

© 2019 NXP B.V.

Multiple Connections in Bluetooth LE

Peripheral Device

1. Introduction

NXP provides a complete Bluetooth® LE solution that

enables you to create applications that support up to

eight simultaneous connections using the KW36/35

SoC, which can be configured as either a central device

or a peripheral device. This application note describes

the procedure to enable multiple connections on a

Bluetooth LE peripheral device using the Temperature

Sensor demo application.

2. Prerequisites

These items are required to complete the

implementation of multiple connections on a peripheral

device:

• At least 3 FRDM-KW36 modules

• FRDM-KW36 SDK package

• MCUXpresso IDE

• Temperature Collector demo application

• Temperature Sensor demo application

• TeraTerm or any other serial terminal software

NXP Semiconductors Document Number: AN12405

Application Note Rev. 0 , 05/2019

Contents

1. Introduction .. 1
2. Prerequisites ... 1
3. Enabling multiple connections on Bluetooth LE peripheral

device ... 2
3.1. Creating workspace and importing SDK to

MCUXpresso IDE ... 2
3.2. Importing SDK example .. 3

4. Adding multiple connection support 5
4.1. Modifying app_preinclude.h file 5
4.2. Modifying temperature_service.c file 7
4.3. Modifying temperature_interface.h file 10
4.4. Modifying temperature_sensor.c file 11

5. Testing peripheral device with multiple connections 14
5.1. Importing Temperature Collector example 14
5.2. Building and downloading projects 15
5.3. Running application .. 17

Enabling multiple connections on Bluetooth LE peripheral device

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

2 NXP Semiconductors

3. Enabling multiple connections on Bluetooth LE
peripheral device

This section shows how to enable multiple connections using the Temperature Sensor application and

MCUXpresso IDE.

3.1. Creating workspace and importing SDK to MCUXpresso IDE

1. Download the FRDM-KW36 SDK at https://mcuxpresso.nxp.com/en/select?device=FRDM-

KW36.

2. Open the MCUXpresso IDE.

3. Create or select the workspace directory and click the OK button.

Figure 1. Selecting workspace

4. If there is no previous SDK installed, import the FRDM-KW36 SDK. To install a new SDK in

the MCUXpresso IDE, drag and drop the SDK .zip file into the Installed SDKs view.

Figure 2. MCUXpresso “Installed SDKs” view

https://mcuxpresso.nxp.com/en/select?device=FRDM-KW36
https://mcuxpresso.nxp.com/en/select?device=FRDM-KW36

Enabling multiple connections on Bluetooth LE peripheral device

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

NXP Semiconductors 3

5. When installed, the MCUXpresso IDE looks as Figure 3.

Figure 3. MCUXpresso IDE main screen

3.2. Importing SDK example

1. In the Quickstart Panel tab, click the Import SDK example(s)… option.

Figure 4. “Quickstart Panel” tab

Enabling multiple connections on Bluetooth LE peripheral device

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

4 NXP Semiconductors

2. Select the frdmkw36 SDK in the Available boards screen and click the Next > button.

Figure 5. SDK import wizard

Adding multiple connection support

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

NXP Semiconductors 5

3. In the Examples view, expand the wireless_examples folder, expand the bluetooth subfolder,

and then the temp_sens subfolder. Tick the freertos option and click the Finish button.

Figure 6. Importing Temperature Sensor project to workspace

4. Adding multiple connection support

When the Temperature Sensor application is imported to the MCUXpresso IDE, the following files must

be modified to enable multiple connections: app_preinclude.h, temperature_service.c,

temperature_interface.h, and temperature_sensor.c.

4.1. Modifying app_preinclude.h file

1. In the Project Explorer view, expand the Temperature Sensor project and locate the

app_preinclude.h file in the source folder.

Adding multiple connection support

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

6 NXP Semiconductors

Figure 7. app_preinclude.h file

2. Add the following define. This define determines the maximum number of simultaneous

connections. The maximum number of connections is eight.

/*! ***

 * App Configuration

 ** */

/*! Number of connections supported by the application */

#define gAppMaxConnections_c 8

3. Locate the gTmrStackTimers_c define and modify it as shown below. This define must be

increased by one for each device to be connected with pairing.

#define gTmrStackTimers_c (6 + gAppMaxConnections_c)

4. If debug is required, modify the following macro to disable the usage of the low-power mode.

/* Enable/Disable PowerDown functionality in PwrLib */

#define cPWR_UsePowerDownMode 0

Adding multiple connection support

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

NXP Semiconductors 7

4.2. Modifying temperature_service.c file

1. In the Project Explorer view, expand the Temperature Sensor project and locate the

temperature_sensor.c file in the bluetooth/profiles/temperature folder.

Figure 8. temperature_service.c file

2. Locate the static deviceId_t mTms_SubscribedClientId declaration and comment the line.

/*! Temperature Service - Subscribed Client*/

//static deviceId_t mTms_SubscribedClientId;

3. Locate the Hts_SendTemperatureMeasurementNotification function declaration and modify it as

follows:

static void Hts_SendTemperatureMeasurementNotification(tmsConfig_t *pServiceConfig,

uint16_t handle);

4. Go to the Tms_Start function and modify it as follows:

bleResult_t Tms_Start (tmsConfig_t *pServiceConfig)

{

 uint8_t mClientId = 0;

 /* reset all slots for valid subscribers */

 for(mClientId = 0; mClientId < pServiceConfig->validSubscriberListSize;

mClientId++)

 {

 pServiceConfig->aValidSubscriberList[mClientId] = FALSE;

 }

 return Tms_RecordTemperatureMeasurement(pServiceConfig);

}

Adding multiple connection support

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

8 NXP Semiconductors

5. Go to the Tms_Stop function and modify it as follows:

bleResult_t Tms_Stop (tmsConfig_t *pServiceConfig)

{

 uint8_t mClientId = 0;

 /* reset all slots for valid subscribers */

 for(mClientId = 0; mClientId < pServiceConfig->validSubscriberListSize;

mClientId++)

 {

 pServiceConfig->aValidSubscriberList[mClientId] = FALSE;

 }

 return gBleSuccess_c;

}

6. Go to the Tms_Subscribe function and modify it as follows:

bleResult_t Tms_Subscribe(tmsConfig_t *pServiceConfig, deviceId_t deviceId)

{

 if(deviceId >= pServiceConfig->validSubscriberListSize)

 {

 return gBleInvalidParameter_c;

 }

 pServiceConfig->aValidSubscriberList[deviceId] = TRUE;

 return gBleSuccess_c;

}

7. Go to the Tms_Unsubscribe function and modify it as follows:

bleResult_t Tms_Unsubscribe(tmsConfig_t *pServiceConfig, deviceId_t deviceId)

{

 if(deviceId >= pServiceConfig->validSubscriberListSize)

 {

 return gBleInvalidParameter_c;

 }

 pServiceConfig->aValidSubscriberList[deviceId] = FALSE;

 return gBleSuccess_c;

}

8. Go to the Tms_RecordTemperatureMeasurement function and modify it as follows:

bleResult_t Tms_RecordTemperatureMeasurement (tmsConfig_t *pServiceConfig)

{

 uint16_t handle;

 bleResult_t result;

 bleUuid_t uuid = Uuid16(gBleSig_Temperature_d);

 /* Get handle of Temperature characteristic */

 result = GattDb_FindCharValueHandleInService(pServiceConfig->serviceHandle,

gBleUuidType16_c, &uuid, &handle);

 if (result != gBleSuccess_c)

 return result;

 /* Update characteristic value */

 result = GattDb_WriteAttribute(handle, sizeof(uint16_t), (uint8_t*)&pServiceConfig-

>temperature);

 if (result != gBleSuccess_c)

 return result;

Adding multiple connection support

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

NXP Semiconductors 9

 Hts_SendTemperatureMeasurementNotification(pServiceConfig, handle);

 return gBleSuccess_c;

}

9. Go to the Hts_SendTemperatureMeasurementNotification function and modify it as follows:

static void Hts_SendTemperatureMeasurementNotification(tmsConfig_t *pServiceConfig,

uint16_t handle)

{

 uint16_t hCccd;

 bool_t isNotificationActive;

 uint8_t mClientId = 0;

 /* Get handle of CCCD */

 if (GattDb_FindCccdHandleForCharValueHandle(handle, &hCccd) != gBleSuccess_c)

 return;

 for(mClientId = 0; mClientId < pServiceConfig->validSubscriberListSize;

mClientId++)

 {

 if(pServiceConfig->aValidSubscriberList[mClientId])

 {

 if (gBleSuccess_c == Gap_CheckNotificationStatus

 (mClientId, hCccd, &isNotificationActive) &&

 TRUE == isNotificationActive)

 {

 GattServer_SendNotification(mClientId, handle);

 }

 }

 }

}

Adding multiple connection support

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

10 NXP Semiconductors

4.3. Modifying temperature_interface.h file

1. In the Project Explorer view, expand the Temperature Sensor project and locate the

temperature_interface.h file in the bluetooth/profiles/temperature folder.

Figure 9. temperature_interface.h file

2. Locate the structure and modify it as follows:

/*! Temperature Service - Configuration */

typedef struct tmsConfig_tag

{

 uint16_t serviceHandle;

 int16_t temperature;

 bool_t* aValidSubscriberList;

 uint8_t validSubscriberListSize;

} tmsConfig_t;

3. Locate the Tms_Subscribe function declaration and modify it as follows:

bleResult_t Tms_Subscribe(tmsConfig_t *pServiceConfig, deviceId_t deviceId);

4. Locate the Tms_Unsubscribe function and modify it as follows:

bleResult_t Tms_Unsubscribe(tmsConfig_t *pServiceConfig, deviceId_t deviceId);

5. Locate the Tms_RecordTemperatureMeasurement function and modify it as follows:

bleResult_t Tms_RecordTemperatureMeasurement (tmsConfig_t *pServiceConfig);

Adding multiple connection support

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

NXP Semiconductors 11

4.4. Modifying temperature_sensor.c file

1. In the Project Explorer view, expand the Temperature Sensor project and locate the

temperature_sensor.c file in the source folder.

Figure 10. temperature_sensor.c file

2. Locate the mPeerDeviceId variable declaration and modify it as follows:

static deviceId_t mPeerDeviceId[gAppMaxConnections_c] = {gInvalidDeviceId_c};

3. Create a global variable to be used to track the number of active devices. This variable can be

placed below the mPeerDeviceId[gAppMaxConnections_c] declaration.

uint8_t mActiveConnections = 0;

4. Create a global variable to be used as a valid client list. This variable can be placed below the

basValidClientList[gAppMaxConnections_c] declaration.

static bool_t tmsValidClientList[gAppMaxConnections_c] = {FALSE};

5. Locate the tmsServiceConfig variable and modify it as follows:

static tmsConfig_t tmsServiceConfig = {service_temperature, 0, tmsValidClientList,

gAppMaxConnections_c};

6. Locate the declaration of the DisconnectTimerCallback function and comment the lines as

shown below. Find the declaration within the #if - #endif preprocessor directive.

/* Timer Callbacks */

#if (cPWR_UsePowerDownMode)

static void AdvertisingTimerCallback (void *);

//static void DisconnectTimerCallback(void*);

#endif

7. Go to the BleApp_Start function and modify the if statement as follows:

if (mActiveConnections < gAppMaxConnections_c)

Adding multiple connection support

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

12 NXP Semiconductors

8. Go to the BleApp_Config function, locate the tmsServiceConfig.initialTemperature value

assignation, and modify it as follows:

tmsServiceConfig.temperature = 100 * BOARD_GetTemperature();

9. Go to the BleApp_AdvertisingCallback function, locate the #ifdef MULTICORE_HOST preprocessor

directive, and modify it as follows:

#ifdef MULTICORE_HOST

 #if gErpcLowPowerApiServiceIncluded_c

 PWR_ChangeBlackBoxDeepSleepMode(3);

 #endif

#else

 if(mActiveConnections > 0)

 {

 PWR_ChangeDeepSleepMode(1);

 }

 else

 {

 PWR_ChangeDeepSleepMode(3);

 }

#endif

10. Go to the BleApp_ConnectionCallback function.

a. At case gConnEvtConnected_c, locate and modify the following line as follows:

1) mPeerDeviceId[mActiveDevices] = peerDeviceId;

2) Tms_Subscribe(&tmsServiceConfig, peerDeviceId);

b. At case gConnEvtConnected_c, add the following line below the Tms_Subscribe function

call:

mActiveConnections++;

c. At case gConnEvtDisconnected_c, locate and modify the following line as follows:

1) mPeerDeviceId[peerDeviceId] = gInvalidDeviceId_c;

2) Tms_Unsubscribe(&tmsServiceConfig, peerDeviceId);

d. At case gConnEvtDisconnected_c, add the following line below the Tms_Unsubscribe

function call:

mActiveConnections--;

e. At case gConnEvtDisconnected_c, locate the #if (cPWR_UsePowerDownMode) preprocessor

directive and modify it as follows:

#if (cPWR_UsePowerDownMode)

 /* Go to sleep */

 #ifdef MULTICORE_HOST

 #if gErpcLowPowerApiServiceIncluded_c

 PWR_ChangeBlackBoxDeepSleepMode(3);

 #endif

 #else

 if(mActiveConnections > 0)

 {

 PWR_ChangeDeepSleepMode(1);

 }

Testing peripheral device with multiple connections

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

NXP Semiconductors 13

 else

 {

 PWR_ChangeDeepSleepMode(3);

 }

 #endif

 Led1Off();

#else

 LED_TurnOffAllLeds();

 LED_StartFlash(LED_ALL);

#endif

11. Go to the DisconnectTimerCallback function and comment the lines as follows:

/*

static void DisconnectTimerCallback(void* pParam)

{

 if (mPeerInformation.deviceId != gInvalidDeviceId_c)

 {

 Gap_Disconnect(mPeerDeviceId);

 }

}

*/

12. Go to the BleApp_SendTemperature function and modify it as follows:

static void BleApp_SendTemperature(void)

{

 TMR_StopTimer(appTimerId);

 /* Update with initial temperature */

 tmsServiceConfig.temperature = BOARD_GetTemperature() * 100;

 Tms_RecordTemperatureMeasurement(&tmsServiceConfig);

/*

#if (cPWR_UsePowerDownMode)

 Start Sleep After Data timer

 TMR_StartLowPowerTimer(appTimerId,

 gTmrLowPowerSecondTimer_c,

 TmrSeconds(gGoToSleepAfterDataTime_c),

 DisconnectTimerCallback, NULL);

#endif

*/

}

Testing peripheral device with multiple connections

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

14 NXP Semiconductors

5. Testing peripheral device with multiple connections

The Temperature Collector demo application is needed together with the Temperature Sensor demo

application to demonstrate the functionality of multiple connections. The following steps show how to

generate two (or more) central devices enabled with the Temperature Collector to test multiple

connections in a peripheral device.

5.1. Importing Temperature Collector example

1. See Section 3.2, “Importing SDK example” and follow the steps described there. In step number

3, select temp_coll instead of temp_sens. This imports the Temperature Collector demo

application into the workspace.

Figure 11. Importing Temperature Collector project to workspace

2. The Temperature Collector application has the low-power mode enabled by default and, like the

Temperature Sensor application, it has a timer that disconnects the device when the temperature

is reported. To avoid disconnection, perform these steps:

a) Open the Temperature Collector application’s app_preinclude.h file and modify the

Testing peripheral device with multiple connections

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

NXP Semiconductors 15

following macro to disable the low-power mode:

/* Enable/Disable PowerDown functionality in PwrLib */

#define cPWR_UsePowerDownMode 0

b) Open the Temperature Collector application’s temperature_collector.c file, navigate to

the BleApp_GattNotificationCallback function, and modify the following lines:

/*

#if (cPWR_UsePowerDownMode)

 Restart Wait For Data timer

 TMR_StartLowPowerTimer(mAppTimerId,

 gTmrLowPowerSecondTimer_c,

 TmrSeconds(gWaitForDataTime_c),

 DisconnectTimerCallback, &serverDeviceId);

#endif

*/

3. If debugging is required, open the Temperature Collector application’s app_preinclude.h file and

modify the following macro to disable the low-power mode.

/* Enable/Disable PowerDown functionality in PwrLib */

#define cPWR_UsePowerDownMode 0

5.2. Building and downloading projects

1. Select the Temperature Sensor project in the Project Explorer view and compile it by clicking

the Build button in the Quickstart Panel view.

Figure 12. Temperature Sensor project selected

Testing peripheral device with multiple connections

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

16 NXP Semiconductors

Figure 13. Build project button

2. Connect the FRDM-KW36 module, which acts as the temperature sensor and wait for the drivers

to be installed.

3. When the drivers are installed, make sure that the Temperature Sensor project is still selected and

download the code to the FRDM-KW36 board by clicking the Debug button in the Quickstart

Panel view.

Figure 14. Build project button

4. Stop the debugger by clicking the Terminate button and disconnect the board.

Figure 15. Terminate button

Testing peripheral device with multiple connections

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

NXP Semiconductors 17

5. Repeat the previous steps for the remaining boards that act as temperature collectors. Make sure

that the Temperature Collector project is selected.

Figure 16. Temperature collector project selected

5.3. Running application

1. Connect the FRDM-KW36 boards flashed with the Temperature Collector application.

2. Launch TeraTerm and open the port assigned to the FRDM-KW36 board.

Figure 17. Opening serial port

3. Open the Setup menu and select the Serial port option. Make sure to configure the settings as in

Figure 18.

Testing peripheral device with multiple connections

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

18 NXP Semiconductors

Figure 18. Configuring serial port

4. Press the Reset (SW1) button on the FRDM-KW36 board. The Temperature Collector displays

the screen shown in Figure 19.

Figure 19. Temperature collector

5. Open the File menu and select the New connection option. Open the port of the remaining

Temperature Collector boards and repeat steps 3 and 4.

Testing peripheral device with multiple connections

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

NXP Semiconductors 19

Figure 20. Opening serial port

6. Connect the Temperature Sensor board and press the SW2 button to start advertising. When all

the connections are established, the SW2 button can be used to send additional temperature

reports.

7. Press the SW2 button on any Temperature Collector board to start scanning. When the

Temperature Sensor is connected, the Temperature Collector shows the temperature reported by

the sensor.

Figure 21. First Temperature Collector connected

8. Repeat steps 6 and 7 with the remaining boards. Each time the Temperature Sensor sends a

temperature report, it is shown simultaneously on each Temperature Collector.

Testing peripheral device with multiple connections

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

20 NXP Semiconductors

Figure 22. Second Temperature Collector connected

Figure 23. Last two measurements repeated on both collectors

9. If the connection drops, each Temperature Collector shows a disconnection message.

Testing peripheral device with multiple connections

Multiple Connections in Bluetooth LE Peripheral Device, Application Note, Rev. 0, 05/2019

NXP Semiconductors 21

Figure 24. Temperature Sensor disconnected from both Temperature Collectors

Document Number: AN12405
Rev. 0

05/2019

How to Reach Us:

Home Page:

www.nxp.com

Web Support:

www.nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

www.nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer’s applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C‑Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9,

Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,

DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,

SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited

(or its subsidiaries) in the US and/or elsewhere. The related technology may be

protected by any or all of patents, copyrights, designs and trade secrets. All rights

reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and

related marks are trademarks and service marks licensed by Power.org. Bluetooth is a

registered trademark owned by Bluetooth SIG.

© 2019 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Multiple Connections in Bluetooth LE Peripheral Device
	1. Introduction
	2. Prerequisites
	3. Enabling multiple connections on Bluetooth LE peripheral device
	3.1. Creating workspace and importing SDK to MCUXpresso IDE
	3.2. Importing SDK example

	4. Adding multiple connection support
	4.1. Modifying app_preinclude.h file
	4.2. Modifying temperature_service.c file
	4.3. Modifying temperature_interface.h file
	4.4. Modifying temperature_sensor.c file

	5. Testing peripheral device with multiple connections
	5.1. Importing Temperature Collector example
	5.2. Building and downloading projects
	5.3. Running application

