
1 Introduction
Secure boot is an important feature for LPC54S0xx parts.

Secure boot can ensure that unauthorized images (code) are not executed on
a given product. The secure bootloader in ROM is immutable code forming
the Root of Trust. When secure boot is enabled, the boot ROM examines the
user executable image loaded in on-chip RAM to determine the authenticity
of the code. If the code is authentic, the control is transferred. This process
establishes a chain of trusted code from ROM to the user boot code.

The secure bootloader in ROM loads the user code into on-chip RAM and
executes it in RAM after authentication or decryption. When the secure boot
is enabled, the image size, code size + RO size + RW size, should be smaller
than one of the RAM blocks, SRAMX or SRAM0. The maximum bootable size,
code size + RO size + RW size, is 192 KB.

Figure 1 shows the boot process.

Contents

1 Introduction......................................1
1.1 Terminology................................. 3
2 Implementation................................4
2.1 Overview......................................4
2.2 Divide the image binary............... 4
2.3 Create the image (MCUXpresso

IDE)..6
2.4 Program the secure bootable and

non-secure part images............. 10
2.5 Convert key file generated by

elftosb.. 13
2.6 Program 128 bits AES key and

related OTP bit fields to enable
secure boot................................ 14

3 Demonstration...............................15
3.1 Environment...............................15
3.2 Steps and result.........................15
4 Revision history.............................16

AN12352
LPC54S0xx Execute In Place with Secure Boot
Rev. 2 — 18 September 2020 Application Note

Figure 1. Secure boot process

When the secure boot is enabled, there is a size limitation and additional code limitation. The code is not executed in place (XIP)
from QSPI Flash. To solve the aforementioned limitations, this application note describes a simple demo. The demo shows how
to split the image into bootable part and XIP part. The bootable part contains secure bootable code, whereas the XIP part contains
plain-text code. The secure bootable part is useful to secure the core code via image encryption and/or authentication.

NXP Semiconductors
Introduction

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 2 / 18

In this document, enabling secure boot is required to make secure boot, which is done by configuring
secure boot type field in OTP. As an example, this document configures it to Enforce Encryption, with the
OTP_SECURE_BOOT_TYPE field set to b’10.

 NOTE

Modifying the OTP is a one-time operation and is not reversed. Thus, care must be taken before writing to OTP
secure boot type field and other related fields.

 NOTE

1.1 Terminology
Table 1 lists the terminology used in the following application note sections.

Table 1. Terminology

Items Description

Secure Bootable Image A bootable image that is encrypted or signed, and so on. Additionally,
it meets the requirements of the secure boot type.

Non-Secure (NS) Image Plain text image.

Flashloader The Flashloader is the secondary bootloader program loaded into the
on-chip RAM of LPC54S0xx to support blhost. The project is located
in SDK as a bootloader demo.

DFU Utility The DFU utility is the host application used to load the Flashloader
binary into the internal RAM memory of LPC540xx device connected
to the host in USB DFU mode. dfu-util.exe is an open source
command-line application. To download the tool, see dfu-util.

blhost PC Command-Line Interface (CLI) tools to implement MCUBOOT
protocol, it is part of MCUBOOT software package. The blhost.exe
utility is an example host program used to interface with LPC54S0xx
running the Flashloader program. This tool can be downloaded from
MCUBOOT.

HxD HxD is a binary file editor. It is easy to use and HxD is free of charge
for private and commercial use.

elftosb The elftosb tool creates a binary output file that contains the user
application image along with a series of bootloader commands. The
output file is known as a Secure Binary or SB file for short. These
files have the *.sb extension. The tool uses an input command file to
control the sequence of bootloader commands present in the output
file. This command file is called a boot descriptor file or BD file for
short. This tool can be downloaded from MCUBOOT.

elftosb-gui The elftosb-gui is a GUI tool with a main focus to help the
user prepare a secure application image, as well as other useful
security operation specific to target MCU platform. The Elftosb-gui
tool provides intuitive graphical interface on top of elftosb and
blhost command-line applications and it guides user in preparation
of secure boot images required by ROM bootloader. This tool can be
downloaded from MCUBOOT.

NXP Semiconductors
Introduction

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 3 / 18

http://dfu-util.sourceforge.net/releases/
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuboot-mcu-bootloader-for-nxp-microcontrollers:MCUBOOT?tab=Design_Tools_Tab
https://mh-nexus.de/en/hxd/
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuboot-mcu-bootloader-for-nxp-microcontrollers:MCUBOOT?tab=Design_Tools_Tab
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuboot-mcu-bootloader-for-nxp-microcontrollers:MCUBOOT?tab=Design_Tools_Tab

2 Implementation
This section introduces how to split the code into two parts.

• Secure Bootable part (up to 192 kB)

— Contains confidential code that may or may not be performance sensitive (vector table, time constrained critical
algorithm, and so on.)

— Encrypted or signed as per secure image formats based on secure boot type.

The secure bootloader in ROM will load this Secure Bootable Part into RAM, and executes it after successful verification. Since
the secure bootloader disables the XIP, it is required that SPIFI is initialized to enable XIP.

• Non-Secure part (XIP)

— Contains code that is not confidential.

— XIP code and the code loaded into RAM are placed in flash in plain text format.

2.1 Overview
The following steps are required to create a separate image.

1. Divide the image into two parts by modifying linker script.

• Divide the image into secure bootable part and non-secure part through linker script. The division helps place the code
identified as protected in the secure bootable part and the non-protected code in the non-secure part.

2. Create the image.

• After coding, compile the code. The binary is generated based on the linker script.

• Use tools to split the image into two parts: Secure Bootable Part and Non-Secure Part and then process them.

3. Program the two parts of the image into the flash.

• Use MCUXpresso and CMSIS-DAP to program the images.

4. Program the 128 bits AES key to OTP.

5. Program the related OTP bit fields to enable secure boot.

• Secure boot type.

• Secure boot enable.

2.2 Divide the image binary
Figure 2 shows an example of a special image layout.

NXP Semiconductors
Implementation

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 4 / 18

Figure 2. Flash and RAM map

Before the code is executed, the fun_sram0, fun_sram1, fun_sram2, and fun_sram3 sections are loaded into
the RAM.

 NOTE

In the demo project, MCUXpresso IDE, these sections are loaded into execution address by ResetISR provided by the SDK.

In the MCUXpresso IDE environment, the ld files of the project are modified to achieve this image layout.

As shown in Figure 3, section fun_plaintext1 is defined and placed in the non-secure part. fun_plaintext1 starts at 0x103F_FF00.

Figure 3. Linker scripts

The non-confidential code is placed in one of the above Non-Secure (NS) sections of the image through attribute directive when
declaring functions. The following code snippet places ns_print_with_banner function code in section func_plaintext1 placed in the
non-secure part:

NXP Semiconductors
Implementation

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 5 / 18

Figure 4. Example code of attribute function

2.3 Create the image (MCUXpresso IDE)
The steps to create the image in MCUXpresso IDE environment are:

1. Initialize SPIFI to enable XIP

2. Build and generate the image

3. Split the image as secure-plain text and non-secure

4. Create the secure bootable part image based on secure-plain text image

2.3.1 Initialize SPIFI to enable XIP
This step is a must to enable XIP if the application code is larger than 192 KB and secure boot is enabled.

Complete the SPIFI initialization in the secure bootable part.

The code to initialize SPIFI for XIP is shown in Figure 5.

Figure 5. Example code of SPIFI initialization

NXP Semiconductors
Implementation

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 6 / 18

2.3.2 Build and generate the image
When the software of the project is completed, the project is compiled and then the *.axf file is generated.

The simplest way to create a one-off binary or a hex file is to open up the Debug, or Release, folder in the Project Explorer.
Right-click on the *.axf file, and select the Binary Utilities > Create binary option as shown in Figure 6.

Figure 6. Generate the binary

2.3.3 Split the image as secure-plain text and non-secure
It is recommended to use HxD, to split the image.

Table 2 describes the plain image layout.

Table 2. Plain image layout

Offset Block Value Description

0x00 Arm Vector table __initial_sp Stack pointer

0x04 Arm Vector table __initial_pc Image execution start address

…… …… …… ……

0x28 HEADER_OFFSET HEADER_OFFSET A typical offset value is 0x160.

…… …… …… ……

HEADER_OFFSET+0x0C Image_length xxxxx Total length of the image -4.
The length

Table continues on the next page...

NXP Semiconductors
Implementation

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 7 / 18

Table 2. Plain image layout (continued)

Offset Block Value Description

does not include the four
bytes that make up the CRC
value field.

…… …… …… ……

The image length is obtained from the image header.

Figure 7. Image_length (image_length in this header equals 0x0000_2ED4)

The total length of the image in bytes= image_length + 4.

In order to generate secure-bootable part and non-secure part images, the original image binary is split into secure-plain text
image and non-secure image.

The secure-plain text image is from address 0 to address (total length of the image – 1) of the original image binary. This image
is used to create the secure-bootable part image.

The non-secure image is from address 0x0010_0000 (0x1010_0000 - 0x1000_0000) to the end of the original image. This image
is as non-secure part image.

2.3.4 Create the secure bootable part image based on secure-plain text image
Use the elftosb and elftosb-gui to create the secure-bootable part image.

• Generate 128 bits AES key.

Use the following command to generate 128 bits AES key.

elftosb.exe --keygen 128 aes128_key.key

Where “aes128_key.key” is the name of AES key file which stores AES128 key.

• Create the secure-bootable image

NXP Semiconductors
Implementation

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 8 / 18

Open elftosb-gui, to create the secure-bootable image by following the steps shown in Figure 8

Figure 8. Create the Secure Bootable image by elftosb-gui

1. Select the LPC54S0xx device.

2. Create a new configuration.

3. Select the secure-plain text binary image.

4. Get the load address from the input image.

5. Select the image execution target as RAM.

6. Select the image authentication type as Encrypted.

NXP Semiconductors
Implementation

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 9 / 18

7. Select the device key source as OTP.

8. Select the encryption key (the 128 bits AES key generated before).

9. Select the path and name of the output encrypted image.

10. Click the Process button to create the secure-bootable part image.

2.4 Program the secure bootable and non-secure part images
To program the Flash, it is recommended to use MCUXpresso and CMSIS-DAP.

Jflash is not recommended. Jflash fills the checksum into the image during the programing process, because the
image cannot pass verification during the secure boot.

 NOTE

2.4.1 Program secure bootable part image into Flash
1. Open MCUXpresso IDE with any SDK project of LPC54S018M or LPC54S018.

Figure 9. Open the MCUXpresso IDE

2. Open MCUXpresso IDE LinkServer (inc.CMSIS-DAP) probes by clicking the button in the order as shown in Figure 10.

Figure 10. Open GUI Flash tool

The result is as shown in Figure 11.

NXP Semiconductors
Implementation

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 10 / 18

Figure 11. Open MCUXpresso IDE LinkServer (inc.CMSIS-DAP) probes

Follow the screenshot shown in Figure 12 to configure it, especially the red parts of the screenshot.

NXP Semiconductors
Implementation

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 11 / 18

Figure 12. Setting for programing Secure Bootable Part image

3. Click the Run button to program the Secure Bootable Part image into the Flash.

2.4.2 Program the non-secure part image into Flash
1. Follow Step 1 and Step 2.

2. Change the configuration as shown in Figure 13, especially the red parts in the screenshot.

NXP Semiconductors
Implementation

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 12 / 18

Figure 13. Setting for programing non-secure image

Click the Run button to program the non-secure image into the Flash.

2.5 Convert key file generated by elftosb
The key file generated by elftosb is in the ASCII format. It should be converted to hexadecimal format for blhost,

Figure 14 and Figure 15 show how to convert the key file.

Figure 14. aes128_key.key

NXP Semiconductors
Implementation

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 13 / 18

Figure 15. aes128_key.bin

2.6 Program 128 bits AES key and related OTP bit fields to enable secure boot
It is recommended to use blhost to program the OTP bits. For LPC54S0xx, the flashloader should be load into on-chip RAM and
then the blhost will be available.

2.6.1 Use DFU to load the flashloader into the RAM
Configure the ISP pins to make the chip enter the USB0 DFU boot mode.

Table 3. Boot source based on ISP pins

Boot mode
ISP2

PIO0_6 pin

ISP1

PIO0_5 pin

ISP0

PIO0_4 pin
Description

USB0 DFU boot LOW HIGH LOW
USB DFU class is used to
download image over the USB0
full-speed port into SRAM.

Connect the LPC54S0xx device USB0 and PC with USB.

Use the following command to load the flashloader into the RAM. flashloader.bin is located in
an_lpc54s0_xip_with_secureboot. It can also be generated by compiling the sdk project which is located
in sdk\boards\lpcxpresso54s018\bootloader_examples\flashloader.

dfu-util.exe -D flashloader.bin

2.6.2 Use blhost to program 128 bits AES key and related OTP bit fields
Once the flashloader binary is downloaded on the device connected in USB DFU mode and starts its execution on the LPC54S0xx
platform, there remains a physical USB connection between the LPC54S0xx platform USB1 (High-Speed) and host. The
flashloader will be ready to receive the commands.

2.6.2.1 128 bits AES key

Use the following command to program 128 bits AES key.

blhost.exe -u 0x1fc9,0x01a2 -- program-aeskey aes128_key.bin

2.6.2.2 Secure boot type bit field

Use the following command to program the Secure boot type as Enforce Encryption.

blhost.exe -u 0x1fc9,0x01a2 -- efuse-program-once 12 00000010

NXP Semiconductors
Implementation

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 14 / 18

2.6.2.3 Secure boot enable bit field

Use the following command to enable the secure boot.

blhost.exe -u 0x1fc9,0x01a2 -- efuse-program-once 12 00000004

3 Demonstration
This section describes the environment and the demo steps and results.

3.1 Environment
This section describes the hardware and software environment.

3.1.1 Hardware environment
• Board

— LPCXpresso54S018 (LPC54S018-EVK) or LPCXpresso54S018M (LPC54S018M-EVK)

• Debugger

— Integrated CMSIS-DAP debugger on the board

• Miscellaneous

— Two Micro USB cables

— PC

3.1.2 Software environment
• Tool chain

— MCUXpresso IDE v10.3.0

• Software package

— an_lpc54s0_xip_with_secureboot.zip

3.2 Steps and result
The basic steps are as follows:

1. Build & Compile

Build and compile the demo project located in an_lpc54s0_xip_with_secureboot/an_demo.

2. Process image

Process the image according to Split the image as secure-plain text and non-secure and Create the secure bootable part
image based on secure-plain text image .

3. Download

Follow Program the secure bootable and non-secure part images to download images.

4. Program the AES key.

Follow Convert key file generated by elftosb to program the AES key.

5. Program the related OTP bit fields

Follow Program 128 bits AES key and related OTP bit fields to enable secure boot to program the related OTP bit fields.

6. Run

NXP Semiconductors
Demonstration

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 15 / 18

Reset the board to run by pressing the Reset button on the board.

7. Result

Figure 16 shows the messages printed on the terminal, 115200+8+N+1, by the demo code.

Figure 16. Messages printed on the terminal

The information with banner, <S:>, means it is printed in Secure Bootable Part image. The information with banner, <NS:>, means
it is printed in Non-Secure part image.

As described in the print information displayed on the terminal, the program will echo each entered character.

The onboard LED3 will also blink per second.

4 Revision history
Table 4 summarizes the changes since the initial release.

Table 4. Revision history

Revision number Date Substantive changes

0 18 February 2019 Initial release

1 25 February 2019 Updated Figure 13 and tools path in Terminology.

2 18 September 2020 • Updated Table 1

• Updated Convert key file generated by elftosb

Table continues on the next page...

NXP Semiconductors
Revision history

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 16 / 18

Table 4. Revision history (continued)

Revision number Date Substantive changes

• Updated Program 128 bits AES key and related OTP bit fields to enable
secure boot

• Updated Use blhost to program 128 bits AES key and related OTP bit fields

• Added 128 bits AES key

NXP Semiconductors
Revision history

LPC54S0xx Execute In Place with Secure Boot, Rev. 2, 18 September 2020
Application Note 17 / 18

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names
are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11,
Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil,
Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone,
ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or
registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019-2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 18 September 2020
Document identifier: AN12352

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Terminology

	2 Implementation
	2.1 Overview
	2.2 Divide the image binary
	2.3 Create the image (MCUXpresso IDE)
	2.3.1 Initialize SPIFI to enable XIP
	2.3.2 Build and generate the image
	2.3.3 Split the image as secure-plain text and non-secure
	2.3.4 Create the secure bootable part image based on secure-plain text image

	2.4 Program the secure bootable and non-secure part images
	2.4.1 Program secure bootable part image into Flash
	2.4.2 Program the non-secure part image into Flash

	2.5 Convert key file generated by elftosb
	2.6 Program 128 bits AES key and related OTP bit fields to enable secure boot
	2.6.1 Use DFU to load the flashloader into the RAM
	2.6.2 Use blhost to program 128 bits AES key and related OTP bit fields
	2.6.2.1 128 bits AES key
	2.6.2.2 Secure boot type bit field
	2.6.2.3 Secure boot enable bit field

	3 Demonstration
	3.1 Environment
	3.1.1 Hardware environment
	3.1.2 Software environment

	3.2 Steps and result

	4 Revision history

