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1. Introduction 
This application note describes the implementation of 
the sensorless motor control reference application 
software for a 3-phase AC Induction Machine (ACIM) 
on the DSC MC56F83783 devices. The sensorless 
control software and ACIM control theory in general is 
described in Sensorless ACIM Field-Oriented Control 
(document DRM150). The High-Voltage 
Motor-Control Platform, consisting of the 
HVP-MC3PH power stage and the HVP-56F83783 
controller card (described at the beginning of this 
document), is used as the hardware platform for the 
ACIM control reference solution. The 
hardware-dependent part of the sensorless control 
software, which includes the peripheral setup and the 
Motor Control Peripheral Drivers (MCDRV), is 
described as well. The last part of the document 
describes the user interface represented by the Motor 
Control Application Tuning (MCAT) page based on 
the FreeMASTER run-time debugging tool. These 
tools represent a simple and user-friendly way of 
algorithm tuning, software control, debugging, 
and diagnostics. 
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2. High-Voltage Motor-Control Platform 
The ACIM reference application is available only for the 3-phase High-Voltage Motor-Control Platform 
(HVP), which is a 115/230-VAC, 1-kW power stage and a part of the HVP-MC3PH kit. In combination 
with the HVP-56F83783 controller card, it provides a software development platform for more than 
one-horse-power high-voltage motors. The block diagram of the complete HVP with the 
HVP-56F82748 card is shown in Figure 1. 

 
Figure 1. HVP block diagram 

The HVP power stage setup is easy and straightforward. See the High-Voltage Motor-Control Platform 
User's Guide (document HVPMC3PHUG) and DSC ACIM Control Reference Application Package 
User's Guide (document UM11206) for more information about the HVP setup. 

CAUTION 
Due to the presence of high voltage, the HVP represents a safety risk when 
not used properly. For more information about the HVP, see 
www.nxp.com. 

3. MCU peripheral settings 
This section focuses on the hardware-dependent part of code for all supported MCUs, which includes 
the peripheral initialization and explanation of the application timing. The description is valid for the 
DSC ACIM version 1.0.0. 

http://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com/doc/UM11206
http://www.nxp.com/
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3.1. DSC56800EX Quick Start tool 
The MCU pins, clocks, and peripherals used are configured by the Graphical Configuration Tool which 
is a component of the DSC56800EX Quick Start tool. The MCU configuration is saved in the 
appconfig.h file that is included by the application source code. For more information, see the 
DSC56800EX Quick Start User’s Guide (document DSC56800EXQSUG). 

3.2. DSC MC56F837xx family 
MC56F823xx/7xx is a low-power DSP MCU family, offering outstanding power consumption at run 
time in a compact 5 x 5 mm package with exceptional performance, precision, and control for 
high-efficiency digital power conversion (MC56F837xx) and advanced motor control (MC56F837xx) 
applications. MC56F837xx includes advanced high-speed and high-accuracy peripherals, such as 
high-resolution Pulse Width Modulation (PWM) with 312-picosecond resolution, dual high-speed 12-bit 
Analog-to-Digital Converters (ADCs) with built-in PGA sampling of up to 1.25 Mega Samples Per 
Second (MSPS) at 12 bits. Faster application-specific control loops are driven via a 32-bit DSP core 
with single-cycle math computation, fractional arithmetic support, and parallel moves. For more 
information, see the MC56F837xx Reference Manual (document MC56F83XXXRM).  
The HVP-56F83783 controller card is based on the MC56F83783VLH device. The controller card is 
equipped with the JTAG open-standard serial and debug interface. For more information about the 
HVP-56F83783 controller card, see the HVP-56F83783 page. 
The peripherals (whose setup is detailed later on in this chapter) used by the ACIM motor-control 
software on MC56F83783 are: 

• 12-bit cyclic Analog-to-Digital Converter (ADC12) for the phase currents, DC-bus voltage, and 
IPM temperature measurement. 

• eFlexPWM module (PWM) for the 6-channel PWM generation. 
• Periodic Interrupt Timer (PIT) for the slow control loop timing.  
• XBARA multiplexer for the over-current fault and ADC12 trigger routing. 
• Serial Interface (QSCI0) for the FreeMASTER communication. 
• General-Purpose Input/Output (GPIO) pins for the inrush relay and brake circuit control.  

The application timing diagram is shown in Figure 2. All tasks are handled using these interrupt service 
routines: 

• ADC_EOS_isr ()—level-two priority interrupt triggered when the conversion of all enabled 
samples is completed by the ADCA. It handles the fast control loop of the FOC and the 
FreeMASTER recorder feature. 

• PIT_ISR ()—level-one priority interrupt triggered by the overflow of the PIT. It handles the slow 
control loop of the FOC. 

The fast and slow control loop ISRs are described in more detail in Sensorless ACIM Field-Oriented 
Control (document DRM150).  

https://www.nxp.com/doc/DSC56800EXQSUG
http://www.nxp.com/doc/MC56F83XXXRM
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/kv-series-cortex-m4-m0-plus-m7/high-voltage-development-platform:HVP-MC3PH?tid=vanHVP-MC3PH
http://www.nxp.com/doc/DRM150
http://www.nxp.com/doc/DRM150
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Figure 2. Example of application timing on MC56F83783 

The PWM sub-module 0 (SM0) timer internal counter counts from the PWM_SM0VAL0 value to the 
PWM_SM0VAL1 value with the 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 period. The switching of the transistors on each motor phase is 
determined by the PWMA_SM[0..2]VAL2 and PWMA_SM[0..2]VAL3 register pair on PWMA SM0, 
SM1, and SM2. The dead time, which delays the rising edge of the transistor control signals by 𝑇𝑇𝐷𝐷𝐷𝐷, is 
inserted to avoid short circuit on the DC-bus.  
The selection of the PWM switching frequency affects the switching power losses (lower frequency is 
better) and audible noise (higher frequency is better). This reference solution offers the possibility to 
easily increase the ratio between the FOC sampling period 𝑇𝑇𝑠𝑠 and the PWM period 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 (see 
Section 4.1, “MCDRV initialization and configuration”). The example in Figure 2 shows the case when 
𝑇𝑇𝑠𝑠 equals 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃. 
The ADCA and ADCB (because both ADC12s run in the triggered parallel mode) are triggered by the 
PWM SM0 trigger 0 signal, which is connected to the ADC via XBARA. The trigger is issued when the 
SM0 internal counter reaches the PWMA_SM0VAL4 value, which is set to 𝑇𝑇𝐷𝐷𝐷𝐷/2 by default (this value 
ensures correct ADC sampling even at a very high duty cycle). The internal counter of SM0 is reloaded 
by the master reload trigger event from SM0. ADC12 converts a total of four samples at the beginning 
of sampling period 𝑇𝑇𝑠𝑠: 

• The first two samples on the ADCA (channel 1 for phase A or 6 for phase C) and ADCB 
(channel 2 for phase B or 7 for phase C) are the samples of phase currents. 

• The DC-bus voltage is sampled second by the ADCA channel 3. 

• The IPM temperature is sampled second by the ADCB channel 0. 

When all the samples are converted, processing of the ADC_EOS_isr () high-priority ISR starts. 



MCU peripheral settings 

Sensorless ACIM Field-Oriented Control on DSC 56F837xx, Application Note, Rev. 1, 03/2020 
NXP Semiconductors  5 
  

The CPU load and memory usage for the ACIM FOC reference software (see the DSC ACIM Control 
Reference Application Package User's Guide (document UM11206) for more details) is shown in Table 
1. The results apply to the application built using the CodeWarrior 11.x IDE with the maximum speed 
optimization. The memory usage is calculated from the linker .map file, including the 2-KB 
FreeMASTER recorder buffer (allocated in RAM). 

Table 1. MC56F83783 CPU and memory usage 
— MC56F83783 

CPU clock [MHz] 100 

Fast Control Loop  (%) 41.12 

Slow Control Loop  (%) 1.08 

Total CPU load [%] 42.2 

Flash usage [B] 18 718 

RAM usage [B] 4 460 

3.2.1. On-Chip Clock Synthesis (OCCS)  
The MC56F837xx DSC uses the OCCS and SIM modules to configure and distribute the clock across 
the peripheral modules. The OCCS module provides several clock-source options for the MCU. The 
System Integration Module (SIM) provides system control and chip configuration. The OCCS module 
configuration is as follows: 

• The 8-MHz clock from the 48-MHz/6 internal oscillator is used as the reference clock source. 
• The PLL is used to generate the 100-MHz OCCS core output clock.  
• The peripheral clock frequency is set to 100 MHz. 

3.2.2. Periodic Interrupt Timer (PIT) 
The PIT peripheral module is used for the slow control loop timing. The PIT module is configured 
as follows: 

• The input clock is set to 195,312 KHz (1/512 of the peripheral clock frequency). 
• The interrupt with a level-one priority is enabled on the counter reaching the modulo value (195). 
• The modulo is set so that the overflow interrupt occurs at the slow control loop period 

(1.00352 ms). 

3.2.3. 12-bit cyclic Analog-to-Digital Converter (ADC12) 
The ADC12 module is used to measure the phase currents, DC-bus voltage, the IPM temperature (a total 
of four samples are taken each sampling period). It consists of two converters (ADCA and ADCB).  
 

 
 

http://www.nxp.com/doc/UM11206
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The ADC12 module is configured as follows: 
• The input clock is set to 20 MHz (1/5 of the peripheral clock frequency). 
• The end-of-scan interrupt with a level 2 priority is enabled on the ADCA. 
• The single-ended, 12-bit conversion with the hardware trigger from the PWMA is selected. The 

triggered parallel conversion is used on both ADCA and ADCB. 
• Only the SAMPLE0, SAMPLE1, SAMPLE8, and SAMPLE9 samples are enabled. 

3.2.4. Pulse Width Modulator A (PWMA) 
The first three sub-modules of the eFlexPWM periphery PWMA are used to generate the 6-phase PWM 
for motor control with this setup: 

• The input clock is set to 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 100 MHz (fast peripheral clock frequency).  
• The output PWM frequency is set to 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 = 1/𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 = 10 kHz. The PWMA_SM[0..2]INIT 

and PWMA_SM[0..2]VAL1 registers are used to define the PWM period and the 
PWMA_SM[0..2]VAL2 and PWMA_SM[0..2]VAL3 registers specify the current duty cycle. 

• The counters at SM1 and SM2 are synchronized with the master sync signal from sub-module 0. 
• The center-aligned, complementary PWM is generated only with a full cycle reload. 
• A dead time of 𝑇𝑇𝐷𝐷𝐷𝐷 = 1.5 µs is inserted. This value is recommended by the manufacturer of the 

IPM used on the HVP-MC3PH board. The dead time counter modulo is set to 
PWMA_SM[0..2]DTCNT0 = PWMA_SM[0..2]DTCNT1  = 𝑇𝑇𝐷𝐷𝐷𝐷𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 150. 

• Channels A and B at SM0, SM1, and SM2 are disabled on fault number 0 active, with automatic 
clearing (the PWM outputs are re-enabled at the first PWM reload after the fault disappears). 
Fault number 0 (connected to the IPM fault pin via GPIO, active in low) is enabled.  

Sub-module 0 VAL4 is used for the ADC12 triggering with this setup: 
• The trigger is issued when the PWMA_SM0VAL4 value is reached (𝑇𝑇𝐷𝐷𝐷𝐷/2 by default). 

The eFlexPWM module is a dedicated peripheral enabling the generation of 3-phase PWM signals 
connected to the IPM H-bridge driver. The three PWM submodules used in the application are 
configured using the Graphical Configuration Tool (GCT), as listed here: 

• PWM_0: 
o IPBus clock source of 100 MHz. 
o Running frequency of 10 kHz with 100-µs period. 
o INIT register—5000, VAL1 4999—13-bit resolution. 
o Complementary mode with 1.5-µs dead time. 
o PWM reload and synchronization signals generated at every opportunity from this 

module. 
o Trigger 4 enabled to provide synchronization with the ADC module via XBAR. 
o High-side and low-side PWM_A and PWM_B outputs in positive (active high) polarity. 

 
 

• PWM_1 and PWM_2: 
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o PWM_0 clock source. 
o Running frequency of 10 kHz with 100-µs period. 
o INIT register—5000, VAL1 4999—13-bit resolution. 
o Complementary mode with 1.5-µs dead time. 
o PWM reload and synchronization signals generated at every opportunity from this 

module. 
o High-side and low-side PWM_A and PWM_B outputs in positive (active high) polarity. 

• PWM FAULT: 
o Fault 0 pin with a low fault level is connected via XBAR to fixed 10,5-A hardware 

over-current protection of the power module.  
o Fault 1 pin with a low fault level is connected via XBAR to a comparator output that 

creates adjustable over-current protection (the comparator compares the DC-bus current 
with an adjustable level of the DAC). 

o Fault input filter is disabled. 

3.2.5. Inter-Peripheral Crossbar Switch A (XBARA) 
The XBARA module is used to route the over-current fault signal from the IPM fault pin to the PWMA 
and to route the trigger signal from the PWMA to the ADC12. The XBARA module is set up as follows: 

• The XBARA input IN6 (GPIO_C16/GPIO_F0) is connected to output OUT29 
(PWMA_FAULT0). 

• The XBARA input IN14 (CMPC_OUT) is connected to output OUT30 (PWMA_FAULT1). 
• The XBARA input IN20 (PWMA0_MUX_TRIG0/PWMB0_OUT_TRIG0 signal) is connected 

to output OUT12 (ADCA_TRIG). 

3.2.6. High-Speed Comparator C (HSCMP_C) 
The high-speed comparator module is used for adjustable over-current fault detection. The output of 
comparator C is connected to the PWMA fault 1 input. The HSCMP_C module is configured as follows: 

• The negative comparator input is connected to the CMPC_IN0 (GPIO_B3) – DC-bus current 
signal.  

• The positive comparator input is connected to the 6-bit DAC. The DAC reference output voltage 
level can be set so that the over-current fault is activated when the DC-bus current ranges from 
0,063 A to 7,937 A with a resolution of 63 mA.   

• The comparator output polarity is set to normal: output high is when the positive input is higher 
than the negative input.  
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3.2.7. Universal Asynchronous Receiver and Transmitter (SC0)  
The SCI0 module is used for the FreeMASTER communication between the MCU board and the PC. 
The module configuration is as follows: 

• The baud rate is set to 19200 Bd. 
• Both the receiver and the transmitter are enabled. 
• Other settings are set to default. 

3.2.8. General-Purpose Input/Output (GPIO) 
These GPIO pins are used: 

• Inrush relay control on GPIOF7. 
• Braking circuit control on GPIOF6. 
• LED state indication on GPIOC0. 

4. Motor-Control Peripheral Drivers 
The Motor-Control Peripheral Drivers (MCDRV) are a simple way of peripheral initialization and 
access for 3-phase ACIM or PMSM control. The features provided by the MCDRV library include the 
3-phase PWM generation using Space Vector Modulation (SVM) and measurement of the 3-phase 
current, DC-bus voltage, and IPM temperature (or one general user-defined auxiliary quantity). The 
principles of both the 3-phase current measurement and the SVM are described in Sensorless ACIM 
Field-Oriented Control (document DRM150). 
The MCDRV consist of peripheral driver library modules for each supported periphery. All the ADC 
and PWM periphery drivers share the same API within their class. This enables the higher-level code to 
be platform-independent, because the peripheral driver function calls are replaced by universally-named 
macros. The list of supported peripherals and APIs of their drivers is provided in Section 4.2, “MCDRV 
application interface”. 

4.1. MCDRV initialization and configuration 
The MCDRV initialization module consists of a set of MCU peripheral-initialization functions, as well 
as all the options that can be defined by the user. The functions are in the device-specific 
mcdrv_hvp-<device>.c source and mcdrv_hvp-<device>.h header files. Out of all functions in the 
MCDRV initialization module, it is only necessary to call the MCDRV_Init_M1() function once during 
MCU startup before calling any other MCDRV functions. All the peripherals used by the given device 
for motor-control purposes are then initialized within this function. 
The mcdrv_hvp-<device>.h header file provides several options that you can define: 

• M1_MCDRV_ADC—this macro specifies the ADC periphery used.  
• M1_MCDRV_PWM3PH—this macro specifies the PWM periphery used.  
• M1_MCDRV_TMR_SLOWLOOP—this macro specifies the timer for the slow control loop 

timing. 

http://www.nxp.com/doc/DRM150
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• M1_MCDRV_CMP—this macro specifies the comparator periphery for the over-current fault 
detection. 

• M1_PWM_FREQ—the value of this definition sets the PWM frequency 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 in Hz.   
• M1_FOC_FREQ_VS_PWM_FREQ—enables you to select a ratio between the sampling period 

𝑇𝑇𝑠𝑠 and the PWM period 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃 (where 𝑇𝑇𝑠𝑠 = M1_FOC_FREQ_VS_PWM_FREQ × 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃). This 
is convenient when the PWM frequency must be higher than the maximum fast-loop interrupt 
length due to the CPU performance restrictions. 

• M1_SLOW_LOOP_FREQ—the value of this definition sets the slow loop period frequency 
in Hz. 

• M1_PWM_PAIR_PH[A..C]—these macros enable a simple assignment of the physical motor 
phases to the PWM periphery channels or sub-modules. Alter the order of the motor phases this 
way. Only the values of 0, 1, and 2 can be assigned to these macros.   

• OVER_CURRENT_THRESHOLD—adjustable over-current fault threshold detected by the 
comparator. This value can be set in the range from 250 to 7750 with a resolution of 250 
(corresponds to the current threshold in mA). 

• M1_BRAKE_[SET, CLEAR]—DC-bus brake circuit control macro. 
• M1_ADC[0,1]_PH_[A..C]—these macros serve to assign the ADC channels for the 

phase-current measurement (the unassigned ADC channels are set to the ADC_NO_CHAN 
value). The general rule is that at least one of the phase currents must be measurable on both 
ADC converters and the remaining two phase currents must be measurable on different ADC 
converters. If this rule is broken, a pre-processor error is issued. The reason for this rule is that, 
to ensure a proper ADC measurement in a wide range of the PWM duty cycle, the selection of 
the phase-current pair to measure depends on the current SVM sector. For more information 
about the 3-phase current measurement, see Sensorless ACIM Field-Oriented Control (document 
DRM150).  

• ADC[0,1]_UDCB and ADC[0,1]_AUX—these defines are used to select the ADC channel for 
the measurement of the DC-bus voltage and one user-defined auxiliary quantity, which is not 
used directly for motor control (the IPM temperature is measured by default). The rule for the 
ADC channel assignment is that the DC-bus voltage and the auxiliary quantity must be 
measurable on different ADC converters, so that the measurement can be done simultaneously. If 
this rule is broken, a pre-processor error is issued during the software build. 

4.2. MCDRV application interface 
The ADC and PWM motor-control drivers share the same API within their class. To ensure device 
independency on the MCDRV API, all driver functions are accessible through universally-named 
macros in the mcdrv_hvp-<device>.h file.  
 

 

http://www.nxp.com/doc/DRM150
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4.2.1. ADC control API description 
The initialization macros are used to assign I/O variables (for example, to store the measurement results 
to the variables in your application). These macros are defined: 

• M1_SET_PTR_I_ABC(var)—assigns a pointer to the GMCLIB_3COOR_T_F16 structure 
variable var, in which you want to store the phase current measurement results. The 
GMCLIB_3COOR_T_F16 datatype is defined in the Real-Time Control Embedded Software 
Libraries (RTCESL). For more information, see www.nxp.com/rtcesl. 

• M1_SET_PTR_U_DC_BUS(var)—assigns a pointer to the 16-bit fractional variable var, in 
which you want to store the DC-bus voltage measurements. 

• M1_SET_PTR_AUX_CHAN(var)—assigns a pointer to the 16-bit fractional variable var, in 
which you want to store the auxiliary quantity measured values. 

• M1_SET_PTR_SECTOR(var)—assigns a pointer to the 16-bit unsigned integer variable var that 
contains the number of the current SVM sector. 

NOTE 
These macros must be executed before calling any MCDRV ADC 
functions. Otherwise, your application goes to a hard fault. 

These functions are available: 
• bool_t M1_MCDRV_CURR_3PH_CHAN_ASSIGN(MCDRV_ADC_T*)—calling this function 

assigns proper ADC channels for the next 3-phase current measurement based on the SVM 
sector. This function always returns true. 

• bool_t M1_MCDRV_CURR_3PH_CALIB_INIT(MCDRV_ADC_T*)—this function initializes 
the phase current channel offset measurement. This function always returns true. 

• bool_t M1_MCDRV_CURR_3PH_CALIB(MCDRV_ADC_T*)—this function reads the current 
information from the unpowered phases of a standstill motor and filters them using moving 
average filters. The goal is to obtain the value of the measurement offset. The length of the 
window for moving average filters is set to eight samples by default. This function always 
returns true. 

• bool_t M1_MCDRV_CURR_3PH_CALIB_SET(MCDRV_ADC_T*)—this function asserts the 
phase current measurement offset values to the internal registers. Call it after a sufficient number 
of M1_MCDRV_CURR_3PH_CALIB() calls. This function always returns true. 

• bool_t M1_MCDRV_ GET(MCDRV_ADC_T*)—this function reads and calculates the actual 
values of the 3-phase currents, DC-bus voltage, and auxiliary quantity and stores them in the 
variables defined by the user in the initialization macros (see above). This function always 
returns true. 

 
 
 

http://www.nxp.com/rtcesl
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4.2.2. PWM control API description 
The initialization macros are used to assign the I/O variables (for example, to set the required duty 
cycles from your application). These macros are defined: 

• M1_SET_PTR_DUTY(var)—sets the pointer to the GMCLIB_3COOR_T_F16 structure 
variable var, in which you define the required phase PWM duty cycles. The 
GMCLIB_3COOR_T_F16 datatype is defined in RTCESL. 

NOTE 
This macro must be executed before calling any MCDRV PWM functions. 
Otherwise, your application goes to a hard fault. 

These functions are available: 
• bool_t M1_MCDRV_PWM3PH_SET(M1_MCDRV_PWM_T*)—this function updates the 

PWM phase duty cycles based on the required values stored in the variable defined by the user in 
the initialization macros (see above). This function always returns true. 

• bool_t M1_MCDRV_PWM3PH_EN(M1_MCDRV_PWM_T*)—calling this function enables 
all PWM channels. This function always returns true. 

• bool_t M1_MCDRV_PWM3PH_DIS(M1_MCDRV_PWM_T*)—calling this function disables 
all PWM channels. This function always returns true. 

• bool_t M1_MCDRV_PWM3PH_FAULT_GET(M1_MCDRV_PWM_T*)—this function returns 
and automatically clears the state of the over-current fault flags. This function returns true when 
an over-current event occurs. Otherwise, it returns false. 

5. Tuning and controlling the application 
This section provides information about the tools and recommended procedures for controlling the 
ACIM sensorless application. As the primary means of communication, the application contains an 
embedded-side driver of the FreeMASTER real-time debug monitor and a data visualization tool for 
communication with the PC. FreeMASTER supports non-intrusive monitoring, as well as modifying of 
target variables in real time, which is very useful for algorithm tuning. Besides the target-side driver, 
FreeMASTER requires installing the PC application as well. For more information, see 
www.nxp.com/freemaster.  
The ACIM sensorless FOC application can be easily tuned using the Motor Control Application Tuning 
(MCAT) page for ACIM. The MCAT for ACIM is a user-friendly modular page, which runs within the 
FreeMASTER PC application. To launch it, execute the *.pmp file located next to your ACIM 
sensorless project. When the communication with the MCU side of the application is established, the 
MCU platform is detected and a proper MCAT setup is used. Without a connection, many features are 
disabled and the pertinent files are generated next to the *.pmp file. See the user’s guide for your version 
of ACIM sensorless application for more information about the FreeMASTER communication setup 
(document UM11206). Figure 3 shows the MCAT for ACIM welcome page. The tool consists of the tab 
menu (point 1), the tuning experience level selector (point 2), the detected platform (point 3) and the tab 
content itself (point 4).  
 

http://www.nxp.com/freemaster
http://www.nxp.com/doc/UM11206
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Each tab represents one sub-module, which enables you to tune and control different aspects of the 
application: 

• “Introduction”—welcome page with the ACIM sensorless FOC diagram and a short description 
of the application.  

• “Parameters”—this page enables you to modify the motor parameters, specification of hardware 
and application scales, and fault limits. For more information, see Section 5.2.1, “Input 
Application Parameters tab”. 

• “Current loop”—specify the current loop PI controller gains, output limits, and default d-axis 
stator current reference here. For more information, see Section 5.2.3, “Current loop tuning”. 

• “Speed loop”—this tab contains fields to specify the speed controller proportional and integral 
gains, as well as the output limits, parameters of the speed ramp, and startup procedure. For more 
information, see Section 5.2.4, “Speed loop tuning”. 

• “Flux loop”—this tab is used to set up the d-axis current control, which includes the Max-Torque 
Per Ampere (MTPA) and Field-Weakening (FW) algorithm settings. For more information, see 
Section 5.2.5, “Flux loop tuning”. 

• “Sensorless”—this page enables you to tune the parameters of the Rotor Flux Observer (RFO) 
for the rotor flux position estimator and the Model-Reference Adaptive System (MRAS) speed 
observer. For more information, see Section 5.2.2, “Sensorless rotor flux position and speed 
estimation”. 

• “Control Struc”—the application control page enables you to choose between the scalar control 
(also known as Volt per Hertz or V/Hz) and FOC, where you can disable parts of the FOC 
cascade structure for tuning purposes. This tab enables you to set the required speed, stator 
currents, and stator voltage. It also provides information about the application state. For more 
information, see Section 5.1, “Application control using MCAT”. 

• “Output file”—this tab enables you to view all the calculated constants that are required by the 
ACIM sensorless FOC control algorithms and generate a new m1_acim_appconfig.h application 
configuration header file. For more information, see Section 5.2.6, “MCAT output file 
generation”. 

• “Control page”—this tab contains graphical elements, such as the speed gauge, DC-bus voltage 
measurement bar, and a variety of switches that enable simple, quick, and user-friendly 
application control. You may turn on the demo mode, which sets various pre-defined rotor 
speeds over time. For more information, see the user’s guide distributed with your version of 
ACIM sensorless application (document UM11206). 

http://www.nxp.com/doc/UM11206
http://www.nxp.com/doc/UM11206
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Figure 3. MCAT for ACIM welcome page 

Most of the tabs offer the possibility to immediately load the parameters specified in MCAT into the 
target using the “Update target” button, and save them to (or restore them from) the hard drive file using 
the “Store Data” (or “Reload Data”) button. The data stored using the “Store Data” button are 
automatically loaded the next time the MCAT is launched and the MCU communication is established. 
For more information about the application states, see Sensorless ACIM Field-Oriented Control 
(document DRM150). 
The “Basic” and “Expert” tuning modes are available. Selecting the latter one grants you the access to 
modify all parameters and fields available in the MCAT. Using the “Expert” mode is not recommended 
for inexperienced users. When the MCAT operates in the offline mode, the “App Id” line reads 
“offline”. When the communication with the target MCU is established using a correct software, the 
“App Id” line displays the correct platform name and all stored parameters for the given MCU are 
loaded.  
Besides the MCAT page for ACIM, several scopes, recorders, and variables in the “Variable watch” 
window are pre-defined in the FreeMASTER project file to further simplify the motor parameters tuning 
and debugging. 
The following sections provide simple instructions on how to change the parameters of a connected 
ACIM and the parameters of the application and how to tune the application. 

5.1. Application control using MCAT 
Control the application using the “Control Struc” tab, which is shown in Figure 4. The application state 
control area on the left-hand side of the screen (points 1 and 2) shows the current application state and 
enables switching the main application switch on or off (turning the running application off disables all 
PWM outputs). The “Cascade Control Structure” area is placed on the right-hand side of the screen 
(points 3 to 6). Here you can choose between the scalar and FOC control using the appropriate buttons. 

http://www.nxp.com/doc/DRM150
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Enable the selected parts of the FOC cascade structure by selecting “Voltage FOC”, “Current FOC”, or 
“Speed FOC”. This is useful for application tuning and debugging. 

 
Figure 4. MCAT for ACIM control page 

The scalar control diagram is shown in Figure 5. It is the simplest type of ACIM control strategy. The 
ratio between the magnitude of the stator voltage and the frequency (frequency information is contained 
in the Speedreq value) is kept at a nominal value, which results in a nominal flux amplitude. This control 
method is sometimes called Volt per Hertz (V/Hz). The position-estimation Rotor Flux Observer (RFO) 
algorithm runs in the background to enable the RFO tuning. 

 
Figure 5. Scalar control mode 

The block diagram of the Voltage FOC is shown in Figure 6. Unlike the V/Hz, the position feedback is 
closed using the RFO algorithm and the stator voltage magnitude is not dependent on the motor speed. 



Tuning and controlling the application 

Sensorless ACIM Field-Oriented Control on DSC 56F837xx, Application Note, Rev. 1, 03/2020 
NXP Semiconductors  15 
  

Specify both the d-axis and q-axis stator voltages using the 𝑢𝑢𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑢𝑢𝑠𝑠𝑟𝑟_𝑟𝑟𝑟𝑟𝑟𝑟  fields. This control 
method is useful for the RFO tuning as well.  

 
Figure 6. Voltage FOC control mode 

The Current FOC (torque) control requires the rotor position feedback and currents to be transformed 
into the rotor flux frame. Control the motor using the reference variables 𝑖𝑖𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑖𝑖𝑠𝑠𝑟𝑟_𝑟𝑟𝑟𝑟𝑟𝑟, as shown in 
Figure 7. The d-axis current component 𝑖𝑖𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟  generates the rotor flux and the q-axis current component 
of the current 𝑖𝑖𝑠𝑠𝑟𝑟_𝑟𝑟𝑟𝑟𝑟𝑟  generates the torque for the motor to run. Change the polarity of the 𝑖𝑖𝑠𝑠𝑟𝑟_𝑟𝑟𝑟𝑟𝑟𝑟  current 
to change the rotation direction. The Current FOC control structure can be used for the current controller 
tuning, provided that the RFO is tuned correctly. 

 
Figure 7. Current FOC (torque) control mode 
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The full ACIM sensorless FOC is activated by enabling the Speed FOC control structure. The block 
diagram is shown in Figure 8. Two outer control loops were added when compared to the Current FOC. 
The speed loop contains the PI controller, which controls the rotor speed and sets the q-axis current 
𝑖𝑖𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟. The flux loop contains the Max Torque Per Ampere (MTPA) and Flux Weakening (FW) 
algorithms, which set the q-axis current 𝑖𝑖𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟 to optimize the power efficiency and allow the motor to 
run at a speed that is higher than nominal. To run a motor at the required speed, simply enter the 
required value into the Speedreq field. This control scheme is used for the speed PI controller and flux 
loop design (see Section 5.2.4, “Speed loop tuning” and Section 5.2.5, “Flux loop tuning”), which is the 
final stage of the ACIM sensorless application tuning. 

 
Figure 8. Speed FOC control mode 

5.2. Application tuning using MCAT 
The ACIM sensorless FOC algorithm tuning is described in this section. The flowchart of the complete 
process of connecting and running a new ACIM is shown in Figure 9. The control of the ACIM 
sensorless FOC application using MCAT is described in Section 5.1, “Application control using 
MCAT”. The subsequent steps, including the tuning of the sensorless Rotor Flux Observer (RFO), 
current loops, speed loop, and flux loop, are described in the following sections. Only the expert MCAT 
tuning mode is described. When in the “Basic” mode, omit the grayed-out input fields and leave them at 
their pre-defined values. Most of the input field labels in the MCAT also show a short description of the 
item and the maximum range of input parameters when you hover over them with the mouse cursor. 
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Figure 9. Running a new ACIM flowchart 

5.2.1. Input Application Parameters tab 
When the parameters of a connected ACIM are obtained or simply known before, navigate to the 
“Parameters” tab, as shown in Figure 10. On the left-hand side, modify the motor parameters (point 1) 
and the hardware board scales (point 2). Do not change the latter unless using a user-specific hardware. 
The right-hand side contains the “Fault Limits” area (point 3), which is accessible only in the “Expert” 
mode.  

NOTE 
Motor parameters can be measured by the motor identification algorithm 
using the Kinetis KV series platform with CM4 or CM7 cores and a 
floating-point unit. For more details, see application note AN5051, Section 
5.1, “ACIM parameter identification”.  

http://www.nxp.com/doc/AN5051
http://www.nxp.com/doc/AN5051


Tuning and controlling the application 
 

Sensorless ACIM Field-Oriented Control on DSC 56F837xx, Application Note, Rev. 1, 03/2020 
18  NXP Semiconductors 
   

 
Figure 10. MCAT Input Application Parameters tab 

Table 2 shows the list of MCAT input parameters with their physical units, brief description, impacted 
algorithms, and accessibility status in the “Basic” mode: 

Table 2. Parameters tab inputs 
Input 
name 

Units Description Use in constant calculation 
Basic mode 
accessibility 

IN Arms Nominal stator current Speed and flux loop yes 
UN Vrms Nominal stator current Current and flux loop yes 
fN Hz Nominal frequency Speed and flux loop yes 
pp —  Number of motor pole pairs Speed control, RFO, and MRAS yes 
Rs Ω Stator resistance Current loop and RFO yes 
Rr Ω Rotor resistance Current loop and RFO yes 
Ls H Stator inductance Current loop and RFO yes 

Lr H Rotor inductance Current loop and RFO yes 

Lm H Magnetizing inductance Current loop, flux loop, and RFO yes 
J kgm2 Moment of inertia Speed loop yes 
τm S Mechanical time constant Speed loop yes 

Imax A Hardware current-sensing 
scale Current sensing yes 

UDCB,max V Hardware DC-bus 
voltage-sensing scale Voltage sensing yes 

UDCB,trip V 
Trigger value that switches an 

external DC-bus braking 
resistor on 

Fault protection no 



Tuning and controlling the application 

Sensorless ACIM Field-Oriented Control on DSC 56F837xx, Application Note, Rev. 1, 03/2020 
NXP Semiconductors  19 
  

Table 2. Parameters tab inputs 
Input 
name 

Units Description Use in constant calculation 
Basic mode 
accessibility 

UDCB,under V Voltage value that generates 
the DC-bus under-voltage fault Fault protection no 

UDCB,over V 
Voltage value that generates 

the DC-bus 
over-voltage fault 

Fault protection no 

Nover-speed rpm Over-speed threshold Fault protection no 

Nmax rpm Application speed scale Speed loop yes 

5.2.2. Sensorless rotor flux position and speed estimation 
The rotor flux position and mechanical speed feedback signals are obtained using the sensorless RFO 
and Model Reference Adaptive System (MRAS) speed-estimation algorithm. For information about 
their principles, see Sensorless ACIM Field-Oriented Control (document DRM150). Tune both 
algorithms using the “Sensorless” sub-module MCAT tab, as shown in Figure 11. All the “Sensorless” 
sub-module tab inputs are listed in Table 3. 
Most of the RFO parameters are calculated automatically by the MCAT and they do not need any 
tuning. The only parameters left to tune are the proportional gain Kp,CMPNS and the integral gain Ki,CMPNS 
of the RFO compensation PI controller. These parameters are usually set manually, because the settings 
do not vary greatly for different motors, and you can keep them at the default settings. A similar 
situation applies to the MRAS speed estimator and its proportional and integral gains of the internal PI 
controller (Kp,MRAS and Ki,MRAS). To tune the parameters of these algorithms, run the motor in the scalar 
control mode, while referring to the “Speed” scope located in the “Scalar/Voltage Control” sub-block in 
the FreeMASTER project tree. Here you can see the estimated filtered rotor speed. The estimated and 
scalar rotor speeds are not going to exactly match the properly-tuned RFO and MRAS because of the 
speed slip. 

http://www.nxp.com/doc/DRM150
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Figure 11. MCAT sensorless position and speed estimation tab 

Table 3. MCAT sensorless position and speed estimation tab inputs 

Parameter 
name 

Units Description 
Use in constant 

calculation 
Basic mode 
accessibility 

KPCMPNS — Compensation PI controller proportional 
gain RFO no 

KICMPNS — Compensation PI controller integral gain RFO no 

fPsiSInt Hz Stator flux integrator filter frequency  RFO no 

KPMRAS — Compensation PI controller proportional 
gain 

MRAS speed 
estimation no 

KIMRAS — Compensation PI controller integral gain MRAS speed 
estimation no 

Part of the RFO algorithm requires an internal calculation of the stator flux, which involves pure 
integration that has problems with the integrator drift. These problems are solved by approximating the 
pure integrator with the low-pass filter. See Sensorless ACIM Field-Oriented Control 
(document DRM150) for more details. The low-pass filter cut-off frequency is set in the fPsiSInt input 
field and recommended to be set in the range from 1 Hz to 3 Hz. Higher values can lead to a high 
number of flux- and speed-estimation errors. 

 

http://www.nxp.com/doc/DRM150
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5.2.3. Current loop tuning 
The “Current Loop” tab is designed for the current control loop tuning. The current control loop is the 
most inner loop in the cascade control structure of a vector-control algorithm. One of the FOC 
characteristics is a separate control of the rotor flux-producing (d-axis) and torque-producing (q-axis) 
components of the current. Therefore, the ACIM control structure has two current loops and each of 
them contains a PI controller. The “Current Loop” tab is shown in Figure 12. The individual fields are 
described in Table 4. Set all of the inputs on the left-hand side of the tab (points 1 and 2). The PI 
controller resulting gains are located on the right-hand side (point 3). The sampling time field is filled in 
automatically when the MCU platform is successfully detected by the MCAT and cannot be changed. 

Table 4. MCAT current control loop tab inputs 

Parameter name Units Description 
Use in constant 

calculation 
Basic mode 
accessibility 

F0 Hz Current control loop bandwidth Current loop no 

Ζ — Damping ratio of the current 
control loop Current loop no 

Output limit % 
Current loop output limit in 
percentage of the DC-bus 

voltage 
Current loop no 

 

 
Figure 12. MCAT Current Control Loop tab 
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The simplified block diagrams of both the d-axis and q-axis current control loops are shown in Figure 
13. The non-linear coupling parts of the stator voltage are ignored and treated as unmeasured errors 
entering the controlled system. The parasitic time constants (such as the inverter time constant) are 
ignored as well. 

 
Figure 13. d-axis and q-axis current loop block diagram 

Ignoring the non-linear coupling portion of the stator voltage (which is simply dealt with by the integral 
part of the current PI controllers), the transfer functions of the stator currents 𝑖𝑖𝑠𝑠𝑠𝑠 and 𝑖𝑖𝑠𝑠𝑟𝑟 are: 

𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊(𝒊𝒊) =
𝑰𝑰𝒊𝒊𝒊𝒊(𝒊𝒊)
𝑼𝑼𝒊𝒊𝒊𝒊(𝒊𝒊) =

𝟏𝟏/𝑹𝑹𝒊𝒊
𝝉𝝉𝒊𝒊𝒊𝒊𝒊𝒊 + 𝟏𝟏 =

𝟏𝟏
𝝈𝝈𝝈𝝈𝒊𝒊𝒊𝒊 + 𝑹𝑹𝒊𝒊

 Eq. 1  

𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊(𝒊𝒊) =
𝑰𝑰𝒊𝒊𝒊𝒊(𝒊𝒊)
𝑼𝑼𝒊𝒊𝒊𝒊(𝒊𝒊) =

𝟏𝟏/𝑹𝑹𝒊𝒊
𝝉𝝉𝒊𝒊𝒊𝒊𝒊𝒊 + 𝟏𝟏 =

𝟏𝟏
𝝈𝝈𝝈𝝈𝒊𝒊𝒊𝒊 + 𝑹𝑹𝒊𝒊

 Eq. 2  

where 𝑠𝑠 is the Laplace operator, 𝜏𝜏𝑠𝑠𝑠𝑠  and 𝜏𝜏𝑠𝑠𝑟𝑟 are the stator d-axis and q-axis electric time constants, and 

𝝈𝝈 = 𝟏𝟏 − 𝝈𝝈𝒎𝒎𝟐𝟐

𝝈𝝈𝒊𝒊𝝈𝝈𝒓𝒓
    [-] Eq. 3  

is the leakage coefficient. 
The transfer function of the PI controller in a parallel form is: 

𝑭𝑭𝑷𝑷𝑰𝑰(𝒊𝒊) = 𝑲𝑲𝒑𝒑 +
𝑲𝑲𝒊𝒊

𝒊𝒊 =
𝑲𝑲𝒑𝒑𝒊𝒊 + 𝑲𝑲𝒊𝒊

𝒊𝒊  Eq. 4  

where 𝐾𝐾𝑝𝑝 is the proportional gain and 𝐾𝐾𝑃𝑃 is the integral gain. The closed-loop d-axis and q-axis current 
transfer functions are:  

𝑭𝑭𝒘𝒘𝒊𝒊𝒊𝒊𝒊𝒊(𝒊𝒊) =
𝑰𝑰𝒊𝒊𝒊𝒊(𝒊𝒊)

𝑰𝑰𝒊𝒊𝒊𝒊_𝒓𝒓𝒓𝒓𝒊𝒊(𝒊𝒊) =
𝑭𝑭𝑷𝑷𝑰𝑰(𝒊𝒊)𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊(𝒊𝒊)

𝟏𝟏 + 𝑭𝑭𝑷𝑷𝑰𝑰(𝒊𝒊)𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊(𝒊𝒊) =

𝑲𝑲𝒑𝒑𝒊𝒊
𝑲𝑲𝒊𝒊𝒊𝒊

𝒊𝒊 + 𝟏𝟏

𝝈𝝈𝝈𝝈𝒊𝒊
𝑲𝑲𝒊𝒊𝒊𝒊

𝒊𝒊𝟐𝟐 +
𝑹𝑹𝒊𝒊 + 𝑲𝑲𝒑𝒑𝒊𝒊
𝑲𝑲𝒊𝒊𝒊𝒊

𝒊𝒊 + 𝟏𝟏
 Eq. 5  
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𝑭𝑭𝒘𝒘𝒊𝒊𝒊𝒊𝒊𝒊(𝒊𝒊) =
𝑰𝑰𝒊𝒊𝒊𝒊(𝒊𝒊)

𝐼𝐼𝒊𝒊𝒊𝒊_𝒓𝒓𝒓𝒓𝒊𝒊(𝒊𝒊) =
𝑭𝑭𝑷𝑷𝑰𝑰(𝒊𝒊)𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊(𝒊𝒊)

𝟏𝟏 + 𝑭𝑭𝑷𝑷𝑰𝑰(𝒊𝒊)𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊(𝒊𝒊) =

𝑲𝑲𝒑𝒑𝒊𝒊
𝑲𝑲𝒊𝒊𝒊𝒊

𝒊𝒊 + 𝟏𝟏

𝝈𝝈𝝈𝝈𝒊𝒊
𝑲𝑲𝒊𝒊𝒊𝒊

𝒊𝒊𝟐𝟐 +
𝑹𝑹𝒊𝒊 + 𝑲𝑲𝒑𝒑𝒊𝒊
𝑲𝑲𝒊𝒊𝒊𝒊

𝒊𝒊 + 𝟏𝟏
 Eq. 6  

By comparing these transfer functions to the transfer function of a second-order system with the unity 
gain 

𝑭𝑭𝟐𝟐𝒏𝒏𝒊𝒊(𝒊𝒊) =
𝟏𝟏

𝒊𝒊𝟐𝟐
𝟒𝟒𝝅𝝅𝟐𝟐𝒇𝒇𝟎𝟎𝟐𝟐

+ 𝒊𝒊𝒔𝒔
𝝅𝝅𝒇𝒇𝟎𝟎

+ 𝟏𝟏
, Eq. 7  

where 𝑓𝑓0 is the system natural frequency (or bandwidth) and 𝜁𝜁 is the system damping ratio, the following 
is obtained: 

𝑲𝑲𝒑𝒑𝒊𝒊 = 𝑲𝑲𝒑𝒑𝒊𝒊 = 𝟒𝟒𝝅𝝅𝒇𝒇𝟎𝟎𝒔𝒔𝝈𝝈𝝈𝝈𝒊𝒊 − 𝑹𝑹𝒊𝒊 Eq. 8  

𝑲𝑲𝒊𝒊𝒊𝒊 = 𝑲𝑲𝒊𝒊𝒊𝒊 = 𝟒𝟒𝝅𝝅𝟐𝟐𝒇𝒇𝟎𝟎𝟐𝟐𝝈𝝈𝝈𝝈𝒊𝒊 Eq. 9  

The proportional and integral gains of a discrete version of the current PI controller can be obtained 
using the bilinear transformation method: 

𝑲𝑲𝒑𝒑𝒑𝒑 = 𝑲𝑲𝒑𝒑 Eq. 10  

𝑲𝑲𝒊𝒊𝒑𝒑 = 𝑻𝑻𝒊𝒊𝑲𝑲𝒊𝒊 Eq. 11  

NOTE 
The correct value of the integral gain (according to the bilinear 
transformation) must be half the value stated in Eq. 11. The division by 
two is not shown because it is conducted internally by the PI controller 
algorithm in the RTCESL (see more at www.nxp.com/rtcesl). 

The effect of the damping ratio 𝜁𝜁 on the step response of a second-order system 𝐹𝐹2𝑃𝑃𝑠𝑠(𝑠𝑠) is shown in 
Figure 14. The MCAT allows setting the damping ratio 𝜁𝜁 in the range from 0.5 to 2.0. It is not 
recommended to divert from the value of 1 too much. Choose the natural frequency in the range from 
tens to hundreds of Hz, but at least one order higher than the speed loop bandwidth. If the bandwidth 
value is too high, it leads to problems with the sampling frequency, voltage limitation, and stability. 

http://www.nxp.com/rtcesl
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Figure 14. Second-order system steps response for various damping ratios 

When comparing the transfer functions in Eq. 5, Eq. 6, and Eq. 7, the numerator (0 of the system) with 
the time constant 𝐾𝐾𝑝𝑝/𝐾𝐾𝑃𝑃 of the current closed-loop transfer function is ignored, because it has minor 
impact on the resulting system stability. 
To check the current response, use the FreeMASTER recorder called Current Control, which is triggered 
during motor startup. The examples of the d-axis current response for different setups of the current loop 
bandwidth are shown in Figure 15. The ideal current response must not be too slow (as in case C), but it 
must neither contain a high overshoot. A very high current loop bandwidth can lead to instability. If you 
are not satisfied with the automatically-calculated current loop PI controller parameters, tune them 
manually. To do so, perform these steps:  

1. Go to the “Current Loop” tab and select the “Expert” tuning mode. 
2. Set the desired current loop bandwidth f0 and click the “Update Target” button. It is 

recommended to start with a lower value and then keep increasing it until a desired response is 
achieved. 

3. Select the “Current Loop” recorder. The message at the bottom of the recorder must read 
“Running, waiting for trigger…”. 

4. Go to the “Control struc” tab, select the “Current FOC” control mode, and set small required 
values of the d-axis and q-axis currents. 

5. Run the application and wait for the data to load. 
6. Check the downloaded response in the recorder and repeat the procedure from step two (if 

necessary). 
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Figure 15. Response of the d-axis current to different settings of current loop bandwidth 

5.2.4. Speed loop tuning 
The “Speed Loop” tab is designed to tune the speed-control loop. The speed-control loop is an outer 
loop in the cascade-control structure of a vector-controlled ACIM. The speed loop consists of the PI 
controller, estimated speed filter, and ramp function, which limits the maximum, minimum, acceleration, 
and jerk of the required speed. A screenshot of the “Speed Loop” tuning page is shown in Figure 16 and 
the individual fields are described in Table 5. 
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Figure 16. MCAT Speed Control Loop tab 

Table 5. MCAT Speed Control Loop tab parameters 
Parameter 

name 
Units Description 

Use in constant 
calculation 

Basic mode 
accessibility 

Sample time S Speed loop sampling time period Speed loop no 

F0 Hz Speed control loop bandwidth Speed loop yes 

ζ — Damping ratio of the speed control loop Speed loop no 
β — Overshoot damping coefficient Speed loop no 

Ilim,high A Speed loop output upper limit Speed loop no 

Ilim,low A Speed loop output lower limit Speed loop no 

Cut-off freq Hz Speed filter cut-off frequency Speed loop no 

Acceleration up rpm/s Acceleration of the required speed Speed loop yes 

Acceleration 
down rpm/s2 Acceleration of the required speed Speed loop yes 

Speedmax rpm Maximum required speed Speed loop no 

Speedmin rpm Minimum required speed Speed loop no 
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A simplified block diagram of the speed-control loop is shown in Figure 17. The simplification lies in 
ignoring the current loop dynamics, because it is presumed to be much faster than the dynamics of a 
mechanical system. 

 
Figure 17. Speed loop block diagram 

Calculate the torque constant 𝐾𝐾𝑡𝑡 of an ACIM as follows: 

𝑲𝑲𝒕𝒕 =
𝟑𝟑
𝟒𝟒𝑷𝑷𝒑𝒑

𝝈𝝈𝒎𝒎𝟐𝟐

𝝈𝝈𝒓𝒓 
 Eq. 12  

Note that the previous equation ignores the d-axis current. This value may change during the motor 
operation, which affects the behavior of the transient speed response. The torque constant is therefore 
adapted in run-time (according to the required d-axis current required value) and the speed controller is 
calculated for 𝑖𝑖𝑠𝑠𝑠𝑠 = 1 A.  
When ignoring the load torque, the transfer function of a complete driven mechanical system is: 

𝑭𝑭𝝎𝝎(𝒊𝒊) =
𝜴𝜴𝒎𝒎(𝒊𝒊)

𝑰𝑰𝒊𝒊𝒊𝒊_𝒓𝒓𝒓𝒓𝒊𝒊(𝒊𝒊) =
𝟏𝟏/𝑩𝑩

𝝉𝝉𝒎𝒎𝒊𝒊 + 𝟏𝟏 =
𝟏𝟏

𝑱𝑱𝒊𝒊 + 𝑩𝑩 Eq. 13  

where 𝜏𝜏𝑚𝑚 is the mechanical time constant, 𝐽𝐽 is the moment of inertia, and 𝐵𝐵 is the mechanical viscous 
friction. Considering the PI controller to be in a parallel form according to Eq. 4, the closed speed 
control loop is: 

𝑭𝑭𝒘𝒘𝝎𝝎(𝒊𝒊) =
𝜴𝜴𝒎𝒎(𝒊𝒊)

𝜴𝜴𝒎𝒎_𝒓𝒓𝒓𝒓𝒊𝒊(𝒊𝒊) =
𝑭𝑭𝑷𝑷𝑰𝑰(𝒊𝒊)𝑭𝑭𝝎𝝎(𝒊𝒊)

𝟏𝟏 + 𝑭𝑭𝑷𝑷𝑰𝑰(𝒊𝒊)𝑭𝑭𝝎𝝎(𝒊𝒊) =

𝑲𝑲𝒑𝒑𝝎𝝎
𝑲𝑲𝒊𝒊𝝎𝝎

𝒊𝒊 + 𝟏𝟏

𝑱𝑱
𝑲𝑲𝒕𝒕𝑲𝑲𝒊𝒊𝝎𝝎

𝒊𝒊𝟐𝟐 +
𝑩𝑩 + 𝑲𝑲𝒕𝒕𝑲𝑲𝒑𝒑𝝎𝝎
𝑲𝑲𝒕𝒕𝑲𝑲𝒊𝒊𝝎𝝎

𝒊𝒊 + 𝟏𝟏
 Eq. 14  

where 𝐾𝐾𝑝𝑝𝑝𝑝 is the speed PI controller proportional gain and 𝐾𝐾𝑃𝑃𝑝𝑝 is the integral gain. By comparing this 
transfer function with the transfer function of a second-order system in Eq. 7, it is obtained: 

𝑲𝑲𝒑𝒑𝝎𝝎 =
𝟒𝟒𝒔𝒔𝝅𝝅𝒇𝒇𝟎𝟎𝑱𝑱 − 𝑩𝑩

𝑲𝑲𝒕𝒕
 Eq. 15  

𝑲𝑲𝒊𝒊𝝎𝝎 =
𝟒𝟒𝝅𝝅𝟐𝟐𝒇𝒇𝟎𝟎𝟐𝟐𝑱𝑱
𝑲𝑲𝒕𝒕

 Eq. 16  

 



Tuning and controlling the application 
 

Sensorless ACIM Field-Oriented Control on DSC 56F837xx, Application Note, Rev. 1, 03/2020 
28  NXP Semiconductors 
   

The selection of damping ratio 𝜁𝜁 and speed loop bandwidth 𝑓𝑓0 follows similar rules as in the current 
loop. Choose a bandwidth at least one order smaller (in case of the current loop). Calculate the 
proportional and integral gains of a discrete version of the speed 𝑃𝑃𝐼𝐼 controller using the bilinear 
transformation method, as shown in Eq. 10 and Eq. 11.  
To check the speed response, open the FreeMASTER scope named “Speed”, located under the 
“Speed Control” sub-block. If you are not satisfied with the speed response resulting from the 
automatically calculated parameters, tune the controller manually. To do so, perform these steps:  

1. Go to the “Speed Loop” tab and select the “Expert” tuning mode. 
2. Set the desired speed loop bandwidth 𝑓𝑓0 and click the “Update Target” button. It is recommended 

to start with a lower value (in the range of Hz, depending on the mechanical time constant) and 
then increasing it until a desired response is achieved. 

3. Select the “Speed” scope in the “Speed Control” sub-section.  
4. Set the required speed and observe the response. 
5. Check the downloaded response in the recorder and repeat from step 2 (if necessary). 

5.2.5. Flux loop tuning 
The “Flux Loop” tab is designed to tune the Max Torque Per Ampere (MTPA) and Flux Weakening 
(FW) algorithms, which forms the second outer loop in the cascade-control structure of the ACIM vector 
control. Both algorithms are more closely described in Sensorless ACIM Field-Oriented Control 
(document DRM150). The screenshot of the “Flux Loop” tuning page is shown in Figure 18 and the 
individual fields are described in Table 6. 

Table 6. MCAT flux control loop tab parameters 
Parameter 

name 
Units Description 

Use in constant 
calculation 

Basic mode 
accessibility 

Maximum isd A Maximum d-axis current Speed loop no 

Minimum isd A Minimum d-axis current Speed loop no 

fC Hz Required d-axis current filter Speed loop no 

Startup isd A Startup d-axis current Speed loop no 

ffw Hz FW controller bandwidth Speed loop no 

fIqErr Hz Speed loop output lower limit Speed loop no 

Minimum isd A Minimum d-axis current Speed loop no 

 

 

http://www.nxp.com/doc/DRM150
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Figure 18. MCAT flux loop tuning tab 

The only parameters that are required to be set for the MTPA are the d-axis current limits 𝑖𝑖𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚  
and 𝑖𝑖𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑃𝑃𝑃𝑃  and the filter bandwidth. The upper limit must be set to a value that corresponds to the 
nominal amplitude of the rotor flux, which means: 

𝒊𝒊𝒊𝒊𝒊𝒊_𝒓𝒓𝒓𝒓𝒊𝒊,𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟎𝟎.𝟕𝟕𝟎𝟎𝟕𝟕𝑰𝑰𝒑𝒑𝒑𝒑𝑵𝑵    [A] Eq. 17  

Setting the lower d-axis current limit low allows for better power optimization (depends on the load). 
However, setting it too low may affect the RFO performance and lead to a control failure. It is 
recommended to set 𝑖𝑖𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑃𝑃𝑃𝑃 to at least 25 % of the upper limit 𝑖𝑖𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑃𝑃𝑃𝑃  (or more).  

 
Figure 19. Rotor flux control loop block diagram 

The rotor flux control loop to tune the flux-weakening PI controller is shown in Figure 19. The transfer 
function of the controlled rotor flux system is: 

𝑭𝑭𝝍𝝍(𝒊𝒊) =
𝜳𝜳𝒓𝒓(𝒊𝒊)

𝑰𝑰𝒊𝒊𝒊𝒊_𝒓𝒓𝒓𝒓𝒊𝒊(𝒊𝒊) =
𝟏𝟏/𝝈𝝈𝒎𝒎
𝝉𝝉𝒓𝒓𝒊𝒊 + 𝟏𝟏 Eq. 18  
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Considering the PI controller to be in a parallel form according to Eq. 4, the open control loop is: 

𝑭𝑭𝟎𝟎𝝍𝝍(𝒊𝒊) =
𝑲𝑲𝒑𝒑𝜳𝜳𝒊𝒊 + 𝑲𝑲𝒊𝒊𝜳𝜳

𝒊𝒊
𝟏𝟏/𝝈𝝈𝒎𝒎
𝝉𝝉𝒓𝒓𝒊𝒊 + 𝟏𝟏 Eq. 19  

Placing the controller 0 to the system pole means: 

𝑲𝑲𝒑𝒑𝝍𝝍 = 𝑲𝑲
𝝉𝝉𝒓𝒓
𝝈𝝈𝒎𝒎

 Eq. 20  

𝑲𝑲𝒊𝒊𝝍𝝍 = 𝑲𝑲
𝟏𝟏
𝝈𝝈𝒎𝒎

 Eq. 21  

The open loop transfer is reduced to 𝐹𝐹0𝜓𝜓(𝑠𝑠) = 𝐾𝐾/𝑠𝑠 F0Ψ = K/s, where 𝐾𝐾 is the general constant. Setting 
𝐾𝐾 = 2𝜋𝜋𝑓𝑓0 leads to this closed loop transfer function: 

𝑭𝑭𝒘𝒘𝝍𝝍(𝒊𝒊) =
𝜳𝜳𝒓𝒓(𝒊𝒊)

𝜳𝜳𝒓𝒓_𝒓𝒓𝒓𝒓𝒊𝒊(𝒊𝒊) =
𝟏𝟏

𝟏𝟏
𝟐𝟐𝟐𝟐𝒇𝒇𝟎𝟎

𝒊𝒊 + 𝟏𝟏
 Eq. 22  

where 𝑓𝑓0 is the flux-weakening controller bandwidth. The final discrete controller gains are therefore 
calculated as follows: 

𝑲𝑲𝒑𝒑𝝍𝝍𝒑𝒑 = 𝟐𝟐𝟐𝟐𝒇𝒇𝟎𝟎
𝝉𝝉𝒓𝒓
𝝈𝝈𝒎𝒎

 Eq. 23  

𝑲𝑲𝒊𝒊𝝍𝝍𝒑𝒑 = 𝑻𝑻𝒊𝒊𝟐𝟐𝟐𝟐𝒇𝒇𝟎𝟎
𝟏𝟏
𝝈𝝈𝒎𝒎

 Eq. 24  

5.2.6. MCAT output file generation 
When you successfully tune the application and want to store all the calculated parameters to an 
embedded application, navigate to the “Output File” tab. View the list of all definitions generated by 
MCAT there. Clicking the “Generate Configuration File” button overwrites the older version of the 
m1_acim_appconfig.h file, which contains all FOC algorithm definitions. To generate the file into a 
correct location, connect the target MCU via FreeMASTER. Otherwise, when in the offline mode, the 
file is generated next to the *.pmp file. 

6. Conclusion 
This application note describes the implementation of the reference application for ACIM on 32-bit DSC 
MC56F82748. The hardware-dependent part of the software, which includes peripheral initialization and 
application timing, is described in Section 3, “MCU peripheral settings”. The initialization and API of 
the Motor Control Peripheral Drivers (MCDRV), which allows for a simple and unified access to PWM 
and ADC on all supported devices, is in Section 4, “Motor-Control Peripheral Drivers”. The last part of 
the document describes application tuning and control using the FreeMASTER-based MCAT tool. All 
the steps necessary for running the ACIM-like parameter identification, current loop, speed loop, and 
flux loop tuning are described as well. 
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7. Acronyms and abbreviations 
Table 7. Acronyms and abbreviations 

Term Meaning 

AC Alternating Current 

ACIM AC Induction Machine 

ADC Analog-to-Digital Converter 
AN Application Note 

CPU Central Processing Unit 
CMP Comparator 

DC Direct Current 

DRM Design Reference Manual 
FOC Field-Oriented Control 
FW Flux-Weakening 

RTCESL Real-Time Embedded Software Library 
FTM FlexTimer Module 
GPIO General-Purpose Input/Output 

HVP High-Voltage development Platform 
I/O Input/Output interface 

MCAT Motor Control Application Tuning tool 

MCDRV Motor Control Peripheral Drivers 
MCU Microcontroller Unit 

MRAS Model Reference Adaptive System 
MTPA Maximum Torque Per Ampere 

PDB Programmable Delay Block 

PI Proportional Integral controller 

PWM Pulse-Width Modulation 

RFO Rotor Flux Observer 
UART Universal Asynchronous Receiver/Transmitter 

VSI Voltage Source Inverter 

8. References 
These references are available on www.nxp.com: 

1. Sensorless ACIM Field Oriented Control (document DRM150). 
2. MC56F83xxx Reference Manual (document MC56F83XXXRM). 
3. NXP High-Voltage Motor Control Platform User's Guide (document HVPMC3PHUG). 
4. HVP-MC56F82748 User’s Guide (document HVPMC56F82748UG). 
5. Motor Control Application Tuning (MCAT) Tool for Three-Phase PMSM (document AN4642). 
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9. Revision history 
Table summarizes the changes done to this document since the initial release. 

Table 8. Revision history 
Revision number Date Substantive changes 

0 03/2019 Initial release. 
1 03/2020 Updates for DSC 56F83783. 

 
 

 
 



 
 
 

 

 
 
 

Document Number: AN12379 
Rev. 1 

03/2020 

   

 

How to Reach Us: 

Home Page: 
www.nxp.com 

Web Support: 
www.nxp.com/support 

Information in this document is provided solely to enable system and software 
implementers to use NXP products. There are no express or implied copyright licenses 
granted hereunder to design or fabricate any integrated circuits based on the 
information in this document. NXP reserves the right to make changes without further 
notice to any products herein. 

NXP makes no warranty, representation, or guarantee regarding the suitability of its 
products for any particular purpose, nor does NXP assume any liability arising out of 
the application or use of any product or circuit, and specifically disclaims any and all 
liability, including without limitation consequential or incidental damages. “Typical” 
parameters that may be provided in NXP data sheets and/or specifications can and do 
vary in different applications, and actual performance may vary over time. All operating 
parameters, including “typicals,” must be validated for each customer application by 
customer’s technical experts. NXP does not convey any license under its patent rights 
nor the rights of others. NXP sells products pursuant to standard terms and conditions 
of sale, which can be found at the following address: 
www.nxp.com/SalesTermsandConditions. 

While NXP has implemented advanced security features, all products may be subject to 
unidentified vulnerabilities. Customers are responsible for the design and operation of 
their applications and products to reduce the effect of these vulnerabilities on 
customer’s applications and products, and NXP accepts no liability for any vulnerability 
that is discovered. Customers should implement appropriate design and operating 
safeguards to minimize the risks associated with their applications and products. 

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, 
COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, 
MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, 
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, 
SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the 
Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C‑Ware, 
the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, 
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the 
SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, 
CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, 
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names 
are the property of their respective owners.  AMBA, Arm, Arm7, Arm7TDMI, Arm9, 
Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, 
DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, 
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, 
ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited 
(or its subsidiaries) in the US and/or elsewhere. The related technology may be 
protected by any or all of patents, copyrights, designs and trade secrets. All rights 
reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The 
Power Architecture and Power.org word marks and the Power and Power.org logos and 
related marks are trademarks and service marks licensed by Power.org. 

© 2020 NXP B.V. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

http://www.nxp.com/
http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Sensorless ACIM Field-Oriented Control on DSC 56F837xx
	1. Introduction
	2. High-Voltage Motor-Control Platform
	3. MCU peripheral settings
	3.1. DSC56800EX Quick Start tool
	3.2. DSC MC56F837xx family
	3.2.1. On-Chip Clock Synthesis (OCCS)
	3.2.2. Periodic Interrupt Timer (PIT)
	3.2.3. 12-bit cyclic Analog-to-Digital Converter (ADC12)
	3.2.4. Pulse Width Modulator A (PWMA)
	3.2.5. Inter-Peripheral Crossbar Switch A (XBARA)
	3.2.6. High-Speed Comparator C (HSCMP_C)
	3.2.7. Universal Asynchronous Receiver and Transmitter (SC0)
	3.2.8. General-Purpose Input/Output (GPIO)


	4. Motor-Control Peripheral Drivers
	4.1. MCDRV initialization and configuration
	4.2. MCDRV application interface
	4.2.1. ADC control API description
	4.2.2. PWM control API description


	5. Tuning and controlling the application
	5.1. Application control using MCAT
	5.2. Application tuning using MCAT
	5.2.1. Input Application Parameters tab
	5.2.2. Sensorless rotor flux position and speed estimation
	5.2.3. Current loop tuning
	5.2.4. Speed loop tuning
	5.2.5. Flux loop tuning
	5.2.6. MCAT output file generation


	6. Conclusion
	7. Acronyms and abbreviations
	8. References
	9. Revision history


