
CodeWarrior™
Build Tools Reference

for Freescale™ 56800/E
Hybrid Controllers

 Revised 28 October 2004

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Metrowerks and the Metrowerks logo are registered trademarks of Metrowerks Corporation in the United States and/
or other countries. CodeWarrior is a trademark or registered trademark of Metrowerks Corporation in the United States
and/or other countries. All other trade names and trademarks are the property of their respective owners.

Copyright © 2004 Metrowerks Corporation. ALL RIGHTS RESERVED.

No portion of this document may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, without prior written permission from Metrowerks. Use of this document and related materials are
governed by the license agreement that accompanied the product to which this manual pertains. This document
may be printed for non-commercial personal use only in accordance with the aforementioned license agree-
ment. If you do not have a copy of the license agreement, contact your Metrowerks representative or call 1-800-
377-5416 (if outside the U.S., call +1-512-996-5300).

Metrowerks reserves the right to make changes to any product described or referred to in this document without further
notice. Metrowerks makes no warranty, representation or guarantee regarding the merchantability or fitness of its prod-
ucts for any particular purpose, nor does Metrowerks assume any liability arising out of the application or use of any
product described herein and specifically disclaims any and all liability. Metrowerks software is not authorized for
and has not been designed, tested, manufactured, or intended for use in developing applications where the fail-
ure, malfunction, or any inaccuracy of the application carries a risk of death, serious bodily injury, or damage
to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities,
nuclear facilities, aircraft navigation or communication, emergency systems, or other applications with a simi-
lar degree of potential hazard.

How to Contact Metrowerks

Corporate Headquarters Metrowerks Corporation
7700 West Parmer Lane
Austin, TX 78729
U.S.A.

World Wide Web http://www.metrowerks.com

Sales United States Voice: 800-377-5416
United States Fax: 512-996-4910
International Voice: +1-512-996-5300
Email: sales@metrowerks.com

Technical Support United States Voice: 800-377-5416
International Voice: +1-512-996-5300
Email: support@metrowerks.com

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

3CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

Table of Contents

1 Introduction 13
Compiler Architecture . 13

Linker Architecture . 14

2 Using Build Tools with the CodeWarrior IDE 15
Invoking CodeWarrior Compilers and Linkers 15

Specifying File Locations . 16

IDE Options and Pragmas. 16

IDE Settings Panels . 16

C/C++ Language (C only) Settings Panel 16

C/C++ Preprocessor Panel . 21

C/C++ Warnings Panel. 23

3 Using Build Tools on the Command Line 29
Naming Conventions. 30

Configuring Command-Line Tools 30

CWFolder Environment Variable. 30

Setting the PATH Environment Variable 31

Invoking Command-Line Tools . 31

Getting Help . 32

Help Guidelines . 32

File Name Extensions . 34

Specifying Source File Locations . 34

Environmental Variables . 35

Standard C and C++ Conformance Options 35

-ansi . 36

-stdkeywords . 36

-strict . 36

Language Translation and Extensions Options. 37

-char . 38

-defaults . 38

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

4 CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

-encoding . 39

-flag . 40

-gccext . 40

-gcc_extensions . 40

-M. 41

-make . 41

-mapcr . 41

-MM . 42

-MD . 42

-MMD . 42

-multibyteaware . 43

-once. 43

-pragma . 43

-relax_pointers . 44

-requireprotos . 44

-search . 44

-trigraphs . 45

Errors, Warnings, and Diagnostic Options 45

-disassemble . 46

-help . 46

-maxerrors . 47

-maxwarnings . 48

-msgstyle . 48

-nofail . 49

-progress . 49

-S . 49

-stderr . 49

-verbose . 50

-version. 50

-timing . 50

-warnings . 51

-wraplines. 54

Preprocessing and Precompilation Options 54

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

5CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

-convertpaths . 55

-cwd . 56

-D+ . 56

-define . 57

-E . 57

-EP . 58

-gccincludes . 58

-I- . 58

-I+. 59

-include. 59

-ir . 60

-noprecompile . 60

-nosyspath . 60

-P . 61

-precompile . 61

-preprocess . 62

-ppopt . 62

-prefix . 63

-stdinc . 63

-U+ . 63

-undefine . 64

Library and Linking Options . 64

-keepobjects . 64

-nolink . 65

-o . 65

Object Code Organization and Generation Options 65

-c . 66

-codegen . 66

-enum . 66

-ext . 67

-strings . 67

Optimization Options . 68

-factor1 . 68

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

6 CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

-factor2 . 69

-factor3 . 69

-inline . 69

-ipa . 70

-nofactor1 . 71

-nofactor2 . 71

-nofactor3 . 71

-O . 72

-O+ . 72

-opt . 73

4 Linker 76

5 C 77
Extensions to Standard C . 77

Unnamed Arguments in Function Definitions 78

C++ Comments . 78

A # Not Followed by a Macro Argument. 78

Using an Identifier After #endif 79

Using Typecasted Pointers as lvalues 80

Inline Functions . 80

Pascal Calling Conventions . 80

Character Constants as Integer Values 80

Converting Pointers to Types of the Same Size 81

Getting Alignment and Type Information at Compile Time 81

Arrays of Zero Length in Structures 81

The “D” Constant Suffix . 82

The __typeof__() and typeof() operators 82

Implementation-Defined Behavior 83

Diagnostic Messages . 83

Identifiers . 83

6 Tool Performance 84
Precompiled Header Files . 84

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

7CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

When to Use Precompiled Files 84

What Can be Precompiled . 85

Precompiling C++ Source Code 85

Using a Precompiled Header File 86

Preprocessing and Precompiling 87

Pragma Scope in Precompiled Files. 87

Precompiling a File in the CodeWarrior IDE 88

Updating a Precompiled File Automatically 89

7 Optimization 90
Optimization Considerations . 90

Inlining . 91

Profiling . 91

String Literals . 91

Pooling Strings . 91

Reusing Strings . 92

Optimizations . 92

Dead Code Elimination . 93

Expression Simplification . 93

Common Subexpression Elimination 94

Copy Propagation. 95

Dead Store Elimination . 95

Live Range Splitting. 96

Loop-Invariant Code Motion . 97

Strength Reduction . 97

Loop Unrolling. 98

M56800E Specific Optimizations 99

8 Inline Assembly Language and Intrinsics 111

9 Predefined Symbols 112
Using Predefined Symbols . 112

Version Symbol. . 112

__MWERKS__ . 112

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

8 CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

Date and Time Symbol . . 113

__DATE__ . 113

__TIME__ . 113

IDE Symbol . 113

__ide_target("target_name") . 114

Name Symbols . 114

__FILE__ . . 114

__LINE__. . 114

Object Code Organization and Generation Symbol 114

__profile__ . 115

C Symbols. . 115

__STDC__ . 115

10 Pragmas 116
Using Pragmas . 116

Checking Pragma Settings . 116

Saving and Restoring Pragma Settings 121

Determining Which Settings Are Saved and Restored 123

Illegal Pragmas. . 123

Pragma Scope . 124

Standard C and C++ Conformance Pragmas 125

ANSI_strict . 125

only_std_keywords . 126

Language Translation and Extensions Pragmas 127

gcc_extensions . . 127

mpwc_newline . . 128

mpwc_relax . 129

Errors, Warnings, and Diagnostic Control Pragmas 129

check_c_src_pipeline . 131

check_inline_asm_pipeline . 131

check_inline_sp_effects . 132

extended_errorcheck . 132

require_prototypes . 133

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

9CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

suppress_init_code . 133

suppress_warnings . 134

unsigned_char . 134

unused . 135

warn_any_ptr_int_conv . 136

warn_emptydecl . 137

warn_extracomma . 137

warn_filenamecaps . 138

warn_filenamecaps_system . . 139

warn_illpragma. . 139

warn_impl_f2i_conv . 140

warn_impl_i2f_conv . 141

warn_impl_s2u_conv . 142

warn_implicitconv . 143

warn_largeargs . . 144

warn_missingreturn . . 144

warn_no_side_effect . 145

warn_notinlined . 145

warn_padding . 146

warn_possunwant . . 146

warn_ptr_int_conv . 147

warn_resultnotused . 148

warn_undefmacro. . 148

warn_unusedarg . 149

warn_unusedvar . 149

warning_errors . . 150

Preprocessing and Precompilation Pragmas 150

dollar_identifiers . 151

fullpath_prepdump . 151

mark . . 152

notonce . . 152

once . 153

pop, push . 153

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

10 CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

syspath_once . 154

Library and Linking Control Pragmas 154

define_section . 155

explicit_zero_data . 156

initializedzerodata . 157

section . 157

use_rodata . 159

Object Code Organization and Generation Pragmas 161

always_inline . 162

auto_inline . 162

const_strings. . 163

defer_codegen . 163

dont_inline . 164

dont_reuse_strings . 165

enumsalwaysint . 166

inline_bottom_up . . 167

interrupt (for the DSP56800) . 168

interrupt (for the DSP56800E) 170

packstruct . . 174

pool_strings . 174

readonly_strings . 175

reverse_bitfields . 175

suppress_init_code . 176

syspath_once . 176

Optimization Pragmas . 177

factor1 . 178

factor2 . 178

factor3 . 179

nofactor1 . 179

nofactor2 . 179

nofactor3 . 180

opt_common_subs . 180

opt_dead_assignments . . 181

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

11CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

opt_dead_code . . 181

opt_lifetimes. . 182

opt_loop_invariants . 182

opt_propagation . 183

opt_strength_reduction. . 183

opt_strength_reduction_strict . 184

opt_unroll_loops . 184

optimization_level . 185

optimize_for_size. . 185

peephole . 186

Profiler Pragmas . 186

profile . 186

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

12 CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

13CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

1
Introduction

This reference describes how to use the CodeWarrior compiler and linker tools to
build software.

CodeWarrior build tools are programs that translate source code into object code then
organize that object code to create a program that is ready to execute.

CodeWarrior build tools often run on a different platform than the programs they
generate. The host platform is the machine on which CodeWarrior build tools run. The
target platform is the machine on which the software generated by the build tools runs.

This section introduces how CodeWarrior build tools are organized:

• Compiler Architecture

• Linker Architecture

Compiler Architecture
From your perspective, a CodeWarrior compiler is a single program. Internally,
however, a CodeWarrior compiler has two parts:

• the front-end, shared by all CodeWarrior compilers, translates human-readable
source code into a platform-independent intermediate representation of the
program being compiled

• the back-end, customized to generate software for a target platform, converts the
intermediate representation into object code containing data and native
instructions for the target processor

A CodeWarrior compiler coordinates its front-end and back-end to translate source
code into object code in several steps:

• configure settings requested from the compiler to the CodeWarrior IDE or passed
to the linker from the command-line

• translate human-readable source code into an intermediate representation

• optionally output symbolic debugging information

• optimize the intermediate representation

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• convert the intermediate representation to native object code

• optimize the native object code

• output the native, optimized object code

Linker Architecture
A linker combines and arranges the object code in libraries and object code generated
by compilers and assemblers into a single file or image, ready to execute on the target
platform. The CodeWarrior linker builds an executable image in several steps:

• configure settings requested from the linker to the CodeWarrior IDE or passed to
the linker from the command-line

• read settings from a linker control file

• read object code

• search for and ignore unused objects (“deadstripping”)

• build and output the executable file

• optionally output a map file

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

15CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

2
Using Build Tools with the
CodeWarrior IDE

The CodeWarrior Integrated Development Environment (IDE) uses settings in a
project’s build target to choose which compilers and linkers to invoke, which files
those compilers and linkers will process, and which options the compilers and linkers
will use.

This chapter describes how to use CodeWarrior compilers and linkers with the
CodeWarrior IDE:

• Invoking CodeWarrior Compilers and Linkers

• Specifying File Locations

• IDE Options and Pragmas

• IDE Settings Panels

Invoking CodeWarrior Compilers and
Linkers

The IDE uses settings in the Target Settings panel of the Target Settings window to
determine which compilers and linkers to use for a project’s build target. The Linker
option in this settings panel specifies the platform or processor to build for. From this
option, the IDE also determines which compilers, pre-linkers, and post-linkers to use.

The IDE uses the settings in the File Mappings panel of the Target Settings window to
determine which types of files may be added to a project’s build target and which
compiler plugin should be invoked to process each file. The menu of compilers in the
Compiler option of this panel is determined by the Linker setting in the Target Settings
panel.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Specifying File Locations
The IDE uses the settings in a build target’s Access Paths and Source Trees panels
to choose the source code and object code files to dispatch to the CodeWarrior build
tools. See the IDE User’s Guide for more information on these panels.

IDE Options and Pragmas
The build tools determine their settings by IDE settings and directives in source code.

The CodeWarrior compiler follows these steps to determine the settings to apply to
each file that the compiler translates under the IDE:

• before translating the source code file, the compiler gets option settings from the
IDE’s settings panels in the current build target

• the compiler updates the settings for pragmas that correspond to panel settings

• the compiler translates the source code in the Prefix Text field of the build
target’s C/C++ Preprocessor panel

The compiler applies pragma directives and updates their settings as pragmas
directives are encountered in this source code.

• the compiler translates the source code file and the files that it includes

The compiler applies pragma directives and updates their settings as pragmas are
encountered.

IDE Settings Panels
A build target that uses a CodeWarrior compiler has these settings panels to control
the compiler:

• C/C++ Language (C only) Settings Panel

• C/C++ Preprocessor Panel

• C/C++ Warnings Panel

C/C++ Language (C only) Settings Panel
This settings panel controls compiler language features and some object code storage
features for the current build target.

• Inline Depth

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• Auto-Inline

• Interprocedural Analysis Support

• Bottom-up Inlining

• ANSI Strict

• ANSI Keywords Only

• Expand Trigraphs

• Legacy for-scoping

• Require Function Prototypes

• Enums Always Int

• Enums Always Int

• Use Unsigned Chars

• Pool Strings

• Reuse Strings

Inline Depth
Specifies the policy to follow to determine the level of function calls to replace with
function bodies. These policies are listed in Table 2.1.

The Smart and 1 to 8 items correspond to the pragma inline_depth and the
command-line option -inline level=n, where n is 1 to 8. The Don’t Inline item
corresponds to the pragma dont_inline and the command-line option -inline
off.

Auto-Inline
Lets the compiler choose which functions to inline. Also inlines C++ functions
declared inline and member functions defined within a class declaration. This

Table 2.1 Settings for the Inline Depth Pop-up Menu

This setting Does this…

Don’t Inline Inlines no functions, not even C or C++ functions declared
inline.

Smart Inlines small functions to a depth of 2 to 4 inline functions
deep.

1 to 8 Inlines to the depth specified by the numerical selection.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

setting corresponds to the pragma auto_inline and the command-line option
-inline auto.

Interprocedural Analysis Support
Interprocedural Analysis (IPA) allows the compiler to generate better and smaller
code by inspecting more than just one function or data object at the same time. The
compiler supports three different interprocedural analysis modes:

• Function Mode (aka "off") (default)

• File Mode

Function Mode (aka "off") (default)
Functions are optimized and code is generated when the function has been parsed.
This mode allows no interprocedural analysis. This mode is enabled by selecting off in
the IPA popup menu in the C/C++ Language (C only) preference panel or by
specifying -ipa function or -ipa off on the command line.

File Mode
A translation unit is completely parsed before any code or data is generated. This
allows optimizations and inlining on a per-file basis, it replaces the deferred inlining/
codegen mode. This mode is enabled by selecting file in the IPA popup menu in the
C/C++ Language (C only) preference panel or by specifying -ipa file on the
command line.

This mode will require more memory and it can be slightly slower than Function
mode.

The compiler will also do an early dead code/data analysis in this mode, so objects
with internal linkage that are not referenced will be dead-stripped in the compiler
rather than in the linker.

Bottom-up Inlining
Inline functions starting at the last function to the first function in a chain of function
calls. This setting corresponds to the pragma inline_bottom_up and the command-
line option -inline bottomup.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

ANSI Strict
Only recognizes source code that conforms to the ISO/ANSI standards. The compiler
does not recognize several CodeWarrior extensions to the C language:

• C++-style comments

• unnamed arguments in function definitions

• a # not followed by a macro directive

• using an identifier after a #endif directive

• using typecasted pointers as lvalues

• converting points to type of the same size

• arrays of zero length in structures

• the D constant suffix

• enumeration constant definitions that cannot be represented as signed integers
when the Enums Always Int option is on in the IDE’s C/C++ Language
settings panel or the enumsalwaysint pragma is on

• a C++ main() function that does not return an integer value

You cannot enable individual extensions that are controlled by the ANSI Strict
setting.

This setting corresponds to the pragma ANSI_strict and the command-line option
-ansi strict.

ANSI Keywords Only
Controls whether the compiler recognizes non-standard keywords.

(ISO C, §6.4.1) The CodeWarrior compiler can recognize several additional reserved
keywords. If you enable this setting, the compiler generates an error if it encounters
any of the additional keywords that it recognizes. If you must write source code that
strictly adheres to the ISO standard, enable the ANSI Strict setting.

If you disable this setting, the compiler recognizes the following non-standard
keywords: inline, __inline__, __inline, and pascal.

This setting corresponds to the pragma only_std_keywords and the command-line
option -stdkeywords.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Expand Trigraphs
(ISO C, §5.2.1.1) The compiler normally ignores trigraph characters. Many common
character constants look like trigraph sequences, and this extension lets you use them
without including escape characters.

This setting corresponds to the pragma trigraphs and the command-line option
-trigraphs.

Legacy for-scoping
Generates an error message when the compiler encounters a variable scope usage that
the ISO C++ standard disallows, but is allowed in the C++ language specified in The
Annotated C++ Reference Manual (“ARM”).

This setting corresponds to the pragma ARM_conform and the command-line option
-for_scoping.

Require Function Prototypes
Enforce the requirement of function prototypes. If you enable the Require Function
Prototypes setting, the compiler generates an error message if you define a
previously referenced function that does not have a prototype. If you define the
function before it is referenced but do not give it a prototype, then enabling the
Require Function Prototypes setting causes the compiler to issue a warning
message.

This setting corresponds to the pragma require_prototypes and the command-
line option -requireprotos.

Enums Always Int
Uses signed integers to represent enumerated constants. This option corresponds to the
enumsalwaysint pragma and the command-line option -enum.

Use Unsigned Chars
Treats char declarations as unsigned char declarations. This setting corresponds to
the pragma unsigned_char and the command-line option -char unsigned.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Pool Strings
Controls where the compiler stores character string literals.

If you enable this setting, the compiler collects all string constants into a single data
object in the object code it generates. If you disable this setting, the compiler creates a
unique data object for each string constant.

This option corresponds to the pragma pool_strings and the command-line option
-strings pool.

Reuse Strings
When on, the compiler stores only one copy of identical string literals. When off, the
compiler stores each string literal separately.

The Reuse Strings setting corresponds to opposite of the pragma
dont_reuse_strings and the command-line option -string reuse.

C/C++ Preprocessor Panel
The C/C++ Preprocessor settings panel controls the operation of the CodeWarrior
compiler’s preprocessor.

• Source encoding

• Use prefix text in precompiled header

• Emit file changes

• Emit #pragmas

• Show full paths

• Keep comments

• Use #line

• Keep whitespace

Source encoding
Allows you to specify the default encoding of source files. The compiler recognizes
Multibyte and Unicode source text. To replicate the obsolete option Multi-Byte
Aware, set this option to System or Autodetect. Additionally, options that affect the
preprocess request appear in this panel.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Use prefix text in precompiled header
Controls whether a *.pch or *.pch++ file incorporates the prefix text into itself.

This option defaults to “off” to correspond with previous versions of the compiler that
ignore the prefix file when building precompiled headers. If any #pragmas are
imported from old C/C++ Language Panel Settings, this option is set to “on”.

Emit file changes
Controls whether notification of file changes (or #line changes) appear in the output.

Emit #pragmas
Controls whether #pragmas encountered in the source text appear in the preprocessor
output.

NOTE This option is essential for producing reproducible test cases for bug
reports.

Show full paths
Controls whether file changes show the full path or the base filename of the file.

Keep comments
Controls whether comments are emitted in the output.

Use #line
Controls whether file changes appear in comments (as before) or in #line directives.

Keep whitespace
Controls whether whitespace is stripped out or copied into the output. This is useful
for keeping the starting column aligned with the original source, though the compiler
attempts to preserve space within the line. This doesn’t apply when macros are
expanded.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

C/C++ Warnings Panel
The C/C++ Warnings settings panel contains options that controls which warning
messages the CodeWarrior C/C++ compiler issues as it translates source code:

• Illegal Pragmas

• Possible Errors

• Extended Error Checking

• Implicit Arithmetic Conversions

• Float To Integer

• Signed/Unsigned

• Integer To Float

• Pointer/Integral Conversions

• Unused Variables

• Unused Arguments

• Missing ‘return’ Statements

• Expression Has No Side Effect

• Enable All

• Disable All

• Extra Commas

• Inconsistent ‘class’/’struct’ Usage

• Empty Declarations

• Include File Capitalization

• Check System Includes

• Pad Bytes Added

• Undefined Macro in #if

• Non-Inlined Functions

• Treat All Warnings As Errors

Illegal Pragmas
Issues a warning message if the compiler encounters an unrecognized pragma.

This setting corresponds to the warn_illpragma pragma and the command-line
option -warnings illpragmas.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Possible Errors
Issues warning messages for common, unintended logical errors:

• in conditional statements, using the assignment (=) operator instead of the
equality comparison (==) operator

• in expression statements, using the == operator instead of the = operator

• placing a semicolon (;) immediately after a do, while, if, or for statement

This setting corresponds to pragma warn_possunwant and the command-line option
-warnings possible.

Extended Error Checking
Issues warning messages for common programming errors:

• mis-matched return type in a function’s definition and the return statement in the
function’s body

• mismatched assignments to variables of enumerated types

This setting corresponds to pragma extended_errorcheck and the command-line
option -warnings extended.

Implicit Arithmetic Conversions
Issues a warning message when the compiler applies implicit conversions that may not
give results you intend:

• assignments where the destination is not large enough to hold the result of the
conversion

• a signed value converted to an unsigned value

• an integer or floating-point value is converted to a floating-point or integer value,
respectively

This setting corresponds to the warn_implicitconv pragma and the command-line
option -warnings implicitconv.

Float To Integer
Issues a warning message for implicit conversions from floating point values to
integer values.

This setting corresponds to the warn_impl_f2i_conv pragma and the command-
line option -warnings impl_float2int.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Signed/Unsigned
Issues a warning message for implicit conversions from a signed or unsigned integer
value to an unsigned or signed value, respectively.

This setting corresponds to the warn_impl_s2u_conv pragma and the command-
line option -warnings signedunsigned.

Integer To Float
Issues a warning message for implicit conversions from integer to floating-point
values.

This setting corresponds to the warn_impl_i2f_conv pragma and the command-
line option -warnings impl_int2float.

Pointer/Integral Conversions
Issues a warning message for implicit conversions from pointer values to integer
values and from integer values to pointer values.

This setting corresponds to the warn_any_ptr_int_conv and
warn_ptr_int_conv pragmas and the command-line option -warnings
ptrintconv,anyptrinvconv.

Unused Variables
Issues a warning message for local variables that are not referred to in a function.

This setting corresponds to the warn_unusedvar pragma and the command-line
option -warnings unusedvar.

Unused Arguments
Issues a warning message for function arguments that are not referred to in a function.

This setting corresponds to the warn_unusedarg pragma and the command-line
option -warnings unusedarg.

Missing ‘return’ Statements
Issues a warning message if a function that is defined to return a value has no return
statement.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

This setting corresponds to the warn_missingreturn pragma and the command-
line option -warnings missingreturn.

Expression Has No Side Effect
Issues a warning message if a statement does not change the program’s state.

This setting corresponds to the warn_no_side_effect pragma and the command-
line option -warnings unusedexpr.

Enable All
Turns on all warning options.

Disable All
Turns off all warning options.

Extra Commas
Issues a warning message if a list in an enumeration terminates with a comma.

This setting corresponds to the warn_extracomma pragma and the command-line
option -warnings extracomma.

Inconsistent ‘class’/’struct’ Usage
Issues a warning message if the class and struct keywords are used interchangeably in
the definition and declaration of the same identifier in C++ source code.

This setting corresponds to the warn_structclass pragma and the command-line
option -warnings structclass.

Empty Declarations
Issues a warning message if a declaration has no variable name.

This setting corresponsd to the pragma warn_emptydecl and the command-line
option -warnings emptydecl.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Include File Capitalization
Issues a warning if the name of the file specified in a #include "file" directive
uses different letter case from a file on disk.

This setting corresponds to the warn_filenamecaps pragma and the command-line
option -warnings filecaps.

Check System Includes
Issues a warning if the name of the file specified in a #include <file> directive
uses different letter case from a file on disk.

This setting corresponds to the warn_filenamecaps_system pragma and the
command-line option -warnings sysfilecaps.

Pad Bytes Added
Issues a warning message when the compiler adjusts the alignment of components in a
data structure.

This setting corresponds to the warn_padding pragma and the command-line option
-warnings padding.

Undefined Macro in #if
Issues a warning if an undefined macro appears in #if and #elif directives.

This setting corresponds to the warn_undefmacro pragma and the command-line
option -warnings undefmacro.

Non-Inlined Functions
Issues a warning if a call to a function defined with the inline, __inline__, or
__inline keywords could not be replaced with the function body.

This setting corresponds to the warn_notinlined pragma and the command-line
option -warnings notinlined.

Treat All Warnings As Errors
Issues warning messages as error messages.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

This setting corresponds to the warning_errors pragma and the command-line
option -warnings error.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

29CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

3
Using Build Tools on the
Command Line

The CodeWarrior command line compilers and assemblers translate source code (for
example, C and C++) into object code, storing this object in files. CodeWarrior
command-line linkers then combine one or more of these object code files to produce
an executable image ready to load and execute on the target platform.

Each command-line tool has options that you configure when you invoke the tool.

The CodeWarrior IDE (Integrated Development Environment) uses these same
compilers and linkers, however Metrowerks provides versions of these tools that you
can directly invoke on the command line. Many command-line options correspond to
settings in the IDE’s Target Settings window.

This chapter contains these topics:

• Naming Conventions

• Configuring Command-Line Tools

• Invoking Command-Line Tools

• Getting Help

• File Name Extensions

• Specifying Source File Locations

• Environmental Variables

• Standard C and C++ Conformance Options

• Language Translation and Extensions Options

• Errors, Warnings, and Diagnostic Options

• Preprocessing and Precompilation Options

• Library and Linking Options

• Library and Linking Options

• Object Code Organization and Generation Options

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• Optimization Options

Naming Conventions
The names of the CodeWarrior command-line tools follow a convention:

mw tool platform

where tool is cc for the C/C++ compiler, ld for the linker, and asm for the
assembler.

Platform is usually the target platform that the tool generates software for, except
where there are multiple versions of tools for a target platform.

For example, the command-line compiler, assembler, and linker for the dsp56800 are
named mwcc56800, mwasm56800, and mwld56800, respectively; and for the
dsp56800e are named mwcc56800e, mwasm56800e, and mwld56800e,
respectively;.

Configuring Command-Line Tools
To use the command-line tools, several environment variables must be changed or
defined.

If you are using CodeWarrior command-line tools with Microsoft Windows,
environment variables may be assigned in the autoexec.bat file in Windows 95/98
or in the Environment tab under the System control panel in Windows NT/2000/
XP.

The CodeWarrior command-line tools refer to environment variables for configuration
information:

• CWFolder Environment Variable

• Setting the PATH Environment Variable

CWFolder Environment Variable
In this example, %CWFolder% refers to the path where CodeWarrior for 56800 was
installed. Note that it is not necessary to include quote marks when defining
environment variables that include spaces. Windows does not strip out the quotes and
this leads to unknown directory warnings. Use the following syntax if defining
variables in batch files or at the command line (Listing 3.1).

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 3.1 Example of setting CWFolder.

set CWFolder=C:\Program Files\Metrowerks\CodeWarrior

Setting the PATH Environment Variable
The PATH variable should include the paths for the 56800 tools (other tools will be
different), shown in Listing 3.2.

Listing 3.2 Example of PATH Settings

%CWFolder%\Bin
%CWFolder%\DSP56800x_EABI_Tools\Command_Line_Tools

The first path in Listing 3.2 contains the FlexLM license manager DLL, and the
second path contains the tools.

In order for FlexLM to work properly, you can simply copy the following file into the
directory from which you will be using the command line tools:

..\CodeWarrior\license.dat

Alternately, you can define the variable LM_LICENSE_FILE as:

%CWFolder%\license.dat

This variable points to license information. It may point to alternate versions of this
file, as needed.

Invoking Command-Line Tools
To compile, assemble, link, or perform some other programming task with the
CodeWarrior command-line tools, you type a command at a command line’s prompt.
This command specifies the tool you want to run, what options to use while the tool
runs, and what files the tool should operate on.

The form of a command to run a command-line tool is

tool options files

where tool is the name of the CodeWarrior command-line tool to invoke, options
is a list of zero or more options that specify to the tool what operation it should
perform and how it should be performed, and files is a list of files zero or more files
that the tool should operate on.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Which options and files you should specify depend on what operation you want the
tool to perform.

The tool then performs the operation on the files you specify. If the tool is successful it
simply finishes its operation and a new prompt appears at the command line. If the tool
encounters problems it reports these problems as text messages on the command-line
before a new prompt appears.

Scripts that automate the process to build a piece of software contain commands to
invoke command-line tools. For example, the make tool, a common software
development tool, uses scripts to manage dependencies among source code files and
invoke command-line compilers, assemblers and linkers as needed, much like the
CodeWarrior IDE’s project manager.

Getting Help
To show short descriptions of a tool’s options, type this command at the command
line:

tool -help

where tool is the name of the CodeWarrior build tool.

To show only a few lines of help information at a time, pipe the tool’s output to a
pager program. For example,

tool -help | more

will use the more pager program to display the help information.

Help Guidelines
Enter the following command in a Command Prompt window to see a list of
specifications that describe how options are formatted:

tool -help usage

Parameter Formats
Parameters in an option are formatted as follows:

• A parameter included in brackets “[]” is optional.

• Use of the ellipsis “...” character indicates that the previous type of parameter
may be repeated as a list.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Option Formats
Options are formatted as follows:

• For most options, the option and the parameters are separated by a space as in
“-xxx param”. When the option’s name is “-xxx+”, however, the parameter
must directly follow the option, without the “+” characteter (as in “-xxx45”) and
with no space seperator.

• An option given as “-[no]xxx” may be issued as “-xxx” or “-noxxx”. The use
of “-noxxx” reverses the meaning of the option.

• When an option is specified as “-xxx | yy[y] | zzz”, then either “-xxx”,
“-yy”, “-yyy”, or “-zzz” matches the option.

• The symbols “,” and “=” separate options and parameters unconditionally; to
include one of these symbols in a parameter or filename, escape it (e.g., as “\,”
in mwcc file.c\,v).

Common Terms
These common terms appear in many option descriptions:

• A “cased” option is considered case-sensitive. By default, no options are case-
sensitive.

• “compatibility” indicates that the option is borrowed from another vendor’s tool
and its behavior may only approximate its counterpart.

• A “global” option has an effect over the entire command line and is parsed before
any other options. When several global options are specified, they are interpreted
in order.

• A “deprecated” option will be eliminated in the future and should no longer be
used. An alternative form is supplied.

• An “ignored” option is accepted by the tool but has no effect.

• A “meaningless” option is accepted by the tool but probably has no meaning for
the target OS.

• An “obsolete” option indicates a deprecated option that is no longer available.

• A “substituted” option has the same effect as another option. This points out a
preferred form and prevents confusion when similar options appear in the help.

• Use of “default” in the help text indicates that the given value or variation of an
option is used unless otherwise overridden.

This tool calls the linker (unless a compiler option such as -c prevents it) and
understands linker options – use '-help tool=other' to see them. Options marked
“passed to linker” are used by the compiler and the linker; options marked “for linker”

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

are used only by the linker. When using the compiler and linker separately, you must
pass the common options to both.

File Name Extensions
Files specified on the command line are identified by contents and file extension, as in
the CodeWarrior IDE.

The command-line version of the CodeWarrior C/C++ compiler accepts non-standard
file extensions as source but also emits a warning. By default, the compiler assumes
that a file with any extensions besides .c, .h, .pch is C++ source. The linker ignores
all files that it can not identify as object code, libraries, or command files.

Linker command files must end in .lcf. They may be simply added to the link line,
for example, for 56800, see Listing 3.3.

Listing 3.3 Example of using linker command files

mwld56800e file.o “MSL C 56800E.lib” “Runtime 56800E.Lib” linker.cmd

For more information on linker command files, refer to the Targeting manual for your
platform.

Specifying Source File Locations
Several environment variables are used at build time to search for system include
paths and libraries which can shorten command lines for many tasks. All of the
variables mentioned here are lists which are separated by semicolons (“;”) in Windows
and colons (“:”) in Solaris.

For example, in 56800, unless -nodefaults is passed to on the command line, the
compiler searches for an environment variable called MWC56800Includes for the
DSP56800 and MWC56800EIncludes for the DSP56800E. This variable contains a
list of system access paths to be searched after the system access paths specified by the
user. The assembler also does this, using the variable MWAsm56800Includes for the
DSP56800 and MWAsm56800EIncludes for the DSP56800E.

Analogously, unless -nodefaults or -disassemble is given, the linker will search
the environment for a list of system access paths and system library files to be added to
the end of the search and link orders. For example, with 56800, the variable

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

MW56800Libraries and MW56800ELibraries contains a list of system library
paths to search for files, libraries, and command files.

Associated with this list is the variable MW56800LibraryFiles and
MW56800ELibraryFiles which contains a list of libraries (or object files or
command files) to add to the end of the link order. These files may be located in any of
the cumulative access paths at runtime.

Environmental Variables
There are environmental varaiable for the DSP56800 and DSP56800E.

The environmental variables for the DSP56800 are:

• MW56800Libraries: a semicolon sperated list of paths to the libraries

• MW56800LibraryFiles: a semicolon separated list of libraries to be linked
against

• MWAsm56800Includes: a semicolon separated list of paths to files needed by the
assembler

• MWC56800Includes: a semicolon separated list of paths to files needed by the
assembler

The environmental variables for the DSP56800E are:

• MW56800ELibraries: a semicolon sperated list of paths to the libraries

• MW56800ELibraryFiles: a semicolon separated list of libraries to be linked
against

• MWAsm56800EIncludes: a semicolon separated list of paths to files needed by
the assembler

• MWC56800EIncludes: a semicolon separated list of paths to files needed by the
assembler

Standard C and C++ Conformance
Options

The Standard C and C++ Conformance options are:

• -ansi

• -stdkeywords

• -strict

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

-ansi

Controls the ANSI conformance options, overriding the given settings.

Syntax

-ansi keyword

The arguments for keyword are:

off

Turn ANSI conformance off. Same as -stdkeywords off, -enum min, and
-strict off.

on | relaxed

Turn ANSI conformance on in relaxed mode. Same as -stdkeywords on,
-enum min, and -strict on.

strict

Turn ANSI conformance on in strict mode. Same as -stdkeywords on, -enum
int, and -strict on.

-stdkeywords

Controls the requirement for the use of ANSI standard keywords.

Syntax

-stdkeywords on | off

Remarks

Default setting is off.

-strict

Controls the use of non-standard ANSI language features.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

-strict on | off

Remarks

 Default setting is off.

Language Translation and Extensions
Options

The Language Translation and Extensions options are:

• -char

• -defaults

• -encoding

• -flag

• -gccext

• -gcc_extensions

• -M

• -make

• -mapcr

• -MM

• -MD

• -MMD

• -multibyteaware

• -once

• -pragma

• -relax_pointers

• -relax_pointers

• -requireprotos

• -search

• -trigraphs

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

-char

Controls the default sign of the char data type.

Syntax

-char keyword

The arguments for keyword are:

signed

char data items are signed.

unsigned

char data items are unsigned.

Remarks

The default is signed.

-defaults

Controls whether the compiler uses additional environment variables to provide
default settings.

Syntax

-defaults

-[no]defaults

Remarks

This command is global. To enable the command-line compiler to use the same
set of default settings as the CodeWarrior IDE, use -defaults. For example, in
the IDE, all access paths and libraries are explicit. defaults is the default
setting.

Use -nodefaults to disable the use of additional environment variables.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

-encoding

Specify the default source encoding used by the compiler.

Syntax

-enc[oding] keyword

The options for keyword are:

ascii

American Standard Code for Information Interchange (ASCII) format. This is
the default.

autodetect | multibyte | mb

Scan file for multibyet encoding.

system

Use local system format.

UTF[8 | -8]

Unicode Transformation Format (UTF).

SJIS | Shift-JIS | ShiftJIS

Shift Japanese Industrial Standard (Shift-JIS) format.

EUC[JP | -JP]

Japanese Extended UNIX Code (EUCJP) format.

ISO[2022JP | -2022-JP]

International Organization of Standards (ISO) Japanese format.

Remarks

The compiler automatically detects UTF-8 (Unicode Transformation Format)
header or UCS-2/UCS-4 (Uniform Communications Standard) encodings
regardless of setting. The default setting is ascii.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

-flag

Specify compiler #pragma as either on or off.

Syntax

-fl[ag] [no-]pragma

Examples

-flag foo

is equivalent to #pragma foo on.

-flag no-foo

is the same as #pragma foo off.

-gccext

Enable GCC (Gnu Compiler Collection) C language extensions.

Syntax

-gcc[ext] on | off

Remarks

The default setting is off.

-gcc_extensions

Equivalent to the -gccext option.

Syntax

-gcc[_extensions] on | off

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

-M

Scan source files for dependencies and emit a Makefile, without generating object
code.

Syntax

-M

Remarks

This command is global and case-sensitive.

-make

Scan source files for dependencies and emit a Makefile, without generating object
code.

Syntax

-make

Remarks

This command is global.

-mapcr

Swaps the values of the \n and \r escape characters.

Syntax

-mapcr

-nomapcr

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

The -mapcr option tells the compiler to treat the '\n' character as ASCII 13
and the '\r' character as ASCII 10. The -nomapcr option tells the compiler to
treat these characters as ASCII 10 and 13, respectively.

-MM

Scan source files for dependencies and emit a Makefile, without generating object
code or listing system #include files.

Syntax

-MM

Remarks

This command is global and case-sensitive.

-MD

Scan source files for dependencies and emit a Makefile, generate object code, and
write a dependency map.

Syntax

-MD

Remarks

This command is global and case-sensitive.

-MMD

Scan source files for dependencies and emit a Makefile, generate object code, write a
dependency map, without listing system #include files.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

-MMD

Remarks

 This command is global and case-sensitive.

-multibyteaware

Allows multi-byte characters encodings in source text.

Syntax

-multibyte[aware]

-nomultibyte[aware]

-once

Prevents header files from being processed more than once.

Syntax

-once

Remarks

You can also add #pragma once on in a prefix file.

-pragma

Defines a pragma for the compiler.

Syntax

-pragma ’name ["setting"]’

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

The arguments are:

name

Name of the new pragma enclosed in single-quotes.

setting

Setting for the new pragma. When adding a setting, setting must be enclosed in
double-quotes.

-relax_pointers

Relaxes the pointer type-checking rules in C.

Syntax

-relaxpointers

Remarks

This option is equivalent to

#pragma mpwc_relax on

-requireprotos

Controls whether or not the compiler should expect function prototypes.

Syntax

-r[equireprotos]

-search

Globally searches across paths for source files, object code, and libraries specified in
the command line.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

-search

-trigraphs

Controls the use of ISO trigraph sequences.

Syntax

-trigraphs on | off

Remarks

Default setting is off.

Errors, Warnings, and Diagnostic
Options

The Errors, Warnings, and Diagnostic options are:

• -disassemble

• -help

• -maxerrors

• -maxwarnings

• -nofail

• -progress

• -S

• -stderr

• -verbose

• -version

• -timing

• -warnings

• -wraplines

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

-disassemble

Tells the command-line tool to disassemble files and send result to stdout.

Syntax

-dis[assemble]

Remarks

 This option is global.

-help

Lists descriptions of the CodeWarrior tool’s command-line options.

Syntax

-help [keyword [,...]]

The options for keyword are:

all

Show all standard options

group=keyword

Show help for groups whose names contain ’keyword’ (case-sensitive); for
’keyword’, maximum length 63 chars

[no]compatible

Use compatible to show options compatible with this compiler. Use
nocompatible to show options that do not work with this compiler.

[no]deprecated

Show deprecated options

[no]ignored

Show ignored options

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

[no]meaningless

Show options meaningless for this target

[no]normal

Show only standard options

[no]obsolete

Show obsolete options

[no]spaces

Insert blank lines between options in printout.

opt[ion]=name

Show help for a given option; for ’name’, maximum length 63 chars

search=keyword

Show help for an option whose name or help contains ’keyword’ (case-
sensitive); for ’keyword’, maximum length 63 chars

tool=keyword[all | this | other|skipped | both]

Categorize groups of options by tool; default.

– all–show all options available in this tool

– this–show options executed by this tool; default

– other|skipped–show options passed to another tool

– both–show options used in all tools

usage

Displays usage information.

-maxerrors

Specify the maximum number of errors to show.

Syntax

-maxerrors max

max

Use max to specify the number of errors. Common values are:

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

– 0 (zero) – disable maximum count, show all errors.

– 100 – Default setting.

-maxwarnings

Specify the maximum number of warnings to show.

Syntax

-maxerrors max

max

Use max to specify the number of warnings. Common values are:

– 0 (zero) – Disable maximum count (default).

– n – Maximum number of warnings to show.

-msgstyle

Controls the style used to show error and warning messages.

Syntax

-msgstyle keyword

The options for keyword are:

gcc

Uses gcc message style.

ide

Uses CodeWarrior’s Integrated Development Environment (IDE) message style.

mpw

Uses Macintosh Programmer’s Workshop (MPW®) message style.

parseable

Uses context-free machine parseable message style.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

std

Uses standard message style. This is the default.

-nofail

Continue processing after getting errors in earlier files.

Syntax

-nofail

-progress

Show progess and version information.

Syntax

-progress

-S

Disassemble all files and send output to a file. This command is global and case-
sensitive.

Syntax

-S

-stderr

Use the standard error stream to report error and warning messages.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

-stderr

-nostderr

Remarks

The -stderr option specifies to the compiler, and other tools that it invokes,
that error and warning messages should be sent to the standard error stream.

The -nostderr option specifies that error and warning messages should be sent
to the standard output stream.

-verbose

Tells the compiler to provide verbose, cumulative information in messages.

Syntax

-v[erbose]

Remarks

 Use of this argument implies the use of the -progress argument.

-version

Displays version, configuration, and build data.

Syntax

-v[ersion]

-timing

Shows the amount of time that the tool used to perform an action.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

-timing

-warnings

Specify which warnings the command-line tool issues. This command is global.

Syntax

-w[arning] keyword [,...]

The options for keyword are:

off

Turn off all warnings. Passed to all tools. Prefix file setting: #pragma warning
off.

on

Turn on most warnings. Passed to all tools. Prefix file setting: #pragma
warning on.

[no]cmdline

passed to all tools; # command-line driver/parser warnings

[no]err[or] | [no]iserr[or]

Treat warnings as errors. Passed to all tools. Prefix file setting: #pragma
warning_errors.

all

Turn on all warnings and require prototypes.

[no]pragmas | [no]illpragmas

Issue warnings on illegal #pragmas. Prefix file setting: #pragma
warn_illpragma.

[no]empty[decl]

Issue warnings on empty declarations. Prefix file setting: #pragma
warn_emptydelc.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

[no]possible | [no]unwanted

Issue warnings on possible unwanted effects. Prefix file setting: #pragma
warn_possunwanted.

[no]unusedarg

Issue warnings on unused arguments. Prefix file setting: #pragma
warn_unusedarg.

[no]unusedvar

Issue warnings on unused variables. Prefix file setting: #pragma
warn_unusedvar.

[no]unused

Same as -w [no]unusedarg,[no]unusedvar.

[no]extracomma | [no]comma

Issue warnings on extra commas in enumerations. Prefix file setting: #pragma
warn_extracomma.

[no]pedantic | [no]extended

pedantic error checking

[no]hidevirtual | [no]hidden[virtual]

Issue warnings on hidden virtual functions. Prefix file setting: #pragma
warn_hidevirtual.

[no]implicit[conv]

Issue warnings on implicit arithmetic conversions. Implies
-warn impl_float2int,impl_signedunsigned.

[no]impl_int2float

Issue warnings on implicit integral to floating conversions. Prefix file setting:
#pragma warn_impl_i2f_conv.

[no]impl_float2int

Issue warnings on implicit floating to integral conversions. Prefix file setting:
#pragma warn_impl_f2i_conv.

[no]impl_signedunsigned

Issue warnings on implicit signed/unsigned conversions.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

[no]notinlined

Issue warning when inline functions are not inlined. Prefix file setting:
#pragma warn_notinlined.

[no]largeargs

Issue warning when passing large arguments to unprototyped functions. Prefix
file setting: #pragma warn_largeargs.

[no]structclass

Issue warning on inconsistent use of class and struct. Prefix file setting:
#pragma warn_structclass.

[no]padding

Issue warning when padding is added between struct members. Prefix file
setting: #pragma warn_padding

[no]notused

Issue warning when the result of non-void-returning functions are not used.
Prefix file setting: #pragma warn_resultnotused.

[no]missingreturn

Issue warning when a return without a value in non-void-returning function
occurs. Prefix file setting: #pragma warn_missingreturn.

[no]unusedexpr

Issue warning when encountering the use of expressions as statements without
side effects. Prefix file setting: #pragma warn_no_side_effect.

[no]ptrintconv

Issue warning when lossy conversions occur from pointers to integers.

[no]anyptrintconv

Issue warning on any conversion of pointers to integers. Prefix file setting:
#pragma warn_ptr_int_conv.

[no]undef[macro]

Issue warning on the use of undefined macros in #if/#elif conditionals.
Prefix file setting: #pragma warn_undefmacro.

[no]filecaps

Issue warning when #include "..." statements use incorrect capitalization.
Prefix file setting: #pragma warn_filenamecaps.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

[no]sysfilecaps

Issue warning when #include <...> statements use incorrect capitalization.
Prefix file setting: #pragma warn_filenamecaps_system.

[no]tokenpasting

Issue warning when token is not formed by ## operator. Prefix file setting:
#pragma warn_illtokenpasting.

display | dump

Display list of active warnings.

Description

Choose Edit > targetname Settings from the CodeWarrior IDE’s menu bar,
then select the C/C++ Warnings settings panel. Enable or disable specific
warnings by clicking the appropriate checkboxes.

-wraplines

Controls the word wrapping of messages.

Syntax

-wraplines

-nowraplines

Preprocessing and Precompilation
Options

The Preprocessing and Precompilation options are:

• -convertpaths

• -cwd

• -D+

• -define

• -E

• -EP

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• -gccincludes

• -I-

• -I+

• -include

• -ir

• -noprecompile

• -nosyspath

• -P

• -precompile

• -preprocess

• -ppopt

• -prefix

• -stdinc

• -U+

• -undefine

-convertpaths

Instructs the compiler to interpret #include file paths specified for a foreign
operating system. This command is global.

Syntax

-[no]convertpaths

Remarks

The CodeWarrior compiler can interpret file paths from several different operating
systems. Each operating system uses unique characters as path separaters. These
separaters include:

• Mac OS® – colon “:” (:sys:stat.h)

• UNIX – forward slash “/” (sys/stat.h)

• Windows® – backward slash “\” (sys\stat.h)

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

When convertpaths is enabled, the compiler can correctly interpret and use paths
like <sys/stat.h> or <:sys:stat.h>. However, when enabled, (/) and (:)
separate directories and cannot be used in filenames.

NOTE This is not a problem on Windows since these characters are already
disallowed in file names. It is safe to leave this option on.

When noconvertpaths is enabled, the compiler can only interpret paths that use the
Windows form, like <\sys\stat.h>.

-cwd

Controls where a search begins for #include files. The path represented by keyword
is searched before searching access paths defined for the build target.

Syntax

-cwd keyword

The options for keyword are:

explicit

No implicit directory. Search -I or -ir paths.

include

Begin search in directory of referencing file.

proj

Begin search in current working directory (default).

source

Begin search in directory that contains the source file.

-D+

Same as the -define option.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

-D+name

The parameters are:

name

The symbol name to define. Symbol is set to 1.

-define

Defines a preprocessor symbol.

Syntax

-d[efine]name[=value]

The parameters are:

name

The symbol name to define.

value

The value to assign to symbol name. If no value is specified, set symbol value
equal to 1.

-E

Tells the command-line tool to preprocess source files. This command is global and
case-sensitive.

Syntax

-E

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

-EP

Tells the command-line tool to preprocess source files that are stripped of #line
directives. This command is global and case-sensitive.

Syntax

-EP

Remarks

Output is generated using the #pragma simple_predump on setting and sent
to a new unsaved editor window.

-gccincludes

Controls the compilers use of GCC #include semantics.

Syntax

-gccinc[ludes]

Remarks

Use -gccinclude to control the CodeWarrior compiler understanding of GCC
semantics. When enabled, the semantices include:

– Adds -I- paths to the systems list if -I- is not already specified

– Search referencing file’s directory first for #include files (same as -cwd
include) The compiler and IDE only search access paths, and do not take the
currently #include file into account.

This command is global.

-I-

Changes the build target’s search order of access paths to start with the system paths
list. This command is global.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

-I-

-i-

Remarks

The compiler can search #include files in several different ways. Use -I- to
set the search order as follows:

– For include statements of the form #include "xyz", the compiler first
searches user paths, then the system paths

– For include statements of the form #include <xyz>, the compiler searches
only system paths

-I+

Appends a non-recursive access path to the current #include list. This command is
global and case-sensitive.

Syntax

-I+path

-i path

The parameters are:

path

The non-recursive access path to append.

-include

Defines the name of the text file or precompiled header file to add to every source file
processed.

Syntax

-include file

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

file

Name of text file or precompiled header file to prefix to all source files.

Remarks

With the command line tool, you can add multiple prefix files all of which are
included in a meta-prefix file.

-ir

Appends a recursive access path to the current #include list. This command is
global.

Syntax

-ir path

The parameters are:

path

The recursive access path to append.

-noprecompile

Do not precompile any source files based upon the filename extension.

Syntax

-noprecompile

-nosyspath

Perform searches of both the user and system paths, treating #include statements of
the form #include <xyz> the same as the form #include "xyz".

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

-nosyspath

Remarks

This command is global.

-P

Preprocess the source files without generating object code, and send output to file.
This command is global and case-sensitive.

Syntax

-P

-precompile

Precompile a header file from selected source files.

Syntax

-precompile file | dir | ""

The parameters are:

file

If specified, the precompiled header name.

dir

If specified, the directory to store the header file.

""

If "" is specified, write header file to location specified in source code. If neither
argument is specified, the header file name is derived from the source file name.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

The driver determines whether to precompile a file based on its extension. The
statement -precompile filesource is equivalent to -c -o
filesource.

-preprocess

Preprocess the source files. This command is global .

Syntax

-preprocess

-ppopt

Specify options affecting the preprocessed output. The default settings is break.

Syntax

-ppopt keyword [,...]

The arguments for keyword are:

[no]break

Emit file and line breaks. This is the default.

[no]line

Controls whether #line directives are emitted or just comments. The default is
line.

[no]full[path]

Controls whether full paths are emitted or just the base filename. The default is
fullpath.

[no]pragma

Controls whether #pragma directives are kept or stripped. The default is
pragma.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

[no]comment

Controls whether comments are kept or stripped.

[no]space

Controls whether whitespace is kept or stripped. The default is space.

-prefix

Add contents a text file or precompiled header as a prefix to all source files.

Syntax

-prefix file

-stdinc

Use standard system include paths as specified by the environment variable
%MWCIncludes%.

Syntax

-stdinc

-nostdinc

Remarks

 Add this option after all system -I paths.

-U+

Same as the -undefine option.

Syntax

-U+name

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

-undefine

Undefine the specified symbol name. This command is case-sensitive.

Syntax

-u[ndefine] name

-U+name

The parameters are:

name

The symbol name to undefine.

Library and Linking Options
The Library and Linking options are:

• -keepobjects

• -nolink

• -o

-keepobjects

Retains or deletes object files after invoking the linker.

Syntax

-keepobj[ects]

-nokeepobj[ects]

Remarks

Use -keepobjects to retain object files after invoking the linker. Use
-nokeepobjects to delete object files after linking. This command is global.

NOTE Object files are always kept when compiling.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

-nolink

Compile the source files, without linking.

Syntax

-nolink

Remarks

This command is global.

-o

Specify the output filename or directory for storing object files or text output during
compilation, or the the output file if calling the linker.

Syntax

-o file | dir

The parameters are:

file

The output file name.

dir

The directory to store object files or text output.

Remarks

Choose Edit > targetname Settings from the CodeWarrior IDE’s menu bar,
then select the Access Paths settings panel. Enable the Always Search User
Paths option.

Object Code Organization and
Generation Options

The Object Code Organization and Generation options are:

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• -c

• -codegen

• -enum

• -ext

• -strings

-c

Instructs the compiler to compile but not link the object code.

Syntax

-c

Remarks

This option is global.

-codegen

Controls the generation of object code.

Syntax

-codegen

-nocodegen

Remarks

This option is global.

-enum

Specify the default size for enumeration types. Default setting is min.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

-enum keyword

The arguments for keyword are:

int

Use int size for enumerated types.

min

Use minimum size for enumerated types. This is the default.

-ext

Tells the command-line tool the extension to apply to object files.

Syntax

-ext extension

The value of extension is:

extension

The extension to apply to object files. Use these rules to specify the extension:

– Limited to a maximum length of 14-characters

– Extensions specified without a leading period (extension) replace the
source file’s extension. For example, if extension == o, then
source.cpp becomes source.o.

– Extensions specified with a leading period (.extension) are appended to
the object files name. For example, if extension == .o, then source.cpp
becomes source.cpp.o.

Remarks

This command is global. The default setting is no extension.

-strings

Controls how string literals are stored and used.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

-str[ings] keyword[, ...]

The keyword arguments are:

[no]pool

All string constants are stored as a single data object so your program needs one
data section for all of them.

[no]reuse

All equivilent string constants are stored as a single data object so your program
can reuse them. This is the default.

[no]readonly

Make all string constants read-only. This is the default.

Optimization Options
The Optimization options are:

• -factor1

• -factor2

• -factor3

• -inline

• -ipa

• -nofactor1

• -nofactor2

• -nofactor3

• -O

• -O+

• -opt

-factor1

Turns on factorization step 1.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

-factor1

Remarks

To turn off factorization step 1, see -nofactor1.

-factor2

Turns on factorization step 2.

Syntax

-factor2

Remarks

To turn off factorization step 2, see -nofactor2.

-factor3

Turns on factorization step 3.

Syntax

-factor3

Remarks

To turn off factorization step 3, see -nofactor3.

-inline

Specify inline options. Default settings are smart, noauto.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

-inline keyword

The options for keyword are:

off | none

Turn off inlining.

on | smart

Turn on inlining for inline functions. This is the default.

auto

If inline not explicitly specified, auto-inline small functions.

noauto

Do not auto-inline. This is the default auto-inline setting.

deferred

Defer inlining until end of compilation unit. This allows inlining of functions in
both directions.

level=n

Inline functions up to n levels deep. Level 0 is the same as -inline on. For n,
enter 1 to 8 levels. This argument is case-sensitive.

all

Turn on aggressive inlining. This option is the same as -inline on, -inline
auto.

-ipa

Specify Interprocedural Analysis Support (IPA) options.

Syntax

-ipa keyword[,...]

Select the interprocedural analysis level.

The keyword arguments are:

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

function | off

traditional mode (per function optimization)

file

per file optimization (same as -deferered codegen)

-nofactor1

Turns off factorization step 1.

Syntax

-nofactor1

Remarks

To turn on factorization step 1, see -factor1.

-nofactor2

Turns off factorization step 2.

Syntax

-nofactor2

Remarks

To turn on factorization step 2, see -factor2.

-nofactor3

Turns off factorization step 3.

Syntax

-nofactor3

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

To turn on factorization step 3, see -factor3.

-O

Sets optimization settings to -opt level=2.

Syntax

-O

Remarks

Provided for backwards compatibility.

-O+

Controls optimization settings.

Syntax

-O+keyword [,...]

The keyword arguments are:

0

Equivilent to -opt off.

1

Equivilent to -opt level=1.

2

Equivilent to -opt level=2.

3

Equivilent to -opt level=3.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

4

Equivilent to -opt level=4, intrinsics.

p

Equivilent to -opt speed.

s

Equivilent to -opt space.

Remarks

Options can be combined into a single command. Command is case-sensitive.

-opt

Specify code optimization options to apply to object code.

Remarks

-optkeyword [,...]

The keyword arguments are:

off | none

Suppress all optimizations. This is the default.

on

Same as -opt level=2

all | full

Same as -opt speed, level=4, intrinsics, noframe

l[evel]=num

Set a specific optimization level. The options for num are:

– 0 – Global register allocation only for temporary values. Prefix file equivilent:
#pragma optimization_level 0.

– 1 – Adds dead code elimination, branch and arithmetic optimizations,
expression simplification, and peephole optimization. Prefix file equivilent:
#pragma optimization_level 1.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

– 2 – Adds common subexpression elimination, copy and expression
propagation, stack frame compression, stack alignment, and fast floating-
point to integer conversions. Prefix file equivilent: #pragma
optimization_level 2.

– 3 – Adds dead store elimination, live range splitting, loop-invariant code
motion, strength reduction, loop transformations, loop unrolling (with -opt
speed only), loop vectorization, lifetime-based register allocation, and
instruction scheduling. Prefix file pragma equivilent: optimization_level
3.

– 4 – Like level 3, but with more comprehensive optimizations from levels 1
and 2. Prefix file equivilent: #pragma optimization_level 4.

For num options 0 through 4 inclusive, the default is 0.

[no]space

Optimize object code for size. Prefix file equivilent: #pragma
optimize_for_size on.

[no]speed

Optimize object code for speed. Prefix file equivilent: #pragma
optimize_for_size off.

[no]cse | [no]commonsubs

Common subexpression elimination. You can also add #pragma
opt_common_subs to a prefix file.

[no]deadcode

Removal of dead code. Prefix file equivilent: #pragma opt_dead_code.

[no]deadstore

Removal of dead assignments. Prefix file equivilent: #pragma
opt_dead_assignments.

[no]lifetimes

Computation of variable lifetimes. Prefix file equivilent: #pragma
opt_lifetimes.

[no]loop[invariants]

Removal of loop invariants. Prefix file equivilent: #pragma
opt_loop_invariants.

[no]prop[agation]

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Propagation of constant and copy assignments. Prefix file equivilent: #pragma
opt_propagation.

[no]strength

Strength reduction. Reducing multiplication by an array index variable to
addition. Prefix file equivilent: #pragma opt_strength_reduction.

[no]dead

Same as -opt [no]deadcode and [no]deadstore. Prefix file equivilent:
#pragma opt_dead_code on|off and #pragma opt_dead_assignments.

[no]peep[hole]

Peephole optimization. Prefix file equivilent: #pragma peephole.

[no]color[ing]

Register coloring. Prefix file equivilent: #pragma register_coloring.

[no]intrinsics

Inlining of intrinsic functions.

[no]schedule

Perform instruction scheduling.

display | dump

Display complete list of active optimizations.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

76CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

4
Linker

For 56800/E Target specific information about the ELF Linker and Command
Language, see the “Elf Linker and Command Language” Chapter in either: Code
Warrior Development Studio for Freescale 56800/E Hybrid Controllers: DSP56F80x/
DSP56F82x Family Targeting Manual or Code Warrior Development Studio for
Freescale 56800/E Hybrid Controllers: MC56F83xx/DSP5685x Family Targeting
Manual.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

77CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

5
C

The CodeWarrior C programming language closely follows the ISO C Standard (ISO/
IEC 9899:1990). CodeWarrior C also has extensions to work more effectively with the
target platform it generates object code for and to be compatible with other compilers.

This chapter describes these extensions to the ISO C Standard and implementation-
defined behaviors:

• Extensions to Standard C

• Implementation-Defined Behavior

NOTE For 56800/E Target specific information about C, see the “C for
DSP56800” Chapter or “C for DSP56800E” Chapter in either the:
Code Warrior Development Studio for Freescale 56800/E Hybrid
Controllers: DSP56F80x/DSP56F82x Family Targeting Manual or
Code Warrior Development Studio for Freescale 56800/E Hybrid
Controllers: MC56F83xx/DSP5685x Family Targeting Manual

Extensions to Standard C
• Unnamed Arguments in Function Definitions

• C++ Comments

• A # Not Followed by a Macro Argument

• Using an Identifier After #endif

• Using Typecasted Pointers as lvalues

• Inline Functions

• Pascal Calling Conventions

• Character Constants as Integer Values

• Converting Pointers to Types of the Same Size

• Getting Alignment and Type Information at Compile Time

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• Arrays of Zero Length in Structures

• The “D” Constant Suffix

• The __typeof__() and typeof() operators

Unnamed Arguments in Function
Definitions
(ISO C, §6.9.1) The C compiler can accept unnamed arguments in a function
definition.

Listing 5.1 Unnamed Function Arguments

void f(int) {} /* OK if ANSI strict checking is disabled */
void f(int i) {} /* ALWAYS OK */

The compiler allows this extension if ANSI strict checking is disabled:

• in the IDE, use the C/C++ Language Settings panel’s ANSI Strict setting

• on the command line, use the compiler’s -ansi strict option

• in source code, use #pragma ANSI_strict

C++ Comments
(ISO C, §6.4.9) The C compiler can accept C++ comments (//) in source code. C++
comments consist of anything that follows // on a line.

Listing 5.2 Example of a C++ Comment

a = b; // This is a C++ comment

To use this feature, disable the ANSI Strict setting in the C/C++ Language (C only)
Settings Panel.

A # Not Followed by a Macro Argument
(ISO C, §6.10.3) The C compiler can accept # tokens that do not appear before
arguments in macro definitions.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 5.3 Preprocessor Macros Using # Without an Argument

#define add1(x) #x #1 // OK, but probably not what you wanted:
 // add1(abc) creates "abc"#1
#define add2(x) #x "2" // OK: add2(abc) creates "abc2"

To use this feature, disable the ANSI Strict setting in the C/C++ Language (C only)
Settings Panel.

Using an Identifier After #endif
(ISO C, §6.10.1) The C compiler can accept identifier tokens after #endif and
#else. This extension helps you match an #endif statement with its corresponding
#if, #ifdef, or #ifndef statement, as shown here:

#ifdef __MWERKS__
ifndef __cplusplus
 /*
 * . . .
 */
endif __cplusplus
#endif __MWERKS__

To use this feature, disable the ANSI Strict setting in the C/C++ Language (C only)
Settings Panel.

TIP If you enable the ANSI Strict setting (thereby disabling this
extension), you can still match your #ifdef and #endif directives.
Simply put the identifiers into comments, as sown in following
example:

#ifdef __MWERKS__
ifndef __cplusplus
 /*
 * . . .
 */
endif /* __cplusplus */
#endif /* __MWERKS__ */

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Using Typecasted Pointers as lvalues
The C compiler can accept pointers that are typecasted to other pointer types as
lvalues.

Listing 5.4 Example of a Typecasted Pointer as an lvalue

char *cp;
((long *) cp)++; /* OK if ANSI Strict is disabled. */

To use this feature, disable the ANSI Strict setting in the C/C++ Language (C only)
Settings Panel.

Inline Functions
As in C++, the CodeWarrior C compiler allows the inline, __inline__, or
__inline keyword to appear before a function declaration and definition. An inline
keyword specifies to the compiler that it should attempt to replace calls to the function
with the function’s body.

Pascal Calling Conventions
The CodeWarrior C compiler allows the pascal keyword to precede a function
declaration and definition. This keyword specifies to the compiler that it should use
Pascal calling conventions to call this function.

Character Constants as Integer Values
(ISO C, §6.4.4.4) The C compiler lets you use string literals containing 2 to 8
characters to denote 32-bit integer values. Table 5.1 shows examples.

Table 5.1 Integer Values as Character String Constants

Character constant Equivalent hexadecimal integer
value

'ABCD' 0x41424344 (32-bit value)

'ABC' 0x00414243 (32-bit value)

'AB' 0x4142 (16-bit value)

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

You cannot disable this extension, and it has no corresponding pragma or setting in
any panel.

NOTE This feature differs from using multibyte character sets, where a
single character requires a data type larger than 1 byte.

Converting Pointers to Types of the Same
Size
The C compiler allows the conversion of pointer types to integral data types of the
same size in global initializations. Since this type of conversion does not conform to
the ANSI C standard, it is only available if the ANSI Strict setting is disabled in the C/
C++ Language (C only) Settings Panel.

Listing 5.5 Converting a Pointer to a Same-sized Integral Type

char c;
long arr = (long)&c; // accepted (not ISO C)

Getting Alignment and Type Information at
Compile Time
The C compiler has two built-in functions that return information about a data type’s
byte alignment and its data type.

The function call __builtin_align(typeID) returns the byte alignment used for
the data type typeID. This value depends on the target platform for which the compiler
is generating object code.

The function call __builtin_type(typeID) returns an integral value that describes
the data type typeID. This value depends on the target platform for which the compiler
is generating object code.

Arrays of Zero Length in Structures
If you disable the ANSI Strict setting in the C/C++ Language (C only) Settings Panel,
the compiler lets you specify an array of no length as the last item in a structure.
Listing 5.6 shows an example. You can define arrays with zero as the index value or
with no index value.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 5.6 Using Zero-length Arrays

struct listOfLongs {
 long listCount;
 long list[0]; // OK if ANSI Strict is disabled, [] is OK, too.
}

The “D” Constant Suffix
When the compiler finds a “D” immediately after a floating point constant value, it
treats that value as data of type double.

The __typeof__() and typeof() operators
With the __typeof__() operator, the compiler lets you specify the data type of an
expression. Listing 5.7 shows an example.

__typeof__(expression)

where expression is any valid C expression or data type. Because the compiler
translates a __typeof__() expression into a data type, you can use this expression
wherever a normal type would be specified.

Like the sizeof() operator, __typeof__() is only evaluated at compile time, not
at runtime.

Listing 5.7 Example of __typeof__() and typeof() Operators

char *cp;
int *ip;
long *lp;

__typeof__(*ip) i; /* equivalent to "int i;" */
__typeof__(*lp) l; /* equivalent to "long l;" */

#pragma gcc_extensions on
typeof(*cp) c; /* equivalent to "char c;" */

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Implementation-Defined Behavior
The ISO C Standard cannot practically define every possible aspect of a compiler
implementation. It does, however, list issues that must be defined by the
implementation of the compiler. This section describes aspects of the CodeWarrior C
compiler that the ISO C standard refers that are not covered in the rest of this manual:

• Diagnostic Messages

• Identifiers

Diagnostic Messages
(ISO C, §6.3.1)In the CodeWarrior IDE, the CodeWarrior C compiler reports error
and warning messages in the Errors and Warnings window. See the IDE User’s
Guide for more information on viewing and nagivating messages in this window. On
the command-line, the CodeWarrior C compiler reports error and warning messages to
the standard error file.

Identifiers
(ISO C, §6.4.2) The CodeWarrior C language allows identifiers to have unlimited
length. However, only the first 255 characters are significant for internal and external
linkage.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

84CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

6
Tool Performance

CodeWarrior compilers can “precompile” a header file to speed up translation of
source code. Precompiling a header file that is included often in other source files will
reduce the time the compiler uses to translate source code.

Some options for CodeWarrior compilers and linkers affect how much time these tools
use. By managing these options so that they are used only when they are needed, you
can reduce the time needed to build your software.

Precompiled Header Files
• When to Use Precompiled Files

• What Can be Precompiled

• Precompiling C++ Source Code

• Using a Precompiled Header File

• Preprocessing and Precompiling

• Pragma Scope in Precompiled Files

• Precompiling a File in the CodeWarrior IDE

• Updating a Precompiled File Automatically

When to Use Precompiled Files
Source code files in a project typically use many header files. Typically, the same
header files are included by each source code file in a project, forcing the compiler to
read these same header files repeatedly during compilation. To shorten the time spent
compiling and recompiling the same header files, CodeWarrior compilers can
precompile a header file, allowing it to be subsequently preprocessed much faster than
a regular text source code file.

For example, as a convenience, programmers often create a header file that contains
commonly-used preprocessor definitions and includes frequently-used header files.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

This header file is then included by each source code file in the project, saving the
programmer some time and effort while writing source code.

This convenience comes at a cost, though. While the programmer saves time typing,
the compiler does extra work, preprocessing and compiling this header file each time it
compiles a source code file that includes it.

This header file can be precompiled so that, instead of preprocessing multiple
duplications, the compiler needs to load just one precompiled header file.

What Can be Precompiled
A file to be precompiled does not have to be a header file (.h or .hpp files, for
example), but it must meet these requirements:

• The file must be a source code file in text format.

You cannot precompile libraries or other binary files.

• A C source code file that will be automatically precompiled must have .pch file
name extension.

• Precompiled files must have a .mch file name extension.

• The file to be precompiled does not have to be in a CodeWarrior IDE project,
although a project must be open to precompile the file.

The CodeWarrior IDE uses the build target settings to precompile a file.

• The file must not contain any statements that generate data or executable code.

However, the file may define static data.

• Precompiled header files for different build targets are not interchangeable.

• A source file may include only one precompiled file.

• A file may not define any items before including a precompiled file.

Typically, a source code file includes a precompiled header file before anything
else (except comments).

Precompiling C++ Source Code
The CodeWarrior compiler has these requirements for precompiling C++ source code:

• C source code may not include precompiled C++ header files and C++ source
code may not include precompiled C header files.

• C++ source code can contain inline functions and constant variable declarations
(const)

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• A C++ source code file that will be automatically precompiled must have a
.pch++ file name extension.

Using a Precompiled Header File
Although a precompiled file is not a text file, you use it like you would a regular
header file. To include a precompiled header file in a source code file, use the
#include directive.

NOTE Unlike regular header files in text format, a source code file may
include only one precompiled file.

TIP Instead of explicitly including a precompiled file in each source code
file with the #include directive, put the #include directive in the
Prefix Text field of the C/C++ Preprocessor settings panel and
make sure that the Use prefix in precompiled headers option is
on. If the Prefix File field already specifies a file name, include the
precompiled file in the prefix file with the #include directive.

Listing 6.1 and Listing 6.2 show an example.

Listing 6.1 Header File that Creates a Precompiled Header File for C

// sock_header.pch
// When compiled or precompiled, this file will generate a
// precompiled file named "sock_precomp.mch"

#pragma precompile_target "sock_precomp.mch"

#define SOCK_VERSION "SockSorter 2.0"
#include "sock_std.h"
#include "sock_string.h"
#include "sock_sorter.h"

Listing 6.2 Using a Precompiled File

// sock_main.c
// Instead of including all the files included in
// sock_header.pch, we use sock_precomp.h instead.
//

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

// A precompiled file must be included before anything else.

#include "sock_precomp.mch"

int main(void)
{
 // ...
 return 0;
}

Preprocessing and Precompiling
When precompiling a header file, the compiler preprocesses the file too. In other
words, a precompiled file is preprocessed in the context of its precompilation, not in
the context of its compilation.

The preprocessor also tracks macros used to guard #include files to reduce parsing
time. Thus, if a file’s contents are surrounded with:

#ifndef FOO_H

#define FOO_H

 // file contents

#endif

The compiler will not load the file twice, saving some small amount of time in the
process.

Pragma Scope in Precompiled Files
Pragma settings inside a precompiled file affect only the source code within that file.
The pragma settings for an item declared in a precompiled header file (such as data or
a function) are saved then restored when the precompiled header file is included.

For example, the source code in Listing 6.3 specifies that the variable xxx is a far
variable.

Listing 6.3 Pragma Settings in a Precompiled Header

// my_pch.pch

// Generate a precompiled header named pch.mch.
#pragma precompile_target "my_pch.mch"

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

#pragma far_data on
extern int xxx;

The source code in Listing 6.4 includes the precompiled version of Listing 6.3.

Listing 6.4 Pragma Settings in an Included Precompiled File

// test.c
#pragma far_data off // far data is disabled

#include "my_pch.mch" // this precompiled file sets far_data on

// far_data is still off but xxx is still a far variable

The pragma setting in the precompiled file is active within the precompiled file, even
though the source file including the precompiled file has a different setting.

Precompiling a File in the CodeWarrior IDE
To precompile a file in the CodeWarrior IDE, use the Precompile command in the
Project menu:

1. Start the CodeWarrior IDE.

2. Open or create a project.

3. Choose or create a build target in the project.

The settings in the project’s active build target will be used when preprocessing
and precompiling the file you want to precompile.

4. Open the source code file to precompile.

See “What Can be Precompiled” on page 85 for information on what a
precompiled file may contain.

5. From the Project menu, choose Precompile.

A save dialog box appears.

6. Choose a location and type a name for the new precompiled file.

The IDE precompiles the file and saves it.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

7. Click Save.

The save dialog box closes, and the IDE precompiles the file you opened, saving it
in the folder you specified, giving it the name you specified.

You may now include the new precompiled file in source code files.

Updating a Precompiled File Automatically
Use the CodeWarrior IDE’s project manager to update a precompiled header
automatically. The IDE creates a precompiled file from a source code file during a
compile, update, or make operation if the source code file meets these criteria:

• The text file name ends with .pch (for C header files).

• The file is in a project’s build target.

• The file uses the precompile_target pragma.

• The file, or files it depends on, have been modified.

See the CodeWarrior IDE User Guide for information on how the IDE
determines that a file must be updated.

The IDE uses the build target’s settings to preprocess and precompile files.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

90CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

7
Optimization

CodeWarrior build tools offer features to reduce the size of object code, improve a
program’s execution speed, and often do both at the same time. Compiler
optimizations rearrange, add, or remove instructions to reduce size or improve
performance.

This chapter describes how to take advantage of these optimizations:

• Optimization Considerations

• Inlining

• Profiling

• String Literals

• Optimizations

Optimization Considerations
There are several issues to take into consideration when selecting optimizations. Code
can be optimizated for size or for speed, and there are optimizations that could effect
the size and the performance of the compiler. It is important to understand the full
effects of the optimizations. For example, inlining will decrease the overhead of
making function calls. However, if too many functions are called the resulting
executable could be too large to run on the target platform.

Inlining also effects the ability to debug a program. Programs are optimally debugged
at optimization level 0, and with no additional optimization options enabled. Users
should keep in mind that optimization could result in incorrect data being displayed
while debugging, and stepping through functions could also seem incorrect.

Finally, the performance of the compiler could also be negatively effected by enabling
optimizations. If there are many optimizations enabled, the compile time could
increase because of the extra time needed to process the optimizations.

All of these issues should be taken in account when selecting optimizations.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Inlining
When inlining is enabled certain function calls are replaced with the function code.
Inlining function optimizes for speed, as there is no call. However, overall code may
be larger if function code is repeated in several places.

The inlining of a function is based on the complexity of the function and the settings of
several compiler options: IPA, Inline Depth, Auto Inline and Bottom up inline. These
options are discussed in “IDE Settings Panels” on page 16.

Profiling
For more details about profiling see the CodeWarrior Development Studio IDE 5.5
User’s Guide Profiler Supplement and the “Profiler” Chapter in your target specific
Targeting Manual.

String Literals
The compiler and linker manage character strings so that they occupy less space in the
object code and executable file.

String literals are:

• Pooling Strings

• Reusing Strings

Pooling Strings
The Pool Strings setting in the C/C++ Language Panel controls how the compiler
stores string constants.

If you enable this setting, the compiler collects all string constants into a single data
object so that your program needs only one TOC (table of content) entry for all of
them. While this decreases the number of TOC entries in your program, it also
increases your program size because it uses a less efficient method to store the address
of the string.

If you disable this setting, the compiler creates a unique data object and TOC entry for
each string constant.

Enable this setting if your program is large and has many string constants.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

The Pool Strings setting corresponds to the pragma pool_strings. To check this
setting, use __option (pool_strings). By default, this setting is disabled. See also
“pool_strings” on page 174 and “Checking Pragma Settings” on page 116.

Reusing Strings
The Reuse Strings setting in the C/C++ Language Panel controls how the compiler
stores string literals.

If you enable this setting, the compiler stores each string literal separately. Otherwise,
the compiler stores only one copy of identical string literals. This means if you change
one of the strings, you change them all. For example, look at this code:

char *str1="Hello";

char *str2="Hello"; // two identical strings

*str2 = 'Y';

This setting helps you save memory if your program contains identical string literals
which you do not modify. If you enable the Reuse Strings setting, the strings are stored
separately. After changing the first character, str1 is still Hello, but str2 is Yello.

If you disable the Reuse Strings setting, the two strings are stored in one memory
location because they are identical. After changing the first character, both str1 and
str2 are Yello, which is counterintuitive and can create bugs that are difficult to
locate. The Reuse Strings setting corresponds to the pragma dont_reuse_strings. To
check this setting, use __option (dont_reuse_strings). By default, this setting is
enabled, so strings are not reused. See also “dont_reuse_strings” on page 165 and
“Checking Pragma Settings” on page 116.

Optimizations
The following is a collection of optimization types and examples of how the resulting
generated code is affected:

• Dead Code Elimination

• Expression Simplification

• Common Subexpression Elimination

• Copy Propagation

• Dead Store Elimination

• Live Range Splitting

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• Loop-Invariant Code Motion

• Strength Reduction

• Loop Unrolling

• M56800E Specific Optimizations

Dead Code Elimination

Listing 7.1 Dead code elimination, before optimization

void func(void)
{
 if (0)
 {
 otherfunc1();
 }

 otherfunc2();
}

Listing 7.2 Dead code elimination, after optimization

void func_optimized(void)
{
 otherfunc2();
}

Expression Simplification

Listing 7.3 Expression simplification, before optimization

#define MY_OFFSET 4

void func(int* result1, int* result2, int* result3, int* result4, int
x)
{
 *result1 = x + 0;
 *result2 = x * 2;
 *result3 = x - x;

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

 *result4 = 1 + x + MY_OFFSET;
}

Listing 7.4 Expression simplification, after optimization

#define MY_OFFSET 4

void func_optimized(int* result1, int* result2, int* result3, int*
result4, int x)
{
 *result1 = x;
 *result2 = x << 2;
 *result3 = 0;
 *result4 = 5 + x;
}

Common Subexpression Elimination

Listing 7.5 Common subexpression elimination, before optimization

void func(int* vec, int size, int x, int y, int value)
{
 if (x * y < size)
 {
 vec[x * y] = value;
 }
}

Listing 7.6 Common subexpression elimination, after optimization

void func_optimized(int* vec, int size, int x, int y, int value)
{
 int temp;
 temp = x * y;
 if (temp < size)
 {
 vec[temp] = value;
 }
}

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Copy Propagation

Listing 7.7 Copy propagation, before optimization

void func(int* a, int x)
{
 int i;
 int j;
 j = x;
 for (i = 0; i < j; i++)
 {
 a[i] = j;
 }
}

Listing 7.8 Copy propagation, after optimization

void func_optimized(int* a, int x)
{
 int i;
 int j;
 j = x;
 for (i = 0; i < x; i++)
 {
 a[i] = x;
 }
}

Dead Store Elimination

Listing 7.9 Dead store elimination, before optimization

void func(int x, int y)
{
 x = y * y;
 otherfunc1(y);
 x = getresult();
 otherfunc2(y);
}

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 7.10 Dead store elimination, after optimization

void func_optimized(int x, int y)
{
 otherfunc1(y);
 x = getresult();
 otherfunc2(y);
}

Live Range Splitting

Listing 7.11 Live range splitting, before optimization

void func(int x, int y)
{
 int a;
 int b;
 int c;

 a = x * y;
 otherfunc(a);

 b = x + y;
 otherfunc(b);

 c = x - y;
 otherfunc(c);
}

Listing 7.12 Live range splitting, after optimization

void func_optimized(int x, int y)
{
 int temp;

 temp = x * y;
 otherfunc(temp);

 temp = x + y;
 otherfunc(temp);

 temp = x - y;

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

 otherfunc(temp);
}

Loop-Invariant Code Motion

Listing 7.13 Loop-invariant code motion, before optimization

void func(float* vec, int max, float val)
{
 float circ;
 int i;
 for (i = 0; i < max; ++i)
 {
 circ = val * 2 * PI;
 vec[i] = circ;
 }
}

Listing 7.14 Loop-invariant code motion, after optimization

void func_optimized(float* , int max, float val)
{
 float circ;
 int i;
 circ = val * 2 * PI;
 for (i = 0; i < max; ++i)
 {
 vec[i] = circ;
 }
}

Strength Reduction

Listing 7.15 Strength reduction, before optimization

void func(int* vec, int max, int fac)
{
 int i;
 for (i = 0; i < max; ++i)
 {

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

 vec[i] = fac * i;
 }
}

Listing 7.16 Strength reduction, after optimization

void func_optimized(int* vec, int max, int fac)
{
 int i;
 int temp = 0;
 for (i = 0; i < max; ++i)
 {
 vec[i] = temp;
 temp = temp + fac;
 }
}

Loop Unrolling

Listing 7.17 Loop unrolling, before optimization

const int MAX = 100;
void func(int* vec)
{
 int i;
 for (i = 0; i < MAX; ++i)
 {
 otherfunc(vec[i]);
 }
}

Listing 7.18 Loop unrolling, after optimization

const int MAX = 100;
void func_optimized(int* vec)
{
 int i;
 for (i = 0; i < MAX;)
 {
 otherfunc(vec[i]);
 ++i;

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

 otherfunc(vec[i]);
 ++i;
 }
}

M56800E Specific Optimizations
This section provides techniques, programming style suggestions, and information to
maximize the efficiency of the Metrowerks C compiler for the 56800/E hybrid
controllers.

Overview of the 56800E Architecture
The 56800/E processors are member of the 56800x family of hybrid micro-controllers.
The 56800x instruction set is targeted for efficient micro-controller code generation
and DSP (Digital Signal Processing). The 56800/E, are hybrid processor, because they
both have a micro-controller and DSP.

Micro-controller instructions include:

• bit manipulation instructions

• flexible branching instructions

• absolute (global) addressing modes to maximize control code density.

DSP features include:

• single cycle MAC (Multiply-Accumulate)

• separate address register file

• separate data/program memory spaces,

• multiple addressing modes, including pointer post-update addressing modes.

The C compiler attempts to target the post-update addressing modes in loops. In this
chapter, we describe the programming style that promotes the selection of the post-
update addressing modes.

The 56800x hybrid family is a native 16-bit machine--data and addresses are 16 bits
wide. The 56800/E extends the address bus width to 24-bits (called the large data
model), allowing a wider range of data addresses, but at a cost of performance and
code density. In this chapter, we discuss the techniques used to minimize the cost of
enabling the large data model.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

NOTE Although ANSI-C data types are fully supported, in this chapter, we
show that the best code is generated when the programmer favors the
native data type size (16-bits).

Working with the 56800E Memory Models
The Metrowerks 56800E C Compiler supports large and small program and data
memory models as shown in Table 7.1. The small data model is more code efficient.
However, sometimes the application requires a larger data address space.

Table 7.1 Code and Data Memory Ranges

The large data memory model allows data to be placed in memory at addresses greater
than the 16-bit address limitation of the small data model. The large data memory
model is selected via a preference panel selection in the CodeWarrior IDE. This
selection informs the compiler that global and static data should be addressed with the
24-bit variants of the absolute addressing modes of the device. Also in the large
memory model, pointers are treated as 24-bit quantities when moved from register to
register, memory to register, or register to memory. For information on how the large
memory model is selected, see the Freescale 56800/E Hybid Controllers:
MC56F83xx/DSP5685x Family Targeting Manual.

One likely scenario in an embedded programming environment is that the total static
and global data size, that is, the total size of data objects that the compiler accesses
with absolute addressing modes (X:xxxx orX:xxxxxx addressing modes) will
comfortably reside within the 16-bit data addressing range. However, the heap

Section Small Data Model Large Data Model

Size (KB) Range
(Word
Address)

Size (MB) Range
(Word
Address)

CODE
(P:memory)

 128 0 - 0xFFFF 1 0 - 0x7FFFF

DATA
(X:memory)

 128 0 - 0xFFFF 32 0 - 0x7FFFF

DATA
(X:memory)
character data

 64 0 - 0xFFFF 16 0 - 0x7FFFF

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

(dynamically allocated data memory) or the stack (local, automatic data memory) may
require extended addressing as this data may extend beyond the 16-bit address range.

To optimize the program size, use the CodeWarrior IDE targets settings panel
M56800E Processor:Large Data Model: Globals live in lower memory panel
option in conjunction with the large data memory model. The Globals live in lower
memory panel option reverts the absolute addressing modes to the small data model
for static and global variables, while using the large memory model for any address
pointers or local variables. Thus, for static and global variables, the efficiency of the
small data model is retained even for programs where the total data size may exceed
the 16-bit addressing range.

Listing 7.19 shows the code generation differences between the large and small data
model. In this example, the code performs a bubble sort on an array of integers. At
maximum optimization, the code runs in 579 cycles in the small data memory model.
The code takes 760 cycles using the large data memory model. When the the large data
memory model and Globals live in lower memory option is selected, the code runs in
729 cycles. The difference in the cycle count of the two large data model runs is due to
the way global variables are addressed. The Globals live in lower memory option
forces the access of the global variable “next” to be there as it would be for the small
data model.

Listing 7.19 Example 1: Memory Model Comparison Code

int vector[] = { 3,7,6,1,2,5 };
int next;

int main()
{
int i=0, j=0;
int sz = sizeof(vector)/sizeof(int);

for (i=0; i<sz; i++){
for(j=0; j<sz-i; j++){

if (vector[j]>vector[j+1]) {
next=vector[j];
vector[j]=vector[j+1];
vector[j+1]=next;
}

}
}

}
}

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

If the Globals live in lower memory option is selected, be sure to locate the .data
and .bss sections in lower memory. Dynamically allocated memory and the stack
may be located in either lower or upper memory for the large data model.

Targeting Post-Update Addressing Modes in Loops
Post-update addressing modes are available for many 56800E instructions. At
optimization level 2 and above, the compiler attempts to locate register-based address
expressions which change by a linear amount for each iteration through a loop. If such
an expression is located and certain conditions are met, the compiler may replace the
address update expression with a post-update addressing mode that is performed
concurrently with the move or arithmetic operation. Such a transformation is called
‘strength reduction’ in compiler terminology and means replacing an instruction
operation with a cheaper (fewer cycles or words) instruction. Address expressions are
normally either address registers that have been loaded directly with the addresses of
objects (variables) or address registers holding the calculated address of array
elements. Array indices which vary by a regular, linear amount for each iteration
through a loop are called ‘induction variables.’ Many times induction variables are
completely eliminated when their function is replaced by a post-update addressing
mode.

Listing 7.20 Example 2: Post-Update Addressing Modes

X:(Rn)+ Address is incremented by 1 (2 for move.l)
X:(Rn)- Address is decremented by 1 (2 for move.l)
X:(Rn)+N Address is incremented by value in N register

Some programming guidelines which promote the successful targeting of the post-
update addressing mode are:

• The address expression must be within a loop.

Table 7.2 Example 1 at Maximum Optimization

Small Data Model Large Data Model Large Data Model and
Global Live in Lower
Memory

579 cycles 760 cycles 729 cycles

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• The address expressions must be register based, therefore, global pointer
variables are usually not targeted for strength reduction since they may be
accessed with absolute addressing modes. Sometimes, it is useful to load the
address of a global array into a local pointer variable to make the address
expression more obvious to the compiler.

• The address expression should be executed each iteration of the loop. Address
expressions embedded in ‘if-then-else’ blocks will not be targeted for post-update
addressing.

• Induction variables must be defined at one point in the loop and must vary
linearly from its previous value.

In Listing 7.21, a simple loop that calculates the sum of elements in a local array is
shown. For this example, the induction variable ‘i’ is completely eliminated because:

• a DO loop instruction has been generated, eliminating the need for a test on ‘i’ to
determine if the loop has ended

• the use of ‘i’ in the calculation of the array addresses has been eliminated, in
favor of a post-update addressing mode (see line 11 in Listing 7.21)

Listing 7.21 Example 3: Successful Strength Reduction

int i;
int sum=0;
int arr[] = { 13,14,18,3,7,0,1,4,11,20 };
int sz = sizeof(arr)/sizeof(int);
for (i=0; i < sz; i++)

sum += arr[i];

printf ("Sum is %d\n",sum);

Assembly output:

(1) adda #<10,SP ;allocate stack
(2) move.w #<0,B ;sum = 0
(3) adda #-9,SP,R1 ;&arr[0]->R1
(4) moveu.w #F47,R0 ;temp F47->R0
(5) do #<10,>_L8_0 ;compiler generated init loop
(6) move.w X:(R0)+,A ;initialize arr[]
(7) move.w A1,X:(R1)+
(8)_L8_0:
(9) adda #-9,SP,R0 ;&arr[0]->R0
(10) do #<10,>_L8_1 ;for loop
(11) move.w X:(R0)+,A ;arr[i]->A
(12) add A,B ;sum = arr[i]+sum
(13)_L8_1:

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

(14) adda #<2,SP ;printf call setup
(15) moveu.w #@lb(F54),N ;string temp to stack
(16) move.w N,X:(SP)
(17) move.w B1,X:(SP-1) ;sum to stack
(18) jsr >Fprintf ;call printf
(19) suba #<2,SP ;restore stack

Listing 7.22 shows a case where strength reduction of the address expression was not
possible, mainly because the access to the array is conditionally executed in the loop.
Also, the induction variable ‘i’ is used in the ‘if’ test, but this would not normally
prevent a post-update transformation from occurring.

Listing 7.22 Example 4: Array Update In Conditional Block

for (i=0; i < sz; i++)
if (i & 1)

sum += arr[i];

Assembly output:

 (1) do #<10,>_L8_1 ;for loop
 (2) brclr #1,Y0,<_L8_2 ;if (i & 1)
 (3) move.w X:(R0),A ;arr[i]->Av
 (4) add A,B ;sum = arr[i]+sum
 (5)_L8_2:
 (6) adda #<1,R0 ; &arr = &arr + 1;
 (7) add.w #<1,Y0 ; i = i + 1
 (8) nop
 (9)_L8_1:

In Listing 7.23 another situation is shown where strength reduction will fail to find a
post-update opportunity. This is when the loop or induction variable is multiply
defined in a loop.

NOTE This also kills the hardware do loop as the compiler cannot determine
the static loop count.

Listing 7.23 Example 5: Induction Variable is Multiply Defined

for (i=0; i < sz; i++)
sum += arr[i++];

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Assembly output:

 (1) move.w #<0,A ; i=0
 (2)_L8_1:
 (3) move.w A1,B ; i -> temp
 (4) add.w #<1,B ; temp++
 (5) move.w A1,N ; temp++ -> N
 (6) adda #-9,SP,R0 ; &arr[0] -> R0
 (7) move.w X:(R0+N),A ; arr[temp++] -> A
 (8) add A,Y0 ; sum = arr[i++] + sum
 (9) move.w B1,A ; temp++ -> i
 (10)add.w #<1,A ; i = i + 1
 (11)cmp.w #<10,A
 (12)blt <_L8_1 ; i < 10 ?

Listing 7.24 demonstrates a simple delay line loop that is structured so post-update
addressing is impossible. The final store to memory in the loop is a memory plus
displacement addressing mode, move.w A1,X:(R0+1), which doesn’t allow post-
update addressing. The loop written as is takes approximately 29 cycles and 9 words
for NTAPS=6.

Listing 7.24 Example 6: Loop Structure Doesn’t Allow Post-Update Addressing

 for (ii = NTAPS - 2; ii >= 0; ii--) {
 z[ii + 1] = z[ii];
 }
Assembly output:
 (1) do #<5,>_L12_1 ; for ()
 (2) move.w Y0,R0 ; ii -> R0
 (3) adda R3,R0 ; &z[0] + i
 (4) move.w X:(R0),A ; z[ii] -> A
 (5) move.w A1,X:(R0+1) ; z[ii] -> z[ii + 1]
 (6) sub.w #<1,Y0 ; ii--
 (7)_L12_1:

The loop in Listing 7.24 may be re-written slightly as shown in Listing 7.25 to allow
for much more efficient processing. The idea is to try to get an instruction that has a
post-update variant as the final load or store in the loop. This loop executes in 17
cycles and 8 words.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 7.25 Example 7: Loop Re-written to Allow Post-Update Addressing

int *p1 = &z[NTAPS-1];
for (ii = NTAPS - 2; ii >= 0; ii--) {
*p1-- = z[ii];
}

Assembly output:
 (1) tfra R1,R3 ;&z[NTAPS-1] -> R3
 (2) adda #-5,SP,R0 ;&z[NTAPS-2] -> R0
 (3) tfra R0,R2 ;R0 -> R2
 (4) do #<5,>_L9_1 ;for ()
 (5) move.w X:(R2)-,B ;z[ii] -> B
 (6) move.w B1,X:(R3)- ;B -> z[ii+1]
 (7)_L9_1:

The Effects of Casting on Code Quality
The 56800x hybrid family is a native 16-bit architecture. Type casting to and from 16-
bit data types requires extra instruction words and cycles. Use 16-bit types (int, short,
unsigned int, unsigned short) whenever possible to minimize to program memory
required for the application. Also be aware that ANSI-C requires implicit promotion of
integral types for arithmetic operations and this may cause implicit type casting. Of
course, favoring 16-bit data types may cause an increase in the total data size of an
application. The trade off between program and data memory will have to be judged
for each application. In general, if program memory is the limiting resource, favor 16-
bit types. If data memory is the limiting resource, then using 8-bit data types where
possible may be preferred.

Casting ints to char or long types are usually the least costly in terms of words and
cycles. Since accumulators (A,B,C,D registers in the 56800E) are the only registers
capable of holding 32-bit quantities, they must be used for long operations.
Accumulators are composed of two individually addressable 16-bit parts, the MSP or
most significant portion and the LSP or least significant portion. The MSP is often
treated as a 16-bit register containing an int or short sized quantity (16-bits). An int to
long cast requires an asr16 instruction to move the MSP to the LSP of the accumulator.

Listing 7.26 Example 8: Casting an integer to a long data type

int ls;
long ll;

ll = (long)ls;

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

move.w X:(SP-2),A;
asr16 A,A
move.l A10,X:(SP-4)

Bytes or char variables are stored as portions of integer sized registers. The 56800E
does not contain 8-bit registers. An int to char cast requires an explicit sign extension
(sxt.b) of the integer to properly format the register so that the sign bit of the char is
extended into the entire word. This is required for proper arithmetic operations on the
char since arithmetic in C occurs on integers by definition. Also, the 56800E only
performs 16-bit and 32-bit arithmetic.

Listing 7.27 Example 9:Casting an int to a char data type

char lc;
int ls;

lc = (char)ls;

Assembly output:
move.w X:(SP-2),A
sxt.b A,A
move.b A1,X:(SP)

Chars that are converted to int or long first require a sign extension of the byte into an
integer value. If the char is converted to a long, an addition asr16 is required to convert
to a 32-bit value.

Listing 7.28 Example 10: Casting a char to long

long ll;
char lc;

ll = (long)lc;

Assembly output:
moveu.b X:(SP),A
sxt.b A,A
asr16 A,A
move.l A10,X:(SP-4)

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

It should be clear now that casting causing runtime penalties in terms of code size and
cycles. Sometimes the perceived benefit of using shorter data types to save data
memory results in runtime costs.

The 56800E has a unique model for handling pointers to character data. Although the
data memory is organized by words, that is, each address points to a word (two bytes)
of data, individual bytes within a word can be still be addressed. The compiler handles
this addressing invisibly, but the programmer should be aware of the costs of
converting from byte pointers to word pointers and vice versa.

A byte address is generated by the compiler when the programmer chooses to use
character data to represent an object. Strings are character data by default in the
56800E compiler and are addressed with byte pointers. Special instructions in the
56800E instruction set expect to see and operate on byte pointer values. A word
pointer may be converted to a byte pointer by multiplying the word address by two.
Similarly, a byte address is converted to a word address by dividing the byte address
by two. When a byte pointer is cast to a word pointer, an explicit, runtime conversion
of the pointer quantity is performed. The cost is a one word, one cycle penalty to bit
shift the address value to the left, that is, multiply by two, to convert to a byte pointer.
The cost is the same to convert to a word pointer, except the shift is to the right,
effectively dividing by two. The void pointer is a byte pointer since the void pointer
should be able to represent any data type, including chars. Since there is a runtime
penalty for converting pointer types, casts back and forth should be limited for
efficient C programs. This may be a factor when the void pointer is used to point to
generic data and cast to the proper type at runtime. Listing 7.29 shows the effect of
casting byte and word pointers.

Listing 7.29 Example 11: Casting Byte and Word Pointers

void * pvoid;
int vint;
int * pint;
char *pchar;

pint = (int *)&vint;
adda #-5,SP,R0
move.w R0,X:(SP-6)

pvoid = (void *)pint;
moveu.w X:(SP-6),R0
asla R0,R0
move.w R0,X:(SP-4)

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

pchar = (char *)pint;
move.w X:(SP-6),R0
asla R0,R0
move.w R0,X:(SP-7)

pint = (int *)pvoid;
moveu.w X:(SP-4),R0
lsra R0
move.w R0,X:(SP-6)

Miscellaneous Techniques
There are other several minor techniques to be aware of when writing the most
efficient C code for the compiler.

Initialize local arrays and structures at declaration time, if possible. Local arrays and
structures are initialized optimally by the compiler.

Functions with a large number of parameters will probably have to pass some
parameters on the stack causing costly memory accesses. Make sure that frequently
called functions pass their parameters in registers. For information on the parameter
passing rules for the 56800E C Compiler see the Freescale 56800/E Hybid
Controllers: MC56F83xx/DSP5685x Family Targeting Manual.

Forcing enums as integers (C/C++ Language Panel, “Enums Always Ints”) may yield
better code since integers are usually handled more efficiently.

Loading frequently used global variables into local temporary variables sometimes has
a positive effect on code size and performance, since accessing variables through
registers is more efficient that absolute addressing modes.

As an illustration of the final point in the list above, the code in Listing 7.30 executes
in 98 cycles and 20 program memory words. The same function is performed by the
code in Listing 7.31, but it executes in 57 cycles and 13 program memory words. A
temporary local variable is used in processing instead of the global variable. Fewer
absolute addressing instructions account for the difference.

Listing 7.30 Example 12: Global Structure Example

#define ARRAY_SIZE 5

static struct s1
{

unsigned char value_a;
unsigned char value_b;

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

unsigned char value_c;
} s_s1[ARRAY_SIZE];

unsigned int r1;

int main()
{

int i;
for (i = 0; i < ARRAY_SIZE; i++)
{
r1 += s_s1[i].value_a;
r1 += s_s1[i].value_b;
r1 += s_s1[i].value_c;
}
return (r1);

}

Listing 7.31 Example 13: Modified Global Structure Example

int main()
{

int i;
unsigned int local_var;

local_var = r1;
for (i = 0; i < ARRAY_SIZE; i++)
{

local_var += s_s1[i].value_a;
local_var += s_s1[i].value_b;
local_var += s_s1[i].value_c;

}

r1 = local_var;

return (r1);
}

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

111CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

8
Inline Assembly Language
and Intrinsics

For 56800/E Target specific information about the Inline Assembly Language and
Intrinsics, see the “Inline Assembly Language and Intrinsics” Chapter in either: Code
Warrior Development Studio for Freescale 56800/E Hybrid Controllers: DSP56F80x/
DSP56F82x Family Targeting Manual or Code Warrior Development Studio for
Freescale 56800/E Hybrid Controllers: MC56F83xx/DSP5685x Family Targeting
Manual.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

112CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

9
Predefined Symbols

The compiler preprocessor has prefedined macros that describe the compile-time
environment and properties of the target processor.

This chapter describes how to use these predefined symbols and lists them:

• Using Predefined Symbols

• Version Symbol

• Date and Time Symbol

• IDE Symbol

• Name Symbols

• Object Code Organization and Generation Symbol

• C Symbols

Using Predefined Symbols
Predefined symbols are in the preprocessor, available at compile-time only.

Version Symbol
Version symbols:

• __MWERKS__

__MWERKS__

Defined with the version of the CodeWarrior compiler.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

CodeWarrior compilers issued after 1995 define this macro with the compiler’s
version. For example, if the compiler version is 3.2, the value of __MWERKS__ is
0x3200.

This macro is defined as 1 if the compiler was issued before the CodeWarrior CW7
that was released in 1995.

Date and Time Symbol
Date and time symbol:

• __DATE__

• __TIME__

__DATE__

Defined as the date during compilation.

During compilation, the compiler defines this macro with a character string
representation of the current date.

__TIME__

Defined as the time of day during compilation.

During compilation, the compiler defines this macro with a character string
representation of the current time.

IDE Symbol
IDE symbol:

• __ide_target("target_name")

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

__ide_target("target_name")

Returns 1 if target_name is the same as the active build target in the
CodeWarrior IDE’s active project. Returns 0 otherwise.

Name Symbols
Name symbols:

• __FILE__

• __LINE__

__FILE__

The name of the source code file being compiled.

During compilation, the compiler defines this macro with a character string
representation of the name of the file being compiled.

__LINE__

The number of the line of source code being compiled.

During compilation, this macro is defined as an integer value representing the number
of line of source code being compiled.

Object Code Organization and
Generation Symbol

Object code organization and generation symbol:

• __profile__

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

__profile__

Defined as 1 when generating object code that works with a profiler. Undefined
otherwise.

C Symbols
C symbol:

• __STDC__

__STDC__

Defined as 1 when compiling ISO Standard C source code, undefined otherwise.

The compiler defines this macro as 1 when the compiler’s settings are configured to
restrict the compiler to translate source code that conforms to the ISO C Standard. The
compiler does not define this macro otherwise.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

116CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

10
Pragmas

The #pragma preprocessor directive specifies option settings to the compiler.

This chapter describes how to use pragmas and lists the pragmas that the compiler
recognizes:

• Using Pragmas

• Pragma Scope

• Standard C and C++ Conformance Pragmas

• Language Translation and Extensions Pragmas

• Errors, Warnings, and Diagnostic Control Pragmas

• Preprocessing and Precompilation Pragmas

• Library and Linking Control Pragmas

• Object Code Organization and Generation Pragmas

• Optimization Pragmas

• Profiler Pragmas

Using Pragmas
Pragma settings may be manipulated to control the compiler’s code generation. The
compiler has additional capabilities to manage pragma settings themselves:

• Checking Pragma Settings

• Saving and Restoring Pragma Settings

• Determining Which Settings Are Saved and Restored

• Illegal Pragmas

Checking Pragma Settings
The preprocessor function __option() returns the state of pragma settings at
compile-time. The syntax is

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

__option(setting-name)

where setting-name is the name of a pragma that accepts the on, off, and reset
options.

If setting-name is on, __option(setting-name) returns 1. If setting-name is off,
__option(setting-name) returns 0. If setting-name is not the name of a pragma,
__option(setting-name) returns false. If setting-name is the name of a pragma
that does not accep the on, off, and reset options, the compiler issues a warning
message.

Listing 10.1 shows an example.

Listing 10.1 Using the __option() preprocessor function

#if __option(ANSI_strict)
#include "portable.h" /* Use the portable declarations. */
#else
#include “custome.h” /* Use the specialized declarations. */
#endif

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table 10.1 Preprocessor Setting Names for __option()

This argument... Corresponds to the…

always_inline Pragma always_inline.

ANSI_strict ANSI Strict setting in the C/C++ Language (C
only) Settings Panel and pragma ANSI_strict.

auto_inline Auto-Inline setting of the Inlining menu in the C/
C++ Language (C only) Settings Panel and
pragma auto_inline.

check_inline_sp_effects Pragma check_inline_sp_effects.

const_strings Pragma const_strings.

defer_codegen Pragma defer_codegen.

dollar_identifiers Pragma dollar_identifiers.

dont_inline Don’t Inline setting in the C/C++ Language (C
only) Settings Panel and pragma dont_inline.

dont_reuse_strings Reuse Strings setting in the C/C++ Language (C
only) Settings Panel and pragma
dont_reuse_strings.

enumsalwaysint Enums Always Int setting in the C/C++ Language
(C only) Settings Panel and pragma
enumsalwaysint.

explicit_zero_data Pragma explicit_zero_data.

factor1 Pragma factor1.

factor2 Pragma factor2.

factor3 Pragma factor3.

extended_errorcheck Extended Error Checking setting in the C/C++
Language (C only) Settings Panel and pragma
extended_errorcheck.

fullpath_prepdump Pragma fullpath_prepdump.

initializedzerodata Pragma initializedzerodata.

inline_bottom_up Pragma inline_bottom_up.

interrupt Pragma interrupt.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

line_prepdump Pragma line_prepdump.

mpwc_newline Map newlines to CR setting in the C/C++
Language (C only) Settings Panel and pragma
mpwc_newline.

mpwc_relax Relaxed Pointer Type Rules setting in the C/C++
Language (C only) Settings Panel and pragma
mpwc_relax.

nofactor1 Pragma nofactor1.

nofactor2 Pragma nofactor2.

nofactor3 Pragma nofactor3.

only_std_keywords ANSI Keywords Only setting in the C/C++
Language (C only) Settings Panel and pragma
only_std_keywords.

opt_common_subs Pragma opt_common_subs.

opt_dead_assignments Pragma opt_dead_assignments.

opt_dead_code Pragma opt_dead_code.

opt_lifetimes Pragma opt_lifetimes.

opt_loop_invariants Pragma opt_loop_invariants.

opt_propagation Pragma opt_propagation.

opt_strength_reduction Pragma opt_strength_reduction.

opt_strength_reduction_strict Pragma opt_strength_reduction_strict.

opt_unroll_loops Pragma opt_unroll_loops.

optimize_for_size Pragma optimize_for_size.

packstruct Pragma pactstruct.

peephole Pragma peephole.

pool_strings Pool Strings setting in the C/C++ Language (C
only) Settings Panel and pragma pool_strings.

profile Pragma profile.

readonly_strings Make String Read Only setting in the M56800
Processor settings panel and pragma
readonly_strings.

This argument... Corresponds to the…

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

require_prototypes Require Function Prototypes setting in the C/C++
Language (C only) Settings Panel and pragma
require_prototypes.

reverse_bitfields Pragma reverse_bitfields.

simple_prepdump Pragma simple_prepdump.

suppress_init_code Pragma suppress_init_code.

suppress_warnings Pragma suppress_warnings.

syspath_once Pragma syspath_once.

unsigned_char Use Unsigned Chars setting in the C/C++
Language (C only) Settings Panel and pragma
unsigned_char.

warn_any_ptr_int_conv Pragma warn_any_ptr_int_conv.

warn_emptydecl Empty Declarations setting in the C/C++
Language (C only) Settings Panel and pragma
warn_emptydecl.

warn_extracomma Extra Commas setting in the C/C++ Preprocessor
Panel and pragma warn_extracomma.

warn_filenamecaps Pragma warn_filenamecaps.

warn_filenamecaps_system Pragma warn_filenamecaps_system.

warn_illegal_instructions Pragma warn_illegal_instructions.

warn_illpragma Illegal Pragmas setting in the panel and pragma
warn_illpragma.

warn_impl_f2i_conv Pragma warn_impl_f2i_conv.

warn_impl_i2f_conv Pragma warn_impl_i2f_conv.

warn_impl_s2u_conv Pragma warn_impl_s2u_conv.

warn_implicitconv Implicit Arithmetic Conversions setting in the C/
C++ Preprocessor Panel and pragma
warn_implicitconv.

warn_largeargs Pragma warn_largeargs.

warn_missingreturn Pragma warn_missingreturn

warn_no_side_effect Pragma warn_no_side_effect.

This argument... Corresponds to the…

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Saving and Restoring Pragma Settings
There are some occasions when you would like to apply pragma settings to a piece of
source code independently from the settings in the rest of the source file. For example,
a function might require unique optimization settings that should not be used in the
rest of the function’s source file.

Remembering which pragmas to save and restore is tedious and error-prone.
Fortunately, the compiler has mechanisms that save and restore pragma setings at
compile time. All pragma settings and some individual pragma settings may be saved
at one point in a compilation unit (a source code file and the files that it includes),
changed, then restored later in the same compilation unit. Pragma settings cannot be
saved in one source code file then restored in another unless both source code files are
included in the same compilation unit.

Pragmas push and pop save and restore, respectively, most pragma settings in a
compilation unit. Pragmas push and pop may be nested to unlimited depth. Listing
10.2 shows an example.

warn_notinlined Non-Inlined Functions setting in the C/C++
Preprocessor Panel and pragma
warn_notinlined.

warn_padding Pragma warn_padding.

warn_possunwant Possible Errors setting in the C/C++ Preprocessor
Panel and pragma warn_possunwant.

warn_ptr_int_conv Pragma warn_ptr_int_conv

warn_resultnotused Pragma warn_resultnotused.

warn_undefmacro Pragma warn_undefmacro.

warn_unusedarg Unused Arguments setting in the C/C++
Preprocessor Panel and pragma
warn_unusedarg.

warn_unusedvar Unused Variables setting in the C/C++
Preprocessor Panel and pragma
warn_unusedvar.

warning_errors Treat Warnings As Errors setting in the C/C++
Preprocessor Panel and pragma
warning_errors.

This argument... Corresponds to the…

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 10.2 Using push and pop to save and restore pragma settings

/* Settings for this file. */
#pragma opt_unroll_loops on
#pragma optimize_for_size off
void fast_func_A(void)
{
/* ... */
}

/* Settings for slow_func(). */
#pragma push /* Save file settings. */
#pragma optimization_size 0
void slow_func(void)
{
/* ... */
}
#pragma pop /* Restore file settings. */

void fast_func_B(void)
{
/* ... */
}

Pragmas that have a reset option perform the same actions as pragmas push and
pop, but apply to a single pragma. A pragma’s on and off settings save the pragma’s
current setting before changing it to the new setting. A pragma’s reset option
restores the pragma’s setting. The on/off and reset options may be nested to an
unlimited depth. Listing 10.3 shows an example.

Listing 10.3 Using the reset option to save and restore a pragma setting

/* Setting for this file. */
#pragma opt_unroll_loops on

void fast_func_A(void)
{
/* ... */
}

/* Setting for smallslowfunc(). */
#pragma opt_unroll_loops off
void small_func(void)
{
/* ... */

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

}
/* Restore previous setting. */
#pragma opt_unroll_loops reset

void fast_func_B(void)
{
/* ... */
}

Determining Which Settings Are Saved and
Restored
Not all pragma settings are saved and restored by pragmas push and pop. Pragmas
that do not change compiler settings are not affected by push and pop. For example,
pragma message cannot be saved and restored.

Listing 10.4 shows an example that checks if the ANSI_strict pragma setting is
saved and restored by pragmas push and pop.

Listing 10.4 Testing if pragmas push and pop save and restore a setting

/* Preprocess this source code. */
#pragma ANSI_strict on
#pragma push
#pragma ANSI_strict off
#pragma pop
#if __option(ANSI_strict)
#error "Saved and restored by push and pop."
#else
#error "Not affected by push and pop."
#endif

Illegal Pragmas
If you enable the Illegal Pragmas setting, the compiler issues a warning when it
encounters a pragma it does not recognize. For example, the pragma statements in
Listing 10.5 generate warnings with the Illegal Pragmas setting enabled.

Listing 10.5 Illegal Pragmas

#pragma near_data off // WARNING: near_data is not a pragma.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

#pragma ANSI_strict select // WARNING: select is not defined
#pragma ANSI_strict on // OK

The Illegal Pragmas setting corresponds to the pragma warn_illpragma,
described at on page 139 To check this setting, use __option
(warn_illpragma).

See Checking Pragma Settings for information on how to use this directive.

Pragma Scope
The scope of a pragma setting is limited to a compilation unit (a source code file and
the files that it includes).

At the beginning of compilation unit, the compiler uses its default settings. The
compiler then uses the settings specified by the CodeWarrior IDE’s build target or in
command-line options.

The compiler uses the setting in a pragma beginning at the pragma’s location in the
compilation unit. The compilers continues using this setting:

• until another instance of the same pragma appears later in the source code

• until an instance of pragma pop appears later in the source code

• until the compiler finishes translating the compilation unit

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Standard C and C++ Conformance
Pragmas

The 56800x has the following pragmas:

• ANSI_strict

• only_std_keywords

ANSI_strict

Controls the use of non-standard language features.

Syntax

#pragma ANSI_strict on | off | reset

Remarks

If you enable the pragma ANSI_strict, the compiler generates an error if it
encounters any of the following common ANSI extensions:

• C++-style comments. Listing 10.6 shows an example.

Listing 10.6 C++ Comments

a = b; // This is a C++-style comment

• Unnamed arguments in function definitions. Listing 10.7 shows an example.

Listing 10.7 Unnamed Arguments

void f(int) {} /* OK, if ANSI Strict is disabled */
void f(int i) {} /* ALWAYS OK */

• A # token that does not appear before an argument in a macro definition. Listing
10.8 shows an example.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 10.8 Using # in Macro Definitions

#define add1(x) #x #1
 /* OK, if ANSI_strict is disabled,
 but probably not what you wanted:
 add1(abc) creates "abc"#1 */

#define add2(x) #x "2"
 /* ALWAYS OK: add2(abc) creates "abc2" */

• An identifier after #endif. Listing 10.9 shows an example.

Listing 10.9 Identifiers After #endif

#ifdef __MWERKS__
 /* . . . */
#endif __MWERKS__ /* OK, if ANSI_strict is disabled */

#ifdef __MWERKS__
 /* . . . */
#endif /*__MWERKS__*/ /* ALWAYS OK */

This pragma corresponds to the ANSI Strict setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option (ANSI_strict), described
in Checking Pragma Settings. By default, this pragma is disabled.

only_std_keywords

Controls the use of ISO keywords.

Syntax

#pragma only_std_keywords on | off | reset

Remarks

The C/C++ compiler recognizes additional reserved keywords. If you are writing code
that must follow the ANSI standard strictly, enable the pragma
only_std_keywords.

This pragma corresponds to the ANSI Keywords Only setting in the C/C++
Language (C only) Settings Panel. To check this setting, use __option

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

(only_std_keywords), described in Checking Pragma Settings. By
default, this pragma is disabled.

Language Translation and Extensions
Pragmas

The 56800x has the following pragmas:

• gcc_extensions

• mpwc_newline

• mpwc_relax

gcc_extensions

Controls the acceptance of GNU C language extensions.

Syntax

#pragma gcc_extensions on | off | reset

Remarks

If you enable this pragma, the compiler accepts GNU C extensions in C source code.
This includes the following non-ANSI C extensions:

• Initialization of automatic struct or array variables with non-const values.
Listing 10.10 provides an example.

Listing 10.10 Example of Array Initialization with a Non-const Value

int foo(int arg)
{
 int arr[2] = { arg, arg+1 };
}

• sizeof(void) == 1

• sizeof(function-type) == 1

• Limited support for GCC statements and declarations within expressions. Listing
10.11 provides an example.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 10.11 Example of GCC Statements and Declarations Within Expressions

#pragma gcc_extensions on
#define POW2(n) ({ int i,r; for(r=1,i=n; i>0; --i) r<<=1; r;})

int main()
{
 return POW2(4);
}

This feature only works for expressions in function bodies.

• Macro redefinitions without a previous #undef.

• The GCC keyword typeof.

This pragma does not correspond to any setting in the C/C++ Language (C only)
Settings Panel. To check the global optimizer, use __option
(gcc_extensions), described in Checking Pragma Settings. By default,
this pragma is disabled.

mpwc_newline

Controls the use of newline character convention used by the Apple MPW C.

Syntax

#pragma mpwc_newline on | off | reset

Remarks

If you enable this pragma, the compiler uses the MPW conventions for the '\n' and
'\r' characters. Otherwise, the compiler uses the Metrowerks C/C++ conventions
for these characters.

In MPW, '\n' is a Carriage Return (0x0D) and '\r' is a Line Feed (0x0A). In
Metrowerks C/C++, they are reversed: '\n' is a Line Feed and '\r' is a Carriage
Return.

If you enable this pragma, use ANSI C/C++ libraries that were compiled when this
pragma was enabled.

If you enable this pragma and use the standard ANSI C/C++ libraries, you cannot read
and write '\n' and '\r' properly. For example, printing '\n' brings you to the
beginning of the current line instead of inserting a newline.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

This pragma corresponds to the Map newlines to CR setting in the C/C++ Language
(C only) Settings Panel. To check this setting, use __option (mpwc_newline),
described in Checking Pragma Settings. By default, this pragma is disabled.

Enabling this setting is not useful for the DSP56800 target.

mpwc_relax

Controls the compatibility of the char* and unsigned char* types.

Syntax

#pragma mpwc_relax on | off | reset

Remarks

If you enable this pragma, the compiler treats char* and unsigned char* as
the same type. This setting is especially useful if you are using code written before the
ANSI C standard. This old source code frequently used these types interchangeably.

This setting has no effect on C++ source code.

You can use this pragma to relax function pointer checking:

#pragma mpwc_relax on
extern void f(char *);
extern void(*fp1)(void *) = &f; // error but allowed
extern void(*fp2)(unsigned char *) = &f; // error but allowed

This pragma corresponds to the Relaxed Pointer Type Rules setting in the C/C++
Language (C only) Settings Panel. To check this setting, __option
(mpwc_relax), described in Checking Pragma Settings. By default, this
pragma is disabled.

Errors, Warnings, and Diagnostic
Control Pragmas

The 56800x has the following pragmas:

• check_c_src_pipeline

• check_inline_asm_pipeline

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• check_inline_sp_effects

• extended_errorcheck

• require_prototypes

• suppress_init_code

• suppress_warnings

• unsigned_char

• unused

• warn_any_ptr_int_conv

• warn_emptydecl

• warn_extracomma

• warn_filenamecaps

• warn_filenamecaps_system

• warn_illpragma

• warn_impl_f2i_conv

• warn_impl_i2f_conv

• warn_impl_s2u_conv

• warn_implicitconv

• warn_largeargs

• warn_missingreturn

• warn_no_side_effect

• warn_notinlined

• warn_padding

• warn_padding

• warn_possunwant

• warn_ptr_int_conv

• warn_resultnotused

• warn_undefmacro

• warn_unusedarg

• warn_unusedvar

• warning_errors

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

check_c_src_pipeline

This pragma controls detection of a pipeline conflict in the C language code.

Compatibility

This pragma is not compatible with the DSP56800 compiler, but it is compatible with
the DSP56800E compiler.

Syntax

#pragma check_c_src_pipeline [off|conflict]

Remarks

Use this pragma for extra validation of generated C code. The compiler already checks
for pipeline conflicts; this pragma tells the compiler to add another check for pipeline
conflicts. Should this pragma detect a pipeline conflict, it issues an error message.

NOTE The pipeline conflicts that this pragma finds are rare. Should this
pragma report such a conflict with your code, you should report the
matter to Metrowerks.

check_inline_asm_pipeline

This pragma controls detection of a pipeline conflicts and stalls in assembly language
source code.

Compatibility

This pragma is not compatible with the DSP56800 compiler, but it is compatible with
the DSP56800E compiler.

Syntax

#pragma check_inline_asm_pipeline
[off|conflict|conflict_and_stall]

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

Use this pragma to detect a source-code, assembly language pipeline conflict or stall,
then generate an error message. In some cases, the source code can be a mix of
assembly language and C language.

The option conflict only detects and generates error messages for pipeline
conflict.

The option conflict_and_stall detects and generates error messages for
pipeline conflicts and stalls.

check_inline_sp_effects

Generates a warning if the user specifies an inline assembly instruction which
modifies the SP by a run-time dependent amount.

Syntax

#pragma check_inline_sp_effects on | off | reset

Remarks

If this pragma is not specified off, instructions which modify the SP by a run-time
dependent amount are ignored. In this case, stack-based references may be silently
wrong. This pragma is added for compatibility with existing code which may have
run-time modifications of the SP already. However, known compile times
inconsistencies in SP modifications are always flagged as errors, since the SP must be
correct to return from functions.

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel.
To check this setting, use __option (check_inline_sp_effects),
described in Checking Pragma Settings. By default, this pragma is disabled.

extended_errorcheck

Controls the issuing of warnings for possible unintended logical errors.

Syntax

#pragma extended_errorcheck on | off | reset

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

If you enable this pragma, the C compiler generates a warning (not an error) if it
encounters some common programming errors.

This pragma corresponds to the Extended Error Checking setting in the C/C++
Warnings Panel. To check this setting, use __option
(extended_errorcheck), described in Checking Pragma Settings. By
default, this pragma is disabled.

require_prototypes

Controls whether or not the compiler should expect function prototypes.

Syntax

#pragma require_prototypes on | off | reset

Remarks

This pragma only works for non-static functions.

If you enable this pragma, the compiler generates an error if you use a function that
does not have a prototype. This pragma helps you prevent errors that happen when you
use a function before you define it or refer to it.

This pragma corresponds to the Require Function Prototypes setting in the C/C++
Language (C only) Settings Panel. To check this setting, use __option
(require_prototypes), described in Checking Pragma Settings. By
default, this pragma is disabled.

suppress_init_code

Controls the suppression of static initialization object code.

Syntax

#pragma suppress_init_code on | off | reset

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

If you enable this pragma, the compiler does not generate any code for static data
initialization.

WARNING! Beware when using this pragma because it can produce erratic or
unpredictable behavior in your program.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option (suppress_init_code),
described in Checking Pragma Settings. By default, this pragma is disabled.

suppress_warnings

Controls the issuing of warnings.

Syntax

#pragma suppress_warnings on | off | reset

Remarks

If you enable this pragma, the compiler does not generate warnings, including those
that are enabled.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option (suppress_warnings),
described in Checking Pragma Settings. By default, this pragma is disabled.

unsigned_char

Controls whether or not declarations of type char are treated as unsigned char.

Syntax

#pragma unsigned_char on | off | reset

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

If you enable this pragma, the compiler treats a char declaration as if it were an
unsigned char declaration.

NOTE If you enable this pragma, your code might not be compatible with
libraries that were compiled when the pragma was disabled. In
particular, your code might not work with the ANSI libraries
included with CodeWarrior.

This pragma corresponds to the Use Unsigned Chars setting in the C/C++ Language
(C only) Settings Panel. To check this setting, use __option (unsigned_char),
described in Checking Pragma Settings. By default, this setting is disabled.

unused

Controls the suppression of warnings for variables and parameters that are not
referenced in a function.

Syntax

#pragma unused (var_name [, var_name]...)

Remarks

This pragma suppresses the compile time warnings for the unused variables and
parameters specified in its argument list. You can use this pragma only within a
function body, and the listed variables must be within the scope of the function.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 10.12 Example of Pragma unused() in C

#pragma warn_unusedvar on // See pragma warn_unusedvar.
#pragma warn_unusedarg on // See pragma warn_unusedarg.

static void ff(int a)
{
 int b;
#pragma unused(a,b) // Compiler does not warn
 // that a and b are unused
 // . . .
}

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. By default, this pragma is disabled.

warn_any_ptr_int_conv

Controls if the compiler generates a warning when an integral type is explicitly
converted to a pointer type or vice versa.

Syntax

#pragma warn_any_ptr_int_conv on | off | reset

Remarks

This pragma is useful to identify potential pointer portability issues. An example is
shown in Listing 10.13.

Listing 10.13 Example of warn_any_ptr_int_conv

#pragma warn_ptr_int_conv on
short i, *ip

void foo() {
 i = (short)ip; // WARNING: integral type is not large
 // large enough to hold pointer
}

#pragma warn_any_ptr_int_conv on

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

void bar() {
 i = (int)ip; // WARNING: pointer to integral
 // conversion
 ip = (short *)i; // WARNING: integral to pointer
 // conversion
}

See also warn_ptr_int_conv.

This pragma corresponds to the Pointer/Integral Conversions setting in the C/C++
Warnings Panel. To check this setting, use __option
(warn_any_ptr_int_conv), described in Checking Pragma Settings. By
default, this pragma is off.

warn_emptydecl

Controls the recognition of declarations without variables.

Syntax

#pragma warn_emptydecl on | off | reset

Remarks

If you enable this pragma, the compiler displays a warning when it encounters a
declaration with no variables.

Listing 10.14 Example of Pragma warn_emptydecl

int ; // WARNING
int i; // OK

This pragma corresponds to the Empty Declarations setting in the C/C++ Warnings
Panel. To check this setting, use __option (warn_emptydecl), described in
Checking Pragma Settings. By default, this pragma is disabled.

warn_extracomma

Controls the recognition of superfluous commas.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

#pragma warn_extracomma on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when it encounters an extra
comma.

Listing 10.15 Example of Pragma warn_extracomma

enum {l,m,n,o,}; // WARNING: When the warning is enabled, it will
 // generate :

This pragma corresponds to the Extra Commas setting in theC/C++ Warnings Panel.
To check this setting, use __option (warn_extracomma), described in
Checking Pragma Settings. By default, this pragma is disabled.

warn_filenamecaps

Controls the recognition of conflicts involving case-sensitive filenames within user
includes.

Syntax

#pragma warn_filenamecaps on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when an include directive
capitalizes a filename within a user include differently from the way the filename
appears on a disk. It also recognizes 8.3 DOS filenames in Windows when a long
filename is available. This pragma helps avoid porting problems to operating systems
with case-sensitive filenames.

By default, this pragma only checks the spelling of user includes such as the
following:

#include "file"

For more information on checking system includes, see warn_filenamecaps_system.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel.
To check this setting, use __option (warn_filenamecaps), described in
Checking Pragma Settings. By default, this pragma is disabled.

warn_filenamecaps_system

Controls the recognition of conflicts involving case-sensitive filenames within system
includes.

Syntax

#pragma warn_filenamecaps_system on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when an include directive
capitalizes a filename within a system include differently from the way the filename
appears on a disk. It also recognizes 8.3 DOS filenames in Windows when a long
filename is available. This pragma helps avoid porting problems to operating systems
with case-sensitive filenames.

To check the spelling of system includes such as the following:

#include <file>

use this pragma along with the warn_filenamecaps pragma.

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel.
To check this setting, use __option (warn_filenamecaps_system),
described in Checking Pragma Settings. By default, this pragma is disabled.

warn_illpragma

Controls the recognition of illegal pragma directives.

Syntax

#pragma warn_illpragma on | off | reset

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

If you enable this pragma, the compiler displays a warning when it encounters a
pragma it does not support. For more information about this warning, see “Illegal
Pragmas” on page 123.

This pragma corresponds to the Illegal Pragmas setting in the C/C++ Warnings
Panel. To check this setting, use __option (warn_illpragma), described in
Checking Pragma Settings. By default, this setting is disabled.

warn_impl_f2i_conv

Controls the issuing of warnings for implicit float-to-int conversions.

Syntax

#pragma warn_impl_f2i_conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning for implicitly converting
floating-point values to integral values. Listing 10.16 provides an example.

Listing 10.16 Example of Implicit float-to-int Conversion

#pragma warn_implicit_conv on
#pragma warn_impl_f2i_conv on

float f;
signed int si;

int main()
{
 si = f; // WARNING

#pragma warn_impl_f2i_conv off
 si = f; // OK
}

Use this pragma along with the warn_implicitconv pragma.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel.
To check this setting, use __option (warn_impl_f2i_conv), described in
Checking Pragma Settings. By default, this pragma is enabled.

warn_impl_i2f_conv

Controls the issuing of warnings for implicit int-to-float conversions.

Syntax

#pragma warn_impl_i2f_conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning for implicitly converting
integral values to floating-point values. Listing 10.17 provides an example.

Listing 10.17 Example of Implicit int-to-float Conversion

#pragma warn_implicit_conv on
#pragma warn_impl_i2f_conv on

float f;
signed int si;

int main()
{
 f = si; // WARNING

#pragma warn_impl_i2f_conv off
 f = si; // OK

}

Use this pragma along with the warn_implicitconv pragma.

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel.
To check this setting, use __option (warn_impl_i2f_conv), described in
Checking Pragma Settings. By default, this pragma is disabled.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

warn_impl_s2u_conv

Controls the issuing of warnings for implicit conversions between the signed int
and unsigned int data types.

Syntax

#pragma warn_impl_s2u_conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning for implicitly converting
either from signed int to unsigned int or vice versa. Listing 10.18 provides
an example.

Listing 10.18 Example of Implicit Conversions Between Signed int and unsigned
int

#pragma warn_implicit_conv on
#pragma warn_impl_s2u_conv on

signed int si;
unsigned int ui;

int main()
{
 ui = si; // WARNING
 si = ui; // WARNING

#pragma warn_impl_s2u_conv off
 ui = si; // OK
 si = ui; // OK
}

Use this pragma along with the warn_implicitconv pragma.

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel.
To check this setting, use __option (warn_impl_s2u_conv), described in
Checking Pragma Settings. By default, this pragma is enabled.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

warn_implicitconv

Controls the issuing of warnings for all implicit arithmetic conversions.

Syntax

#pragma warn_implicitconv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning for all implicit arithmetic
conversions when the destination type might not represent the source value. Listing
10.19 provides an example.

Listing 10.19 Example of Implicit Conversion

#pragma warn_implicitconv on

float f;
signed int si;
unsigned int ui;

int main()
{
 f = si; // OK
 si = f; // WARNING
 ui = si; // WARNING
 si = ui; // WARNING
}

The default setting for warn_impl_i2fconf pragma is disabled. Use the
warn_implicitconv pragma along with the warn_impl_i2f_conv pragma
to generate the warning for the int-to-float conversion.

This pragma corresponds to the Implicit Arithmetic Conversions setting in the C/
C++ Warnings Panel. To check this setting, use __option
(warn_implicitconv), described in Checking Pragma Settings. By
default, this pragma is disabled.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

warn_largeargs

Controls the issuing of warnings for passing non-integer numeric values to unSyntaxd
functions.

Syntax

#pragma warn_largeargs on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning if you attempt to pass a non-
integer numeric value, such as a float or long long, to an unSyntaxd function when the
require_prototypes pragma is disabled.

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel.
To check this setting, use __option (warn_largeargs), described in
Checking Pragma Settings. By default, this pragma is disabled.

warn_missingreturn

Issues a warning when a function that returns a value is missing a return statement.

Syntax

#pragma warn_missingreturn on | off | reset

Remarks

An example is shown in Listing 10.20.

Listing 10.20 Example of warn_missingreturn pragma

#pragma warn_missingreturn on

int foo()
{
 // no return statement in foo()
} // generates a warning: return value expected

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

This pragma corresponds to the Missing ‘return’ Statements option in the C/C++
Warnings Panel. To check this setting, use __option (warn_missingreturn),
described in Checking Pragma Settings.

By default, this pragma is set to the same value as __option
(extended_errorcheck).

warn_no_side_effect

Controls the issuing of warnings for redundant statements.

Syntax

#pragma warn_no_side_effect on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when it encounters a
statement that produces no side effect. To suppress this warning, cast the statement
with (void). Listing 10.21 provides an example.

Listing 10.21 Example of Pragma warn_no_side_effect

#pragma warn_no_side_effect on
void foo(int a,int b)
{
 a+b; // WARNING: expression has no side effect
 (void)(a+b); // void cast suppresses warning
}

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel.
To check this setting, use __option (warn_no_side_effect), described in
Checking Pragma Settings. By default, this pragma is disabled.

warn_notinlined

Controls the issuing of warnings for functions the compiler cannot inline.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

#pragma warn_notinlined on | off | reset

Remarks

The compiler issues a warning for non-inlined inline function calls.

This pragma corresponds to the Non-Inlined Functions setting in the C/C++
Warnings Panel. To check this setting, use __option (warn_notinlined),
described in Checking Pragma Settings. By default, this pragma is disabled.

warn_padding

Controls the issuing of warnings for data structure padding.

Syntax

#pragma warn_padding on | off | reset

Remarks

If you enable this pragma, the compiler warns about any bytes that were implicitly
added after an ANSI C struct member to improve memory alignment.

This pragma corresponds to the Pad Bytes Added setting in the C/C++ Warnings
Panel. To check this setting, use __option (warn_padding), described in
Checking Pragma Settings. By default, this setting is disabled.

warn_possunwant

Controls the recognition of possible unintentional logical errors.

Syntax

#pragma warn_possunwant on | off | reset

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

If you enable this pragma, the compiler checks for common errors that are legal C/
C++ but might produce unexpected results, such as putting in unintended semicolons
or confusing = and ==.

This pragma corresponds to the Possible Errors setting in the C/C++ Warnings
Panel. To check this setting, use __option (warn_possunwant), described in
Checking Pragma Settings. By default, this setting is disabled.

warn_ptr_int_conv

Controls the recognition the conversion of pointer values to incorrectly-sized integral
values.

Syntax

#pragma warn_ptr_int_conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning if an expression attempts to
convert a pointer value to an integral type that is not large enough to hold the pointer
value.

Listing 10.22 Example for #pragma warn_ptr_int_conv

#pragma warn_ptr_int_conv on

char *my_ptr;
char too_small = (char)my_ptr; // WARNING: char is too small

See also “warn_any_ptr_int_conv,”.

This pragma corresponds to the Pointer / Integral Conversions setting in the C/C++
Warnings Panel. To check this setting, use __option (warn_ptr_int_conv),
described in Checking Pragma Settings. By default, this setting is disabled.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

warn_resultnotused

Controls the issuing of warnings when function results are ignored.

Syntax

#pragma warn_resultnotused on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when it encounters a
statement that calls a function without using its result. To prevent this, cast the
statement with (void). Listing 10.23 provides an example.

Listing 10.23 Example of Function Calls with Unused Results

#pragma warn_resultnotused on

extern int bar();
void foo()
{
 bar(); // WARNING: result of function call is not used
 (void)bar(); // ‘void’ cast suppresses warning
}

This pragma does not correspond to any panel setting in the C/C++ Warnings Panel.
To check this setting, use __option (warn_resultnotused), described in
Checking Pragma Settings. By default, this pragma is disabled.

warn_undefmacro

Controls the detection of undefined macros in #if / #elif conditionals.

Syntax

#pragma warn_undefmacro on | off | reset

Remarks

Listing 10.24 provides an example.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 10.24 Example of Undefined Macro

#if UNDEFINEDMACRO == 4 // WARNING: undefined macro
 // ’UNDEFINEDMACRO’ used in
 // #if/#elif conditional

Use this pragma to detect the use of undefined macros (especially expressions) where
the default value 0 is used.

NOTE A warning is only issued when a macro is evaluated. A short-
circuited “&&” or “||” test or unevaluated “?:” will not produce a
warning.

This pragma corresponds to the Undefined Macro in #if setting in the C/C++
Warnings Panel. To check this setting, use __option (warn_undefmacro),
described in Checking Pragma Settings. By default, this pragma is off.

warn_unusedarg

Controls the recognition of unreferenced arguments.

Syntax

#pragma warn_unusedarg on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when it encounters an
argument you declare but do not use. To suppress this warning in C++ source code,
leave an argument identifier out of the function parameter list.

This pragma corresponds to the Unused Arguments setting in the C/C++ Warnings
Panel. To check this setting, use __option (warn_unusedarg), described in
Checking Pragma Settings. By default, this pragma is disabled.

warn_unusedvar

Controls the recognition of unreferenced variables.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

#pragma warn_unusedvar on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when it encounters a variable
you declare but do not use.

This pragma corresponds to the Unused Variables setting in the C/C++ Warnings
Panel. To check this setting, use __option (warn_unusedvar), described in
Checking Pragma Settings. By default, this pragma is disabled.

warning_errors

Controls whether or not warnings are treated as errors.

Syntax

#pragma warning_errors on | off | reset

Remarks

If you enable this pragma, the compiler treats all warnings as though they were errors
and does not translate your file until you resolve them.

This pragma corresponds to the Treat All Warnings as Errors setting in the C/C++
Warnings Panel. To check this setting, use __option (warning_errors),
described in Checking Pragma Settings. By default, this pragma is disabled.

Preprocessing and Precompilation
Pragmas

The 56800x has the following pragmas:

• dollar_identifiers

• fullpath_prepdump

• mark

• notonce

• once

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• pop, push

• syspath_once

dollar_identifiers

Controls use of dollar signs ($) in identifiers.

Syntax

#pragma dollar_identifiers on | off | reset

Remarks

If you enable this pragma, the compiler accepts dollar signs ($) in identifiers.
Otherwise, the compiler issues an error if it encounters anything but underscores,
alphabetic, and numeric characters in an identifier.

This pragma does not correspond to any panel setting. To check this setting, use the
__option (dollar_identifiers), described in Checking Pragma
Settings. By default, this pragma is disabled.

fullpath_prepdump

Shows the full path of included files in preprocessor output.

Syntax

#pragma fullpath_prepdump on | off | reset

Remarks

If you enable this pragma, the compiler shows the full paths of files specified by the
#include directive as comments in the preprocessor output. Otherwise, only the file
name portion of the path appears.

This pragma does not correspond to any panel setting. To check this setting, use the
__option (fullpath_prepdump), described in Checking Pragma
Settings. By default, this pragma is disabled.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

mark

Adds an item to the Function pop-up menu in the IDE editor.

Syntax

#pragma mark itemName

Remarks

This pragma adds itemName to the source file’s Function pop-up menu. If you open
the file in the CodeWarrior Editor and select the item from the Function pop-up
menu, the editor brings you to the pragma. Note that if the pragma is inside a function
definition, the item does not appear in the Function pop-up menu.

If itemName begins with “-”, a menu separator appears in the IDE’s Function pop-up
menu:

#pragma mark -

This pragma does not correspond to any setting in the C/C++ Language (C only)
Settings Panel. By default, this pragma is disabled.

notonce

Controls whether or not the compiler lets included files be repeatedly included, even
with #pragma once on.

Syntax

#pragma notonce

Remarks

If you enable this pragma, include statements can be repeatedly included, even if
you have enabled #pragma once on. For more information, see “once” on page
153.

This pragma does not correspond to any setting in the C/C++ Language (C only)
Settings Panel. By default, this pragma is disabled.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

once

Controls whether or not a header file can be included more than once in the same
source file.

Syntax

#pragma once [on]

Remarks

Use this pragma to ensure that the compiler includes header files only once in a source
file.

There are two versions of this pragma: #pragma once and #pragma once on.
Use #pragma once in a header file to ensure that the header file is included only
once in a source file. Use #pragma once on in a header file or source file to insure
that any file is included only once in a source file.

This pragma does not correspond to any setting in the C/C++ Language (C only)
Settings Panel. By default, this pragma is disabled.

pop, push

Save and restore pragma settings.

Syntax

#pragma push

#pragma pop

Remarks

The pragma push saves all the current pragma settings. The pragma pop restores all
the pragma settings that resulted from the last push pragma. For example, see Listing
10.25.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 10.25 push and pop Example

#pragma peephole on
#pragma packstruct on
#pragma push // push all compiler settings
#pragma peephole off
#pragma packstruct off
 // pop restores "peephole" and "packstruct"
#pragma pop

If you are writing new code and need to set a pragma setting to its original value, use
the reset argument, described in “Using Pragmas” on page 116.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel.

syspath_once

Controls how include files are treated.

Syntax

#pragma syspath_once on | off | reset

Remarks

If you enable this pragma, files called in #include <> and #include ""
directives are treated as distinct, even if they refer to the same file.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option (syspath_once), described
in Checking Pragma Settings. By default, this setting is enabled. For
example, the same include file could reside in two distinct directories.

Library and Linking Control Pragmas
The 56800x has the following pragmas:

• define_section

• explicit_zero_data

• initializedzerodata

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• section

• use_rodata

define_section

This pragma controls the definition of a custom section.

Syntax

#pragma define_section <sectname> <istring> [<ustring>]

[<accmode>]

Remarks

Arguments:

<sectname>

Identifier by which this user-defined section is referenced in the source, that is,
via the following instructions:

• #pragma section <sectname> begin

• __declspec(<sectname>)

<istring>

Section name string for initialized data assigned to <section>.

 For example:

".data"

Optional Arguments:

<ustring>

Section name string for uninitialized data assigned to <section>. If ustring is
not specified then istring is used.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

<accmode>

One of the following indicating the attributes of the section:

Note

The default is RW.

NOTE For an example of define_section, see Listing 10.26.

Related Pragma

section

explicit_zero_data

Controls the section where zero-initilaized global variables are emitted.

Syntax

#pragma explicit_zero_data on | off | reset

Remarks

If you enable this pragma, zero-initilaized global variables are emitted to the .data
section (which is normally stored in ROM) instead of the .BSS section. This results in
a larger ROM image. This pragma should be enabled if customized startup code is
used and it does not initialize the .BSS section. The .BSS section is initialized to zero
by the default CodeWarrior startup code.

This pragma does not correspond to any setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option(explicit_zero_data),
described in Checking Pragma Settings. By default, this pragma is disabled.

R readable

RW readable and writable

RX readable and executable

RWX readable, writable, and executable

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

NOTE The pragmas explicit_zero_data and
initializedzerodata are the same, however, the preferred
syntax is explicit_zero_data.

initializedzerodata

Controls the section where zero-initilaized global variables are emitted.

Syntax

#pragma initializedzerodata on | off | reset

Remarks

If you enable this pragma, zero-initilaized global variables are emitted to the .data
section (which is normally stored in ROM) instead of the .BSS section. This results in
a larger ROM image. This pragma should be enabled if customized startup code is
used and it does not initialize the .BSS section. The .BSS section is initialized to zero
by the default CodeWarrior startup code.

This pragma does not correspond to any setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option(initializedzerodata),
described in Checking Pragma Settings. By default, this pragma is disabled.

NOTE The pragmas initializedzerodata and
explicit_zero_data are the same, however, the preferred
syntax is explicit_zero_data.

section

This pragma controls the organization of object code.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

#pragma section <sectname> begin

[...data..]

#pragma section <sectname> end

Remarks

Argument:

<sectname>

Identifier by which this user-defined section is referenced in the source.

Listing 10.26 Sample Code - pragma define_section and pragma section

/* 1. Define the section */
#pragma define_section mysection ".mysection.data" RW

/* 2. Specify the data to be put into the section. */
#pragma section mysection begin
int a[10] = {'0','1','2','3','4','5','6','7','8','9'};
int b[10];
#pragma section mysection end

int main(void) {
int i;
for (i=0;i<10;i++)

b[i]=a[i];
}

/* 3. In the linker command file, add “.mysection.data” in the “.data”
sections area of the linker command file by inserting the following
line:

* (.mysection.data)

*/

Related Pragma

define_section

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

use_rodata

Controls the section where constant data is emitted.

Compatibility

This pragma is compatible with the DSP56800, but it is not compatible with the
DSP56800E.

Syntax

#pragma use_rodata [on | off | reset]

Remarks

By default, the compiler emits const defined data to the .data section. There are two
ways to cause the compiler to emit const defined data to the .rodata section:

1. Setting the “write const data to .rodata section” option in the M56800 Processor
Settings panel.

This method is a global change and emits all const-defined data to the .rodata
section for the current build target.

2. Using #pragma use_rodata [on | off | reset].

on Write const data to .rodata section.

off Write const data to .data section.

reset Toggle pragma state.

To use this pragma, place the pragma before the const data that you wish the
compiler to emit to the .rodata section. This method overrides the target setting
and allows a subset of constant data to be emitted to or excluded from the .rodata
section.

To see the usage of the pragma use_rodata see the code example in Listing 10.27.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 10.27 Sample Code _ Pragma use_rodata

const UInt16 len_l_mult_ls_data = sizeof(l_mult_ls_data) /
sizeof(Frac32) ;
const Int16 g = a+b+c;

#pragma use_rodata on
const Int16 d[]={0xdddd};
const Int16 e[]={0xeeee};
const Int16 f[]={0xffff};
#pragma use_rodata off

main()
{

// ... code
}

You must then appropriately locate the .rodata section created by the compiler using
the linker command file. For example, see Listing 10.28.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 10.28 Sample Linker Command FIle - Pragma use_rodata

MEMORY {
.text_segment (RWX) : ORIGIN = 0x2000, LENGTH = 0x00000000
.data_segment (RW) : ORIGIN = 0x3000, LENGTH = 0x00000000
.rodata_segment (R) : ORIGIN = 0x5000, LENGTH = 0x00000000

}
SECTIONS {
.main_application :

{
.text sections

} > .text_segment

.main_application_data :
{

.data sections
.bss sections

} > .data_segment

.main_application_constant_data:
{

constant data sections
* (.rodata)

} > .rodata_segment
}

Object Code Organization and
Generation Pragmas

The 56800x has the following pragmas:

• always_inline

• auto_inline

• const_strings

• defer_codegen

• dont_inline

• dont_reuse_strings

• enumsalwaysint

• inline_bottom_up

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• interrupt (for the DSP56800)

• interrupt (for the DSP56800E)

• packstruct

• pool_strings

• readonly_strings

• reverse_bitfields

• suppress_init_code

• syspath_once

always_inline

Controls the use of inlined functions.

Syntax

#pragma always_inline on | off | reset

Remarks

This pragma is strongly deprecated. Use the Inline Depth pull-down menu of the C/
C++ Language (C only) Settings Panel instead.

If you enable this pragma, the compiler ignores all inlining limits and attempts to
inline all functions where it is legal to do so.

This pragma does not correspond to any panel setting. To check this setting, use
__option (always_inline), described in Checking Pragma Settings.
By default, this pragma is disabled.

auto_inline

Controls which functions to inline.

Syntax

#pragma auto_inline on | off | reset

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

If you enable this pragma, the compiler automatically chooses functions to inline for
you.

This pragma corresponds to the Auto-Inline setting in theC/C++ Language (C only)
Settings Panel. To check this setting, use __option (auto_inline), described
in Checking Pragma Settings. By default, this pragma is disabled.

const_strings

Controls the const-ness of string literals.

Syntax

#pragma const_strings [on | off | reset]

Remarks

If you enable this pragma, the compiler will generate a warning when string literals are
not declared as const. Listing 10.29 shows an example.

Listing 10.29 const_strings example

char *string1 = "hello"; /*OK, if const_strings is disabled*/
const char *string2 = "world"; /* Always OK */

This pragma does not correspond to any setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option (const_strings),
described in Checking Pragma Settings.

defer_codegen

Controls the inlining of functions that are not yet compiled.

Syntax

#pragma defer_codegen on | off | reset

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

This setting lets you use inline and auto-inline functions that are called before their
definition:

Listing 10.30 defer_codegen example

#pragma defer_codegen on
#pragma auto_inline on

extern void f();
extern void g();

main()
{

f(); // will be inlined
g(); // will be inlined

}

inline void f() {}
void g() {}

NOTE The compiler requires more memory at compile time if you enable
this pragma.

This pragma corresponds to the Deferred Inlining setting in the C/C++ Language
(C only) Settings Panel. To check this setting, use the __option
(defer_codegen), described in Checking Pragma Settings. By default,
this pragma is disabled.

dont_inline

Controls the generation of inline functions.

Syntax

#pragma dont_inline on | off | reset

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

If you enable this pragma, the compiler does not inline any function calls. However, it
will not override those declared with the inline keyword. Also, it does not
automatically inline functions, regardless of the setting of the auto_inline
pragma. If you disable this pragma, the compiler expands all inline function calls,
within the limits you set through other inlining-related pragmas.

This pragma corresponds to the Don’t Inline setting of the Inline Depth pull-down
menu of the C/C++ Language (C only) Settings Panel. To check this setting, use
__option (dont_inline), described in Checking Pragma Settings.
By default, this pragma is disabled.

dont_reuse_strings

Controls whether or not to store each string literal separately in the string pool.

Syntax

#pragma dont_reuse_strings on | off | reset

Remarks

If you enable this pragma, the compiler stores each string literal separately. Otherwise,
the compiler stores only one copy of identical string literals. This pragma helps you
save memory if your program contains a lot of identical string literals that you do not
modify.

For example, take this code segment:

char *str1="Hello";
char *str2="Hello";
*str2 = 'Y';

If you enable this pragma, str1 is "Hello", and str2 is "Yello". Otherwise,
both str1 and str2 are "Yello".

This pragma corresponds to the Reuse Strings setting in the C/C++ Language (C
only) Settings Panel. To check this setting, use __option
(dont_reuse_strings), described in Checking Pragma Settings. By
default, this pragma is disabled.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

enumsalwaysint

Specifies the size of enumerated types.

Syntax

#pragma enumsalwaysint on | off | reset

Remarks

If you enable this pragma, the C compiler makes an enumerated type the same size as
an int. If an enumerated constant is larger than int, the compiler generates an error.
Otherwise, the compiler makes an enumerated type the size of any integral type. It
chooses the integral type with the size that most closely matches the size of the largest
enumerated constant. The type could be as small as a char or as large as a long
int.

Listing 10.31 shows an example.

Listing 10.31 Example of Enumerations the Same as Size as int

enum SmallNumber { One = 1, Two = 2 };
 /* If you enable enumsalwaysint, this type is
 the same size as an int. Otherwise, this type is
 short int. */

enum BigNumber
 { ThreeThousandMillion = 3000000000 };
 /* If you enable enumsalwaysint, the compiler might
 generate an error. Otherwise, this type is
 the same size as a long int. */

This pragma corresponds to the Enums Always Int setting in the C/C++ Language
(C only) Settings Panel. To check this setting, use __option
(enumsalwaysint), described in Checking Pragma Settings. By default,
this pragma is disabled.

Note

The size of a char on the DSP56800 target is 16 bits, and 8 bits on the DSP56800E.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

inline_bottom_up

Controls the bottom-up function inlining method.

Syntax

#pragma inline_bottom_up on | off | reset

Remarks

Bottom-up function inlining tries to expand up to eight levels of inline leaf functions.
The maximum size of an expanded inline function and the caller of an inline function
can be controlled by the pragmas shown in Listing 10.32 and Listing 10.33.

Listing 10.32 Maximum Complexity of an Inlined Function

// maximum complexity of an inlined function
#pragma inline_max_size(max) // default max == 256

Listing 10.33 Maximum Complexity of a Function that Calls Inlined Functions

// maximum complexity of a function that calls inlined functions
#pragma inline_max_total_size(max) // default max == 10000

where max loosely corresponds to the number of instructions in a function.

If you enable this pragma, the compiler calculates inline depth from the last function in
the call chain up to the first function that starts the call chain. The number of functions
the compiler inlines from the bottom depends on the values of inline_depth,
inline_max_size, and inline_max_total_size. This method generates
faster and smaller source code for some (but not all) programs with many nested inline
function calls.

If you disable this pragma, top-down inlining is selected, and the inline_depth
setting determines the limits for top-down inlining. The inline_max_size and
inline_max_total_size pragmas do not affect the compiler in top-down mode.

This pragma corresponds to the Bottom-up Inlining setting in the C/C++ Language
(C only) Settings Panel. To check this setting, use __option
(inline_bottom_up), described in Checking Pragma Settings. By
default, this pragma is disabled.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

interrupt (for the DSP56800)

Controls the compilation of object code for interrupt service routines (ISR).

Compatibility

This pragma is compatible with the DSP56800, but it is not compatible with the
DSP56800E. For the DSP56800E, see interrupt (for the DSP56800E).

Syntax

#pragma interrupt [called|warn|saveall[warn]]

Remarks

The compiler generates a special prologue and epilogue for functions so that they may
be used to handle interrupts. The contents of the epilogue and prologue vary
depending on the mode selected.

The compiler also emits an RTI or RTS for the return statement depending upon the
mode selected. The SA, R, and CC bits of the OMR register are set to system default.

There are several ways to use this pragma as described below:

• pragma interrupt [warn]

The compiler performs the following using the pragma interrupt [warn]
argument:

– Sets M01 to –1 if M01 is used by ISR

– Sets OMR to system default (see OMR settings)

– Saves/restores only registers used by ISR

– Generates an RTI to return from interrupt.

– If [warn] is present, then emits warnings if this ISR makes a function call
that is not defined with # pragma interrupt called

 Important considerations of usage:

– This type of usage is required within the ISR function body as follows:

void ISR(void)

{

#pragma interrupt

... code here

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• pragma interrupt [called]

The compiler performs the following using the pragma interrupt
[called] argument:

– Saves/restores only registers used by routine

– Generates an RTS to return from function

Important considerations of usage:

– You must use this argument before the interrupt body is compiled

– You can use this argument on the function Syntax or within the function body
as described below.

On the function Syntax:

#pragma interrupt called

void function_called_from_interrupt (void);

Within the function body:

void function_called_from_interrupt (void)

{

#pragma interrupt called

asm (nop);

}

– You should use this pragma for all functions called from #pragma
interrupt enabled ISRs. This is optional for #pragma interrupt
saveall enabled ISRs, since for this case, the entire context is saved.

• pragma interrupt saveall [warn]

The compiler performs the following using the pragma interrupt
saveall [warn] argument:

– Always sets M01 to –1

– Sets OMR to system default (see OMR settings)

– Saves/restores entire hardware stack via runtime call

– Generates an RTI to return from interrupt

– If [warn] is present then emits a warning if the ISR makes a function call
that is not defined with #pragma interrupt called

Important considerations of usage:

– This type of usage is required within the ISR function body as follows:

void interrupt_function(void)

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

{

#pragma interrupt saveall

... code here

– This pragma should be used if the runtime library is called by the interrupt
routine

In Table 10.2, the advantages and disadvantages of the interrupt and
interrupt saveall pragmas are listed.

interrupt (for the DSP56800E)

This pragma controls the compilation of object code for interrupt routines.

Compatibility

This pragma is not compatible with the DSP56800, but it is compatible with the
DSP56800E. For the DSP56800, see interrupt (for the DSP56800).

Syntax

#pragma interrupt [<options>] [<mode>] [on|off|reset]

Remarks

An Interrupt Service Routine (ISR) is a routine that is executed when an interrupt
occurs. Setting C routines as ISRs is done using pragmas (pragma interrupt).
To make a routine service an interrupt, you must:

• Write the routine.

Table 10.2 Comparison of Usage

Pragma Advantages Disadvantages

interrupt
saveall

• entire context save

• no need for #pragma
interrupt called for
called functions

• larger initial performance hit due
to entire context save, but
becomes advantageous for ISRs
with several function calls

interrupt • smaller context save, less
performance hit

• generally good for ISRs with
a small number of function
calls

• #pragma interrupt called
required for all called functions

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• Set up the routine so that it is called when some interrupt occurs.

The pragma interrupt option can be used to:

• Instruct the compiler to push register values on the software stack at entry to a C
function and restore them upon exit.

• Preserve the register values for the function that was interrupted.

• Emit an RTI for the return statement depending upon the mode selected. If the
interrupt routine has a return value, the return register is not saved.

There are several ways to use this pragma, with an on|off|reset arguments, or with no
arguments.

Arguments

<options> alignsp Aligns the stack pointer register correctly to allow long values to be
pushed on to the stack. Use this option when your project mixes C code
and assembly code. Use this option specifically on ISRs which may
interrupt assembly routines that do not maintain the long stack alignment
requirements at all times. Restores the stack pointer to its original value
before returning from the subroutine.

comr The Operating Mode Register (OMR) is set for the following to ensure
correct execution of C code in the ISR:
36-bit values used for condition codes. (CM bit cleared)
Convergent Rounding. (R bit cleared)
No Saturation mode. (SA bit cleared)
Instructions fetched from P memory. (XP bit cleared)

<mode> saveall Preserves register values by saving and restoring all registers by calling
the INTERRUPT_SAVEALL and INTERRUPT _ RESTOREALL routines
in the Runtime Library.

called Preserves register values by saving and restoring registers used by the
routine. The routine returns with an RTS. Routines with pragma interrupt
enabled in this mode are safe to be called by ISRs.

default This is the mode when no mode is specified. In this mode, the routine
preserves register values by saving and restoring the registers that are
used by the routine. The routine returns with an RTI.

on|off|reset on Enables the option to compile all C routines as interrupt routines.

off Disables the option to compile all C routines as interrupt routines.

reset Restores the option to its previous setting.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

NOTE Use on or off to change the pragma setting, and then use reset to
restore the previous pragma setting.

To disable the pragma, use #pragma interrupt off after #pragma
interrupt (Listing 10.35)

Listing 10.34 Sample Code - #pragma interrupt on | off | reset

#pragma interrupt off // To be used as default
value
// Non ISR code
#pragma interrupt on
void ISR_1(void) {

// ISR_1 code goes here.
}

void ISR_2(void) {
// ISR_2 code goes here.

}
#pragma interrupt reset

If the pragma is inside a function block, compile the current routine as an interrupt
routine. If the pragma is not inside a function block, compile the next routine as an
interrupt routine. This concept is developed in Listing 10.35.

Listing 10.35 Sample Code - #pragma interrupt and function block

// Non ISR code
void ISR_1(void) {
#pragma interrupt

// ISR_1 code goes here.
}
#pragma interrupt
void ISR_2(void) {

// ISR_2 code goes here.
}
#pragma interrupt off

See Listing 10.36 for an example of using the 'called' option in the interrupt pragma.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Listing 10.36 Sample Code - using the ‘called’ option in # pragma interrupt

extern long Data1, Data2, Datain;

void ISR1_inc_Data1_by_Data2(void)
{
/* This is a routine called by the interrupt service routine ISR1(). */
#pragma interrupt called
Data1+=Data2;
return;
}

void ISR1(void)
{
/* This is an interrupt service routine. */
#pragma interrupt
Data2 = Datain+2;
ISR_inc_Data1_by_Data2();
}

Avoiding Possible Hitches with enabled Pragma
Interrupt
Pragma interrupt with the called or default mode for a C routine saves only the volatile
registers for that C routine. Register values are not preserved if the ISR makes one or
more function calls. You might want to avoid the situations described below:

If a routine that has pragma interrupt enabled (caller) calls another C function/routine
(callee), it is possible that the callee can change some registers that are not saved by
the caller. To avoid this, use either of the following options:

Call only pragma interrupt enabled routines from routines that are pragma interrupt
enabled using the called mode, or

Use the pragma interrupt saveall mode for the caller.

The first option may be more efficient because only the registers that are used are
preserved. The second option is easier to implement, but is likely to have a large
overhead.

The situation described above also holds true for library functions because library
functions do not have pragma interrupt enabled. These calls include: C Standard
Library calls and Runtime Library calls (such as multiplication, division and floating
point math).

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

packstruct

Controls the alignment of long words in structures.

Compatibility

This pragma is compatible with the DSP56800, but it is not compatible with the
DSP56800E.

Syntax

#pragma packstruct on | off | reset

Remarks

If you enable this pragma, integer longs within structures are aligned on four byte
boundaries. When this pragma is disabled there is no alignment within structures. This
pragma does not correspond to any setting in the C/C++ Language (C only) Settings
Panel. To check this setting, use __option(packstruct), described in
Checking Pragma Settings. By default, this pragma is enabled.

pool_strings

Controls how the compiler stores string constants.

Compatibility

This pragma is not compatible with the DSP56800, but it is compatible with the
DSP56800E.

Syntax

#pragma pool_strings on | off | reset

Remarks

If you enable this setting, the compiler collects all string constants into a single data
object so that your program needs only one TOC entry for all of them. While this
decreases the number of TOC entries in your program, it also increases your program
size because it uses a less efficient method to store the address of the string.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

If you disable this setting, the compiler creates a unique data object and TOC entry for
each string constant.

Enable this setting if your program is large and has many string constants.

The Pool Strings setting corresponds to the pragma poolstring. To check this setting,
use __option (pool_strings), described in Checking Pragma
Settings. By default, this pragma is disabled.

readonly_strings

Controls the output of C strings to the read only data section.

Syntax

#pragma readonly_strings on | off | reset

Remarks

If you enable this pragma, C strings used in your source code (for example,
"hello") are output to the read-only data section (.rodata) instead of the global data
section (.data). In effect, these strings act like const char *, even though their
type is really char *.

For the DSP56800, this pragma corresponds to the "Make Strings Read Only" panel
setting in the M56800 Processor settings panel. To check this setting, use __option
(readonly_strings), described in Checking Pragma Settings.

For the DSP56800E, there is no "Make Strings Read Only" panel setting in the
M56800E Processor settings panel.

reverse_bitfields

Controls whether or not the compiler reverses the bitfield allocation.

Syntax

#pragma reverse_bitfields on | off | reset

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

This pragma reverses the bitfield allocation.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option (reverse_bitfields),
described in Checking Pragma Settings. By default, this pragma is disabled.

suppress_init_code

Controls the suppression of static initialization object code.

Syntax

#pragma suppress_init_code on | off | reset

Remarks

If you enable this pragma, the compiler does not generate any code for static data
initialization.

WARNING! Beware when using this pragma because it can produce erratic or
unpredictable behavior in your program.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option (suppress_init_code),
described in Checking Pragma Settings. By default, this pragma is disabled.

syspath_once

Controls how include files are treated.

Syntax

#pragma syspath_once on | off | reset

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

If you enable this pragma, files called in #include <> and #include ""
directives are treated as distinct, even if they refer to the same file.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option (syspath_once), described
in Checking Pragma Settings. By default, this setting is enabled. For
example, the same include file could reside in two distinct directories.

C Standard Library and Runtime Library (CW libraries) functions require the AGU
(Address Generation Unit) to be in linear addressing mode, that is, the M01 registers
are set to -1. If a function is interrupted and was using modulo address arithmetic, any
calls to CW libraries from the ISR do not work unless the M01 is set to -1 in the ISR.
Also, the M01 register would need to be restored before exiting the ISR so that the
interrupted function can resume as before, with the same modulo address arithmetic
mode settings.

Optimization Pragmas
The 56800x has the following pragmas:

• factor1

• factor2

• factor3

• nofactor1

• nofactor2

• nofactor3

• opt_common_subs

• opt_dead_assignments

• opt_dead_code

• opt_lifetimes

• opt_loop_invariants

• opt_propagation

• opt_strength_reduction

• opt_strength_reduction_strict

• opt_unroll_loops

• optimization_level

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

• optimize_for_size

• peephole

factor1

Turns on factorization step 1.

Syntax

#pragma factor1

Remarks

Compiler performs the factorization step 1. To turn off factor1, use nofactor1. This
optimization is performed on global variables before register allocation, takes into
account register pressure, and replaces absolute addressing with indirect addresssing.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. By default, this pragma is enabled at global optimization level 2 and
above.

factor2

Turns on factorization step 2.

Syntax

#pragma factor2

Remarks

Compiler performs the factorization step 2. To turn off factor2, use nofactor2.This
optimization is performed on global variables after register allocation, replaces
absolute addressing with indirect addresssing, and detects a physical address register
that is available to do the factorization. Register allocation spilling decreases pressure
so new webs, that could not be created before register allocation, can be created.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. By default, this pragma is enabled at global optimization level 2 and
above.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

factor3

Turns on factorization step 3.

Syntax

#pragma factor3

Remarks

Compiler performs the factorization step 3. To turn off factor3, use nofactor3. This
optimization is performed on local variables after register allocation. (SP-offset)
addressing is transformed in register indirect addressing. This optimization is
performed after register allocation because only at this point are the local variables
accessed by stack location.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. By default, this pragma is enabled at global optimization level 2 and
above.

nofactor1

Turns off factorization step 1.

Syntax

#pragma nofactor1

Remarks

Compiler does not perform the factorization step 1. To turn on factorization step 1, use
factor1.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel.

nofactor2

Turns off factorization step 2.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Syntax

#pragma nofactor2

Remarks

Compiler does not perform the factorization step 2. To turn on factorization step 2, use
factor2.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel.

nofactor3

Turns off factorization step 3.

Syntax

#pragma nofactor3

Remarks

Compiler does not perform the factorization step 3. To turn on factorization step 3, use
factor3.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel.

opt_common_subs

Controls the use of common subexpression optimization.

Syntax

#pragma opt_common_subs on | off | reset

Remarks

If you enable this pragma, the compiler replaces similar redundant expressions with a
single expression. For example, if two statements in a function both use the expression

a * b * c + 10

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

the compiler generates object code that computes the expression only once and applies
the resulting value to both statements.

The compiler applies this optimization to its own internal representation of the object
code it produces.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option (opt_common_subs),
described in Checking Pragma Settings. By default, this pragma is disabled.

opt_dead_assignments

Controls the use of dead store optimization.

Syntax

#pragma opt_dead_assignments on | off | reset

Remarks

If you enable this pragma, the compiler removes assignments to unused variables
before reassigning them.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option
(opt_dead_assignments), described in Checking Pragma Settings.
By default, this pragma is disabled.

opt_dead_code

Controls the use of dead code optimization.

Syntax

#pragma opt_dead_code on | off | reset

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

If you enable this pragma, the compiler removes a statement that other statements
never execute or call.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option (opt_dead_code),
described in Checking Pragma Settings. By default, this pragma is disabled.

opt_lifetimes

Controls the use of lifetime analysis optimization.

Syntax

#pragma opt_lifetimes on | off | reset

Remarks

If you enable this pragma, the compiler uses the same processor register for different
variables that exist in the same routine but not in the same statement.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option (opt_lifetimes),
described in Checking Pragma Settings. By default, this pragma is disabled.

opt_loop_invariants

Controls the use of loop invariant optimization.

Syntax

#pragma opt_loop_invariants on | off | reset

Remarks

If you enable this pragma, the compiler moves all computations that do not change
inside a loop outside the loop, which then runs faster.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

(opt_loop_invariants), described in Checking Pragma Settings. By
default, this pragma is disabled.

opt_propagation

Controls the use of copy and constant propagation optimization.

Syntax

#pragma opt_propagation on | off | reset

Remarks

If you enable this pragma, the compiler replaces multiple occurrences of one variable
with a single occurrence.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option (opt_propagation),
described in Checking Pragma Settings. By default, this pragma is disabled.

opt_strength_reduction

Controls the use of strength reduction optimization.

Syntax

#pragma opt_strength_reduction on | off | reset

Remarks

If you enable this pragma, the compiler replaces array element arithmetic instructions
with pointer arithmetic instructions to make loops faster.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option
(opt_strength_reduction), described in Checking Pragma Settings.
By default, this pragma is disabled.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

opt_strength_reduction_strict

Uses a safer variation of strength reduction optimization.

Syntax

#pragma opt_strength_reduction_strict on | off | reset

Remarks

Like the opt_strength_reduction pragma, this setting replaces multiplication
instructions that are inside loops with addition instructions to speed up the loops.
However, unlike the regular strength reduction optimization, this variation ensures
that the optimization is only applied when the array element arithmetic is not of an
unsigned type that is smaller than a pointer type.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option
(opt_strength_reduction_strict), described in Checking Pragma
Settings. By default, this pragma is disabled.

opt_unroll_loops

Controls the use of loop unrolling optimization.

Syntax

#pragma opt_unroll_loops on | off | reset

Remarks

If you enable this pragma, the compiler places multiple copies of a loop’s statements
inside a loop to improve its speed.

This pragma does not correspond to any panel setting in the C/C++ Language (C only)
Settings Panel. To check this setting, use __option (opt_unroll_loops),
described in Checking Pragma Settings. By default, this pragma is disabled.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

optimization_level

Controls global optimization.

Syntax

#pragma optimization_level 0 | 1 | 2 | 3 | 4

Remarks

This pragma specifies the degree of optimization that the global optimizer performs.

To select optimizations, use the pragma optimization_level with an argument
from 0 to 4. The higher the argument, the more optimizations performed by the global
optimizer.

For more information on the optimization the compiler performs for each optimization
level, refer to the Code Warrior IDE User’s Guide.

These pragmas correspond to the settings in the Global Optimizations panel. By
default, this pragma is disabled.

optimize_for_size

Controls optimization to reduce the size of object code.

Syntax

#pragma optimize_for_size on | off | reset

Remarks

This setting lets you choose what the compiler does when it must decide between
creating small code or fast code. If you enable this pragma, the compiler creates
smaller object code at the expense of speed. This pragma does not effect the inline
directive or the inlining of explicitely inlined functions. This pragma can be used in
conjunction with the dont_inline pragma to decrease the code size. If you disable
this pragma, the compiler creates faster object code at the expense of size.

The pragma corresponds to the Optimize for Size setting on the Global
Optimizations panel. To check this setting, use __option

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

(optimize_for_size), described in Checking Pragma Settings. By
default, this pragma is disabled.

peephole

Controls the use peephole optimization.

Syntax

#pragma peephole on | off | reset

Remarks

If you enable this pragma, the compiler performs peephole optimizations, which are
small, local optimizations that eliminate some compare instructions and improve
branch sequences.

For the DSP56800, this pragma corresponds to the Peephole Optimization setting
in the M56800 Processor settings panel. Yet for the DSP56800E, there is no
corresponding setting for the the M56800 Processor settings panel. To check this
setting, use __option (peephole), described in Checking Pragma
Settings.

Profiler Pragmas
The 56800x has just one profiler pragma:

• profile

profile

Controls code to enable or disable the profiler.

Syntax

#pragma profile on | off | reset

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Remarks

This setting lets you choose whether the compiler adds code to a function to call
profiler library functions. If you enable this pragma, the compiler calls profiling
functions at the beginning and end of the current function. If you disable this pragma,
the compiler adds no additional code. For further information on the profiler, see the
Chapter “Profiler” in either of the Targeting Manuals.

The pragma corresponds to the Generate code for profiling setting on the
M56800E Processor settings panel. To check this setting, use __option
(profile), described in Checking Pragma Settings. By default, this
pragma is disabled.

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Symbols
#, and macros 78
#else 79
#endif 79
#include directive

getting path 151
#pragma statement

illegal 123
.lcf 34
__builtin_align() 81
__builtin_type() 81
__ide_target() 114
__INTEL__ 115
__typeof__() 82
__VEC__ 115

A
always_inline pragma 162
ANSI Keywords Only option 19
ANSI_strict pragma 125
arguments

unnamed 78
auto_inline pragma 18, 162
auto-inlining

See inlining.

C
C/C++ Language panel

Don’t Inline option 17
C/C++ Warnings panel 23
char type 20
character strings

See strings.
characters

as integer values 80
check_inline_asm_pipeline pragma 131
command files 34
comments, C++-styles 78
const_strings pragma 159, 163
CWFolder 30

D
D constant suffix 82
defer_codegen pragma 163
Deferred Inlining 164
define_section 155
-disassemble 34
dollar sign 151
dollar_identifiers pragma 151

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Don’t Inline option 17, 118
dont_inline pragma 17, 164
dont_reuse_strings pragma 21, 165

E
#else 79
#endif 79
enumerated types 166
enumsalwaysint pragma 166
Environment tab 30
export pragma 156, 157
extended_errorchecking pragma 132

F
FlexLM 31
fullpath_prepdump pragma 151
function

interrupt 168
result, warning 148

G
gcc_extensions pragma 127
GNU C

pragma 127

H
header files

getting path 151

I
identifier

$ 151
dollar signs in 151
significant length 83
size 83

Illegal Pragmas option 123
inline_intrinsics pragma 167
inlining

before definition 163
stopping 164

integer
specified as character literal 80

__INTEL__ 115
interrupt

interrupt pragma 168
interrupt pragma 177
interrupt pragma 168

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

K
keywords

additional 19
standard 126

L
license 31
linker command files 34
LM_LICENSE_FILE 31

M
macros

and # 78
Microsoft Windows 30
mpwc_newline pragma 128
mpwc_relax pragma 129
multi-byte characters 80
MWAsmIncludes 34
MWCIncludes 34
MWLibraries 35
MWLibraryFiles 35

N
-nodefaults 34
notonce pragma 152

O
once pragma 153
only_std_keywords pragma 126
opt_common_subs pragma 180
opt_dead_assignments pragma 178, 179, 180, 181
opt_dead_code pragma 181
opt_lifetimes pragma 182
opt_loop_invariants pragma 182
opt_propagation pragma 183
opt_strength_reduction pragma 183
opt_strength_reduction_strict pragma 184
opt_unroll_loops pragma 184
optimization

global 185
level of 185
loops 184
opt_unroll_loops pragma 184
optimization_level pragma 185
optimize_for_size pragma 185
size 185

optimization_level pragma 185
optimize_for_size pragma 185

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

P
PATH 31
peephole pragma 174, 186
pop pragma 153
pragma

define_section 155
illegal 123
scope 124
section 157

pragmas
check_inline_asm_pipeline 131
interrupt 177

Precompile command 88
preprocessor

and # 78
header files 151

prototypes
requiring 20

push pragma 153

R
readonly_strings pragma 175
Require Function Prototypes option 20
require_prototypes pragma 133
reverse_bitfields pragma 175

S
sample code

pragma define_section and pragma section 158
section 157
settings panel

C/C++ Warnings 23
side effects

warning 145
statements

#pragma 123
strings

pooling 165
reusing 21
storage 165

suffix, constant 82
suppress_init_code pragma 133, 176
suppress_warnings pragma 134
syspath_once pragma 154, 176
System control panel 30

T
Target Settings window 29
trigraph characters 20
types

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

char 20
unsigned char 20

U
unnamed arguments 78
unsigned char type 20
unsigned_char pragma 134
unused pragma 135

V
__VEC__ 115

W
warn_any_ptr_int_conv pragma 136
warn_emptydecl pragma 137
warn_extracomma pragma 138
warn_filenamecaps pragma 138
warn_filenamecaps_system pragma 139
warn_illpragma pragma 124, 139
warn_impl_f2i_conv pragma 140
warn_impl_i2f_conv pragma 141
warn_impl_s2u_conv pragma 142
warn_implicitconv pragma 143
warn_largeargs pragma 144
warn_missingreturn pragma 144
warn_no_side_effect pragma 145
warn_notinlined pragma 132, 146
warn_padding pragma 146
warn_possunwant pragma 146
warn_ptr_int_conv pragma 147
warn_resultnotused pragma 148
warn_undefmacro pragma 148
warn_unusedarg pragma 149
warn_unusedvar pragma 150
warning pragma 51, 52, 53, 54
warning_errors pragma 150
warnings

illegal pragmas 123
setting in the IDE 23

Windows operating system 30

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

193CodeWarrior Build Tools Reference for Freescale 56800/E Hybrid Controllers

Index

Symbols
#, and macros 80
#else 81
#endif 81
#include directive

getting path 156
#pragma statement

illegal 128
.lcf 34
__builtin_align() 83
__builtin_type() 83
__ide_target() 119
__INTEL__ 120
__typeof__() 84
__VEC__ 120

A
always_inline pragma 167
ANSI Keywords Only option 19
ANSI_strict pragma 130
arguments

unnamed 80
auto_inline pragma 18, 167
auto-inlining

See inlining.

C
C/C++ Language panel

Don’t Inline option 17
C/C++ Warnings panel 23
char type 20
character strings

See strings.
characters

as integer values 82
check_inline_asm_pipeline pragma 136
command files 34
comments, C++-styles 80
const_strings pragma 164, 168
CWFolder 30

D
D constant suffix 84
defer_codegen pragma 168
Deferred Inlining 169
define_section 160
-disassemble 34
dollar sign 156
dollar_identifiers pragma 156
Don’t Inline option 17, 123
dont_inline pragma 17, 169
dont_reuse_strings pragma 21, 170

E
#else 81
#endif 81
enumerated types 171
enumsalwaysint pragma 171
Environment tab 30
export pragma 161, 162
extended_errorchecking pragma 137

F
FlexLM 31
fullpath_prepdump pragma 156
function

interrupt 173
result, warning 153

G
gcc_extensions pragma 132
GNU C

pragma 132

H
header files

getting path 156

I
identifier

$ 156
dollar signs in 156
significant length 85

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

size 85
Illegal Pragmas option 128
inline_intrinsics pragma 172
inlining

before definition 168
stopping 169

integer
specified as character literal 82

__INTEL__ 120
interrupt

interrupt pragma 173
interrupt pragma 182
interrupt pragma 173

K
keywords

additional 19
standard 131

L
license 31
linker command files 34
LM_LICENSE_FILE 31

M
macros

and # 80
Microsoft Windows 30
mpwc_newline pragma 133
mpwc_relax pragma 134
multi-byte characters 82
MWAsmIncludes 34
MWCIncludes 34
MWLibraries 35
MWLibraryFiles 35

N
-nodefaults 34
notonce pragma 157

O
once pragma 158
only_std_keywords pragma 131
opt_common_subs pragma 185

opt_dead_assignments pragma 183, 184, 185,
186

opt_dead_code pragma 186
opt_lifetimes pragma 187
opt_loop_invariants pragma 187
opt_propagation pragma 188
opt_strength_reduction pragma 188
opt_strength_reduction_strict

pragma 189
opt_unroll_loops pragma 189
optimization

global 190
level of 190
loops 189
opt_unroll_loops pragma 189
optimization_level pragma 190
optimize_for_size pragma 190
size 190

optimization_level pragma 190
optimize_for_size pragma 190

P
PATH 31
peephole pragma 179, 191
pop pragma 158
pragma

define_section 160
illegal 128
scope 129
section 162

pragmas
check_inline_asm_pipeline 136
interrupt 182

Precompile command 91
preprocessor

and # 80
header files 156

prototypes
requiring 20

push pragma 158

R
readonly_strings pragma 180
Require Function Prototypes option 20
require_prototypes pragma 138
reverse_bitfields pragma 180

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

S
sample code

pragma define_section and pragma section 163
section 162
settings panel

C/C++ Warnings 23
side effects

warning 150
statements

#pragma 128
strings

pooling 170
reusing 21
storage 170

suffix, constant 84
suppress_init_code pragma 138, 181
suppress_warnings pragma 139
syspath_once pragma 159, 181
System control panel 30

T
Target Settings window 29
trigraph characters 20
types

char 20
unsigned char 20

U
unnamed arguments 80
unsigned char type 20
unsigned_char pragma 139
unused pragma 140

V
__VEC__ 120

W
warn_any_ptr_int_conv pragma 141
warn_emptydecl pragma 142
warn_extracomma pragma 143
warn_filenamecaps pragma 143
warn_filenamecaps_system pragma 144
warn_illpragma pragma 129, 144
warn_impl_f2i_conv pragma 145
warn_impl_i2f_conv pragma 146

warn_impl_s2u_conv pragma 147
warn_implicitconv pragma 148
warn_largeargs pragma 149
warn_missingreturn pragma 149
warn_no_side_effect pragma 150
warn_notinlined pragma 137, 151
warn_padding pragma 151
warn_possunwant pragma 151
warn_ptr_int_conv pragma 152
warn_resultnotused pragma 153
warn_undefmacro pragma 153
warn_unusedarg pragma 154
warn_unusedvar pragma 155
warning pragma 51, 52, 53, 54
warning_errors pragma 155
warnings

illegal pragmas 128
setting in the IDE 23

Windows operating system 30

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

