

# System Management I<sup>2</sup>C, I3C and SPI Selector Guide

A broad catalog of interface components for all your design needs



### I<sup>2</sup>C Bus: Serial Interface Standard

By replacing complex parallel interfaces with a straightforward yet powerful serial structure, the I<sup>2</sup>C-bus revolutionized chip-to-chip communications.

Invented by NXP (Philips) more than 30 years ago, the I<sup>2</sup>C-bus uses a simple two-wire format to carry data one bit at a time. It performs inter-chip addressing, selection, control and data transfer. Speeds are up to 400 kHz (fast mode), 1 MHz (fast mode plus), 3.4 MHz (high-speed mode), or 5 MHz (ultra-fast mode). New 12.5 MHz I3C controllers with backwards compatibility to I<sup>2</sup>C are starting to hit the market which compete with the higher speeds of the SPI bus.

The I<sup>2</sup>C-bus shrinks the IC footprint and leads to lower IC costs. Additionally, since far fewer copper traces are needed, it enables a smaller PCB, reduces design complexity and lowers system cost.

I<sup>2</sup>C-bus devices are available in a wide range of functions. Each target device has its own I<sup>2</sup>C-bus address, selectable using address pins set high (1) or



Figure 1 - Parallel interface versus I<sup>2</sup>C Bus interface

low (0). Information is transmitted byte by byte, and each byte is acknowledged by the receiver. There can be multiple devices on the same bus, and more than one IC can act as controller. The controller role is typically played by a microcontroller.





Figure 3 - Write and Read frame format



Figure 4 – I3C vs I<sup>2</sup>C energy and data rate comparison





Assumptions: 1 All symbols in each mode have equal probability for use. 2 Energy consumption is the energy delivered by pull-up devices to the bus (which includes drivers and resistors)

#### **Overview of MIPI I3C**

MIPI I3C (and the publicly available MIPI I3C Basic) provide a scalable, medium-speed, utility and control bus for connecting peripherals to an application processor. Its design incorporates key attributes from both I<sup>2</sup>C-bus and SPI interfaces to provide a unified, high-performance, low-power interface solution that delivers a flexible upgrade path for I<sup>2</sup>C-bus and SPI implementers. Originally introduced in 2017, I3C was the culmination of a multi-year development project based on extensive collaboration with the MEMS and Sensors Industry Group and across the broader electronics ecosystem.

As shown in Figure 1, I<sup>2</sup>C-bus targets (with 50 ns filter) can coexist with I3C controllers operating at 12.5 MHz, enabling the migration of existing I<sup>2</sup>C-bus designs to the I3C specification. Conversely, I3C targets operating at typical 400 kHz or 1 MHz I<sup>2</sup>C-bus speeds can coexist with existing I<sup>2</sup>C-bus controllers.

Just like I<sup>2</sup>C, I3C is implemented with standard CMOS I/O pins using a two-wire interface, but unlike I<sup>2</sup>C it supports in-band interrupts enabling target devices to notify controllers of interrupts, a design feature that eliminates the need for a separate general-purpose input/output (GPIO) interrupt for each target, reducing system cost and complexity. Support for dynamic address assignments help minimize pin counts, which is key for accommodating space-constrained form factors.





I3C supports a multi-drop bus that, at 12.5MHz, supports standard data rate (SDR) of 10 Mbps with options for high-data-rate (HDR) modes. The net result is that I3C offers a leap in performance and power efficiency compared with I<sup>2</sup>C as shown in **Figure 5**.

Additional technical highlights for I3C include multicontroller support, dynamic addressing, commandcode compatibility and a uniform approach for advanced power management features, such as sleep mode. It provides synchronous and asynchronous timestamping to improve the accuracy of applications that fuse signals from various peripherals. It can also batch and transmit data quickly to minimize energy consumption of the host processor.

While the full version of I3C is available only to MIPI Alliance members, MIPI has released a public version called <u>I3C</u> Basic that bundles the most commonly needed I3C features for use by developers and other standards organizations. I3C Basic is available for implementation without MIPI membership and is intended to facilitate a royalty-free licensing environment for all implementers. Figure 3 summarizes key features supported by I3C and I3C Basic.

To support developers, compatibility between different I3C implementations has been confirmed through multiple interoperability workshops, and several supporting MIPI resources are available. These include:

- I3C Host Controller Interface <u>MIPLI3C HCI</u><sup>SM</sup>
- I3C HCI Driver for Linux
- I3C Discovery and Configuration Specification <u>DisCo for I3C<sup>SM</sup></u>
- I3C Debug and Test Interface <u>MIPI Debug for I3C</u><sup>SM</sup>

I3C intellectual property (IP) is available from multiple vendors, including a licence free version for I3C Basic. I3C conformance testing and verification IP test suites are also available from multiple vendors.

More information on I3C and I3C Basic is available via the <u>MIPI Alliance website</u>.

#### **Comparison of Features**

| Feature                                                                                                       | 13C<br>v1.0  | I3C<br>Basic | 13C<br>v1.1  | I3C<br>Basic<br>v1.1 |
|---------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|----------------------|
| 12.5 MHz SDR (Controller,<br>Target and Legacy I²C Target<br>Compatibility)                                   | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$         |
| Target can operate as I <sup>2</sup> C<br>device<br>on I <sup>2</sup> C bus and on I3C bus using<br>HDR modes | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$         |
| Target Reset                                                                                                  |              |              | $\checkmark$ | $\checkmark$         |
| Specified 1.2V-3.3V Operation<br>for 50pf C load                                                              | ~            | $\checkmark$ | $\checkmark$ | $\checkmark$         |
| In-Band Interrupt (w/MDB)                                                                                     | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$         |
| Dynamic Address Assignment                                                                                    | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$         |
| Error Detection and Recovery                                                                                  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$         |
| Secondary Controller                                                                                          | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$         |
| Hot-Join Mechanism                                                                                            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$         |
| Common Command Codes<br>(Required/Optional)                                                                   | $\checkmark$ | ~            | $\checkmark$ | $\checkmark$         |
| Specified 1.0V Operation for 100pf C load                                                                     |              | $\checkmark$ |              | $\checkmark$         |
| Set Static Address as Dynamic<br>Address CCC (SETAASA)                                                        |              | $\checkmark$ | $\checkmark$ | $\checkmark$         |
| Synchronous Timing Control                                                                                    | $\checkmark$ |              | $\checkmark$ |                      |
| Asynchronous Timing Control<br>(Mode 0)                                                                       | $\checkmark$ |              | $\checkmark$ | $\checkmark$         |
| Asynchronous Timing Control<br>(Mode 1-3)                                                                     | $\checkmark$ |              | $\checkmark$ |                      |
| HDR-DDR                                                                                                       | $\checkmark$ |              | $\checkmark$ | $\checkmark$         |
| HDR-TSL/TSP                                                                                                   | $\checkmark$ |              | $\checkmark$ |                      |
| HDR-BT (Multi-Lane Bulk<br>Transport)                                                                         |              |              | $\checkmark$ | $\checkmark$         |
| Grouped Addressing                                                                                            |              |              | $\checkmark$ | $\checkmark$         |
| Device to Device(s) Tunneling                                                                                 |              |              | $\checkmark$ |                      |
| Multi-Lane for Speed (Dual/<br>Quad for SDR and HDR-DDR)                                                      |              |              | ~            |                      |
| Monitoring Device Early<br>Termination                                                                        |              |              | $\checkmark$ |                      |

Figure 6 – Comparison of I3C and I3C basic features

#### Overview of the SPI bus

SPI is the full duplex synchronous serial interface consisting of four signals: SCLK (serial clock), COTI (controller out, target in), CITO (controller in, target out) and TS (target select). SPI bus operates with a single controller device and one or more target devices. Data rate ranges from 5 to 20 Mbps which is much higher than the I<sup>2</sup>C-bus rate but like the new I3C-bus.



#### Figure 7 – SPI interface between controller and one target

Though target devices might operate in one polarity or phase only, clock polarity and phase of the SPI bus could be configured with respect to the data to establish the valid communication link by the controller. CPOL determines the polarity of the clock. When CPOL = 0, clock is low when idle. The leading edge is the rising edge and the trailing edge is the falling edge. When CPOL = 1, clock is high when idle. The leading edge is the failing edge and the trailing edge is the rising edge.

CPHA determines the timing of the data bits relative to the clock pulse. When CPHA = 1, the transmitting side changes data on the leading edge of the clock and the receiving side captures data on the trailing edge of the clock. When CPHA = 0, the transmitting side changes data on the trailing edge of the clock and the receiving side captures data on the leading edge of the clock.



Figure 8 – SPI interface with independent targets

The controller could connect with multiple independent targets in parallel. Each target is controlled with the separate TS signal. When TS = 0, only the corresponding target will response to the controller. Outputs of all others with TS = 1 remain in high impedance.



#### Figure 9 – SPI interface with daisy chain targets

Alternatively, targets could be connected in a daisy chain configuration to reduce number of the target select signals. The controller output is connected to the first target input. The first target output is connected to the second target input and so on. Then the last target output is connected back to the controller input. Each target is designed to send out during the second group of the clock pulses the exact copy of the data it received during the first group of clock pulses. The controller receives data from the last target first then data from the first target last during the same clock group. It requires two clock groups to complete each operation which would be only one clock group in the parallel configuration



Figure 10 – SPI timing diagram with CPOL and CPHA

### NXP I<sup>2</sup>C, I3C and SPI Product Lines



Figure 11 – NXP's broad portfolio of I2C, I3C and SPI devices

More information: <u>I<sup>2</sup>C, SPI, I3C Interface Devices</u>. nxp.com

### I<sup>2</sup>C-Bus, I3C-Bus and SPI Product Summary

| Bridge and Bus Controllers |             |                                                                                         |  |
|----------------------------|-------------|-----------------------------------------------------------------------------------------|--|
| Bridge                     | + SC16IS740 | I <sup>2</sup> C Fm/SPI-to-UART bridge with IrDA                                        |  |
|                            | SC16IS741A  | I <sup>2</sup> C Fm/SPI-to-UART bridge with IrDA                                        |  |
|                            | SC16IS750   | I <sup>2</sup> C Fm/SPI-to-UART bridge with IrDA and GPIO                               |  |
|                            | SC16IS752   | I <sup>2</sup> C Fm/SPI-to-DUART bridge with IrDA and GPIO                              |  |
|                            | SC16IS760   | I <sup>2</sup> C Fm/SPI-to-UART bridge with IrDA and GPIO                               |  |
|                            | SC16IS762   | I <sup>2</sup> C Fm/SPI-to-DUART bridge with IrDA and GPIO                              |  |
|                            | SC18IM704   | UART-to-I <sup>2</sup> C Fm controller bridge with GPIO<br>(Replacement for SCI18IM700) |  |
|                            | SC18IS604   | SPI-to-I <sup>2</sup> C Fm controller bridge with GPIO<br>(Replacement for SC18IS600)   |  |
|                            | SC18IS606   | I <sup>2</sup> C Fm target-to-SPI controller bridge<br>(Replacement for SC18IS602B)     |  |
| Controller                 | P3H2440     | I3C Hub with 2 controller ports and 4 target ports (pre-config) - Coming soon           |  |
|                            | P3H2441     | I3C Hub with 2 controller ports and 4 target ports (pre-config) - Coming soon           |  |
|                            | P3H2840     | I3C Hub with 2 controller ports and 4 target ports (pre-config) - Coming soon           |  |
|                            | P3H2841     | I3C Hub with 2 controller ports and 8 target ports (pre-config) - Coming soon           |  |

| Bus Buffers                              |          |                                                                                                           |
|------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------|
| Incremental<br>offset                    | PCA9510A | I²C Fm incremental offset hot-swap bus buffer<br>(no RTA)                                                 |
|                                          | PCA9511A | I <sup>2</sup> C Fm incremental offset hot-swap bus buffer                                                |
|                                          | PCA9512A | I <sup>2</sup> C Fm incremental offset VLT hot-swap bus buffer                                            |
|                                          | PCA9513A | l²C Fm incremental offset hot-swap bus buffer (92 µA CS)                                                  |
| Differential                             | PCA9614  | I <sup>2</sup> C Fm+ VLT differential (4-wire) bus buffer                                                 |
| driver with<br>static offset<br>(1 side) | PCA9615  | I <sup>2</sup> C Fm+ VLT differential (4-wire) hot-swap bus buffer                                        |
|                                          | PCA9616  | I <sup>2</sup> C Fm+ 0.8 V LV VLT differential (4-wire) hot-<br>swap bus buffer with INT (2-wire)         |
| No offset                                | PCA9646  | 4-channel I <sup>2</sup> C Fm+ no offset buffer/switch with RST                                           |
| Static offset                            | P82B96   | I <sup>2</sup> C Fm HV bus buffer                                                                         |
| (I side)                                 | PCA9507  | I <sup>2</sup> C Fm VLT DDC buffer with accelerator                                                       |
|                                          | PCA9508  | I <sup>2</sup> C Fm VLT hot-swap bus repeater                                                             |
|                                          | PCA9509  | I <sup>2</sup> C Fm 1.0 V VLV VLT bus buffer with current source                                          |
|                                          | PCA9517A | I <sup>2</sup> C Fm 0.9 V ULV VLT bus repeater                                                            |
|                                          | PCA9600  | I <sup>2</sup> C Fm+ HV bus buffer                                                                        |
|                                          | PCA9601  | I <sup>2</sup> C Fm+ HV bus buffer with stronger 15 mA local side drive to support multiple Fm+ followers |
|                                          | PCA9617A | I <sup>2</sup> C Fm+ 0.8 V ULV VLT bus repeater                                                           |
| Static offset                            | PCA9515A | I <sup>2</sup> C Fm bus repeater                                                                          |
| (All sides)                              | PCA9516A | I <sup>2</sup> C Fm 5-channel hub                                                                         |
|                                          | PCA9518A | I²C Fm expandable 5-channel hub                                                                           |

₽ **GPIO Expander** 4-bit PCA9536 4-bit I<sup>2</sup>C Fm TP GPIO with PU PCA9537 4-bit I<sup>2</sup>C Fm TP GPIO with INT and RST 8-bit PCF8574 8-bit I<sup>2</sup>C Fm QB GPIO with INT and PU PCF8574A 8-bit I2C Sm QB GPIO with INT and PU (alternate address) PCA9500 8-bit I<sup>2</sup>C Fm OB GPIO with PU and 2-K EEPROM 8-bit I<sup>2</sup>C Fm QB GPIO with INT, PU and 2-K EEPROM PCA9501 8-bit I<sup>2</sup>C Fm/SPI TP GPIO with INT and RST PCA9502 8-bit I<sup>2</sup>C Fm TP GPIO with INT PCA9534 + PCA9538 8-bit I<sup>2</sup>C Fm TP GPIO with INT and RST PCA9538A 8-bit I<sup>2</sup>C Fm LV TP GPIO with INT and RST PCAL9538A 8-bit I<sup>2</sup>C Fm LV TP/OD GPIO with INT, RST, latch and PU/PD PCA6408A 8-bit I<sup>2</sup>C Fm LV VLT TP GPIO with INT and RST 8-bit I<sup>2</sup>C Fm LV VLT TP/OD GPIO with INT, RST, latch and PCAL6408A PU/ PD PCA9554 8-bit I<sup>2</sup>C Fm TP GPIO with INT and PU 8-bit I<sup>2</sup>C Fm TP GPIO with INT and PU (alternate address for PCA9554A PCA9554) PCA9554B 8-bit I2C Fm LV TP GPIO with INT and PU 8-bit I<sup>2</sup>C Fm LV TP/OD GPIO with INT, latch and PU/PD (PU PCAL9554B default) 8-bit I<sup>2</sup>C Fm LV TP GPIO with INT and PU (alternate address PCA9554C for PCA9554B) 8-bit I<sup>2</sup>C Fm LV TP/OD GPIO with INT, latch and PU/PD (PU PCAL9554C default) (alternate address for PCAL9554B) PCA9557 8-bit I<sup>2</sup>C Fm TP GPIO with RST 8-bit I<sup>2</sup>C Fm LV VLT TP/OD GPIO with INT, RST, latch and PU/ PCA9574 PD + PCA9704 8-bit SPI 18 V GPI with maskable INT 14-bit SPI LV VLT TP/OD GPIO with INT, RST, latch and PU/PD 14-bit + PCAL9714 16-bit PCF8575 16-bit I<sup>2</sup>C Fm QB GPIO with INT and PU 16-bit I<sup>2</sup>C Fm TP GPIO with INT PCA9535 PCA9535C 16-bit I2C Fm OD GPIO with INT 16-bit I2C Fm LV TP GPIO with INT PCA9535A PCAL9535A 16-bit I<sup>2</sup>C Fm LV TP/OD GPIO with INT, latch and PU/PD + PCA9539 16-bit I<sup>2</sup>C Fm TP GPIO with INT and RST 16-bit I<sup>2</sup>C Fm TP GPIO with INT and RST (state machine + PCA9539R only) PCA9539A 16-bit I<sup>2</sup>C Fm LV TP GPIO with INT and RST PCAL9539A 16-bit I<sup>2</sup>C Fm LV TP/OD GPIO with INT, RST, latch and PU/PD PCA6416A 16-bit I2C Fm LV VLT TP GPIO with INT and RST 16-bit I<sup>2</sup>C Fm LV VLT TP/OD GPIO with INT, RST, latch and PCAL6416A PU/PD PCA9555 16-bit I2C Fm TP GPIO with INT and PU 16-bit I<sup>2</sup>C Fm LV TP GPIO with INT and PU PCA9555A 16-bit I<sup>2</sup>C Fm LV TP/OD GPIO with INT, latch and PU/PD (PU PCAL9555A default) 16-bit I<sup>2</sup>C Fm LV VLT TP/OD GPIO with INT, RST, latch and PCA9575 PU/PD PCA9671 16-bit I<sup>2</sup>C Fm+ QB GPIO with RST and PU PCA9701 16-bit SPI 18 V GPI with INT 22-bit + PCAL9722 22-bit SPI LV VLT TP/OD GPIO with INT, RST, latch and PU/PD 24 bit I<sup>2</sup>C Fm+ ULV VLT TP/OD GPIO with INT, RST, latch and 24-bit PCAL6524 PU/PD 34 bit I<sup>2</sup>C Fm+ ULV VLT TP/OD GPIO with INT, RST, latch and 34-bit PCAL6534 PU/PD 40-bit PCA9505 40-bit I2C Em TP GPIO with INT RST OF and PU PCA9506 40-bit I<sup>2</sup>C Fm TP GPIO with INT, RST and OE PCA9698 40-bit I<sup>2</sup>C Fm+ TP/OD GPIO with INT, RST, OE and PU

#### Selector guide $\mbox{System}$ Management $\mbox{I}^2\mbox{C},\mbox{I3C}$ and $\mbox{SPI}$

| LCD Driver           | 's                     |                                                                                                                                                                                   |
|----------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Segment<br>driver    | + PCA8561              | I²C Fm or SPI 72-segment low-power LCD driver in HVQFN32 package                                                                                                                  |
|                      | + PCA/<br>PCF85162     | I <sup>2</sup> C Fm 128-segment LCD driver in TSSOP48 package                                                                                                                     |
|                      | + PCA85262             | I <sup>2</sup> C Fm 128-segment LCD driver with higher frame frequency in TSSOP48 package                                                                                         |
|                      | + PCA/<br>PCF8551A/B   | I <sup>2</sup> C Fm or SPI 144-segment low-power LCD driver<br>with programmable frame frequency in TSSOP48<br>package                                                            |
|                      | + PCA/PCE/<br>PCF85176 | I²C Fm 160-segment LCD driver in TSSOP56 or<br>TQFP64 package                                                                                                                     |
|                      | + PCA85276             | I <sup>2</sup> C Fm 160-segment LCD driver with higher frame frequency in TSSOP56 package                                                                                         |
|                      | PCF8553                | 40 × 4 LCD segment driver - ultra low-power<br>LCD segment driver with 4 backplane- and 40<br>segmentdriver outputs, with either an I <sup>2</sup> C- or an<br>SPI-bus interface. |
|                      | + PCA/<br>PCF85134     | I²C Fm 240-segment LCD driver in LQFP80 package                                                                                                                                   |
|                      | + PCA/<br>PCF8536A/B   | I <sup>2</sup> C Fm or SPI 320-segment LCD driver with<br>programmable frame frequency and LED backlight<br>PWM control in TSSOP56 package                                        |
|                      | + PCA/<br>PCF8576D/E   | I <sup>2</sup> C Fm 160-segment COG LCD driver                                                                                                                                    |
|                      | + PCA8576F             | I <sup>2</sup> C Fm 160-segment COG LCD driver with higher<br>frame frequency and higher VLCD                                                                                     |
|                      | + PCA/<br>PCF85133     | I <sup>2</sup> C Fm 320-segment COG LCD driver with selectable frame frequency                                                                                                    |
|                      | + PCA85233             | I <sup>2</sup> C Fm 320-segment COG LCD driver with higher selectable frame frequency                                                                                             |
|                      | + PCA85232             | I <sup>2</sup> C Fm 640-segment COG LCD driver with higher<br>programmable frame frequency                                                                                        |
| Character<br>drivers | PCF2119                | I <sup>2</sup> C Fm or parallel bus 2 x 16 characters + 160-<br>icon COG LCD driver with charge pump,VLCD<br>temperature compensation                                             |

#### Open Drain Constant Current

| Driver<br>(PWM/Ch,<br>57 mA/<br>20 V) | + PCA9955B | 16-channel I <sup>2</sup> C Fm+ CC LED driver             |
|---------------------------------------|------------|-----------------------------------------------------------|
|                                       | PCA9956B   | 24-channel I <sup>2</sup> C Fm+ CC LED driver             |
| Driver<br>(PWM, 5 V)                  | PCA9957    | 24-channel SPI CC LED driver — 32 mA per ch               |
|                                       | + PCA9958  | 24-channel SPI CC LED driver — 63 mA per ch               |
|                                       | PCA9959    | 24-channel SPI CC LED driver — 63 mA per ch<br>— 64 grids |

\*

#### Open Drain or Totem Pole Voltage Source

| Dimmer<br>(2 PWM,<br>25 mA/ 5 V)      | PCA9531   | 8-channel I <sup>2</sup> C Fm OD LED dimmer with RST                         |
|---------------------------------------|-----------|------------------------------------------------------------------------------|
|                                       | PCA9532   | 16-channel I <sup>2</sup> C Fm OD LED dimmer with RST                        |
| Blinker                               | PCA9551   | 8-channel I <sup>2</sup> C Fm OD LED blinker with RST                        |
| (2 PWM,<br>25 mA/5 V)                 | PCA9552   | 16-channel I <sup>2</sup> C Fm OD LED blinker with RST                       |
| . ,                                   | PCA9553   | 4-channel I <sup>2</sup> C Fm OD LED blinker                                 |
| Controller<br>(PWM/Ch,<br>25 mA/ 5 V) | PCA9632   | 4-channel I <sup>2</sup> C Fm+ low-power TP LED controller                   |
|                                       | PCA9633   | 4-channel I <sup>2</sup> C Fm+ TP LED controller with OE                     |
|                                       | PCA9634   | 8-channel I <sup>2</sup> C Fm+ TP LED controller with OE                     |
|                                       | + PCA9635 | 16-channel I <sup>2</sup> C Fm+ TP LED controller with OE                    |
|                                       | + PCA9685 | 16-channel I <sup>2</sup> C Fm+ TP LED controller with<br>12-bit PWMs and OE |

| Load Switch |             |                                             |  |
|-------------|-------------|---------------------------------------------|--|
| Load        | NX3P2902BUK | 500 mA / 3.6 V load switch                  |  |
| Switch      | NX3P1108UK  | 1.5 A / 3.6 V load switch                   |  |
|             | NX5P3363UK  | 3 A / 5 V source load switch                |  |
|             | NX20P5090UK | 5 A / 20 V sink load switch                 |  |
|             | NX30P6093UK | I <sup>2</sup> C-controlled OVP load switch |  |

| Level Translators                                    |         |                                                                                                                                                   |
|------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| SIM Card<br>Translator                               | NVT4555 | SIM card VLT level translator and LDO                                                                                                             |
|                                                      | NVT4557 | SIM card VLT level translator for 1.8 V node                                                                                                      |
|                                                      | NVT4558 | SIM card VLT level translator for 1.2 V and 1.8 V node                                                                                            |
| SD Card<br>Translator                                | NVT4857 | SD 3.0 - SDR104 auto-direction control memory<br>card level translator and LDO – also support SIM<br>card for combo socket                        |
|                                                      | NVT4858 | SD 3.0 – SDR104 auto-direction control memory<br>card level translator for both 1.2 V and 1.8 V node<br>– also supports SIM card for combo socket |
| eUSB2<br>Repeater<br>and Level<br>Shifter            | PTN3222 | 1-port eUSB2 to USB2 redriver functionality                                                                                                       |
| GTL to LVTTL<br>Translators<br>with<br>Direction Pin | GTL2014 | 4-bit LVTTL to GTL transceiver                                                                                                                    |

| Level Translators                    |           |                                                                                                                                                 |
|--------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| EET                                  | NIVT2002  | 2-bit 120 Em+ 1/17 10 1/ to 5 5 1/                                                                                                              |
| No Direction Pin                     | NV12002   |                                                                                                                                                 |
|                                      | PCA9306   | Dual I2C/SMBus Fm+ VLT I.0 V to 5.5 V                                                                                                           |
|                                      | NVT2008   | 8-bit I <sup>2</sup> C Fm+ VLT 1.0 V to 5.5 V                                                                                                   |
|                                      | NVT2010   | 10-bit I <sup>2</sup> C Fm+ VLT 1.0 V to 5.5 V                                                                                                  |
| FET One Shot<br>No Direction Pin     | P3A1604   | 4-Bit Dual Supply Bidirectional I3C/I²C-Bus,<br>SMBus and SPI Voltage-Level Translator                                                          |
|                                      | P3A9606   | Dual I3C 12.5 MHz and I²C/SMBus Fm+ VLT<br>0.72 V to 1.98 V                                                                                     |
|                                      | NTS0102   | 2-bit I²C Fm+ VLT 1.65 V to 3.6 V A side and 2.3 V to 5.5V B side                                                                               |
|                                      | P3S0200   | Dual bidirectional I3C 12.5 MHz 1:2 and 2:1<br>switch and voltage level translator 0.72 V<br>to 3.6 V                                           |
|                                      | NTS0104   | 4-bit I <sup>2</sup> C Fm+ VLT 1.65 V to 3.6 V A side and 2.3 V to 5.5 V B side, AEC Q100 part add "+"                                          |
|                                      | NTS0302   | 2-bit improved smart one shot I <sup>2</sup> C Fm+ VLT<br>0.95 V to 3.6 V A side and 1.65 V to 5.5 V B<br>side                                  |
|                                      | NTS0304E  | 4-bit improved smart one shot I^2C Fm+ VLT 0.95 V to 3.6 V A side and 1.65 V to 5.5 V B side with IEC 61000-4-2 Class 4, 8 kV contact on B side |
|                                      | NTS0308E  | 8-bit improved smart one shot I²C Fm+ VLT 0.95 V to 3.6 V A side and 1.65 V to 5.5V B side with IEC 61000-4-2 Class 4, 8 kV contact on B side   |
| Buffer One Shot<br>No Direction Pinc | NTB0102   | 2-bit SPI VLT 1.2 V to 3.6 V A side and 1.65 V to 5.5 V B side                                                                                  |
|                                      | + NTB0104 | 4-bit SPI VLT 1.2 V to 3.6 V A side and 1.65 V to 5.5 V B side, AEC Q100 part add "+"                                                           |
| Translators with<br>Direction Pin    | GTL2014   | 4-bit LVTTL to GTL transceiver                                                                                                                  |

| High Spe                 | ed Interface | <u></u> Φ                                                                                          |
|--------------------------|--------------|----------------------------------------------------------------------------------------------------|
| CC<br>Logic/PD           | PTN5150      | USB Type-C Rev 1.1 CC-Logic, Pin to control NXP redriver                                           |
| Phy                      | PTN5110      | USB Type-C Rev 3.0 PD PHY, TCPC Rev 2.0 version<br>1.0. Laptop/tablet applications                 |
| Redrivers                | PTN38003A    | Multi-protocol USB3.2 and DisplayPort linear redriver                                              |
|                          | PTN3944      | Multi-channel PCIe 4.0 linear equalizer                                                            |
| DP++<br>Level<br>Shifter | PTN3360      | Enhanced performance HDMI/DVI level shifter with active DDC buffer, supporting 3 Gbi t/s operation |
|                          | PTN3361B     | HDMI/DVI level shifter with dongle detect support and active DDC buffer                            |
|                          | PTN3365      | Enhanced performance HDMI/DVI level shifter with active DDC buffer, supporting 3 Gbit/s operation  |

| Real-time Clocks                                                           |             |                                                                                                                                           |  |
|----------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| Low-power                                                                  | PCF2123     | SPI lower power RTC with alarm, timer and interrupt                                                                                       |  |
|                                                                            | PCF85053A   | Bootable CPU I <sup>2</sup> C Fm RTC with two I <sup>2</sup> C controllers, 128 Byte SRAM and alarm function                              |  |
|                                                                            | PCF85063    | I <sup>2</sup> C Fm/Tiny RTC with 30s, 60s interrupt                                                                                      |  |
|                                                                            | PCF85063A/B | I <sup>2</sup> C Fm or SPI/Tiny RTC with alarm and 30s,<br>60s interrupt                                                                  |  |
|                                                                            | PCF85263A   | I <sup>2</sup> C Fm/Tiny RTC with alarms, time stamp and<br>battery backup +1-byte RAM 0.25 mm pitch<br>WLCSP12 for cellular modem        |  |
|                                                                            | PCF85363A   | I <sup>2</sup> C Fm/Tiny RTC with alarms, time stamp and battery back-up switch + 64-byte RAM                                             |  |
|                                                                            | PCF8523     | I <sup>2</sup> C Fm+ ultra-low-power RTC with loss of<br>main power detection and automatic battery<br>backup                             |  |
|                                                                            | PCF8563     | I <sup>2</sup> C Fm low-power clock/calendar                                                                                              |  |
|                                                                            | PCF8583     | l²C Sm Clock and calendar with 240 x 8-bit RAM and alarm                                                                                  |  |
|                                                                            | PCF8593     | I <sup>2</sup> C Sm Low power clock and calendar with alarm                                                                               |  |
| Automotive<br>high                                                         | + PCA21125  | SPI lower power RTC with alarm, timer and interrupt to 125 °C                                                                             |  |
| temperature                                                                | + PCA85073A | I <sup>2</sup> C Fm/Tiny RTC with alarm and 30s, 60s<br>interrupt -40 °C to 105 °C                                                        |  |
|                                                                            | + PCA8565   | l²C Fm high-temperature clock/calendar -40<br>°C to +125 °C                                                                               |  |
|                                                                            | + PCA2131   | I <sup>2</sup> C Fm or SPI high accuracy, low voltage 100<br>mA<br>RTC with embedded crystal, time stamp,<br>tamper pins -40 °C to 105 °C |  |
| Temperature<br>compensated<br>high accuracy<br>with<br>embedded<br>crystal | PCF2131     | l²C Fm or SPI high accuracy, low voltage 64<br>nA<br>RTC time stamp, tamper pins -40 °C to 85 °C                                          |  |

Improved I<sup>2</sup>C Fm+ stepper motor controller with TP GPIO with INT and RSTC

i.MX RT5/600 including battery charger

i.MX 8M family with 12 power rails

i.MX 8ULP with 13 power rails

i.MX 93 with 12 power rails

| Temp Sensors        |           |                                                                                          |
|---------------------|-----------|------------------------------------------------------------------------------------------|
| Local               | LM75B     | I <sup>2</sup> C Fm TS local with ± 2 °C accuracy and SMBus timeout                      |
|                     | SE98A     | I <sup>2</sup> C Fm JEDEC DDR3 TS, no SPD, ±1 °C accuracy and SMBus timeout              |
|                     | PCT2075   | I°C Fm+ TS with ±1 °C accuracy and SMBus<br>timeout<br>Default interrupt trip is + 85 °C |
|                     | P3T1085UK | I3C and I <sup>2</sup> C TS with ±0.5 °C accuracy and SMBus timeout                      |
|                     | P3T1084UK | ±0.4 °C accuracy temperature sensor with<br>I3C/I2C interface in WLCSP6 package          |
|                     | P3T1755DP | I3C and I <sup>2</sup> C TS with ±0.5 °C accuracy and SMBus timeout                      |
|                     | P3T1750DP | ±1 °C accuracy temperature sensor with I3C/<br>I2C interface in TSSOP8 package           |
|                     | P3T1035x  | I3C and I <sup>2</sup> C interface with ±0.5C accuracy with 8 address options            |
|                     | P3T2030x  | I3C and I <sup>2</sup> C interface with ±2C accuracy with 8 address options              |
| Local and<br>EEPROM | SE97B     | l²C Fm JEDEC DDR3 TS local with ±1 °C<br>accuracy,<br>2K SPD and SMBus timeout           |
| Local and remote    | SA56004   | I <sup>2</sup> C HSmTS, 1.8 V, + 1 °C accuracy and SMBus timeout                         |

| Muxes and Switches |             |                                                                                                                |  |  |  |  |
|--------------------|-------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 2-channel          | + PCA9540B  | 2-channel I <sup>2</sup> C Fm mux                                                                              |  |  |  |  |
|                    | P3S0200GM   | 2:1 and 1:2 I3C 12.5 MHz mux with select pin                                                                   |  |  |  |  |
|                    | PCA9542A    | 2-channel I <sup>2</sup> C Fm mux with INT                                                                     |  |  |  |  |
|                    | PCA9543A    | 2-channel I <sup>2</sup> C Fm switch with INT and RST                                                          |  |  |  |  |
| 2-to-1<br>demux    | PCA9541A/01 | 2-to-1 I <sup>2</sup> C Fm demux with INT and RST<br>(channel 0 default)                                       |  |  |  |  |
|                    | PCA9541A/03 | 2-to-1 I <sup>2</sup> C Fm demux with INT and RST<br>(no channel default)                                      |  |  |  |  |
| 4-channel          | PCA9544A    | 4-channel I <sup>2</sup> C Fm mux with INT                                                                     |  |  |  |  |
|                    | PCA9545A    | 4-channel I <sup>2</sup> C Fm switch with INT and RST                                                          |  |  |  |  |
|                    | PCA9546A    | 4-channel I <sup>2</sup> C Fm switch with RST                                                                  |  |  |  |  |
|                    | PCA9646     | 4-channel I²C Fm+ no offset buffer/switch with RST                                                             |  |  |  |  |
|                    | PCA9846     | 4-channel ULV VLT I <sup>2</sup> C Fm+ switch with RST                                                         |  |  |  |  |
|                    | PCA9849     | 4-channel ULV VLT I <sup>2</sup> C Fm+ mux with RST                                                            |  |  |  |  |
| 8-channel          | PCA9547     | 8-channel I <sup>2</sup> C Fm mux with RST (channel 0 default)                                                 |  |  |  |  |
|                    | PCA9847     | 8-channel ULV VLT I <sup>2</sup> C Fm+ mux with RST                                                            |  |  |  |  |
|                    | PCA9548A    | 8-channel I <sup>2</sup> C Fm switch with RST                                                                  |  |  |  |  |
|                    | PCA9848     | 8-channel ULV VLT I <sup>2</sup> C Fm+ switch with RST                                                         |  |  |  |  |
| Arbiter            | PCA9641     | 2 controllers to shared target I <sup>2</sup> C Fm+ arbiter with INT and RST (no channels selected at default) |  |  |  |  |

#### Legend

1 motor

controller

PCA942X PCA9450

PCA9460

PCA9451

Stepper Motor Controller

PCA9629A

| Code | Description                                  | Code | Description                              | Code          | Description                 |
|------|----------------------------------------------|------|------------------------------------------|---------------|-----------------------------|
| Sm   | 100 kHz Standard-mode I <sup>2</sup> C-bus   | ADC  | Analog Digital Converter                 | INT           | Interrupt                   |
| Fm   | 400 kHz Fast-mode I <sup>2</sup> C-bus       | LV   | Supply Voltage < 2.3 V                   | RST           | Reset                       |
| Fm+  | 1 MHz Fast-mode Plus I <sup>2</sup> C-bus    | VLV  | Supply Voltage < 1.65 V                  | OE            | Output enable               |
| HSm  | 3.4 MHz High-speed Mode I <sup>2</sup> C-bus | ULV  | Supply Voltage < 1.0 V                   | Latch         | Input latch                 |
| +    | AEC-Q100 Compliance                          | HV   | Outputs >10 V                            | PU            | Pull-up resistors           |
| GPIO | General-purpose I/O Expander                 | VIT  | Voltage Level Translator – 2<br>Supplies | PU/PD         | Pull-up/pull-down resistors |
| TS   | Thermal Sensor                               |      |                                          | COG           | Chip on glass               |
| RTC  | Real-time Clock                              | TP   | Totem-pole (push-pull)                   | SPI           | Serial peripheral interface |
| LCD  | Liquid Crystal Display                       | QB   | Quasi-bidirectional                      | 0.01.41       | System power management     |
| DAC  | Digital Anglog Converter                     | OD   | Open Drain                               | SPMI          | interface                   |
|      |                                              | СС   | Constant current                         | P3A, P3T, P3S | 3 indicates I3C Bus capable |

-1M)-

**:** 

### **Evaluation Boards**

| Bridges                | OM6270               | SC16IS750_760 SPI_I <sup>2</sup> C-UART EV                | Arduino | PCF85063AT-ARD | Industry Standard RTC                       |  |
|------------------------|----------------------|-----------------------------------------------------------|---------|----------------|---------------------------------------------|--|
|                        | OM6273               | SC16IS752_762 SPI_I <sup>2</sup> C-UART EV                | Бойги   |                | Tomp Sopsor                                 |  |
|                        | SC18IS604-EVB        | SPI-to-I <sup>2</sup> C Fm controller bridge Eval Board   |         |                |                                             |  |
|                        | SC18IS606-EVB        | I <sup>2</sup> C Fm target-to-SPI controller bridge Eval  |         |                | 24-channel LED controller with 64-grid      |  |
|                        |                      | HAPT to 120 Fm controller bridge Fugl Degrad              |         | PCA9959HN-ARD  | 24-channel LED controller with 64-gha       |  |
|                        | SCI8IM/04-EVB        | UARI-to-I <sup>2</sup> C Fm controller bridge Eval Board  |         | PCF850631P-ARD | RIC                                         |  |
| LCD display            | OM13506              | CF8553 LCD Demo                                           |         | IMX8MMINI-IARD | Interposer Board for i.MX8 EVB              |  |
| RTC                    | OM11059              | PCF85063B RTC Eval - SPI                                  |         | NTS0304EUK-ARD | 4cch Voltage Level Translator               |  |
|                        | OM11059A             | PCF85063A RTC Eval - 12C                                  |         | PCAL6534EV-ARD | 34-bit GPIO                                 |  |
|                        | OM13510              | PCF85263 RTC Eval                                         |         | PCAL6524EV-ARD | 24-bit GPIO                                 |  |
|                        | OM13511              | PCF8523 RTC Eval                                          |         | PCF85263ATL-   | Full Function RTC                           |  |
|                        | OM13512              | PCF2123 SPI-bus RTC Eval                                  |         | PCA9955BTW-    | 16 ch LED Controllor                        |  |
|                        | OM13514              | PCF85363 RTC Eval                                         |         | ARD            |                                             |  |
|                        | OM13515              | PCF85063A RTC Eval                                        |         | PCA8561AHN-    | LCD Display                                 |  |
|                        | OM13517              | PCA21125 RTC Eval 9 pin                                   |         | PCAL6408A-ARD  | 8-bit GPIO                                  |  |
|                        | OM13519              | PCA8565 RTC Eval                                          |         | PCAL6416AEV-   | 16-bit GPIO                                 |  |
| Voltage-               | OM13317              | NVT2008PW VLT Eval                                        |         | ARD            |                                             |  |
| Translator             | OM13318              | NVT2002DP VLT Eval<br>NVT4555UK SIM Card Eval             |         | PCA9617ADP-ARD | I <sup>2</sup> C Bus Buffer                 |  |
|                        | OM13480              |                                                           |         | PCA9846PW-ARD  | I <sup>2</sup> C Low Voltage Switch         |  |
|                        | NVT4858-4557-<br>EVB | NVT4858 SD and NVT4557 SIM Card Eval                      |         | PCT2131-ARD    | Low Power Temperature Compensated RTC       |  |
|                        | P3A9606JK-EVB        | P3A9606JK VLT Eval                                        |         | ARD            | Dual Controller RTC with RAM                |  |
| LED<br>driver          | OM13269              | PCA9632 LED Eval                                          |         | P3T1085UK-ARD  | Temp Sensor - 6 pin 0.5 °C accuracy         |  |
|                        | OM13321              | PCA9956B LED Eval Fm_Plus                                 |         | P3T1755DP-ARD  | Temp Sensor - 8 pin 0.5 °C accuracy         |  |
|                        | OM13332              | PCA9685 demo board, 16-channel voltage                    |         | P3T1035XUK-ARD | Temp Sensor - 4 bump with 0.5C accuracy     |  |
|                        |                      | source with 12-bit PWM demo board I <sup>2</sup> C<br>Em+ |         | P3T2030XUK-ARD | Temp Sensor - 4 bump with 2.0C accuracy     |  |
|                        | OM13333              | PCA9635 LED Eval                                          |         | PCAL9722HN-ARD | 22-Bit SPI, GPIO Expander Evaluation Board  |  |
|                        | OM13483              | PCA9955B LED Eval                                         |         | PCA9958HN-ARD  | 24-Channel LED Driver                       |  |
|                        | OM13528              | PCA9532BS LED Eval                                        |         | PCF2131-ARD    | PCF2131/PCA2131 Evaluation Board            |  |
|                        | OMPCA9957-           | PCA9957 IED Eval Socket - MCU                             |         | P3A1604UK-ARD  | P3A1604UK Evaluation Board                  |  |
|                        | LEDEV                |                                                           |         | P3H2440HN-ARD  | P3H2440HN Evaluation Board – Coming soon    |  |
|                        | LEDEV                | ACA3323 FED EAGI 20CKGI - WCD                             |         | P3H2441HN-ARD  | P3H2441HN Evaluation Board – Coming<br>soon |  |
| Temperature<br>Sensors | OM13257              | Universal TS DC Fm_Plus                                   |         | P3H2840HN-ARD  | P3H2840HN Evaluation Board – Coming         |  |
| Bus Buffers            | OM13523              | PCA9616PW dl <sup>2</sup> C Buffer Eval                   |         |                | P2H2941HN Evaluation Poard - Coming         |  |
| GPIO                   | OM13488              | Universal 8-bit GPIO DC — Fm                              |         | I SHZO4IAN-ARD | soon                                        |  |
|                        | OM13489              | Universal 16-bit GPIO DC – Fm                             |         |                |                                             |  |
|                        | OM13526              | PCAL6524 GPIO Eval                                        |         |                |                                             |  |
|                        | OM13529              | PCAL6524EV GPIO Eval Fm_Plus                              |         |                |                                             |  |
|                        | OM13541              | PCAL6534EV GPIO Eval                                      |         |                |                                             |  |

## Arduino™ Evaluation Boards

#### RTCs



PCF85063TP-ARD



PCF85263ATL-ARD



PCF2131-ARD

### **GPIO Expanders**



### **LED Drivers**







#### PCA9957HN-ARD



P3A1604UK-ARD - coming soon

**Bus Controller** 



P3H2440HN-ARD - Coming soon P3H2441HN-ARD - Coming soon P3H2840HN-ARD - Coming soon P3H2841HN-ARD - Coming soon

#### **Temperature Sensors**



PCT2075DP-ARD



P3T2030XUK-ARD





P3T1755DP-ARD

P3T1085UK-ARD

#### I<sup>2</sup>C Bus Enablers



PCA9617ADP-ARD



PCA9846PW-ARD

Our I<sup>2</sup>C-bus website (<u>www.nxp.com/i2c</u>), SPI website (<u>www.nxp.com/SPI</u>) and I3C-bus website (<u>www.nxp.com/i3c</u>) are a valuable resource for device information and training programs. It gives you direct access to a comprehensive handbook, application notes, information about evaluation kits and training materials, links to application and design support and more. The development boards and daughter card make it easy to program new peripherals and are a quick way to learn about the I<sup>2</sup>C-bus and I3C-bus protocol. Samples and demo boards are available on request; contact a local NXP distributor.

#### nxp.com/i3c nxp.com/spi nxp.com/l<sup>2</sup>C

NXP, the NXP logo and the I<sup>2</sup>C-bus logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2025 NXP B.V.