CodeWarrior™
Build Tools Reference
for Freescale™ 56800/E
Digital Signal
Controllers

freescalp’"‘

Revised: 17 June2006 o ieon ductor

y
A

Freescale, the Freescalelogo, and CodeWarrior are trademarks or registered trademarks of Freescal e Corporation in the
United States and/or other countries. All other trade names and trademarks are the property of their respective owners.

Copyright © 2006 by Freescale Semiconductor company. All rights reserved.

No portion of this document may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, without prior written permission from Freescale. Use of this document and related materialsis gov-
erned by thelicense agreement that accompanied the product to which thismanual pertains. Thisdocument may
be printed for non-commercial personal use only in accordance with the aforementioned license agreement. If
you do not have a copy of the license agr eement, contact your Freescalerepresentative or call 1-800-377-5416 (if
outsidethe U.S,, call +1-512-996-5300).

Freescal e reserves the right to make changes to any product described or referred to in this document without further
notice. Freescale makes no warranty, representation or guarantee regarding the merchantability or fitness of its products
for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product
described herein and specifically disclaimsany and al liability. Freescale softwareisnot authorized for and has not
been designed, tested, manufactured, or intended for use in developing applications where the failure, malfunc-
tion, or any inaccuracy of the application carries arisk of death, serious bodily injury, or damage to tangible
property, including, but not limited to, usein factory control systems, medical devices or facilities, nuclear facil-
ities, aircraft navigation or communication, emergency systems, or other applications with a similar degree of
potential hazard.

How to Contact Freescale

Corporate Headquarters Freescale Corporation
7700 West Parmer Lane
Austin, TX 78729

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

g |

Table of Contents

1 Introduction

Compiler Architecture oo
Linker Architecture. i

2 Using Build Tools with the CodeWarrior IDE

Invoking CodeWarrior Compilersand Linkers.
Specifying FileLocations.co i
IDEOpPtionsand Pragmas.o v e e e e i i
IDE SettingsPanels
C/C++ Language (C only) SettingsPanel
C/C++ Preprocessor Panel ...
C/C++WarningsPanel i

3 Using Build Tools on the Command Line

Naming Conventionsouiiiiniiniiaaennnn
Configuring Command-LineTools.

CWFolder Environment Varigble

Setting the PATH Environment Variable.
Invoking Command-LineToolst
GettingHElp . ..o

HelpGuidelines.
FileName EXtensions.t
Specifying Source FileLocations.coovva...
Environmental Variables. i it

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

lag . 37
SOCCEXE . ot e 37
S0CC BXEENSIONS . L ettt 38
M 38
TNBKE . 38
147276 38
MM 39
M D 39
MM D 39
SMUILTDYEEAWENE. . . . o 40
(0] 010 40
0] 10 1= 40
SrElAX POINEENS. . .ot e 41
SFEQUITEPIOLOS. .« . . e et et et et e e e e et e 41
< 0 o 41
AHgrapNS . e 41
Errors, Warnings, and DiagnosticOptions 42
sdisassemble. ... 42
ShElp. 43
SMNBXEITONS & o e et e et e e e e e e e e e e 44
SMAXWAININGS .« oottt 44
SISOl . 45
SnOfall. L 45
SIS . i 45
S P 46
S [= o 46
SVEIDOSE . L 46
L= £ Lo T 47
SIMING . . 47
PGS . v v et e e e e e e 47
SWEAPIINGES e e 50
Preprocessing and Precompilation Options. iiian.. 50
SCoNVErtPatnS . . . e 51
SOW . . 52
D 52

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Table of Contents

SAEfiNE . . 53
B 53
T 53
SgCCINCIUES. . . oo 54
e 54
S 55
Sinclude . . 55
T 55
SNOPrECOMIPIl . . . ot e 56
-nosyspatho 56
P 56
SPrECOMPIlE . . o e 56
SPFEPIOCESS . . oottt et et et e e e e e e 57
0] 70 o 57
0= 1 G 58
SSEAING . o e 58
U 59
SUNDEfINE . Lo 59
Library and Linking Options 59
SKEEPODJECES. . . o 59
-mapshowbyte e 60
SNOHTNK . e 60
0 60
Object Code Organization and Generation Options. 61
0 61
SCOOBgEN . o e 61
FENUML ot et e e e e e 62
SO 62
SSITINGS. e ot 63
Optimization OPptioNS oot e e e 63
= (o 64
= [2 64
HatOrS L 64
SINlINE 64
0 T 65

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 5

SNOFACTONL. . . o 66

SNOFACHOr2. . 66

110101 0 £ 66

O 66

SO 67

SO . 68

4 Linker 71
INtrOdUCLION. . . . oo 71

5 C 73
Extensionsto Standard C oo 73

Unnamed Argumentsin Function Definitions. 74

Gt COMMENES . . . ottt e et ettt 74

A # Not Followed by aMacroArgumentcouon.. 74

Using an Identifier After #endif 75

Using Typecasted Pointersaslvalues, 75

INlINE FUNCLIONS.o e 76

Pascal Calling Conventions.t 76

Character Constantsas Integer Values. 76

Converting Pointersto Typesof theSame Size....................... 76

Getting Alignment and Type Information at Compile Time. 77

Arraysof ZeroLengthin Structures 77

The“D” Constant SUFfiX 77

The __typeof () and typeof() operators.oiiiiaan.... 77
Implementation-Defined Behavioro i 78

DiagnoStiC MESSA0ES . .+« v vttt e et 78

ldentifiers. 78

6 Tool Performance 79
Precompiled Header Files. 79

Whento Use PrecompiledFiles 79

What Canbe Precompiled.oo i 80

Precompiling C++ Source Code 80

Using aPrecompiled Header File, 81

6 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Table of Contents

Preprocessing and Precompiling. 82
Pragma Scopein Precompiled Files 82
Precompiling aFileinthe CodeWarrior IDE 83
Updating a Precompiled File Automatically......................... 83

7 Optimization 85
Optimization Considerationsttt 85
INlNING . ..o 85
Profiling 86
String Literals. 86
Pooling SENGS . . . oo 86
REUSING SHiNGS . . vttt e 86
OptiMIZationsot e 87
Dead Code Elimination. 88
Expression Simplification. i 88
Common Subexpression Elimination oot 89
Copy Propagationot 89
Dead Store Elimination. 90
LiveRange Splittingot i
Loop-Invariant Code Motionot 9
Strength Reduction 92
LoopUnrolling 93
MB56800E Specific Optimizations. 93

8 Inline Assembly Language and Intrinsics 113
INtrodUCLioN. e 113
9 Predefined Symbols 115
Using Predefined Symbols. 115
Version Symbol. 115
CMWERKS 115
Dateand Time Symbol 116
D AT E . 116
U TIME e 116
IDE Symbol ... 116

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 7

Table of Contents

__ide target("target name") 116
Name Symbolso 117
0 117
CLINE 117
Object Code Organization and Generation Symbol 117
o Profile 117
COYMbOIS. . . 118
ST DC 118
10 Pragmas 119
USINg Pragmas.ot 119
Checking Pragma Settings.co oot e e 119
Saving and Restoring Pragma Settings 124
Determining Which Settings Are Savedand Restored 126
llegal Pragmasot e e e e 126
Pragma SCope 127
Standard C and C++ Conformance Pragmas.o oiii it 127
ANS SIiCt .. 127
only std keywords 129
Language Translation and ExtensionsPragmas, 129
CC EXEONSIONS. .« . v vttt ettt et et 129
MPWC _NeWliNe. 130
MPWC TEIAX . .ot 131
Errors, Warnings, and Diagnostic Control Pragmas. 132
check ¢ src pipeline. 133
check_inline_asm pipeline.......... i 133
check inline sp effects. i 134
extended errorcheck 134
FeQUIre PrOtOLYPES. . . v vt e ettt et et e 135
SUPPreSS TNt COdE.ot e 135
SUPPrESS WaIMINGS. .« . o v et ettt ettt et et e 136
unsigned Charo 136
UNUSED . o oot e ettt e e e e e e e 137
warn_any ptr int_ CONV.t 138
warn_emptydecl. 138

8 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Table of Contents

WA _EXIraCOMIMA. . . v vttt ettt ettt et e 139
warn_filenamecaps 140
warn_filenamecaps system. i 140
warn_illpragma. e 141
warn_impl_f2i_conv..... 141
warn_impl_i2f conv......... . 142
warn_impl_S2U CONV oo e 143
warn_implicitconv. 144
WA JargEaIgS « o v vttt et e et 145
Warn_MmMiSSINGrefUNN. . .. oo e e e e e 145
warn no side effect. 146
warn_notinlined. e 146
warn_paddingo 147
Warn_POSSUNWAENT . . . oot et e et e et e e e e 147
Warn_ptr it CONV ..ot e e e 148
warn resultnotused e 148
warn undefmacro e 149
V= TR 0= =T o R 150
WA _UNUSEOVAS . ..ottt ettt et ettt et et 150
WaINING_BITOIS .« o ottt et et e e et et et e e e e e e 150
Preprocessing and PrecompilationPragmas. 151
dollar_identifiers. i e 151
fullpath_prepdump 152
K. . o 152
10 (0] 153
(0710700 153
POP, PUSH . . oo 153
SYSPath ONCE. . .. oo 154
Library and Linking Control Pragmas oo, 155
define SECtioNot 155
explicit_ zero data. ... 156
initializedzerodata. 157
SO ON . ot et 157
USE FOdata. . ..ot e e 158
Object Code Organization and GenerationPragmas 160

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 9

Table of Contents

aways inline. o 161
auto iNliNe. e 161
CONSE SHTINGS .« o vttt e e e 161
defer codegen ... e 162
dont inline. ... e e 163
dONt_reUSE SHINGS. . . vttt ettt e e 163
eNUMSAIWAYSINE 164
inline bottom_Up. oo 165
interrupt (for the DSP56800)ot e 166
interrupt (for the DSP56800E).o oot 168
PACKSITUCE. . . . ot 172
POOI StHNGS . ..ottt 172
readonly StriNgs.o 173
reverse bitfields. 173
SUPPreSS NIt COdE. oot e e e e 174
SYSPath OMNCE . . . oo 174
Optimization Pragmas.o vt e e 175
L=/ 0 176
faCtOr L e 176
faCtOrd L . 176
NOFACIONL . . .ot e 177
NOfACIOr2 . . o 177
NOfACOrd . . o 178
opt_common SUBS. 178
opt_dead asSSigNMENtS.ttt 179
opt_dead code. 179
opt_lifetimes 179
opt_loop_invariants.ot 180
OPL_Propagation.t 180
opt_strength reduction 181
opt_strength_reduction_strict i 181
opt_UNrOll_1OOPS . . o ot 182
optimization level i e 182
optimize for_Size 182
peephole. 183

10

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

Table of Contents

Profiler Pragmas
Profile . 184

Index

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 11

wr
4\

Table of Contents

12 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Introduction

This reference describes how to use the CodeWarrior compiler and linker tools to build
software.

CodeWarrior build tools are programs that trand ate source code into object code then
organize that object code to create a program that is ready to execute.

CodeWarrior build tools often run on adifferent platform than the programs they generate.
The host platform is the machine on which CodeWarrior build tools run. The target
platform is the machine on which the software generated by the build tools runs.

This section introduces how CodeWarrior build tools are organized:

Compiler Architecture on page 13
Linker Architecture on page 14

Compiler Architecture

From your perspective, a CodeWarrior compiler is asingle program. Internaly, however,
a CodeWarrior compiler has two parts:

the front-end, shared by all CodeWarrior compilers, transates human-readable
source code into a platform-independent intermediate representation of the program
being compiled

the back-end, customized to generate software for atarget platform, convertsthe
intermediate representation into object code containing data and native instructions
for the target processor

A CodeWarrior compiler coordinates its front-end and back-end to translate source code
into object code in several steps:

configure settings requested from the compiler to the CodeWarrior IDE or passed to
the linker from the command-line

trandlate human-readabl e source code into an intermediate representation
optionally output symbolic debugging information

optimize the intermediate representation

convert the intermediate representation to native object code

optimize the native object code

output the native, optimized object code

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 13

A 4
4\

Introduction
Linker Architecture

Linker Architecture

A linker combines and arranges the object code in libraries and object code generated by
compilers and assemblersinto asingle file or image, ready to execute on the target
platform. The CodeWarrior linker builds an executable image in severa steps:

« configure settings requested from the linker to the CodeWarrior I DE or passed to the
linker from the command-line

« read settings from alinker control file

« read object code

 search for and ignore unused objects (“deadstripping”)
« build and output the executable file

optionally output amap file

14 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

2

Using Build Tools with the
CodeWarrior IDE

The CodeWarrior Integrated Development Environment (IDE) uses settingsin aproject’s
build target to choose which compilers and linkers to invoke, which files those compilers
and linkers will process, and which options the compilers and linkers will use.

This chapter describes how to use CodeWarrior compilers and linkers with the
CodeWarrior IDE:

« Invoking CodeWarrior Compilers and Linkers on page 15
» Specifying File Locations on page 15

« |DE Options and Pragmas on page 16
¢ |DE Settings Panels on page 16

Invoking CodeWarrior Compilers and
Linkers

The IDE uses settings in the Target Settings panel of the Target Settings window to
determine which compilers and linkersto use for a project’s build target. The Linker
option in this settings panel specifies the platform or processor to build for. From this
option, the IDE also determines which compilers, pre-linkers, and post-linkers to use.

The IDE uses the settings in the File Mappings panel of the Target Settings window to
determine which types of files may be added to a project’ s build target and which compiler
plugin should be invoked to process each file. The menu of compilersin the Compiler
option of this panel is determined by the Linker setting in the Target Settings panel.

Specifying File Locations

The IDE uses the settings in a build target’s Access Paths and Source Trees panelsto
choose the source code and object code files to dispatch to the CodeWarrior build tools.
See the IDE User’s Guide for more information on these panels.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 15

A 4
4\

Using Build Tools with the CodeWarrior IDE
IDE Options and Pragmas

IDE Options and Pragmas

The build tools determine their settings by |DE settings and directives in source code.

The CodeWarrior compiler follows these steps to determine the settings to apply to each
file that the compiler trandlates under the IDE:

 before trandating the source code file, the compiler gets option settings from the

IDE'’s settings panels in the current build target
the compiler updates the settings for pragmas that correspond to panel settings

the compiler transl ates the source code in the Prefix Text field of the build target’s
C/C++ Preprocessor panel

The compiler applies pragma directives and updates their settings as pragmas
directives are encountered in this source code.

the compiler translates the source code file and the files that it includes

The compiler applies pragma directives and updates their settings as pragmas are
encountered.

IDE Settings Panels

A build target that uses a CodeWarrior compiler has these settings panels to control the
compiler:

C/C++ Language (C only) Settings Panel on page 16

¢ C/C++ Preprocessor Panel on page 20
¢ C/C++ Warnings Panel on page 22

C/C++ Language (C only) Settings Panel

This settings panel controls compiler language features and some object code storage
features for the current build target.

Inline Depth on page 17
Auto-Inline on page 17

Interprocedural Analysis Support on page 17
Bottom-up Inlining on page 18

ANSI Strict on page 18

ANSI Keywords Only on page 19

Expand Trigraphs on page 19

16

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

¢ Legacy for-scoping on page 19

* Require Function Prototypes on page 19

e Enums Always Int on page 20

* Enums Always Int on page 20

¢ Use Unsigned Chars on page 20

* Pool Strings on page 20

¢ Reuse Strings on page 20

Inline Depth

Specifies the policy to follow to determine the level of function calls to replace with
function bodies. These policies are listed in Table 2.1 on page 17

Table 2.1 Settings for the Inline Depth Pop-up Menu

This setting Does this...

Don'’t Inline Inlines no functions, not even C or C++ functions declared
inline.

Smart Inlines small functions to a depth of 2 to 4 inline functions deep.

1to 8 Inlines to the depth specified by the numerical selection.

The Smart and 1 to 8 items correspond to the pragma inline depth andthe
command-lineoption -inline level=n, wherenis1 to 8. The Don’t Inlineitem
corresponds to the pragmadont _inline and the command-line option -inline
off.

Auto-Inline

Lets the compiler choose which functions to inline. Also inlines C++ functions declared
inline and member functions defined within a class declaration. This setting
corresponds to the pragma auto_inline and the command-lineoption -inline
auto.

Interprocedural Analysis Support

Interprocedural Analysis (IPA) allows the compiler to generate better and smaller code by
inspecting more than just one function or data object at the same time. The compiler
supports three different interprocedural analysis modes:

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 17

A 4
4\

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

» Function Mode (aka"off") (default) on page 18
* File Mode on page 18

Function Mode (aka "off") (default)

Functions are optimized and code is generated when the function has been parsed. This
mode allows no interprocedural analysis. Thismode is enabled by selecting off in the IPA
popup menu in the C/C++ Language (C only) preference panel or by specifying - ipa
function or -ipa off onthe command line.

File Mode

A trandation unit is completely parsed before any code or datais generated. This allows
optimizations and inlining on a per-file basis, it replaces the deferred inlining/codegen
mode. Thismodeis enabled by selecting £i1e inthe IPA popup menu in the C/C++

L anguage (C only) preference panel or by specifying -ipa f£ile onthe command line.

This mode will require more memory and it can be slightly slower than Function mode.

The compiler will also do an early dead code/data analysis in this mode, so objects with
internal linkage that are not referenced will be dead-stripped in the compiler rather than in
the linker.

Bottom-up Inlining

Inline functions starting at the last function to the first function in a chain of function calls.
This setting corresponds to the pragma inline bottom_up and the command-line
option -inline bottomup.

ANSI Strict

Only recognizes source code that conformsto the ISO/ANSI standards. The compiler does
not recognize several CodeWarrior extensions to the C language:

¢ C++-style comments

« unnamed arguments in function definitions
« a# not followed by amacro directive

e using an identifier after a#endif directive
¢ using typecasted pointers as lvalues

« converting points to type of the same size

e arrays of zero length in structures

« the D constant suffix

18

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

¢ enumeration constant definitions that cannot be represented as signed integers when
the Enums Always Int option ison inthe IDE’'s C/C++ Language settings panel
or the enumsalwaysint pragmaison

¢ aC++main () function that does not return an integer value
Y ou cannot enable individual extensions that are controlled by the ANSI Strict setting.

This setting corresponds to the pragma ANSI_strict and the command-line option
-ansi strict.

ANSI Keywords Only

Controls whether the compiler recognizes non-standard keywords.

(ISO C, §6.4.1) The CodeWarrior compiler can recognize several additional reserved
keywords. If you enable this setting, the compiler generates an error if it encounters any of
the additional keywords that it recognizes. If you must write source code that strictly
adheres to the ISO standard, enable the ANSI Strict setting.

If you disable this setting, the compiler recognizes the following non-standard keywords:
inline, inline , inline, andpascal.

This setting corresponds to the pragmaonly std_ keywords and the command-line
option -stdkeywords.

Expand Trigraphs

(ISO C, 85.2.1.1) The compiler normally ignores trigraph characters. Many common
character constants look like trigraph sequences, and this extension lets you use them
without including escape characters.

This setting corresponds to the pragma t rigraphs and the command-line option
-trigraphs.

Legacy for-scoping

Generates an error message when the compiler encounters a variable scope usage that the
SO C++ standard disallows, but is allowed in the C++ language specified in The
Annotated C++ Reference Manual (“ARM”).

This setting corresponds to the pragma ARM _conform and the command-line option
-for scoping.
Require Function Prototypes

Enforce the requirement of function prototypes. If you enable the Require Function
Prototypes setting, the compiler generates an error message if you define a previously

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 19

A 4
4\

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

referenced function that does not have a prototype. If you define the function beforeit is
referenced but do not give it a prototype, then enabling the Require Function
Prototypes setting causes the compiler to issue a warning message.

This setting corresponds to the pragma require prototypes and the command-line
option -requireprotos.

Enums Always Int

Uses signed integers to represent enumerated constants. This option corresponds to the
enumsalwaysint pragmaand the command-line option -enum.

Use Unsigned Chars

Treats char declarations asunsigned char declarations. This setting corresponds to
the pragmaunsigned char and the command-line option -char unsigned.

Pool Strings

Controls where the compiler stores character string literals.

If you enable this setting, the compiler collects al string constants into a single data object
in the object code it generates. If you disable this setting, the compiler creates a unique
data object for each string constant.

This option corresponds to the pragmapool strings and the command-line option
-strings pool.

Reuse Strings

When on, the compiler stores only one copy of identical string literals. When off, the
compiler stores each string literal separately.

The Reuse Strings setting corresponds to opposite of the pragma
dont_reuse_strings and the command-line option -string reuse.

C/C++ Preprocessor Panel

The C/C++ Preprocessor settings panel controls the operation of the CodeWarrior
compiler’s preprocessor.

« Source encoding on page 21

o Use prefix text in precompiled header on page 21

« Emit file changes on page 21

* Emit #pragmas on page 21

20

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Show full paths on page 21

« Keep comments on page 21

¢ Use#line on page 22

* Keep whitespace on page 22

Source encoding

Allows you to specify the default encoding of source files. The compiler recognizes
Multibyte and Unicode source text. To replicate the obsolete option Multi-Byte Aware,
set this option to System or Autodetect. Additionally, options that affect the preprocess
request appear in this panel.

Use prefix text in precompiled header

Controls whether a*.pch or *.pch++ file incorporates the prefix text into itself.

This option defaults to “ off” to correspond with previous versions of the compiler that
ignore the prefix file when building precompiled headers. If any #pragmas are imported
from old C/C++ Language Panel Settings, this option is set to “on”.

Emit file changes

Controls whether notification of file changes (or #line changes) appear in the output.

Emit #pragmas

Controls whether #pragmas encountered in the source text appear in the preprocessor
output.

NOTE Thisoptionisessential for producing reproducible test cases for bug reports.
Show full paths
Controls whether file changes show the full path or the base filename of the file.

Keep comments

Controls whether comments are emitted in the output.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 21

wr
4\

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Use #line

Controls whether file changes appear in comments (as before) or in #line directives.

Keep whitespace

Controls whether whitespace is stripped out or copied into the output. Thisis useful for
keeping the starting column aligned with the original source, though the compiler attempts
to preserve space within the line. This doesn’'t apply when macros are expanded.

C/C++ Warnings Panel

The C/C++ Warnings settings panel contains options that controls which warning
messages the CodeWarrior C/C++ compiler issues as it trandates source code:

¢ |llegal Pragmas on page 23

« Possible Errors on page 23
« Extended Error Checking on page 23

« Implicit Arithmetic Conversions on page 23
« Float To Integer on page 24

« Signed/Unsigned on page 24
¢ |nteger To Float on page 24

« Pointer/Integral Conversions on page 24
¢ Unused Variables on page 24

e Unused Arguments on page 24

* Missing ‘return’ Statements on page 25

» Expression Has No Side Effect on page 25
e Enable All on page 25

« Disable All on page 25

* Extra Commas on page 25

¢ Inconsistent ‘class' /' struct’” Usage on page 25
« Empty Declarations on page 25

« Include File Capitalization on page 26

* Check System Includes on page 26

« Pad Bytes Added on page 26

» Undefined Macro in #if on page 26

¢ Non-Inlined Functions on page 26

22 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

e Treat All Warnings As Errors on page 26

lllegal Pragmas

Issues awarning message if the compiler encounters an unrecognized pragma.

This setting correspondsto thewarn illpragma pragmaand the command-line option
-warnings illpragmas.

Possible Errors

I ssues warning messages for common, unintended logical errors:

« inconditional statements, using the assignment (=) operator instead of the equality
comparison (==) operator

¢ in expression statements, using the == operator instead of the = operator
¢ placing asemicolon (;) immediately after ado, while, if, or for statement

This setting corresponds to pragmawarn_possunwant and the command-line option
-warnings possible.

Extended Error Checking

I ssues warning messages for common programming errors:

« mis-matched return typein afunction’s definition and the return statement in the
function’s body

« mismatched assignments to variables of enumerated types

This setting corresponds to pragma extended_errorcheck and the command-line
option -warnings extended.

Implicit Arithmetic Conversions
I ssues a warning message when the compiler appliesimplicit conversions that may not
giveresults you intend:

« assignments where the destination is not large enough to hold the result of the
conversion

« asigned value converted to an unsigned value

« aninteger or floating-point value is converted to a floating-point or integer value,
respectively

This setting correspondsto thewarn_implicitconv pragmaand the command-line
option -warnings implicitconv.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 23

A 4
4\

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Float To Integer

Issues awarning message for implicit conversions from floating point values to integer
values.

This setting correspondsto thewarn _impl f2i conv pragmaand the command-line
option -warnings impl float2int.

Signed/Unsigned

I ssues awarning message for implicit conversions from asigned or unsigned integer value
to an unsigned or signed value, respectively.

This setting correspondsto thewarn_impl s2u_conv pragmaand the command-line
option -warnings signedunsigned.

Integer To Float

I ssues a warning message for implicit conversions from integer to floating-point val ues.

This setting correspondsto thewarn_impl i2f conv pragmaand the command-line
option -warnings impl int2float.

Pointer/Integral Conversions

I ssues a warning message for implicit conversions from pointer values to integer values
and from integer valuesto pointer values.

This setting correspondsto thewarn_any ptr_int convand
warn_ptr_int conv pragmas and the command-line option -warnings
ptrintconv, anyptrinvconv.

Unused Variables

Issues awarning message for local variables that are not referred to in afunction.

This setting correspondsto thewarn_unusedvar pragmaand the command-line option
-warnings unusedvar.

Unused Arguments

I ssues a warning message for function arguments that are not referred to in afunction.

This setting correspondsto thewarn_unusedarg pragmaand the command-line option
-warnings unusedarg.

24

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Missing ‘return’ Statements

Issues awarning message if afunction that is defined to return avalue hasno return
Statement.

This setting corresponds to thewarn_missingreturn pragmaand the command-line
option -warnings missingreturn.

Expression Has No Side Effect

Issues awarning message if a statement does not change the program’ s state.

This setting correspondsto thewarn no_side effect pragmaand the command-
line option -warnings unusedexpr.

Enable All

Turns on al warning options.

Disable All

Turns off all warning options.

Extra Commas

Issues awarning message if alist in an enumeration terminates with a comma.

This setting corresponds to the warn_extracomma pragmaand the command-line
option -warnings extracomma.

Inconsistent ‘class’/'struct’ Usage

Issues awarning message if the class and struct keywords are used interchangeably in the
definition and declaration of the same identifier in C++ source code.

This setting corresponds to thewarn_structclass pragmaand the command-line
option -warnings structclass.

Empty Declarations

Issues awarning message if a declaration has no variable name.

This setting corresponsd to the pragmawarn_emptydecl and the command-line option
-warnings emptydecl.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 25

A 4
4\

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Include File Capitalization

Issuesawarning if the name of thefile specifiedina#include "file" directiveuses
different letter case from afile on disk.

This setting corresponds to thewarn filenamecaps pragmaand the command-line
option -warnings filecaps.

Check System Includes

Issuesawarning if the name of thefile specifiedina#include <files directiveuses
different letter case from afile on disk.

This setting correspondsto thewarn_filenamecaps_system pragmaand the
command-line option -warnings sysfilecaps.

Pad Bytes Added

I ssues a warning message when the compiler adjusts the alignment of componentsin a
data structure.

This setting corresponds to the warn_padding pragma and the command-line option -
warnings padding.

Undefined Macro in #if

Issues awarning if an undefined macro appearsin #1if and #elif directives.

This setting corresponds to the warn_undefmacro pragma and the command-line
option -warnings undefmacro.

Non-Inlined Functions

Issues awarning if acall to afunction defined withthe inline, inline ,or
___inline keywords could not be replaced with the function body.

This setting corresponds to thewarn_notinlined pragmaand the command-line
option -warnings notinlined.

Treat All Warnings As Errors

| SSues warning messages as error messages.

This setting correspondsto thewarning errors pragmaand the command-line option
-warnings error.

26

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

Using Build Tools on the
Command Line

The CodeWarrior command line compilers and assemblers trand ate source code (for

example, C and C++) into object code, storing this abject in files. CodeWarrior command-
line linkers then combine one or more of these object code files to produce an executable

image ready to load and execute on the target platform.
Each command-line tool has options that you configure when you invoke the tool.

The CodeWarrior IDE (Integrated Devel opment Environment) uses these same compilers

and linkers, however Freescal e provides versions of these tools that you can directly

invoke on the command line. Many command-line options correspond to settingsin the

IDE’s Target Settings window.
This chapter contains these topics:
« Naming Conventions on page 28

¢ Configuring Command-Line Tools on page 28
¢ |nvoking Command-Line Tools on page 29

¢ Getting Help on page 30
¢ File Name Extensions on page 31

« Specifying Source File L ocations on page 32
* on page 32Environmenta Variables on page 32

¢ Standard C and C++ Conformance Options on page 33
¢ | anguage Trandlation and Extensions Options on page 34

 Errors, Warnings, and Diagnostic Options on page 42
* Preprocessing and Precompilation Options on page 50
« Library and Linking Options on page 59
« Library and Linking Options on page 59

« Object Code Organization and Generation Options on page 61
¢ Optimization Options on page 63

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

27

y
A

Using Build Tools on the Command Line
Naming Conventions

Naming Conventions

The names of the CodeWarrior command-line tools follow a convention:
mw tool platform
where tool is cc for the C/C++ compiler, 1d for the linker, and asm for the assembler.

Platformisusually the target platform that the tool generates software for, except
where there are multiple versions of tools for atarget platform.

For example, the command-line compiler, assembler, and linker for the dsp56800 are
named mwcc56800, mwasm56800, and mwld56800, respectively; and for the
dsp56800e are named mwcc56800e, mwasm56800e, and mwld56800e,
respectively;.

Configuring Command-Line Tools

To use the command-line tools, several environment variables must be changed or
defined.

If you are using CodeWarrior command-line tools with Microsoft Windows, environment
variables may be assigned in the autoexec . bat filein Windows 95/98 or in the
Environment tab under the System control pand in Windows NT/2000/XP.

The CodeWarrior command-line tools refer to environment variables for configuration
information:

+ CWFolder Environment Variable on page 28
* Setting the PATH Environment V ariable on page 29

CWFolder Environment Variable

In thisexample, $CWFolder$ refersto the path where CodeWarrior for 56800 was
installed. Note that it is not necessary to include quote marks when defining environment
variables that include spaces. Windows does not strip out the quotes and this leads to
unknown directory warnings. Use the following syntax if defining variablesin batch files
or a the command line (Listing 3.1 on page 28).

Listing 3.1 Example of setting CWFolder.

set CWFolder=C:\Program Files\Freescale\CodeWarrior

28 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Invoking Command-Line Tools

Setting the PATH Environment Variable

The PATH variable should include the paths for the 56800 tools (other tools will be
different), shown in Listing 3.2 on page 29.

Listing 3.2 Example of PATH Settings

$CWFolder%\Bin
$CWFolder%\DSP56800x EABI Tools\Command Line Tools

Thefirst path in Listing 3.2 on page 29 contains the FlexLM license manager DLL, and
the second path contains the tools.

In order for FlexLM to work properly, you can simply copy the following file into the
directory from which you will be using the command line tools:

..\CodeWarrior\license.dat
Alternately, you can define the variable LM _LICENSE FILE &S
$CWFolder%\license.dat

Thisvariable pointsto license information. It may point to alternate versions of thisfile, as
needed.

Invoking Command-Line Tools

To compile, assemble, link, or perform some other programming task with the
CodeWarrior command-line toals, you type acommand at acommand line's prompt. This
command specifies the tool you want to run, what options to use while the tool runs, and
what files the tool should operate on.

The form of acommand to run acommand-linetool is
tool options files

where too1 isthe name of the CodeWarrior command-linetool to invoke, optionsisa
list of zero or more options that specify to the tool what operation it should perform and
how it should be performed, and £iles isalist of files zero or more files that the tool
should operate on.

Which options and files you should specify depend on what operation you want the tool to
perform.

The tool then performs the operation on the files you specify. If the tool is successful it
simply finishes its operation and a new prompt appears at the command line. If the tool
encounters problemsit reports these problems as text messages on the command-line
before a new prompt appears.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 29

y
A

Using Build Tools on the Command Line
Getting Help

Scripts that automate the process to build a piece of software contain commandsto invoke
command-line tools. For example, the make tool, acommon software development tool,
uses scripts to manage dependencies among source code files and invoke command-line
compilers, assemblers and linkers as needed, much like the CodeWarrior IDE’s project
manager.

Getting Help

To show short descriptions of atool’s options, type this command at the command line:
tool -help
where tool isthe name of the CodeWarrior build tool.

To show only afew lines of help information at atime, pipe the tool’s output to a pager
program. For example,

tool -help | more

will use the more pager program to display the help information.

Help Guidelines

Enter the following command in aCommand Prompt window to see alist of
specifications that describe how options are formatted:

tool -help usage

Parameter Formats

Parameters in an option are formatted as follows:
o A parameter included in brackets“ [1” is optional.

e Useof thedlipsis” . . .” character indicates that the previous type of parameter may
be repeated as alist.

Option Formats

Options are formatted as follows:

« For most options, the option and the parameters are separated by a space asin
“-xxx param”’. When the option’s nameis“ -xxx+", however, the parameter
must directly follow the option, without the “ +” characteter (asin “ -xxx45") and
with no space seperator.

e Anoption givenas“ - [no] xxx” may beissued as“ -xxx” or “ -noxxx”. The use
of “-noxxx” reversesthe meaning of the option.

30 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
File Name Extensions

* When anoptionisspecifiedas“-xxx | yylyl | zzz”,theneither “-xxx",

“eyy", t-yyy”, or f -zzz" matches the option.

e Thesymbols*“,” and “=" separate options and parameters unconditionally; to include
one of these symbolsin a parameter or filename, escapeit (e.g.,as“\,” inmwcc
file.c\,v).

Common Terms

These common terms appear in many option descriptions:
* A “cased” optionisconsidered case-sensitive. By default, no options are case-
sensitive.
« “compatibility” indicates that the option is borrowed from ancther vendor’ s tool and
its behavior may only approximate its counterpart.

* A “global” option has an effect over the entire command line and is parsed before
any other options. When several global options are specified, they are interpreted in
order.

* A “deprecated” option will be eliminated in the future and should no longer be used.
An alternative form is supplied.

« An“ignored” option is accepted by the tool but has no effect.

* A “meaningless’ option is accepted by the tool but probably has no meaning for the
target OS.

« An“obsolete” option indicates a deprecated option that isno longer available.

« A “substituted” option has the same effect as another option. This points out a
preferred form and prevents confusion when similar options appear in the help.

* Useof “default” in the help text indicates that the given value or variation of an
option is used unless otherwise overridden.

Thistool calsthe linker (unless acompiler option such as - ¢ preventsit) and understands
linker options—use'-help tool=other'to seethem. Options marked “ passed to
linker” are used by the compiler and the linker; options marked “for linker” are used only
by the linker. When using the compiler and linker separately, you must pass the common
options to both.

File Name Extensions

Files specified on the command line are identified by contents and file extension, asin the
CodeWarrior IDE.

The command-line version of the CodeWarrior C/C++ compiler accepts non-standard file
extensions as source but also emits awarning. By default, the compiler assumesthat afile

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 31

y
A

Using Build Tools on the Command Line
Specifying Source File Locations

with any extensionsbesides . ¢, . h, . pch is C++ source. The linker ignores al files that
it can not identify as object code, libraries, or command files.

Linker command filesmust end in . 1c£. They may be simply added to the link line, for
example, for 56800, see Listing 3.3 on page 32.

Listing 3.3 Example of using linker command files

mwld56800e file.o “MSL C 56800E.lib” “Runtime 56800E.Lib” linker.cmd

For more information on linker command files, refer to the Targeting manual for your
platform.

Specifying Source File Locations

Several environment variables are used at build time to search for system include paths
and libraries which can shorten command lines for many tasks. All of the variables
mentioned here are lists which are separated by semicolons (“;”) in Windows and colons
(“:") in Solaris.

For example, in 56800, unless -nodefaults is passed to on the command line, the
compiler searches for an environment variable called MWC56800Includes for the
DSP56800 and MWC56800EIncludes for the DSP56800E. Thisvariable containsalist
of system access paths to be searched after the system access paths specified by the user.
The assembler aso does this, using the variable MWAsm56800Includes for the
DSP56800 and MWAsm56800EIncludes for the DSP56800E.

Analogously, unless -nodefaults or -disassemble isgiven, thelinker will search
the environment for alist of system access paths and system library filesto be added to the
end of the search and link orders. For example, with 56800, the variable
MW56800Libraries and MW56800ELibraries containsalist of system library
paths to search for files, libraries, and command files.

Associated with thislist isthe variable MW56800LibraryFiles and
MW56800ELibraryFiles which containsalist of libraries (or object files or
command files) to add to the end of the link order. These files may be located in any of the
cumulative access paths at runtime.

Environmental Variables

There are environmental varaiable for the DSP56800 and DSP56800E.
The environmental variables for the DSP56800 are:
* MWA56800Libraries: a semicolon sperated list of paths to the libraries

32 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Standard C and C++ Conformance Options

MWA56800LibraryFiles: a semicolon separated list of librariesto be linked against

MWA sm56800Includes: a semicolon separated list of pathsto files needed by the
assembler

MWC56800Includes: a semicolon separated list of paths to files needed by the
assembler

The environmental variables for the DSP56800E are:

MWA56800EL ibraries: a semicolon sperated list of paths to the libraries
MWA56800EL ibraryFiles: a semicolon separated list of libraries to be linked against

MWA sm56800EI ncludes: a semicolon separated list of paths to files needed by the
assembler

MWC56800EIncludes: a semicolon separated list of paths to files needed by the
assembler

Standard C and C++ Conformance Options

The Standard C and C++ Conformance options are:

-ansi on page 33
-stdkeywords on page 34

-strict on page 34

-ansi

Controls the ANSI conformance options, overriding the given settings.

Syntax

-ansi keyword

off

The arguments for keyword are:

Turn ANSI conformance off. Same as - stdkeywords of £, ~enummin, and
-strict off.

on | relaxed

Turn ANSI conformance on in relaxed mode. Same as - stdkeywords on,
-enummin,and -strict on.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 33

y
A

Using Build Tools on the Command Line
Language Translation and Extensions Options

strict

Turn ANSI conformance onin strict mode. Same as - stdkeywords on, -enum
int,and -strict on.

-stdkeywords
Controls the requirement for the use of ANSI standard keywords.

Syntax
-stdkeywords on | off

Remarks
Default settingisof £.

-strict
Controls the use of non-standard ANSI language features.

Syntax

-strict on | off

Remarks
Default setting isof f.

Language Translation and Extensions
Options

The Language Translation and Extensions options are:
e -char on page 35
 -defaults on page 36
* -encoding on page 36
 -flag on page 37
* -gccext on page 37
e -gcc extensions on page 38

34 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

Using Build Tools on the Command Line
Language Translation and Extensions Options

-M on page 38

-make on page 38

-mapcr on page 38

-MM on page 39

-MD on page 39

-MMD on page 39
-multibyteaware on page 40

-once on page 40
-pragmaon e 40

-relax_pointers on page 41
-relax_pointers on page 41
-requireprotos on page 41
-search on page 41
-trigraphs on page 41

-char

Controls the default sign of the char datatype.

Syntax
-char keyword
The arguments for keyword are:

signed

char dataitems are signed.

unsigned

char dataitems are unsigned.

Remarks

The default is signed.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

35

y
A

Using Buil

d Tools on the Command Line

Language Translation and Extensions Options

-defaults
Controls whether the compiler uses additional environment variables to provide default
settings.
Syntax
-defaults
- [no]ldefaults
Remarks
This command isglobal. To enable the command-line compiler to use the same set
of default settings as the CodeWarrior IDE, use -defaults. For example, in the
IDE, all access paths and libraries are explicit. defaults isthe default setting.
Use -nodefaults to disable the use of additional environment variables.
-encoding

Specify the default source encoding used by the compiler.

Syntax

-enc [oding] keyword
The options for keyword are:
ascii

American Standard Code for Information Interchange (ASCII) format. Thisisthe
default.

autodetect | multibyte | mb
Scan file for multibyet encoding.
system
Uselocal system format.
UTF[8 | -8]
Unicode Transformation Format (UTF).
SJIS | Shift-JIS | ShiftJISs
Shift Japanese Industrial Standard (Shift-JIS) format.

36

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Language Translation and Extensions Options

EUC[JP | -JP]

Japanese Extended UNIX Code (EUCJP) format.
IS0[2022JP | -2022-JP]

International Organization of Standards (1SO) Japanese format.

Remarks

The compiler automatically detects UTF-8 (Unicode Transformation Format)
header or UCS-2/UCS-4 (Uniform Communications Standard) encodings
regardless of setting. The default settingisascii.

-flag
Specify compiler #pragma as either on or of £.
Syntax
-fl[ag] [no-]lpragma
Examples
-flag foo
isequivalent to #pragma foo on.
-flag no-foo
isthesame as#pragma foo off.
-gccext

Enable GCC (Gnu Compiler Collection) C language extensions.

Syntax

-gccext] on | off

Remarks
The default settingisof £.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 37

y
A

Using Build Tools on the Command Line
Language Translation and Extensions Options

-gcc_extensions

Equivalent to the -gccext option.

Syntax

-gcc[_extensions] on | off

Scan source files for dependencies and emit a Makefile, without generating object code.

Syntax
-M

Remarks

This command is global and case-sensitive.

-make

Scan source files for dependencies and emit a Makefile, without generating object code.

Syntax

-make

Remarks

This command is global.

-mapcr

Swaps the values of the \n and \ r escape characters.

38

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Language Translation and Extensions Options

Syntax
-mapcr

-nomapcr

Remarks

The -mapcr option tellsthe compiler to treat the ' \n' character asASCII 13 and
the ' \r' character as ASCII 10. The -nomapcr option tells the compiler to treat
these characters as ASCII 10 and 13, respectively.

-MM

Scan source files for dependencies and emit a Makefile, without generating object code or
listing system #include files.

Syntax
-MM

Remarks
Thiscommand is global and case-sensitive.

-MD

Scan source files for dependencies and emit a Makefile, generate object code, and write a
dependency map.
Syntax

-MD

Remarks
Thiscommand is global and case-sensitive.

-MMD

Scan source files for dependencies and emit a Makefile, generate object code, write a
dependency map, without listing system #include files.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 39

y
A

Using Build Tools on the Command Line
Language Translation and Extensions Options

Syntax
-MMD

Remarks

This command is global and case-sensitive.

-multibyteaware

Allows multi-byte characters encodings in source text.

Syntax
-multibyte [aware]

-nomultibyte [aware]

-once
Prevents header files from being processed more than once.
Syntax
-once
Remarks
You can also add #pragma once on in aprefix file.
-pragma
Defines a pragma for the compiler.
Syntax
-pragma ‘name ["setting"]’
The arguments are:
name
Name of the new pragma enclosed in single-quotes.
40

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Language Translation and Extensions Options

setting

Setting for the new pragma. When adding a setting, setting must be enclosed in
double-quotes.

-relax_pointers
Relaxes the pointer type-checking rulesin C.

Syntax

-relaxpointers

Remarks
Thisoption is equivaent to

#pragma mpwc_relax on

-requireprotos
Controls whether or not the compiler should expect function prototypes.

Syntax

-r [equireprotos]

-search
Globally searches across paths for source files, object code, and libraries specified in the
command line.
Syntax
-search
-trigraphs

Controls the use of 1SO trigraph sequences.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 41

y
A

Using Build Tools on the Command Line
Errors, Warnings, and Diagnostic Options

Syntax

-trigraphs on | off

Remarks

Default settingisof £.

Errors, Warnings, and Diagnostic Options

The Errors, Warnings, and Diagnostic options are:

-disassemble on page 42
-help on page 43
-maxerrors on page 44
-maxwarnings on page 44
-nofail on page 45
-progress on page 45

-S on page 46

-stderr on page 46
-verbose on page 46
-version on page 47

-timing on page 47
-warnings on page 47

-wraplines on page 50

-disassemble

Tells the command-line tool to disassemble files and send result to stdout.

Syntax

-dis[assemble]

Remarks

This option is global.

42

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Errors, Warnings, and Diagnostic Options

-help
Lists descriptions of the CodeWarrior tool’ s command-line options.
Syntax
-help [keyword [,...]1]

The options for keyword are:
all

Show all standard options
group=keyword

Show help for groups whose names contain ' keyword' (case-sensitive); for
"keyword', maximum length 63 chars

[no] compatible

Use compatible to show options compatible with this compiler. Use
nocompatible to show options that do not work with this compiler.

[no] deprecated

Show deprecated options
[no] ignored

Show ignored options
[no]lmeaningless

Show options meaningless for this target
[no]l normal

Show only standard options
[no] obsolete

Show obsolete options
[no] spaces

Insert blank lines between optionsin printout.
opt [ion] =name

Show help for agiven option; for 'name’, maximum length 63 chars
search=keyword

Show help for an option whose name or help contains ' keyword’ (case-sensitive);
for "keyword’, maximum length 63 chars

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 43

A 4
4\

Using Build Tools on the Command Line
Errors, Warnings, and Diagnostic Options

tool=keyword[all | this | other|skipped | both]
Categorize groups of options by tool; default.
— all-show al options available in thistool
— this-show options executed by this tool; default
— other | skipped—show options passed to ancther tool
— both-show optionsused in al tools
usage

Displays usage information.

-maxerrors

Specify the maximum number of errors to show.

Syntax
-maxerrors max
max
Use max to specify the number of errors. Common values are:
— 0 (zero) —disable maximum count, show all errors.
— 100 — Default setting.

-maxwarnings
Specify the maximum number of warnings to show.

Syntax
-MaxXerrors max
max
Use max to specify the number of warnings. Common values are:
— 0 (zero) — Disable maximum count (default).
— n —Maximum number of warnings to show.

44 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Errors, Warnings, and Diagnostic Options

-msgstyle
Controls the style used to show error and warning messages.

Syntax
-msgstyle keyword
The options for keyword are:

gcc
Uses gcc message style.
ide
Uses CodeWarrior’s Integrated Development Environment (IDE) message style.
mpw
Uses Macintosh Programmer’ s Workshop (MPW®) message style.
parseable
Uses context-free machine parseable message style.
std

Uses standard message style. Thisis the default.

-nofail
Continue processing after getting errorsin earlier files.
Syntax
-nofail

-progress

Show progess and version information.

Syntax

-progress

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 45

y
A

Using Build Tools on the Command Line
Errors, Warnings, and Diagnostic Options

Disassemble all files and send output to afile. This command is global and case-sensitive.

Syntax
-S

-stderr
Use the standard error stream to report error and warning messages.

Syntax
-stderr

-nostderr

Remarks

The - stderr option specifies to the compiler, and other tools that it invokes, that
error and warning messages should be sent to the standard error stream.

The -nostderr option specifies that error and warning messages should be sent
to the standard output stream.

-verbose
Tells the compiler to provide verbose, cumulative information in messages.

Syntax

-v [erbose]

Remarks

Use of this argument implies the use of the -progress on page 45 argument.

46 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Errors, Warnings, and Diagnostic Options

-version
Displays version, configuration, and build data.
Syntax
-v[ersionl]
-timing
Shows the amount of time that the tool used to perform an action.
Syntax
-timing
-warnings

Specify which warnings the command-line tool issues. This command is global.

Syntax

-wl[arning] keyword [,...]
The options for keyword are:

off

Turn off al warnings. Passed to all tools. Prefix file setting: #pragma warning
off.

on

Turn on most warnings. Passed to all tools. Prefix file setting: #pragma
warning on.

[no] cmdline
passedto dl tools; # command-line driver/parser warnings
[nolerr[or] | [noliserr[or]

Treat warnings as errors. Passed to all tools. Prefix file setting: #pragma
warning errors.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers a7

y
A

Using Build Tools on the Command Line
Errors, Warnings, and Diagnostic Options

all
Turn on al warnings and require prototypes.
[no] pragmas | [no]illpragmas

Issue warnings on illegal #pragmas. Prefix file setting: #pragma
warn_illpragma.

[no] empty [decl]

Issue warnings on empty declarations. Prefix file setting: #pragma
warn_emptydelec.

[nolpossible | [nolunwanted

Issue warnings on possible unwanted effects. Prefix file setting: #pragma
warn_possunwanted

[no]lunusedarg

Issue warnings on unused arguments. Prefix file setting: #pragma
warn_unusedarg.

[no]unusedvar

Issue warnings on unused variables. Prefix file setting: #pragma
warn_unusedvar.

[no]unused
Sameas -w [no]unusedarg, [no]unusedvar.
[no] extracomma | [no] comma

Issue warnings on extra commas in enumerations. Prefix file setting: #pragma
warn_ext racomma.

[no]lpedantic | [no]extended
pedantic error checking
[nolhidevirtual | [nolhidden [virtuall

Issue warnings on hidden virtual functions. Prefix file setting: #pragma
warn_ hidevirtual.

[no] implicit [conv]

Issue warnings on implicit arithmetic conversions. Implies
-warn impl float2int,impl signedunsigned.

[no]limpl int2float

Issue warnings on implicit integral to floating conversions. Prefix file setting:
#pragma warn_impl i2f conv.

48

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Errors, Warnings, and Diagnostic Options

[nolimpl float2int

Issue warnings on implicit floating to integral conversions. Prefix file setting:
#pragma warn_impl_ f2i conv.

[no]impl signedunsigned
Issue warnings on implicit signed/unsigned conversions.
[nolnotinlined

Issue warning when inline functions are not inlined. Prefix file setting:
#pragma warn notinlined

[no] largeargs

Issue warning when passing large arguments to unprototyped functions. Prefix file
setting: #pragma warn_largeargs.

[no] structclass

Issue warning on inconsistent use of class and struct. Prefix file setting:
#pragma warn structclass.

[no]l padding

Issue warning when padding is added between st ruct members. Prefix file
setting: #pragma warn_ padding

[no]l notused

Issue warning when the result of non-void-returning functions are not used. Prefix
filesetting: #pragma warn resultnotused.

[no]lmissingreturn

Issue warning when areturn without avalue in non-void-returning function occurs.
Prefix file setting: #pragma warn missingreturn

[no]unusedexpr

Issue warning when encountering the use of expressions as statements without side
effects. Prefix file setting: #pragma warn no side effect

[no]l ptrintconv
Issue warning when lossy conversions occur from pointers to integers.
[no]l anyptrintconv

Issue warning on any conversion of pointersto integers. Prefix file setting:
#pragma warn_ptr_ int conv.

[no]undef [macro]

Issue warning on the use of undefined macrosin #if /#elif conditionas. Prefix
file setting: #pragma warn undefmacro.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 49

y
A

Using Build Tools on the Command Line
Preprocessing and Precompilation Options

[no] filecaps

Issuewarningwhen #include "..." statements useincorrect capitalization.
Prefix file setting: #pragma warn_ filenamecaps.

[nol sysfilecaps

Issue warning when #include <. .. > statements useincorrect capitalization.
Prefix file setting: #pragma warn_filenamecaps system.

[no] tokenpasting

Issue warning when token is not formed by ## operator. Prefix file setting:
#pragma warn illtokenpasting.

display | dump
Display list of active warnings.

Description

Choose Edit > targetname Settings from the CodeéWarrior IDE’ s menu bar, then
select the C/C++ War nings settings panel. Enable or disable specific warnings by
clicking the appropriate checkboxes.

-wraplines
Controls the word wrapping of messages.

Syntax
-wraplines

-nowraplines

Preprocessing and Precompilation Options

The Preprocessing and Precompilation options are:
 -convertpaths on page 51
« -cwd on page 52
e -D+ on page 52
» -define on page 53
e -E on page 53
* -EPon page53
 -gccincludes on page 54

50 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Preprocessing and Precompilation Options

e -l1- on page 54

e -1+ onpage55
 -include on page 55

e -ir on page 55

* -noprecompile on page 56
¢ -nosyspath on page 56
* -Pon page 56

¢ -precompile on page 56
¢ -preprocess on page 57
¢ -ppopt on page 57

« -prefix on page 58
 -stdinc on page 58

e -U+ on page 59
 -undefine on page 59

-convertpaths

Instructs the compiler to interpret #include file paths specified for aforeign operating
system. This command is global.

Syntax

- [no] convertpaths

Remarks

The CodeWarrior compiler can interpret file paths from several different operating
systems. Each operating system uses unique characters as path separaters. These
separaters include:

e MacOS® —colon”:” (:sys:stat.h)
¢ UNIX —forward dlash“ /" (sys/stat.h)
¢ Windows® —backward dash “\” (sys\stat.h)

When convertpaths isenabled, the compiler can correctly interpret and use paths like
<sys/stat.h>0r <:sys:stat.h>. However, when enabled, (/) and (:) separate
directories and cannot be used in filenames.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 51

y
A

Using Build Tools on the Command Line
Preprocessing and Precompilation Options

NOTE Thisisnot aproblem on Windows since these characters are aready
disallowed in file names. It is safe to leave this option on.

When noconvertpaths is enabled, the compiler can only interpret paths that
use the Windows form, like <\ sys\stat .hs>.

-cwd
Controls where a search begins for #include files. The path represented by keyword is
searched before searching access paths defined for the build target.
Syntax
-cwd keyword
The options for keyword are:
explicit
No implicit directory. Search - T or -ir paths.
include
Begin search in directory of referencing file.
proj
Begin search in current working directory (default).
source
Begin search in directory that contains the source file.
-D+
Same asthe -def ine option.
Syntax
-D+name
The parameters are:
name
The symbol hame to define. Symbol is set to 1.
52

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Preprocessing and Precompilation Options

-define

Defines a preprocessor symbol.

Syntax
-d[efine] name[=value]
The parameters are:
name

The symbol nhame to define.
value

The value to assign to symbol name. If no valueis specified, set symbol value
equal to 1.

Tells the command-line tool to preprocess source files. This command is global and case-
sengitive.

Syntax
-E

-EP

Tells the command-line tool to preprocess source files that are stripped of #1ine
directives. This command is global and case-sensitive.

Syntax

-EP

Remarks

Output isgenerated using the #pragma simple predump on Setting and sent
to anew unsaved editor window.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 53

y
A

Using Build Tools on the Command Line
Preprocessing and Precompilation Options

-gccincludes
Controls the compilers use of GCC #include semantics.

Syntax

-gccinc [ludes]

Remarks

Use -gccinclude to control the CodeWarrior compiler understanding of GCC
semantics. When enabled, the semantices include:

— Adds - I - pathsto the systemslistif - I- isnot aready specified

— Search referencing file' s directory first for #include files (same as -cwd
include) The compiler and IDE only search access paths, and do not take the
currently #include fileinto account.

This command is global.

Changes the build target’s search order of access paths to start with the system paths list.
This command is global.

Syntax

- I -

—i-

Remarks

The compiler can search #include filesin several different ways. Use - I - to set
the search order asfollows:

— For include statements of the form #include "xyz", the compiler first
searches user paths, then the system paths

— For include statements of the form #include <xyz>, the compiler searches
only system paths

54 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Preprocessing and Precompilation Options

Appends a non-recursive access path to the current #include list. Thiscommand is
global and case-sensitive.

Syntax
-I+path
-1 path
The parameters are:
path
The non-recursive access path to append.

-include

Defines the name of the text file or precompiled header file to add to every source file
processed.

Syntax

-include file

file

Name of text file or precompiled header file to prefix to all source files.

Remarks

With the command line tool, you can add multiple prefix files all of which are
included in a meta-prefix file.

Appends arecursive access path to the current #include list. Thiscommand is global.

Syntax
-ir path
The parameters are:

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 55

4
A

Using Build Tools on the Command Line
Preprocessing and Precompilation Options

path
The recursive access path to append.

-noprecompile
Do not precompile any source files based upon the filename extension.

Syntax

-noprecompile

-nosyspath

Perform searches of both the user and system paths, treating #include statements of the
form #include <xyz>the sameastheform #include "xyz".

Syntax
-nosyspath

Remarks

This command is global.

P
Preprocess the source files without generating object code, and send output to file. This
command is global and case-sensitive.
Syntax
-P
-precompile

Precompile a header file from selected sourcefiles.

56 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Preprocessing and Precompilation Options

Syntax
-precompile file | dir | "
The parameters are:
file
If specified, the precompiled header name.

dir
If specified, the directory to store the header file.
If » v isgpecified, write header file to location specified in source code. If neither
argument is specified, the header file name is derived from the source file name.

Remarks
The driver determines whether to precompile afile based on its extension. The
statement -precompile filesource is equivalent to -c -o
filesource.

-preprocess

Preprocess the source files. This command is global .

Syntax

-preprocess

-ppopt

Specify options affecting the preprocessed output. The default settingsis break.

Syntax
-ppopt keyword [,...]
The arguments for keyword are:
[no]l break
Emit file and line breaks. Thisis the default.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 57

3
4

y
A

Using Build Tools on the Command Line
Preprocessing and Precompilation Options

[no] line

Controls whether #line directives are emitted or just comments. The default is
line.

[no] full [path]

Controls whether full paths are emitted or just the base filename. The default is
fullpath

[no] pragma

Controls whether #pragma directives are kept or stripped. The default ispragma.
[no] comment

Controls whether comments are kept or stripped.
[no] space

Controls whether whitespace is kept or stripped. The default is space.

-prefix

Add contents atext file or precompiled header as a prefix to all source files.

Syntax

-prefix file

-stdinc

Use standard system include paths as specified by the environment variable
$MWCIncludes%.

Syntax
-stdinc

-nostdinc

Remarks
Add this option after all system - I paths.

58

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Library and Linking Options

-U+
Same as the -undefine option.
Syntax
-U+name

-undefine

Undefine the specified symbol name. This command is case-sensitive.

Syntax
-u[ndefine] name
-U+name

The parameters are:
name

The symbol name to undefine.

Library and Linking Options

The Library and Linking options are:
 -keepobjects on page 59
* -map showbyte on page 60
« -nolink on page 60
e -0 .0n page 60

-keepobjects

Retains or deletes object files after invoking the linker.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

59

A 4
4\

Using Build Tools on the Command Line
Library and Linking Options

Syntax
-keepobj [ects]

-nokeepobj [ects]

Remarks

Use -keepobjects to retain object files after invoking the linker. Use
-nokeepobjects to delete object files after linking. This command is global.

NOTE Object files are always kept when compiling.

-map showbyte

This option activates the | DE feature with the name "Annotate Byte Symbols'.

-nolink
Compile the source files, without linking.
Syntax
-nolink
Remarks
This command is global.
-0
Specify the output filename or directory for storing object files or text output during
compilation, or the the output fileif calling the linker.
Syntax
-o file | dir
The parameters are:
file
The output file name.
60

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Object Code Organization and Generation Options

dir
The directory to store object files or text output.

Remarks

Choose Edit > targetname Settings from the CodeWarrior IDE’ s menu bar, then
select the Access Paths settings panel. Enable the Always Search User Paths
option.

Object Code Organization and Generation
Options

The Object Code Organization and Generation options are:
e -conpage6l
* -codegen on page 61
¢ -enum on page 62
* -ext on page 62
* -strings on page 63

-C
Instructs the compiler to compile but not link the object code.
Syntax
-C
Remarks
Thisoption is global.
-codegen

Controls the generation of object code.

Syntax

-codegen

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 61

y
A

Using Build Tools on the Command Line
Object Code Organization and Generation Options

-nocodegen

Remarks
This option is global.

-enum
Specify the default size for enumeration types. Default setting ismin.
Syntax
-enum keyword
The arguments for keyword are:
int
Use int size for enumerated types.
min
Use minimum size for enumerated types. Thisis the default.
-ext
Tells the command-line tool the extension to apply to object files.
Syntax
-ext extension
Thevalueof extension is:
extension
The extension to apply to object files. Use these rules to specify the extension:

— Limited to amaximum length of 14-characters

— Extensions specified without aleading period (extension) replace the source
file's extension. For example, if extension == o, then source.cpp
becomes source.o.

— Extensions specified with aleading period (. extension) are appended to the
object files name. For example, if extension == .o, then source.cpp
becomes source.cpp.o.

62 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Optimization Options

Remarks

Thiscommand is global. The default setting is no extension.

-strings
Controls how string literals are stored and used.

Remarks

-str([ings] keyword[, ...]
The keyword arguments are:

[no] pool

All string constants are stored as a single data object so your program needs one
data section for all of them.

[no] reuse

All equivilent string constants are stored as a single data object so your program
can reuse them. Thisis the default.

[no] readonly

Make dl string constants read-only. Thisis the default.

Optimization Options

The Optimization options are:
« -factorl on page 64
« -factor2 on page 64
« -factor3 on page 64
* -inline on page 64
e -ipaon page 65
« -nofactorl on page 66
« -nofactor? on page 66
« -nofactor3 on page 66
* -O on page 66
e -O+ on page 67
* -opt on page 68

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 63

4
A

Using Build Tools on the Command Line
Optimization Options

-factorl

Turns on factorization step 1.

Syntax

-factorl

Remarks
To turn off factorization step 1, see -nofactorl on page 66.

-factor2

Turns on factorization step 2.

Syntax

-factor2

Remarks
To turn off factorization step 2, see -nofactor2 on page 66.

-factor3

Turns on factorization step 3.

Syntax

-factor3

Remarks
To turn off factorization step 3, see -nofactor3 on page 66.

-inline

Specify inline options. Default settings are smart, noauto.

64

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Optimization Options

Syntax
-inline keyword
The options for keyword are:
off | none

Turn off inlining.
on | smart

Turnoninlining for inline functions. Thisisthe default.
auto

If inline not explicitly specified, auto-inline small functions.
noauto

Do not auto-inline. Thisisthe default auto-inline setting.
deferred

Defer inlining until end of compilation unit. This alowsinlining of functionsin
both directions.

level=n

Inline functions up to n levels deep. Level Oisthesame as - inline on. For n,
enter 1 to 8 levels. Thisargument is case-sensitive.

all

Turn on aggressive inlining. Thisoptionisthesameas -inline on, -inline
auto.

-ipa

Specify Interprocedural Analysis Support (IPA) options.

Syntax
-ipa keywordl[, ...]
Select the interprocedural analysis level.
The keyword arguments are:
function | off
traditional mode (per function optimization)
file

per file optimization (same as -deferered codegen)

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 65

4
A

Using Build Tools on the Command Line

Optimization Options

-nofactorl
Turns off factorization step 1.
Syntax
-nofactorl
Remarks
To turn on factorization step 1, see -factorl on page 64.
-nofactor2

Turns off factorization step 2.

Syntax

-nofac

tor2

Remarks

To turn on factorization step 2, see -factor2 on page 64.

-nofactor3
Turns off factorization step 3.
Syntax
-nofactor3
Remarks
To turn on factorization step 3, see -factor3 on page 64.
-O

Sets optimization settingsto -opt level=2.

66

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line

Optimization Options

Syntax
-0

Remarks
Provided for backwards compatibility.

Controls optimization settings.

Syntax
-O+keyword [, ...]
The keyword arguments are:

0

Equivilent to -opt of f.
1

Equivilentto -opt level=1.
2

Equivilent to -opt level=2.
3

Equivilent to -opt level=3.
4

Equivilentto -opt level=4, intrinsics.
Y

Equivilent to -opt speed.
s

Equivilent to -opt space.
Remarks

Options can be combined into a single command. Command is case-sensitive.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

67

y
A

Using Build Tools on the Command Line
Optimization Options

-opt
Specify code optimization options to apply to object code.
Remarks
-optkeyword [,...]
The keyword arguments are:
off | none
Suppress all optimizations. Thisis the default.
on
Sameas -opt level=2
all | full
Sameas -opt speed, level=4, intrinsics, noframe
1[evell] =num
Set a specific optimization level. The options for num are:

— 0 —Global register allocation only for temporary values. Prefix file equivilent:
#pragma optimization level 0.

— 1 —Addsdead code dimination, branch and arithmetic optimizations, expression
simplification, and peephole optimization. Prefix file equivilent: #pragma
optimization level 1.

— 2 —Adds common subexpression elimination, copy and expression propagation,
stack frame compression, stack alignment, and fast floating-point to integer
conversions. Prefix file equivilent: #pragma optimization level 2.

— 3 —Adds dead store elimination, live range splitting, loop-invariant code motion,
strength reduction, loop transformations, loop unrolling (with -opt speed only),
loop vectorization, lifetime-based register allocation, and instruction scheduling.
Prefix file pragmaequivilent: optimization level 3.

— 4 —Likeleve 3, but with more comprehensive optimizations from levels 1 and 2.
Prefix file equivilent: #pragma optimization level 4.

For num options 0 through 4 inclusive, the default is 0.
[no] space
Optimize object code for size. Prefix file equivilent: #pragma
optimize for_ size on.
[no] speed
68 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Using Build Tools on the Command Line
Optimization Options

Optimize object code for speed. Prefix file equivilent: #pragma
optimize for_size off.

[nolcse | [no] commonsubs

Common subexpression elimination. You can also add #pragma
opt_common_subs to aprefix file.

[no] deadcode
Removal of dead code. Prefix file equivilent: #pragma opt_dead code.
[no] deadstore

Removes dead assignments. Prefix file equivilent: #pragma
opt dead assignments

[no]llifetimes
Computes variable lifetimes. Prefix file equivilent: #pragma opt_lifetimes
[no] loop [invariants]

Removes loop invariants. Prefix file equivilent: #pragma
opt loop invariants

[no]l prop [agation]

Propagation of constant and copy assignments. Prefix file equivilent: #pragma
opt_propagation.

[nol strength

Strength reduction. Reducing multiplication by an array index variable to addition.
Prefix file equivilent: #pragma opt _strength reduction.

[no] dead

Sameas -opt [no] deadcode and [no] deadstore. Prefix file equivilent:
#pragma opt_dead code on|off and #pragma
opt dead assignments

[no] peep [hole]
Peephole optimization. Prefix file equivilent: #pragma peephole.
[no] color [ing]
Register coloring. Prefix file equivilent: #pragma register coloring.
[nol intrinsics
Inlining of intrinsic functions.
[no] schedule
Perform instruction scheduling.

display | dump

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 69

A 4
4\

Using Build Tools on the Command Line
Optimization Options

Display complete list of active optimizations.

70 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

h o
g |

Linker

Introduction

For 56800/E Target specific information about the ELF Linker and Command Language,
see the “Elf Linker and Command Language’ Chapter in either: Code Warrior
Development Studio for Freescale 56800/E Digital Sgnal Controllers: DSP56F80x/
DSP56F82x Family Targeting Manual or Code Warrior Development Sudio for
Freescale 56800/E Digital Signal Controllers: MC56F83xx/DSP5685x Family Targeting
Manual.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 71

wr
4\

Linker
Introduction

72 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

The CodeWarrior C programming language closely followsthe ISO C Standard (ISO/IEC
9899:1990). CodeWarrior C also has extensions to work more effectively with the target
platform it generates object code for and to be compatible with other compilers.

This chapter describes these extensions to the ISO C Standard and implementation-
defined behaviors:

¢ Extensionsto Standard C on page 73
* |mplementation-Defined Behavior on page 78

NOTE For 56800/E Target specific information about C, see the “C for DSP56800”
Chapter or “C for DSP56800E” Chapter in either the: Code Warrior
Development Sudio for Freescale 56800/E Digital Sgnal Controllers:
DSP56F80x/DSP56F82x Family Targeting Manual or Code Warrior
Development Sudio for Freescale 56800/E Digital Sgnal Controllers:
MCB56F83xx/DSP5685x Family Targeting Manual

Extensions to Standard C

« Unnamed Arguments in Function Definitions on page 74

¢ C++ Comments
¢ A # Not Followed by a Macro Argument

¢ Using an Identifier After #endif

¢ Using Typecasted Pointers as lvalues

« Inline Functions

 Pascal Calling Conventions

¢ Character Constants as Integer Values

« Converting Pointers to Types of the Same Size

¢ Getting Alignment and Type Information at Compile Time
* Arraysof Zero Length in Structures

e The“D” Constant Suffix

» The__typeof_ () and typeof() operators

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 73

Extensions to Standard C

Unnamed Arguments in Function
Definitions

(ISO C, 86.9.1) The C compiler can accept unnamed arguments in a function definition.

Listing 5.1 Unnamed Function Arguments

void f(int) {} /* OK if ANSI strict checking is disabled */
void f(int i) {} /* ALWAYS OK */

The compiler allows this extension if ANS! strict checking is disabled:
« intheIDE, use the C/C++ Language Settings panel’s ANSI Strict setting
» onthe command line, usethe compiler’s -ansi strict option

* insource code, use #pragma ANSI strict

C++ Comments

(ISO C, 86.4.9) The C compiler can accept C++ comments (/ /) in source code. C++
comments consist of anything that follows // on aline.

Listing 5.2 Example of a C++ Comment

a = b; // This is a C++ comment

To use thisfeature, disable the ANSI Strict setting in the C/C++ Language (C only)
Settings Panel on page 16.

A # Not Followed by a Macro Argument

(ISO C, §6.10.3) The C compiler can accept # tokens that do not appear before arguments
in macro definitions.

Listing 5.3 Preprocessor Macros Using # Without an Argument

#define addl(x) #x #1 // OK, but probably not what you wanted:
// addl (abc) creates "abc"#1
#idefine add2(x) #x "2" // OK: add2(abc) creates "abc2"

To use this feature, disable the ANSI Strict setting in the C/C++ Language (C only)
Settings Panel on page 16.

74 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

C
Extensions to Standard C

Using an Identifier After #endif

(ISO C, 86.10.1) The C compiler can accept identifier tokens after #endif and #else.
This extension helps you match an #endif statement with its corresponding #1if£,
#ifdef, or #ifndef statement, as shown here:

#ifdef _ MWERKS
ifndef cplusplus
/*
* .
*/
endif _ cplusplus
#endif _ MWERKS

To use thisfeature, disable the ANSI Strict setting in the C/C++ Language (C only)
Settings Panel on page 16.

TIP If you enablethe ANSI Strict setting (thereby disabling this extension), you can
still match your #ifdef and #endif directives. Smply put the identifiersinto
comments, as sown in following example:

#ifdef _ MWERKS
ifndef cplusplus
/*
* -
*/
endif /* cplusplus */
#endif /* MWERKS _ */

Using Typecasted Pointers as Ivalues

The C compiler can accept pointers that are typecasted to other pointer types as Ivalues.

Listing 5.4 Example of a Typecasted Pointer as an Ivalue

char *cp;
((long *) cp)++; /* OK if ANSI Strict is disabled. */

To use this feature, disable the ANSI Strict setting in the C/C++ Language (C only)
Settings Panel on page 16.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 75

Extensions to Standard C

Inline Functions

Asin C++, the CodeWarrior C compiler allowsthe inline, inline ,or
___inline keyword to appear before a function declaration and definition. Aninline
keyword specifies to the compiler that it should attempt to replace calls to the function
with the function’s body.

Pascal Calling Conventions

The CodeWarrior C compiler allowsthe pascal keyword to precede afunction
declaration and definition. This keyword specifiesto the compiler that it should use Pascal
calling conventions to call this function.

Character Constants as Integer Values

(ISO C, §6.4.4.4) The C compiler letsyou use string literals containing 2 to 8 charactersto
denote 32-hit integer values. Table 5.1 on page 76 shows examples.

Table 5.1 Integer Values as Character String Constants

Character constant Equivalent hexadecimal integer value
'"ABCD' 0x41424344 (32-bit value)

'ABC' 0x00414243 (32-bit value)

'AB' 0x4142 (16-bit value)

Y ou cannot disable this extension, and it has no corresponding pragma or setting in any
panel.

NOTE Thisfeature differs from using multibyte character sets, where asingle
character requires a data type larger than 1 byte.

Converting Pointers to Types of the Same
Size

The C compiler alows the conversion of pointer typesto integral datatypes of the same
sizein global initializations. Since thistype of conversion does not conformtothe ANSI C

standard, it isonly available if the ANSI Strict setting is disabled in the C/C++ L anguage
(C only) Settings Panel on page 16.

76

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

C
Extensions to Standard C

Listing 5.5 Converting a Pointer to a Same-sized Integral Type

char c;
long arr

(long) &c; // accepted (not ISO C)

Getting Alignment and Type Information at
Compile Time

The C compiler has two built-in functions that return information about a data type’s byte
alignment and its data type.

Thefunctioncal _builtin align (typelD) returnsthe byte alignment used for the
data type typelD. This value depends on the target platform for which the compiler is
generating object code.

Thefunctioncall builtin type (typelD) returnsanintegral value that describes
the data type typelD. This value depends on the target platform for which the compiler is
generating object code.

Arrays of Zero Length in Structures
If you disable the ANSI Strict setting in the C/C++ Language (C only) Settings Panel on

page 16, the compiler lets you specify an array of no length as the last item in a structure.
Listing 5.6 on page 77 shows an example. Y ou can define arrays with zero as the index
value or with no index value.

Listing 5.6 Using Zero-length Arrays

struct listOfLongs {
long listCount;
long 1list[0]; // OK if ANSI Strict is disabled, [] is OK, too.

}

The “D” Constant Suffix

When the compiler finds a“D” immediately after afloating point constant value, it treats
that value as data of type double.

The typeof () and typeof() operators

Withthe typeof () operator, the compiler letsyou specify the data type of an
expression. Listing 5.7 on page 78 shows an example.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 77

Implementation-Defined Behavior

___typeof _ (expression)

where expression isany valid C expression or datatype. Because the compiler trandates a
__typeof () expression into adatatype, you can use this expression wherever a
normal type would be specified.

Likethesizeof () operator, typeof () isonly evauated at compiletime, not at
runtime.

Listing 5.7 Example of __ typeof () and typeof () Operators

char *cp;
int *ip;
long *1p;

__typeof (*ip) 1i; /* equivalent to "int i;" */
__typeof (*1p) 1; /* equivalent to "long 1;" */

#pragma gcc_extensions on
typeof (*cp) c; /* equivalent to "char c;" */

Implementation-Defined Behavior

The ISO C Standard cannot practically define every possible aspect of a compiler
implementation. It does, however, list issues that must be defined by the implementation
of the compiler. This section describes aspects of the CodeWarrior C compiler that the
ISO C standard refers that are not covered in the rest of this manual:

« Diagnostic Messages on page 78
¢ |dentifiers on page 78

Diagnostic Messages

(ISO C, 86.3.1)In the CodeWarrior I DE, the CodeWarrior C compiler reports error and
warning messages in the Errors and Warnings window. See the IDE User’s Guide for
more information on viewing and nagivating messages in this window. On the command-
line, the CodeWarrior C compiler reports error and warning messages to the standard error
file.

Identifiers

(ISO C, 86.4.2) The CodeWarrior C language allows identifiers to have unlimited length.
However, only the first 255 characters are significant for internal and external linkage.

78 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

Tool Performance

CodeWarrior compilers can “ precompile” aheader file to speed up trandation of source
code. Precompiling a header file that isincluded often in other source fileswill reduce the
time the compiler uses to trand ate source code.

Some options for CodeWarrior compilers and linkers affect how much time these tools
use. By managing these options so that they are used only when they are needed, you can
reduce the time needed to build your software.

Precompiled Header Files

* When to Use Precompiled Files on page 79
« What Can be Precompiled on page 80

¢ Precompiling C++ Source Code on page 80
¢ Using a Precompiled Header File on page 81

« Preprocessing and Precompiling on page 82
» Pragma Scope in Precompiled Files on page 82

¢ Precompiling aFile in the CodeWarrior IDE on page 83
¢ Updating a Precompiled File Automatically on page 83

When to Use Precompiled Files

Source code filesin a project typically use many header files. Typically, the same header
files areincluded by each source code file in a project, forcing the compiler to read these
same header files repeatedly during compilation. To shorten the time spent compiling and
recompiling the same header files, CodeWarrior compilers can precompile a header file,
allowing it to be subsequently preprocessed much faster than a regular text source code
file.

For example, as a convenience, programmers often create a header file that contains
commonly-used preprocessor definitions and includes frequently-used header files. This
header fileis then included by each source code filein the project, saving the programmer
some time and effort while writing source code.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 79

3
4

'
A

Tool Performance
Precompiled Header Files

This convenience comes at a cost, though. While the programmer saves time typing, the
compiler does extra work, preprocessing and compiling this header file each time it
compiles a source code file that includes it.

This header file can be precompiled so that, instead of preprocessing multiple
duplications, the compiler needs to load just one precompiled header file.

What Can be Precompiled

A fileto be precompiled does not have to be aheader file (. h or . hpp files, for example),
but it must meet these requirements:

The file must be a source code file in text format.
Y ou cannot precompile libraries or other binary files.

A C source code file that will be automatically precompiled must have . pch file
name extension.

Precompiled files must have a . mch file name extension.

Thefile to be precompiled does not have to be in a CodeWarrior IDE project,
although a project must be open to precompile thefile.

The CodeWarrior IDE uses the build target settings to precompile afile.
Thefile must not contain any statements that generate data or executable code.
However, the file may define static data.

Precompiled header files for different build targets are not interchangeable.

A source file may include only one precompiled file.

A file may not define any items before including a precompiled file.

Typicaly, asource code file includes a precompiled header file before anything else
(except comments).

Precompiling C++ Source Code

The CodeWarrior compiler has these requirements for precompiling C++ source code:

C source code may not include precompiled C++ header files and C++ source code
may not include precompiled C header files.

C++ source code can contain inline functions and constant variable declarations
(const)

A C++ source codefile that will be automatically precompiled must havea . pch++
file name extension.

80

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Tool Performance
Precompiled Header Files

Using a Precompiled Header File

Although a precompiled file is not atext file, you use it like you would aregular header
file. To include a precompiled header filein a source code file, usethe #include
directive.

NOTE Unlike regular header filesin text format, a source code file may include only
one precompiled file.

TIP Instead of explicitly including a precompiled file in each source code file with the
#include directive, put the #include directivein the Prefix Text field of the
C/C++ Preprocessor settings panel and make sure that the Use prefix in
precompiled headers option ison. If the Prefix File field already specifiesa
file name, include the precompiled file in the prefix file with the #include
directive.

Listing 6.1 on page 81 and Listing 6.2 on page 81 show an example.

Listing 6.1 Header File that Creates a Precompiled Header File for C

// sock_header.pch
// When compiled or precompiled, this file will generate a
// precompiled file named "sock precomp.mch"

#pragma precompile target "sock precomp.mch"

#define SOCK VERSION "SockSorter 2.0"
#include "sock_std.h"

#include "sock_string.h"

#include "sock_sorter.h"

Listing 6.2 Using a Precompiled File

// sock_main.c
// Instead of including all the files included in
// sock_header.pch, we use sock precomp.h instead.

/7
// A precompiled file must be included before anything else.

#include "sock_precomp.mch"
int main (void)

{
!/

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 81

3
4

y
A

Tool Performance
Precompiled Header Files

return 0;

}

Preprocessing and Precompiling

When precompiling a header file, the compiler preprocesses the file too. In other words, a
precompiled fileis preprocessed in the context of its precompilation, not in the context of
its compilation.

The preprocessor also tracks macros used to guard #include filesto reduce parsing
time. Thus, if afile's contents are surrounded with:

#ifndef FOO_H
#define FOO_H
// file contents
#endif
The compiler will not load the file twice, saving some small amount of timein the process.

Pragma Scope in Precompiled Files

Pragma settings inside a precompiled file affect only the source code within that file. The
pragma settings for an item declared in a precompiled header file (such as data or a
function) are saved then restored when the precompiled header fileisincluded.

For exampl e, the source codein Listing 6.3 on page 82 specifiesthat the variable xxx isa
far variable.

Listing 6.3 Pragma Settings in a Precompiled Header

// my_pch.pch

// Generate a precompiled header named pch.mch.
#pragma precompile target "my pch.mch"

#pragma far data on
extern int xxx;

The source codein Listing 6.4 on page 82 includes the precompiled version of Listing
6.3 on page 82.

Listing 6.4 Pragma Settings in an Included Precompiled File

// test.c
#pragma far data off // far data is disabled

82 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Tool Performance
Precompiled Header Files

#include "my pch.mch" // this precompiled file sets far data on

// far data

is still off but xxx is still a far variable

The pragma setting in the precompiled file is active within the precompiled file, even
though the source file including the precompiled file has a different setting.

Precompiling a File in the CodeWarrior IDE

To precompile afile in the CodeWarrior IDE, use the Precompile command in the
Project menu:

1
2.
3.

Start the CodeWarrior IDE.
Open or create a project.
Choose or create a build target in the project.

The settings in the project’s active build target will be used when preprocessing and
precompiling the file you want to precompile.

Open the source code file to precompile.

See “What Can be Precompiled” on page 80 for information on what a precompiled
file may contain.

From the Project menu, choose Precompile.

A save dialog box appears.

Choose alocation and type a name for the new precompiled file.
The IDE precompiles the file and savesit..on page 80

Click Save.

The save dialog box closes, and the IDE precompiles the file you opened, saving it in
the folder you specified, giving it the name you specified.

Y ou may now include the new precompiled file in source codefiles.

Updating a Precompiled File Automatically

Use the CodeWarrior IDE’ s project manager to update a precompiled header
automatically. The IDE creates a precompiled file from a source code file during a
compile, update, or make operation if the source code file meets these criteria:

¢ Thetext file name ends with .pch (for C header files).
e Thefileisinaproject’s build target.
* Thefileusestheprecompile target pragma

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 83

A 4
4\

Tool Performance
Precompiled Header Files

Thefile, or files it depends on, have been modified.

See the CodeWarrior IDE User Guide for information on how the IDE determines
that afile must be updated.

The IDE uses the build target’ s settings to preprocess and precompilefiles.

84 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Optimization

CodeWarrior build tools offer features to reduce the size of object code, improve a
program’ s execution speed, and often do both at the same time. Compiler optimizations
rearrange, add, or remove instructions to reduce size or improve performance.

This chapter describes how to take advantage of these optimizations:
« Optimization Considerations on page 85
« Inlining on page 85
« Profiling on page 86

« String Literals on page 86
¢ Optimizations on page 87

Optimization Considerations

There are several issuesto take into consideration when selecting optimizations. Code can
be optimizated for size or for speed, and there are optimizations that could effect the size
and the performance of the compiler. Itisimportant to understand the full effects of the
optimizations. For example, inlining will decrease the overhead of making function calls.
However, if too many functions are called the resulting executable could be too large to
run on the target platform.

Inlining also effects the ahility to debug a program. Programs are optimally debugged at
optimization level 0, and with no additional optimization options enabled. Users should
keep in mind that optimization could result in incorrect data being displayed while
debugging, and stepping through functions could also seem incorrect.

Finally, the performance of the compiler could also be negatively effected by enabling
optimizations. If there are many optimizations enabled, the compile time could increase
because of the extratime needed to process the optimizations.

All of these issues should be considered when selecting optimizations.

Inlining

When inlining is enabled certain function calls are replaced with the function code.
Inlining function optimizes for speed, asthereisno call. However, overall code may be
larger if function code is repeated in several places.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 85

y
A

Optimization

Profiling

Theinlining of afunction is based on the complexity of the function and the settings of
several compiler options: IPA, Inline Depth, Auto Inline and Bottom up inline. These
options are discussed in “IDE Settings Panels’ on page 16.

Profiling

For more details about profiling see the CodeWarrior Development Studio IDE 5.5 User’s
Guide Profiler Supplement and the “Profiler” Chapter in your target specific Targeting
Manual.

String Literals

The compiler and linker manage character strings so that they occupy less space in the
object code and executablefile.

String literals are:
« Pooling Strings on page 86

* Reusing Strings on page 86

Pooling Strings

The Pool Strings setting in the C/C++ Language Panel controls how the compiler stores
string constants.

If you enable this setting, the compiler collects al string constants into a single data object
so that your program needs only one TOC (table of content) entry for all of them. While
this decreases the number of TOC entriesin your program, it aso increases your program
size because it uses a less efficient method to store the address of the string.

If you disable this setting, the compiler creates a unique data object and TOC entry for
each string constant.

Enable this setting if your program is large and has many string constants.

The Pool Strings setting corresponds to the pragmapool_strings. To check this setting,
use__option (pool_strings). By default, this setting is disabled. See also “pool_strings” on
page 172 and “ Checking Pragma Settings” on page 119.

Reusing Strings

The Reuse Strings setting in the C/C++ Language Panel controls how the compiler stores
string literals.

86

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Optimization
Optimizations

If you enable this setting, the compiler stores each string literal separately. Otherwise, the
compiler stores only one copy of identical string literals. This meansif you change one of
the strings, you change them all. For example, look at this code:

char *strl="Hello";
char *str2="Hello"; // two identical strings
*str2 = 'Y';

This setting helps you save memory if your program contains identical string literals
which you do not modify. If you enable the Reuse Strings setting, the strings are stored
separately. After changing the first character, strlis till Hello, but str2isyello.

If you disable the Reuse Strings setting, the two strings are stored in one memory location
because they areidentical. After changing the first character, both strl and str2 are
Yello, which iscounterintuitive and can create bugs that are difficult to locate. The
Reuse Strings setting corresponds to the pragmadont_reuse_strings. To check this setting,
use__option (dont_reuse_strings). By default, this setting is enabled, so strings are not
reused. See also “dont_reuse_strings” on page 163 and *“ Checking Pragma Settings” on
page 119.

Optimizations

Thefollowing is a collection of optimization types and examples of how the resulting
generated code is affected:

« Dead Code Elimination on page 88

» Expression Simplification on page 88

¢ Common Subexpression Elimination on page 89
« Copy Propagation on page 89

« Dead Store Elimination on page 90

» Live Range Splitting on page 91

¢ Loop-Invariant Code Motion on page 91

« Strength Reduction on page 92

¢ Loop Unrolling on page 93
* MB56800E Specific Optimizations on page 93

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 87

4
A

Optimization
Optimizations

Dead Code Elimination

Listing 7.1 Dead code elimination, before optimization

void func (void)

{

if (0)
{
otherfuncl () ;
}
otherfunc2 () ;

Listing 7.2 Dead code elimination, after optimization

void func optimized(void)

{
}

otherfunc2 () ;

Expression Simplification

Listing 7.3 Expression simplification, before optimization

#define MY OFFSET 4

void func (int* resultl, int* result2, int* result3, int* result4, int
X)

{

*resultl = x + 0;
*result2 = x * 2;
*result3 = x - X;
*result4 = 1 + x + MY OFFSET;

Listing 7.4 Expression simplification, after optimization

#define MY OFFSET 4

void func optimized(int* resultl, int* result2, int* result3, int*
result4, int x)

{

88 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

Optimization
Optimizations

*resultl = x;

*result2 = x << 2;
*result3 = 0;
*resultd = 5 + X;

Common Subexpression Elimination

Listing 7.5 Common subexpression elimination, before optimization

void func(int* vec, int size, int x, int y, int value)

{

if (x * y < size)

{
}

vec[x * y] = value;

Listing 7.6 Common subexpression elimination, after optimization

void func optimized(int* vec, int size, int x, int y, int value)
int temp;
temp = x * y;
if (temp < size)

{
}

vec [temp] = value;

Copy Propagation

Listing 7.7 Copy propagation, before optimization

void func (int* a, int x)
int 1i;
int j;
j = %x;
for (1 = 0; 1 < j; i++)

{

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 89

4
A

Optimization
Optimizations

}

Listing 7.8 Copy propagation, after optimization

void func optimized(int* a, int x)
int 1i;
int j;
j o= x;
for (i = 0; 1 < x; 1i++)

{
}

Dead Store Elimination

Listing 7.9 Dead store elimination, before optimization

void func(int x, int y)
{
X =y *vy;
otherfuncl (y) ;
x = getresult () ;
otherfunc2 (y) ;

Listing 7.10 Dead store elimination, after optimization

void func optimized(int x, int y)
{
otherfuncl (y) ;
x = getresult () ;
otherfunc2 (y) ;

90 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

Optimization
Optimizations

Live Range Splitting

Listing 7.11 Live range splitting, before optimization

void func(int x, int y)
int aj;
int b;
int c;

a=x*y;
otherfunc(a) ;

b=x+y;
otherfunc (b) ;

c =X -Yi
otherfunc(c) ;

Listing 7.12 Live range splitting, after optimization

void func optimized(int x, int y)

{

int temp;

temp = x * y;
otherfunc (temp) ;

temp = X + y;
otherfunc (temp) ;

temp = X - y;
otherfunc (temp) ;

Loop-Invariant Code Motion

Listing 7.13 Loop-invariant code motion, before optimization

void func (float* vec, int max, float wval)

{

float circ;
int 1i;

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

91

4
A

Optimization
Optimizations

for (i = 0; 1 < max; ++1)
circ = val * 2 * PI;
vec[i] = circ;

Listing 7.14 Loop-invariant code motion, after optimization

void func optimized(float* , int max, float wval)
float circ;
int i;
circ = val * 2 * PI;
for (i = 0; 1 < max; ++1)
vec[i] = circ;

Strength Reduction

Listing 7.15 Strength reduction, before optimization

void func (int* vec, int max, int fac)

{ . .
int 1;
for (i = 0; 1 < max; ++1)
{
vec[i] = fac * 1i;
1
1

Listing 7.16 Strength reduction, after optimization

void func optimized(int* vec, int max, int fac)

{
int i;
int temp = O;
for (i = 0; 1 < max; ++1)
vec[i] = temp;

temp = temp + fac;

92 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Optimization
Optimizations

Loop Unrolling

Listing 7.17 Loop unrolling, before optimization

const int MAX = 100;
void func (int* wvec)

int 1i;
for (i = 0; 1 < MAX; ++1i)

{
}

otherfunc (vecl[i]) ;

Listing 7.18 Loop unrolling, after optimization

const int MAX = 100;
void func optimized(int* vec)
{
int i;
for (i = 0; i1 < MAX;)
{
otherfunc (vecl[il]) ;
++1;
otherfunc (vecl[i]) ;
++1;

M56800E Specific Optimizations

This section provides techniques, programming style suggestions, and information to
maximize the efficiency of the Freescale C compiler for the 56800/E Digital Signal
controllers.

Overview of the 56800E Architecture

The 56800/E processors are member of the 56800x family of digital signal micro-
controllers. The 56800x instruction set is targeted for efficient micro-controller code

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

93

3
4

y
A

Optimization
Optimizations

generation and DSP (Digital Signal Processing). The 56800/E are digital signal
processors, because they both have a micro-controller and DSP.

Micro-controller instructions include:
« bit manipulation instructions
« flexible branching instructions
« absolute (global) addressing modes to maximize control code density.
DSP features include:
« single cycle MAC (Multiply-Accumul ate)
« separate address register file
* separate data/program memory spaces,
« multiple addressing modes, including pointer post-update addressing modes.

The C compiler attempts to target the post-update addressing modesin loops. In this
chapter, we describe the programming style that promotes the selection of the post-update
addressing modes.

The 56800x family is a native 16-bit machine--data and addresses are 16 bitswide. The
56800/E extends the address bus width to 24-bits (called the large data model), allowing a
wider range of data addresses, but at a cost of performance and code density. In this
chapter, we discuss the techniques used to minimize the cost of enabling the large data
model.

NOTE Although ANSI-C datatypes are fully supported, in this chapter, we show that
the best code is generated when the programmer favors the native data type
size (16-bits).

Working with the 56800E Memory Models

The Freescale 56800E C Compiler supports large and small program and data memory
models as shown in Table 7.1 on page 94. The small data model is more code efficient.
However, sometimes the application requires alarger data address space.

Table 7.1 Code and Data Memory Ranges

Section Small Data Model Large Data Model
Size (KB) Range Size (MB) Range
(Word (Word
Address) Address)

94

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Optimization
Optimizations

Table 7.1 Code and Data Memory Ranges (continued)

CODE 128 0 - OXFFFF 1 0 - OX7FFFF

(P:memory)

DATA 128 0 - OXFFFF 32 0 - OX7FFFF

(X:memory)

DATA 64 0 - OXFFFF 16 0 - OX7FFFF
(X:memory)

character data

The large data memory model allows data to be placed in memory at addresses greater
than the 16-bit address limitation of the small datamodel. The large data memory model
is selected via a preference panel selection in the CodeWarrior IDE. This selection
informs the compiler that global and static data should be addressed with the 24-bit
variants of the absolute addressing modes of the device. Also in the large memory model,
pointers are treated as 24-bit quantities when moved from register to register, memory to
register, or register to memory. For information on how the large memory model is
selected, see the Freescale 56800/E Hybid Controllers. MC56F83xx/DSP5685x Family
Targeting Manual.

One likely scenario in an embedded programming environment is that the total static and
global datasize, that is, the total size of data objects that the compiler accesses with
absol ute addressing modes (X:xxxx orX:xxxxxx addressing modes) will comfortably
reside within the 16-bit data addressing range. However, the heap (dynamically allocated
data memory) or the stack (local, automatic data memory) may require extended
addressing as this data may extend beyond the 16-bit address range.

To optimize the program size, use the CodeWarrior | DE targets settings panel M 56800E
Processor:Large Data Model: Globalslivein lower memory panel optionin
conjunction with the large datamemory model. The Globalslivein lower memory panel
option reverts the absol ute addressing modes to the small data model for static and global
variables, while using the large memory model for any address pointers or local variables.
Thus, for static and global variables, the efficiency of the small data model is retained
even for programs where the total data size may exceed the 16-bit addressing range.

Listing 7.19 on page 96 shows the code generation differences between the large and
small datamodel. In this example, the code performs abubble sort on an array of integers.
At maximum optimization, the code runsin 579 cyclesin the small data memory model.
The code takes 760 cycles using the large data memory model. When the the large data
memory model and Globalslivein lower memory option is selected, the code runsin 729
cycles. The differencein the cycle count of the two large datamodel runsis dueto the way

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 95

y
A

Optimization
Optimizations

global variables are addressed. The Globalslive in lower memory option forces the
access of the global variable “next” to be there as it would be for the small data model.

Listing 7.19 Example 1: Memory Model Comparison Code

int vector[] = { 3,7,6,1,2,5 };
int next;

int main()

{
int i=0, j=0;
int sz = sizeof (vector) /sizeof (int) ;
for (i=0; i<sz; 1i++){
for(j=0; j<sz-i; j++){
if (vector[jlsvector[j+1]) {
next=vector[j];
vector [j]l=vector[]j+1];
vector [j+1] =next;
}
}
}
}

Table 7.2 Example 1 at Maximum Optimization

Small Data Model Large Data Model Large Data Model and
Global Live in Lower
Memory

579 cycles 760 cycles 729 cycles

If the Globalslive in lower memory option is selected, be sureto locate the . data and
.bss sectionsin lower memory. Dynamically allocated memory and the stack may be
located in either lower or upper memory for the large data model.

Targeting Post-Update Addressing Modes in
Loops

Post-update addressing modes are available for many 56800E instructions. At
optimization level 2 and above, the compiler attemptsto locate register-based address
expressions which change by alinear amount for each iteration through aloop. If such an
expression islocated and certain conditions are met, the compiler may replace the address

96 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Optimization
Optimizations

update expression with a post-update addressing mode that is performed concurrently with
the move or arithmetic operation. Such atransformation is called ‘ strength reduction’ in
compiler terminology and means replacing an instruction operation with a cheaper (fewer
cycles or words) instruction. Address expressions are normally either address registers
that have been |oaded directly with the addresses of objects (variables) or address registers
holding the calcul ated address of array elements. Array indices which vary by aregular,
linear amount for each iteration through aloop are called ‘induction variables.” Many
times induction variables are completely eliminated when their function is replaced by a
post-update addressing mode.

Listing 7.20 Example 2: Post-Update Addressing Modes

X: (Rn) + Address 1is incremented by 1 (2 for move.l)
X: (Rn) - Address 1is decremented by 1 (2 for move.l)
X: (Rn) +N Address is incremented by value in N register

Some programming guidelines which promote the successful targeting of the post-update
addressing mode are:

¢ The address expression must be within aloop.

« The address expressions must be register based, therefore, global pointer variables
are usually not targeted for strength reduction since they may be accessed with
absolute addressing modes. Sometimes, it is useful to load the address of a global
array into alocal pointer variable to make the address expression more obvious to the
compiler.

« The address expression should be executed each iteration of the loop. Address
expressions embedded in ‘if-then-else’ blocks will not be targeted for post-update
addressing.

« Induction variables must be defined at one point in the loop and must vary linearly
fromits previous value.

In Listing 7.21 on page 97, asimple loop that cal cul ates the sum of elementsin alocal
array is shown. For this example, the induction variable ‘i’ is completely eliminated
because:

« aDO loop instruction has been generated, eliminating the need for atest on ‘i’ to
determineif the loop has ended

¢ theuseof ‘i’ inthe caculation of the array addresses has been eliminated, in favor of
a post-update addressing mode (see line 11 in Listing 7.21 on page 97)

Listing 7.21 Example 3: Successful Strength Reduction

int 1i;
int sum=0;

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 97

y
A

Optimization
Optimizations

int arr([] = { 13,14,18,3,7,0,1,4,11,20 };
int sz = sizeof (arr)/sizeof (int) ;
for (i=0; 1 < sz; i++)

sum += arr[i];

printf ("Sum is %d\n",sum) ;

Assembly output:

(1) adda #<10,SP ;allocate stack

(2) move.w #<0,B ;sum = 0

(3) adda #-9,8P,R1 ;&arr [0] ->R1

(4) moveu.w #F47,R0 ;temp F47->RO0

(5) do #<10,> L8 0 ;compiler generated init loop
(6) move.w X:(RO)+,A ;initialize arr[]

(7) move.w Al,X: (R1)+

(8) L8 0:

(9) adda #-9,S8P,R0 ;&arr [0] ->RO

(10) do #<10,> L8 1 ;for loop

(11) move.w X:(RO)+,A ;arr[i] ->A

(12) add A,B ;sum = arr[i] +sum
(13) L8 1:

(14) adda #<2,SP ;printf call setup
(15) moveu.w #@1b (F54) ,N ;jstring temp to stack
(16) move.w N,X: (SP)

(17) move.w Bl,X: (SP-1) ;sum to stack

(18) Jjsr >Fprintf ;call printf

(19) suba #<2,SP ;restore stack

Listing 7.22 on page 98 shows a case where strength reduction of the address expression
was not possible, mainly because the access to the array is conditionally executed in the
loop. Also, the induction variable ‘i’ isused in the ‘if’ test, but this would not normally
prevent a post-update transformation from occurring.

Listing 7.22 Example 4: Array Update In Conditional Block

for (i=0; 1 < sz; i++)
if (1 & 1)
sum += arr[i];

Assembly output:

(1) do #<10,> L8 1 ;for loop
(2) brclr #1,Y0,< L8 2 ;if (1 & 1)
(3) move.w X:(RO),A ;arr [i] ->Av

98 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

mailto:#@lb(F54),N

Optimization
Optimizations

(4) add A,B ;sum = arr[i] +sum

(5) L8 2:

(6) adda #<1,RO0 ; &arr = &arr + 1;

(7) add.w #<1,Y0 ;1= 1 + 1

(8) nop

(9) L8 1:
In Listing 7.23 on page 99 another situation is shown where strength reduction will fail to
find a post-update opportunity. Thisiswhen the loop or induction variable is multiply
defined in aloop.
NOTE Thisalsokillsthe hardware do loop as the compiler cannot determine the static

loop count.
Listing 7.23 Example 5: Induction Variable is Multiply Defined
for (i=0; 1 < sz; 1i++)
sum += arr[i++];
Assembly output:

(1) move.w #<0,A ; 1=0

(2) L8 1:

(3) move.w Al,B ;1 -> temp

(4) add.w #<1,B ; temp++

(5) move.w Al,N ; temp++ -> N

(6) adda #-9,SP,R0 ; &arr[0] -> RO

(7) move.w X: (RO+N) ,A ; arr[temp++] -> A

(8) add A,YO ; sum = arr[i++] + sum

(9) move.w Bl,A ; temp++ -> 1

(10)add.w #<1,A ;01 =1 + 1

(1) cmp.w #<10,A

(12)blt < 18 1 ;1< 102

Listing 7.24 on page 100 demonstrates a simple delay line loop that is structured so post-
update addressing isimpossible. The final store to memory in the loop isamemory plus
displacement addressing mode, move.w Al,X: (R0O+1),whichdoesn’t alow
post-update addressing. The loop written as is takes approximately 29 cycles and 9 words
for NTAPS=6.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

99

y
A

Optimization
Optimizations

Listing 7.24 Example 6: Loop Structure Doesn’t Allow Post-Update Addressing

for (ii = NTAPS - 2; ii >= 0; ii--) {
z[1ii + 1] = z[ii];

Assembly output:

(1) do #<5,> L12 1 ; for ()

(2) move.w YO,RO ; 11 -> RO

(3) adda R3,RO ; &z [0] + 1

(4) move.w X:(RO) ,A ; z[1i] -> A

(5) move.w Al,X: (RO+1) ; z[11] -> z[ii +
1]

(6) sub.w #<1,Y0 ; 1i--

(7)_L12 1:

Theloop in Listing 7.24 on page 100 may be re-written slightly as shown in Listing

7.25 on page 100 to allow for much more efficient processing. Theideaisto try to get an
instruction that has a post-update variant as the final load or store in the loop. This |oop
executesin 17 cycles and 8 words.

Listing 7.25 Example 7: Loop Re-written to Allow Post-Update Addressing

int *pl = &z [NTAPS-1];
for (ii = NTAPS - 2; ii >= 0; ii--) {

*pl-- = z[ii];
}
Assembly output:
(1) tfra R1,R3 ; &z [NTAPS-1] ->
R3
(2) adda #-5,SP,R0O ; &z [NTAPS-2] ->
RO
(3) tfra RO, R2 ;RO -> R2
(4) do #<5,> L9 1 ;for ()
(5) move.w X:(R2)-,B ;z[11] -> B
(6) move.w B1l,X: (R3) - ;B -> z[ii+1]
(7) L9 1:

The Effects of Casting on Code Quality

The 56800x family is a native 16-hit architecture. Type casting to and from 16-bit data
types requires extrainstruction words and cycles. Use 16-bit types (int, short, unsigned int,
unsigned short) whenever possible to minimize to program memory required for the
application. Also be aware that ANSI-C requiresimplicit promotion of integral types for

100 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Optimization
Optimizations

arithmetic operations and this may cause implicit type casting. Of course, favoring 16-bit
data types may cause an increase in the total data size of an application. The trade off
between program and data memory will have to be judged for each application. In general,
if program memory is the limiting resource, favor 16-bit types. If data memory is the
limiting resource, then using 8-bit data types where possible may be preferred.

Casting intsto char or long types are usually the least costly in terms of words and cycles.
Since accumulators (A,B,C,D registersin the 56800E) are the only registers capable of
holding 32-bit quantities, they must be used for long operations. Accumulators are
composed of two individually addressable 16-bit parts, the M SP or most significant
portion and the LSP or least significant portion. The MSP is often treated as a 16-bit
register containing an int or short sized quantity (16-bits). Anint to long cast requires an
asrl6 instruction to move the MSP to the L SP of the accumulator.

Listing 7.26 Example 8: Casting an integer to a long data type

int 1s;
long 11;

11 = (long)ls;
move.w X:(SP-2),A;
asrleé A,A
move.l Al0,X: (SP-4)

Bytes or char variables are stored as portions of integer sized registers. The 56800E does
not contain 8-bit registers. Anint to char cast requires an explicit sign extension (sxt.b) of
the integer to properly format the register so that the sign bit of the char is extended into
the entire word. Thisis required for proper arithmetic operations on the char since
arithmetic in C occurs on integers by definition. Also, the 56800E only performs 16-hit
and 32-bit arithmetic.

Listing 7.27 Example 9: Casting an int to a char data type

char 1lc;
int 1ls;
lc = (char)ls;

Assembly output:
move.w X:(SP-2),A
sxt.b A,A

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 101

y
A

Optimizati

on

Optimizations

move.b

Al,X: (SP)

Charsthat are converted to int or long first require asign extension of the byte into an
integer value. If the char is converted to along, an addition asr16 is required to convert to
a32-bit value.

Listing 7.28 Example 10: Casting a char to long

long 11;

char 1lc;

11 = (long)lc;
Assembly output:
moveu.b X:(SP),A
sxt.b A,A
asrle A,A
move.l Al10,X: (SP-4)

It should be clear now that casting causes runtime penalties in terms of code size and
cycles. Sometimes the perceived benefit of using shorter data types to save data memory
results in runtime costs.

The 56800E has a unique model for handling pointersto character data. Although the data
memory is organized by words, that is, each address pointsto aword (two bytes) of data,
individual bytes within aword can be still be addressed. The compiler handles this
addressing invisibly, but the programmer should be aware of the costs of converting from
byte pointers to word pointers and vice versa.

A byte address is generated by the compiler when the programmer chooses to use
character data to represent an object. Strings are character data by default in the 56800E
compiler and are addressed with byte pointers. Specia instructions in the 56800E
instruction set expect to see and operate on byte pointer values. A word pointer may be
converted to a byte pointer by multiplying the word address by two. Similarly, abyte
address is converted to aword address by dividing the byte address by two. When a byte
pointer is cast to aword pointer, an explicit, runtime conversion of the pointer quantity is
performed. The cost is aone word, one cycle penalty to bit shift the address value to the
left, that is, multiply by two, to convert to abyte pointer. The cost isthe same to convert to
aword pointer, except the shift isto theright, effectively dividing by two. The void
pointer is abyte pointer since the void pointer should be able to represent any datatype,
including chars. Since there is a runtime penalty for converting pointer types, casts back
and forth should be limited for efficient C programs. This may be afactor when the void

102

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Optimization
Optimizations

pointer is used to point to generic data and cast to the proper type at runtime. Listing
7.29 on page 103 shows the effect of casting byte and word pointers.

Listing 7.29 Example 11: Casting Byte and Word Pointers

void * pvoid;
int vint;

int * pint;
char *pchar;

= (int *)&vint;

adda #-5,SP,R0
move.w RO,X: (SP-6)
pvoid = (void *)pint;
moveu.w X: (SP-6),R0
asla RO, RO
move .w RO,X: (SP-4)
pchar = (char *)pint;
move.w X: (SP-6),R0
asla RO,RO
move.w RO,X: (SP-7)

moveu.w

lsra

move.w

= (int *)pvoid;
X:(SP-4) ,RO
RO
RO,X: (SP-6)

Miscellaneous Techniques

There are other several minor techniques to be aware of when writing the most efficient C
code for the compiler.

Initialize local arrays and structures at declaration time, if possible. Local arrays and
structures are initialized optimally by the compiler.

Functions with alarge number of parameters will probably have to pass some parameters
on the stack causing costly memory accesses. Make sure that frequently called functions
passtheir parametersin registers. For information on the parameter passing rules for the
56800E C Compiler see the Freescale 56800/E Hybid Controllers: MC56F83xx/
DSP5685x Family Targeting Manual.

Forcing enums as integers (C/C++ Language Panel, “Enums Always Ints’) may yield
better code since integers are usually handled more efficiently.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 103

y
A

Optimization
Optimizations

Loading frequently used global variablesinto local temporary variables sometimes has a
positive effect on code size and performance, since accessing variablesthrough registersis
more efficient that absolute addressing modes.

Asanillustration of the final point in the list above, the code in Listing 7.30 on page 104
executesin 98 cyclesand 20 program memory words. The same function is performed by
the codein Listing 7.31 on page 104, but it executesin 57 cycles and 13 program memory
words. A temporary local variable is used in processing instead of the global variable.
Fewer absolute addressing instructions account for the difference.

Listing 7.30 Example 12: Global Structure Example

#define ARRAY SIZE 5

static struct sl

{

unsigned char value_a;
unsigned char value_b;
unsigned char value c;

} s _s1[ARRAY SIZE];

unsigned int ril;

int main ()

{

int i;

for (i = 0; 1 < ARRAY SIZE; i++)
rl += s_sl[i] .value a;

rl += s_sl1[i] .value b;

rl += s_sl[i] .value c;

return (rl);

Listing 7.31 Example 13: Modified Global Structure Example

int main()

{

int 1i;
unsigned int local_var;

local var = rl;
for (i = 0; 1 < ARRAY SIZE; i4+4)

104

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Optimization
Optimizations

local var += s_sl1[i].value a;
local var += s_sl1[i].value b;
local var += s_sl[i].value_c;

}

rl = local var;

return (rl);

Software Pipelining

Software pipelining is aloop transformation that changes theinitial loop so that parts of
different iterations execute at the same time. This scheduling technique exploits
architectural instruction level parallelism.

It may also produce better loop schedules when stalls, hazards or latencies exist between
instructionsin theinitial loop, if they can be avoided in the transformed loop.

Note that the DSP56800e architecture provides limited parallelism by means of parallél
move instructions. These limitations narrow down the applicability of this transformation.

An example of software pipelining transformation:

#include "intrinsics_56800e.h"
int x[100], y[100], 1i;
long res;
void main ()
{
long t=0;
for (i=0; 1<100; i++)

t = L_mac(t, x[i]l, yl[il);

This code will compile the loop-body into one cycle:

rep R1
mac Y0,X0,A X:(RO)+,Y0 X:(R3)+,X0

where mac instruction from first iteration of the loop executesin parallel with load
instructions from the second iteration of the initial loop.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 105

3
4

y
A

Optimization
Optimizations

This transformation applies to the inner most loops of a program, and currently is enabled
only for DO loops.

Itis controlled by the - [no] swp command line switch, and it is by default enabled for
optimization levels higher than 2. Otherwise #pragma swplevel on/off may be
used to control the transformation. When optimizing for size, software pipeliningis
disabled, asit usually increases program size.

Stack Sequence Optimization

This transformation replaces several accesses to adjacent stack locations with a post-
increment/-decrement addressing mode by using an available address register.

For dsp56800e, this transformation may bring performance gain both in execution speed
and code size. Speed isimproved as instructions using post-increment access usually take
only one cycle as opposed to instructions with immediate offsets that can take 2 or 3
cycles. Code size is reduced when large immediates are present.

An example of stack sequence optimization where the following low-level intermediate
piece of code:

move.w X:(SP-2),A
move .w X:(SP-1),Y1
move.w X:(SP-2),A
move .w X:(sSpP-3),B
add.w X:(SpP-4),B
will become:

adda #-2,SP,R0
move .w X:(RO)+,A
move.w X:(RO)-,Y1
move .w X:(RO)-,A
move.w X:(RO)+,B
add.w X:(RO),B

which brings an improvement of 3 cycles (2+2+2+2+3 as opposed to 2+1+1+1+1+2).

In the example above, the transformation actually increases the code size, and that is why
it will not be performed on this example when -Os optimization is required.

Note that this transformation makes use of both post increment and post decrement update
modes, and it can also exploit al instructions accessing the stack, not only loads and
stores.

106

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Optimization
Optimizations

Transformation is controlled by the - [no] stackseq command line switch, and it is
enabled by default for an optimization level higher than one. Also, #pragma
stackseq on/off may be used to control the transformation.

Constant to array reallocation

Constants/large constants encoded in instructions are stored into an array in data memory
and immediate operands are changed into data memory access using register-indirect,
post-increment operands.

Main target of this optimization is speed, but as a side effect size improvements can also
be obtained, although these cases should be rather rare.

Each transformed instruction reduces the execution time of an instruction with 1-2 cycles
and reduces program memory size with 1-2 words, but also causes an increase on data
memory with 1-2 words, depending on the size of immediates.

Besides the operand mode transformation, more benefit can be obtained from further
grouping of the transformed instructions leading to total program memory size decrease.

The following instructions take between 2-3 words of program memory and 2-3 cyclesto
execute;

MOVE . WH#xxxx, HHHHH
MOVE . L#fxxxxxx, HHHHH
and they are transformed to:
MOVE.W (Rx) +, HHHHH
MOVE.L (Rx) +, HHHHH

so that the resulting instruction will take 1word of program memory and 1 cycleto
execute, but it will add an extra 1-2 words into data memory (the immediate values). It
will also add an overhead of one instruction per sequence for computing the address of the
first element.

If no instruction grouping happens with instructions transformed to post-increment
indirect addressing, the total memory size used will slightly increase, due to the
computation of stack offset for the first element in a sequence.

An example of how this optimization works on the following piece of low level
intermediate code:

.code
move.w X:(R3)+, XO
move.w #<number 1>, YO
mac Yo, X0, A
move.w X:(R3)+, XO

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 107

A 4
4\

Optimization
Optimizations

move.w #<number 2>, YO
mac Y0, X0, A
The code above can be optimized to:

.code
move.w f#<array starting address>, RO
move.w X:(R3)+, XO
move.w X:(RO)+, YO
mac YO0, X0, A
move.w X:(R3)+, XO
move.w X:(RO)+, YO
mac YO0, X0, A
.data

array starting address:
<number 1>
<number 2>

This optimization is disabled for -0s and is automatically enabled on speed optimization
level >= 2. Constant to array reallocation can be enabled/disabled at any optimization
level using - [no] constarray optionsin the command line. At function level, you
should use #pragma constarray on/off.

CRC linker feature

CRC linker featureis designed to allow execution of memory integrity checks at runtime
over user defined portions of memory, which can identify unexpected memory writes
(caused by coding errors, unexpected writes, €tc.).

Thisisdonein 2 stages. In the first stage, arecord is created in memory at an initial
memory state, either at link time, using the CRC16 1cf directive, or at runtime, using a
library routine- CRC16_create, declared in crc.h and implemented in crc . c. Both
files are placed in the runtime library.

The second stage callsthe CRC16 _check function from the runtime library to verify that
the memory area has not changed since the origina state.

The 1c £ language has anew directive that allows the user to generate CRC records for
specified portions of memory and assign its address to a user-defined symbol.

The CRC16 directiveis used only inside a section input, since it allocates the CRC
structure at the current location as defined by its positionin 1c£.

108

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Optimization
Optimizations

Any 16-bit polynomial can be used to generate a CRC using the same algorithm. Several
16-bit polynomials are used at alarge scale and detect amost all 1 or 2 bit errors, alarge
set of burst errors, etc.

ThecrRC16 1cf directive alocates space for the CRC record and places it in memory
according to the current directive location in 1c£. The Lcf directive CRC16 will return
the address of the generated record and assign it to the left-hand of the assignment.

The CRC16 directive has at least 2 parameters, the first being an Icf symbol that gives the
start address of the memory area you want to protect and the second symbol gives the end
address of the memory zone. The start/end address symbols will need to be defined like:
"symbol =." inthe 1cf file.

Thethird argument is optional and used when you want to specify a custom polynomial to
be used in the computation of CRC. The polynomial is specified as a hexadecimal number,
where 0x1021 represents X 16+X"12+X"5+1 (0x1021 is the simplified notation for
0x11021, since the most significant bit, corresponding to X~16 needsto be aways1in
order to have a 16-bit CRC).

Examples of CRC16 directives:
addr_sym = CRC16 (start address ,end address ,0x1021) ;
addr_sym2 = CRC16 (start address, end address) ;
addr sym3 = CRC1l6 (start address,end address, 0x1005) ;

If the third parameter of the CRC16 directive ismissing, its default value will be 0x1005
(abbreviated from 0x11005), corresponding to "CRC-16" polynomial X~16 + x"15 + x"2
+ 1. In the example above the last 2 CRC16 calls have the same effect.

Example of CRC16 Icf directive usage:
.application code : ({
start_addr = . ;
WRITEW (0x11223344) ;
* (. text)
end addr = . ;
} > p_RAM
.data : {
data_start = . ;
*(.data)
data _end = . ;
} > x RAM
.crc :

crcl = CRC16 (start addr,end addr) ;

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 109

y
A

Optimization
Optimizations

crc2 = CRCl6 (data_start,data end) ;
} > x RAM2

Following is an example of creating a CRC record at runtime, creating a CRC record at
linktime and runtime checking of a CRC-protected memory area:

LCF:
.application code
start_text = . ;
* (.text)
end text = . ;

p_Sym = CRC16 (start text,end text);

} > .p RAM
.application data
{
* (.data)
X Sym = CRC16 (start text,end text);
} > .x RAM

Source code:

#include <crc.hs>

extern pmem CRC1l6 record p_ Sym;
extern CRC16 record x_ Sym;

CRC16_runtime defs runtime infol;

CRC16_runtime defs runtime info2;

void func()

{
CRC16_check (p Sym,&runtime infol);
CRC16 check (x Sym,&runtime info2);

110 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Optimization
Optimizations

p_Sym.crclé 0; //clear CRC to test runtime CRC_create

function

X_Sym.crclé 0; //clear CRC to test runtime CRC_create

function

CRC16 create (&p_Sym, P_RecType) ;
CRC16_create (&x_Sym, X RecType) ;

CRC16_check (p Sym,&runtime infol) ;
CRC16_check (x_Sym,&runtime_info2) ;

Interprocedural Analysis support

Interprocedural Analysis (IPA) allows the compiler to generate better and/or smaller code
by inspecting more than just one function or data object at the same time. This technology
iscurrently used by the inliner.

The compiler supports three different interprocedural analysis modes: off (default), file,
and program.

With the function mode - ipa of £, functions are optimized and code is generated when
the function has been parsed. This mode alows no interprocedural analysis.

Withthemode -ipa file, atrandation unit iscompletely parsed before any code or
datais generated. This allows optimizations and inlining on a per-file basis. This mode
will require more memory and it can be sightly slower than the - ipa of £ mode. The
compiler will also do an early dead code/data analysisin this mode, so objects with
internal linkage that are not referenced will be dead-stripped in the compiler rather than in
the linker.

With themode - ipa program al transation units are completely parsed.
Optimizations and code generation are done in afinal stage enabling true "whole
program" optimizations. For example, auto-inlining of functions that are defined in
another trandlation unit.

"Program IPA" can require alot of memory and will aso be ower, especidly in the
change/build/debug cycle because all code generation and optimizations will have to be
redone whenever a program has to be relinked.

Using this mode from command-line tools is more complicated. If you specify all source
files on the command-line you can use - ipa program:

mwcc56800e -ipa program testl.c test2.c [all sources and
libraries] ...

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 111

y
A

Optimization
Optimizations

Thiswill compile, optimize, codegen, and link binary in "program™ ipa mode.
If you want to separate compilation from linking you can either use:
mwcc56800e -ipa program -c¢ testl.c
This generates test1.o file (empty) and atestl.irobj file.
mwcc56800e -ipa program -c test2.c
This generates test2.0 file (empty) and atest2.irobj file.

mwcc56800e -ipa program testl.o test2.o [all *.o and
libraries] ...

Thiswill optimize, codegen, and link binary in "program™ ipa mode.
If you want to invoke the linker separately you will have to use:
mwcc56800e -ipa program -c testl.c
This generates test1.o file (empty) and atest1.irobj file.
mwcc56800e -ipa program -c test2.c
This generates test2.o file (empty) and a test2.irobj file.

mwcc56800e -ipa program-final testl.irobj test2.irobj
[all *.irobjs]...

Thiswill optimize and codegen in "program"” ipa mode and update the .o files.

mwld56800e -o test.exe testl.obj test2.obj [all *.objs
and libraries]...

Thiswill link binaries.

The . irobj files contain an intermediate program representation. Thus the build step
corresponding to "make clean" should remove these when the matching . o file is deleted.

112 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

8

Inline Assembly Language
and Intrinsics

Introduction

For 56800/E Target specific information about the Inline Assembly Language and
Intrinsics, see the “Inline Assembly Language and Intrinsics” Chapter in either: Code
Warrior Development Sudio for Freescale 56800/E Digital Sgnal Controllers:
DSP56F80x/DSP56F82x Family Targeting Manual or Code Warrior Development Studio
for Freescale 56800/E Digital Sgnal Controllers: MC56F83x¢/DSP5685x Family

Targeting Manual.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 113

wr
4\

Inline Assembly Language and Intrinsics
Introduction

114 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

Predefined Symbols

The compiler preprocessor has prefedined macros that describe the compile-time
environment and properties of the target processor.

This chapter describes how to use these predefined symbols and lists them:
» Using Predefined Symbols on page 115

¢ Version Symbol on page 115
« Date and Time Symbol on page 116

« |DE Symbol on page 116

¢ Name Symbols on page 117

« Object Code Organization and Generation Symbol on page 117
* C Symbolson page 118

Using Predefined Symbols

Predefined symbols are in the preprocessor, available at compile-time only.

Version Symbol

Version symbols:
e __MWERKS onpagell5

__MWERKS__

Defined with the version of the CodeWarrior compiler.

CodeWarrior compilers issued after 1995 define this macro with the compiler’s version.
For example, if the compiler versionis 3.2, thevalueof MWERKS iS0x3200.

Thismacro isdefined as 1 if the compiler was issued before the CodeWarrior CW7 that
was released in 1995.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 115

y
A

Predefined Symbols
Date and Time Symbol

Date and Time Symbol

Date and time symbol:
e _DATE _onpage 116
e _TIME_onpagel16

__DATE__
Defined as the date during compilation.
During compilation, the compiler defines this macro with a character string representation
of the current date.

__TIME___

Defined as the time of day during compilation.

During compilation, the compiler defines this macro with a character string representation
of the current time.

IDE Symbol

IDE symbol:
e __ide target("target_name") on page 116

__ide_target("target_name")

Returns 1 if target_name is the same as the active build target in the CodeWarrior
IDE’ s active project. Returns 0 otherwise.

116 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Predefined Symbols
Name Symbols

Name Symbols

Name symbols:
e _FILE onpagell?

e _LINE onpagell7

__FILE__
The name of the source code file being compiled.
During compilation, the compiler defines this macro with a character string representation
of the name of the file being compiled.

__LINE__

The number of the line of source code being compiled.

During compilation, this macro is defined as an integer val ue representing the number of
line of source code being compiled.

Object Code Organization and Generation
Symbol

Object code organization and generation symbol:
e _ profile _on page 117

__profile__

Defined as 1 when generating object code that works with a profiler. Undefined
otherwise.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 117

y
A

Predefined Symbols
C Symbols

C Symbols

C symboal:
e _STDC _onpagel18

_ STDC__

Defined as 1 when compiling SO Standard C source code, undefined otherwise.

The compiler defines this macro as 1 when the compiler’ s settings are configured to
restrict the compiler to translate source code that conforms to the ISO C Standard. The
compiler does not define this macro otherwise.

118 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

10

Pragmas

The #pragma preprocessor directive specifies option settings to the compiler.

This chapter describes how to use pragmas and lists the pragmas that the compiler
recognizes:

¢ Using Pragmas on page 119
* Pragma Scope on page 127
+ Standard C and C++ Conformance Pragmas on page 127

¢ Language Trandation and Extensions Pragmas on page 129
¢ Errors, Warnings, and Diagnostic Control Pragmas on page 132

* Preprocessing and Precompilation Pragmas on page 151

e Library and Linking Control Pragmas on page 155

¢ Object Code Organization and Generation Pragmas on page 160
» Optimization Pragmas on page 175

¢ Profiler Pragmas on page 183

Using Pragmas

Pragma settings may be manipulated to control the compiler’s code generation. The
compiler has additional capabilities to manage pragma settings themselves:

¢ Checking Pragma Settings on page 119
¢ Saving and Restoring Pragma Settings on page 124

¢ Determining Which Settings Are Saved and Restored on page 126
 |llegal Pragmas on page 126

Checking Pragma Settings

The preprocessor function __ option () returnsthe state of pragma settings at compile-
time. Thesyntax is

___option(setting-name)

where setting-name is the name of a pragmathat acceptsthe on, of £, and reset
options.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 119

y
A

Pragmas

Using Pragmas

If setting-nameison, option (setting-name) returnsl. If setting-nameisoff,
___option (setting-name) returnsO. If setting-nameis not the name of a pragma,
__option(setting-name) returnsfalse. If setting-nameisthe name of apragma
that does not accep the on, of £, and reset options, the compiler issues awarning

message.

Listing 10.1 on page 120 shows an example.

Listing 10.1 Using the __ option() preprocessor function

#if option(ANSI_strict)
#include "portable.h" /* Use the portable declarations. */

#else

#include “custome.h” /* Use the specialized declarations. */

#endif

Table 10.1 Preprocessor Setting Names for __option()

This argument...

Corresponds to the...

always_inline

Pragma always_inline.

ANSI_strict ANSI Strict setting in the C/C++ Language
C only) Settings Panel on page 16 and
pragma ANSI_strict.

auto_inline Auto-Inline setting of the Inlining menu in

the C/C++ Language (C only) Settings
Panel on page 16 and pragma

auto_inline.

check_inline_ sp_effects

Pragma check _inline sp_ effects.

const_strings

Pragma const_strings.

defer_codegen

Pragma defer codegen.

dollar_identifiers

Pragma dollar_identifiers.

dont_inline

Don’t Inline setting in the C/C++ Language
(C only) Settings Panel on page 16 and

pragma dont_inline.

dont_reuse_strings

Reuse Strings setting in the C/C++
Language (C only) Settings Panel on

page 16 and pragma

dont_reuse strings.

120

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

Pragmas
Using Pragmas

Table 10.1 Preprocessor Setting Names for __option() (continued)

This argument...

Corresponds to the...

enumsalwaysint

Enums Always Int setting in the C/C++
Language (C only) Settings Panel on
page 16 and pragma enumsalwaysint.

explicit_zero_data

Pragma explicit_ zero_data.

factorl Pragma factorl.
factor2 Pragma factor2.
factor3 Pragma factor3.

extended_errorcheck

Extended Error Checking setting in the C/
C++ Language (C only) Settings Panel on

page 16 and pragma

extended errorcheck.

fullpath prepdump

Pragma fullpath prepdump.

initializedzerodata

Pragma initializedzerodata.

inline bottom up

Pragma inline bottom_up.

interrupt

Pragma interrupt.

line prepdump

Pragma line prepdump.

mpwc_newline

Map newlines to CR setting in the C/C++
Language (C only) Settings Panel on
page 16 and pragma mpwc_newline.

mpwc_relax

Relaxed Pointer Type Rules setting in the
CIC++ Language (C only) Settings Panel on
page 16 and pragma mpwc_relax.

nofactorl Pragma nofactorl.
nofactor2 Pragma nofactor2.
nofactor3 Pragma nofactor3.

only std keywords

ANSI Keywords Only setting in the C/C++
Language (C only) Settings Panel on
page 16 and pragma only std_keywords.

opt_common_subs

Pragma opt_common_subs.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 121

y
A

Pragmas

Using Pragmas

Table 10.1 Preprocessor Setting Names for __option() (continued)

This argument...

Corresponds to the...

opt_dead assignments

Pragma opt_dead_assignments.

opt_dead_code

Pragma opt_dead_code.

opt_lifetimes

Pragma opt_lifetimes.

opt_loop invariants

Pragma opt_loop_ invariants.

opt_propagation

Pragma opt_propagation.

opt_strength reduction

Pragma opt_strength reduction

opt_strength reduction strict

Pragma
opt_strength reduction_strict.

opt_unroll_loops

Pragma opt_unroll loops.

optimize for size

Pragma optimize for size.

packstruct

Pragma pactstruct.

peephole

Pragma peephole.

pool_strings

Pool Strings setting in the C/C++ L anguage
(C only) Settings Panel on page 16 and
pragma pool strings.

profile

Pragma profile.

readonly strings

Make String Read Only setting in the
M56800 Processor settings panel and
pragma readonly strings.

require_ prototypes

Require Function Prototypes setting in the

C/C++ Language (C only) Settings Panel on
page 16 and pragma

require prototypes.

reverse bitfields

Pragma reverse bitfields.

simple prepdump

Pragma simple prepdump.

suppress_init code

Pragma suppress_init code.

suppress_warnings

Pragma suppress_warnings.

syspath once

Pragma syspath_once.

122

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

Pragmas
Using Pragmas

Table 10.1 Preprocessor Setting Names for __option() (continued)

This argument... Corresponds to the...

unsigned char Use Unsigned Chars setting in the C/C++
Language (C only) Settings Panel on
page 16 and pragma unsigned_char.

warn_any ptr_int conv Pragmawarn_any ptr int conv.

warn_emptydecl Empty Declarations setting in the C/C++
Language (C only) Settings Panel on
page 16 and pragma warn_emptydecl.

warn_extracomma Extra Commas setting in the C/C++
Preprocessor Panel on page 20 and pragma

warn_extracomma.

warn_filenamecaps Pragma warn filenamecaps.
warn_filenamecaps system Pragma warn filenamecaps_system.
warn_illegal instructions Pragmawarn illegal instructions.
warn_illpragma lllegal Pragmas setting in the panel and

pragma warn_illpragma.

warn_impl f2i conv Pragmawarn impl f2i conv.
warn_impl i2f conv Pragmawarn impl i2f conv.
warn_impl s2u_ conv Pragma warn impl s2u_conv.
warn_implicitconv Implicit Arithmetic Conversions setting in

the C/C++ Preprocessor Panel on page 20
and pragma warn_implicitconv.

warn_largeargs Pragma warn_largeargs.
warn_missingreturn Pragma warn missingreturn
warn_no_side_effect Pragmawarn no_side_ effect.
warn_notinlined Non-Inlined Functions setting in the C/

C++ Preprocessor Panel on page 20 and
pragma warn_notinlined.

warn_padding Pragma warn_padding.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 123

y
A

Pragmas
Using Pragmas

Table 10.1 Preprocessor Setting Names for __option() (continued)

This argument... Corresponds to the...

warn_possunwant Possible Errors setting in the C/C++
Preprocessor Panel on page 20 and pragma
warn_possunwant.

warn_ptr_int_conv Pragmawarn ptr_int_conv
warn_resultnotused Pragma warn_resultnotused.
warn_undefmacro Pragma warn_undefmacro.
warn_unusedarg Unused Arguments setting in the C/C++

Preprocessor Panel on page 20 and pragma

warn_unusedarg.

warn_unusedvar Unused Variables setting in the C/C++
Preprocessor Panel on page 20 and pragma

warn_unusedvar.

warning errors Treat Warnings As Errors setting in the C/
C++ Preprocessor Panel on page 20 and
pragma warning errors.

Saving and Restoring Pragma Settings

There are some occasions when you would like to apply pragma settings to a piece of
source code independently from the settings in the rest of the source file. For example, a
function might require unique optimization settings that should not be used in the rest of
the function’s sourcefile.

Remembering which pragmas to save and restore is tedious and error-prone. Fortunately,
the compiler has mechanisms that save and restore pragma setings at compile time. All
pragma settings and some individual pragma settings may be saved at one point in a
compilation unit (a source code file and the files that it includes), changed, then restored
later in the same compilation unit. Pragma settings cannot be saved in one source codefile
then restored in another unless both source code files are included in the same compilation
unit.

Pragmas push and pop save and restore, respectively, most pragma settingsin a
compilation unit. Pragmas push and pop may be nested to unlimited depth. Listing
10.2 on page 125 shows an example.

124 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Using Pragmas

Listing 10.2 Using push and pop to save and restore pragma settings

/* Settings for this file. */
#pragma opt unroll loops on
#pragma optimize for size off
void fast func A(void)

{

/* ... %/

}

/* Settings for slow func(). */
#pragma push /* Save file settings. */
#pragma optimization size 0

void slow_ func (void)

{

/* ... */

}

#pragma pop /* Restore file settings. */

void fast_ func B(void)

{
VA Y
}

Pragmas that have a reset option perform the same actions as pragmas push and pop,
but apply to asingle pragma. A pragma’s on and of £ settings save the pragma’ s current
setting before changing it to the new setting. A pragma's reset option restoresthe
pragma’s setting. The on/of £ and reset options may be nested to an unlimited depth.
Listing 10.3 on page 125 shows an example.

Listing 10.3 Using the reset option to save and restore a pragma setting

/* Setting for this file. */
#pragma opt unroll loops on

void fast func A(void)
{

VA

}

/* Setting for smallslowfunc(). */
#pragma opt unroll loops off

void small func(void)

{

/* ... %/

}

/* Restore previous setting. */

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 125

y
A

Pragmas
Using Pragmas

#pragma opt unroll loops reset

void fast func B(void)

{
[* %/
}

Determining Which Settings Are Saved
and Restored

Not all pragma settings are saved and restored by pragmas push and pop. Pragmas that
do not change compiler settings are not affected by push and pop. For example, pragma
message cannot be saved and restored.

Listing 10.4 on page 126 shows an example that checksif the ANSTI strict pragma
setting is saved and restored by pragmas push and pop.

Listing 10.4 Testing if pragmas push and pop save and restore a setting

/* Preprocess this source code. */

#pragma ANSI strict on

#pragma push

#pragma ANSI strict off

#pragma pop

#if option(ANSI strict)

#error "Saved and restored by push and pop."
#else

#error "Not affected by push and pop."
#endif

lllegal Pragmas

If you enable the Illegal Pragmas setting, the compiler issues awarning when it
encounters a pragmait does not recognize. For example, the pragma statementsin Listing
10.5 on page 126 generate warnings with the Illegal Pragmas setting enabled.

Listing 10.5 lllegal Pragmas

#pragma near data off // WARNING: near data is not a pragma.
#pragma ANSI strict select // WARNING: select is not defined
#pragma ANSI strict on // OK

126 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Pragma Scope

The Illegal Pragmas setting corresponds to the pragmawarn_illpragma, described
at “warn_illpragma’ on page 141 To check this setting, use option
(warn_illpragma) .

See Checking Pragma Settings on page 119 for information on how to use this directive.

Pragma Scope

The scope of a pragma setting is limited to a compilation unit (a source code file and the
filesthat it includes).

At the beginning of compilation unit, the compiler uses its default settings. The compiler
then uses the settings specified by the CodeWarrior IDE’ s build target or in command-line
options.

The compiler uses the setting in a pragma beginning at the pragma’ s location in the
compilation unit. The compilers continues using this setting:

« until another instance of the same pragma appears later in the source code
« until an instance of pragma pop appears later in the source code
 until the compiler finishes translating the compilation unit

Standard C and C++ Conformance Pragmas

The 56800x has the following pragmas:

« _onpage 127 on page 127ANS|_strict on page 127
¢ only std keywordson page 129

ANSI_strict
Controls the use of non-standard language features.

Syntax

#pragma ANSI strict on | off | reset

Remarks

If you enable the pragmaANSI_ strict, thecompiler generatesan error if it encounters
any of the following common ANSI extensions:

e C++-style comments. Listing 10.6 on page 128 shows an example.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 127

4
A

Pragmas
Standard C and C++ Conformance Pragmas

Listing 10.6 C++ Comments

a = b; // This is a C++-style comment

¢ Unnamed argumentsin function definitions. Listing 10.7 on page 128 shows an
example.

Listing 10.7 Unnamed Arguments

void £(int) {} /* OK, if ANSI Strict is disabled */
void f(int i) {} /* ALWAYS OK */

* A # token that does not appear before an argument in a macro definition. Listing
10.8 on page 128 shows an example.

Listing 10.8 Using # in Macro Definitions

#define addl (x) #x #1
/* OK, if ANSI strict is disabled,
but probably not what you wanted:
addl (abc) creates "abc"#1 */

#tdefine add2(x) #x "2"
/* ALWAYS OK: add2 (abc) creates "abc2" */

e Anidentifier after #endif. Listing 10.9 on page 128 shows an example.

Listing 10.9 Identifiers After #endif

#ifdef _ MWERKS
/* .. L%/
#endif _ MWERKS_ /* OK, if ANSI_strict is disabled */

#ifdef _ MWERKS
/* .. L%/
#endif /* MWERKS__*/ /* ALWAYS OK */

This pragma corresponds to the ANSI Strict setting in the C/C++ Language (C only)
Settings Panel on page 16. To check thissetting, use option (ANSI strict),
described in Checking Pragma Settings on page 119. By default, this
pragmais disabled.

128 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Language Translation and Extensions Pragmas

only_std_keywords

Controls the use of 1SO keywords.

Syntax

#pragma only std keywords on | off | reset

Remarks

The C/C++ compiler recognizes additional reserved keywords. If you are writing code that
must follow the ANSI standard strictly, enable the pragmaonly std keywords.

This pragma corresponds to the ANSI Keywords Only setting in the C/C++ Language

(C only) Settings Panel on page 16. To check this setting, use option

(only std_keywords), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

Language Translation and Extensions
Pragmas

The 56800x has the following pragmas:

¢ gcc_extensions on page 129
*« mpwc_newline on page 130

* mpwc_relax on page 131

gcc_extensions
Controls the acceptance of GNU C language extensions.

Syntax

#pragma gcc extensions on | off | reset

Remarks

If you enable this pragma, the compiler accepts GNU C extensionsin C source code. This
includes the following non-ANSI C extensions:

« Initialization of automatic struct or array variableswith non-const values.
Listing 10.10 on page 130 provides an example.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 129

y
A

Pragmas
Language Translation and Extensions Pragmas

Listing 10.10 Example of Array Initialization with a Non-const Value

int foo(int arg)

{
}

int arr[2] = { arg, arg+l };

e sizeof (void) ==1

e sizeof (function-type) ==

« Limited support for GCC statements and declarations within expressions. Listing
10.11 on page 130 provides an example.

Listing 10.11 Example of GCC Statements and Declarations Within Expressions

#pragma gcc_extensions on
#define POW2 (n) ({ int i,r; for(r=1l,i=n; i>0; --1) r<<=1l; r;})

int main()

{
}

return POW2 (4) ;

This feature only works for expressions in function bodies.
* Macro redefinitions without a previous #undef.
¢ The GCC keyword typeof.

This pragma does not correspond to any setting in the C/C++ Language (C only) Settings
Panel on page 16. To check the global optimizer, use option
(gcc_extensions), describedin Checking Pragma Settings on

page 119. By default, this pragmais disabled.

mpwc_newline
Controls the use of newline character convention used by the Apple MPW C.

Syntax

#pragma mpwc newline on | off | reset

130 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Language Translation and Extensions Pragmas

Remarks

If you enable this pragma, the compiler uses the MPW conventions for the ' \n' and
"\r' characters. Otherwise, the compiler usesthe Freescal e C/C++ conventions for these
characters.

InMPW, '\n' isaCarriage Return (0xOD) and ' \r' isaLine Feed (Ox0A). In
Freescale C/C++, they arereversed: '\n' isalLineFeedand ' \r' isaCarriage Return.
If you enable this pragma, use ANSI C/C++ libraries that were compiled when this
pragma was enabl ed.

If you enable this pragma and use the standard ANSI C/C++ libraries, you cannot read and
write '\n' and '\r' properly. For example, printing ' \n' brings you to the beginning
of the current line instead of inserting a newline.

This pragma corresponds to the Map newlines to CR setting in the C/C++ Language (C

only) Settings Panel on page 16. To check this setting, use _ option
(mpwc_newline), describedin Checking Pragma Settings on page 1109.
By default, this pragmais disabled.

Enabling this setting is not useful for the DSP56800 target.

mpwc_relax

Controls the compatibility of the char* and unsigned char* types.

Syntax

#pragma mpwc_relax on | off | reset

Remarks

If you enable this pragma, the compiler treats char* and unsigned char* as the
same type. This setting is especially useful if you are using code written before the ANSI
C standard. This old source code frequently used these types interchangeably.

This setting has no effect on C++ source code.
Y ou can use this pragmato relax function pointer checking:

#pragma mpwc_relax on
extern void f (char *);
extern void(*fpl) (void *) = &f; // error but allowed
extern void(*fp2) (unsigned char *) = &f; // error but allowed

This pragma corresponds to the Relaxed Pointer Type Rules setting in the C/C++
Language (C only) Settings Panel on page 16. To check thissetting, option

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 131

4
A

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

(mpwe_relax), describedin Checking Pragma Settings on page 119.By
default, this pragma s disabled.

Errors, Warnings, and Diagnostic Control
Pragmas

The 56800x has the following pragmas:
» check_c_src_pipeline on page 133

¢ check_inline_asm pipeline on page 133
¢ check inline sp_effects on page 134

« extended_errorcheck on page 134
e require prototypes on page 135

« suppress init_code on page 135
e sSUppress warnings on page 136
¢ unsigned_char on page 136

¢ unused on page 137
e warn_any ptr_int_conv on page 138

¢ warn_emptydecl on page 138

e warn_extracomma on page 139
« warn_filenamecaps on page 140

« warn_filenamecaps system on page 140
¢ warn_illpragma on page 141

e warn_impl_f2i_conv on page 141
e warn_impl_i2f_conv on page 142

e warn_impl_s2u_conv on page 143
e warn_implicitconv on page 144

« warn_largeargs on page 145
e warn_missingreturn on page 145

e warn_no_side effect on page 146
« warn_notinlined on page 146

e warn_padding on page 147

« warn_padding on page 147

e warn possunwant on page 147

132 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

e warn_ptr_int_conv on page 148
e warn_resultnotused on page 148
« warn_undefmacro on page 149
e warn_unusedarg on page 150

e warn_unusedvar on page 150

« warning_errors on page 150

check_c_src_pipeline
This pragma controls detection of a pipeline conflict in the C language code.

Compatibility

This pragmais not compatible with the DSP56800 compiler, but it is compatible with the
DSP56800E compiler.

Syntax

#pragma check c_src pipeline [off|conflict]

Remarks

Usethis pragmafor extra validation of generated C code. The compiler already checksfor
pipeline conflicts; this pragmatells the compiler to add ancther check for pipeline
conflicts. Should this pragma detect a pipeline conflict, it issues an error message.

NOTE Thepipeline conflictsthat thispragmafinds arerare. Should this pragmareport
such a conflict with your code, you should report the matter to Freescale.

check_inline_asm_pipeline

This pragma controls detection of a pipeline conflicts and stalls in assembly language
source code.

Compatibility

This pragmais not compatible with the DSP56800 compiler, but it is compatible with the
DSP56800E compiler.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 133

A 4
4\

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

Syntax

#pragma check_inline_asm_pipeline
[off |conflict|conflict and stalll

Remarks

Use this pragmato detect a source-code, assembly language pipeline conflict or stall, then
generate an error message. |n some cases, the source code can be amix of assembly
language and C language.

The option conf11ict only detects and generates error messages for pipeline conflict.

Theoption conflict and_ stall detectsand generates error messages for pipeline
conflictsand stalls.

check_inline_sp_effects

Generatesawarning if the user specifies an inline assembly instruction which modifiesthe
SP by arun-time dependent amount.

Syntax

#pragma check inline sp effects on | off | reset

Remarks

If this pragmais not specified off, instructions which modify the SP by arun-time
dependent amount areignored. In this case, stack-based references may be silently wrong.
This pragmais added for compatibility with existing code which may have run-time
modifications of the SP already. However, known compile times inconsistencies in SP
modifications are always flagged as errors, since the SP must be correct to return from
functions.

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel on
page 22. To check thissetting, use_option (check inline sp effects),

described in Checking Pragma Settings on page 119. By default, this
pragmais disabled.

extended_errorcheck

Controls the issuing of warnings for possible unintended logical errors.

134 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

Syntax

#pragma extended errorcheck on | off | reset

Remarks

If you enable this pragma, the C compiler generates awarning (not an error) if it
encounters some common programming efrors.

This pragma corresponds to the Extended Error Checking setting in the C/C++
Warnings Panel on page 22. To check this setting, use option

(extended errorcheck), described in Checking Pragma Settings on
page 119. By default, this pragmais disabled.

require_prototypes

Controls whether or not the compiler should expect function prototypes.

Syntax

#pragma require prototypes on | off | reset

Remarks
This pragma only works for non-static functions.

If you enable this pragma, the compiler generates an error if you use a function that does
not have a prototype. This pragma helps you prevent errors that happen when you use a
function before you define it or refer to it.

This pragma corresponds to the Require Function Prototypes setting in the C/C++

Language (C only) Settings Panel on page 16. To check this setting, use _ option
(require_ prototypes), described in Checking Pragma Settings on
page 119. By default, this pragmais disabled.

suppress_init_code
Controls the suppression of static initialization object code.

Syntax

#pragma suppress init code on | off | reset

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 135

A 4
4\

Pragmas

Errors, Warnings, and Diagnostic Control Pragmas

Remarks

If you enable this pragma, the compiler does not generate any code for static data
initialization.

WARNING! Beware when using this pragma because it can produce erratic or
unpredictable behavior in your program.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel on page 16. To check this setting, use option

(suppress_init code), described in Checking Pragma Settings on
page 119. By default, this pragmais disabled.

suppress_warnings

Controls the issuing of warnings.

Syntax

#pragma suppress warnings on | off | reset

Remarks

If you enable this pragma, the compiler does not generate warnings, including those that
are enabled.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel on page 16. To check this setting, use option

(suppress_warnings), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

unsigned_char

Controls whether or not declarations of type char aretreated asunsigned char.

Syntax

#pragma unsigned char on | off | reset

Remarks

If you enable this pragma, the compiler treats a char declaration asif it were an
unsigned char declaration.

136

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

NOTE If you enable this pragma, your code might not be compatible with libraries
that were compiled when the pragma was disabled. In particular, your code
might not work with the ANSI libraries included with CodeWarrior.

This pragma corresponds to the Use Unsigned Chars setting in the C/C++ Language (C

only) Settings Panel on page 16. To check this setting, use _ option

(unsigned_char), described in Checking Pragma Settings on
page 119. By default, this setting is disabled.

unused
Controls the suppression of warnings for variables and parameters that are not referenced
in afunction.
Syntax
#pragma unused (var_name [, var_name]...)
Remarks

This pragma suppresses the compile time warnings for the unused variables and
parameters specified in its argument list. Y ou can use this pragma only within afunction
body, and the listed variables must be within the scope of the function.

Listing 10.12 Example of Pragma unused() in C

#pragma warn unusedvar on // See pragma _on page 150 on
page 150warn unusedvar on page 150.
#pragma warn_unusedarg on // See pragma warn unusedarg on page 150.

static void ff (int a)

{

int b;
#pragma unused(a,b) // Compiler does not warn
// that a and b are unused
//

This pragma does not correspond to any panel setting in the C/C++ L anguage (C only)
Settings Panel on page 16. By default, this pragmais disabled.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 137

y
A

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

warn_any_ptr_int_conv

Controlsif the compiler generates awarning when an integral typeis explicitly
converted to a pointer type or vice versa.

Syntax

#pragma warn any ptr int conv on | off | reset

Remarks

This pragmais useful to identify potential pointer portability issues. An exampleis shown
in Listing 10.13 on page 138.

Listing 10.13 Example of warn_any_ptr_int_conv

#pragma warn ptr int conv on
short i, *ip

void foo() {
i = (short)ip; // WARNING: integral type is not large
// large enough to hold pointer

}

#pragma warn_any ptr_int_conv on

void bar() ({

i = (int)ip; // WARNING: pointer to integral
// conversion
ip = (short *)i; // WARNING: integral to pointer

// conversion

See also warn_ptr_int_conv on page 148.

This pragma corresponds to the Pointer/Integral Conversions setting in the C/C++
Warnings Panel on page 22. To check thissetting, use option

(warn_any ptr_int conv),describedin Checking Pragma Settings on
page 119. By default, thispragmaisoff.

warn_emptydecl

Controls the recognition of declarations without variables.

138 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

Syntax

#pragma warn emptydecl on | off | reset

Remarks

If you enable this pragma, the compiler displays awarning when it encounters a
declaration with no variables.

Listing 10.14 Example of Pragma warn_emptydecl

int ; // WARNING
int 1i; // OK

This pragma corresponds to the Empty Declarations setting in the C/C++ Warnings
Panel on page 22. To check thissetting, use _ option (warn_emptydecl),
described in Checking Pragma Settings on page 119. By default, this
pragmais disabled.

warn_extracomma

Controls the recognition of superfluous commas.

Syntax

#pragma warn extracomma on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when it encounters an extra
comma.

Listing 10.15 Example of Pragma warn_extracomma

enum {1,m,n,o,}; // WARNING: When the warning is enabled, it will
// generate

This pragma corresponds to the Extra Commas setting in theC/C++ Warnings Panel on
page 22. To check thissetting, use option (warn extracomma), describedin

Checking Pragma Settings on page 119. By default, thispragmais
disabled.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 139

y
A

Pragmas

Errors, Warnings, and Diagnostic Control Pragmas

warn_filenamecaps

Controls the recognition of conflictsinvolving case-sensitive filenames within user
includes.

Syntax

#pragma warn filenamecaps on | off | reset

Remarks

If you enable this pragma, the compiler issues awarning when an include directive
capitalizes afilename within a user include differently from the way the filename appears
on adisk. It also recognizes 8.3 DOS filenames in Windows when along filenameis
available. This pragma helps avoid porting problems to operating systems with case-
sensitive filenames.

By default, this pragma only checks the spelling of user includes such as the following:
#include 'file"

For more information on checking system includes, see warn_filenamecaps system on
page 140.
This pragma does not correspond to any panel setting in the C/C++ Warnings Panel on

page 22. To check thissetting, use __ option (warn_ filenamecaps),describedin
Checking Pragma Settings on page 119.By default, thispragmais disabled.

warn_filenamecaps_system

Controls the recognition of conflictsinvolving case-sensitive filenames within system
includes.

Syntax

#pragma warn filenamecaps system on | off | reset

Remarks

If you enable this pragma, the compiler issues awarning when an include directive
capitalizes afilename within a system include differently from the way the filename
appears on adisk. It also recognizes 8.3 DOS filenamesin Windows when along filename
isavailable. This pragma helps avoid porting problems to operating systems with case-
sensitive filenames.

To check the spelling of system includes such as the following:

140

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

#include <file>

use this pragma along with the warn_filenamecaps on page 140 pragma.
This pragma does not correspond to any panel setting in the C/C++ Warnings Panel on
page 22. To check thissetting, use option (warn filenamecaps_system),

described in Checking Pragma Settings on page 119. By default, this
pragmais disabled.

warn_illpragma
Controls the recognition of illegal pragma directives.

Syntax

#pragma warn illpragma on | off | reset

Remarks

If you enable this pragma, the compiler displays awarning when it encounters a pragma it
does not support. For more information about this warning, see “Illegal Pragmas’ on page
126.

This pragma correspondsto the Illegal Pragmas setting in the C/C++ Warnings Panel on
page 22. To check thissetting, use option (warn illpragma), describedin
Checking Pragma Settings on page 119. By default, thissetting is disabled.

warn_impl_f2i_conv
Controls the issuing of warnings for implicit £loat-to-int conversions.

Syntax

#pragma warn impl f2i conv on | off | reset

Remarks

If you enable this pragma, the compiler issues awarning for implicitly converting
floating-point values to integral values. Listing 10.16 on page 141 provides an example.

Listing 10.16 Example of Implicit £loat-to-int Conversion

#pragma warn implicit conv on
#pragma warn_impl_ f2i conv on

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 141

4
A

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

float f;
signed int si;

int main ()

{

si = £; // WARNING

#pragma warn_impl_ f2i conv off
si = £; // OK
}

Use this pragma along with the warn_implicitconv on page 144 pragma.

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel on
page 22. To check thissetting, use option (warn impl f2i conv), described

inChecking Pragma Settings on page 119.By default, thispragmais
enabled.

warn_impl_i2f_conv
Controls the issuing of warnings for implicit int-to-f1oat conversions.

Syntax

#pragma warn_impl i2f conv on | off | reset

Remarks

If you enable this pragma, the compiler issues awarning for implicitly converting integral
valuesto floating-point values. Listing 10.17 on page 142 provides an example.

Listing 10.17 Example of Implicit int-to-float Conversion

#pragma warn implicit conv on
#pragma warn impl i2f conv on

float f;
signed int si;

int main()

{

f = si; // WARNING

#pragma warn_impl i2f conv off
f = si; // OK

142 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

Use this pragma along with the warn_implicitconv on page 144 pragma.

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel on
page 22. To check thissetting, use option (warn impl i2f conv), described

inChecking Pragma Settings on page 119.By default, thispragmais
disabled.

warn_impl_s2u_conv

Controls the issuing of warnings for implicit conversions between the signed int and
unsigned int datatypes.

Syntax

#pragma warn impl s2u conv on | off | reset

Remarks

If you enable this pragma, the compiler issues awarning for implicitly converting either
from signed inttounsigned int orviceversa Listing 10.18 on page 143
provides an example.

Listing 10.18 Example of Implicit Conversions Between Signed int and unsigned int

#pragma warn implicit conv on
#pragma warn impl s2u conv on

signed int si;
unsigned int ui;

int main ()

{
ui = si; // WARNING
si = ui; // WARNING

#pragma warn_impl_s2u_conv off
ui = si; // OK
si = ui; // OK

Use this pragma along with the warn_implicitconv on page 144 pragma.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 143

y
A

Pragmas

Errors, Warnings, and Diagnostic Control Pragmas

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel on
page 22. To check thissetting, use option (warn impl s2u conv), described

inChecking Pragma Settings on page 119.By default, thispragmais
enabled.

warn_implicitconv

Controls the issuing of warnings for all implicit arithmetic conversions.

Syntax

#pragma warn_implicitconv on | off | reset

Remarks

If you enable this pragma, the compiler issues awarning for al implicit arithmetic
conversions when the destination type might not represent the source value. Listing
10.19 on page 144 provides an example.

Listing 10.19 Example of Implicit Conversion

#pragma warn implicitconv on

float f;

signed int si;
unsigned int ui;

int main()

{

f =
si =
ui =
si =

si; // OK

f; // WARNING
si; // WARNING
ui; // WARNING

The default setting for warn_impl i2fconf pragmaisdisabled. Usethe
warn_implicitconv pragmaaongwiththewarn impl i2f conv pragmato
generate the warning for the int-to-float conversion.

This pragma corresponds to the Implicit Arithmetic Conversions setting in the C/C++
Warnings Panel on page 22. To check thissetting, use option

(warn_implicitconv), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

144

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

warn_largeargs

Controls the issuing of warnings for passing non-integer numeric values to unSyntaxd
functions.
Syntax

#ipragma warn largeargs on | off | reset

Remarks

If you enable this pragma, the compiler issues awarning if you attempt to pass a non-
integer numeric value, such asafloat or long long, to an unSyntaxd function when the
require_prototypes on page 135 pragmais disabled.

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel on
page 22. To check thissetting, use option (warn_ largeargs), describedin
Checking Pragma Settings on page 119.By default, thispragmais disabled.

warn_missingreturn
Issues awarning when a function that returns avalue ismissing a return Statement.

Syntax

#pragma warn missingreturn on | off | reset

Remarks
An exampleis shown in Listing 10.20 on page 145.

Listing 10.20 Example of warn_missingreturn pragma

#pragma warn missingreturn on

int foo()
{
// no return statement in foo()
} // generates a warning: return value expected

This pragma corresponds to the Missing ‘return’ Statements option in the C/C++
Warnings Panel on page 22. To check thissetting, use option

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 145

y
A

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

(warn _missingreturn), describedin Checking Pragma Settings on
page 119.

By default, this pragmais set to the samevalueas option
(extended errorcheck).

warn_no_side_effect
Controls the issuing of warnings for redundant statements.

Syntax

#pragma warn no side effect on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when it encounters a statement
that produces no side effect. To suppress thiswarning, cast the statement with (void).
Listing 10.21 on page 146 provides an example.

Listing 10.21 Example of Pragma warn_no_side_effect

#pragma warn no_side effect on

void foo(int a,int b)

{
a+b; // WARNING: expression has no side effect
(void) (a+b); // void cast suppresses warning

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel on
page 22. To check thissetting, use option (warn no side effect),

described in Checking Pragma Settings on page 119. By default, this
pragmais disabled.

warn_notinlined
Controls the issuing of warnings for functions the compiler cannot inline.

Syntax

#pragma warn notinlined on | off | reset

146 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

Remarks
The compiler issues awarning for non-inlined inline function calls.

This pragma corresponds to the Non-Inlined Functions setting in the C/C++ Warnings
Panel on page 22. To check this setting, use option (warn notinlined),
described in Checking Pragma Settings on page 119. By default, this
pragmais disabled.

warn_padding

Controls the issuing of warnings for data structure padding.

Syntax

#pragma warn padding on | off | reset

Remarks

If you enable this pragma, the compiler warns about any bytes that were implicitly added
after an ANS| C struct member to improve memory alignment.

This pragma corresponds to the Pad Bytes Added setting in the C/C++ Warnings

Panel on page 22. To check this setting, use option (warn padding), described
inChecking Pragma Settings on page 119. By default, thissettingis
disabled.

warn_possunwant

Controls the recognition of possible unintentional logical errors.

Syntax

#pragma warn possunwant on | off | reset

Remarks

If you enabl e this pragma, the compiler checksfor common errorsthat arelegal C/C++ but
might produce unexpected results, such as putting in unintended semicolons or confusing
=and ==.

This pragma corresponds to the Possible Errors setting in the C/C++ Warnings Panel on
page 22. To check thissetting, use option (warn possunwant), describedin
Checking Pragma Settings on page 119. By default, this setting is disabled.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 147

y
A

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

warn_ptr_int_conv

Controls the recognition the conversion of pointer values to incorrectly-sized integral
values.

Syntax

#pragma warn ptr_int conv on | off | reset

Remarks

If you enable this pragma, the compiler issues awarning if an expression attempts to
convert a pointer value to an integral type that is not large enough to hold the pointer
value.

Listing 10.22 Example for #pragma warn_ptr_int_conv

#pragma warn_ptr int conv on

char *my ptr;
char too small = (char)my ptr; // WARNING: char is too small

Seeadso “warn_any_ptr_int_conv,”.

This pragma corresponds to the Pointer / Integral Conversions setting in the C/C++
Warnings Panel on page 22. To check thissetting, use option
(warn_ptr_int_ conv), describedin Checking Pragma Settings on
page 119. By default, this setting is disabled.

warn_resultnotused
Controls the issuing of warnings when function results are ignored.

Syntax

#pragma warn resultnotused on | off | reset

Remarks

If you enable this pragma, the compiler issues awarning when it encounters a statement
that calls a function without using its result. To prevent this, cast the statement with
(void) . Listing 10.23 on page 149 provides an example.

148 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Errors, Warnings, and Diagnostic Control Pragmas

Listing 10.23 Example of Function Calls with Unused Results

#pragma warn resultnotused on

extern int bar () ;

void foo ()

{
bar () ; // WARNING: result of function call is not used
(void)bar () ; // ‘void’ cast suppresses warning

}

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel on
page 22. To check thissetting, use option (warn resultnotused), described

inChecking Pragma Settings on page 119. By default, thispragmais
disabled.

warn_undefmacro
Controls the detection of undefined macrosin #if / #elif conditionas.

Syntax

#pragma warn undefmacro on | off | reset

Remarks
Listing 10.24 on page 149 provides an example.

Listing 10.24 Example of Undefined Macro

#if UNDEFINEDMACRO == 4 // WARNING: undefined macro
// !'UNDEFINEDMACRO’ used in
// #if/#elif conditional

Use this pragma to detect the use of undefined macros (especially expressions) where the
default value O is used.

NOTE A warningisonly issued when amacro is evaluated. A short-circuited “ &&” or
“||” test or unevaluated “? :” will not produce awarning.

This pragma corresponds to the Undefined Macro in #if setting in the C/C++ Warnings
Panel on page 22. To check thissetting, use _ option (warn undefmacro),

described in Checking Pragma Settings on page 119. By default, this
pragmaisoff.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 149

y
A

Pragmas

Errors, Warnings, and Diagnostic Control Pragmas

warn_unusedarg

Controls the recognition of unreferenced arguments.

Syntax

#pragma warn_ unusedarg on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when it encounters an argument
you declare but do not use. To suppress this warning in C++ source code, leave an
argument identifier out of the function parameter list.

This pragma corresponds to the Unused Arguments setting in the C/C++ Warnings
Panel on page 22. To check thissetting, use _option (warn_unusedarg),

described in Checking Pragma Settings on page 119. By default, this
pragmais disabled.

warn_unusedvar

Controls the recognition of unreferenced variables.

Syntax

#pragma warn_unusedvar on | off | reset

Remarks

If you enabl e this pragma, the compiler issues awarning when it encounters avariable you
declare but do not use.

This pragma corresponds to the Unused Variables setting in the C/C++ Warnings
Panel on page 22. To check thissetting, use _option (warn_unusedvar),

described in Checking Pragma Settings on page 119. By default, this
pragmais disabled.

warning_errors

Controls whether or not warnings are treated as errors.

150

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Preprocessing and Precompilation Pragmas

Syntax

#pragma warning errors on | off | reset

Remarks

If you enable this pragma, the compiler treats all warnings as though they were errors and
does not translate your file until you resolve them.

This pragma corresponds to the Treat All Warnings as Errors setting in the C/C++
Warnings Panel on page 22. To check this setting, use option

(warning errors), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

Preprocessing and Precompilation Pragmas

The 56800x has the following pragmas:
e dollar_identifiers on page 151
« fullpath_prepdump on page 152
¢ mark on page 152

¢ notonce on page 153

¢ onceon page 153
¢ pop, push on page 153

¢ syspath _once on page 154

dollar_identifiers

Controls use of dollar signs ($) in identifiers.

Syntax

#pragma dollar identifiers on | off | reset

Remarks

If you enable this pragma, the compiler accepts dollar signs ($) in identifiers. Otherwise,
the compiler issues an error if it encounters anything but underscores, alphabetic, and
numeric charactersin an identifier.

This pragma does not correspond to any panel setting. To check this setting, use the
__option (dollar identifiers), describedin Checking Pragma
Settings on page 119.By default, thispragmais disabled.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 151

y
A

Pragmas

Preprocessing and Precompilation Pragmas

fullpath_prepdump

Shows the full path of included files in preprocessor output.

Syntax
#pragma fullpath prepdump on | off | reset

Remarks

If you enable this pragma, the compiler shows the full paths of files specified by the
#include directive as commentsin the preprocessor output. Otherwise, only thefile
name portion of the path appears.

This pragma does not correspond to any panel setting. To check this setting, use the
__option (fullpath prepdump), describedin Checking Pragma
Settings on page 119.By default, thispragmais disabled.

mark

Adds an item to the Function pop-up menu in the IDE editor.

Syntax
#pragma mark itemName

Remarks

This pragma adds itemName to the source file's Function pop-up menu. If you open the
filein the CodeWarrior Editor and select the item from the Function pop-up menu, the
editor brings you to the pragma. Note that if the pragmaisinside afunction definition, the
item does not appear in the Function pop-up menu.

If itemName begins with “-”, amenu separator appears in the IDE’s Function pop-up
menu:

#pragma mark -

This pragma does not correspond to any setting in the C/C++ L anguage (C only) Settings
Panel on page 16. By default, this pragmais disabled.

152

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Preprocessing and Precompilation Pragmas

notonce
Controls whether or not the compiler lets included files be repeatedly included, even with
#pragma once on.
Syntax
#pragma notonce
Remarks
If you enable this pragma, include statements can be repeatedly included, even if you
have enabled #pragma once on. For moreinformation, see “once” on page 153.
This pragma does not correspond to any setting in the C/C++ L anguage (C only) Settings
Panel on page 16. By default, this pragmais disabled.

once
Controls whether or not a header file can be included more than once in the same source
file.
Syntax
#pragma once [on]
Remarks
Use this pragma to ensure that the compiler includes header files only oncein a source
file.
There aretwo versions of this pragma: #pragma once and #pragma once on. Use
#pragma once inaheader fileto ensure that the header file isincluded only oncein a
sourcefile. Use #pragma once on inaheader file or sourcefileto insurethat any file
isincluded only oncein asourcefile.
This pragma does not correspond to any setting in the C/C++ Language (C only) Settings
Panel on page 16. By default, this pragmais disabled.

pop, push

Save and restore pragma settings.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 153

y
A

Pragmas

Preprocessing and Precompilation Pragmas

Syntax
#pragma push
#pragma pop

Remarks

The pragma push saves al the current pragma settings. The pragmapop restores all the
pragma settings that resulted from the last push pragma. For example, see Listing

10.25 on page 154.

Listing 10.25 push and pop Example

#pragma
#pragma
#pragma
#pragma
#pragma

#pragma

peephole on
packstruct on
push // push all compiler settings
peephole off
packstruct off
// pop restores "peephole" and "packstruct"
pop

If you are writing new code and need to set a pragma setting to its original value, use the
reset argument, described in “Using Pragmas’ on page 119.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel on page 16.

syspath_once

Controls how include files are treated.

Syntax

#pragma syspath once on | off | reset

Remarks

If you enable this pragma, filescaled in #include <> and#include "" directives
are treated as distinct, even if they refer to the samefile.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel on page 16. To check thissetting, use option (syspath once),

describedin Checking Pragma Settings on page 119. By default, thissetting
is enabled. For example, the sameinclude file could reside in two distinct directories.

154

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Library and Linking Control Pragmas

Library and Linking Control Pragmas

The 56800x has the following pragmas:
 define section on page 155
e explicit zero_dataon page 156
* initializedzerodata on page 157

« section on page 157
¢ use rodata on page 158

define_section

This pragma controls the definition of a custom section.

Syntax
#pragma define section <sectname> <istring> [<ustring>]

[<accmodes>]

Remarks
Arguments:
<sectname>

Identifier by which this user-defined section is referenced in the source, that is, via
the following instructions:

e #fpragma section <sectname> begin
e declspec(<sectname>)
<istring>
Section name string for initialized data assigned to <section>.
For example:
".data"
Optional Arguments:
<ustrings>

Section name string for uninitialized data assigned to <section>. If ustringis
not specified then istring is used.

<accmode>

One of the following indicates the attributes of the section

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 155

y
A

Pragmas

Library and Linking Control Pragmas

Table 10.2 Section Attributes

R readable

RW (default) readable and writable

RX readable and executable

RWX readable, writable, and executable

NOTE Foranexampleof define section,seeListing 10.26 on
page 158.

Related Pragma
section on page 157

explicit_zero_data

Controls the section where zero-initilaized global variables are emitted.

Syntax

#pragma explicit zero data on | off | reset

Remarks

If you enable this pragma, zero-initilaized global variables are emitted to the .data section
(which is normally stored in ROM) instead of the .BSS section. Thisresultsin alarger
ROM image. This pragma should be enabled if customized startup code is used and it does
not initialize the .BSS section. The .BSS section isinitialized to zero by the default
CodeWarrior startup code.

This pragma does not correspond to any setting in the C/C++ Language (C only) Settings
Panel on page 16. To check thissetting, use option (explicit zero data),
described in Checking Pragma Settings on page 119. By default, this
pragmais disabled.

NOTE Thepragmas explicit_zero dataand initializedzerodata are
the same, however, the preferred syntax isexplicit zero_ data.

156

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Library and Linking Control Pragmas

initializedzerodata

Controls the section where zero-initilaized global variables are emitted.

Syntax

#pragma initializedzerodata on | off | reset

Remarks

If you enable this pragma, zero-initilaized global variables are emitted to the .data section
(which is normally stored in ROM) instead of the .BSS section. Thisresultsin alarger
ROM image. This pragma should be enabled if customized startup code is used and it does
not initialize the .BSS section. The .BSS section isinitialized to zero by the default
CodeWarrior startup code.

This pragma does not correspond to any setting in the C/C++ L anguage (C only) Settings
Panel on page 16. To check this setting, use option (initializedzerodata),

described in Checking Pragma Settings on page 119. By default, this
pragmais disabled.

NOTE Thepragmasinitializedzerodata andexplicit zero data are
the same, however, the preferred syntax isexplicit zero data.

section

This pragma control s the organization of object code.

Syntax
#pragma section <sectnames> begin
[...data..]

#pragma section <sectname> end

Remarks
Argument:
<sectname>

Identifier by which this user-defined section is referenced in the source.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 157

y
A

Pragmas
Library and Linking Control Pragmas

Listing 10.26 Sample Code - pragma define_section and pragma section

/* 1. Define the section */
#pragma define section mysection ".mysection.data" RW

/* 2. Specify the data to be put into the section. */
#pragma section mysection begin

int al10] = {'0'1'1'/'2'1'3'1'4'1'5'1'6'/'7'/'8'/'9'};
int b[10];

#pragma section mysection end

int main(void)
int i;
for (i=0;1<10;i++)
blil=alil;

}

/* 3. In the linker command file, add “.mysection.data” in the “.data”
sections area of the linker command file by inserting the following
line:

* (.mysection.data)

*/
Related Pragma
define_section on page 155
use_rodata

Controls the section where constant datais emitted.

Compatibility

This pragmais compatible with the DSP56800, but it is not compatible with the
DSP56800E.

Syntax

#pragma use rodata [on | off | reset]

Remarks

By default, the compiler emits const defined data to the .data section. There are two ways
to cause the compiler to emit const defined data to the .rodata section:

158 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Library and Linking Control Pragmas

1. Setting the “write const data to .rodata section” option in the M56800 Processor
Settings panel.

This method is a global change and emits all const-defined data to the .rodata section
for the current build target.

2. Using #pragma use_rodata [on | off | reset].

on Write const data to .rodata section.
off Write const data to .data section.
reset Toggle pragma state.

To use this pragma, place the pragma before the const data that you wish the compiler
to emit to the .rodata section. This method overrides the target setting and allows a
subset of constant data to be emitted to or excluded from the .rodata section.

To see the usage of the pragma use_rodata see the code examplein Listing 10.27 on
page 159.

Listing 10.27 Sample Code _ Pragma use_rodata

const UIntlé len 1 mult 1s data = sizeof(l_mult 1ls data) /
sizeof (Frac32) ;
const Intlé g = a+b+c;

#pragma use rodata on
const Intlé d[]={0xdddd};
const Intlé e[l ={0oxeeee};
const Intlé fll1={0xffff};
#pragma use rodata off

main ()

{
}

// ... code

Y ou must then appropriately locate the .rodata section created by the compiler using the
linker command file. For example, see Listing 10.28 on page 159.

Listing 10.28 Sample Linker Command Flle - Pragma use_rodata

MEMORY
.text segment (RWX) : ORIGIN = 0x2000, LENGTH = 0x00000000
.data_segment (RW) : ORIGIN = 0x3000, LENGTH = 0x00000000
.rodata_segment (R) : ORIGIN = 0x5000, LENGTH = 0x00000000
SECTIONS ({

.main application :

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 159

wr
4\

Pragmas
Object Code Organization and Generation Pragmas

.text sections
} > .text segment

.main application data :
.data sections
.bss sections

} > .data_segment

.main application constant data:
constant data sections

* (.rodata)
} > .rodata_segment

Object Code Organization and Generation
Pragmas

The 56800x has the following pragmas:

« aways inline on page 161
* auto_inline on page 161

¢ const_strings on page 161
¢ defer_codegen on page 162

¢ dont_inline on page 163
e dont_reuse strings on page 163

¢ enumsalwaysint on page 164

« inline_bottom_up on page 165

« interrupt (for the DSP56800) on page 166
« interrupt (for the DSP56800E) on page 168

¢ packstruct on page 172
¢ pool_strings on page 172

e readonly_strings on page 173
* reverse bitfields on page 173

« suppress init_code on page 174
» syspath_once on page 174

160 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Object Code Organization and Generation Pragmas

always_inline
Controls the use of inlined functions.

Syntax

#pragma always inline on | off | reset

Remarks

This pragmais strongly deprecated. Use the Inline Depth pull-down menu of the C/C++
Language (C only) Settings Panel on page 16 instead.

If you enable this pragma, the compiler ignoresall inlining limits and attemptsto inline
al functions whereiit islegal to do so.

This pragma does not correspond to any panel setting. To check this setting, use
__option (always inline),describedinChecking Pragma Settings on
page 119. By default, this pragmais disabled.

auto_inline
Controls which functionsto inline.

Syntax

#pragma auto_inline on | off | reset

Remarks

If you enable this pragma, the compiler automatically chooses functions to inline for you.
This pragma corresponds to the Auto-Inline setting in theC/C++ Language (C only)
Settings Panel on page 16. To check thissetting, use _ option (auto_inline),

described in Checking Pragma Settings on page 119. By default, this
pragmais disabled.

const_strings

Controls the const-ness of string literals.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 161

y
A

Pragmas
Object Code Organization and Generation Pragmas

Syntax

#pragma const_strings [on | off | reset]

Remarks

If you enabl e this pragma, the compiler will generate awarning when string literals are not
declared as const. Listing 10.29 on page 162 shows an example.

Listing 10.29 const_strings example

char *stringl = "hello"; /*OK, if const_strings is disabled*/
const char *string2 = "world"; /* Always OK */

This pragma does not correspond to any setting in the C/C++ L anguage (C only) Settings
Panel on page 16. To check thissetting, use option (const strings),
described in Checking Pragma Settings on page 1109.

defer_codegen
Controls the inlining of functions that are not yet compiled.

Syntax

#pragma defer codegen on | off | reset

Remarks

This setting lets you use inline and auto-inline functions that are called before their
definition:

Listing 10.30 defer_codegen example

#pragma defer codegen on
#pragma auto inline on

extern void f () ;
extern void g() ;

main ()

{

£(); // will be inlined
g(); // will be inlined

}

inline void £() {}

162 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Object Code Organization and Generation Pragmas

void g() {}

NOTE Thecompiler requires more memory at compiletimeif you enable this pragma.

This pragma corresponds to the Deferred Inlining setting in the C/C++ Language (C
only) Settings Panel on page 16. To check this setting, usethe option

(defer_ codegen), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

dont_inline

Controls the generation of inline functions.

Syntax

#pragma dont inline on | off | reset

Remarks

If you enable this pragma, the compiler does not inline any function calls. However, it will
not override those declared with the in1 ine keyword. Also, it does not automatically
inline functions, regardless of the setting of theauto_inline pragma If you disable
this pragma, the compiler expands al inline function calls, within the limits you set
through other inlining-related pragmeas.

This pragma corresponds to the Don’t Inline setting of the Inline Depth pull-down
menu of the C/C++ Language (C only) Settings Panel on page 16. To check this setting,
use option (dont_ inline), describedin Checking Pragma

Settings on page 119.By default, thispragmais disabled.

dont_reuse_strings

Controls whether or not to store each string literal separately in the string pool.

Syntax

#pragma dont reuse strings on | off | reset

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 163

y
A

Pragmas
Object Code Organization and Generation Pragmas

Remarks

If you enable this pragma, the compiler stores each string literal separately. Otherwise, the
compiler stores only one copy of identical string literals. This pragma helps you save
memory if your program contains alot of identical string literals that you do not modify.

For example, take this code segment:

char *strl="Hello";
char *str2="Hello";
*str2 = 'Y';

If you enable this pragma, strlis"Hello", and str2is"Yello". Otherwise, both
strlandstr2 ae"Yello".

This pragma corresponds to the Reuse Strings setting in the C/C++ Language (C only)
Settings Panel on page 16. To check this setting, use option

(dont_reuse strings), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

enumsalwaysint

Specifies the size of enumerated types.

Syntax

#ipragma enumsalwaysint on | off | reset

Remarks

If you enable this pragma, the C compiler makes an enumerated type the same size as an
int. If an enumerated constant is larger than int, the compiler generates an error.
Otherwise, the compiler makes an enumerated type the size of any integral type. It chooses
the integral type with the size that most closely matches the size of the largest enumerated
constant. The type could be assmall asachar or aslargeasalong int.

Listing 10.31 on page 164 shows an example.

Listing 10.31 Example of Enumerations the Same as Size as int

enum SmallNumber { One = 1, Two = 2 };
/* If you enable enumsalwaysint, this type is
the same size as an int. Otherwise, this type is
short int. */

enum BigNumber

164 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Object Code Organization and Generation Pragmas

{ ThreeThousandMillion = 3000000000 };

/* If you enable enumsalwaysint, the compiler might
generate an error. Otherwise, this type is
the same size as a long int. */

This pragma corresponds to the Enums Always Int setting in the C/C++ Language (C
only) Settings Panel on page 16. To check this setting, use _ option
(enumsalwaysint), described in Checking Pragma Settings on

page 119. By default, this pragmais disabled.

NOTE Thesizeof achar onthe DSP56800 target is 16 bits, and 8 bits on the
DSP56800E.

inline_bottom_up
Controls the bottom-up function inlining method.

Syntax

#pragma inline bottom up on | off | reset

Remarks

Bottom-up function inlining tries to expand up to eight levels of inline leaf functions. The
maximum size of an expanded inline function and the caller of an inline function can be
controlled by the pragmas shown in Listing 10.32 on page 165 and Listing 10.33 on

page 165.

Listing 10.32 Maximum Complexity of an Inlined Function

// maximum complexity of an inlined function
#pragma inline max size(max) // default max == 256

Listing 10.33 Maximum Complexity of a Function that Calls Inlined Functions

// maximum complexity of a function that calls inlined functions
#pragma inline max total size(max) // default max == 10000

where max |oosely corresponds to the number of instructions in a function.

If you enabl e this pragma, the compiler cal culates inline depth from the last function in the
call chain up to thefirst function that starts the call chain. The number of functionsthe

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 165

3
4

y
A

Pragmas

Object Code Organization and Generation Pragmas

compiler inlines from the bottom depends on the valuesof inline depth,

inline max_size,andinline max total_size. Thismethod generates faster
and smaller source code for some (but not al) programs with many nested inline function
cals.

If you disable this pragma, top-down inlining is selected, and the inline depth setting
determines the limits for top-down inlining. The inline max_size and
inline max_total_ size pragmasdo not affect the compiler in top-down mode.

This pragma corresponds to the Bottom-up I nlining setting in the C/C++ Language (C
only) Settings Panel on page 16. To check this seting, use _ option

(inline bottom up), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

interrupt (for the DSP56800)

Controls the compilation of object code for interrupt service routines (ISR).

Compatibility

This pragmais compatible with the DSP56800, but it is not compatible with the
DSP56800E. For the DSP56800E, see interrupt (for the DSP56800E) on page 168.

Syntax

#pragma interrupt [called|warn|saveall [warn]]

Remarks

The compiler generates a special prologue and epilogue for functions so that they may be
used to handle interrupts. The contents of the epilogue and prologue vary depending on
the mode selected.

The compiler also emitsan RTI or RTSfor the return statement depending upon the mode
selected. The SA, R, and CC bits of the OMR register are set to system default.

There are several ways to use this pragma as described below:
e pragmainterrupt [warn]

The compiler performsthe following usingthepragma interrupt [warn]
argument:

— SetsMO01to-1if MOl isused by ISR

— Sets OMR to system default (see OMR settings)
— Saves/restores only registers used by ISR

— Generates an RTI to return from interrupt.

166

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Object Code Organization and Generation Pragmas

— If [warn] ispresent, then emitswarningsif this ISR makesafunction call that is
not defined with # pragma interrupt caled

Important considerations of usage:
— Thistype of usage is required within the ISR function body as follows:
void ISR (void)
{
#pragma interrupt
... code here
e pragma interrupt [called]

The compiler performsthefollowing usingthepragma interrupt [called]
argument:

— Saveg/restores only registers used by routine

— Generates an RTS to return from function

Important considerations of usage:

— You must use this argument before the interrupt body is compiled

— You can use this argument on the function Syntax or within the function body as
described below.

On the function Syntax:

#pragma interrupt called

void function called from interrupt (void);
Within the function body:

void function called from interrupt (void)
{

#pragma interrupt called

asm (nop) ;

}

— You should use this pragmafor al functions called from #pragma
interrupt enabled ISRs. Thisisoptional for #pragma interrupt
saveall enabled ISRs, sincefor this case, the entire context is saved.

e pragmainterrupt saveall [warn]

The compiler performsthe following using the pragma interrupt saveall
[warn] argument:

— Always setsM01to -1
— Sets OMR to system default (see OMR settings)

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 167

A 4
4\

Pragmas

Object Code Organization and Generation Pragmas

— Saved/restores entire hardware stack via runtime call
— Generates an RTI to return from interrupt

— If [warn] ispresentthen emitsawarning if the ISR makes afunction call that
isnot defined with #pragma interrupt called

Important considerations of usage:
— Thistype of usage is required within the ISR function body as follows:
void interrupt function(void)
{
#pragma interrupt saveall
... code here
— Thispragmashould be used if theruntimelibrary is called by the interrupt routine

In Table 10.3 on page 168 on page 168, the advantages and disadvantages of the
interrupt and interrupt saveall pragmas are listed.

Table 10.3 Comparison of Usage

Pragma Advantages Disadvantages
interrupt « entire context save ¢ larger initial performance
saveall hit due to entire context

* no need for save, but becomes

#pragma advantageous for ISRs
interrupt with several function
called for called calls
functions

interrupt « smaller context * #pragma interrupt
save, less called required for all
performance hit called functions

¢ generally good for
ISRs with a small
number of function
calls

interrupt (for the DSP56800E)

This pragma controls the compilation of object code for interrupt routines.

Compatibility

This pragmais not compatible with the DSP56800, but it is compatible with the
DSP56800E. For the DSP56800, see interrupt (for the DSP56800) on page 166.

168

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Object Code Organization and Generation Pragmas

Syntax

#pragma interrupt [<options>] [<mode>] [on|off|reset]

Remarks

An Interrupt Service Routine (ISR) is aroutine that is executed when an interrupt occurs.
Setting C routines as | SRsis done using pragmas (pragma interrupt). To makea
routine service an interrupt, you must:

« Writetheroutine.
¢ Set up the routine so that it is called when some interrupt occurs.
Thepragma interrupt option can be used to:

« Instruct the compiler to push register values on the software stack at entry toaC
function and restore them upon exit.

» Preserve the register values for the function that was interrupted.

« Emit an RTI for the return statement depending upon the mode selected. If the
interrupt routine has areturn value, the return register is not saved.

There are several ways to use this pragma, with an on|off|reset arguments, or with no
arguments.

Table 10.4 Arguments

<options> alignsp Aligns the stack pointer register correctly to allow long values
to be pushed on to the stack. Use this option when your
project mixes C code and assembly code. Use this option
specifically on ISRs which may interrupt assembly routines
that do not maintain the long stack alignment requirements at
all times. Restores the stack pointer to its original value
before returning from the subroutine.

comr The Operating Mode Register (OMR) is set for the following to
ensure correct execution of C code in the ISR:

36-hit values used for condition codes. (CM bit cleared)

Convergent Rounding. (R bit cleared)

No Saturation mode. (SA bit cleared)

Instructions fetched from P memory. (XP bit cleared)
<mode> saveall Preserves register values by saving and restoring all registers

by calling the INTERRUPT_SAVEALL and INTERRUPT _
RESTOREALL routines in the Runtime Library.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 169

y
A

Pragmas
Object Code Organization and Generation Pragmas

Table 10.4 Arguments (continued)

called Preserves register values by saving and restoring registers
used by the routine. The routine returns with an RTS.
Routines with pragma interrupt enabled in this mode are safe
to be called by ISRs.

default This is the mode when no mode is specified. In this mode, the
routine preserves register values by saving and restoring the
registers that are used by the routine. The routine returns with

an RTIL.
on|offlreset | on Enables the option to compile all C routines as interrupt
routines.
off Disables the option to compile all C routines as interrupt
routines.
reset Restores the option to its previous setting.

NOTE Useon or off to change the pragma setting, and then use reset to restore the
previous pragma setting.

To disablethe pragma, use #pragma interrupt off after #pragma
interrupt (Listing 10.35 on page 171)

Listing 10.34 Sample Code - #pragma interrupt on | off | reset

#pragma interrupt off // To be used as default value
// Non ISR code
#pragma interrupt on
void ISR 1 (void) {
// ISR_1 code goes here.

}

void ISR 2 (void) {
// ISR 2 code goes here.

#pragma interrupt reset

If the pragmaisinside afunction block, compile the current routine as an interrupt routine.
If the pragmais not inside a function block, compile the next routine as an interrupt
routine. This concept is developed in Listing 10.35 on page 171.

170 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Object Code Organization and Generation Pragmas

Listing 10.35 Sample Code - #pragma interrupt and function block

// Non ISR code
void ISR 1 (void) ({
#pragma interrupt
// ISR_1 code goes here.

#pragma interrupt
void ISR 2 (void) {

// ISR 2 code goes here.
}

#pragma interrupt off

See Listing 10.36 on page 171 for an example of using the ‘called’ option in the interrupt
pragma.

Listing 10.36 Sample Code - using the ‘called’ option in # pragma interrupt

extern long Datal, Data2, Datain;

void ISR1 inc Datal by Data2 (void)

/* This is a routine called by the interrupt service routine ISR1(). */
#pragma interrupt called

Datal+=Data2;

return;

}

void ISR1 (void)

/* This is an interrupt service routine. */
#pragma interrupt

Data2 = Datain+2;

ISR _inc_Datal by Data2();

}

Avoiding Possible Hitches with enabled Pragma
Interrupt

Pragma interrupt with the called or default mode for a C routine saves only the volatile
registersfor that C routine. Register values are not preserved if the |SR makes one or more
function calls. Y ou might want to avoid the situations described below:

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 171

3
4

y
A

Pragmas

Object Code Organization and Generation Pragmas

If aroutine that has pragma interrupt enabled (caller) calls another C function/routine
(callee), it is possible that the callee can change some registers that are not saved by the
cdler. To avoid this, use either of the following options:

Call only pragmainterrupt enabled routines from routines that are pragma interrupt
enabled using the called mode, or

Use the pragma interrupt saveall mode for the caller.

Thefirst option may be more efficient because only the registers that are used are
preserved. The second option iseasier to implement, but is likely to have alarge overhead.

The situation described above also holds true for library functions because library
functions do not have pragma interrupt enabled. These callsinclude: C Standard Library
calls and Runtime Library calls (such as multiplication, division and floating point math).

packstruct

Controls the alignment of long words in structures.

Compatibility

This pragmais compatible with the DSP56800, but it is not compatible with the
DSP56800E.

Syntax

#pragma packstruct on | off | reset

Remarks

If you enable this pragma, integer longs within structures are aligned on four byte
boundaries. When this pragma s disabled there is no alignment within structures. This
pragma does not correspond to any setting in the C/C++ Language (C only) Settings
Panel on page 16. To check thissetting, use option (packstruct), describedin

Checking Pragma Settings on page 119. By default, thispragmais enabled.

pool_strings

Controls how the compiler stores string constants.

Compatibility

This pragmais not compatible with the DSP56800, but it is compatible with the
DSP56800E.

172

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Object Code Organization and Generation Pragmas

Syntax

#pragma pool strings on | off | reset

Remarks

If you enable this setting, the compiler collects al string constants into a single data object
so that your program needs only one TOC entry for all of them. While this decreases the
number of TOC entriesin your program, it aso increases your program size because it
uses aless efficient method to store the address of the string.

If you disable this setting, the compiler creates a unique data object and TOC entry for
each string constant.

Enable this setting if your program is large and has many string constants.

The Pool Strings setting corresponds to the pragma poolstring. To check this setting, use

__option (pool_strings), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

readonly_strings

Controls the output of C strings to the read only data section.

Syntax

#pragma readonly strings on | off | reset

Remarks

If you enabl e this pragma, C stringsused in your source code (for example, "hello") are
output to the read-only data section (.rodata) instead of the global data section (.data). In
effect, these strings act like const char *, eventhough their typeisrealy char *.

For the DSP56800, this pragma corresponds to the "Make Strings Read Only" panel
setting in the M56800 Processor settings panel. To check this setting, use option
(readonly strings), describedin Checking Pragma Settings on

page 1109.

For the DSP56800E, there is no "Make Strings Read Only" panel setting in the M 56800E
Processor settings panel.

reverse_bitfields

Controls whether or not the compiler reverses the bitfield allocation.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 173

A 4
4\

Pragmas
Object Code Organization and Generation Pragmas

Syntax

#pragma reverse bitfields on | off | reset

Remarks
This pragma reverses the bitfield allocation.

This pragma does not correspond to any panel setting in the C/C++ L anguage (C only)
Settings Panel on page 16. To check this setting, use option

(reverse bitfields), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

suppress_init_code

Controls the suppression of static initialization object code.

Syntax

#pragma suppress_init code on | off | reset

Remarks

If you enable this pragma, the compiler does not generate any code for static data
initialization.

WARNING! Beware when using this pragma because it can produce erratic or

unpredictable behavior in your program.

This pragma does not correspond to any panel setting in the C/C++ L anguage (C only)
Settings Panel on page 16. To check thissetting, use option
(suppress_init code), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

syspath_once
Controls how include files are treated.

Syntax

#pragma syspath once on | off | reset

174 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Optimization Pragmas

Remarks

If you enable this pragma, filescalled in #include <> and#include "" directives
are treated as distinct, even if they refer to the samefile.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel on page 16. To check thissetting, use option (syspath once),

describedin Checking Pragma Settings on page 119.By default, thissetting
is enabled. For example, the sameinclude file could reside in two distinct directories.

C Standard Library and Runtime Library (CW libraries) functions require the AGU
(Address Generation Unit) to be in linear addressing mode, that is, the MO1 registers are
set to -1. If afunction isinterrupted and was using modul o address arithmetic, any callsto
CW libraries from the ISR do not work unlessthe M0O1 is set to -1 in the ISR. Also, the
MO1 register would need to be restored before exiting the ISR so that the interrupted
function can resume as before, with the same modul o address arithmetic mode settings.

Optimization Pragmas

The 56800x has the following pragmas:
« factorl on page 176
« factor2 on page 176
« factor3 on page 176
« nofactorl on page 177
« nofactor2 on page 177

« nofactor3 on page 178
¢ opt_common_subs on page 178

e opt_dead assignments on page 179
* opt_dead code on page 179

« opt_lifetimes on page 179
¢ opt_loop_invariants on page 180

« opt_propagation on page 180
« opt_strength_reduction on page 181

e opt_strength _reduction_strict on page 181
¢ opt_unroll_|loops on page 182
e optimization_level on page 182

« optimize for_size on page 182
¢ peephole on page 183

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 175

y
A

Pragmas

Optimization Pragmas

factorl

Turns on factorization step 1.

Syntax

#pragma factorl

Remarks

Compiler performs the factorization step 1. To turn off factorl, use nofactorl on page 177.
This optimization is performed on global variables before register alocation, takes into
account register pressure, and replaces absol ute addressing with indirect addresssing.

This pragma does not correspond to any panel setting in the C/C++ L anguage (C only)
Settings Panel on page 16. By defaullt, this pragmais enabled at global optimization level
2 and above.

factor2

Turns on factorization step 2.

Syntax

#pragma factor2

Remarks

Compiler performs the factorization step 2. To turn off factor2, use nofactor2 on

page 177.This optimization is performed on global variables after register allocation,
replaces absolute addressing with indirect addresssing, and detects a physical address
register that is available to do the factorization. Register allocation spilling decreases
pressure so new webs, that could not be created before register alocation, can be created.

This pragma does not correspond to any panel setting in the C/C++ L anguage (C only)
Settings Panel on page 16. By defaullt, this pragmais enabled at global optimization level
2 and above.

factor3

Turns on factorization step 3.

176

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Optimization Pragmas

Syntax

#pragma factor3l

Remarks

Compiler performsthe factorization step 3. To turn off factor3, use nofactor3 on page 178.
This optimization is performed on local variables after register allocation. (SP-offset)
addressing is transformed in register indirect addressing. This optimization is performed
after register allocation because only at this point are the local variables accessed by stack
location.

This pragma does not correspond to any panel setting in the C/C++ L anguage (C only)
Settings Panel on page 16. By defaullt, this pragmais enabled at global optimization level
2 and above.

nofactorl

Turns off factorization step 1.

Syntax

#pragma nofactorl

Remarks
Compiler does not perform the factorization step 1. To turn on factorization step 1, use
factorl on page 176.

This pragma does not correspond to any panel setting in the C/C++ L anguage (C only)
Settings Panel on page 16.

nofactor2

Turns off factorization step 2.

Syntax

#pragma nofactor2

Remarks

Compiler does not perform the factorization step 2. To turn on factorization step 2, use
factor2 on page 176.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 177

y
A

Pragmas

Optimization Pragmas

This pragma does not correspond to any panel setting in the C/C++ L anguage (C only)
Settings Panel on page 16.

nofactor3

Turns off factorization step 3.

Syntax

#pragma nofactor3

Remarks

Compiler does not perform the factorization step 3. To turn on factorization step 3, use
factor3 on page 176.

This pragma does not correspond to any panel setting in the C/C++ L anguage (C only)
Settings Panel on page 16.

opt_common_subs

Controls the use of common subexpression optimization.

Syntax

#pragma opt common subs on | off | reset

Remarks

If you enable this pragma, the compiler replaces similar redundant expressions with a

single expression. For example, if two statementsin a function both use the expression
a*b * c + 10

the compiler generates object code that computes the expression only once and appliesthe

resulting value to both statements.

The compiler applies this optimization to its own internal representation of the object code
it produces.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel on page 16. To check this setting, use option

(opt_common_subs), described in Checking Pragma Settings on
page 119. By default, this pragmais disabled.

178

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Optimization Pragmas

opt_dead_assignments

Controls the use of dead store optimization.

Syntax

#pragma opt dead assignments on | off | reset

Remarks

If you enable this pragma, the compiler removes assignments to unused variables before
reassigning them.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel on page 16. To check thissetting, use option

(opt_dead_assignments), described in Checking Pragma Settings on
page 119. By default, this pragmais disabled.

opt_dead_code

Controls the use of dead code optimization.

Syntax

#pragma opt dead code on | off | reset

Remarks

If you enable this pragma, the compiler removes a statement that other statements never
execute or call.

This pragma does not correspond to any panel setting in the C/C++ L anguage (C only)
Settings Panel on page 16. To check this setting, use option (opt_dead_code),
described in Checking Pragma Settings on page 119. By default, this
pragmais disabled.

opt_lifetimes

Controls the use of lifetime analysis optimization.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 179

3
4

y
A

Pragmas

Optimization Pragmas

Syntax

#pragma opt lifetimes on | off | reset

Remarks

If you enable this pragma, the compiler uses the same processor register for different
variables that exist in the same routine but not in the same statement.

This pragma does not correspond to any panel setting in the C/C++ L anguage (C only)
Settings Panel on page 16. To check this setting, use option (opt lifetimes),
described in Checking Pragma Settings on page 119. By default, this
pragmais disabled.

opt_loop_invariants

Controls the use of loop invariant optimization.

Syntax

#pragma opt loop_ invariants on | off | reset

Remarks

If you enable this pragma, the compiler moves al computations that do not change inside
aloop outside the loop, which then runs faster.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel on page 16. To check this setting, use option

(opt_loop invariants), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

opt_propagation

Controls the use of copy and constant propagation optimization.

Syntax

#pragma opt propagation on | off | reset

Remarks

If you enable this pragma, the compiler replaces multiple occurrences of one variable with
asingle occurrence.

180

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Optimization Pragmas

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel on page 16. To check this setting, use option

(opt_propagation), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

opt_strength_reduction

Controls the use of strength reduction optimization.

Syntax

#pragma opt strength reduction on | off | reset

Remarks

If you enabl e this pragma, the compiler replaces array element arithmetic instructions with
pointer arithmetic instructions to make loops faster.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel on page 16. To check this setting, use option

(opt_strength reduction),describedinChecking Pragma Settings on
page 119. By default, this pragmais disabled.

opt_strength_reduction_strict

Uses asafer variation of strength reduction optimization.

Syntax

#pragma opt_ strength reduction strict on | off | reset

Remarks

Liketheopt _strength reduction on page 181 pragma, this setting replaces
multiplication instructions that are inside loops with addition instructions to speed up the
loops. However, unlike the regular strength reduction optimization, this variation ensures
that the optimization is only applied when the array element arithmetic is not of an
unsigned type that is smaller than a pointer type.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel on page 16. To check thissetting, use option
(opt_strength reduction_ strict), describedin Checking Pragma

Settings on page 119.By default, thispragmais disabled.

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 181

y
A

Pragmas

Optimization Pragmas

opt_unroll_loops

Controls the use of loop unrolling optimization.

Syntax

#pragma opt unroll loops on | off | reset

Remarks

If you enable this pragma, the compiler places multiple copies of aloop’s statements
inside aloop to improve its speed.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel on page 16. To check thissetting, use option

(opt_unroll loops), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

optimization_level

Controls global optimization.

Syntax
#pragma optimization level 0 | 1 | 2 | 3 | 4

Remarks
This pragma specifies the degree of optimization that the global optimizer performs.

To select optimizations, use the pragmaoptimization level with an argument
from 0 to 4. The higher the argument, the more optimizations performed by the global
optimizer.

For more information on the optimization the compiler performs for each optimization
level, refer to the Code Warrior IDE User’s Guide.

These pragmas correspond to the settings in the Global Optimizations pand. By
default, this pragmais disabled.

optimize_for_size

Controls optimization to reduce the size of object code.

182

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

Pragmas
Profiler Pragmas

Syntax

#pragma optimize for size on | off | reset

Remarks

This setting lets you choose what the compiler does when it must decide between creating
small code or fast code. If you enable this pragma, the compiler creates smaller object
code at the expense of speed. This pragma does not effect the inline directive or the
inlining of explicitely inlined functions. This pragma can be used in conjunction with the
dont_inline pragmato decrease the code size. If you disable this pragma, the
compiler creates faster object code at the expense of size.

The pragma corresponds to the Optimize for Size setting on the Global
Optimizations panel. To check thissetting, use _option
(optimize for size), describedin Checking Pragma Settings on
page 119. By default, this pragmais disabled.

peephole

Controls the use peephole optimization.

Syntax

#pragma peephole on | off | reset

Remarks

If you enabl e this pragma, the compiler performs peephole optimizations, which are small,
local optimizations that eliminate some compare instructions and improve branch

Sequences.

For the DSP56800, this pragma corresponds to the Peephole Optimization setting in

the M56800 Processor settings panel. Y et for the DSP56800E, there is no corresponding
setting for the the M56800 Processor settings panel. To check thissetting, use option
(peephole), described in Checking Pragma Settings on page 1109.

Profiler Pragmas

The 56800x has just one profiler pragma:
 profile on page 184

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 183

y
A

Pragmas

Profiler Pragmas

profile

Controls code to enable or disable the profiler.

Syntax

#pragma profile on | off | reset

Remarks

This setting lets you choose whether the compiler adds code to afunction to call profiler
library functions. If you enable this pragma, the compiler calls profiling functions at the
beginning and end of the current function. If you disable this pragma, the compiler adds no
additional code. For further information on the profiler, see the Chapter “ Profiler” in either
of the Targeting Manuals.

The pragma corresponds to the Generate code for profiling setting on the M56800E
Processor settings panel. To check this setting, use option (profile), described

inChecking Pragma Settings on page 119. By default, thispragmais
disabled.

184

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

g |

Index

Symbols

#, and macros 74

#else 75

#endif 75

#include directive
getting path 152

#pragma statement
illegal 126

dcf 32

__builtin_align() 77

__builtin_type() 77

__ide_target () 116

___INTEL__ 117
__typeof () 77
__VEC__ 118

A

always inline pragma 161
ANSI Keywords Only option 19
ANSI strict pragma 127
arguments

unnamed 74
auto_inline pragma 17,161
auto-inlining

Seeinlining.

C
C/C++ Language panel
Don't Inline option 17
C/C++ Warnings panel 22
char type 20
character strings
See strings.
characters
asinteger values 76

check_inline_asm_pipeline pragma 133

command files 32
comments, C++-styles 74

const_strings pragma 158, 162

CWFolder 28

D

D constant suffix 77

defer_codegen pragma 162

Deferred Inlining 163

define_section 155

-disassemble 32

dollar sign 151

dollar identifiers pragma 151
Don't Inline option 17, 120

dont inline pragma 17, 163
dont_reuse_strings pragma 20, 163

E

#else 75

#endif 75

enumerated types 164

enumsalwaysint pragma 164
Environment tab 28

export pragma 156, 157

extended errorchecking pragma 135

F
FlexLM 29
fullpath prepdump pragma 152
function
interrupt 166
result, warning 148

G

gcc_extensions pragma 129
GNUC
pragma 129

H
header files
getting path 152

I
identifier
$ 151
dollar signsin 151

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers 185

significant length 78
size 78
Illegal Pragmas option 126

inline intrinsics pragma 165

inlining
before definition 162
stopping 163
integer
specified as character literal 76
__INTEL__ 117
interrupt

interrupt pragma 166
interrupt pragma 175
interrupt pragma 166

K

keywords
additional 19
standard 129

L

license 29
linker command files 32
LM_LICENSE FILE 29

M
macros

and# 74
Microsoft Windows 28
mpwc_newline pragma 130
mpwc_relax pragma 131
multi-byte characters 76
MWAsmIncludes 32
MWClIncludes 32
MWoLibraries 32
MWLibraryFiles 32

N
-nodefaults 32
notonce pragma 153

@)
once pragma 153

only std keywords pragma 129
opt_common_subs pragma 178
opt_dead assignments pragma 176, 177,
178,179
opt_dead_code pragma 179
opt_lifetimes pragma 180
opt_loop_ invariants pragma 180
opt_propagation pragma 180
opt_strength reduction pragma 181
opt_strength reduction strict
pragma 181
opt_unroll loops pragma 182
optimization
globa 182
level of 182
loops 182
opt_unroll loops pragma 182
optimization level pragma 182
optimize for size pragma 183
size 183
optimization_ level pragma 182
optimize for size pragma 183

P
PATH 29
peephole pragma 172,173, 183
pop pragma 154
pragma
define_section 155
illegal 126
scope 127
section 157
pragmas
check_inline_asm_pipeline 133
interrupt 175
Precompile command 83
preprocessor
and # 74
header files 152
prototypes
requiring 19
push pragma 154

186 Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

R

readonly strings pragma 173
Require Function Prototypes option 19
require prototypes pragma 135
reverse bitfields pragma 174

S

sample code

pragmadefine_section and pragma

section 158

section 157
settings panel

C/C++ Warnings 22
side effects

warning 146
statements

#pragma 126
strings

pooling 163

reusing 20

storage 163
suffix, constant 77
suppress_init_code pragma 135, 174
suppress_warnings pragma 136
syspath _once pragma 154, 174
System control panel 28

T
Target Settings window 27
trigraph characters 19
types

char 20

unsigned char 20

U

unnamed arguments 74
unsigned char type 20
unsigned_char pragma 136
unused pragma 137

V
VEC__ 118

w

warn_any ptr int conv pragma 138
warn_emptydecl pragma 139
warn_extracomma pragma 139
warn_filenamecaps pragma 140
warn filenamecaps system pragma 140
warn_illpragma pragma 127, 141
warn_impl f2i conv pragma 141
warn_impl i2f conv pragma 142
warn_impl s2u_conv pragma 143
warn_implicitconv pragma 144
warn_largeargs pragma 145
warn_missingreturn pragma 145
warn no_side effect pragma 146
warn_notinlined pragma 134, 146
warn_padding pragma 147
warn_possunwant pragma 147
warn _ptr_int conv pragma 148
warn_resultnotused pragma 148
warn_undefmacro pragma 149
warn_unusedarg pragma 150
warn_unusedvar pragma 150
warning pragma 47, 48, 49, 50
warning errors pragma 151
warnings

illegal pragmas 126

setting inthe IDE 22
Windows operating system 28

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

187

g |

188

Build Tools Reference for Freescale™ 56800/E Digital Signal Controllers

	Introduction
	Compiler Architecture
	Linker Architecture

	Using Build Tools with the CodeWarrior IDE
	Invoking CodeWarrior Compilers and Linkers
	Specifying File Locations
	IDE Options and Pragmas
	IDE Settings Panels
	C/C++ Language (C only) Settings Panel
	C/C++ Preprocessor Panel
	C/C++ Warnings Panel

	Using Build Tools on the Command Line
	Naming Conventions
	Configuring Command-Line Tools
	CWFolder Environment Variable
	Setting the PATH Environment Variable

	Invoking Command-Line Tools
	Getting Help
	Help Guidelines

	File Name Extensions
	Specifying Source File Locations
	Environmental Variables
	Standard C and C++ Conformance Options
	-ansi
	-stdkeywords
	-strict

	Language Translation and Extensions Options
	-char
	-defaults
	-encoding
	-flag
	-gccext
	-gcc_extensions
	-M
	-make
	-mapcr
	-MM
	-MD
	-MMD
	-multibyteaware
	-once
	-pragma
	-relax_pointers
	-requireprotos
	-search
	-trigraphs

	Errors, Warnings, and Diagnostic Options
	-disassemble
	-help
	-maxerrors
	-maxwarnings
	-msgstyle
	-nofail
	-progress
	-S
	-stderr
	-verbose
	-version
	-timing
	-warnings
	-wraplines

	Preprocessing and Precompilation Options
	-convertpaths
	-cwd
	-D+
	-define
	-E
	-EP
	-gccincludes
	-I-
	-I+
	-include
	-ir
	-noprecompile
	-nosyspath
	-P
	-precompile
	-preprocess
	-ppopt
	-prefix
	-stdinc
	-U+
	-undefine

	Library and Linking Options
	-keepobjects
	-map showbyte
	-nolink
	-o

	Object Code Organization and Generation Options
	-c
	-codegen
	-enum
	-ext
	-strings

	Optimization Options
	-factor1
	-factor2
	-factor3
	-inline
	-ipa
	-nofactor1
	-nofactor2
	-nofactor3
	-O
	-O+
	-opt

	Linker
	Introduction

	C
	Extensions to Standard C
	Unnamed Arguments in Function Definitions
	C++ Comments
	A # Not Followed by a Macro Argument
	Using an Identifier After #endif
	Using Typecasted Pointers as lvalues
	Inline Functions
	Pascal Calling Conventions
	Character Constants as Integer Values
	Converting Pointers to Types of the Same Size
	Getting Alignment and Type Information at Compile Time
	Arrays of Zero Length in Structures
	The “D” Constant Suffix
	The __typeof__() and typeof() operators

	Implementation-Defined Behavior
	Diagnostic Messages
	Identifiers

	Tool Performance
	Precompiled Header Files
	When to Use Precompiled Files
	What Can be Precompiled
	Precompiling C++ Source Code
	Using a Precompiled Header File
	Preprocessing and Precompiling
	Pragma Scope in Precompiled Files
	Precompiling a File in the CodeWarrior IDE
	Updating a Precompiled File Automatically

	Optimization
	Optimization Considerations
	Inlining
	Profiling
	String Literals
	Pooling Strings
	Reusing Strings

	Optimizations
	Dead Code Elimination
	Expression Simplification
	Common Subexpression Elimination
	Copy Propagation
	Dead Store Elimination
	Live Range Splitting
	Loop-Invariant Code Motion
	Strength Reduction
	Loop Unrolling
	M56800E Specific Optimizations

	Inline Assembly Language and Intrinsics
	Introduction

	Predefined Symbols
	Using Predefined Symbols
	Version Symbol
	__MWERKS__

	Date and Time Symbol
	__DATE__
	__TIME__

	IDE Symbol
	__ide_target("target_name")

	Name Symbols
	__FILE__
	__LINE__

	Object Code Organization and Generation Symbol
	__profile__

	C Symbols
	__STDC__

	Pragmas
	Using Pragmas
	Checking Pragma Settings
	Saving and Restoring Pragma Settings
	Determining Which Settings Are Saved and Restored
	Illegal Pragmas

	Pragma Scope
	Standard C and C++ Conformance Pragmas
	ANSI_strict
	only_std_keywords

	Language Translation and Extensions Pragmas
	gcc_extensions
	mpwc_newline
	mpwc_relax

	Errors, Warnings, and Diagnostic Control Pragmas
	check_c_src_pipeline
	check_inline_asm_pipeline
	check_inline_sp_effects
	extended_errorcheck
	require_prototypes
	suppress_init_code
	suppress_warnings
	unsigned_char
	unused
	warn_any_ptr_int_conv
	warn_emptydecl
	warn_extracomma
	warn_filenamecaps
	warn_filenamecaps_system
	warn_illpragma
	warn_impl_f2i_conv
	warn_impl_i2f_conv
	warn_impl_s2u_conv
	warn_implicitconv
	warn_largeargs
	warn_missingreturn
	warn_no_side_effect
	warn_notinlined
	warn_padding
	warn_possunwant
	warn_ptr_int_conv
	warn_resultnotused
	warn_undefmacro
	warn_unusedarg
	warn_unusedvar
	warning_errors

	Preprocessing and Precompilation Pragmas
	dollar_identifiers
	fullpath_prepdump
	mark
	notonce
	once
	pop, push
	syspath_once

	Library and Linking Control Pragmas
	define_section
	explicit_zero_data
	initializedzerodata
	section
	use_rodata

	Object Code Organization and Generation Pragmas
	always_inline
	auto_inline
	const_strings
	defer_codegen
	dont_inline
	dont_reuse_strings
	enumsalwaysint
	inline_bottom_up
	interrupt (for the DSP56800)
	interrupt (for the DSP56800E)
	packstruct
	pool_strings
	readonly_strings
	reverse_bitfields
	suppress_init_code
	syspath_once

	Optimization Pragmas
	factor1
	factor2
	factor3
	nofactor1
	nofactor2
	nofactor3
	opt_common_subs
	opt_dead_assignments
	opt_dead_code
	opt_lifetimes
	opt_loop_invariants
	opt_propagation
	opt_strength_reduction
	opt_strength_reduction_strict
	opt_unroll_loops
	optimization_level
	optimize_for_size
	peephole

	Profiler Pragmas
	profile

	Index

