

MC68HC908GP32

Target Applications

- > Radar detectors
- > Industrial and home lighting
- > Security systems
- > Home appliances
- > Sensors
- > Electronic power meters
- > Wireless communication
- > PDA attachments

Overview

Freescale Semiconductor's MC68HC908GP32 is a fully integrated microcontroller (MCU) created to make system design easier by eliminating external peripherals wherever possible. The 32 kHz Phase-Lock Loop (PLL) eliminates the need for expensive, high-speed crystals or noisy oscillators. The integrated second-generation Flash memory programs up to 100 times faster than prior Flash solutions and offers in-application programming. Features include an asynchronous serial peripheral interface (SPI), an asynchronous serial communications interface (SCI), an analog-to-digital converter (ADC), an autowake-up from stop feature, low-voltage inhibit (LVI) and a watchdog timer.

HC08 CPU	КВІ
32 KB Flash	8-ch., 8-bit ADC
512B RAM	SCI
PLL	SPI
СОР	2 x 2-ch., 16-bit Timer
LVI	Up to 33 GPIO

Be

- > 8 MHz bus operation at 5V operation for 125 ns minimum instruction cycle time
- > 4 MHz bus operation at 3V for 250 ns minimum instruction cycle time

High-Performance 68HC08 CPU Core

- > Efficient instruction set, including multiply and divide
- > 16 flexible addressing modes, including stack relative with 16-bit stack pointer
- > Fully static, low-voltage, low-power design with wait and stop modes

Integrated Second-Generation Flash Memory

- > In-application reprogrammable
- > Extremely fast programming, encoding 64B in as fast as 2 ms
- > Flash programming across the 68HC08's full operating supply voltage with no extra programming voltage
- > 10K write/erase cycles minimum over temperature
- > Flexible block protection and security

Renefits

- > Object code compatible with the 68HC05
- > Easy to learn and use architecture
- > C-optimized architecture provides compact code

- Cost-effective programming changes and field software upgrades via in-application programmability and reprogrammability
- > Reduces production programming costs through ultra-fast programming
- > Allows reprogrammable battery-powered applications
- > Byte-writable for data as well as program memory
- > Protects code from unauthorized reading and guards against unintentional writing/erasing of user-programmable segments of code

8-bit Analog-to-Digital Converter (ADC)

- > 8 channels
- > Single conversion in 17 μs

> Fast, easy conversion from analog inputs, such as temperature, pressure and fluid levels, to digital values for CPU processing

Clock Generation Module with Phase-Lock Loop (PLL)

- > Programmable clock frequency in integer multiples of external crystal reference
- > Crystal reference of 32 kHz to 100 kHz
- > External clock option with or without PLL
- > Provides high performance using low-cost, low-frequency reference crystals
- > Reduces generated noise while still providing high performance (up to 32 MHz internal clock)
- > Fast, easy conversion from analog inputs, such as temperature, pressure and fluid levels, to digital values for CPU processing

Four Programmable 16-bit Timer Channels

- > 125 ns resolution at 8 MHz bus
- > Free-running counter or modulo up-counter
- > Each channel independently programmable for input capture, output compare or unbuffered pulse-width modulation (PWM)
- > Pairing timer channels provides a buffered PWM function

Timebase Module > Eight user-selectable periodic > Provides autowake-up from low-power stop mode to maintain real-time clock or check real-time interrupts external device status such as sensors > Optionally operate in low-power stop mode Serial Communications Interface > UART asynchronous communications system > Enables synchronous serial communications with peripheral devices > Flexible baud rate generator > Double-buffered transmit and receive > Optional hardware parity checking and generation Serial Peripheral Interface > Full-duplex, three-wire synchronous transfers > High-speed synchronous communication between multiple MCUs or between MCU > Maximum master bit rate of 4 MHz for 8 MHz and serial peripherals system clock > Cost-effective serial peripheral expansion to applications including EEPROM, high-precision analog-to-digital and digital-to-analog converters, and real-time clocks **Computer Operating Properly Watchdog Timer** > Issues reset in the event of runaway code Selectable Trip Point Low-Voltage Inhibit > Improves reliability by resetting the MCU when voltage drops below trip point > Two trip points allow optimum operation in both 5V and 3V nominal systems > Integration reduces system cost Up to 33 Bidirectional Input/Output (I/O) Lines > 10 mA sink/source on all I/O pins > High-current I/O allows direct drive of LED and other circuits to eliminate external drivers > 15 mA sink capability on five I/O pins and reduce system costs > Keyboard scan with selectable interrupts on > Keyboard scan with programmable pull-ups eight I/O pins eliminates external glue logic when interfacing to simple keypads > Software programmable pull-ups on

_		_	
Δn	nlica	tion	Notes
$\neg \nu$	piica	UUII	110163

23 I/O pins

AN1050	Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
AN1218	HC05 to HC08 Optimization
AN1219	M68HC08 Integer Math Routines
AN1259	System Design and Layout Techniques for Noise Reduction in MCU-Based Systems
AN1263	Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
AN1705	Noise Reduction Techniques for Microcontroller-Based Systems
AN1752	Data Structures for 8-bit MCUs
AN1837	Non-Volatile Memory Technology Overview
AN2093	Creating Efficient C Code for the MC68HC08
AN2120	PPP for GP32 (Internet)
EB366	In-Circuit Programming of 68HC908GP32 Flash Memory

Cost-Effective Development Tools

For more information on development tools, please refer to the Freescale Development Tool Selector Guide (SG1011).

M68EVB908GP32

\$168

Evaluation board with large 2" x 4" prototype area, two serial ports, input/output (I/O) header and

universal power supply

FSICEKITGPGT \$2,495

Complete FSICE high-performance emulator kit; includes emulator module, cables, head adapters and

Emulation module for FSICE system

programming adapters

M68EML08GPGT

\$495

M68CYCLONEPRO \$499

HC08/HCS08/HC12/HCS12 stand-alone Flash programmer or in-circuit emulator, debugger, Flash programmer; USB, serial or

Ethernet interface options

USBMULTILINK08

\$99

Universal HC08 in-circuit debugger and Flash programmer;

USB PC interface

M68CPA08QF324448 \$199

Programming adapter for MON08

cables and single MCU: 32-pin 0.8 mm QFP packages, 44-pin 0.8 mm QFP packages and 48-pin 0.5 mm QFP packages

CWX-H08-SF

Free

CodeWarrior™ Special Edition for HC(S)08 MCUs; includes integrated development environment (IDE), linker, debugger, unlimited assembler, Processor Expert[™] auto-code generator, full-chip simulation and

16 KB C compiler

Package Options

Part Number Package Temp. Range MC68HC908GP32CP 40 DIP -40°C to +85°C MC68HC908GP32CFB 44 QFP -40°C to +85°C MC68HC908GP32CB 42 SDIP -40°C to +85°C

44-Lead QFP шиши FB шшш

Learn More: For more information about Freescale's products, please visit www.freescale.com.

