX

do i=0 to 127 by 8
sh ← (vB)i+5):i+7
vDi:i+7 ← (vA)i:i+7 <<ui sh

end

Each element is a byte. Each element in vA is shifted left by the number of bits specified in the low-order
3 bits of the corresponding element in vB. Bits shifted out of bit 0 of the element are lost. Zeros are
supplied to the vacated bits on the right. The result is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-107 shows the usage of the vslb instruction. Each of the sixteen elements in the vectors, vA, vB,
and vD, is 8 bits long. In the example in Figure 6-107 the shift count specified is 7 (0b111) and this value
is placed in each of the low-order 3 bits for all the byte elements in vB. In this example, 7 bits would be
shifted out of each element in vA and replaced with zeros.

Figure 6-107. vslb—Shift Bits Left in Sixteen Integer Elements (8-Bit)

04 vD vA vB 260

0 5 6 10 11 15 16 20 21 31

vA

vD

* 0b111 = 7 = sh = shift count

0..0

sh
zeros

0..00..00..00..00..00..00..00..00..00..00..00..00..00..00..0

125 127

vB111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111*

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-136 Freescale Semiconductor

vsldoi vsldoi
Vector Shift Left Double by Octet Immediate

vsldoi vD, vA, vB, SHB Form: VA

vD ← ((vA) || (vB)) <<ui (SHB || 0b000)

Let the source vector be the concatenation of the contents of vA followed by the contents of vB. Bytes
SHB:SHB+15 of the source vector are placed into vD.

Other registers altered:
• None

Figure 6-108 shows the usage of the vsldoi instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-108. vsldoi—Shift Left by Bytes Specified

04 vD vA vB 0 SHB 44

0 5 6 10 11 15 16 20 21 22 25 26 31

vA

vB

vD

SHB = Shift Count Bytes

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-137

vslh vslh
Vector Shift Left Integer Half Word

vslh vD,vA,vB Form: VX

do i=0 to 127 by 16
sh ← (vB)i+12:i+15
vDi:i+15 ← (vA)i:i+15 <<ui sh

end

Each element is a half word. Each element in vA is shifted left by the number of bits specified in the
low-order 4 bits of the corresponding element in vB. Bits shifted out of bit 0 of the element are lost. Zeros
are supplied to the vacated bits on the right. The result is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-109 shows the usage of the vslh instruction. Each of the eight elements in the vectors, vA, vB,
and vD, is 16 bits long. For the example used in Figure 6-109 the shift count specificed in the low-order
4 bits of each element in vB is 15 (0b1111); so 15 bits would be shifted out of each element in vA and
replaced with zeros.

Figure 6-109. vslh—Shift Bits Left in Eight Integer Elements (16-Bit)

04 vD vA vB 324

0 5 6 10 11 15 16 20 21 31

vA

vD0...0

sh

0...00...00...00...00...00...00...0

* 0b1111 = 15 = sh = shift count

zeros

1111 vB1111 1111 1111 1111 1111 1111 1111*

124 127

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-138 Freescale Semiconductor

vslo vslo
Vector Shift Left by Octet

vslo vD,vA,vB Form: VX

shb ← (vB)121:124
vD ← (vA) <<ui (shb || 0b000)

The contents of vA are shifted left by the number of bytes specified in vB[121–124]. Bytes shifted out of
byte 0 are lost. Zeros are supplied to the vacated bytes on the right. The result is placed into vD.

Other registers altered:
• None

Figure 6-110 shows the usage of the vslo instruction. For the example used in Figure 6-110 the shift count
specificed in vB[121–124] is 4 (0b0010). So in this example, 4 bytes would be shifted out of vA and
replaced with zeros.

Figure 6-110. vslo—Left Byte Shift of Vector (128-Bit)

04 vD vA vB 1036

0 5 6 10 11 15 16 20 21 31

vB

vA

vD

• • • • • • • • • • *0b0010 = 4 = shB = ShiftCount Bytes

Don’t Care

121 124

0..0

0010*

0..00..00..0

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-139

vslw vslw
Vector Shift Left Integer Word

vslw vD,vA,vB Form: VX

do i=0 to 127 by 32
sh ← (vB)i+27:i+31
vDi:i+31 ← (vA)i:i+31 <<ui sh

end

Each element is a word. Each element in vA is shifted left by the number of bits specified in the low-order
5 bits of the corresponding element in vB. Bits shifted out of bit 0 of the element are lost. Zeros are
supplied to the vacated bits on the right. The result is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-111 shows the usage of the vslw instruction. Each of the four elements in the vectors, vA, vB, and
vD, is 32 bits long. For the example used in Figure 6-111, the shift count specificed in the low-order 5 bits
of the corresponding elements in vB is 6 (0b0010). In this example, 6 bits would be shifted out of each
element in vA and replaced with zeros.

Figure 6-111. vslw—Shift Bits Left in Four Integer Elements (32-Bit)

04 vD vA vB 388

0 5 6 10 11 15 16 20 21 31

vA

vD

*0b00110 = 6 = sh = Shift count

sh

000000000000000000

zeros

000000

vB00110 00110 00110 00110*

9163 123 12759 953127

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-140 Freescale Semiconductor

vspltb vspltb
Vector Splat Byte

vspltb vD,vB,UIMM Form: VX

b ← UIMM*8
do i=0 to 127 by 8

vDi:i+7 ← (vB)b:b+7
end

Each element of vspltb is a byte.

The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:
• None

Programming Note: The vector splat instructions can be used in preparation for performing arithmetic for
which one source vector is to consist of elements that all have the same value (for example, multiplying
all elements of a vector register by a constant).

Figure 6-112 shows the usage of the vspltb instruction. Each of the sixteen elements in the vectors, vB and
vD, is 8 bits long.

Figure 6-112. vspltb—Copy Contents to Sixteen Elements (8-Bit)

04 vD UIMM vB 524

0 5 6 10 11 15 16 20 21 31

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-141

vsplth vsplth
Vector Splat Half Word

vsplth vD,vB,UIMM Form: VX

b ← UIMM*16
do i=0 to 127 by 16

vDi:i+15 ← (vB)b:b+15
end

Each element of vsplth is a half word.

The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:
• None

Programming Note: The vector splat instructions can be used in preparation for performing arithmetic for
which one source vector is to consist of elements that all have the same value (for example, multiplying
all elements of a vector register by a constant).

Figure 6-113 shows the usage of the vsplth instruction. Each of the eight elements in the vectors, vB and
vD, is 16 bits long.

Figure 6-113. vsplth—Copy Contents to Eight Elements (16-Bit)

04 vD UIMM vB 588

0 5 6 10 11 15 16 20 21 31

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-142 Freescale Semiconductor

vspltisb vspltisb
Vector Splat Immediate Signed Byte

vspltisb vD,SIMM Form: VX

do i=0 to 127 by 8
vDi:i+7 ← SignExtend(SIMM,8)

end

Each element of vspltisb is a byte.

The value of the SIMM field, sign-extended to the length of the element, is replicated into each element
of vD.

Other registers altered:
• None

Figure 6-114 shows the usage of the vspltisb instruction. Each of the sixteen elements in the vector, vD,
is 8 bits long.

Figure 6-114. vspltisb—Copy Value into Sixteen Signed Integer Elements (8-Bit)

04 vD SIMM 0000_0 780

0 5 6 10 11 15 16 20 21 31

SIMM

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-143

vspltish vspltish
Vector Splat Immediate Signed Half Word

vspltish vD,SIMM Form: VX

do i=0 to 127 by 16
vDi:i+15 ← SignExtend(SIMM,16)

end

Each element of vspltish is a half word.

The value of the SIMM field, sign-extended to the length of the element, is replicated into each element
of vD.

Other registers altered:
• None

Figure 6-115 shows the usage of the vspltish instruction. Each of the eight elements in vector, vD, is
16 bits long.

Figure 6-115. vspltish—Copy Value to Eight Signed Integer Elements (16-Bit)

04 vD SIMM 0000_0 844

0 5 6 10 11 15 16 20 21 31

SIMM

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-144 Freescale Semiconductor

vspltisw vspltisw
Vector Splat Immediate Signed Word

vspltisw vD,SIMM Form: VX

do i=0 to 127 by 32
vDi:i+31 ← SignExtend(SIMM,32)

end

Each element of vspltisw is a word.

The value of the SIMM field, sign-extended to the length of the element, is replicated into each element
of vD.

Other registers altered:
• None

Figure 6-116 shows the usage of the vspltisw instruction. Each of the four elements in the vector, vD, is
32 bits long.

Figure 6-116. vspltisw—Copy Value to Four Signed Elements (32-Bit)

04 vD SIMM 0000_0 908

0 5 6 10 11 15 16 20 21 31

vD

SIMM

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-145

vspltw vspltw
Vector Splat Word

vspltw vD,vB,UIMM Form: VX

b ← UIMM*32
do i=0 to 127 by 32

vDi:i+31 ← (vB)b:b+31
end

Each element of vspltw is a word.

The contents of element UIMM in vB are replicated into each element of vD.

Other registers altered:
• None

Programming Note: The Vector Splat instructions can be used in preparation for performing arithmetic for
which one source vector is to consist of elements that all have the same value (for example, multiplying
all elements of a Vector Register by a constant).

Figure 6-117 shows the usage of the vspltw instruction. Each of the four elements in the vector, vD, is
32 bits long.

Figure 6-117. vspltw—Copy Contents to Four Elements (32-Bit)

04 vD UIMM vB 652

0 5 6 10 11 15 16 20 21 31

vD

UIMM

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-146 Freescale Semiconductor

vsr vsr
Vector Shift Right

vsr vD,vA,vB Form: VX

sh ← (vB)125:127
t ← 1
do i = 0 to 127 by 8

t ← t & ((vB)i+5:i+7 = sh)
if t = 1 then vD ← (vA) >>ui sh
else vD ← undefined

end

Let sh = vB[125–127]; sh is the shift count in bits (0≤sh≤7). The contents of vA are shifted right by sh bits.
Bits shifted out of bit 127 are lost. Zeros are supplied to the vacated bits on the left. The result is placed
into vD.

The contents of the low-order three bits of all byte elements in register vB must be identical to
vB[125–127]; otherwise the value placed into register vD is undefined.

Other registers altered:
• None

Programming Notes: A pair of vslo and vsl or vsro and vsr instructions, specifying the same shift count
register, can be used to shift the contents of a vector register left or right by the number of bits (0–127)
specified in the shift count register. The following example shifts the contents of vX left by the number of
bits specified in vY and places the result into vZ.

vslo VZ,VX,VY
vsl VZ,VZ,VY

A double-register shift by a dynamically specified number of bits (0–127) can be performed in six
instructions. The following example shifts (vW) || (vX) left by the number of bits specified in vY and
places the high-order 128 bits of the result into vZ.

vslo t1,VW,VY #shift high-order reg left
vsl t1,t1,VY
vsububm t3,V0,VY #adjust shift count ((V0)=0)
vsro t2,VX,t3 #shift low-order reg right
vsr t2,t2,t3
vor VZ,t1,t2 #merge to get final result

04 vD vA vB 708

0 5 6 10 11 15 16 20 21 31

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-147

Figure 6-118 shows the usage of the vsr instruction. Each of the sixteen elements in the vectors, vA, vB,
and vD, is 8 bits long. In the example in Figure 6-118 the shift count specificed in vB[125–127] is
7 (0b111), that shift count must then be put in the low-order three bits of all the byte elements in vB. In
this example, the contents of vA are shifted right by 7 bits and replaced with zeros.

Figure 6-118. vsr—Shift Bits Right for Vectors (128-Bit)

vA

vD

• • • • • • • • • • *0b111 = 7 = sh = Shift Count

125 127

0...0

sh
zeros

vB111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111*

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-148 Freescale Semiconductor

vsrab vsrab
Vector Shift Right Algebraic Byte

vsrab vD,vA,vB Form: VX

do i=0 to 127 by 8
sh ← (vB)i+2:i+7
vDi:i+7 ← (vA)i:i+7 >>si sh

end

Each element is a byte. Each element in vA is shifted right by the number of bits specified in the low-order
3 bits of the corresponding element in vB. Bits shifted out of bit n-1 of the element are lost. Bit 0 of each
element in vA is replicated to fill the vacated bits on the left. The result is placed into the corresponding
element of vD.

Other registers altered:
• None

Figure 6-119 shows the usage of the vsrab instruction. Each of the sixteen elements in the vectors, vA and
vD, is 8 bits long. In the example in Figure 6-119, the shift count specified is 7 (0b111) so this value is
placed in each of the low-order three bits for all the byte elements in vB. In this example, 7 bits would be
shifted out of each element in vA and replaced with bit 0 of each element in vA.

Figure 6-119. vsrab—Shift Bits Right in Sixteen Integer Elements (8-Bit)

04 vD vA vB 772

0 5 6 10 11 15 16 20 21 31

vA

vD

*0b111 = 7 = sh = Shift Count

x..x

sh

x..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..xx..x

vB111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111*

*x = Bit 0 of each element in vA

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-149

vsrah vsrah
Vector Shift Right Algebraic Half Word

vsrah vD,vA,vB Form: VX

do i=0 to 127 by 16
sh ← (vB)i+12:i+15
vDi:i+15 ← (vA)i:i+15 >>si sh

end

Each element is a half word. Each element in vA is shifted right by the number of bits specified in the
low-order 4 bits of the corresponding element in vB. Bits shifted out of bit 15 of the element are lost. Bit 0
of the element in vA is replicated to fill the vacated bits on the left. The result is placed into the
corresponding element of vD.

Other registers altered:
• None

Figure 6-120 shows the usage of the vsrah instruction. Each of the eight elements in the vectors, vA and
vD, is 16 bits long. In the example in Figure 6-120, the shift count specified is 15 (0b1111) so this value
is placed in each of the low-order four bits for all the half-word elements in vB. In this example, 15 bits
would be shifted out of each element in vA and replaced with bit 0 of each element in vA.

Figure 6-120. vsrah—Shift Bits Right for Eight Integer Elements (16-Bit)

04 vD vA vB 836

0 5 6 10 11 15 16 20 21 31

1111 vB

vA

vD

*0b1111 = 15 = sh = Shift Count

x...x*

sh

x...xx...xx...xx...xx...xx...xx...x

*x = Bit 0 of each element in vA

1111 1111 1111 1111 1111 1111 1111*

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-150 Freescale Semiconductor

vsraw vsraw
Vector Shift Right Algebraic Word

vsraw vD,vA,vB Form: VX

do i=0 to 127 by 32
sh ← (vB)i+27:i+31
vDi:i+31 ← (vA)i:i+31 >>si sh

end

Each element is a word. Each element in vA is shifted right by the number of bits specified in the low-order
five bits of the corresponding element in vB. Bits shifted out of bit 31 of the element are lost. Bit 0 of each
element in vA is replicated to fill the vacated bits on the left. The result is placed into the corresponding
element of vD.

Other registers altered:
• None

Figure 6-121 shows the usage of the vsraw instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long. In the example in Figure 6-121, the shift count specified is 3 (0b00011) so this
value is placed in each of the low-order five bits for all the byte elements in vB. In this example, 3 bits
would be shifted out of each element in vA and replaced with bit 0 of each element in vA.

Figure 6-121. vsraw—Shift Bits Right in Four Integer Elements (32-Bit)

04 vD vA vB 900

0 5 6 10 11 15 16 20 21 31

000110001100011 vB

vA

vD

*00011 = 3 = sh = Shift Count

00011*

sh

x...xx...xx...x

*x = Bit 0 of each element in vA

x...x*

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-151

vsrb vsrb
Vector Shift Right Byte

vsrb vD,vA,vB Form: VX

do i=0 to 127 by 8
sh ← (vB)i+5:i+7
vDi:i+7 ← (vA)i:i+7 >>ui sh

end

Each element is a byte. Each element in vA is shifted right by the number of bits specified in the low-order
3 bits of the corresponding element in vB. Bits shifted out of bit 7 of the element are lost. Zeros are
supplied to the vacated bits on the left. The result is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-122 shows the usage of the vsrb instruction. Each of the sixteen elements in the vectors, vA, vB,
and vD, is 8 bits long. In the example in Figure 6-122 the shift count specified is 7 (0b111) so this value is
placed in each of the low-order 3 bits for all the byte elements in vB. In this example, 7 bits would be
shifted out of each element in vA and replaced with zeros.

Figure 6-122. vsrb—Shift Bits Right in Sixteen Integer Elements (8-Bit)

04 vD vA vB 516

0 5 6 10 11 15 16 20 21 31

vA

vD

*6 = sh = Shift Count

0..0

sh

0..00..00..00..00..00..00..00..00..00..00..00..00..00..00..0

zeros

vB111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111*

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-152 Freescale Semiconductor

vsrh vsrh
Vector Shift Right Half Word

vsrh vD,vA,vB Form: VX

do i=0 to 127 by 16
sh ← (vB)i+12:i+15
vDi:i+15 ← (vA)i:i+15 >>ui sh

end

Each element is a half word. Each element in vA is shifted right by the number of bits specified in the
low-order four bits of the corresponding element in vB. Bits shifted out of bit 15 of the element are lost.
Zeros are supplied to the vacated bits on the left. The result is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-123 shows the usage of the vsrh instruction. Each of the eight elements in the vectors, vA, vB,
and vD, is 16 bits long. In the example in Figure 6-123, the shift count specified is 15 (0b1111) so this
value is placed in each of the low-order four bits for all the half-word elements in vB. In this example,
15 bits would be shifted out of each element in vA and replaced with zeros.

Figure 6-123. vsrh—Shift Bits Right for Eight Integer Elements (16-Bit)

04 vD vA vB 580

0 5 6 10 11 15 16 20 21 31

vA

vD

*0b1111 = 15 = sh = Shift Count

0...0

sh

0...00...00...00...00...00...00...0

zeros

1111 vB1111 1111 1111 1111 1111 1111 1111*

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-153

vsro vsro
Vector Shift Right Octet

vsro vD,vA,vB Form: VX

shb ← (vB)121:124
vD ← (vA) >>ui (shb || 0b000)

The contents of vA are shifted right by the number of bytes specified in vB[121–124]. Bytes shifted out
of vA are lost. Zeros are supplied to the vacated bytes on the left. The result is placed into vD.

Other registers altered:
• None

Figure 6-124 shows the usage of the vsro instruction. Each of the sixteen elements in the vectors, vA and
vD, is 8 bits long. In the example in Figure 6-124, the shift count specified is 5 (0b0101). In this example,
5 bytes would be shifted out of vA and replaced with zeros.

Figure 6-124. vsro—Vector Shift Right Octet

04 vD vA vB 1100

0 5 6 10 11 15 16 20 21 31

vB

vA

vD

• • • • • • • • • • *0b0101 = 5 = Shift Count

Don’t Care *0101

121 124

0..00..00..00..0 0..0

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-154 Freescale Semiconductor

vsrw vsrw
Vector Shift Right Word

vsrw vD,vA,vB Form: VX

do i=0 to 127 by 32
sh ← (vB)i+(27):i+31
vDi:i+31 ← (vA)i:i+31 >>ui sh

end

Each element is a word. Each element in vA is shifted right by the number of bits specified in the low-order
5 bits of the corresponding element in vB. Bits shifted out of bit 31 of the element are lost. Zeros are
supplied to the vacated bits on the left. The result is placed into the corresponding element of vD.

Other registers altered:
• None

Figure 6-125 shows the usage of the vsrw instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.In the example in Figure 6-125 the shift count specified is 3 (0b00011) so this value
is placed in each of the low-order five bits for all the byte elements in vB. In this example, 3 bits would be
shifted out of each element in vA and replaced with zeros.

Figure 6-125. vsrw—Shift Bits Right in Four Integer Elements (32-Bit)

04 vD vA vB 644

0 5 6 10 11 15 16 20 21 31

vA

vD

*0b00011 = 3 = sh = Shift Count

sh

0...00...00...0

zeros

0...0

000110001100011 vB00011*

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-155

vsubcuw vsubcuw
Vector Subtract Carryout Unsigned Word

vsubcuw vD,vA,vB Form: VX

do i=0 to 127 by 32
aop0:32 ← ZeroExtend((vA)i:i+31,33)
bop0:32 ← ZeroExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int −bop0:32 +int 1
vDi:i+31 ← ZeroExtend(temp0,32)

end

Each unsigned-integer word element in vB is subtracted from the corresponding unsigned-integer word
element in vA. The complement of the borrow out of bit 0 of the 32-bit difference is zero-extended to
32 bits and placed into the corresponding word element of vD.

Other registers altered:
• None

Figure 6-126 shows the usage of the vsubcuw instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long.

g

Figure 6-126. vsubcuw—Subtract Carryout of Four Unsigned Integer Elements (32-Bit)

04 vD vA vB 1408

0 5 6 10 11 15 16 20 21 31

vB

vA

Zero-Ext

vD

- - - -

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-156 Freescale Semiconductor

vsubfp vsubfp
Vector Subtract Floating-Point

vsubfp vD,vA,vB Form: VX

do i=0 to 127 by 32
vDi:i+31 ← RndToNearFP32((vA)i:i+31 -fp (vB)i:i+31)

end

Each single-precision floating-point word element in vB is subtracted from the corresponding
single-precision floating-point word element in vA. The result is rounded to the nearest single-precision
floating-point number and placed into the corresponding word element of vD.

If VSCR[NJ]=1, every denormalized operand element is truncated to a 0 of the same sign before the
operation is carried out, and each denormalized result element truncates to a 0 of the same sign.

Other registers altered:
• None

Figure 6-127 shows the usage of the vsubfp instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-127. vsubfp—Subtract Four Floating-Point Elements (32-Bit)

04 vD vA vB 74

0 5 6 10 11 15 16 20 21 31

-fp-fp-fp-fp

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-157

vsubsbs vsubsbs
Vector Subtract Signed Byte Saturate

vsubsbs vD,vA,vB Form: VX

do i=0 to 127 by 8
aop0:8 ← SignExtend((vA)i:i+7,9)
bop0:8 ← SignExtend((vB)i:i+7,9)
temp0:8 ← aop0:8 +int −bop0:8 +int 1
vDi:i+7 ← SItoSIsat(temp0:8,8)

end

Each element is a byte. Each signed-integer element in vB is subtracted from the corresponding
signed-integer element in vA.

If the intermediate result is greater than (27-1) it saturates to (27-1) and if it is less than -27 it saturates to
-27, where 8 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:
• SAT

Figure 6-128 shows the usage of the vsubsbs instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-128. vsubsbs—Subtract Sixteen Signed Integer Elements (8-Bit)

04 vD vA vB 1792

0 5 6 10 11 15 16 20 21 31

- ---------------

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-158 Freescale Semiconductor

vsubshs vsubshs
Vector Subtract Signed Half Word Saturate

vsubshs vD,vA,vB Form: VX

do i=0 to 127 by 16
aop0:16 ← SignExtend((vA)i:i+15,17)
bop0:16 ← SignExtend((vB)i:i+15,17)
temp0:16 ← aop0:16 +int -bop0:16 +int 1
vDi:i+15 ← SItoSIsat(temp0:16,16)

end

Each element is a half word. Each signed-integer element in vB is subtracted from the corresponding
signed-integer element in vA.

If the intermediate result is greater than (215-1) it saturates to (215-1) and if it is less than -215 it saturates to
-215, where 16 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:
• SAT

Figure 6-129 shows the usage of the vsubshs instruction. Each of the eight elements in the vectors, vA,
vB, and vD, is 16 bits long.

Figure 6-129. vsubshs—Subtract Eight Signed Integer Elements (16-Bit)

04 vD vA vB 1856

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-159

vsubsws vsubsws
Vector Subtract Signed Word Saturate

vsubsws vD,vA,vB Form: VX

do i=0 to 127 by 32
aop0:32 ← SignExtend((vA)i:i+31,33)
bop0:32 ← SignExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int −bop0:32 +int 1
vDi:i+31 ← SItoSIsat(temp0:32,32)

end

Each element is a word. Each signed-integer element in vB is subtracted from the corresponding
signed-integer element in vA.

If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less than -231 it saturates to
-231, where 32 is the length of the element.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:
• SAT

Figure 6-130 shows the usage of the vsubsws instruction. Each of the four elements in the vectors, vA, vB,
and vD, is 32 bits long.

Figure 6-130. vsubsws—Subtract Four Signed Integer Elements (32-Bit)

04 vD vA vB 1920

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-160 Freescale Semiconductor

vsububm vsububm
Vector Subtract Byte Modulo

vsububm vD,vA,vB Form: VX

do i=0 to 127 by 8
vDi:i+7 ← (vA)i:i+7 +int −(vB)i:i+7

end

Each element of vsububm is a byte.

Each integer element in vB is subtracted from the corresponding integer element in vA. The integer result
is placed into the corresponding element of vD.

Other registers altered:
• None

Note the vsububm instruction can be used for unsigned or signed integers.

Figure 6-131 shows the usage of the vsububm instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-131. vsububm—Subtract Sixteen Integer Elements (8-Bit)

04 vD vA vB 1024

0 5 6 10 11 15 16 20 21 31

- ---------------

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-161

vsububs vsububs
Vector Subtract Unsigned Byte Saturate

vsububs vD,vA,vB Form: VX

do i=0 to 127 by 8
aop0:8 ← ZeroExtend((vA)i:i+7,9)
bop0:8 ← ZeroExtend((vB)i:i+7,9)
temp0:8 ← aop0:8 +int −bop0:8 +int 1
vDi:i+7 ← SItoUIsat(temp0:8,8)

end

Each element is a byte. Each unsigned-integer element in vB is subtracted from the corresponding
unsigned-integer element in vA.

If the intermediate result is less than 0 it saturates to 0, where 8 is the length of the element. The
unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:
• SAT

Figure 6-132 shows the usage of the vsububs instruction. Each of the sixteen elements in the vectors, vA,
vB, and vD, is 8 bits long.

Figure 6-132. vsububs—Subtract Sixteen Unsigned Integer Elements (8-Bit)

04 vD vA vB 1536

0 5 6 10 11 15 16 20 21 31

- ---------------

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-162 Freescale Semiconductor

vsubuhm vsubuhm
Vector Subtract Half Word Modulo

vsubuhm vD,vA,vB Form: VX

do i=0 to 127 by 16
vDi:i+15 ← (vA)i:i+15 +int −(vB)i:i+15

end

Each element is a half word. Each integer element in vB is subtracted from the corresponding integer
element in vA. The integer result is placed into the corresponding element of vD.

Other registers altered:
• None

Note the vsubuhm instruction can be used for unsigned or signed integers.

Figure 6-133 shows the usage of the vsubuhm instruction. Each of the eight elements in the vectors, vA,
vB, and vD, is 16 bits long.

Figure 6-133. vsubuhm—Subtract Eight Integer Elements (16-Bit)

04 vD vA vB 1088

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-163

vsubuhs vsubuhs
Vector Subtract Unsigned Half Word Saturate

vsubuhs vD,vA,vB Form: VX

do i=0 to 127 by 16
aop0:16 ← ZeroExtend((vA)i:i+15,17)
bop0:16 ← ZeroExtend((vB)i:i+n:1,17)
temp0:16 ← aop0:n +int −bop0:16 +int 1
vDi:i+15 ← SItoUIsat(temp0:16,16)

end

Each element is a half word. Each unsigned-integer element in vB is subtracted from the corresponding
unsigned-integer element in vA.

If the intermediate result is less than 0 it saturates to 0, where 16 is the length of the element. The
unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:
• SAT

Figure 6-134 shows the usage of the vsubuhs instruction. Each of the eight elements in the vectors, vA,
vB, and vD, is 16 bits long.

Figure 6-134. vsubuhs—Subtract Eight Unsigned Integer Elements (16-Bit)

04 vD vA vB 1600

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-164 Freescale Semiconductor

vsubuwm vsubuwm
Vector Subtract Word Modulo

vsubuwm vD,vA,vB Form: VX

do i=0 to 127 by 32
vDi:i+31 ← (vA)i:i+31 +int −(vB)i:i+31

end

Each element of vsubuwm is a word.

Each integer element in vB is subtracted from the corresponding integer element in vA. The integer result
is placed into the corresponding element of vD.

Other registers altered:
• None

Note the vsubuwm instruction can be used for unsigned or signed integers.

Figure 6-135 shows the usage of the vsubuwm instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long.

Figure 6-135. vsubuwm—Subtract Four Integer Elements (32-Bit)

04 vD vA vB 1152

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-165

vsubuws vsubuws
Vector Subtract Unsigned Word Saturate

vsubuws vD,vA,vB Form: VX

do i=0 to 127 by 32
aop0:32 ← ZeroExtend((vA)i:i+31,33)
bop0:32 ← ZeroExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int −bop0:32 +int 1
vDi:i+31 ← SItoUIsat(temp0:32,32)

end

Each element is a word. Each unsigned-integer element in vB is subtracted from the corresponding
unsigned-integer element in vA.

If the intermediate result is less than 0 it saturates to 0, where 32 is the length of the element. The
unsigned-integer result is placed into the corresponding element of vD.

Other registers altered:
• SAT

Figure 6-136 shows the usage of the vsubuws instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long.

Figure 6-136. vsubuws—Subtract Four Signed Integer Elements (32-Bit)

04 vD vA vB 1664

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-166 Freescale Semiconductor

vsumsws vsumsws
Vector Sum Across Signed Word Saturate

vsumsws vD,vA,vB Form: VX

temp0:34 ← SignExtend((vB)96:127,35)
do i=0 to 127 by 32

temp0:34 ← temp0:34 +int SignExtend((vA)i:i+31,35)
vD ← 960 || SItoSIsat(temp0:34,32)

end

The signed-integer sum of the four signed-integer word elements in vA is added to the signed-integer word
element in bits of vB[96–127]. If the intermediate result is greater than (231-1) it saturates to (231-1) and if
it is less than -231 it saturates to -231. The signed-integer result is placed into bits vD[96–127]. Bits
vD[0–95] are cleared.

Other registers altered:
• SAT

Figure 6-137 shows the usage of the vsumsws instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long.

Figure 6-137. vsumsws—Sum Four Signed Integer Elements (32-Bit)

04 vD vA vB 1928

0 5 6 10 11 15 16 20 21 31

+

vA

vB

vD

0 31 32

95

63 64 95 96 127

0 96 127

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-167

vsum2sws vsum2sws
Vector Sum Across Partial (1/2) Signed Word Saturate

vsum2sws vD,vA,vB Form: VX

do i=0 to 127 by 64
temp0:33 ← SignExtend((vB)i+32:i+63,34)
do j=0 to 63 by 32

temp0:33 ← temp0:33 +int SignExtend((vA)i+j:i+j+31,34)
end
vDi:i+63 ← 320 || SItoSIsat(temp0:33,32)

end

The signed-integer sum of the first two signed-integer word elements in register vA is added to the
signed-integer word element in vB[32–63]. If the intermediate result is greater than (231-1) it saturates to
(231-1) and if it is less than -231 it saturates to -231. The signed-integer result is placed into vD[32–63]. The
signed-integer sum of the last two signed-integer word elements in register vA is added to the
signed-integer word element in vB[96–127]. If the intermediate result is greater than (231-1) it saturates to
(231-1) and if it is less than -231 it saturates to -231. The signed-integer result is placed into vD[96–127]. The
register vD[0–31,64–95] are cleared to 0.

Other registers altered:
• SAT

Figure 6-138 shows the usage of the vsum2sws instruction. Each of the four elements in the vectors, vA,
vB, and vD, is 32 bits long.

Figure 6-138. vsum2sws—Two Sums in the Four Signed Integer Elements (32-Bit)

04 vD vA vB 1672

0 5 6 10 11 15 16 20 21 31

+

vA

vB

vD0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

+

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-168 Freescale Semiconductor

vsum4sbs vsum4sbs
Vector Sum Across Partial (1/4) Signed Byte Saturate

vsum4sbs vD,vA,vB Form: VX

do i=0 to 127 by 32
temp0:32 ← SignExtend((vB)i:i+31,33)
 do j=0 to 31 by 8

temp0:32 ← temp0:32 +int SignExtend((vA)i+j:i+j+7,33)
end
vDi:i+31 ← SItoSIsat(temp0:32,32)

end

For each word element in vB the following operations are performed in the order shown.
• The signed-integer sum of the four signed-integer byte elements contained in the corresponding

word element of register vA is added to the signed-integer word element in register vB.
• If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less than -231 it

saturates to -231.
• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:
• SAT

Figure 6-139 shows the usage of the vsum4sbs instruction. Each of the sixteen elements in the vector, vA,
is 8 bits long. Each of the four elements in the vectors, vB and vD, is 32 bits long.

Figure 6-139. vsum4sbs—Sum of Four Signed Integer Byte Elements with a
Word Element (32-Bit)

04 vD vA vB 1800

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

++++

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-169

vsum4shs vsum4shs
Vector Sum Across Partial (1/4) Signed Half Word Saturate

vsum4shs vD,vA,vB Form: VX

do i=0 to 127 by 32
temp0:32 ← SignExtend((vB)i:i+31,33)
do j=0 to 31 by 16

temp0:32 ← temp0:32 +int SignExtend((vA)i+j:i+j+15,33)
end

vDi:i+31 ← SItoSIsat(temp0:32,32)
end

For each word element in register vB the following operations are performed, in the order shown.
• The signed-integer sum of the two signed-integer half-word elements contained in the

corresponding word element of register vA is added to the signed-integer word element in vB.
• If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less than -231 it

saturates to -231.
• The signed-integer result is placed into the corresponding word element of vD.

Other registers altered:
• SAT

Figure 6-140 shows the usage of the vsum4shs instruction. Each of the eight elements in the vector, vA,
is 16 bits long. Each of the four elements in the vectors, vB and vD, is 32 bits long.

Figure 6-140. vsum4shs—Sum of Two Signed Integer Half-Word Elements with a
Word Element (32-Bit)

04 vD vA vB 1608

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

++++

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-170 Freescale Semiconductor

vsum4ubs vsum4ubs
Vector Sum Across Partial (1/4) Unsigned Byte Saturate

vsum4ubs vD,vA,vB Form: VX

do i=0 to 127 by 32
temp0:32 ← ZeroExtend((vB)i:i+31,33)
do j=0 to 31 by 8
temp0:32 ← temp0:32 +int ZeroExtend((vA)i+j:i+j+7,33)

end
vDi:i+31 ← UItoUIsat(temp0:32,32)

end

For each word element in vB the following operations are performed in the order shown.
• The unsigned-integer sum of the four unsigned-integer byte elements contained in the

corresponding word element of register vA is added to the unsigned-integer word element in
register vB.

• If the intermediate result is greater than (232-1) it saturates to (232-1).
• The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:
• SAT

Figure 6-141 shows the usage of the vsum4ubs instruction. Each of the four elements in the vector, vA, is
8 bits long. Each of the four elements in the vectors, vB and vD, is 32 bits long.

Figure 6-141. vsum4ubs—Sum of Four Unsigned Integer Byte Elements with an
Unsigned Integer Word Element (32-Bit)

04 vD vA vB 1544

0 5 6 10 11 15 16 20 21 31

vA

vB

vD

++++

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-171

vupkhpx vupkhpx
Vector Unpack High Pixel16

vupkhpx vD,vB Form: VX

do i=0 to 63 by 16
vDi*2:(i*2)+7 ← SignExtend((vB)i,8)
vD(i*2)+8:(i*2)+15 ← ZeroExtend((vB)i+1:i+5,8)
vD(i*2)+16:(i*2)+23 ← ZeroExtend((vB)i+6:i+10,8)
vD(i*2)+24:(i*2)+31 ← ZeroExtend((vB)i+11:i+15,8)

end

Each half-word element in the high-order half of register vB is unpacked to produce a 32-bit value as
described below and placed, in the same order, into the four words of vD.

A half word is unpacked to 32 bits by concatenating, in order, the results of the following operations.
• sign-extend bit 0 of the half word to 8 bits
• zero-extend bits 1–5 of the half word to 8 bits
• zero-extend bits 6–10 of the half word to 8 bits
• zero-extend bits 11–15 of the half word to 8 bits

Other registers altered:
• None

The source and target elements can be considered to be 16- and 32-bit ‘pixels,’ respectively, having the
formats described in the programming note for the Vector Pack Pixel instruction.

Figure 6-142 shows the usage of the vupkhpx instruction. Each of the eight elements in the vector, vB, is
16 bits long. Each of the four elements in the vector, vD, is 32 bits long.

Figure 6-142. vupkhpx—Unpack High-Order Elements (16-Bit) to Elements (32-Bit)

04 vD 0_0000 vB 846

0 5 6 10 11 15 16 20 21 31

vB

vD000 000 000 000

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-172 Freescale Semiconductor

vupkhsb vupkhsb
Vector Unpack High Signed Byte

vupkhsb vD,vB Form: VX

do i=0 to 63 by 8
vDi*2:(i*2)+15 ← SignExtend((vB)i:i+7,16)

end

Each signed integer byte element in the high-order half of register vB is sign-extended to produce a 16-bit
signed integer and placed, in the same order, into the eight half words of register vD.

Other registers altered:
• None

Figure 6-143 shows the usage of the vupkhsb instruction. Each of the sixteen elements in the vector, vB,
is 8 bits long. Each of the eight elements in the vector, vD, is 16 bits long.

Figure 6-143. vupkhsb—Unpack High-Order Signed Integer Elements (8-Bit) to Signed
Integer Elements (16-Bit)

04 vD 0_0000 vB 526

0 5 6 10 11 15 16 20 21 31

SSSSSSSSSSSSSSSS

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-173

vupkhsh vupkhsh
Vector Unpack High Signed Half Word

vupkhsh vD,vB Form: VX

do i=0 to 63 by 16
vDi*2:(i*2)+31 ← SignExtend((vB)i:i+15,32)

end

Each signed integer half-word element in the high-order half of register vB is sign-extended to produce a
32-bit signed integer and placed, in the same order, into the four words of register vD.

Other registers altered:
• None

Figure 6-144 shows the usage of the vupkhsh instruction. Each of the eight elements in the vector, vB, is
16 bits long. Each of the four elements in the vector, vD, is 32 bits long.

Figure 6-144. vupkhsh—Unpack Signed Integer Elements (16-Bit) to Signed Integer
Elements (32-Bit)

04 vD 0_0000 vB 590

0 5 6 10 11 15 16 20 21 31

vB

vDSSSSSSSSSSSSSSSS

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-174 Freescale Semiconductor

vupklpx vupklpx
Vector Unpack Low Pixel16

vupklpx vD,vB Form: VX

do i=0 to 63 by 16
vDi*2:(i*2)+7 ← SignExtend((vB)i+64,8)
vD(i*2)+8:(i*2)+15 ← ZeroExtend((vB)i+65:i+69,8)
vD(i*2)+16:(i*2)+23 ← ZeroExtend((vB)i+70:i+74,8)
vD(i*2)+24:(i*2)+31 ← ZeroExtend((vB)i+75:i+79,8)

end

Each half-word element in the low-order half of register vB is unpacked to produce a 32-bit value as
described below and placed, in the same order, into the four words of register vD.

A half word is unpacked to 32 bits by concatenating, in order, the results of the following operations.
• sign-extend bit 0 of the half word to 8 bits
• zero-extend bits 1–5 of the half word to 8 bits
• zero-extend bits 6–10 of the half word to 8 bits
• zero-extend bits 11–15 of the half word to 8 bits

Other registers altered:
• None

Programming note: Notice that the unpacking done by the Vector Unpack Pixel instructions does not
reverse the packing done by the Vector Pack Pixel instruction. Specifically, if a 16-bit pixel is unpacked to
a 32-bit pixel which is then packed to a 16-bit pixel, the resulting 16-bit pixel will not, in general, be equal
to the original 16-bit pixel (because, for each channel except the first, Vector Unpack Pixel inserts
high-order bits while Vector Pack Pixel discards low-order bits).

Figure 6-145 shows the usage of the vupklpx instruction. Each of the eight elements in the vector, vB, is
16 bits long. Each of the four elements in the vector, vD, is 32 bits long.

Figure 6-145. vupklpx—Unpack Low-Order Elements (16-Bit) to Elements (32-Bit)

04 vD 0_0000 vB 974

0 5 6 10 11 15 16 20 21 31

vB

vD000000000 000000

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-175

vupklsb vupklsb
Vector Unpack Low Signed Byte

vupklsb vD,vB Form: VX

do i=0 to 63 by 8
vDi*2:(i*2)+15 ← SignExtend((vB)i+64:i+71,16)

end

Each signed integer byte element in the low-order half of register vB is sign-extended to produce a 16-bit
signed integer and placed, in the same order, into the eight half words of register vD.

Other registers altered:
• None

Figure 6-146 shows the usage of the vupklsb instruction. Each of the sixteen elements in the vector, vB,
is 8 bits long. Each of the eight elements in the vector, vD, is 16 bits long.

Figure 6-146. vupklsb—Unpack Low-Order Elements (8-Bit) to Elements (16-Bit)

04 vD 0_0000 vB 654

0 5 6 10 11 15 16 20 21 31

vB

vDSSSSSSSSSSSSSSSS

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-176 Freescale Semiconductor

vupklsh vupklsh
Vector Unpack Low Signed Half Word

vupklsh vD,vB Form: VX

do i=0 to 63 by 16
vDi*2:(i*2)+31 ← SignExtend((vB)i+64:i+79,32)

end

Each signed integer half word element in the low-order half of register vB is sign-extended to produce a
32-bit signed integer and placed, in the same order, into the four words of register vD.

Other registers altered:
• None

Figure 6-147 shows the usage of the vupklsh instruction. Each of the eight elements in the vector, vB, is
16 bits long. Each of the four elements in the vector, vD, is 32 bits long.

Figure 6-147. vupklsh—Unpack Low-Order Signed Integer Elements (16-Bit) to Signed
Integer Elements (32-Bit)

04 vD 0_0000 vB 718

0 5 6 10 11 15 16 20 21 31

vB

vDSSSSSSSSSSSSSSSS

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor 6-177

vxor vxor
Vector Logical XOR

vxor vD,vA,vB Form: VX

vD ← (vA) ⊕ (vB)

The contents of vA are XORed with the contents of register vB and the result is placed into register vD.

Other registers altered:
• None

Figure 6-148 shows the usage of the vxor instruction.

Figure 6-148. vxor—Bitwise XOR (128-Bit)

04 vD vA vB 1220

0 5 6 10 11 15 16 20 21 31

⊕

vA

vB

vD

AltiVec Instructions

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

6-178 Freescale Semiconductor

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-1

Appendix A
AltiVec Instruction Set Listings
This appendix lists the instruction set for AltiVec technology. Instructions are sorted by mnemonic,
opcode, and form. Also included in this appendix is a quick reference table that contains general
information, such as the architecture level, privilege level, and form, and indicates if the instruction is
optional.

Note that split fields, which represent the concatenation of sequences from left to right, are shown in lower
case.

The following key applies to the tables in this appendix.

A.1 Instructions Sorted by Mnemonic in Decimal Format
Table A-1 lists the instructions implemented in the AltiVec architecture in alphabetical order by
mnemonic. The primary and extended opcodes are decimal numbers.

Table A-1. Instructions Sorted by Mnemonic in Decimal Format

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dss 31 0 0_0 STRM 0_0000 0000_0 822 0

dssall 31 1 0_0 STRM 0_0000 0000_0 822 0

dst 31 0 0_0 STRM A B 342 0

dstst 31 0 0_0 STRM A B 374 0

dststt 31 1 0_0 STRM A B 374 0

dstt 31 1 0_0 STRM A B 342 0

lvebx 31 vD A B 7 0

lvehx 31 vD A B 39 0

lvewx 31 vD A B 71 0

lvsl 31 vD A B 6 0

lvsr 31 vD A B 38 0

lvx 31 vD A B 103 0

lvxl 31 vD A B 359 0

mfvscr 04 vD 0_0000 0000_0 1540

mtvscr 04 00_000 0_0000 vB 1604

stvebx 31 vS A B 135 0

stvehx 31 vS A B 167 0

Reserved BitsKey:

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-2 Freescale Semiconductor

stvewx 31 vS A B 199 0

stvx 31 vS A B 231 0

stvxl 31 vS A B 487 0

vaddcuw 04 vD vA vB 384

vaddfp 04 vD vA vB 10

vaddsbs 04 vD vA vB 768

vaddshs 04 vD vA vB 832

vaddsws 04 vD vA vB 896

vaddubm 04 vD vA vB 0

vaddubs 04 vD vA vB 512

vadduhm 04 vD vA vB 64

vadduhs 04 vD vA vB 576

vadduwm 04 vD vA vB 128

vadduws 04 vD vA vB 640

vand 04 vD vA vB 1028

vandc 04 vD vA vB 1092

vavgsb 04 vD vA vB 1282

vavgsh 04 vD vA vB 1346

vavgsw 04 vD vA vB 1410

vavgub 04 vD vA vB 1026

vavguh 04 vD vA vB 1090

vavguw 04 vD vA vB 1154

vcfsx 04 vD UIMM vB 842

vcfux 04 vD UIMM vB 778

vcmpbfpx 04 vD vA vB Rc 966

vcmpeqfpx 04 vD vA vB Rc 198

vcmpequbx 04 vD vA vB Rc 6

vcmpequhx 04 vD vA vB Rc 70

vcmpequwx 04 vD vA vB Rc 134

vcmpgefpx 04 vD vA vB Rc 454

vcmpgtfpx 04 vD vA vB Rc 710

vcmpgtsbx 04 vD vA vB Rc 774

vcmpgtshx 04 vD vA vB Rc 838

vcmpgtswx 04 vD vA vB Rc 902

vcmpgtubx 04 vD vA vB Rc 518

vcmpgtuhx 04 vD vA vB Rc 582

vcmpgtuwx 04 vD vA vB Rc 646

Table A-1. Instructions Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-3

vctsxs 04 vD UIMM vB 970

vctuxs 04 vD UIMM vB 906

vexptefp 04 vD 0_0000 vB 394

vlogefp 04 vD 0_0000 vB 458

vmaddfp 04 vD vA vB vC 46

vmaxfp 04 vD vA vB 1034

vmaxsb 04 vD vA vB 258

vmaxsh 04 vD vA vB 322

vmaxsw 04 vD vA vB 386

vmaxub 04 vD vA vB 2

vmaxuh 04 vD vA vB 66

vmaxuw 04 vD vA vB 130

vmhaddshs 04 vD vA vB vC 32

vmhraddshs 04 vD vA vB vC 33

vminfp 04 vD vA vB 1098

vminsb 04 vD vA vB 770

vminsh 04 vD vA vB 834

vminsw 04 vD vA vB 898

vminub 04 vD vA vB 514

vminuh 04 vD vA vB 578

vminuw 04 vD vA vB 642

vmladduhm 04 vD vA vB vC 34

vmrghb 04 vD vA vB 12

vmrghh 04 vD vA vB 76

vmrghw 04 vD vA vB 140

vmrglb 04 vD vA vB 268

vmrglh 04 vD vA vB 332

vmrglw 04 vD vA vB 396

vmsummbm 04 vD vA vB vC 37

vmsumshm 04 vD vA vB vC 40

vmsumshs 04 vD vA vB vC 41

vmsumubm 04 vD vA vB vC 36

vmsumuhm 04 vD vA vB vC 38

vmsumuhs 04 vD vA vB vC 39

vmulesb 04 vD vA vB 776

vmulesh 04 vD vA vB 840

vmuleub 04 vD vA vB 520

Table A-1. Instructions Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-4 Freescale Semiconductor

vmuleuh 04 vD vA vB 584

vmulosb 04 vD vA vB 264

vmulosh 04 vD vA vB 328

vmuloub 04 vD vA vB 8

vmulouh 04 vD vA vB 72

vnmsubfp 04 vD vA vB vC 47

vnor 04 vD vA vB 1284

vor 04 vD vA vB 1156

vperm 04 vD vA vB vC 43

vpkpx 04 vD vA vB 782

vpkshss 04 vD vA vB 398

vpkshus 04 vD vA vB 270

vpkswss 04 vD vA vB 462

vpkswus 04 vD vA vB 334

vpkuhum 04 vD vA vB 14

vpkuhus 04 vD vA vB 142

vpkuwum 04 vD vA vB 78

vpkuwus 04 vD vA vB 206

vrefp 04 vD 0_0000 vB 266

vrfim 04 vD 0_0000 vB 714

vrfin 04 vD 0_0000 vB 522

vrfip 04 vD 0_0000 vB 650

vrfiz 04 vD 0_0000 vB 586

vrlb 04 vD vA vB 4

vrlh 04 vD vA vB 68

vrlw 04 vD vA vB 132

vrsqrtefp 04 vD 0_0000 vB 330

vsel 04 vD vA vB vC 42

vsl 04 vD vA vB 452

vslb 04 vD vA vB 260

vsldoi 04 vD vA vB 0 SH 44

vslh 04 vD vA vB 324

vslo 04 vD vA vB 1036

vslw 04 vD vA vB 388

vspltb 04 vD UIMM vB 524

vsplth 04 vD UIMM vB 588

vspltisb 04 vD SIMM 0000_0 780

Table A-1. Instructions Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-5

vspltish 04 vD SIMM 0000_0 844

vspltisw 04 vD SIMM 0000_0 908

vspltw 04 vD UIMM vB 652

vsr 04 vD vA vB 708

vsrab 04 vD vA vB 772

vsrah 04 vD vA vB 836

vsraw 04 vD vA vB 900

vsrb 04 vD vA vB 516

vsrh 04 vD vA vB 580

vsro 04 vD vA vB 1100

vsrw 04 vD vA vB 644

vsubcuw 04 vD vA vB 1408

vsubfp 04 vD vA vB 74

vsubsbs 04 vD vA vB 1792

vsubshs 04 vD vA vB 1856

vsubsws 04 vD vA vB 1920

vsububm 04 vD vA vB 1024

vsububs 04 vD vA vB 1536

vsubuhm 04 vD vA vB 1088

vsubuhs 04 vD vA vB 1600

vsubuwm 04 vD vA vB 1152

vsubuws 04 vD vA vB 1664

vsumsws 04 vD vA vB 1928

vsum2sws 04 vD vA vB 1672

vsum4sbs 04 vD vA vB 1800

vsum4shs 04 vD vA vB 1608

vsum4ubs 04 vD vA vB 1544

vupkhpx 04 vD 0_0000 vB 846

vupkhsb 04 vD 0_0000 vB 526

vupkhsh 04 vD 0_0000 vB 590

vupklpx 04 vD 0_0000 vB 974

vupklsb 04 vD 0_0000 vB 654

vupklsh 04 vD 0_0000 vB 718

vxor 04 vD vA vB 1220

Table A-1. Instructions Sorted by Mnemonic in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-6 Freescale Semiconductor

A.2 Instructions Sorted by Mnemonic in Binary Format
Table A-2 lists the instructions implemented in the AltiVec architecture in alphabetical order by
mnemonic. The primary and extended opcodes are decimal numbers.

Table A-2. Instructions Sorted by Mnemonic in Binary Format

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dss 0111_11 0 0_0 STRM 0_0000 0000_0 110_0110_110 0

dssall 0111_11 1 0_0 STRM 0_0000 0000_0 110_0110_110 0

dst 0111_11 0 0_0 STRM A B 010_1010_110 0

dstst 0111_11 0 0_0 STRM A B 010_1110_110 0

dststt 0111_11 1 0_0 STRM A B 001_1110_110 0

dstt 0111_11 1 0_0 STRM A B 010_1010_110 0

lvebx 0111_11 vD A B 000_0000_111 0

lvehx 0111_11 vD A B 000_0100_111 0

lvewx 0111_11 vD A B 000_1000_111 0

lvsl 0111_11 vD A B 000_0000_110 0

lvsr 0111_11 vD A B 000_0100_110 0

lvx 0111_11 vD A B 000_1100_111 0

lvxl 0111_11 vD A B 010_1100_111 0

mfvscr 0001_00 vD 0_0000 0000_0 110_0000_0100

mtvscr 0001_00 00_000 0_0000 vB 110_0100_0100

stvebx 0111_11 vS A B 001_0000_111 0

stvehx 0111_11 vS A B 001_0100_111 0

stvewx 0111_11 vS A B 001_1000_111 0

stvx 0111_11 vS A B 001_1100_111 0

stvxl 0111_11 vS A B 011_1100_111 0

vaddcuw 0001_00 vD vA vB 001_1000_0000

vaddfp 0001_00 vD vA vB 000_0000_1010

vaddsbs 0001_00 vD vA vB 011_0000_0000

vaddshs 0001_00 vD vA vB 011_0100_0000

vaddsws 0001_00 vD vA vB 011_1000_0000

vaddubm 0001_00 vD vA vB 000_0000_0000

vaddubs 0001_00 vD vA vB 010_0000_0000

vadduhm 0001_00 vD vA vB 000_0100_0000

vadduhs 0001_00 vD vA vB 010_0100_0000

vadduwm 0001_00 vD vA vB 000_1000_0000

vadduws 0001_00 vD vA vB 010_1000_0000

vand 0001_00 vD vA vB 100_0000_0100

vandc 0001_00 vD vA vB 100_0100_0100

vavgsb 0001_00 vD vA vB 101_0000_0010

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-7

vavgsh 0001_00 vD vA vB 101_0100_0010

vavgsw 0001_00 vD vA vB 101_1000_0010

vavgub 0001_00 vD vA vB 100_0000_0010

vavguh 0001_00 vD vA vB 100_0100_0010

vavguw 0001_00 vD vA vB 100_1000_0010

vcfsx 0001_00 vD UIMM vB 011_0100_1010

vcfux 0001_00 vD UIMM vB 011_0000_1010

vcmpbfpx 0001_00 vD vA vB Rc 11_1100_0110

vcmpeqfpx 0001_00 vD vA vB Rc 00_1100_0110

vcmpequbx 0001_00 vD vA vB Rc 00_0000_0110

vcmpequhx 0001_00 vD vA vB Rc 00_0100_0110

vcmpequwx 0001_00 vD vA vB Rc 00_1000_0110

vcmpgefpx 0001_00 vD vA vB Rc 01_1100_0110

vcmpgtfpx 0001_00 vD vA vB Rc 10_1100_0110

vcmpgtsbx 0001_00 vD vA vB Rc 11_0000_0110

vcmpgtshx 0001_00 vD vA vB Rc 11_0100_0110

vcmpgtswx 0001_00 vD vA vB Rc 11_1000_0110

vcmpgtubx 0001_00 vD vA vB Rc 10_0000_0110

vcmpgtuhx 0001_00 vD vA vB Rc 10_0100_0110

vcmpgtuwx 0001_00 vD vA vB Rc 10_1000_0110

vctsxs 0001_00 vD UIMM vB 011_1100_1010

vctuxs 0001_00 vD UIMM vB 011_1000_1010

vexptefp 0001_00 vD 0_0000 vB 001_1000_1010

vlogefp 0001_00 vD 0_0000 vB 001_1100_1010

vmaddfp 0001_00 vD vA vB vC 10_1110

vmaxfp 0001_00 vD vA vB 100_0000_1010

vmaxsb 0001_00 vD vA vB 001_0000_0010

vmaxsh 0001_00 vD vA vB 001_0100_0010

vmaxsw 0001_00 vD vA vB 001_1000_0010

vmaxub 0001_00 vD vA vB 0000_0000_0010

vmaxuh 0001_00 vD vA vB 0100_0010

vmaxuw 0001_00 vD vA vB 1000_0010

vmhaddshs 0001_00 vD vA vB vC 10_0000

vmhraddshs 0001_00 vD vA vB vC 10_0001

vminfp 0001_00 vD vA vB 100_0100_1010

vminsb 0001_00 vD vA vB 011_0000_0010

vminsh 0001_00 vD vA vB 011_0100_0010

Table A-2. Instructions Sorted by Mnemonic in Binary Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-8 Freescale Semiconductor

vminsw 0001_00 vD vA vB 011_1000_0010

vminub 0001_00 vD vA vB 010_0000_0010

vminuh 0001_00 vD vA vB 010_0100_0010

vminuw 0001_00 vD vA vB 010_1000_0010

vmladduhm 0001_00 vD vA vB vC 10_0010

vmrghb 0001_00 vD vA vB 000_0000_1100

vmrghh 0001_00 vD vA vB 000_0100_1100

vmrghw 0001_00 vD vA vB 000_1000_1100

vmrglb 0001_00 vD vA vB 001_0000_1100

vmrglh 0001_00 vD vA vB 001_0100_1100

vmrglw 0001_00 vD vA vB 001_1000_1100

vmsummbm 0001_00 vD vA vB vC 10_0101

vmsumshm 0001_00 vD vA vB vC 10_1000

vmsumshs 0001_00 vD vA vB vC 10_1001

vmsumubm 0001_00 vD vA vB vC 10_0100

vmsumuhm 0001_00 vD vA vB vC 10_0110

vmsumuhs 0001_00 vD vA vB vC 10_0111

vmulesb 0001_00 vD vA vB 011_0000_1000

vmulesh 0001_00 vD vA vB 011_0100_1000

vmuleub 0001_00 vD vA vB 010_0000_1000

vmuleuh 0001_00 vD vA vB 010_0100_1000

vmulosb 0001_00 vD vA vB 001_0000_1000

vmulosh 0001_00 vD vA vB 001_0100_1000

vmuloub 0001_00 vD vA vB 000_0000_1000

vmulouh 0001_00 vD vA vB 000_0100_1000

vnmsubfp 0001_00 vD vA vB vC 10_1111

vnor 0001_00 vD vA vB 101_0000_0100

vor 0001_00 vD vA vB 100_1000_0100

vperm 0001_00 vD vA vB vC 10_1011

vpkpx 0001_00 vD vA vB 011_0000_1110

vpkshss 0001_00 vD vA vB 001_1000_1110

vpkshus 0001_00 vD vA vB 001_0000_1110

vpkswss 0001_00 vD vA vB 001_1100_1110

vpkswus 0001_00 vD vA vB 001_0100_1110

vpkuhum 0001_00 vD vA vB 000_0000_1110

vpkuhus 0001_00 vD vA vB 000_1000_1110

vpkuwum 0001_00 vD vA vB 000_100_1110

Table A-2. Instructions Sorted by Mnemonic in Binary Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-9

vpkuwus 0001_00 vD vA vB 000_1100_1110

vrefp 0001_00 vD 0_0000 vB 001_0000_1010

vrfim 0001_00 vD 0_0000 vB 010_1100_1010

vrfin 0001_00 vD 0_0000 vB 010_0000_1010

vrfip 0001_00 vD 0_0000 vB 010_1000_1010

vrfiz 0001_00 vD 0_0000 vB 010_0100_1010

vrlb 0001_00 vD vA vB 000_0000_0100

vrlh 0001_00 vD vA vB 000_0100_0100

vrlw 0001_00 vD vA vB 000_1000_0100

vrsqrtefp 0001_00 vD 0_0000 vB 001_0100_1010

vsel 0001_00 vD vA vB vC 10_1010

vsl 0001_00 vD vA vB 1_1100_0100

vslb 0001_00 vD vA vB 1_0000_0100

vsldoi 0001_00 vD vA vB 0 SH 10_1100

vslh 0001_00 vD vA vB 01_0100_0100

vslo 0001_00 vD vA vB 100_0000_1100

vslw 0001_00 vD vA vB 001_1000_0100

vspltb 0001_00 vD UIMM vB 010_0000_1100

vsplth 0001_00 vD UIMM vB 010_0100_1100

vspltisb 0001_00 vD SIMM 0000_0 011_0000_1100

vspltish 0001_00 vD SIMM 0000_0 011_0100_1100

vspltisw 0001_00 vD SIMM 0000_0 011_1000_1100

vspltw 0001_00 vD UIMM vB 010_1000_1100

vsr 0001_00 vD vA vB 010_1100_0100

vsrab 0001_00 vD vA vB 011_0000_0100

vsrah 0001_00 vD vA vB 011_0100_0100

vsraw 0001_00 vD vA vB 011_1000_0100

vsrb 0001_00 vD vA vB 010_0000_0100

vsrh 0001_00 vD vA vB 010_0100_0100

vsro 0001_00 vD vA vB 100_0100_1100

vsrw 0001_00 vD vA vB 010_1000_0100

vsubcuw 0001_00 vD vA vB 101_1000_0000

vsubfp 0001_00 vD vA vB 000_0100_1010

vsubsbs 0001_00 vD vA vB 111_0000_0000

vsubshs 0001_00 vD vA vB 111_0100_0000

vsubsws 0001_00 vD vA vB 111_1000_0000

vsububm 0001_00 vD vA vB 100_0000_0000

Table A-2. Instructions Sorted by Mnemonic in Binary Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-10 Freescale Semiconductor

vsububs 0001_00 vD vA vB 110_0000_0000

vsubuhm 0001_00 vD vA vB 100_0100_0000

vsubuhs 0001_00 vD vA vB 110_0100_0000

vsubuwm 0001_00 vD vA vB 100_1000_0000

vsubuws 0001_00 vD vA vB 110_1000_0000

vsumsws 0001_00 vD vA vB 111_1000_1000

vsum2sws 0001_00 vD vA vB 110_1000_1000

vsum4sbs 0001_00 vD vA vB 111_0000_1000

vsum4shs 0001_00 vD vA vB 110_0100_1000

vsum4ubs 0001_00 vD vA vB 110_0000_1000

vupkhpx 0001_00 vD 0_0000 vB 011_0100_1110

vupkhsb 0001_00 vD 0_0000 vB 010_0000_1110

vupkhsh 0001_00 vD 0_0000 vB 010_0100_1110

vupklpx 0001_00 vD 0_0000 vB 011_1100_1110

vupklsb 0001_00 vD 0_0000 vB 010_1000_1110

vupklsh 0001_00 vD 0_0000 vB 010_1100_1110

vxor 0001_00 vD vA vB 100_1100_0100

Table A-2. Instructions Sorted by Mnemonic in Binary Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-11

A.3 Instructions Sorted by Opcode in Decimal Format
Table A-3 lists AltiVec instructions grouped by opcode in decimal format.

Table A-3. Instructions Sorted by Opcode in Decimal Format

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmhaddshs 04 vD vA vB vC 32

vmhraddshs 04 vD vA vB vC 33

vmladduhm 04 vD vA vB vC 34

vmsumubm 04 vD vA vB vC 36

vmsummbm 04 vD vA vB vC 37

vmsumuhm 04 vD vA vB vC 38

vmsumuhs 04 vD vA vB vC 39

vmsumshm 04 vD vA vB vC 40

vmsumshs 04 vD vA vB vC 41

vsel 04 vD vA vB vC 42

vperm 04 vD vA vB vC 43

vsldoi 04 vD vA vB 0 SH 44

vmaddfp 04 vD vA vB 46

vnmsubfp 04 vD vA vB vC 47

vaddubm 04 vD vA vB 0

vadduhm 04 vD vA vB 64

vadduwm 04 vD vA vB 128

vaddcuw 04 vD vA vB 384

vaddubs 04 vD vA vB 512

vadduhs 04 vD vA vB 576

vadduws 04 vD vA vB 640

vaddsbs 04 vD vA vB 768

vaddshs 04 vD vA vB 832

vaddsws 04 vD vA vB 896

vsububm 04 vD vA vB 1024

vsubuhm 04 vD vA vB 1088

vsubuwm 04 vD vA vB 1152

vsubcuw 04 vD vA vB 1408

vsububs 04 vD vA vB 1536

vsubuhs 04 vD vA vB 1600

vsubuws 04 vD vA vB 1664

vsubsbs 04 vD vA vB 1792

vsubshs 04 vD vA vB 1856

vsubsws 04 vD vA vB 1920

vmaxub 04 vD vA vB 2

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-12 Freescale Semiconductor

vmaxuh 04 vD vA vB 66

vmaxuw 04 vD vA vB 130

vmaxsb 04 vD vA vB 258

vmaxsh 04 vD vA vB 322

vmaxsw 04 vD vA vB 386

vminub 04 vD vA vB 514

vminuh 04 vD vA vB 578

vminuw 04 vD vA vB 642

vminsb 04 vD vA vB 770

vminsh 04 vD vA vB 834

vminsw 04 vD vA vB 898

vavgub 04 vD vA vB 1026

vavguh 04 vD vA vB 1090

vavguw 04 vD vA vB 1154

vavgsb 04 vD vA vB 1282

vavgsh 04 vD vA vB 1346

vavgsw 04 vD vA vB 1410

vrlb 04 vD vA vB 4

vrlh 04 vD vA vB 68

vrlw 04 vD vA vB 132

vslb 04 vD vA vB 260

vslh 04 vD vA vB 324

vslw 04 vD vA vB 388

vsl 04 vD vA vB 452

vsrb 04 vD vA vB 516

vsrh 04 vD vA vB 580

vsrw 04 vD vA vB 644

vsr 04 vD vA vB 708

vsrab 04 vD vA vB 772

vsrah 04 vD vA vB 836

vsraw 04 vD vA vB 900

vand 04 vD vA vB 1028

vandc 04 vD vA vB 1092

vor 04 vD vA vB 1156

vxor 04 vD vA vB 1220

vnor 04 vD vA vB 1284

mfvscr 04 vD 0_0000 0000_0 1540

Table A-3. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-13

mtvscr 04 00_000 0_0000 vB 1604

vcmpequbx 04 vD vA vB Rc 6

vcmpequhx 04 vD vA vB Rc 70

vcmpequwx 04 vD vA vB Rc 134

vcmpeqfpx 04 vD vA vB Rc 198

vcmpgefpx 04 vD vA vB Rc 454

vcmpgtubx 04 vD vA vB Rc 518

vcmpgtuhx 04 vD vA vB Rc 582

vcmpgtuwx 04 vD vA vB Rc 646

vcmpgtfpx 04 vD vA vB Rc 710

vcmpgtsbx 04 vD vA vB Rc 774

vcmpgtshx 04 vD vA vB Rc 838

vcmpgtswx 04 vD vA vB Rc 902

vcmpbfpx 04 vD vA vB Rc 966

vmuloub 04 vD vA vB 8

vmulouh 04 vD vA vB 72

vmulosb 04 vD vA vB 264

vmulosh 04 vD vA vB 328

vmuleub 04 vD vA vB 520

vmuleuh 04 vD vA vB 584

vmulesb 04 vD vA vB 776

vmulesh 04 vD vA vB 840

vsum4ubs 04 vD vA vB 1544

vsum4sbs 04 vD vA vB 1800

vsum4shs 04 vD vA vB 1608

vsum2sws 04 vD vA vB 1672

vsumsws 04 vD vA vB 1928

vaddfp 04 vD vA vB 10

vsubfp 04 vD vA vB 74

vrefp 04 vD 0_0000 vB 266

vrsqrtefp 04 vD 0_0000 vB 330

vexptefp 04 vD 0_0000 vB 394

vlogefp 04 vD 0_0000 vB 458

vrfin 04 vD 0_0000 vB 522

vrfiz 04 vD 0_0000 vB 586

vrfip 04 vD 0_0000 vB 650

vrfim 04 vD 0_0000 vB 714

Table A-3. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-14 Freescale Semiconductor

vcfux 04 vD UIMM vB 778

vcfsx 04 vD UIMM vB 842

vctuxs 04 vD UIMM vB 906

vctsxs 04 vD UIMM vB 970

vmaxfp 04 vD vA vB 1034

vminfp 04 vD vA vB 1098

vmrghb 04 vD vA vB 12

vmrghh 04 vD vA vB 76

vmrghw 04 vD vA vB 140

vmrglb 04 vD vA vB 268

vmrglh 04 vD vA vB 332

vmrglw 04 vD vA vB 396

vspltb 04 vD UIMM vB 524

vsplth 04 vD UIMM vB 588

vspltw 04 vD UIMM vB 652

vspltisb 04 vD SIMM 0000_0 780

vspltish 04 vD SIMM 0000_0 844

vspltisw 04 vD SIMM 0000_0 908

vslo 04 vD vA vB 1036

vsro 04 vD vA vB 1100

vpkuhum 04 vD vA vB 14

vpkuwum 04 vD vA vB 78

vpkuhus 04 vD vA vB 142

vpkuwus 04 vD vA vB 206

vpkshus 04 vD vA vB 270

vpkswus 04 vD vA vB 334

vpkshss 04 vD vA vB 398

vpkswss 04 vD vA vB 462

vupkhsb 04 vD 0_0000 vB 526

vupkhsh 04 vD 0_0000 vB 590

vupklsb 04 vD 0_0000 vB 654

vupklsh 04 vD 0_0000 vB 718

vpkpx 04 vD vA vB 782

vupkhpx 04 vD 0_0000 vB 846

vupklpx 04 vD 0_0000 vB 974

lvsl 31 vD A B 6 0

lvsr 31 vD A B 38 0

Table A-3. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-15

dst 31 0 0_0 STRM A B 342 0

dstt 31 1 0_0 STRM A B 342 0

dstst 31 0 0_0 STRM A B 374 0

dststt 31 1 0_0 STRM A B 374 0

dss 31 0 0_0 STRM 0_0000 0000_0 822 0

dssall 31 1 0_0 STRM 0_0000 0000_0 822 0

lvebx 31 vD A B 71 0

lvehx 31 vD A B 39 0

lvewx 31 vD A B 0 0

lvx 31 vD A B 103 0

lvxl 31 vD A B 359 0

stvebx 31 vS A B 135 0

stvehx 31 vS A B 167 0

stvewx 31 vS A B 199 0

stvx 31 vS A B 231 0

stvxl 31 vS A B 487 0

Table A-3. Instructions Sorted by Opcode in Decimal Format (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-16 Freescale Semiconductor

A.4 Instructions Sorted by Opcode in Binary Format
Table A-4 lists Altivec instructions grouped by opcode in binary format.

Table A-4. Instructions Sorted by Opcode in Binary Format

Name 0---------------5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmhaddshs 0001_00 vD vA vB vC 10_0000

vmhraddshs 0001_00 vD vA vB vC 10_0001

vmladduhm 0001_00 vD vA vB vC 10_0010

vmsumubm 0001_00 vD vA vB vC 10_0100

vmsummbm 0001_00 vD vA vB vC 10_0101

vmsumuhm 0001_00 vD vA vB vC 10_0110

vmsumuhs 0001_00 vD vA vB vC 10_0111

vmsumshm 0001_00 vD vA vB vC 10_1000

vmsumshs 0001_00 vD vA vB vC 10_1001

vsel 0001_00 vD vA vB vC 10_1010

vperm 0001_00 vD vA vB vC 10_1011

vsldoi 0001_00 vD vA vB 0 SH 10_1100

vmaddfp 0001_00 vD vA vB 000_0010_1110

vnmsubfp 0001_00 vD vA vB vC 10_1111

vaddubm 0001_00 vD vA vB 000_0000_0000

vadduhm 0001_00 vD vA vB 000_0100_0000

vadduwm 0001_00 vD vA vB 000_1000_0000

vaddcuw 0001_00 vD vA vB 001_1000_0000

vaddubs 0001_00 vD vA vB 010_0000_0000

vadduhs 0001_00 vD vA vB 010_0100_0000

vadduws 0001_00 vD vA vB 010_1000_0000

vaddsbs 0001_00 vD vA vB 011_0000_0000

vaddshs 0001_00 vD vA vB 011_0100_0000

vaddsws 0001_00 vD vA vB 011_1000_0000

vsububm 0001_00 vD vA vB 100_0000_0000

vsubuhm 0001_00 vD vA vB 100_0100_0000

vsubuwm 0001_00 vD vA vB 100_1000_0000

vsubcuw 0001_00 vD vA vB 101_1000_0000

vsububs 0001_00 vD vA vB 110_0000_0000

vsubuhs 0001_00 vD vA vB 110_0100_0000

vsubuws 0001_00 vD vA vB 110_1000_0000

vsubsbs 0001_00 vD vA vB 111_0000_0000

vsubshs 0001_00 vD vA vB 111_0100_0000

vsubsws 0001_00 vD vA vB 111_1000_0000

vmaxub 0001_00 vD vA vB 000_0000_0010

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-17

vmaxuh 0001_00 vD vA vB 000_0100_0010

vmaxuw 0001_00 vD vA vB 000_1000_0010

vmaxsb 0001_00 vD vA vB 001_0000_0010

vmaxsh 0001_00 vD vA vB 001_0100_0010

vmaxsw 0001_00 vD vA vB 001_1000_0010

vminub 0001_00 vD vA vB 010_0000_0010

vminuh 0001_00 vD vA vB 010_0100_0010

vminuw 0001_00 vD vA vB 010_1000_0010

vminsb 0001_00 vD vA vB 011_0000_0010

vminsh 0001_00 vD vA vB 011_0100_0010

vminsw 0001_00 vD vA vB 011_1000_0010

vavgub 0001_00 vD vA vB 100_0000_0010

vavguh 0001_00 vD vA vB 100_0100_0010

vavguw 0001_00 vD vA vB 100_1000_0010

vavgsb 0001_00 vD vA vB 101_0000_0010

vavgsh 0001_00 vD vA vB 101_0100_0010

vavgsw 0001_00 vD vA vB 101_1000_0010

vrlb 0001_00 vD vA vB 000_0000_0100

vrlh 0001_00 vD vA vB 000_0100_0100

vrlw 0001_00 vD vA vB 000_1000_0100

vslb 0001_00 vD vA vB 001_0000_0100

vslh 0001_00 vD vA vB 001_0100_0100

vslw 0001_00 vD vA vB 001_1000_0100

vsl 0001_00 vD vA vB 001_1100_0100

vsrb 0001_00 vD vA vB 010_0000_0100

vsrh 0001_00 vD vA vB 010_0100_0100

vsrw 0001_00 vD vA vB 010_1000_0100

vsr 0001_00 vD vA vB 010_1100_0100

vsrab 0001_00 vD vA vB 011_0000_0100

vsrah 0001_00 vD vA vB 011_0100_0100

vsraw 0001_00 vD vA vB 011_1000_0100

vand 0001_00 vD vA vB 100_0000_0100

vandc 0001_00 vD vA vB 100_0100_0100

vor 0001_00 vD vA vB 100_1000_0100

vxor 0001_00 vD vA vB 100_1100_0100

vnor 0001_00 vD vA vB 101_0000_0100

mfvscr 0001_00 vD 0_0000 0000_0 110_0000_0100

Table A-4. Instructions Sorted by Opcode in Binary Format (continued)

Name 0---------------5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-18 Freescale Semiconductor

mtvscr 0001_00 00_000 0_0000 vB 110_0100_0100

vcmpequbx 0001_00 vD vA vB Rc 00_0000_0110

vcmpequhx 0001_00 vD vA vB Rc 00_0100_0110

vcmpequwx 0001_00 vD vA vB Rc 00_1000_0110

vcmpeqfpx 0001_00 vD vA vB Rc 00_1100_0110

vcmpgefpx 0001_00 vD vA vB Rc 01_1100_0110

vcmpgtubx 0001_00 vD vA vB Rc 10_0000_0110

vcmpgtuhx 0001_00 vD vA vB Rc 10_0100_0110

vcmpgtuwx 0001_00 vD vA vB Rc 10_1000_0110

vcmpgtfpx 0001_00 vD vA vB Rc 10_1100_0110

vcmpgtsbx 0001_00 vD vA vB Rc 11_0000_0110

vcmpgtshx 0001_00 vD vA vB Rc 11_0100_0110

vcmpgtswx 0001_00 vD vA vB Rc 11_1000_0110

vcmpbfpx 0001_00 vD vA vB Rc 11_1100_0110

vmuloub 0001_00 vD vA vB 000_0000_1000

vmulouh 0001_00 vD vA vB 000_0100_1000

vmulosb 0001_00 vD vA vB 001_0000_1000

vmulosh 0001_00 vD vA vB 001_0100_1000

vmuleub 0001_00 vD vA vB 010_0000_1000

vmuleuh 0001_00 vD vA vB 010_0100_1000

vmulesb 0001_00 vD vA vB 011_0000_1000

vmulesh 0001_00 vD vA vB 011_0100_1000

vsum4ubs 0001_00 vD vA vB 110_0000_1000

vsum4sbs 0001_00 vD vA vB 111_0000_1000

vsum4shs 0001_00 vD vA vB 110_0100_1000

vsum2sws 0001_00 vD vA vB 110_1000_1000

vsumsws 0001_00 vD vA vB 111_1000_1000

vaddfp 0001_00 vD vA vB 000_0000_1010

vsubfp 0001_00 vD vA vB 000_0100_1010

vrefp 0001_00 vD 0_0000 vB 001_0000_1010

vrsqrtefp 0001_00 vD 0_0000 vB 001_0100_1010

vexptefp 0001_00 vD 0_0000 vB 001_1000_1010

vlogefp 0001_00 vD 0_0000 vB 001_1100_1010

vrfin 0001_00 vD 0_0000 vB 010_0000_1010

vrfiz 0001_00 vD 0_0000 vB 010_0100_1010

vrfip 0001_00 vD 0_0000 vB 010_1000_1010

vrfim 0001_00 vD 0_0000 vB 010_1100_1010

Table A-4. Instructions Sorted by Opcode in Binary Format (continued)

Name 0---------------5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-19

vcfux 0001_00 vD UIMM vB 011_0000_1010

vcfsx 0001_00 vD UIMM vB 011_0100_1010

vctuxs 0001_00 vD UIMM vB 011_1000_1010

vctsxs 0001_00 vD UIMM vB 011_1100_1010

vmaxfp 0001_00 vD vA vB 100_0000_1010

vminfp 0001_00 vD vA vB 100_0100_1010

vmrghb 0001_00 vD vA vB 000_0000_1100

vmrghh 0001_00 vD vA vB 000_0100_1100

vmrghw 0001_00 vD vA vB 000_1000_1100

vmrglb 0001_00 vD vA vB 001_0000_1100

vmrglh 0001_00 vD vA vB 001_0100_1100

vmrglw 0001_00 vD vA vB 001_1000_1100

vspltb 0001_00 vD UIMM vB 010_0000_1100

vsplth 0001_00 vD UIMM vB 010_0100_1100

vspltw 0001_00 vD UIMM vB 010_1000_1100

vspltisb 0001_00 vD SIMM 0000_0 011_0000_1100

vspltish 0001_00 vD SIMM 0000_0 011_0100_1100

vspltisw 0001_00 vD SIMM 0000_0 011_1000_1100

vslo 0001_00 vD vA vB 100_0000_1100

vsro 0001_00 vD vA vB 100_0100_1100

vpkuhum 0001_00 vD vA vB 000_0000_1110

vpkuwum 0001_00 vD vA vB 000_0100_1110

vpkuhus 0001_00 vD vA vB 000_1000_1110

vpkuwus 0001_00 vD vA vB 000_1100_1110

vpkshus 0001_00 vD vA vB 001_0000_1110

vpkswus 0001_00 vD vA vB 001_0100_1110

vpkshss 0001_00 vD vA vB 001_1000_1110

vpkswss 0001_00 vD vA vB 001_1100_1110

vupkhsb 0001_00 vD 0_0000 vB 010_0000_1110

vupkhsh 0001_00 vD 0_0000 vB 010_0100_1110

vupklsb 0001_00 vD 0_0000 vB 010_1000_1110

vupklsh 0001_00 vD 0_0000 vB 010_1100_1110

vpkpx 0001_00 vD vA vB 0110000_1110

vupkhpx 0001_00 vD 0_0000 vB 011_0100_1110

vupklpx 0001_00 vD 0_0000 vB 011_1100_1110

lvsl 0111_11 vD A B 000_0000_110 0

lvsr 0111_11 vD A B 000_0100_110 0

Table A-4. Instructions Sorted by Opcode in Binary Format (continued)

Name 0---------------5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-20 Freescale Semiconductor

dst 0111_11 0 0_0 STRM A B 010_1010_110 0

dstt 0111_1 1 0_0 STRM A B 010_1010_110 0

dstst 0111_11 0 0_0 STRM A B 010_1110_110 0

dststt 0111_11 1 0_0 STRM A B 010_1110_110 0

dss 0111_11 0 0_0 STRM 0_0000 0000_0 110_0110_110 0

dssall 0111_11 1 0_0 STRM 0_0000 0000_0 110_0110_110 0

lvebx 0111_11 vD A B 000_0000_111 0

lvehx 0111_11 vD A B 000_0100_111 0

lvewx 0111_11 vD A B 000_1000_111 0

lvx 0111_11 vD A B 000_1100_111 0

lvxl 0111_11 vD A B 010_1100_111 0

stvebx 0111_11 vS A B 001_0000_111 0

stvehx 0111_11 vS A B 001_0100_111 0

stvewx 0111_11 vS A B 001_1000_111 0

stvx 0111_11 vS A B 001_1100_111 0

stvxl 0111_11 vS A B 011_1100_111 0

Table A-4. Instructions Sorted by Opcode in Binary Format (continued)

Name 0---------------5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-21

A.5 Instructions Sorted by Form
Table A-5 through Table A-8 list the AltiVec instructions grouped by form.

Table A-5. VA-Form

OPCD vD vA vB vC3.5 XO

OPCD vD vA vB 0 SH XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmhaddshs 04 vD vA vB vC 32

vmhraddshs 04 vD vA vB vC 33

vmladduhm 04 vD vA vB vC 34

vmsumubm 04 vD vA vB vC 36

vmsummbm 04 vD vA vB vC 37

vmsumuhm 04 vD vA vB vC 38

vmsumuhs 04 vD vA vB vC 39

vmsumshm 04 vD vA vB vC 40

vmsumshs 04 vD vA vB vC 41

vsel 04 vD vA vB vC 42

vperm 04 vD vA vB vC 43

vsldoi 04 vD vA vB 0 SH 44

vmaddfp 04 vD vA vB vC 46

vnmsubfp 04 vD vA vB vC 47

Table A-6. VX-Form

OPCD vD vA vB XO

OPCD vD 0_0000 0000_0 XO 0

OPCD 00_000 0_0000 vB XO 0

OPCD vD 0_0000 vB XO

OPCD vD UIMM vB XO

OPCD vD SIMM 0000_0 XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vaddubm 04 vD vA vB 0

vadduhm 04 vD vA vB 64

vadduwm 04 vD vA vB 128

vaddcuw 04 vD vA vB 384

vaddubs 04 vD vA vB 512

vadduhs 04 vD vA vB 576

vadduws 04 vD vA vB 640

vaddsbs 04 vD vA vB 768

vaddshs 04 vD vA vB 832

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-22 Freescale Semiconductor

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vaddsws 04 vD vA vB 896

vsububm 04 vD vA vB 1024

vsubuhm 04 vD vA vB 1088

vsubuwm 04 vD vA vB 1152

vsubcuw 04 vD vA vB 1408

vsububs 04 vD vA vB 1536

vsubuhs 04 vD vA vB 1600

vsubuws 04 vD vA vB 1664

vsubsbs 04 vD vA vB 1792

vsubshs 04 vD vA vB 1856

vsubsws 04 vD vA vB 1920

vmaxub 04 vD vA vB 2

vmaxuh 04 vD vA vB 66

vmaxuw 04 vD vA vB 130

vmaxsb 04 vD vA vB 258

vmaxsh 04 vD vA vB 322

vmaxsw 04 vD vA vB 386

vminub 04 vD vA vB 514

vminuh 04 vD vA vB 578

vminuw 04 vD vA vB 642

vminsb 04 vD vA vB 770

vminsh 04 vD vA vB 834

vminsw 04 vD vA vB 898

vavgub 04 vD vA vB 1026

vavguh 04 vD vA vB 1090

vavguw 04 vD vA vB 1154

vavgsb 04 vD vA vB 1282

vavgsh 04 vD vA vB 1346

vavgsw 04 vD vA vB 1410

vrlb 04 vD vA vB 4

vrlh 04 vD vA vB 68

vrlw 04 vD vA vB 132

vslb 04 vD vA vB 260

vslh 04 vD vA vB 324

vslw 04 vD vA vB 388

vsl 04 vD vA vB 452

vsrb 04 vD vA vB 516

vsrh 04 vD vA vB 580

vsrw 04 vD vA vB 644

Table A-6. VX-Form (continued)

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-23

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vsr 04 vD vA vB 708

vsrab 04 vD vA vB 772

vsrah 04 vD vA vB 836

vsraw 04 vD vA vB 900

vand 04 vD vA vB 1028

vandc 04 vD vA vB 1092

vor 04 vD vA vB 1156

vnor 04 vD vA vB 1284

mfvscr 04 vD 0_0000 0000_0 1540

mtvscr 04 00_000 0_0000 vB 1604

vmuloub 04 vD vA vB 8

vmulouh 04 vD vA vB 72

vmulosb 04 vD vA vB 264

vmulosh 04 vD vA vB 328

vmuleub 04 vD vA vB 520

vmuleuh 04 vD vA vB 584

vmulesb 04 vD vA vB 776

vmulesh 04 vD vA vB 840

vsum4ubs 04 vD vA vB 1544

vsum4sbs 04 vD vA vB 1800

vsum4shs 04 vD vA vB 1608

vsum2sws 04 vD vA vB 1672

vsumsws 04 vD vA vB 1928

vaddfp 04 vD vA vB 10

vsubfp 04 vD vA vB 74

vrefp 04 vD 0_0000 vB 266

vrsqrtefp 04 vD 0_0000 vB 330

vexptefp 04 vD 0_0000 vB 394

vlogefp 04 vD 0_0000 vB 458

vrfin 04 vD 0_0000 vB 522

vrfiz 04 vD 0_0000 vB 586

vrfip 04 vD 0_0000 vB 650

vrfim 04 vD 0_0000 vB 714

vcfux 04 vD UIMM vB 778

vcfsx 04 vD UIMM vB 842

vctuxs 04 vD UIMM vB 906

vctsxs 04 vD UIMM vB 970

vmaxfp 04 vD vA vB 1034

vminfp 04 vD vA vB 1098

Table A-6. VX-Form (continued)

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-24 Freescale Semiconductor

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmrghb 04 vD vA vB 12

vmrghh 04 vD vA vB 76

vmrghw 04 vD vA vB 140

vmrglb 04 vD vA vB 268

vmrglh 04 vD vA vB 332

vmrglw 04 vD vA vB 396

vspltb 04 vD UIMM vB 524

vsplth 04 vD UIMM vB 588

vspltw 04 vD UIMM vB 652

vspltisb 04 vD SIMM 0000_0 780

vspltish 04 vD SIMM 0000_0 844

vspltisw 04 vD SIMM 0000_0 908

vslo 04 vD vA vB 1036

vsro 04 vD vA vB 1100

vpkuhum 04 vD vA vB 14

vpkuwum 04 vD vA vB 78

vpkuhus 04 vD vA vB 142

vpkuwus 04 vD vA vB 206

vpkshus 04 vD vA vB 270

vpkswus 04 vD vA vB 334

vpkshss 04 vD vA vB 398

vpkswss 04 vD vA vB 462

vupkhsb 04 vD 0_0000 vB 526

vupkhsh 04 vD 0_0000 vB 590

vupklsb 04 vD 0_0000 vB 654

vupklsh 04 vD 0_0000 vB 718

vpkpx 04 vD vA vB 782

vupkhpx 04 vD 0_0000 vB 846

vupklpx 04 vD 0_0000 vB 974

vxor 04 vD vA vB 1220

Table A-7. X-Form

OPCD vD vA vB XO 0

OPCD vS vA vB XO 0

OPCD T 0_0 STRM A B XO 0

Table A-6. VX-Form (continued)

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-25

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dst 31 T 0_0 STRM A B 342 0

dstt 31 1 0_0 STRM A B 342 0

dstst 31 T 0_0 STRM A B 374 0

dststt 31 1 0_0 STRM A B 374 0

dss 31 A 0_0 STRM 0_0000 0000_0 822 0

dssall 31 1 0_0 STRM 0_0000 0000_0 822 0

lvebx 31 vD A B 7 0

lvehx 31 vD A B 39 0

lvewx 31 vD A B 71 0

lvsl 31 vD A B 6 0

lvsr 31 vD A B 38 0

lvx 31 vD A B 103 0

lvxl 31 vD A B 359 0

stvebx 31 vS A B 135 0

stvehx 31 vS A B 167 0

stvewx 31 vS A B 199 0

stvx 31 vS A B 231 0

stvxl 31 vS A B 487 0

Table A-8. VXR-Form

OPCD vD vA vB Rc XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vcmpbfpx 04 vD vA vB Rc 966

vcmpeqfpx 04 vD vA vB Rc 198

vcmpequbx 04 vD vA vB Rc 6

vcmpequhx 04 vD vA vB Rc 70

vcmpequwx 04 vD vA vB Rc 134

vcmpgefpx 04 vD vA vB Rc 454

vcmpgtfpx 04 vD vA vB Rc 710

vcmpgtsbx 04 vD vA vB Rc 774

vcmpgtshx 04 vD vA vB Rc 838

vcmpgtswx 04 vD vA vB Rc 902

vcmpgtubx 04 vD vA vB Rc 518

vcmpgtuhx 04 vD vA vB Rc 582

vcmpgtuwx 04 vD vA vB Rc 646

Table A-7. X-Form (continued)

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-26 Freescale Semiconductor

A.6 Instruction Set Legend
Table A-9 provides general information on the AltiVec instruction set such as the architectural level,
privilege level, and form.

Table A-9. AltiVec Instruction Set Legend

UISA VEA OEA
Supervisor

Level
Optional Form

dss √ VX

dssall √ VX

dst √ VX

dstst √ VX

dststt √ VX

dstt √ VX

lvebx √ X

lvehx √ X

lvewx √ X

lvsl √ X

lvsr √ X

lvx √ X

lvxl √ X

mfvscr √ VX

mtvscr √ VX

stvebx √ X

stvehx √ X

stvewx √ X

stvx √ X

stvxl √ X

vaddcuw √ VX

vaddfp √ VX

vaddsbs √ VX

vaddshs √ VX

vaddsws √ VX

vaddubm √ VX

vaddubs √ VX

vadduhm √ VX

vadduhs √ VX

vadduwm √ VX

vadduws √ VX

vand √ VX

vandc √ VX

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-27

vavgsb √ VX

vavgsh √ VX

vavgsw √ VX

vavgub √ VX

vavguh √ VX

vavguw √ VX

vcfux √ VX

vcfsx √ VX

vcmpbfpx √ VXR

vcmpeqfpx √ VXR

vcmpequbx √ VXR

vcmpequhx √ VXR

vcmpequwx √ VXR

vcmpgefpx √ VXR

vcmpgtfpx √ VXR

vcmpgtsbx √ VXR

vcmpgtshx √ VXR

vcmpgtswx √ VXR

vcmpgtubx √ VXR

vcmpgtuhx √ VXR

vcmpgtuwx √ VXR

vctsxs √ VX

vctuxs √ VX

vexptefp √ VX

vlogefp √ VX

vmaddfp √ VA

vmaxfp √ VX

vmaxsb √ VX

vmaxsh √ VX

vmaxsw √ VX

vmaxub √ VX

vmaxuh √ VX

vmaxuw √ VX

vmhaddshs √ VA

vmhraddshs √ VA

vminfp √ VX

Table A-9. AltiVec Instruction Set Legend (continued)

UISA VEA OEA
Supervisor

Level
Optional Form

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-28 Freescale Semiconductor

vminsb √ VX

vminsh √ VX

vminsw √ VX

vminub √ VX

vminuh √ VX

vminuw √ VX

vmladduhm √ VA

vmrghb √ VX

vmrghh √ VX

vmrghw √ VX

vmrglb √ VX

vmrglh √ VX

vmrglw √ VX

vmsummbm √ VA

vmsumshm √ VA

vmsumshs √ VA

vmsumubm √ VA

vmsumuhm √ VA

vmsumuhs √ VA

vmulesb √ VX

vmulesh √ VX

vmuleub √ VX

vmuleuh √ VX

vmulosb √ VX

vmulosh √ VX

vmuloub √ VX

vmulouh √ VX

vnmsubfp √ VA

vnor √ VX

vor √ VX

vperm √ VA

vpkpx √ VX

vpkshss √ VX

vpkshus √ VX

vpkswss √ VX

vpkuhum √ VX

Table A-9. AltiVec Instruction Set Legend (continued)

UISA VEA OEA
Supervisor

Level
Optional Form

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor A-29

vpkuhus √ VX

vpkswus √ VX

vpkuwum √ VX

vpkuwus √ VX

vrefp √ VX

vrfim √ VX

vrfin √ VX

vrfip √ VX

vrfiz √ VX

vrlb √ VX

vrlh √ VX

vrlw √ VX

vrsqrtefp √ VX

vsel √ VA

vsl √ VX

vslb √ VX

vsldoi √ VA

vslh √ VX

vslo √ VX

vslw √ VX

vspltb √ VX

vsplth √ VX

vspltisb √ VX

vspltish √ VX

vspltisw √ VX

vspltw √ VX

vsr √ VX

vsrab √ VX

vsrah √ VX

vsraw √ VX

vsrb √ VX

vsrh √ VX

vsro √ VX

vsrw √ VX

vsubcuw √ VX

vsubfp √ VX

Table A-9. AltiVec Instruction Set Legend (continued)

UISA VEA OEA
Supervisor

Level
Optional Form

AltiVec Instruction Set Listings

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

A-30 Freescale Semiconductor

vsubsbs √ VX

vsubshs √ VX

vsubsws √ VX

vsububm √ VX

vsubuhm √ VX

vsububs √ VX

vsubuhs √ VX

vsubuwm √ VX

vsubuws √ VX

vsumsws √ VX

vsum2sws √ VX

vsum4sbs √ VX

vsum4shs √ VX

vsum4ubs √ VX

vupkhpx √ VX

vupkhsb √ VX

vupkhsh √ VX

vupklsh √ VX

vupklpx √ VX

vupklsb √ VX

vxor √ VX

Table A-9. AltiVec Instruction Set Legend (continued)

UISA VEA OEA
Supervisor

Level
Optional Form

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor B-1

Appendix B
Revision History
This appendix provides a list of the major differences between revisions of the AltiVec Programming
Environments Manual.

B.1 Changes from Revision 2 to Revision 3
Major changes to the AltiVec Programming Environments Manual, from Revision 2 to Revision 3 are as
follows:
Section, Page Changes
Book Updated template to Freescale.
Section 6 Minor updates to figures to provide a better explanation of the instructions.
3.1.6.1, 3-8 Updated the code examples in these two sections. The code was updated in order
3.1.6.2, 3-10 to avoid having the target address possibly point to an invalid address that is an

unmapped page in memory. This is avoided by using addr + 15 in the second load
instead of addr + 16. If an address is 16-byte aligned then the first load (addr + 0)
and second load (addr + 16) will point to the same aligned quad word and avoid
the second address from being invalid.

B.2 Changes from Revision 1 to Revision 2
Only minor formatting upgrades were made to the AltiVec Programming Environments Manual, from
Revision 1 to Revision 2.

Revision History

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

B-2 Freescale Semiconductor

B.3 Changes from Revision 0 to Revision 1
Major changes to the AltiVec Programming Environments Manual, from Revision 0 to Revision 1 are as
follows:
Section, Page Changes
2.1.2, 2-4 Replace Figure 2-4, “Saving/Restoring the AltiVec Context Register (VRSAVE),”

with the following:

2.2, 2-9 Figure 2-10—The vector registers are 128 bits wide not 64 bits wide as shown.
4.2.2.4, 4-20 Change Table 4-9 as follows

The mnemonic for Vector Round to Floating-Point Integer Nearest should be
vrfin, not fvrfin.
The mnemonic for Vector Round to Floating-Point Integer toward Zero should be
vrfiz, not fvrfiz.
The mnemonic for Vector Round to Floating-Point Integer toward Positive
Infinity should be vrfip, not fvrfip.
The mnemonic for Vector Round to Floating-Point Integer toward Minus Infinity
should be vrfim, not fvrfim.

6.2, 6-24 Change the mfvscr encoding as shown below (note: bit 31 is not 0):

6.2, 6-25 Change the mtvscr encoding as shown below (note: bit 31 is not 0):

A.1, Page A-2 Change the mfvscr encoding as shown below (note: bit 31 is not 0):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field VR0 VR1 VR2 VR3 VR4 VR5 VR6 VR7 VR8 VR9 VR10 VR11 VR12 VR13 VR14 VR15

Reset 0000_0000_0000_0000

R/W R/W using mfspr or mtspr instructions

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field VR16 VR17 VR18 VR19 VR20 VR21 VR22 VR23 VR24 VR25 VR26 VR27 VR28 VR29 VR30 VR31

Reset 0000_0000_0000_0000

R/W R/W using mfspr or mtspr instructions

SPR SPR256

04 vD 0 0 0 0 0 0 0 0 0 0 1540

0 5 6 10 11 15 16 20 21 31

04 0 0 0 0 0 0 0 0 0 0 vB 1604

0 5 6 10 11 15 16 20 21 31

mfvscr 04 vD 0 0 0 0 0 0 0 0 0 0 1540

Revision History

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor B-3

A.1, Page A-2 Change the mtvscr encoding as shown below (note: bit 31 is not 0 and vD should
be vB):

A.2, Page A-9 Change the mfvscr encoding as shown below (note: bit 31 is not 0):

A.2, Page A-9 Change the mtvscr encoding as shown below (note: bit 31 is not 0):

A.3, Page A-14 Change the mfvscr encoding as shown below (note: bit 31 is not 0):

A.3, Page A-14 Change the mtvscr encoding as shown below (note: bit 31 is not 0):

mtvscr 04 0 0 0 0 0 0 0 0 0 0 vB 1604

mfvscr 000100 vD 0 0 0 0 0 0 0 0 0 0 110 0000 0100

mtvscr 000100 0 0 0 0 0 0 0 0 0 0 vB 110 0100 0100

mfvscr 04 vD 0 0 0 0 0 0 0 0 0 0 1540

mtvscr 04 0 0 0 0 0 0 0 0 0 0 vB 1604

Revision History

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

B-4 Freescale Semiconductor

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor Glossary-1

Glossary
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this book. Some of
the terms and definitions included in the glossary are reprinted from IEEE Std 754-1985, IEEE Standard
for Binary Floating-Point Arithmetic, copyright ©1985 by the Institute of Electrical and Electronics
Engineers, Inc. with the permission of the IEEE.

A Architecture. A detailed specification of requirements for a processor or computer
system. It does not specify details of how the processor or computer system must
be implemented; instead it provides a template for a family of compatible
implementations.

Asynchronous exception. Exceptions that are caused by events external to the processor’s
execution. In this document, the term ‘asynchronous exception’ is used
interchangeably with the word interrupt.

Atomic access. A bus access that attempts to be part of a read-write operation to the same
address uninterrupted by any other access to that address (the term refers to the
fact that the transactions are indivisible). The PowerPC architecture implements
atomic accesses through the lwarx/stwcx. instruction pair.

B BAT (block address translation) mechanism. A software-controlled array that stores the
available block address translations on-chip.

Biased exponent. An exponent whose range of values is shifted by a constant (bias).
Typically a bias is provided to allow a range of positive values to express a range
that includes both positive and negative values.

Big-endian. A byte-ordering method in memory where the address n of a word
corresponds to the most-significant byte. In an addressed memory word, the bytes
are ordered (left to right) 0, 1, 2, 3, with 0 being the most-significant byte. See
Little-endian.

Block. An area of memory that ranges from 128 Kbytes to 256 Mbytes whose size,
translation, and protection attributes are controlled by the BAT mechanism.

Boundedly undefined. A characteristic of certain operation results that are not rigidly
prescribed by the PowerPC architecture. Boundedly-undefined results for a given
operation may vary among implementations and between execution attempts in
the same implementation.

Glossary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Glossary-2 Freescale Semiconductor

Although the architecture does not prescribe the exact behavior for when results
are allowed to be boundedly undefined, the results of executing instructions in
contexts where results are allowed to be boundedly undefined are constrained to
ones that could have been achieved by executing an arbitrary sequence of defined
instructions, in valid form, starting in the state the machine was in before
attempting to execute the given instruction.

Branch folding. The replacement with target instructions of a branch instruction and any
instructions along the not-taken path when a branch is either taken or predicted as
taken.

Branch prediction. The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term ‘predicted’ as it is used here does
not imply that the prediction is correct (successful). The PowerPC architecture
defines a means for static branch prediction as part of the instruction encoding.

Branch resolution. The determination of whether a branch is taken or not taken. A branch
is said to be resolved when the processor can determine which instruction path to
take. If the branch is resolved as predicted, the instructions following the predicted
branch that may have been speculatively executed can complete. If the branch is
not resolved as predicted, instructions on the mispredicted path, and any results of
speculative execution, are purged from the pipeline and fetching continues from
the nonpredicted path.

Burst. A multiple-beat data transfer whose total size is typically equal to a cache block.

Bus clock. Clock that causes the bus state transitions.

Bus master. The owner of the address or data bus; the device that initiates or requests the
transaction.

C Cache. High-speed memory containing recently accessed data or instructions (subset of
main memory).

Cache block. A small region of contiguous memory that is copied from memory into a
cache. The size of a cache block may vary among processors; the maximum block
size is one page. In PowerPC processors, cache coherency is maintained on a
cache-block basis. Note that the term ‘cache block’ is often used interchangeably
with ‘cache line.’

Cache coherency. An attribute wherein an accurate and common view of memory is
provided to all devices that share the same memory system. Caches are coherent
if a processor performing a read from its cache is supplied with data corresponding
to the most recent value written to memory or to another processor’s cache.

Glossary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor Glossary-3

Cache flush. An operation that removes from a cache any data from a specified address
range. This operation ensures that any modified data within the specified address
range is written back to main memory. This operation is generated typically by a
Data Cache Block Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which the cache block is bypassed and the
load or store is performed to or from main memory.

Cast out. A cache block that must be written to memory when a cache miss causes a cache
block to be replaced.

Change bit. One of two page history bits found in each page table entry (PTE). The
processor sets the change bit if any store is performed into the page. See also
Reference.

Clean. An operation that causes a cache block to be written to memory, if modified, and
then left in a valid, unmodified state in the cache.

Clear. To cause a bit or bit field to register a value of zero. See also Set.

Context synchronization. An operation that ensures that all instructions in execution
complete past the point where they can produce an exception, that all instructions
in execution complete in the context in which they began execution, and that all
subsequent instructions are fetched and executed in the new context. Context
synchronization may result from executing specific instructions (such as isync or
rfi) or when certain events occur (such as an exception).

Copy-back operation. A cache operation in which a cache line is copied back to memory
to enforce cache coherency. Copy-back operations consist of snoop push-out
operations and cache cast-out operations.

D Deadline Scheduling. Deadline scheduling determines the execution order of tasks based
on their deadlines.

Denormalized number. A nonzero floating-point number whose exponent has a reserved
value, usually the format's minimum, and whose explicit or implicit leading
significand bit is zero.

Direct-mapped cache. A cache in which each main memory address can appear in only
one location within the cache, operates more quickly when the memory request is
a cache hit.

Direct-store segment access. An access to an I/O address space. The MPC603 defines
separate memory-mapped and I/O address spaces, or segments, distinguished by
the corresponding segment register T bit in the address translation logic of the
MPC603. If the T bit is cleared, the memory reference is a normal
memory-mapped access and can use the virtual memory management hardware of
the MPC603. If the T bit is set, the memory reference is a direct-store access.

Glossary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Glossary-4 Freescale Semiconductor

Double-word swap. AltiVec processors implement a double-word swap when moving
quad words between vector registers and memory. The double word swap
performs an additional swap to keep vector registers and memory consistent in
little-endian mode. Double-word swap is referred to as ‘swizzling’ in the AltiVec
technology architecture specification. This feature is not supported by the
PowerPC architecture.

E Effective address (EA). The 32-bit address specified for a load, store, or an instruction
fetch. This address is then submitted to the MMU for translation to either a
physical memory address.

Exception. A condition encountered by the processor that requires special,
supervisor-level processing.

Exception handler. A software routine that executes when an exception is taken.
Normally, the exception handler corrects the condition that caused the exception,
or performs some other meaningful task (that may include aborting the program
that caused the exception). The address for each exception handler is identified by
an exception vector offset defined by the architecture and a prefix selected via the
MSR.

Extended opcode. A secondary opcode field generally located in instruction bits 21–30,
that further defines the instruction type. All PowerPC instructions are one word in
length. The most significant 6 bits of the instruction are the Primary opcode,
identifying the type of instruction. See also Primary opcode.

Exclusive state. MEI state (E) in which only one caching device contains data that is also
in system memory.

Exponent. In the binary representation of a floating-point number, the exponent is the
component that normally signifies the integer power to which the value two is
raised in determining the value of the represented number. See also Biased
exponent.

F Fetch. Retrieving instructions from either the cache or main memory and placing them
into the instruction queue.

Floating-point register (FPR). Any of the 32 registers in the floating-point register file.
These registers provide the source operands and destination results for
floating-point instructions. Load instructions move data from memory to FPRs
and store instructions move data from FPRs to memory. The FPRs are 64 bits wide
and store floating-point values in double-precision format

Floating-point unit. The functional unit in the MPC603e processor responsible for
executing all floating-point instructions.

Glossary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor Glossary-5

Flush. An operation that causes a cache block to be invalidated and the data, if modified,
to be written to memory.

Fraction. In the binary representation of a floating-point number, the field of the
significand that lies to the right of its implied binary point.

Fully associative. Addressing scheme where every cache location (every byte) can have
any possible address.

G General-purpose register (GPR). Any of the 32 registers in the general-purpose register
file. These registers provide the source operands and destination results for all
integer data manipulation instructions. Integer load instructions move data from
memory to GPRs and store instructions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a page is
designated as guarded, instructions and data cannot be accessed out-of-order.

H Harvard architecture. An architectural model featuring separate caches and other
memory management resources for instructions and data.

Hashing. An algorithm used in the page table search process.

I IEEE 754. A standard written by the Institute of Electrical and Electronics Engineers that
defines operations and representations of binary floating-point numbers.

Illegal instructions. A class of instructions that are not implemented for a particular
PowerPC processor. These include instructions not defined by the PowerPC
architecture. In addition, for 32-bit implementations, instructions that are defined
only for 64-bit implementations are considered to be illegal instructions. For
64-bit implementations instructions that are defined only for 32-bit
implementations are considered to be illegal instructions.

Implementation. A particular processor that conforms to the PowerPC architecture, but
may differ from other architecture-compliant implementations for example in
design, feature set, and implementation of optional features. The PowerPC
architecture has many different implementations.

Implementation-dependent. An aspect of a feature in a processor’s design that is defined
by a processor’s design specifications rather than by the PowerPC architecture.

Implementation-specific. An aspect of a feature in a processor’s design that is not
required by the PowerPC architecture, but for which the PowerPC architecture
may provide concessions to ensure that processors that implement the feature do
so consistently.

Imprecise exception. A type of synchronous exception that is allowed not to adhere to the
precise exception model (see Precise exception). The PowerPC architecture
allows only floating-point exceptions to be handled imprecisely.

Glossary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Glossary-6 Freescale Semiconductor

Inexact. Loss of accuracy in an arithmetic operation when the rounded result differs from
the infinitely precise value with unbounded range.

Instruction queue. A holding place for instructions fetched from the current instruction
stream.

Integer unit. The functional unit in the MPC603e responsible for executing all integer
instructions.

In-order. An aspect of an operation that adheres to a sequential model. An operation is
said to be performed in-order if, at the time that it is performed, it is known to be
required by the sequential execution model. See Out-of-order.

Instruction latency. The total number of clock cycles necessary to execute an instruction
and make ready the results of that instruction.

Instruction parallelism. A feature of PowerPC processors that allows instructions to be
processed in parallel.

Interrupt. An external signal that causes the MPC603e to suspend current execution and
take a predefined exception.

L Latency. The number of clock cycles necessary to execute an instruction and make ready
the results of that execution for a subsequent instruction.

L2 cache. See Secondary cache.

Least-significant bit (lsb). The bit of least value in an address, register, field, data
element, or instruction encoding.

Least-significant byte (LSB). The byte of least value in an address, register, data element,
or instruction encoding.

Little-endian. A byte-ordering method in memory where the address n of a word
corresponds to the least-significant byte. In an addressed memory word, the bytes
are ordered (left to right) 3, 2, 1, 0, with 3 being the most-significant byte. See Big
endian.

Loop unrolling. Loop unrolling provides a way of increasing performance by allowing
more instructions to be issued in a clock cycle. The compiler replicates the loop
body to increase the number of instructions executed between a loop branch.

M Mantissa. The decimal part of logarithm.

MESI (modified/exclusive/shared/invalid). Cache coherency protocol used to manage
caches on different devices that share a memory system. Note that the PowerPC
architecture does not specify the implementation of a MESI protocol to ensure
cache coherency.

Glossary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor Glossary-7

Memory access ordering. The specific order in which the processor performs load and
store memory accesses and the order in which those accesses complete.

Memory-mapped accesses. Accesses whose addresses use the page or block address
translation mechanisms provided by the MMU and that occur externally with the
bus protocol defined for memory.

Memory coherency. An aspect of caching in which it is ensured that an accurate view of
memory is provided to all devices that share system memory.

Memory consistency. Refers to agreement of levels of memory with respect to a single
processor and system memory (for example, on-chip cache, secondary cache, and
system memory).

Memory management unit (MMU). The functional unit that is capable of translating an
effective (logical) address to a physical address, providing protection
mechanisms, and defining caching methods.

Microarchitecture. The hardware details of a microprocessor’s design. Such details are not
defined by the PowerPC architecture.

Mnemonic. The abbreviated name of an instruction used for coding.

Modified state. MEI state (M) in which one, and only one, caching device has the valid
data for that address. The data at this address in external memory is not valid.

Modular Arithmetic. Arithmetic in which integers that are congruent modulo any given
integer are considered equal.

Most-significant bit (msb). The highest-order bit in an address, registers, data element, or
instruction encoding.

Most-significant byte (MSB). The highest-order byte in an address, registers, data
element, or instruction encoding.

Munging. A modification performed on an effective address that allows it to appear to the
processor that individual aligned scalars are stored as little-endian values, when
in fact it is stored in big-endian order, but at different byte addresses within double
words. Note that munging affects only the effective address and not the byte order.
Note also that this term is not used by the PowerPC architecture.

Multiprocessing. The capability of software, especially operating systems, to support
execution on more than one processor at the same time.

N NaN. An abbreviation for not a number; a symbolic entity encoded in floating-point
format. There are two types of NaNs—signaling NaNs and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect registers or generate
bus activity.

Glossary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Glossary-8 Freescale Semiconductor

Normalization. A process by which a floating-point value is manipulated such that it can
be represented in the format for the appropriate precision (single- or
double-precision). For a floating-point value to be representable in the single- or
double-precision format, the leading implied bit must be a 1.

O OEA (operating environment architecture). The level of the architecture that describes
PowerPC memory management model, supervisor-level registers,
synchronization requirements, and the exception model. It also defines the
time-base feature from a supervisor-level perspective. Implementations that
conform to the PowerPC OEA also conform to the PowerPC UISA and VEA.

Optional. A feature, such as an instruction, a register, or an exception, that is defined by
the PowerPC architecture but not required to be implemented.

Out-of-order. An aspect of an operation that allows it to be performed ahead of one that
may have preceded it in the sequential model, for example, speculative operations.
An operation is said to be performed out-of-order if, at the time that it is
performed, it is not known to be required by the sequential execution model. See
In-Order.

Out-of-order execution. A technique that allows instructions to be issued and completed
in an order that differs from their sequence in the instruction stream.

Overflow. An condition that occurs during arithmetic operations when the result cannot be
stored accurately in the destination register(s). For example, if two 32-bit numbers
are multiplied, the result may not be representable in 32 bits. Since the 32-bit
registers of the MPC603e cannot represent this sum, an overflow condition
occurs.

P Page. A region in memory. The OEA defines a page as a 4-Kbyte area of memory, aligned
on a 4-Kbyte boundary.

Page fault. A page fault is a condition that occurs when the processor attempts to access
a memory location that does not reside within a page not currently resident in
physical memory. On PowerPC processors, a page fault exception condition
occurs when a matching, valid page table entry (PTE[V] = 1) cannot be located.

Page table. A table in memory is comprised of page table entries, or PTEs. It is further
organized into eight PTEs per PTEG (page table entry group). The number of
PTEGs in the page table depends on the size of the page table (as specified in the
SDR1 register).

Page table entry (PTE). Data structures containing information used to translate effective
address to physical address on a 4-Kbyte page basis. A PTE consists of 8 bytes of
information in a 32-bit processor and 16 bytes of information in a 64-bit processor.

Park. The act of allowing a bus master to maintain bus mastership without having to
arbitrate.

Glossary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor Glossary-9

Persistent data stream. A data stream is considered to be persistent when it is expected to
be loaded from frequently.

Physical memory. The actual memory that can be accessed through the system’s memory
bus.

Pipelining. A technique that breaks operations, such as instruction processing or bus
transactions, into smaller distinct stages or tenures (respectively) so that a
subsequent operation can begin before the previous one has completed.

Precise exceptions. A category of exception for which the pipeline can be stopped so
instructions that preceded the faulting instruction can complete and subsequent
instructions can be flushed and redispatched after exception handling has
completed. See Imprecise exceptions.

Primary opcode. The most-significant 6 bits (bits 0–5) of the instruction encoding that
identifies the type of instruction.

Program order. The order of instructions in an executing program. More specifically, this
term is used to refer to the original order in which program instructions are fetched
into the instruction queue from the cache

Protection boundary. A boundary between protection domains.

Protection domain. A protection domain is a segment, a virtual page, a BAT area, or a
range of unmapped effective addresses. It is defined only when the appropriate
relocate bit in the MSR (IR or DR) is 1.

Q Quad word. A group of 16 contiguous locations starting at an address divisible by 16.

Quiet NaN. A type of NaN that can propagate through most arithmetic operations without
signaling exceptions. A quiet NaN is used to represent the results of certain invalid
operations, such as invalid arithmetic operations on infinities or on NaNs, when
invalid. See Signaling NaN.

R rA. The rA instruction field is used to specify a GPR to be used as a source or destination.

rB. The rB instruction field is used to specify a GPR to be used as a source.

rD. The rD instruction field is used to specify a GPR to be used as a destination.

rS. The rS instruction field is used to specify a GPR to be used as a source.

Real address mode. An MMU mode when no address translation is performed and the
effective address specified is the same as the physical address. The processor’s
MMU is operating in real address mode if its ability to perform address translation
has been disabled through the MSR registers IR and/or DR bits.

Glossary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Glossary-10 Freescale Semiconductor

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set, updates the
condition register (CR) to reflect the result of the operation.

Reference bit. One of two page history bits found in each page table entry (PTE). The
processor sets the reference bit whenever the page is accessed for a read or write.

Register indirect addressing. A form of addressing that specifies one GPR that contains
the address for the load or store.

Register indirect with immediate index addressing. A form of addressing that specifies
an immediate value to be added to the contents of a specified GPR to form the
target address for the load or store.

Register indirect with index addressing. A form of addressing that specifies that the
contents of two GPRs be added together to yield the target address for the load or
store.

Rename register. Temporary buffers used by instructions that have finished execution but
have not completed.

Reservation. The processor establishes a reservation on a cache block of memory space
when it executes a lwarx instruction to read a memory semaphore into a GPR.

Reservation station. A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the results of instructions on which the
dispatched instruction may depend are not available.

RISC (reduced instruction set computing). An architecture characterized by
fixed-length instructions with nonoverlapping functionality and by a separate set
of load and store instructions that perform memory accesses.

S Saturate. A value v which lies outside the range of numbers representable by a destination
type is replaced by the representable number closest to v.

Secondary cache. A cache memory that is typically larger and has a longer access time
than the primary cache. A secondary cache may be shared by multiple devices.
Also referred to as L2, or level-2, cache.

Set (v). To write a nonzero value to a bit or bit field; the opposite of clear. The term ‘set’
may also be used to generally describe the updating of a bit or bit field.

Set (n). A subdivision of a cache. Cacheable data can be stored in a given location in one
of the sets, typically corresponding to its lower-order address bits. Because several
memory locations can map to the same location, cached data is typically placed in
the set whose cache block corresponding to that address was used least recently.
See Set associative.

Glossary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor Glossary-11

Set-associative. Aspect of cache organization in which the cache space is divided into
sections, called sets. The cache controller associates a particular main memory
address with the contents of a particular set, or region, within the cache.

Signaling NaN. A type of NaN that generates an invalid operation program exception
when it is specified as arithmetic operands. See Quiet NaN.

Significand. The component of a binary floating-point number that consists of an explicit
or implicit leading bit to the left of its implied binary point and a fraction field to
the right.

SIMD. Single instruction stream, multiple data streams. A vector instruction can operate
on several data elements within a single instruction in a single functional unit.
SIMD is a way to work with all the data at once (in parallel), which can make
execution faster.

Simplified mnemonics. Assembler mnemonics that represent a more complex form of a
common operation.

Snooping. Monitoring addresses driven by a bus master to detect the need for coherency
actions.

Snoop push. Response to a snooped transaction that hits a modified cache block. The
cache block is written to memory and made available to the snooping device.

Splat. A splat instruction will take one element and replicates (splats) that value into a
vector register. The purpose being to have all elements have the same value so
they can be used as a constant to multiply other vector registers.

Split-transaction. A transaction with independent request and response tenures.

Split-transaction bus. A bus that allows address and data transactions from different
processors to occur independently.

Stage. The term ‘stage’ is used in two different senses, depending on whether the pipeline
is being discussed as a physical entity or a sequence of events. In the latter case, a
stage is an element in the pipeline during which certain actions are performed,
such as decoding the instruction, performing an arithmetic operation, or writing
back the results. Typically, the latency of a stage is one processor clock cycle.
Some events, such as dispatch, write-back, and completion, happen
instantaneously and may be thought to occur at the end of a stage. An instruction
can spend multiple cycles in one stage. An integer multiply, for example, takes
multiple cycles in the execute stage. When this occurs, subsequent instructions
may stall. An instruction may also occupy more than one stage simultaneously,
especially in the sense that a stage can be seen as a physical resource—for
example, when instructions are dispatched they are assigned a place in the CQ at
the same time they are passed to the execute stage. They can be said to occupy
both the complete and execute stages in the same clock cycle.

Glossary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Glossary-12 Freescale Semiconductor

Stall. An occurrence when an instruction cannot proceed to the next stage.

Static branch prediction. Mechanism by which software (for example, compilers) can
hint to the machine hardware about the direction a branch is likely to take.

Sticky bit. A bit that when set must be cleared explicitly.

Superscalar machine. A machine that can issue multiple instructions concurrently from
a conventional linear instruction stream.

Supervisor mode. The privileged operation state of a processor. In supervisor mode,
software, typically the operating system, can access all control registers and can
access the supervisor memory space, among other privileged operations.

Swizzling. See Double-word swap.

Synchronization. A process to ensure that operations occur strictly in order. See Context
synchronization.

Synchronous exception. An exception that is generated by the execution of a particular
instruction or instruction sequence. There are two types of synchronous
exceptions, precise and imprecise.

System memory. The physical memory available to a processor.

T Tenure. The period of bus mastership. For the MPC603e, there can be separate address bus
tenures and data bus tenures. A tenure consists of three phases: arbitration,
transfer, and termination.

TLB (translation lookaside buffer). A cache that holds recently-used page table entries.

Throughput. The measure of the number of instructions that are processed per clock
cycle.

Tiny. A floating-point value that is too small to be represented for a particular precision
format, including denormalized numbers; they do not include ±0.

Transaction. A complete exchange between two bus devices. A transaction is typically
comprised of an address tenure and one or more data tenures, which may overlap
or occur separately from the address tenure. A transaction may be minimally
comprised of an address tenure only.

Transient stream. A data stream is considered to be transient when it is likely to be
referenced from infrequently.

Glossary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor Glossary-13

U UISA (user instruction set architecture). The level of the architecture to which
user-level software should conform. The UISA defines the base user-level
instruction set, user-level registers, data types, floating-point memory conventions
and exception model as seen by user programs, and the memory and programming
models.

Underflow. A condition that occurs during arithmetic operations when the result cannot
be represented accurately in the destination register. For example, underflow can
happen if two floating-point fractions are multiplied and the result requires a
smaller exponent and/or mantissa than the single-precision format can provide. In
other words, the result is too small to be represented accurately.

User mode. The operating state of a processor used typically by application software. In
user mode, software can access only certain control registers and can access only
user memory space. No privileged operations can be performed. Also referred to
as problem state.

V vA. The vA instruction field is used to specify a vector register to be used as a source or
destination.

vB. The vB instruction field is used to specify a vector register to be used as a source.

vC. The vC instruction field is used to specify a vector register to be used as a source.

vD. The vD instruction field is used to specify a vector register to be used as a destination.

vS. The vS instruction field is used to specify a vector register to be used as a source.

VEA (virtual environment architecture). The level of the architecture that describes the
memory model for an environment in which multiple devices can access memory,
defines aspects of the cache model, defines cache control instructions, and defines
the time-base facility from a user-level perspective. Implementations that conform
to the PowerPC VEA also adhere to the UISA, but may not necessarily adhere to
the OEA.

Vector. The spatial parallel processing of short, fixed-length one-dimensional matrices
performed by an execution unit.

Vector Register (VR). Any of the 32 registers in the vector register file. Each vector
register is 128 bits wide. These registers can provide the source operands and
destination results for AltiVec instructions.

Virtual address. An intermediate address used in the translation of an effective address to
a physical address.

Virtual memory. The address space created using the memory management facilities of
the processor. Program access to virtual memory is possible only when it
coincides with physical memory.

Glossary

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Glossary-14 Freescale Semiconductor

W Way. A location in the cache that holds a cache block, its tags and status bits.

Weak ordering. A memory access model that allows bus operations to be reordered
dynamically, which improves overall performance and in particular reduces the
effect of memory latency on instruction throughput.

Word. A 32-bit data element.

Write-back. A cache memory update policy in which processor write cycles are directly
written only to the cache. External memory is updated only indirectly, for
example, when a modified cache block is cast out to make room for newer data.

Write-through. A cache memory update policy in which all processor write cycles are
written to both the cache and memory.

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor Index-1

Index

A
Acronyms and abbreviated terms, list, xxiii
Address bus

address calculation, 4-22
address modes, 1-7
address translation for streams, 5-6

Alignment
aligned scalars, LE mode, 3-4
effective address, 4-22
load and store, 4-21
load instruction support, 4-25
memory access and vector register, 3-6
misaligned accesses, 3-1
misaligned vectors, 3-7
partially executed instructions, 5-8
quad-word data alignment, 3-6
rules, 3-4

AltiVec technology
address modes, 1-7
cache overview, 1-10
features list, 1-3
features not defined, 1-5
instruction set, 6-9, A-1–A-30
instruction set architecture support, 1-4
interelement operations, 1-8
interrupt handling, 1-10
intra-element operations, 1-8
levels of PowerPC architecture, 1-4
operations supported, 1-7
overview, 1-3
PowerPC architecture extension, 1-2
programming model, 1-5
register file structure, 2-4
register set, 1-5, 2-4, 2-7
SIMD-style extension, 1-3, 1-5
structural overview, 1-4

Arithmetic instructions
floating-point, 4-15
integer, 4-1

B
Big-endian mode

accessing a misaligned quad word, 3-7
byte ordering, 1-6, 3-2
concept, 3-2

misaligned vector, 3-7
mixed-endian systems, 3-10

Block
count, 5-2
size, 5-2
stride, 5-2

Byte ordering
aligned scalars, LE mode, 3-4
big-endian mode, default, 3-2
concept, 3-2
default, 1-6
LE bit in MSR, 3-2
least-significant byte (LSB), 3-2
little-endian mode description, 3-2
most-significant byte (MSB), 3-2
quad-word example, 3-3

C
Cache

cache management instructions, 4-36
data stream touch, 5-2
dss instruction, 5-4
dst instruction, 5-2
dstst instruction, 5-4
dstt instruction, 5-3
overview, 1-10, 5-1
prefetch, software-directed, 5-1
prioritizing cache block replacement, 5-8
stopping streams, 5-4
storing to streams, 5-4
transient streams, 5-3

Cache management instructions, 4-36
Classes of instructions, 4-2
Compare instructions

floating-point, 4-18
integer, 4-11

Computation modes
PowerPC architecture support, 4-2

Conventions, xxii
classes of instructions, 4-2
computation modes, 4-2
execution model, 4-2
memory addressing, 4-2
operand conventions, 3-1
terminology, xxv

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Index-2 Freescale Semiconductor

D–I Index

CR (condition register)
bit fields, 2-7
CR6 field, compare instructions, 2-7
move to/from CR instructions, 4-34

D
Data address breakpoint, 5-9
Data stream, 5-2
Double-word swap, 3-5

E
Echo cancellation, 1-2
Effective address calculation

EA modifications, 3-4
loads and stores, 4-22
overview, 4-3

Estimate instructions, 4-21
Exceptions

floating-point exceptions, 3-12
invalid operation exception, 3-13
log of zero exception, 3-14
NaN operand exception, 3-12
overflow exception, 3-14
underflow exception, 3-14
zero divide exception, 3-13

Exclusive OR (XOR), 3-4
Execution model

conventions, 4-2
floating-point, 3-10

Extended mnemonics, see Simplified mnemonics

F
Features list

AltiVec technology features, 1-3
features not defined, 1-5

Floating-point model
arithmetic instructions, 4-15
compare instructions, 4-18
division function, 4-14
estimate instructions, 4-21
exceptions, 3-12
execution model, 3-10
infinities, 3-12
instructions, overview, 4-14
Java mode, 3-11
modes, 3-11
multiply-add instructions, 4-16
NaNs, 3-15
non-Java mode, 3-11
rounding mode, 3-12

rounding/conversion instructions, 4-17
square root functions, 4-15

Formatting instructions, 4-27

H
High-order byte numbering, 1-7

I
Instructions

AltiVec instruction set legend, A-26
cache management instructions, 4-36
classes of instructions, 4-2
computation modes, 4-2
control flow, 4-26
conventions, xxvi, 6-2
detailed descriptions, 6-9–6-177
floating-point

arithmetic, 4-15
compare, 4-18
computational instructions, 3-10
division function, 4-14
estimate instructions, 4-21
multiply-add, 4-16
noncomputational instructions, 3-10
overview, 4-14
rounding/conversion, 4-17
square root functions, 4-15

formats, 6-1
formatting instructions, 4-27
integer

arithmetic, 4-1, 4-3
compare, 4-11
load, 4-23
logical, 4-1, 4-12
rotate/shift, 4-13
store, 4-26

listed by mnemonic, 6-9–6-177
load and store

address generation, integer, 4-22
integer load, 4-23
integer store, 4-26

memory addressing, 4-2
memory control instructions, 4-35
merge instructions, 4-29
mnemonics, lists, A-1
notations, 6-2
pack instructions, 4-27
partially executed instructions, 5-8
permutation instructions, 4-27
permute instructions, 4-31

Index J–N

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor Index-3

PowerPC instructions, list, A-1
processor control instructions, 4-34
select instruction, 4-31
shift instructions, 4-31
sorted by form, A-21
sorted by mnemonic

in binary format, A-6
in decimal format, A-1

sorted by opcode
in binary format, A-16
in decimal format, A-11

splat instructions, 4-30
syntax conventions, xxvi, 6-2
unpack instructions, 4-28
vector integer, see integer

Integer instructions
arithmetic instructions, 4-1, 4-3
compare instructions, 4-11
logical instructions, 4-1, 4-12
rotate/shift instructions, 4-13
store instructions, 4-26

Integer load instructions, 4-23
Interelement operations, 1-8
Interrupts

data storage interrupt, 5-9
interrupt behavior of prefetch streams, 5-5
interrupt handling, 1-10
overview, 5-1
precise interrupts, 5-10
priorities, 5-10
synchronous interrupts, 5-10
unavailable interrupt, 5-9

Intra-element operations, 1-8
Invalid operation exception, 3-13

J
Java mode, 3-11

L
Little-endian mode

accessing a misaligned quad word, 3-8
byte ordering, 3-2
description, 3-2
mapping, quad word, 3-3
misaligned vector, 3-7
mixed-endian systems, 3-10
swapping, 3-5

Load/store
address generation, integer, 4-22

integer load instructions, 4-23
integer store instructions, 4-26

Log of zero exception, 3-14
Logical instructions, integer, 4-1, 4-12
Low-order byte numbering, 1-7

M
Mathematical predicates, 4-18
Memory addressing, 4-2
Memory control instructions, 4-35
Memory management unit (MMU)

memory bandwidth, 5-1
overview, 1-10, 5-1
prefetch

data stream touch, 5-2
dss instruction, 5-4
dst instruction, 5-2
dstst instruction, 5-4
dstt instruction, 5-3
interrupt behavior, 5-5
software-directed, 5-1
stopping streams, 5-4
storing to streams, 5-4
transient streams, 5-3

Memory operands, 4-2
Memory sharing, 5-1
Merge instructions, 4-29
Misalignment

accessing a quad word
big-endian mode, 3-7
little-endian mode, 3-8

misaligned accesses, 3-1
misaligned vectors, 3-7

Mixed-endian systems, 3-10
Modulo mode, 4-4
Move to/from CR instructions, 4-34
MSR (machine state register)

bit settings, 2-8
LE bit, 3-2

Multiply-add instructions, 4-16
Munging, description, 3-4

N
NaN (not a number)

conversion to integer, 3-15
floating-point NaNs, 3-15
operand exception, 3-12
precedence, 3-15
production, 3-15

Non-Java mode, 3-11

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Index-4 Freescale Semiconductor

O–V Index

O
OEA (operating environment architecture)

definition, xx
programming model, 2-2

Operands
conventions, description, 1-6, 3-1
floating-point conventions, 1-7
memory operands, 4-2

Operating environment architecture, see OEA
Operations

interelement operations, 1-8
intra-element operations, 1-8

Overflow exception, 3-14

P
Pack instructions, 4-27
Permutation instructions, 4-27
Permute instructions, 4-31
PowerPC architecture support

computation modes, 4-2
execution model, 4-2
features summary

defined features, 1-3
features not defined, 1-5

instruction list, A-1
levels of PowerPC architecture, 1-4
operating environment architecture, xx
programming model, 1-5
registers affected by AltiVec technology, 2-7
user instruction set architecture, xix, 1-4
virtual environment architecture, xix, 1-4

Prefetch, software-directed, 5-1
Processor control instructions, 4-34

Q
QNaN arithmetic, 3-15

R
Record bit (Rc), 6-1
Registers

CR, 2-7
overview, 1-5, 2-1
PowerPC register set, 2-1, 2-7
register file, 2-4
SRR0/SRR1, 2-9
VRs, 2-4
VRSAVE, 2-6
VSCR, 2-4

Rotate instructions, 4-13
Rounding/conversion instructions, floating-point, 4-17

S
Saturation detection, 4-4
Scalars

aligned, LE mode, 3-4
loads and stores, 3-9
misaligned loads and stores, 3-9

Segment registers
T bit, Glossary-3

Select instruction, 4-31
Shift instructions, 4-13, 4-31
SIMD-style extension, 1-3, 1-5
Simplified mnemonics, 4-34
SNaN arithmetic, 3-15
Splat instructions, 4-30
SRR0/SRR1 (status save/restore registers), 2-9
Streams

address translation, 5-6
definition, 5-2
implementation assumptions, 5-8
synchronization, 5-6
usage notes, 5-6

Stride, 5-2
Swizzle, see Double-word swap
Synchronization streams, 5-6

T
Terminology conventions, xxv
Transient streams, 5-3

U
UISA (user instruction set architecture), xix, 1-4

programming model, 2-2
Underflow exception, 3-14
Unpack instructions, 4-28
User instruction set architecture, see UISA

V
VEA (virtual environment architecture)

definition, xix, 1-4
programming model, 2-2
user-level cache control instructions, 4-35

Vector formatting instructions, 4-27
Vector integer compare instructions, see Integer compare

instructions
Vector merge instructions, 4-29
Vector pack instructions, 4-27
Vector permutation instructions, 4-27
Vector permute instructions, 4-31
Vector select instruction, 4-31
Vector shift instructions, 4-31

Index X–Z

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Freescale Semiconductor Index-5

Vector splat instructions, 4-30
Vector unpack instructions, 4-28
Virtual environment architecture, see VEA
VRs (vector registers)

memory access alignment and VR, 3-6
register file, 2-4

VRSAVE register, 2-6
VSCR (vector status and control register), 2-4

X
XOR (exclusive OR), 3-4

Z
Zero divide exception, 3-13

AltiVec™ Technology Programming Enviroments Manual, Rev. 3

Index-6 Freescale Semiconductor

Z–Z Index

Overview 1

AltiVec Register Set 2

Operand Conventions 3

Addressing Modes and Instruction Set Summary 4

Cache, Interrupts, and Memory Management 5

AltiVec Instructions 6

AltiVec Instruction Set Listings A

Revision History B

Glossary GLO

Index IND

1 Overview

2 AltiVec Register Set

3 Operand Conventions

4 Addressing Modes and Instruction Set Summary

5 Cache, Interrupts, and Memory Management

6 AltiVec Instructions

A AltiVec Instruction Set Listings

B Revision History

GLO Glossary

IND Index

	AltiVec™ Technology Programming Environments Manual
	Contents
	Figures
	Tables
	About This Book
	Audience
	Organization
	Suggested Reading
	General Information
	Related Documentation

	Conventions
	Acronyms and Abbreviations
	Table i. Acronyms and Abbreviated Terms

	Terminology Conventions
	Table ii. Terminology Conventions
	Table iii. Instruction Field Conventions

	Chapter 1 Overview
	1.1 Overview
	1.2 AltiVec Technology Overview
	Figure 1-1. Overview of PowerPC Architecture with AltiVec Technology
	1.2.1 Levels of AltiVec ISA
	1.2.2 Features Not Defined by AltiVec ISA

	1.3 AltiVec Architectural Model
	1.3.1 AltiVec Registers and Programming Model
	Figure 1-2. AltiVec Top-Level Diagram

	1.3.2 Operand Conventions
	1.3.2.1 Byte Ordering
	Figure 1-3. Big-Endian Byte Ordering for a Vector Register
	Figure 1-4. Bit Ordering

	1.3.2.2 Floating-Point Conventions

	1.3.3 AltiVec Addressing Modes
	Figure 1-5. Intra-Element Example, vaddsbs
	Figure 1-6. Interelement Example, vperm

	1.3.4 AltiVec Instruction Set
	1.3.5 AltiVec Cache Model
	1.3.6 AltiVec Interrupt Model
	1.3.7 Memory Management Model

	Chapter 2 AltiVec Register Set
	2.1 Overview of AltiVec and PowerPC Registers
	Figure 2-1. Programming Model-All Registers

	2.2 AltiVec Register Set Overview
	Figure 2-2. AltiVec Register Set

	2.3 Registers Defined by AltiVec ISA
	2.3.1 AltiVec Vector Register File (VRF)
	Figure 2-3. Vector Registers (VRs)

	2.3.2 Vector Status and Control Register (VSCR)
	Figure 2-4. Vector Status and Control Register (VSCR)
	Figure 2-5. 32-Bit VSCR Moved to a 128-Bit Vector Register
	Table 2-1. VSCR Field Descriptions

	2.3.3 Vector Save/Restore Register (VRSAVE)
	Figure 2-6. Vector Save/Restore Register (VRSAVE)
	Table 2-2. VRSAVE Bit Settings

	2.4 Additions to PowerPC UISA Registers
	2.4.1 PowerPC Condition Register
	Figure 2-7. Condition Register (CR)
	Table 2-3. CR6 Field’s Bit Settings for Vector Compare Instructions

	2.5 Additions to PowerPC OEA Registers
	2.5.1 AltiVec Field Added in the PowerPC Machine State Register (MSR)
	Figure 2-8. Machine State Register (MSR)
	Table 2-4. MSR Bit Settings

	2.5.2 Machine Status Save/Restore Registers (SRRs)
	2.5.2.1 Machine Status Save/Restore Register 0 (SRR0)
	Figure 2-9. Machine Status Save/Restore Register 0 (SRR0)

	2.5.2.2 Machine Status Save/Restore Register 1 (SRR1)
	Figure 2-10. Machine Status Save/Restore Register 0 (SRR1)

	Chapter 3 Operand Conventions
	3.1 Data Organization in Memory
	3.1.1 Aligned and Misaligned Accesses
	Table 3-1. Memory Operand Alignment

	3.1.2 AltiVec Byte Ordering
	3.1.2.1 Big-Endian Byte Ordering
	3.1.2.2 Little-Endian Byte Ordering

	3.1.3 Quad Word Byte Ordering Example
	Figure 3-1. Big-Endian Mapping of a Quad Word
	Figure 3-2. Little-Endian Mapping of a Quad Word
	Figure 3-3. Little-Endian Mapping of a Quad Word-Alternate View

	3.1.4 Aligned Scalars in Little-Endian Mode
	Table 3-2. Effective Address Modifications
	Figure 3-4. Quad Word Load with PowerPC Munged Little-Endian Applied
	Figure 3-5. AltiVec Little-Endian Double-Word Swap

	3.1.5 Vector Register and Memory Access Alignment
	3.1.6 Quad-Word Data Alignment
	Figure 3-6. Misaligned Vector in Big-Endian Mode
	Figure 3-7. Misaligned Vector in Little-Endian Addressing Mode
	3.1.6.1 Accessing a Misaligned Quad Word in Big-Endian Mode
	Figure 3-8. Big-Endian Quad Word Alignment

	3.1.6.2 Accessing a Misaligned Quad Word in Little-Endian Mode
	Figure 3-9. Little-Endian Alignment

	3.1.6.3 Scalar Loads and Stores
	3.1.6.4 Misaligned Scalar Loads and Stores

	3.1.7 Mixed-Endian Systems

	3.2 AltiVec Floating-Point Instructions-UISA
	3.2.1 Floating-Point Modes
	3.2.1.1 Java Mode
	3.2.1.2 Non-Java Mode

	3.2.2 Floating-Point Infinities
	3.2.3 Floating-Point Rounding
	3.2.4 Floating-Point Exceptions
	3.2.4.1 NaN Operand Exception
	3.2.4.2 Invalid Operation Exception
	3.2.4.3 Zero Divide Exception
	3.2.4.4 Log of Zero Exception
	3.2.4.5 Overflow Exception
	3.2.4.6 Underflow Exception

	3.2.5 Floating-Point NaNs
	3.2.5.1 NaN Precedence
	3.2.5.2 SNaN Arithmetic
	3.2.5.3 QNaN Arithmetic
	3.2.5.4 NaN Conversion to Integer
	3.2.5.5 NaN Production

	Chapter 4 Addressing Modes and Instruction Set Summary
	4.1 Conventions
	4.1.1 Execution Model
	4.1.2 Computation Modes
	4.1.3 Classes of Instructions
	4.1.4 Memory Addressing
	4.1.4.1 Memory Operands
	4.1.4.2 Effective Address Calculation

	4.2 AltiVec UISA Instructions
	4.2.1 Vector Integer Instructions
	4.2.1.1 Saturation Detection
	4.2.1.2 Vector Integer Arithmetic Instructions
	Table 4-1. Vector Integer Arithmetic Instructions

	4.2.1.3 Vector Integer Compare Instructions
	Table 4-2. CR6 Field Bit Settings for Vector Integer Compare Instructions
	Table 4-3. Vector Integer Compare Instructions

	4.2.1.4 Vector Integer Logical Instructions
	Table 4-4. Vector Integer Logical Instructions

	4.2.1.5 Vector Integer Rotate and Shift Instructions
	Table 4-5. Vector Integer Rotate Instructions
	Table 4-6. Vector Integer Shift Instructions

	4.2.2 Vector Floating-Point Instructions
	4.2.2.1 Floating-Point Division and Square-Root
	4.2.2.1.1 Floating-Point Division
	4.2.2.1.2 Floating-Point Square-Root

	4.2.2.2 Floating-Point Arithmetic Instructions
	Table 4-7. Floating-Point Arithmetic Instructions

	4.2.2.3 Floating-Point Multiply-Add Instructions
	Table 4-8. Floating-Point Multiply-Add Instructions

	4.2.2.4 Floating-Point Rounding and Conversion Instructions
	Table 4-9. Floating-Point Rounding and Conversion Instructions

	4.2.2.5 Floating-Point Compare Instructions
	Table 4-10. Common Mathematical Predicates
	Table 4-11. Other Useful Predicates
	Table 4-12. Floating-Point Compare Instructions

	4.2.2.6 Floating-Point Estimate Instructions
	Table 4-13. Floating-Point Estimate Instructions

	4.2.3 Load and Store Instructions
	4.2.3.1 Alignment
	4.2.3.2 Load and Store Address Generation
	Table 4-14. Effective Address Alignment
	Figure 4-1. Register Indirect with Index Addressing for Loads/Stores

	4.2.3.3 Vector Load Instructions
	Table 4-15. Integer Load Instructions
	Table 4-16. Vector Load Instructions Supporting Alignment
	Table 4-17. Shift Values for lvsl Instruction
	Table 4-18. Shift Values for lvsr Instruction

	4.2.3.4 Vector Store Instructions
	Table 4-19. Integer Store Instructions

	4.2.4 Control Flow
	4.2.5 Vector Permutation and Formatting Instructions
	4.2.5.1 Vector Pack Instructions
	Table 4-20. Vector Pack Instructions

	4.2.5.2 Vector Unpack Instructions
	Table 4-21. Vector Unpack Instructions

	4.2.5.3 Vector Merge Instructions
	Table 4-22. Vector Merge Instructions

	4.2.5.4 Vector Splat Instructions
	Table 4-23. Vector Splat Instructions

	4.2.5.5 Vector Permute Instruction
	Table 4-24. Vector Permute Instruction

	4.2.5.6 Vector Select Instruction
	Table 4-25. Vector Select Instruction

	4.2.5.7 Vector Shift Instructions
	Table 4-26. Vector Shift Instructions
	4.2.5.7.1 Immediate Interelement Shifts/Rotates
	Table 4-27. Coding Various Shifts and Rotates with the vsidoi Instruction

	4.2.5.7.2 Computed Interelement Shifts/Rotates
	4.2.5.7.3 Variable Interelement Shifts

	4.2.6 Processor Control Instructions-UISA
	4.2.6.1 AltiVec Status and Control Register Instructions
	Table 4-28. Move To/From Condition Register Instructions

	4.2.7 Recommended Simplified Mnemonics
	Table 4-29. Simplified Mnemonics for Data Stream Touch (dst)

	4.3 AltiVec VEA Instructions
	4.3.1 Memory Control Instructions-VEA
	4.3.2 User-Level Cache Instructions-VEA
	Table 4-30. User-Level Cache Instructions

	Chapter 5 Cache, Interrupts, and Memory Management
	5.1 PowerPC Shared Memory
	5.2 AltiVec Memory Bandwidth Management
	5.2.1 Software-Directed Prefetch
	5.2.1.1 Data Stream Touch (dst)
	Figure 5-1. Format of rB in dst Instruction
	Figure 5-2. Data Stream Touch

	5.2.1.2 Transient Streams
	5.2.1.3 Storing to Streams (dstst)
	5.2.1.4 Stopping Streams
	5.2.1.5 Interrupt Behavior of Prefetch Streams
	5.2.1.6 Synchronization Behavior of Streams
	5.2.1.7 Address Translation for Streams
	5.2.1.8 Stream Usage Notes
	5.2.1.9 Stream Implementation Assumptions

	5.2.2 Prioritizing Cache Block Replacement
	5.2.3 Partially Executed AltiVec Instructions

	5.3 Data Storage Interrupt-Data Address Breakpoint
	5.4 AltiVec Unavailable Interrupt (0x00F20)
	Table 5-1. AltiVec Unavailable Interrupt-Register Settings
	Figure 5-3. SRR1 Bit Settings After an AltiVec Unavailable Interrupt
	Table 5-2. Interrupt Priorities (Synchronous/Precise Interrupts)

	Chapter 6 AltiVec Instructions
	6.1 Instruction Formats
	6.1.1 Instruction Fields
	Table 6-1. Instruction Syntax Conventions

	6.1.2 Notation and Conventions
	Table 6-2. Notation and Conventions
	Table 6-3. Instruction Field Conventions
	Table 6-4. Precedence Rules

	6.2 AltiVec Instruction Set
	Figure 6-1. Format of rB in dst Instruction (32-Bit)
	Figure 6-2. Format of rB in dst Instruction (32-Bit)
	Figure 6-3. Effects of Example Load/Store Instructions
	Figure 6-4. Load Vector for Shift Left
	Figure 6-5. Instruction vperm Used in Aligning Data
	Figure 6-6. vaddcuw-Determine Carries of Four Unsigned Integer Adds (32-Bit)
	Figure 6-7. vaddfp-Add Four Floating-Point Elements (32-Bit)
	Figure 6-8. vaddsbs-Add Saturating Sixteen Signed Integer Elements (8-Bit)
	Figure 6-9. vaddshs-Add Saturating Eight Signed Integer Elements (16-Bit)
	Figure 6-10. vaddsws-Add Saturating Four Signed Integer Elements (32-Bit)
	Figure 6-11. vaddubm-Add Sixteen Integer Elements (8-Bit)
	Figure 6-12. vaddubs-Add Saturating Sixteen Unsigned Integer Elements (8-Bit)
	Figure 6-13. vadduhm-Add Eight Integer Elements (16-Bit)
	Figure 6-14. vadduhs-Add Saturating Eight Unsigned Integer Elements (16-Bit)
	Figure 6-15. vadduwm-Add Four Integer Elements (32-Bit)
	Figure 6-16. vadduws-Add Saturating Four Unsigned Integer Elements (32-Bit)
	Figure 6-17. vand-Logical Bitwise AND
	Figure 6-18. vand-Logical Bitwise AND with Complement
	Figure 6-19. vavgsb-Average Sixteen Signed Integer Elements (8-Bit)
	Figure 6-20. vavgsh-Average Eight Signed Integer Elements (16-Bit)
	Figure 6-21. vavgsw-Average Four Signed Integer Elements (32-Bit)
	Figure 6-22. vavgub-Average Sixteen Unsigned Integer Elements (8-Bit)
	Figure 6-23. vavguh-Average Eight Signed Integer Elements (16-Bit)
	Figure 6-24. vavguw-Average Four Unsigned Integer Elements (32-Bit)
	Figure 6-25. vcfsx-Convert Four Signed Integer Elements to Four Floating-Point Elements (32-Bit)
	Figure 6-26. vcfux-Convert Four Unsigned Integer Elements to Four Floating-Point Elements (32-Bit)
	Figure 6-27. vcmpbfp-Compare Bounds of Four Floating-Point Elements (32-Bit)
	Figure 6-28. vcmpeqfp-Compare Equal of Four Floating-Point Elements (32-Bit)
	Figure 6-29. vcmpequb-Compare Equal of Sixteen Integer Elements (8-Bit)
	Figure 6-30. vcmpequh-Compare Equal of Eight Integer Elements (16-Bit)
	Figure 6-31. vcmpequw-Compare Equal of Four Integer Elements (32-Bit)
	Figure 6-32. vcmpgefp-Compare Greater-Than-or-Equal of Four Floating-Point Elements (32-Bit)
	Figure 6-33. vcmpgtfp-Compare Greater-Than of Four Floating-Point Elements (32-Bit)
	Figure 6-34. vcmpgtsb-Compare Greater-Than of Sixteen Signed Integer Elements (8-Bit)
	Figure 6-35. vcmpgtsh-Compare Greater-Than of Eight Signed Integer Elements (16-Bit)
	Figure 6-36. vcmpgtsw-Compare Greater-Than of Four Signed Integer Elements (32-Bit)
	Figure 6-37. vcmpgtub-Compare Greater-Than of Sixteen Unsigned Integer Elements (8-Bit)
	Figure 6-38. vcmpgtuh-Compare Greater-Than of Eight Unsigned Integer Elements (16-Bit)
	Figure 6-39. vcmpgtuw-Compare Greater-Than of Four Unsigned Integer Elements (32-Bit)
	Figure 6-40. vctsxs-Convert Four Floating-Point Elements to Four Signed Integer Elements (32-Bit)
	Figure 6-41. vctuxs-Convert Four Floating-Point Elements to Four Unsigned Integer Elements (32-Bit)
	Table 6-5. Special Values of the Element in vB
	Figure 6-42. vexptefp-Two Raised to the Exponent Estimate Floating-Point for Four Floating-Point Elements (32-Bit)
	Table 6-6. Special Values of the Element in vB
	Figure 6-43. vlogefp-Log2 Estimate Floating-Point for Four Floating-Point Elements (32-Bit)
	Figure 6-44. vmaddfp-Multiply-Add Four Floating-Point Elements (32-Bit)
	Figure 6-45. vmaxfp-Maximum of Four Floating-Point Elements (32-Bit)
	Figure 6-46. vmaxsb-Maximum of Sixteen Signed Integer Elements (8-Bit)
	Figure 6-47. vmaxsh-Maximum of Eight Signed Integer Elements (16-Bit)
	Figure 6-48. vmaxsw-Maximum of Four Signed Integer Elements (32-Bit)
	Figure 6-49. vmaxub-Maximum of Sixteen Unsigned Integer Elements (8-Bit)
	Figure 6-50. vmaxuh-Maximum of Eight Unsigned Integer Elements (16-Bit)
	Figure 6-51. vmaxuw-Maximum of Four Unsigned Integer Elements (32-Bit)
	Figure 6-52. vmhaddshs-Multiply-High and Add Eight Signed Integer Elements (16-Bit)
	Figure 6-53. vmhraddshs-Multiply-High Round and Add Eight Signed Integer Elements (16-Bit)
	Figure 6-54. vminfp-Minimum of Four Floating-Point Elements (32-Bit)
	Figure 6-55. vminsb-Minimum of Sixteen Signed Integer Elements (8-Bit)
	Figure 6-56. vminsh-Minimum of Eight Signed Integer Elements (16-Bit)
	Figure 6-57. vminsw-Minimum of Four Signed Integer Elements (32-Bit)
	Figure 6-58. vminub-Minimum of Sixteen Unsigned Integer Elements (8-Bit)
	Figure 6-59. vminuh-Minimum of Eight Unsigned Integer Elements (16-Bit)
	Figure 6-60. vminuw-Minimum of Four Unsigned Integer Elements (32-Bit)
	Figure 6-61. vmladduhm-Multiply-Add of Eight Integer Elements (16-Bit)
	Figure 6-62. vmrghb-Merge Eight High-Order Elements (8-Bit)
	Figure 6-63. vmrghh-Merge Four High-Order Elements (16-Bit)
	Figure 6-64. vmrghw-Merge Two High-Order Elements (32-Bit)
	Figure 6-65. vmrglb-Merge Eight Low-Order Elements (8-Bit)
	Figure 6-66. vmrglh-Merge Four Low-Order Elements (16-Bit)
	Figure 6-67. vmrglw-Merge Four Low-Order Elements (32-Bit)
	Figure 6-68. vmsummbm-Multiply-Sum of Integer Elements (8- to 32-Bit)
	Figure 6-69. vmsumshm-Multiply-Sum of Signed Integer Elements (16- to 32-Bit)
	Figure 6-70. vmsumshs-Multiply-Sum of Signed Integer Elements (16- to 32-Bit)
	Figure 6-71. vmsumubm-Multiply-Sum of Unsigned Integer Elements (8- to 32-Bit)
	Figure 6-72. vmsumuhm-Multiply-Sum of Unsigned Integer Elements (16- to 32-Bit)
	Figure 6-73. vmsumuhs-Multiply-Sum of Unsigned Integer Elements (16- to 32-Bit)
	Figure 6-74. vmulesb-Even Multiply of Eight Signed Integer Elements (8-Bit)
	Figure 6-75. vmulesh-Even Multiply of Four Signed Integer Elements (16-Bit)
	Figure 6-76. vmuleub-Even Multiply of Eight Unsigned Integer Elements (8-Bit)
	Figure 6-77. vmuleuh-Even Multiply of Four Unsigned Integer Elements (16-Bit)
	Figure 6-78. vmulosb-Odd Multiply of Eight Signed Integer Elements (8-Bit)
	Figure 6-79. vmuleuh-Odd Multiply of Four Unsigned Integer Elements (16-Bit)
	Figure 6-80. vmuloub-Odd Multiply of Eight Unsigned Integer Elements (8-Bit)
	Figure 6-81. vmulouh-Odd Multiply of Four Unsigned Integer Elements (16-Bit)
	Figure 6-82. vnmsubfp-Negative Multiply-Subtract of Four Floating-Point Elements (32-Bit)
	Figure 6-83. vnor-Bitwise NOR of 128-Bit Vector
	Figure 6-84. vor-Bitwise OR of 128-Bit Vector
	Figure 6-85. vperm-Concatenate Sixteen Integer Elements (8-Bit)
	Figure 6-86. vpkpx-How a Word is Packed to a Half Word
	Figure 6-87. vpkpx-Pack Eight Elements (32-Bit) to Eight Elements (16-Bit)
	Figure 6-88. vpkshss-Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen Signed Integer Elements (8-Bit)
	Figure 6-89. vpkshus-Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen Unsigned Integer Elements (8-Bit)
	Figure 6-90. vpkswss-Pack Eight Signed Integer Elements (32-Bit) to Eight Signed Integer Elements (16-Bit)
	Figure 6-91. vpkswus-Pack Eight Signed Integer Elements (32-Bit) to Eight Unsigned Integer Elements (16-Bit)
	Figure 6-92. vpkuhum-Pack Sixteen Unsigned Integer Elements (16-Bit) to Sixteen Unsigned Integer Elements (8-Bit)
	Figure 6-93. vpkuhus-Pack Sixteen Unsigned Integer Elements (16-Bit) to Sixteen Unsigned Integer Elements (8-Bit)
	Figure 6-94. vpkuwum-Pack Eight Unsigned Integer Elements (32-Bit) to Eight Unsigned Integer Elements (16-Bit)
	Figure 6-95. vpkuwus-Pack Eight Unsigned Integer Elements (32-Bit) to Eight Unsigned Integer Elements (16-Bit)
	Table 6-7. Special Values of the Element in vB
	Figure 6-96. vrefp-Reciprocal Estimate of Four Floating-Point Elements (32-Bit)
	Figure 6-97. vrfim-Round to Minus Infinity of Four Floating-Point Integer Elements (32-Bit)
	Figure 6-98. vrfin-Nearest Round to Nearest of Four Floating-Point Integer Elements (32-Bit)
	Figure 6-99. vrfip-Round to Plus Infinity of Four Floating-Point Integer Elements (32-Bit)
	Figure 6-100. vrfiz-Round-to-Zero of Four Floating-Point Integer Elements (32-Bit)
	Figure 6-101. vrlb-Left Rotate of Sixteen Integer Elements (8-Bit)
	Figure 6-102. vrlh-Left Rotate of Eight Integer Elements (16-Bit)
	Figure 6-103. vrlw-Left Rotate of Four Integer Elements (32-Bit)
	Table 6-8. Special Values of the Element in vB
	Figure 6-104. vrsqrtefp-Reciprocal Square Root Estimate of Four Floating-Point Elements (32-Bit)
	Figure 6-105. vsel-Bitwise Conditional Select of Vector Contents (128-Bit)
	Figure 6-106. vsl-Shift Bits Left in Vector (128-Bit)
	Figure 6-107. vslb-Shift Bits Left in Sixteen Integer Elements (8-Bit)
	Figure 6-108. vsldoi-Shift Left by Bytes Specified
	Figure 6-109. vslh-Shift Bits Left in Eight Integer Elements (16-Bit)
	Figure 6-110. vslo-Left Byte Shift of Vector (128-Bit)
	Figure 6-111. vslw-Shift Bits Left in Four Integer Elements (32-Bit)
	Figure 6-112. vspltb-Copy Contents to Sixteen Elements (8-Bit)
	Figure 6-113. vsplth-Copy Contents to Eight Elements (16-Bit)
	Figure 6-114. vspltisb-Copy Value into Sixteen Signed Integer Elements (8-Bit)
	Figure 6-115. vspltish-Copy Value to Eight Signed Integer Elements (16-Bit)
	Figure 6-116. vspltisw-Copy Value to Four Signed Elements (32-Bit)
	Figure 6-117. vspltw-Copy Contents to Four Elements (32-Bit)
	Figure 6-118. vsr-Shift Bits Right for Vectors (128-Bit)
	Figure 6-119. vsrab-Shift Bits Right in Sixteen Integer Elements (8-Bit)
	Figure 6-120. vsrah-Shift Bits Right for Eight Integer Elements (16-Bit)
	Figure 6-121. vsraw-Shift Bits Right in Four Integer Elements (32-Bit)
	Figure 6-122. vsrb-Shift Bits Right in Sixteen Integer Elements (8-Bit)
	Figure 6-123. vsrh-Shift Bits Right for Eight Integer Elements (16-Bit)
	Figure 6-124. vsro-Vector Shift Right Octet
	Figure 6-125. vsrw-Shift Bits Right in Four Integer Elements (32-Bit)
	Figure 6-126. vsubcuw-Subtract Carryout of Four Unsigned Integer Elements (32-Bit)
	Figure 6-127. vsubfp-Subtract Four Floating-Point Elements (32-Bit)
	Figure 6-128. vsubsbs-Subtract Sixteen Signed Integer Elements (8-Bit)
	Figure 6-129. vsubshs-Subtract Eight Signed Integer Elements (16-Bit)
	Figure 6-130. vsubsws-Subtract Four Signed Integer Elements (32-Bit)
	Figure 6-131. vsububm-Subtract Sixteen Integer Elements (8-Bit)
	Figure 6-132. vsububs-Subtract Sixteen Unsigned Integer Elements (8-Bit)
	Figure 6-133. vsubuhm-Subtract Eight Integer Elements (16-Bit)
	Figure 6-134. vsubuhs-Subtract Eight Unsigned Integer Elements (16-Bit)
	Figure 6-135. vsubuwm-Subtract Four Integer Elements (32-Bit)
	Figure 6-136. vsubuws-Subtract Four Signed Integer Elements (32-Bit)
	Figure 6-137. vsumsws-Sum Four Signed Integer Elements (32-Bit)
	Figure 6-138. vsum2sws-Two Sums in the Four Signed Integer Elements (32-Bit)
	Figure 6-139. vsum4sbs-Sum of Four Signed Integer Byte Elements with a Word Element (32-Bit)
	Figure 6-140. vsum4shs-Sum of Two Signed Integer Half-Word Elements with a Word Element (32-Bit)
	Figure 6-141. vsum4ubs-Sum of Four Unsigned Integer Byte Elements with an Unsigned Integer Word Element (32-Bit)
	Figure 6-142. vupkhpx-Unpack High-Order Elements (16-Bit) to Elements (32-Bit)
	Figure 6-143. vupkhsb-Unpack High-Order Signed Integer Elements (8-Bit) to Signed Integer Elements (16-Bit)
	Figure 6-144. vupkhsh-Unpack Signed Integer Elements (16-Bit) to Signed Integer Elements (32-Bit)
	Figure 6-145. vupklpx-Unpack Low-Order Elements (16-Bit) to Elements (32-Bit)
	Figure 6-146. vupklsb-Unpack Low-Order Elements (8-Bit) to Elements (16-Bit)
	Figure 6-147. vupklsh-Unpack Low-Order Signed Integer Elements (16-Bit) to Signed Integer Elements (32-Bit)
	Figure 6-148. vxor-Bitwise XOR (128-Bit)

	Appendix A AltiVec Instruction Set Listings
	A.1 Instructions Sorted by Mnemonic in Decimal Format
	Table A-1. Instructions Sorted by Mnemonic in Decimal Format

	A.2 Instructions Sorted by Mnemonic in Binary Format
	Table A-2. Instructions Sorted by Mnemonic in Binary Format

	A.3 Instructions Sorted by Opcode in Decimal Format
	Table A-3. Instructions Sorted by Opcode in Decimal Format

	A.4 Instructions Sorted by Opcode in Binary Format
	Table A-4. Instructions Sorted by Opcode in Binary Format

	A.5 Instructions Sorted by Form
	Table A-5. VA-Form
	Table A-6. VX-Form
	Table A-7. X-Form
	Table A-8. VXR-Form

	A.6 Instruction Set Legend
	Table A-9. AltiVec Instruction Set Legend

	Appendix B Revision History
	B.1 Changes from Revision 2 to Revision 3
	B.2 Changes from Revision 1 to Revision 2
	B.3 Changes from Revision 0 to Revision 1

	Glossary
	Index

