
Freescale Semiconductor
Errata

© Freescale Semiconductor, Inc., 2008. All rights reserved.

This document is a compilation of all MPC855T, MPC860, MPC860SAR, and MPC860T device errata
from Revision A.2 forward. Herein, the errata are classified and numbered, and each erratum is provided
with a description and workarounds in the second part of the document. To determine which silicon
revision and mask set are associated with which version, please refer to Table 2. To find which errata apply
to a particular device, please refer to the errata listings for each revision provided in Table 4. Indications
of schedules for errata fixes are provided in the errata listing of the latest revision of each part.

Table 1 provides a revision history for this document.

Table 1. Document Revision History

 Rev. No. Date Significant Change(s)

1.9 5/2008 Added ATM 11 errata information for D4 to Table 3. Replaced MPC860CESUMM_Rev1_7.doc with
this one.

Table 2. MPC860CE Silicon Revision, Mask Set, and Version Key

Silicon
Revision

Mask Set 855T 860 860DC 860DE 860DH 860DP 860DT 860EN 860MH 860P 860SR 860T

A.2 2F84C √ √ √ √ √ √

A.3 4F84C √ √ √ √ √ √

Document Number: MPC860CE
Rev. 1.9, 05/2008

MPC860/855T Family Device Errata
Reference

MPC860/855T Family Device Errata Reference, Rev. 1.9

2 Freescale Semiconductor

B.1 1J24A,
0H86G

√

2J24A,
9J24A

√ √ √ √ √ √

B.2 2H56S √ √

B.3 1J21M √ √

B.5 3J21M √ √

C.0 0H96G √

1H96G √ √ √ √ √ √

C.1 2H96G √

3H96G √ √ √ √ √ √

D.4 (D.3) 3K20A
(2K20A)

√ √ √ √ √ √ √ √

Table 3. MPC860CE Errata and Silicon Revision Key

Erratum A.2 A.3 B.1
B.1

(860SR
only)

B.2 B.3 B.5 C.0
C.0

(860SR
only)

C.1
C.1

(860SR
only)

D.4
(D.3)

W
o

rkaro
u

n
d

GLL1 √ √ √ √ √ √ √ √ √ √ √ √ Y

SIU1 √ √ N

SIU2 √ √ Y

SIU3 √ √ √ √ √ √ √ Y

SIU4 √ √ √ √ √ √ √ √ √ √ √ √ Y

SIU5 √ √ √ √ √ √ √ √ √ √ √ √ Y

SIU6 √ √ √ √ √ √ √ √ √ √ √ √ Y

SIU7 √ √ √ √ √ √ √ √ √ √ √ Y

SIU8 √ √ √ √ √ √ √ Y

SIU9 √ √ √ √ √ √ √ √ √ √ √ √ Y

SIU10 √ √ √ √ √ √ √ √ √ √ √ √ N

CPM1 √ √ Y

CPM2 √ √ Y

CPM3 √ √ √ √ √ √ √ Y

CPM4 √ √ √ √ √ √ √ √ √ √ √ Y

Table 2. MPC860CE Silicon Revision, Mask Set, and Version Key (continued)

Silicon
Revision

Mask Set 855T 860 860DC 860DE 860DH 860DP 860DT 860EN 860MH 860P 860SR 860T

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 3

CPM5 √ √ √ √ √ √ √ √ √ √ √ Y

CPM6 √ √ √ √ √ √ √ √ √ √ √ Y

CPM7 √ √ √ √ √ √ √ √ √ √ √ Y

CPM8 √ √ √ √ √ √ √ √ √ √ √ N

CPM9 √ √ √ √ √ √ √ √ √ √ √ N

CPM10 √ √ √ √ √ √ √ √ √ √ √ N

CPM11 √ √ √ √ √ √ √ √ √ √ √ Y

CPM12 √ Y

G1 √ √ Y

G2 √ √ √ √ √ √ √ √ √ √ √ √ Y

G3 √ √ √ √ √ √ √ Y

G4 √ √ √ √ √ √ √ Y

G5 √ √ √ √ √ Y

G6 √ √ √ √ √ Y

G7 √ √ √ √ √ √ √ Y

G8 √ √ √ √ Y

G9 √ √ √ √ √ √ √ √ √ √ √ √ Y

G10 √ N

CPU1 √ √ √ √ √ √ √ √ √ √ √ N

CPU2 √ √ √ √ √ √ √ N

CPU3 √ √ Y

CPU4 √ N

CPU5 √ √ √ √ √ √ √ √ √ √ √ √ Y

CPU6 √ √ √ √ √ √ √ Y

CPU7 √ √ √ √ √ √ √ √ Y

CPU8 √ √ √ √ √ √ √ √ √ Y

CPU9 √ √ Y

CPU10 √ √ √ √ √ √ √ √ √ √ √ √ Y

CPU11 √ √ √ √ √ √ √ √ √ √ √ √ Y

CPU12 √ √ √ √ √ √ √ √ √ √ √ √ Y

CPU13 √ √ √ √ √ √ √ √ √ √ √ √ Y

Table 3. MPC860CE Errata and Silicon Revision Key (continued)

Erratum A.2 A.3 B.1
B.1

(860SR
only)

B.2 B.3 B.5 C.0
C.0

(860SR
only)

C.1
C.1

(860SR
only)

D.4
(D.3)

W
o

rkaro
u

n
d

MPC860/855T Family Device Errata Reference, Rev. 1.9

4 Freescale Semiconductor

CPU14 √ √ √ √ √ √ √ √ √ √ √ √ Y

CPU15 √ √ √ √ √ √ √ √ √ √ √ √ Y

ATM1 √ Y

ATM2 √ Y

ATM3 √ Y

ATM4 √ Y

ATM5 √ √ √ √ Y

ATM6 √ Y

ATM7 √ √ √ Y

ATM8 √ √ √ Y

ATM9 √ √ √ Y

ATM10 √ √ √ √ Y

ATM11 √ √ √ √ Y

FEC1 √ √ √ N

FEC2 √ √ √ Y

FEC3 √ √ √ √ N

FEC4 √ N

FEC5 √ √ √ N

FEC6 √ √ √ N

FEC7 √ √ √ N

FEC8 √ Y

FEC9 √ Y

FEC10 √ Y

FEC11 √ √ √ N

FEC12 √ √ √ √ Y

FEC13 √ √ √ N

FEC14 √ √ Y

FEC15 √ √ √ √ Y

Table 3. MPC860CE Errata and Silicon Revision Key (continued)

Erratum A.2 A.3 B.1
B.1

(860SR
only)

B.2 B.3 B.5 C.0
C.0

(860SR
only)

C.1
C.1

(860SR
only)

D.4
(D.3)

W
o

rkaro
u

n
d

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 5

Errata List

Errata List

Global Errata

GLL1 Some registers are not initialized correctly during power-on
RESET, HRESET, and SRESET

Table 4 is provided to clarify/correct the power-on RESET value of many registers and lists whether each
register is affected by HRESET and/or SRESET. The table applies to the MPC850, the MPC855T, the
MPC857T, the MPC860, and the MPC862.

Table 4. Power-On Reset Value of the Registers

Register Value at Power-On RESET Affected by HRESET Affected by SRESET

SIUMCR 01200000 Yes No

SYPCR FFFFFF07 Yes No

SWSR 0 Yes Yes

SIPEND 0000xxxx Yes Yes

SIMASK 0000xxxx Yes Yes

SIEL 0000xxxx Yes No

SIVEC (xx11)(11xx)xxxxxx Yes Yes

TESR XXXX0000 Yes Yes

SDCR 0 Yes No

PBR0 x No No

POR0 x No No

PBR1 x No No

POR1 x No No

PBR2 x No No

POR2 x No No

PBR3 x No No

POR3 x No No

PBR4 x No No

POR4 x No No

PBR5 x No No

POR5 x No No

PBR6 x No No

POR6 x No No

PBR7 x No No

POR7 x No No

PGCRA 0 Yes No

PGCRB 0 Yes No

PSCR x No No

PIPR ??00??00 Yes Yes

PER 0 Yes Yes

BR0 XXXXX(??00)0(000?) Yes No

OR0 00000FF4 Yes No

BR1 XXXXXX(xx00)0 Yes No

MPC860/855T Family Device Errata Reference, Rev. 1.9

6 Freescale Semiconductor

Global Errata

OR1 XXXXXXX(xxx0) Yes No

BR2 XXXXXX(xx00)0 Yes No

OR2 XXXXXXX(xxx0) Yes No

BR3 XXXXXX(xx00)0 Yes No

OR3 XXXXXXX(xxx0) Yes No

BR4 XXXXXX(xx00)0 Yes No

OR4 XXXXXXX(xxx0) Yes No

BR5 XXXXXX(xx00)0 Yes No

OR5 XXXXXXX(xxx0) Yes No

BR6 XXXXXX(xx00)0 Yes No

OR6 XXXXXXX(xxx0) Yes No

BR7 XXXXXX(xx00)0 Yes No

OR7 XXXXXXX(xxx0) Yes No

MAR x No No

MCR (xx00)0(x000)0(xxx0)X(00xx)X Yes No

MAMR xx001000 Yes No

MBMR xx001000 Yes No

MSTAT 0 Yes No

MPTPR 0200 Yes No

MDR x No No

TBSCR 0 Yes No

TBREFA x No No

TBREFB x No No

RTCSC 00(000x)(000x) Yes Yes

RTC x No Yes

RTSEC x No Yes

RTCAL x No No

PISCR 0 Yes No

PITC x No No

PITR x N/A N/A

SCCR 0(000?)(?000)(0??0)0000 Yes No

 PLPRCR ???0(0100)000 Yes Yes

RSR 0 Yes Yes

TBSCRK x Yes Yes

TBREFAK x Yes Yes

TBREFBK x Yes Yes

TBK x Yes Yes

RTCSCK x Yes Yes

RTCK x Yes Yes

RTSECK x Yes Yes

RTCALK x Yes Yes

PISCRK x Yes Yes

PITCK x Yes Yes

SCCRK x Yes Yes

PLPRCRK x Yes Yes

RSRK x Yes Yes

Table 4. Power-On Reset Value of the Registers (continued)

Register Value at Power-On RESET Affected by HRESET Affected by SRESET

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 7

Global Errata

I2MOD 0 Yes Yes

I2ADD x No No

I2BRG FFFF Yes No

I2COM 0 Yes Yes

I2CER 0 Yes Yes

I2CMR 0 Yes Yes

SDAR x No No

SDSR 0 Yes Yes

SDMR 0 Yes Yes

IDSR1 0 Yes Yes

IDMR1 0 Yes Yes

IDSR2 0 Yes Yes

IDMR2 0 Yes Yes

CIVR 0 Yes Yes

CICR 0 Yes No

CIPR 0 Yes Yes

CIMR 0 Yes Yes

CISR 0 Yes Yes

PADIR 0 Yes No

PAPAR 0 Yes No

PAODR 0 Yes No

PADAT x No No

PCDIR 0 Yes No

PCPAR 0 Yes No

PCSO 0 Yes No

PCDAT x No No

PCINT 0 Yes No

PDDIR 0 Yes No

PDPAR 0 Yes No

PDDAT x No No

TGCR 0 Yes Yes

TMR1 0 Yes Yes

TMR2 0 Yes Yes

TRR1 FFFF Yes Yes

TRR2 FFFF Yes Yes

TCR1 0 Yes Yes

TCR2 0 Yes Yes

TCN1 0 Yes Yes

TCN2 0 Yes Yes

TMR3 0 Yes Yes

TMR4 0 Yes Yes

TRR3 FFFF Yes Yes

TRR4 FFFF Yes Yes

TCR3 0 Yes Yes

TCR4 0 Yes Yes

TCN3 0 Yes Yes

Table 4. Power-On Reset Value of the Registers (continued)

Register Value at Power-On RESET Affected by HRESET Affected by SRESET

MPC860/855T Family Device Errata Reference, Rev. 1.9

8 Freescale Semiconductor

Global Errata

TCN4 0 Yes Yes

TER1 0 Yes Yes

TER2 0 Yes Yes

TER3 0 Yes Yes

TER4 0 Yes Yes

CPCR 0 Yes Yes

RCCR 0 Yes No

RCTR1 NA Yes Yes

RCTR2 NA Yes Yes

RCTR3 NA Yes Yes

RCTR4 NA Yes Yes

RTER 0 Yes Yes

RTMR 0 Yes Yes

BRGC1 0 Yes No

BRGC2 0 Yes No

BRGC3 0 Yes No

BRGC4 0 Yes No

GSMR_L1 0 Yes Yes

GSMR_H1 0 Yes Yes

PSMR1 0 Yes Yes

TODR1 0 Yes Yes

DSR1 7E7E Yes Yes

SCCE1 0 Yes Yes

SCCM1 0 Yes Yes

SCCS1 0 Yes Yes

GSMR_L2 0 Yes Yes

GSMR_H2 0 Yes Yes

PSMR2 0 Yes Yes

TODR2 0 Yes Yes

DSR2 7E7E Yes Yes

SCCE2 0 Yes Yes

SCCM2 0 Yes Yes

SCCS2 0 Yes Yes

GSMR_L3 0 Yes Yes

GSMR_H3 0 Yes Yes

PSMR3 0 Yes Yes

TODR3 0 Yes Yes

DSR3 7E7E Yes Yes

SCCE3 0 Yes Yes

SCCM3 0 Yes Yes

SCCS3 0 Yes Yes

GSMR_L4 0 Yes Yes

GSMR_H4 0 Yes Yes

PSMR4 0 Yes Yes

TODR4 0 Yes Yes

DSR4 7E7E Yes Yes

Table 4. Power-On Reset Value of the Registers (continued)

Register Value at Power-On RESET Affected by HRESET Affected by SRESET

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 9

Global Errata

Legend:
 x or X = “don’t care” in either bits, nibbles, or the entire register.
 0 = a single zero indicates the entire register is reset to zeros.
 () = isolates bits of a nibble of the register.
 ? = a don’t care for POR, but if this register is affected by HRESET or SRESET, indicates that the value will remain the

same as what it was before the reset occurred.
 NA = Not Applicable, indicates that this register has no POR value.

SCCE4 0 Yes Yes

SCCM4 0 Yes Yes

SCCS4 0 Yes Yes

SMCMR1 0 Yes Yes

SMCE1 0 Yes Yes

SMCM1 0 Yes Yes

SMCMR2 0 Yes Yes

SMCE2 0 Yes Yes

SMCM2 0 Yes Yes

SPMODE 0 Yes Yes

SPIE 0 Yes Yes

SPIM 0 Yes Yes

SPCOM 0 Yes Yes

PIPC 0 Yes No

PTPR 0 Yes No

PBDIR xxx(xx00)0000 Yes No

PBPAR xxx(xx00)0000 Yes No

PBODR 0 Yes No

PBDAT x Yes Yes

SIMODE 0 Yes Yes

SIGMR 0 Yes No

SISTR 0 Yes No

SICMR 0 Yes Yes

SICR 0 Yes No

SIRP 0 Yes Yes

Table 4. Power-On Reset Value of the Registers (continued)

Register Value at Power-On RESET Affected by HRESET Affected by SRESET

MPC860/855T Family Device Errata Reference, Rev. 1.9

10 Freescale Semiconductor

SIU Errata

SIU Errata

SIU1 CLKOUT signal drive
Description:

The MPC860’s capability to change the strength of the output buffer drive of CLKOUT is not
functional. The strength of the output buffer can be modified between the following two states:
• Full strength—COM = 00 or COM = 01 in the SCCR register

• Disabled—COM = 11

Workaround:

Do not use fractional drive capability.

SIU2 Data show cycle hang condition
Description:

If the DSHW bit in the SIUMCR register is set in order to allow data show cycles to take place on
the external bus, and the CPM initiates a DMA transfer to/from an internal address (for example
the dual port RAM), the chip will hang.

Workaround:

If DMA accesses are initiated to internal locations, reset the DSHW bit.

SIU3 Incorrect timing of PCMCIA slot B ALE signal
Description:

This erratum only affects designs that use latches for the address in their PCMCIA slot B
interfaces.

The intended operation of the PCMCIA ALE signal is that ALE should assert with the address on
the rising clock edge (plus the delay specified in Spec P52) and negate on the rising clock edge
(plus the delay specified in Spec P53). However, for PCMCIA slot B, the ALE signal asserts and
negates on the falling clock edge immediately prior to the intended edge.

This behavior shortens the address setup time for sampling in the external address latches used for
PCMCIA slot B.

Workarounds:

Either of the following will serve as a workaround to this erratum:

• Verify address latch timing with this new timing information. If it is satisfied, there is no
problem.

• Do not use external address latches for the PCMCIA slot B interface.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 11

SIU Errata

SIU4 Spurious external bus transaction following PLPRCR write
Description:

This erratum only affects designs that execute code from synchronous memories or bus slaves.

Spurious external bus transactions can occur after executing a store to the PLPRCR register,
which changes the PLL multiplication factor (MF bits). This store causes the PLL to freeze the
clocks while another external bus access is already visible on the pins of the chip. This appears
externally as a transaction that begins, has its clocks frozen, and is abruptly aborted without
following the bus protocol.

This behavior only affects systems with bus slaves that implement synchronous state machines
that are sensitive to bus protocol violations. Synchronous DRAMs are not affected, and
synchronous bus slaves that ignore bus signals when not selected (for example, Tundra QSPAN)
are not affected.

This erratum will only cause problems in one of the following situations:

• The device is executing code from a slave that implements a state machine dependent on the
60x bus protocol, where that state machine might “get lost.”

• There is an external device that snoops the 60x bus and implements a state machine; this state
machine might “get lost.”

The impact of this erratum has been deemed minimal, and it will therefore not be corrected.

Workaround:

The behavior exhibited in this erratum is a secondary symptom of the behavior of SIU9. See the
description of SIU9 for the suggested workaround. The workaround described there will also
avoid the above-described spurious external bus transaction.

SIU5 Bus monitor failure after TEA assertion
Description:

The bus monitor does not activate for the access immediately following an access that terminated
with a TEA assertion (either internally or externally generated). Therefore, if the following access
is to an unmapped address, the access will not be terminated by the MPC860. If this is allowed to
occur, the cycle can potentially be endless, causing the system to hang.

The impact of this erratum has been deemed minimal, and it will therefore not be corrected.

Workaround:

Any of the following will serve as a workaround to this erratum:

• Avoid this situation (which should not occur in a normal system).

• Terminate the cycle externally (for example, implement an external bus monitor).

• Rely on the software watchdog timer to reset the system if this error occurs.

MPC860/855T Family Device Errata Reference, Rev. 1.9

12 Freescale Semiconductor

SIU Errata

SIU6 Incorrect reporting of loss-of-lock reset status
Description:

The RSR[LLRS] bit is set by both unintentional and software-initiated loss-of-lock; it should be
set only by an unintentional loss-of-lock. Software-initiated loss-of-lock (that is, changing the
SPLL multiplication factor or entering low-power modes) should not set this bit.

The impact of this erratum has been deemed minimal, and it will therefore not be corrected.

Workaround:

The PLPRCR[SPLSS] functions as intended. Reference this bit instead.

SIU7 Missed DRAM refresh cycles with external masters
Description:

If the MPC860 is using internal arbitration (SIUMCR[EARB]=0), and the arbitration request
level (SIUMCR[EARP]) for external masters is greater than zero, then if a request by an external
master (signalled by REQ) occurs simultaneously with a request from the DRAM refresh
controller, the request from the DRAM refresh controller is cancelled. This results in a missed
refresh cycle. In a system with many bus requests by external masters, this can potentially result
in the cancellation of all DRAM refreshes.

Workaround:

Any of the following will serve as a workaround to this erratum:

• Program SIUMCR[EARP] to zero.

• Increase the refresh rate to compensate for the potential cancellation of refresh cycles. Treated
probabilistically, it should be possible to keep the refresh rate above a minimum intended rate.
This is difficult to model exactly but can be roughly estimated. For the following discussion:

— N = proportion of bus bandwidth used by internal MPC860 masters (other than refresh)

— E = proportion of bus bandwidth used by external masters

— A = proportion of bus bandwidth available for refresh

By definition, N + E + A = 1.

The proportion of time that a refresh request can occur is (E+A).

The probability that a refresh request will be cancelled is E / (E+A). If P is the probability that
the refresh request will be successfully transacted, P = 1 - [E / (E+A)].

Therefore, to compensate for the cancellation of requests, increase the refresh request rate by
1/P.

For a numerical example, assume that internal and external masters each use 30% of the bus
bandwidth. Thus, N = 0.3, E = 0.3, and A = 0.4. In this example, set the refresh rate to 1.75
times the intended rate.

Note, however, that this workaround becomes impractical as A approaches zero.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 13

SIU Errata

• Implement a software-controlled refresh initiated by a periodic timer request. The user should
program the PIT timer (or a CPM timer) to provide a periodic interrupt. The interrupt service
routine should incorporate a software routine to refresh a memory block. This software refresh
routine can consist of either reads from the appropriate DRAM page or, more simply,
execution of the UPM’s refresh routine through a RUN command to the MCR. The second
method is recommended, as it is simpler and uses the DRAM’s internal counter to keep track
of the row to be refreshed. The user should choose the size of memory block to be refreshed
per interrupt in order to minimize the impact of the interrupt overhead.

At one extreme, assume a system with two 4Mx32 DRAM banks controlled by CS2 and CS3.
Each bank has 2048 pages (rows), and each page must be refreshed every 15.6 ms. If the UPM
refresh pattern called by the software-refresh routine is set up to loop 16 times (and therefore can
refresh 16 rows per call), the timer interrupt should occur every (16/2048)*15.6 ms, or
approximately 120 µs. If one iteration of the UPM refresh pattern is 5 clocks, the total time
required to execute the software-refresh routine (plus overhead for fetching instructions) for both
banks is 5*16*2+20 = 180 clocks. Assuming an interrupt service routine entry/exit overhead of
1200 clocks, each refresh interrupt would take approximately 1400 clocks, or 28 µs (assuming a
50-MHz system clock). An ISR consuming 28 µs out of every 120 µs period would consume
23.3% of the CPU, with 8200 interrupts per second.

At the other extreme, the entire memory (2048 refresh cycles per bank) can be refreshed every
15.6 ms. In this case, the software refresh routine would require 1200+(2048/16*180) =
24240 clocks, or 485 µs. In this case, the ISR would consume 485 µs out of every 15.6 ms, or 3%
of the CPU, and would require only 64 interrupts per second. However, system tasks would be
stalled for 485 µs while waiting for the refresh task to complete.

The best compromise lies in between. For example, at 64 pages per interrupt, the software refresh
routine consumes 1200+(64/16*18) = 1920 clocks, or 38.5 µs. The CPU bandwidth consumed
would be 38.5 µs/(120 µs*4) or about 8%, with about 2000 interrupts per second.

Example code implementing this software refresh follows below:

#===

#This code initialize the PIT timers to interrupt (number 0) every ~24000 clocks

xor 10,0,0

ori 10,10,0xaa33

oris 10,10,0x55cc

stw 10,RTSECK_OFFSET(20) # OPEN RTC KEY

stw 10,RTSEC_OFFSET(20) # RESET RTC divider

addis 10,10,0x80

stw 10,PISCR_OFFSET(20) # CLEAR PIT INT bit

lwz 7,SCCR_OFFSET(20)

MPC860/855T Family Device Errata Reference, Rev. 1.9

14 Freescale Semiconductor

SIU Errata

andi. 8,7,0xffff

andis. 9,7,0xff7f

or 7,8,9

oris 7,7,0x0100

stw 7,SCCR_OFFSET(20) # RTC_CLK = SYSCLK/512

xor 9,0,0

addis 9,9,0x2f

stw 9,PITC_OFFSET(20) # Int every 24000 system clocks

xor 10,0,0

addis 10,10,0x85

stw 10,PISCR_OFFSET(20) # PIT enable

sync

#===

#The interrupt routine should include the following code:

#===

INT0 :

lhz 9,PISCR_OFFSET(20) #

sth 9,PISCR_OFFSET(20) # CLEAR PIT INT bit

andi. 9,9,0x80

bc 0x4,2,INT0_L

xor 8,8,8

ori 8,8,0x0030

oris 8,8,0x8080 # Refresh CS_0 by MCR command

stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)

stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)

stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)

stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)

ori 8,8,0x2000 # Refresh CS_1 by MCR command

stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)

stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)

stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 15

SIU Errata

stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)

INT0_L:

#===

SIU8 Lock/unlock function of RSR also locks/unlocks SCCR
Description:

When the RSR is locked or unlocked through the RSRK register, the same function is also
performed on the SCCR.

Workaround:

This erratum should not affect user software as long as one is aware of it. In order to avoid
possible software errors due to this (if, for example, the associated code statements were
reordered by the user in a code revision), as a code convention one should always perform the
unlock-modify-lock operations in immediate succession on individual registers. That is: unlock
the register, modify it, then lock it.

SIU9 CPU receives machine check after writing to the PLPRCR
Description:

The CPU may receive a machine check after writing to the PLPRCR. This error is caused by an
extra clock generated by the clock block after the SIU releases the bus.

The error occurs when the CPU begins a transaction after the SIU releases the internal bus. Due to
the PLPRCR write, the CPU’s clocks are stopped. However, the extra clock allows the CPU’s
transaction to begin before the clocks stop. Therefore, the CPU’s clocks are stopped in
mid-transaction, and its transaction never receives acknowledgement. When the CPU resumes
operation, it receives a machine check.

The failure mechanism is due to an internal logic synchronization issue aggravated by memory
refreshes performed by the UPM. The problem is most often exhibited when entering and exiting
low-power modes frequently, such as when using doze mode to conserve power. The probability
of encountering this problem is small but finite (approximately one in a million).

Workaround:

Prevent the CPU from getting the bus during the extra clock following the PLPRCR write. To do
so, enable the instruction cache and create a software delay. To calculate how long of a delay is
necessary, take the longest bus transaction in CPU clocks (including memory refresh or PCMCIA
access). The resultant number of clocks must be executed using instructions such as NOP (1
clock), ISYNC (2 clocks), or DIVW (13 clocks). The instructions for the delay must either fit in
one cache line, or some other mechanism must be used to make certain that the instructions for the
delay are in the cache. The instructions of the delay must be executed after the PLPRCR write,
which can be enforced by the ISYNC instruction. The length of the software delay must also be
greater than or equal to the length of the longest bus transaction (in CPU clocks).

MPC860/855T Family Device Errata Reference, Rev. 1.9

16 Freescale Semiconductor

SIU Errata

For example, if the longest transaction is eight bus clocks and the CPU is in 1:2 mode, the delay
required is 16 clocks. This can be accomplished with two DIVW instructions. The instruction
cache must be enabled to make certain that the code sequence is loaded into the cache as a unit,
and the PLPRCR write should be aligned to a 16-byte boundary to make sure it is the first
instruction in the cache line containing the sequence. The following workaround code is
suggested:

.align 16

.global SetPLPRCR

SetPLPRCR:

stw 4, PLPRCR_OFFSET(3) # burst aligned address

isync # isync

addi 3, 0, 1 # safeguard against divide-by-zero

divw 4, 4, 3

divw 4, 4, 3

blr

SIU10 RTC/PIT does not count properly when the pre-divider is four
Description:

The periodic interrupt timer (PIT) consists of a 16-bit counter clocked by the PITRCLK clock
supplied by the RTCLK clock (real time clock). The 16-bit counter counts down to zero when
loaded with a value from the PITC. After the timer reaches zero, the PS bit is set and, if the PIE
bit is a logic one, an interrupt is generated. The user can program the RTC and PIT clock to be
divided by 4 or 512 (depending on SCCR[RTDIV]). When the RTC clock is divided by four, an
interrupt will not occur due to a bug in the rtclk_sync_raw logic. The rtclk_sync_raw is the real
time clock for the RTC timers, and its frequency is the same as rtclk_raw. If the PLL output clock
is enabled and not in reset state, and the timer has not expired, the rtclk_sync_raw clock has a
25% duty cycle synchronous with a system T4 tick; otherwise this clock is the same as rtclk_raw.

From the ckpspcl schematics, rtclk_raw also selects rtclk_sync_raw. There is no issue with the
above statement when the pre-divider is set to 256 clocks because the select line is slower then the
selected clock source. However, when the pre-divider is set to four, there is supposed to be a
rtclk_sync_raw edge every two clocks. The rising edge of this clock will disappear due to a race
between rtclk_sync_raw (as the select line) and the ckp_rtclk_sysd (as the data for the mux).

At room temperature, this generates a spike signal, and at hot temperature, this degrades and
disappears. When this happens, the RTC does not count properly, and no interrupt occurs.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 17

CPM Errata

CPM Errata

CPM1 Microcode bug in Async HDLC & IrDA protocol
Description:

If the first character received of a new buffer descriptor (BD) is either an unmapped (discardable)
control character or the control escape character ($7D), erroneous operation will result.

Workaround:

Download and use the microcode patch available from Freescale.

CPM2 I2C receive problem in arbitration-lost state
Description:

If the MPC860 I2C master transmitter loses arbitration to another I2C master that is transmitting
to the MPC860, the 860 receiver does not accept the message (address byte not acknowledged).

Workarounds:

Either of the following will serve as a workaround to this erratum:

• Avoid multiple master configuration.

• The other master should retry the operation through software.

CPM3 I2C error in FLT bit
Description:

An error occurs if the FLT bit is set to turn on the digital filter for the I2C. The digital filter is
activated by setting the FLT bit in the I2C mode register and is turned off at reset.

(However, note that this digital filter is not required for normal operation. The MPC8xx I2C is
fully compliant to the I2C specification even without this digital filter.)

Workaround:

Do not turn on the digital filter for the I2C clock filter.

CPM4 Shared flags in Async HDLC
Description:

If two Async HDLC frames are separated by a single shared flag, the second frame is discarded.

Workaround:
Download and use the microcode patch available from Freescale.

CPM5 I2C master fails to receive after executing write
Description:

If the I2C channel performs a transaction (read or write command) in master mode, it fails to
receive a transmission from another master and responds with NACK.

MPC860/855T Family Device Errata Reference, Rev. 1.9

18 Freescale Semiconductor

CPM Errata

Furthermore, if the I2C master then attempts to perform another transaction (read or write
command) after the failed reception, the transaction fails with an underrun error.

Workaround:

After the master I2C channel completes its transmission, disable and re-enable the channel in the
I2MOD register (thereby resetting it).

CPM6 I2C receives single-byte buffers after failed transaction
Description:

The following is true if the I2C channel is in master mode:

• If the I2C master attempts a transaction (read or write command) that receives a NACK and
then attempts to execute a read to another slave, it receives the first byte of the slave’s
message in one buffer, closes the BD, and continues to receive the rest of the message in the
subsequent BDs. This reception of the first byte in a single-byte buffer will happen regardless
of the MRBLR.

The following is true if the I2C channel is in slave mode:

• If the I2C slave responds to a read command (that is, performs a transmission) and then
responds to a write command (that is, performs a reception), it receives the first byte of the
master’s message in one buffer, closes the BD, and continues to receive the rest of the
message in the subsequent BDs. This reception of the first byte in a single-byte buffer will
happen regardless of the MRBLR.

Workaround:

After the I2C channel performs a transmission (master read or write, or slave response to read),
disable and re-enable the channel in the I2MOD register (thereby resetting it).

CPM7 I2C receiver locks, holding SDA low
Description:

The I2C receiver may lock up, holding the SDA line low, in a system that has slow rise/fall time
on the I2C clock (SCL) if the environment is noisy.

Workaround:

Set the I2C predivider to 32 (by setting I2MOD[PDIV]=00), and restrict the rise/fall time of SCL
to 0.5 µs. In addition to this, for revision C.0 and later of the MPC860, enable the digital filter
through the I2MOD[FLT]. (For previous revisions of the MPC860, the digital filter is not
functional.)

CPM8 I2C master collision after ‘double start’
Description:

The following situation causes the I2C controller to collide with the transmission of another
master:

1. Another I2C master performs a ‘master write’ to the I2C controller of the MPC860.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 19

CPM Errata

2. The I2C controller waits for the I2C bus to become idle in order to become the master and
perform a transaction.

3. The other I2C master asserts a new ‘START’ condition without asserting a ‘STOP’ condition.

In this situation, the I2C master of the MPC860 will incorrectly interpret the new ‘START’
condition as generated by itself and therefore drive the I2C bus concurrently with the other
master.

Workaround:

Avoid performing back-to-back START conditions on the I2C bus.

CPM9 I2C short aborted transmission after NACK
Description:

The following situation causes the I2C controller of the MPC860 to send a short aborted
transmission:

1. The I2C controller performs a transaction, transmitting a buffer that has no STOP condition at the
end. The next buffer (not yet transmitted) issues a START condition, producing back-to-back
transactions without an intervening STOP (also known as ‘double start’).

2. The I2C controller receives a NACK on the last or next-to-last byte of the buffer.

In this situation, the I2C controller will assert a STOP condition (as expected by the I2C
protocol). However, when software subsequently issues a new start command (I2COM = 0x81),
the I2C master will begin its next transaction erratically. It will issue a START condition, drive
one bit of the message, drive a new START condition, and restart the transmission (including the
first bit).

Workaround:

Do not set up the I2C controller to perform ‘double start’.

CPM10 I2C split receive buffer between loopback and read
Description:

If the I2C master of the MPC860 performs a loopback transaction (that is, a master write to its
own I2C address or a master write to the general call address with general call reception enabled)
and then performs a master read transaction, the receive buffer used for the loopback transaction
is closed after the first byte of the read transaction is received, instead of after the loopback
transaction. Thus, the received data from the read transaction is split between the loopback buffer
and the intended receive buffer.

Workaround:

Avoid performing loopback transactions during normal operation.

MPC860/855T Family Device Errata Reference, Rev. 1.9

20 Freescale Semiconductor

CPM Errata

CPM11 I2C spurious BSY errors after reception in I2C master mode
Description:

This erratum occurs when the I2C controller of the MPC860 is configured as an I2C master and is
the target of another master’s write. After the MPC860 receives data from the master (and thus
closes the receive buffer appropriately), the controller will attempt to open the next receive buffer
(even though there is no receive data). If there is no buffer available, it will generate a BSY error.

Workaround:

Ignore BSY errors in this case.

CPM12 RCCR must be written as a word
Description:

RCCR[ERAM4K] (located at address IMMR+0x9C7) is cleared if the RCCR is written as a byte
or halfword (to addresses IMMR+0x9C4, IMMR+0x9C5).

Workaround:

To change the RCCR bytes at address IMMR+(0x9C4, 0x9C5), write the whole word (addresses
IMMR+0x9C4 to IMMR+0x9C7).

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 21

General Errata

General Errata

G1 Termination of open drain and active pull-up pins
Description:

Open drain pins and active pull-up pins drains "high" current when the input voltage to them is
higher than VDDH. The excess current at the pin in question is approximately 150 microamps.

Active pull-up pins include: BB, TS, TA, and BI

Open drain pins include: TEA, HRESET, SRESET, and any general-purpose I/O programmed as
open drain

Workaround:

Connect the external pull-up resistor on these pins to the VDDH power supply.

G2 Higher than expected Keep-Alive Power (KAPWR) current when
main power (VDDH & VDDL) is removed

Description:

Four nodes within the MPC860 float when VDDH and VDDL power is not supplied to the device.
When this condition, which is typical in power down mode, occurs, the current drain on the
keep-alive power rail is greater than expected. (10 - 20 mA versus 10 µA)

Workaround:

Provide adequate current source for the KAPWR pin in power down mode.

G3 EXTCLK and CLKOUT clocks may not be in phase in half-speed
bus mode

Description:

When the MPC860 uses EXTCLK as an input clock source, MF=001 in PLPRCR (that is, the
frequency of EXTCLK is half that of the internal clock), and half-speed bus mode is used
(EBDF=01 in SCCR), the output clock from CLKOUT can be 90 or 180 degrees out of phase from
the input clock. This will affect synchronous designs where the same clock source is used as an
input to EXTCLK or to an external synchronous device (for example, a peripheral or ASIC).

Workarounds:

Case 1. Multiple external devices need to operate synchronously with the MPC860.

• Use the CLKOUT pin of the MPC860 as the clock source for all external, synchronous devices
(that is, CLKOUT is the effective system master clock to be used for distribution).

Case 2. It is necessary to synchronize an external master clock (for example, from a backplane), an
MPC860, and external peripherals, to allow data transfer in all three directions.

• There is no known workaround for this case. Use full-speed bus operation.

MPC860/855T Family Device Errata Reference, Rev. 1.9

22 Freescale Semiconductor

General Errata

G4 Potential problems caused by skew between EXTCLK and
CLKOUT

Description:

In correct operation, the PLL of the MPC860 will lock on the rising edge of the input clock.
However, on these revisions of the MPC860, the PLL locks on the falling edge of the input clock.
This affects the skew between EXTCLK and CLKOUT at the rising edge. The skew is dependent
on the duty cycle of the input clock (but for a 50% duty cycle will not exceed 2nS). This affects
synchronous designs where the same clock source is used as an input to EXTCLK, as well as to an
external synchronous device (for example, a peripheral or ASIC).

Workarounds:

Case 1. Multiple external devices need to operate synchronously with the MPC860.

Use the CLKOUT pin of the MPC860 as the source of clock for all external, synchronous
devices (that is, CLKOUT is the effective system master clock to be used for distribution).

Case 2. It is necessary to synchronize an external master clock (for example, from a backplane), an
MPC860, and external peripherals, to allow data transfer in all three directions.

This workaround is a concept only. It has not been verified in hardware.

Insert a PLL between the external master clock and the EXTCLK pin of the MPC860. Connect
the phase comparison pin of the PLL to the CLKOUT pin of the MPC 860. Also use the
CLKOUT signal as the reference clock for distribution to the local external peripherals.

NOTE
The PLL must be capable of operating with a permanent offset of -2nS,
therefore the range of lock should extend to about -4nS.

A diagram of this concept is given in Figure 1.

Figure 1. Workaround for Case 2

PLL 860

CLKOUT
+

–

EXTCLK

Clock
master
at
board
level

Ext. Clock Source

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 23

General Errata

G5 ESD breakdown voltage for XFC pin less than Freescale-imposed
requirements

Description:

The XFC pin (T2) of this version of the MPC860 silicon fails Freescale’s XC qualification of
1 Kvolt for the electrostatic discharge (ESD) breakdown voltage test. The maximum ESD voltage
that can be applied to this pin on this silicon without damage is 750 volts.

Workaround:

Ensure that devices are not exposed to greater than 750 volts of electrostatic discharge.

G6 Possible spikes on IRQ0, IRQ1, and IRQ7
Description:

For MPC860 Rev B.1 silicon with date codes beginning with ‘Q’:

If IRQ0, IRQ1, or IRQ7 is pulled up to 3.3 V, the data bus has a light capacitive load, the IRQ pin(s)
in question are pulled up weakly and not driven high with an active driver, the IRQ pin(s) in
question have a light capacitive load, and the associated interrupt is enabled in SIMASK (except
for IRQ0, which is always enabled), ground bounce caused by the data bus switching can
potentially couple to the IRQ0, IRQ1, or IRQ7 pin, resulting in a narrow spike being driven to the
interrupt logic and possible subsequent erratic operation.

Workaround:

The following steps make up the workaround for this erratum.

1. Pull up the IRQ0, IRQ1, and IRQ7 pins to 5 V.

2. Disable these IRQs by either masking the associated interrupt in SIMASK or connecting the IRQ
signal directly to VCC. Note that disabling the interrupts in SIMASK will only work for IRQ1
and IRQ7 as IRQ0 is non-maskable.

3. Actively drive these IRQ signals.

MPC860/855T Family Device Errata Reference, Rev. 1.9

24 Freescale Semiconductor

General Errata

G7 Active pull-up drivers switch to high-impedance too early
Description:

The active pull-up drivers (which include TS, TA, BI, and BB) switch to high-impedance at a
threshold voltage that is lower than the specified minimum output voltage level VOH. Thereafter,
the pull-up resistor must pull the signal beyond the specified output voltage level. Depending on
the pull-up resistor value and the capacitive load of the signal, this can result in a longer negation
time than specified.

Workaround:

Use a 1K pull-up resistor for these drivers.

Notes:

The long rise times do not cause a problem to the processor. Nor will the longer rise times for
these signals present a problem for other devices in most systems.

1. TS is normally sampled at the beginning of a bus cycle and is thereafter a ‘don’t-care’ until the
cycle is terminated with TA. Thus, a TS that extends into the subsequent clock cycles will be
ignored.

2. BI must only be in its negated state when sampled concurrently with TA when a cycle is to a
burstable target. In these systems, typically the only burstable target is the UPM, which will drive
the BI actively throughout cycles in which it is in control of the target. Therefore, this behavior
will not affect operation of the memory controller. Furthermore, for burstable targets that are not
in control of the memory controller, (A) the pull-up resistor should have plenty of time to
complete the signal negation before the TA of the cycle, and (B) the worst that can result from a
falsely asserted BI is that the master would break the burst into four accesses, resulting in a
performance degradation but not a system failure.

3. For a non-burst cycle, TA is normally sampled only once after TS is driven. TA is then a
‘don’t-care’ until after the next TS is driven. Therefore, there should be sufficient time for the
pull-up resistor to complete the signal negation of TA before termination conditions for the next
cycle are sampled. For burst cycles, typically the only burstable target in the system is the UPM,
which drives the TA signal actively until the completion of the entire burst cycle, thus avoiding
the problem during the burst. And for other burstable targets, it is the responsibility of the target to
meet the appropriate assertion/negation timing for TA.

4. If this condition results in a long negation time for BB, the only effect is increased latency
between bus cycles as the bus is handed off between bus masters. That is, the bus would falsely
appear busy for a short period after the on-chip master actually released the bus.

5. TS, TA, BI, and BB will typically be lightly loaded.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 25

General Errata

G8 TS driver switches to high-impedance too early
Description:

The active pull-up driver on TS switches to high-impedance at a threshold voltage that is lower
than the specified minimum output voltage level VOH. Thereafter, the pull-up resistor must pull
the signal beyond the specified output voltage level. Depending on the pull-up resistor value and
the capacitive load of the signal, this can result in a longer negation time than specified.

Workaround:

Use a 1K pull-up resistor for this driver.

Notes:

The long rise times do not cause a problem to the processor. Nor will the longer rise times for these
signals present a problem for other devices in most systems.

1. TS is normally sampled at the beginning of a bus cycle and is thereafter a ‘don’t-care’ until the
cycle is terminated with TA. Thus, a TS that extends into the subsequent clock cycles will be
ignored.

2. TS will typically be lightly loaded.

G9 Conflict between data show cycles and SDMA burst writes
Description:

If data show cycles are enabled through SIUMCR[DSHW], and an internal register or dual-port
RAM access is made immediately after a SDMA burst write, the SDMA burst write may be
corrupted. The observed phenomenon is that a burst write with four operands will hold the second
operand into the third and fourth burst beats. For example, a burst write of A-B-C-D will be
observed on the bus as A-B-B-B.

This behavior can also occur when the SDMA burst is to burst-inhibited memory. Setting the
memory to burst-inhibited will not solve the problem.

Workaround:

Do not use data show cycles in a system that performs SDMA bursts. This includes systems that
use ATM, fast Ethernet, and memory-to-memory IDMA.

G10 Restriction of open collector pull up
Description:

The open collector signal may not be able to be pulled to greater than 3.5 V.

Workaround:

Use an external buffer if an open collector signal needs to be pulled to greater than 3.5 V.

MPC860/855T Family Device Errata Reference, Rev. 1.9

26 Freescale Semiconductor

CPU Errata

CPU Errata

CPU1 Wrong data breakpoint detection on store instructions
Description:

The data breakpoint mechanism comparison of operand data and operand size is faulty. If used, it
can cause breakpoints where they should not occur, and conversely it can miss breakpoints where
they should occur.

NOTE
The instruction and address portions of the data breakpoint mechanism
operate correctly. It is therefore still possible to use the data breakpoints to
break on a store to a particular address and/or on a store instruction in a
particular address range. Only the operand comparison portion of the data
breakpoints does not function properly at all. However, see CPU11 for
further minor limitations.

Workaround:

Do not use the operand comparison function of the data breakpoints for store instructions.

CPU2 Program trace mechanism error
Description:

In the following case there is an error in the program trace mechanism:

Program

0x00004ff0: divw. r25,r27,r26

0x00004ff4: divw. r28,r27,r26

0x00004ff8: unimplemented

0x00004ffc: b 0x00005010

where 0x00005010 belongs to a page with a page fault.

The divide takes a long time to complete, so the instruction queue gets filled with the
unimplemented instruction, the branch, and the branch target (page fault).

When the sequencer takes the unimplemented instruction, it releases the fetch that was blocked by
the MMU error. This causes the queue to get another instruction in addition to the first page fault.
Since the second fault is sequential to the branch target, it is not reported by the queue flush (VF).
This causes an incorrect value to be present in the VF flush information when the unimplemented
exception occurs.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 27

CPU Errata

CPU3 Incorrect value used for POW bit of MSR register
Description:

The value of the POW bit in the MSR register was taken with opposite polarity by the clock control
logic. Correct operation of the logic will assure that: if PRQEN in the SCCR register is '1', the
system clock will switch/remain in high frequency as long as the POW bit in the MSR register is
reset ('0'). The POW bit should be previously set (‘1') to allow to the system to switch to "low"
frequency. Under this definition if the source of an interrupt request is reset right after jumping to
the software routine that handles it, the clock will continue to run in high frequency because the
POW bit is reset whenever an interrupt service routine is run by the processor. Because of this
problem, the clock will switch to low frequency if the interrupt source is reset.

Workaround:

Reset the source of the interrupt request before the RFI instruction is executed; or manipulate the
CSRC bit in the PLPRCR register such that it is reset when entering the interrupt software routine
and set before the RFI instruction is executed.

CPU4 Instruction cache replacement policy bug
Description:

The I-cache replacement policy is not optimized. This does not affect the correctness of program
execution but will affect performance by an average of 10-20%. Once a new silicon is available,
performance should improve without any software changes required.

CPU5 Instruction MMU bug at page boundaries in show-all mode
Description:

The wrong instruction address is driven by the core when all of the following conditions occur:

• MPC860 works in 'show all' mode (that is, ISCT_SER bits = 000 in ICTRL

• Sequential instruction crosses IMMU page boundary

• Instruction cache fails to get ownership of the internal U-bus on the first clock

In this case the address driven by the core will be that of the previous page and not the current one.

The impact of this erratum has been deemed minimal, and it will therefore not be corrected.

Workaround:

Either of the following can serve as a workaround to this erratum:

• Disable show all mode.

• Invalidate the page next to current (by using the tlbie instruction) when performing the TLB reload
operation.

MPC860/855T Family Device Errata Reference, Rev. 1.9

28 Freescale Semiconductor

CPU Errata

CPU6 Possible data cache corruption when writing SPRs
A write access to a special-purpose register located in the caches, MMUs, or SIU might corrupt the
contents of the data-cache.

This may happen regardless of whether the cache is currently enabled or disabled (by either writing
a disable command to the DC_CST or by setting all regions to cache-inhibited through
MD_CTR[CIDEF]). Thus, it is not possible to work around this problem simply by temporarily
disabling the data cache.

NOTE
This is a probabilistic effect caused by an internal race condition and
therefore does not occur in all cases. However, since it is due to a race
condition, it is affected by all parameters that affect the speed of the silicon
(for example, silicon revision, temperature, and voltage). Therefore, if a
system exhibits behavior that varies due to these factors, it is advisable to
check for occurrence of this erratum.

Table 5 shows the affected special-purpose registers.

Table 5. Affected Special-Purpose Registers

SPR spr_address

IMMR 0x3d30

IC_CST 0x2110

IC_ADR 0x2310

IC_DAT 0x2510

DC_CST 0x3110

DC_ADR 0x3310

DC_DAT 0x3510

MI_CTR 0x2180

MI_AP 0x2580

MI_EPN 0x2780

MI_TWC 0x2b80

MI_RPN 0x2d80

MI_DBCAM 0x2190

MI_DBRAM0 0x2390

MI_DBRAM1 0x2590

MD_CTR 0x3180

M_CASID 0x3380

MD_AP 0x3580

MD_EPN 0x3780

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 29

CPU Errata

Either of the following will serve as a workaround to this erratum:

• If the contents of the TLBs are not changed dynamically (fixed-page structure), any access to the
above-mentioned registers should be avoided (except for initialization).

• If the contents of the TLBs are changed dynamically (pages are loaded on demand), then each
"mtspr" instruction which accesses one of these registers must be preceded by a store word and a
load word instruction of a data operand equal to the spr_address of the respective register. As an
example, to write the data from the general purpose register r1 to the special purpose register
M_TW, the procedure in Table 6 should be followed.

M_TWB 0x3980

MD_TWC 0x3b80

MD_RPN 0x3d80

M_TW 0x3f80

MD_DBCAM 0x3190

MD_DBRAM0 0x3390

MD_DBRAM1 0x3590

DEC 0x2c00

TB Write 0x3880

TBU Write 0x3a80

DPDR 0x2d30

Table 6. Writing Data from r1 to M_TW

Instructions Description

lis r2, some address_msb an address in RAM

li r3, 0x3f80 the spr_address of the M_TW from the table

stw r3, some address_lsb(r2) no interrupts between these three
instructions

lwz r3, some address_lsb(r2)

mtspr M_TW, r1

Table 5. Affected Special-Purpose Registers (continued)

SPR spr_address

MPC860/855T Family Device Errata Reference, Rev. 1.9

30 Freescale Semiconductor

CPU Errata

CPU7 Branch prediction with sequential branch instructions
Description:

If there are three branches in sequence in the run-time program flow, and the third branch is in the
mispredicted path of the second branch, the third branch may be “issued” from the instruction
queue even though it is part of a predicted path. If this instruction issue in the mispredicted path
happens while the condition of the prediction is resolved (thereby causing mispredicted
instructions to be flushed from the instruction queue), the resulting instruction cancellation backs
up too far into the instruction queue. This causes the instruction sequence starting from the
instruction immediately preceding the first branch to be re-issued.
Notes:

1. Other factors of the internal state of the core also affect the occurrence of this behavior. Therefore,
not all occurrences of this instruction sequence necessarily exhibit this behavior.

2. This behavior is not necessarily harmful to the user application. For example, the instruction
preceding the first branch could be a simple move between registers.

3. Not all compilers generate this instruction sequence. The following compilers are known never to
generate code that is susceptible to this erratum:

— Diab Data (all versions)

— Metaware

Other compilers with their vendors continue to be investigated; their status is unknown at this time.
This list will be updated as the investigation progresses.

Workarounds:

The following applies for every conditional branch preceded in program order by another branch:

• If the two possible targets of the conditional branch consist of a branch instruction and a
non-branch instruction, force the prediction of the conditional branch to predict the non-branch
instruction (using the y-bit in the opcode of the conditional branch).

• If both of the possible targets of the conditional branch are branch instructions, (1) insert a
non-branch instruction before the branch on the predicted path, or (2) insert an 'isync' instruction
before the first branch.

CPU8 Missed instruction after conditional branch
Description:

If the instruction cache is enabled, a conditional branch residing near the boundary of the current
memory page is mispredicted such that the CPU fetches beyond the page boundary, and the branch
target also resides on another memory page, the instruction at the branch target address may not be
executed.

The boundary of the current memory page is as follows:

• If the MMU is enabled (MSR[IR]=1), it is as defined by the associated MMU page table entry.

• If the MMU is disabled (MSR[IR]=0), it is at a 4 KB boundary.

This erratum also depends on the internal state of the core (instruction queue cancellation and
MMU page swap), so it does not occur in all cases.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 31

CPU Errata

Workarounds:

Any of the following will serve as a workaround for this erratum:

1. Disable the instruction cache. This will cause the instruction to be fetched from external memory.
Therefore, the instruction queue will not be filled until the branch is resolved.

2. Run the CPU in serialized mode (by programming the ICTRL[ISCT_SER] bits). This mode will
keep the predicted instructions from executing until the branch is resolved.

3. Avoid conditional branches with predicted paths that cross page boundaries.

CPU9 Instruction sequencer error when modifying MSR with interrupts
enabled

Description:

If the instruction sequence below occurs, and 1–4 are true, the sequencer takes op2 as the first
instruction in the interrupt handler. The sequencer and instruction cache are also out of sync in
subsequent instructions fetched in the interrupt handler until a change of flow is executed.
(“Change of flow” can also be isync and mtmsr commands.)

mtmsr Rx# change IR (Instruction Relocate) bit or PR (Problem
State) bit in MSR

op1

op2

1. External interrupts were previously enabled (or are being enabled by this mtmsr instruction).

2. An external interrupt or decrementer interrupt occurs (or is already pending).

3. Op1 is not in the instruction cache.

4. The first instruction in the interrupt handler is fetched at the same clock that the op2 instruction is
prefetched from external memory (as seen on the internal bus).

Workarounds:

Either of the following will serve as a workaround to this erratum:

• Do not execute mtmsr that changes the IR or PR bits when an external interrupt (and decrementer
interrupt) are enabled (that is, when MSR[EE]=1). Allow at least two sequential instructions after
the mtmsr that changes IR or PR before enabling interrupts.

• One of the conditions for this problem to occur is that the exception routine executes entirely from
cache, including any load/stores. Therefore, another workaround to prevent this situation is to force
one cache miss in each exception routine. This can be done by inserting a dcbf instruction prior to
a lwz instruction in the exception routine. This workaround should cause minimal system
performance impact.

MPC860/855T Family Device Errata Reference, Rev. 1.9

32 Freescale Semiconductor

CPU Errata

CPU10 Possible excess current consumption in deep sleep mode
Description:

Certain nodes of the multiplier hardware are not initialized at reset and may thus result in
non-destructive internal contention. As a result, if the processor is put into deep sleep mode without
the multiplier first being put into a known state, current consumption in this mode may be higher
than expected.

The impact of this erratum has been deemed minimal, and it will therefore not be corrected.

Workaround:

Execute a mullw instruction at any point after reset; this will put the internal nodes in an orderly
state. Deep sleep mode may then be entered at any time thereafter.

CPU11 Wrong data breakpoint detection using address range function
Description:

Erroneous detection can occur when data breakpoint/watchpoint logic is used to trap on load/store
accesses to addresses less than or greater than a given address. This error occurs for byte-size
loads/stores where the address accessed and the compare address (in comparator E or F) differ only
in the two least-significant bits, and the two least-significant bits of the address accessed are not 00.

The impact of this erratum has been deemed minimal, and it will therefore not be corrected.

Workaround:

Select the address in the compare register (E or F) such that it will differ by more than the two
least-significant bits from the address range to be detected. For example, if the address range to
detect are addresses less than or equal to 0xA0000006, use address 0xA0000008 instead.

CPU12 Non-maskable interrupts are unrecoverable
Description:

When an interrupt occurs during a RFI instruction, the RFI partially executes before the exception
is taken. The partial execution includes copying the contents of SRR1 to the MSR. Therefore, the
MSR value seen in the exception handler are the MSR value of the previous machine state, not of
the machine state when the RFI occurred. The contents of the MSR are therefore unreliable upon
entry into this ‘second’ exception routine.

Workaround:

This erratum only affects exceptions that occur during a RFI instruction. For a normal application,
the only exceptions that can occur during a RFI instruction are non-maskable interrupts or
breakpoints. (External interrupts will be masked during the machine-state recovery portion of an
exception handler.) Therefore, only workarounds for the above two cases are required:

Either of the following will serve as a workaround for this erratum:

• Do not put an instruction breakpoint on a RFI instruction.

• Treat all non-maskable interrupts as non-recoverable since the state of the MSR[RI] bit is not
reliable.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 33

CPU Errata

CPU 13 First instruction in decrementer or external interrupt handler may
be skipped if instruction fetch show cycles are enabled in
ICTRL[IST_SER]

Background:

The 860 IMMU works in the following way: Each access from the core reaches the cache using the
page from the previous access on the assumption that the page has not changed. Usually that
assumption is correct, so there is no stall. If the page has changed, a retry is done with the correct
page. The MMU also signals the cache to disregard the previous access since the page was
incorrect, and the results are useless. When a TLB miss occurs, there is no retry, but the previous
access is normally aborted since it used the wrong page value. The MMU shuts itself off until there
is an abort signal from the core that specifies a change in flow. Normally, this change of flow is the
ITLB miss exception, in which case the instruction pipeline is cleared before taking the exception.
However, if the decrementer or external interrupt is asserted, this exception can take precedence
over the ITLB miss exception.

Description:

An ITLB miss is detected that is immediately followed by a decrementer or external interrupt
exception. The first address of the exception routine is then presented by the core. Since the
previous page was not valid (ITLB miss), the MMU provides an incorrect address (ff800500). As
a result of the internal state of the MMU and the fact that it is a program trace show cycle, this cycle
is (mistakenly) not cancelled, although it is retried. This causes the bad address to appear on the
external bus as a show cycle. Although the show cycle is incorrect, the program flow usually
continues correctly.

However, if the internal U-Bus pipeline happens to be full on the cycle discussed above, the retry
is not handled correctly (as a result of the same issue mentioned above), and the second address of
the routine (504) is used for the fetch instead of the first address (500). This causes the instructions
of the first cache line to be fetched in the wrong order.

Workarounds:

Either of the following will serve as a workaround for this erratum:

• Since the first instruction of the decrementer and external interrupt routines might not be executed
before the second instruction, it should not do anything useful, so it will not matter if it is skipped.
Therefore, a nop or isync instruction should be placed in this location. An isync instruction should
be placed in the second location of these routines to resynchronize the core with the IMMU. If the
bug occurs, the isync instruction at 504 will be executed as if it is at location 500 and cause another
fetch of itself from address 504. At this point, the program flow is resynchronized and continues
as usual.

• Disable the instruction fetch show cycle in ICTRL[IST_SER].

MPC860/855T Family Device Errata Reference, Rev. 1.9

34 Freescale Semiconductor

CPU Errata

CPU14 RCPU: do not execute "o" form integer instructions before "."
form integer multiply/divide complete

Description:

When an "o" form integer instruction starts to execute before a previously started "." form integer
multiply or divide instruction completes, condition register bit 3 (SO) may be wrongly updated by
the XER[SO] bit changed by "o" form instruction. Instruction sequence "divw. Rz,Rx,Ry, subfo
Rt,Rv,Ru" may cause this problem. This does not happen if the "o" form instruction is also in "."
form or register dependencies exist.

Workarounds:

Any of the following will serve as a workaround for this erratum:

• Keep the "o" form instruction four integer or six other instructions apart from integer divide "."
form instructions in the code or more than one instruction in the case of an integer multiply
instruction.

• Use both instructions with the "." form.

• Run RCPU in serialized mode.

• Place the "sync" instruction between multiply/divide and "o" form integer instruction.

• Do not use "." form of integer divide or multiply instructions.

CPU15 Incorrect code execution after branch on MMU page boundary
Description:

An incorrect or invalid instruction is executed if all of the following are true:

• A conditional branch or branch to LR/CTR is executed in the last word of MMU page <n>
(branches with primary opcodes 16 or 19).

• The target address of the branch points to the last cache line of MMU page <n>+1.

• The branch remains unresolved long enough for a prefetch of the first cache line of MMU page
<n>+1 to start.

• Code execution continues after the branch beyond the end of MMU page <n>+1 into the first cache
line of page <n>+2, which must already be in the cache.

• Both ICACHE and IMMU are enabled.

An incorrect or invalid instruction will be executed instead of the correct one out of the first cache
line of MMU page <n>+2.

NOTE
Absolute branches (bx with primary opcode 18) are not the cause of the
problem, as they are always resolved implicitly. Every MMU page
containing a “risky” branch as described above is called a “risky” page
below.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 35

CPU Errata

Workarounds:

A variety of workarounds are available:

• Do not put conditional branches or branches to LR/CTR into the last word of an MMU page, that
is, generate and load the code image appropriately.

• If running code out of RAM, replace the conditional branch with an absolute branch, to patch a
function containing the “true” branch code out of RAM, or replace each “risky” branch with a trap
to a patch function if an absolute branch is not possible due to code size.

• Specifically for blr, add enough nops or other statements between mtlr and blr so that blr is
definitely resolved during execution according to execution timing. This is only a partial
workaround for blr.

• In the ITLB miss exception code, when loading the TLB for an MMU page, also invalidate any
TLB referring to the next and previous page using tlbie. This intentionally forces an ITLB miss
exception on every execution across sequential MMU page boundaries.

• Turn off ICACHE completely.

Below is a simple example ITLB miss handler showing how a tlbie-based workaround can be
implemented. The actual code needed depends on how precisely the MMU is used in a system.

asm void os_inst_tlb_miss(void)

{

 mtspr M_TW,r2 /* save r2 into M_TW */

 mfspr r2,SRR0 /* SRR0 */

 mtspr MD_EPN,r2 /* save instruction miss effective address in MD_EPN */

 mfspr r2,M_TWB /* load r2 with level one pointer from M_TWB*/

 lwz r2,0(r2) /* load level one page entry */

 mtspr MI_TWC,r2 /* save level one attributes into MI_TWC */

 mtspr MD_TWC,r2 /* save level two base pointer into MD_TWC */

 mfspr r2,MD_TWC /* load r2 with level two pointer while taking */

/* into account the page size */

 lwz r2,0(r2) /* load level two page entry */

 mtspr MI_RPN,r2 /* Write TLB entry via MI_RPN */

 // The following code assumes that under all circumstances, instruction pages are

 // consecutive physical pages, i.e., the Physical Addresses (PA) of sequential pages

// are sequential.

 // A page size of 4KB is also assumed.

 // If this is not the case, modifications are needed to translate the

 // address appropriately

 rlwinm r2,r2,0,0,31-12 // Eliminate lower twelve bits (4K page!)

 // extract "true" PA

 ori r2,r2,0x1000-4 // Point to end of current page (4K page!)

 subi r2,r2,0x1000 // Move to end of previous page

 // (4K page! PA translation!)

 mtspr SPRG0,r3

 mtspr SPRG1,r4

 mfcr r4

 lwz r3,0(r2) // Read instruction word at end of page using PA

 //(This should work for LE)

 rlwinm r3,r3,6,26,31 // Isolate primary opcode in lower 6 bits

 cmpwi r3,16 // Conditional branch?

MPC860/855T Family Device Errata Reference, Rev. 1.9

36 Freescale Semiconductor

CPU Errata

 beq @tlbieprev // Invalidate previous page

 cmpwi r3,19 // Possibly conditional branch to register address?

 beq @tlbieprev // Invalidate previous page

 addi r2,r2,0x1000 // Move back to current page address

 // (4K page! PA translation!)

 lwz r3,0(r2) // Read instruction word at end of page using PA

 //(This should work for LE)

 rlwinm r3,r3,6,26,31 // Isolate primary opcode in lower 6 bits

 cmpwi r3,16 // Conditional branch?

 beq @tlbienext // Invalidate next page

 cmpwi r3,19 // Possibly conditional branch to register address?

 beq @tlbienext // Invalidate next page

 mtcr r4

 mfspr r4,SPRG1

 mfspr r3,SPRG0

 mfspr r2,M_TW /* Restore r2 previously saved in M_TW */

 rfi

@tlbienext:

 addi r2,r2,0x1000 // Move to next page address (4K page! PA translation!)

@tlbieprev:

 tlbie r2 // Make sure we refetch the ITLB on the dangerous page

 mtcr r4

 mfspr r4,SPRG1

 mfspr r3,SPRG0

 mfspr r2,M_TW /* Restore r2 previously saved in M_TW */

 rfi

} /* os_inst_tlb_miss */

A variant that is further optimized can often be generated to avoid memory reloads. However, this
specifically depends on MMU usage in the system. The following example handler improves
performance by relying on three bits of a L2 TLB part not being used by other software.

asm void os_inst_tlb_miss_l2_based(void)

{

 mtspr SPRG0,r3

 mtspr SPRG1,r4

 mfcr r4

 mtspr M_TW,r2 /* save r2 into M_TW */

 mfspr r2,SRR0 /* SRR0 */

 mtspr MD_EPN,r2 /* save instruction miss effective address in MD_EPN */

 mfspr r2,M_TWB /* load r2 with level one pointer from M_TWB*/

 lwz r2,0(r2) /* load level one page entry */

 mtspr MI_TWC,r2 /* save level one attributes into MI_TWC */

 mtspr MD_TWC,r2 /* save level two base pointer into MD_TWC */

 // We abuse the SPS/SH/CI bits as indicator of our state in terms of the erratum.

 // We know that they are normally 0 in most applications, which is why we chose them.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 37

CPU Errata

 // SPS/SH/CI==0b000: We have never before encountered this code page. We need to decide

 // SPS/SH/CI==0b100: This page does not contain a "bad" branch.

 // SPS/SH/CI==0b001: This page contains a bad branch. tlbie the next page

 // SPS/SH/CI==0b010: The previous page contains a bad branch. tlbie the previous page

 mfspr r2,MD_TWC /* load r2 with level two pointer while taking into account

 the page size */

 lwz r2,0(r2) /* load level two page entry */

 rlwinm r3,r2,0,31,27 // Clear SPS/SH/CI before updating TLB

 mtspr MI_RPN,r3 /* Write TLB entry via MI_RPN */

 // Now the magic starts. We automagically learn if pages need to be treated.

 // Fast case, i.e., nothing special comes first.

@recheckstatus:

 rlwinm. r2,r2,28,0,2 // Extract the SPS/SH/CI field left justified

 bge @checkipage // This page has not been checked before or is known

 // to be "bad"

 mtcr r4

 mfspr r4,SPRG1

 mfspr r3,SPRG0

 mfspr r2,M_TW /* Restore r2 previously saved in M_TW */

 rfi

@checkipage:

 beq @evalpagestatus // This page has not been tested before, so we need to

 // update its info

 // When we get to this point, we know that we need to tlbie a page.

 // Depending on the SPS/SH/CI bits, we tlbie the next or previous page.

 // The initial assumption is that we have to tlbie the next page.

 // This code works only for 4KB pages.

 mfspr r3,SRR0 // The address pointing into the current page

 addi r3,r3,0x1000 // Move to next page (4K page! PA translation!)

 andis. r2,r2,0x2000 // This maps to 0b001 in the left justified value

 bne @tlbienext

 subi r3,r3,0x2000 // Move back to prev page (4K page! PA translation!)

@tlbienext:

 tlbie r3 // Make sure we refetch the ITLB on the dangerous page

@pagecheckdone:

 mtcr r4

 mfspr r4,SPRG1

 mfspr r3,SPRG0

 mfspr r2,M_TW /* Restore r2 previously saved in M_TW */

 rfi

// The code below probably does not need to be locked in the cache. It won't run a lot.

@evalpagestatus:

 // The following code assumes that under all circumstances, instruction

 // pages are mapped to consequtive

 // physical pages, i.e., the Physical Addresses of sequential pages are sequential.

 // A page size of 4KB is also assumed.

MPC860/855T Family Device Errata Reference, Rev. 1.9

38 Freescale Semiconductor

CPU Errata

 // If this is not the case, modifications are needed to translate the address

 // appropriately

 rlwinm r2,r3,0,0,31-12 // Eliminate lower twelve bits (4K page!) to extract

 // "true" PA

 ori r2,r2,0x1000-4 // Point to end of current page (4K page!)

 lwz r3,0(r2) // Read instruction word at end of page using PA

 // (This should work for LE)

 rlwinm r3,r3,6,26,31 // Isolate primary opcode in lower 6 bits

 cmpwi r3,16 // Conditional branch?

 beq @riskypage // This is a risky page

 cmpwi r3,19 // Possibly conditional branch to register address?

 beq @riskypage // This is a risky page

 subi r2,r2,0x1000 // Move to the previous page (4K page! PA translation!)

 lwz r3,0(r2) // Read instruction word at end of page using PA

 // (This should work for LE)

 rlwinm r3,r3,6,26,31 // Isolate primary opcode in lower 6 bits

 cmpwi r3,16 // Conditional branch?

 beq @prevrisky // We are on the page after a risky one

 cmpwi r3,19 // Possibly conditional branch to register address?

 beq @prevrisky // We are on the page after a risky one

 // This page is not risky and not near a risky page. So we mark it as safe!

 mfspr r3,MD_TWC /* load r3 with level two pointer while taking into account

 the page size */

 lwz r2,0(r3) /* load level one page entry */

 ori r2,r2,0x0008 // Set SPS/SH/CI to 0b100 for an innocent page

 stw r2,0(r3) /* store level one page entry */

 b @pagecheckdone

@prevrisky:

 mfspr r3,MD_TWC /* load r3 with level two pointer while taking into account

 the page size */

 lwz r2,0(r3) /* load level one page entry */

 ori r2,r2,0x0004 // Set SPS/SH/CI to 0b010 for a page next to a risky one

 stw r2,0(r3) /* store level one page entry */

 b @recheckstatus

@riskypage:

 mfspr r3,MD_TWC /* load r3 with level two pointer while taking into account

 the page size */

 lwz r2,0(r3) /* load level one page entry */

 ori r2,r2,0x0002 // Set SPS/SH/CI to 0b001 for a risky page

 stw r2,0(r3) /* store level one page entry */

 b @recheckstatus

} /* os_inst_tlb_miss_l2_based */

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 39

ATM Errata

ATM Errata

ATM1 Problematic reporting of BSY errors
Description:

Modes affected: Extended Channel, Serial, or Parallel (UTOPIA)

In the intended operation of the MPC860SAR, if cells are received with no receive buffer
descriptors available, the receiver will issue a BSY interrupt after the first cell is received and stop
reception. However, due to this erratum, the receiver will issue a BSY interrupt for every received
cell, not just for the first cell, when the MPC860SAR is in extended channel mode (EXT=1 in
SRSTATE). This will continue until the condition is corrected (that is, until the host provides an
empty receive buffer descriptor).

Also, the first new AAL5 frame after the BSY interrupt may contain only a partial AAL5 frame (as
indicated by the Length and CRC errors).

Workaround:

Respond quickly to BSY errors by preparing empty receive buffer descriptors. Ignore the first
frame that arrives with a LEN or CRC error.

ATM2 Incorrect channel number in exception queue
Description:

Modes affected: Extended Channel, Serial

The channel number field (CHNUM) in the interrupt table entries of the exception queue may be
faulty when the MPC860SAR is in extended channel mode (EXT=1 in SRSTATE) and an RXB,
TXB, RXF, UN or BSY exception occurs.

Workaround:

Do not rely on the CHNUM field of the interrupt table entry. Poll the buffer descriptor status of all
the receive or transmit channels when receive or transmit interrupts are reported. However, because
the CHNUM has an approximately 50% chance of being correct, the channel indicated by
CHNUM should be polled first.

ATM3 Incorrect operation of APC_BYPASS command
Description:

Modes affected: Parallel (UTOPIA)

The inserted channel is not immediately transmitted after the APC_BYPASS command is issued.
It is delayed until the next cell is scheduled by the APC. If the APC table is empty, the inserted
channel is never transmitted.

Workaround:

Insert at least one channel or a disabled (dummy) channel to the APC. The channel issued by
APC_BYPASS will be transmitted as soon as the next channel (or dummy channel) is scheduled
by the APC.

MPC860/855T Family Device Errata Reference, Rev. 1.9

40 Freescale Semiconductor

ATM Errata

ATM4 Incorrect operation of expanded cell mode
Description:

Modes affected: Expanded cell, Parallel (UTOPIA)

The following is true if the MPC860SAR is in expanded cell mode (EC=1 in SRSTATE and
STSTATE):

1. The expanded cell header transmits the last four bytes of the expanded cell header in place of the
ATM cell header. For example, with a 12-byte expanded cell header (ECSIZE=3), the cells are
transmitted as:

[Cell Header Expansion 1 || Cell Header Expansion 2 || Cell Header Expansion 3 || Cell
Header Expansion 3 || 48 byte Cell Payload]

2. The Tx SOC is asserted on the first byte of the cell header instead of the first byte of the expanded
cell. For example, on a 64-byte cell transmit, the SOC signal is asserted on the 13th byte.

Workarounds:

For AAL0: Use external logic to sync on the TX SOC, and generate the correct SOC in reference
to that. Also, insert the ATM cell header in the last word of the expanded cell header.

For AAL5: There is no workaround because the cell header must be manipulated by the microcode,
specifically, the PTI[2] bit.

ATM5 APCO interrupts cannot be masked
Description:

Modes affected: All

APCO interrupts cannot be masked with the IMASK field of the receive connection table entry
(RCT).

Workarounds:

Generally, if the APC is programmed well, there should not be any APCO. However, if they do
occur and the user wants to mask them, either of the following methods are acceptable:

• Implement a software workaround that will ignore the specific APCO interrupts in the interrupt
table or mask all interrupts globally by using the GINT mask in IDMR1 or SCCM.

• Download the RAM microcode package for enhanced UBR support. An enhancement supporting
APCO masking has been integrated into this package.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 41

ATM Errata

ATM6 The OAM cell screener (with CUMB=0 and PTI[3]=0 in FLMASK) is
inoperative

Description:

Modes affected: Extended channel using address compression

This erratum applies only if the MPC860SAR is in extended channel mode (EXT=1 in SRSTATE)
and is using address compression tables (ACP=1 in SRSTATE), with CUMB=0 and PTI[3]=0 in
FLMASK.

In this mode, the MPC860SAR should use the PTI[3] bit of the received cell to perform ‘OAM cell
screening’ if CUMB of FLMASK is set to 0 and PTI[3] is not included in the address compression
algorithm (that is, PTI[3]=0 in FLMASK). When performing OAM cell screening, the
MPC860SAR checks the PTI[3] bit of the incoming cell. If the cell is set it is sent to the raw cell
queue (connection number 0) to be processed as an OAM cell. This is possible because if address
compression is used and CUMB is not set, it is assumed that the MPC860SAR receives no
misinserted cells and any cell with PTI[3] set must be an OAM cell. CUMB must be set to 1 if it is
possible in the system for the MPC860SAR to receive misinserted cells.

However, the OAM screener function does not currently work; the OAM screener does not check
PTI[3] when CUMB=0. If the PTI[3] bit (the most significant bit of the cell header PTI field) is not
included in FLMASK, the OAM and RM cells are treated as data cells instead of being inserted in
the raw cell queue. In the case of AAL5, the OAM and RM cells are inserted into the AAL5
CPCS_PDU. This results in the OAM and RM cells being lost and the AAL5 data frame being
corrupted.

A more detailed explanation of the OAM screener bug is that it checks the PTI[3] bit in the
FLMASK to see if it should activate the OAM screener. If PTI[3]=0 in the FLMASK, then it is
supposed to activate the screener and thus throw all received cells with PTI[3] set into the global
raw cell queue. However, because of this erratum, it looks at the wrong bit when the OAM screener
is activated; it throws cells with PTI[2] set into the global raw cell queue.

The workaround described below keeps the OAM screener deactivated.

Workarounds:

Treat the OAM cells as a separate AAL0 channel. Keep the PTI[3] bit set in the FLMASK (thereby
using the PTI[3] bit to identify the connection). Assign the connection number for the OAM cells
to something other than the connection number for the data cells. Route all OAM cells to the same
queue by using the same connection number for all OAM connections or route them to individual
queues by giving them unique connection numbers.

ATM7 CPM lockup when issuing APC_BYPASS when TX queue full
Description:

Modes affected: all

The CPM locks up if a cell is scheduled for transmission through the APC_BYPASS command
when the transmit queue is full, causing immediate failure of all channels.

In the case of a CPM lockup, the CPM must be reset. This can be accomplished either through the
CPCR[RST] or by issuing a SRESET.

MPC860/855T Family Device Errata Reference, Rev. 1.9

42 Freescale Semiconductor

ATM Errata

This should not occur during optimal operation. An overflow of the TX queue indicates that more
transmit traffic has been scheduled than the physical layer can transmit, which is an error condition.
Software should avoid this situation.

To fix this, the operation will be changed so that this condition does not cause lockup, and an
additional semaphore bit will be provided to assist in avoiding this situation.

Workaround:

Monitor the transmit queue status, and do not issue the APC_BYPASS command if the number of
empty entries in the transmit queue is less than (NCITS+2).

ATM8 Incorrect operation in presync state of cell delineation
Description:

Modes affected: Serial Receive

Incorrect operation occurs if a HEC error occurs during the Presync state of the serial receive cell
delineation state machine. Instead of moving back to the Hunt state, the receiver decrements Alpha
by one, receives the cell into the global raw cell queue, and remains in the Presync state. The cell
delineation state machine will move back to the Hunt state only when the Alpha parameter reaches
zero. This erroneous operation can result in long receive startup times, as decrementing Alpha can
cause it to overflow back to 65535. The most common occurrence of this problem occurs when the
lock is lost due to a line going down. There are occurrences of both good and bad HECs in the
received cell sequence during restart.

Workaround:

Program Alpha = 1 and Delta = 6IF if the lock state is lost at restart or the cell delineation state
machine is not locked and the global raw cell queue contains more than seven cells with HEC
errors.

After programming these parameters, the user must check after at least four system clocks to
confirm that these values were actually written to these parameters and were not overwritten by the
CPM.

NOTE
A SYNC interrupt is issued the lock state is lost; see the description of the
SYNC interrupt in the MPC860 PowerQUICC User’s Manual.

ATM9 Intermittent errored cell transmission at high frequencies
Description:

Modes affected: UTOPIA

The UTOPIA interface may intermittently transfer cells that are not 53 bytes in length with a CPM
frequency of greater than 50 MHz. The phenomenon exhibited is that the header transfer of the cell
is foreshortened, changing from a four-byte transfer to a one- or three-byte transfer. This problem
occurs because the SOC signal corrupts an internal counter. This phenomenon is not affected by
the UTOPIA clock rate. The problem is more prevalent at high temperatures but may also occur at
room temperature.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 43

ATM Errata

Workaround:

Download the Freescale-supplied microcode patch. The patch changes the mechanism of header
transfer from a single burst of four bytes to two bursts of two bytes, and in so doing avoids counter
corruption. Using the patch does not significantly affect ATM performance.

ATM10 Incorrect raw cell queue mapping in UTOPIA multi-PHY mode
Description:

Modes affected: UTOPIA multi-PHY receive in extended channel mode using address
compression

In UTOPIA multi-PHY mode, the address mapping mechanism directs the received cells to the
incorrect receive channel number when received cells are sent to the global raw cell queue (in the
case of unidentified cell header, OAM cell screening, and so on). Correct mapping of the global
raw cell queues would direct the cells such that RCT_entry=PHY#. Instead, the mechanism directs
the cells such that RCT_entry = PHY# * 4.

Workaround:

Be aware of the error in the mapping mechanism, and assign the RCT entries accordingly. When
configuring the global raw cell queues in the RCT for each PHY, use the following configuration:

PHY0 global raw cell queue --> RCT entry 0

PHY1 global raw cell queue --> RCT entry 4

PHY2 global raw cell queue --> RCT entry 8

PHY3 global raw cell queue --> RCT entry 12

ATM11 Errored cell transmission in UTOPIA clock 1:4 mode
Description:

Modes affected: UTOPIA

In UTOPIA mode, errored cell transmission can occur for AAL0 cells if the system clock to
UTOPIA clock ratio selected is 1:4 (through the SCCR). The result of the failure is that the first
four bytes of the payload may be dropped. The failure is intermittent.

Workaround:

Use other UTOPIA clock ratios (for example, 1:2, 1:3, 1:5).

MPC860/855T Family Device Errata Reference, Rev. 1.9

44 Freescale Semiconductor

FEC Errata

FEC Errata

FEC1 Multicast address recognition in 7-wire interface mode
Description:

When in 7-wire interface mode, RECV.R_CNTRL.MII_MODE==0, the destination address and
the first nibble of the source address are used to determine the hash value. Only using the
destination address causes the hash tables to function improperly. Address recognition (both for
multicast and unicast addresses) works correctly in MII transceiver interface mode.

Workaround:

None. The hash table should not be used if running in 10-Mbps serial mode.

FEC2 Re-enabling FEC with Ether_EN
Description:

The FEC does not properly reset all of its state machines with the negation of
CSR.ECNTRL.ETHER_EN.

Workaround:

The user must assert CSR.ECNTRL.RESET in addition to negating CSR.ECNTRL.ETHER_EN
to reinitialize the FEC.

FEC3 Maximum frame length enforcement
Background:

Receive frames of length >= 2 Kbytes (2048) should be truncated at 2047 bytes since the receive
length counter is 11 bits in length. The TR bit should be set in the receive buffer descriptor for such
frames.

Description:

This truncation may or may not occur correctly depending on the relative phase and frequency
between the MII_RX_CLK and the 860T system clock. The problem has been observed with
10-Mbps traffic.

If the truncation does not occur correctly, one or both of the following behaviors may result:

• The FEC receiver locks up, preventing any further frames from being received. The only way to
restart is to reset the FEC by negating ECNTRL.ETHER_EN (this will not reset configuration
control registers but will reset the data path and the dma pointers to the descriptor rings) or by
asserting ECNTRL.RESET (requires complete initialization).

• The FEC will write bogus status/length information into the receive buffer descriptor for the
truncated frame. It has been observed that all status and length bits = 0; however, other values can
occur.

The only way to prevent this problem from occurring is to ensure there are no frames on the
network >= 2 Kbytes in length.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 45

FEC Errata

FEC4 BABT interrupt missing
Description:

The babbling transmit condition may not be detected correctly under all conditions. If the FEC is
appending the CRC, and the frame length is in the 1519-1522 range, the BABT interrupt does not
occur even though it should. If software appends the CRC, the BABT interrupt will always occur
properly at 1519 bytes.

FEC5 Byte order
Description:

The DATA_BO and DESC_BO fields in the DMA.FUN_CODE register do not function as
specified. The current implementation gives the following results:

BO[0:1] = 0X results in byte swapping within a 32-bit word.

BO[0:1] = 11 does not byte swap.

FEC6 PowerPC little-endian mode
Description:

The DMA block in the FEC does not implement the PowerPC little-endian mode correctly.

This erratum will not be corrected. This feature has been cancelled.

FEC7 Port D and port A programming
Description:

Port D takes programming precedence for alternative functionality over port A. In other words,
where the same functionality exists on a port D pin and a port A pin such that one of which will be
programmed for an alternative function and the other as general purpose I/O, the port D pin must
be used for the alternative function, and the port A pin must be used as the general purpose I/O.

For example, PD11 and PA11 both have the ability to be programmed as RXD3. If PD11 were
programmed as its other alternative function of MII_TX_ER, PA11 could be used for RXD3. If
however, the FEC functionality is not to be used, so that either PD11 or PA11 could be RXD3,
PD11 must be used for RXD3, and PA11 must be used as general purpose I/O. If PA11 were
programmed as RXD3 and PD11 as general purpose I/O, the RXD3 would not be functional.

FEC8 Receive FIFO overflow
Description:

Under normal operating conditions, when a receive FIFO overflow occurs, the fifo_r_space_avail
signal negates, the OV bit is set in the receive buffer descriptor, and software discards these frames.
However, if the receiver is doing back-to-back writes to the receive FIFO at the time of overflow,
the fifo_r_space_avail may not negate quickly enough, allowing the write pointer to go beyond the
read pointer, the OV bit will not be set, the remainder of the frame will be corrupted, and the receive
buffer descriptor status/length will be incorrect. Testing to date indicates that the receive FIFO does
recover on the next frame.

MPC860/855T Family Device Errata Reference, Rev. 1.9

46 Freescale Semiconductor

FEC Errata

Workaround:

Avoid overflow. This requires adequate system memory bandwidth and software that never falls behind in
producing empty receive buffers.

FEC9 Address offset A40 (GSMR_L3) aliases to 840
Description:

Location 840 is also written when A40 is written.

This does not occur if SCC3 is in the HDLC, UART, BISYNC, or Ethernet modes.

Workaround:

If SCC3 is programmed to any other mode, the software workaround is to follow the following
steps whenever the SCC3 mode register needs to be written:

1. Disable interrupts

2. Write SCC3 mode register

3. Write 0 into Eppc+0840 (a production test register)

4. Re-enable interrupts.

Note: There can be no FEC access between 2 and 3 above.

FEC10 Address offset C40 aliases to E40
Description:

When location C40 (within the SIRAM) is written, the FEC CSR.ECNTRL register (location E40)
is also written. CSR.ECNTRL contains the ETHER_EN and RESET bits. If location C40 is written
after the FEC has been enabled, the FEC may become disabled, and other erratic behavior may
occur.

Workaround:

Initialize the SIRAM prior to initializing the FEC. Once the FEC is enabled, the SIRAM location
C40 must not be read or written.

FEC11 Certain multicast destination addresses are mistakenly seen by
the FEC as the broadcast address, ff:ff:ff:ff:ff:ff

Description:

Specifically there are 15 different multicast addresses that are incorrectly treated as being broadcast
addresses. These are ff:ff:ff:ff:ff:*f where, * can be 0–E.

These multicast addresses are in the "locally administered" category, meaning that they are not
controlled by the IEEE 802.3 standard.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 47

FEC Errata

FEC12 CRC error reported if MII_RX_ER asserts while in internal
loopback mode

Description:

External inputs on the MII interface should be ignored when in internal loopback mode, but the
receive logic currently mistakenly reports a crc error if MII_RX_ER asserts when a frame is being
looped internally.

Workaround:

Hold the MII_RX_ER signal low when running an internal loopback test.

FEC13 Aggressive mode non-functional
Description:

The impact of this erratum is that to run the FEC in full-duplex mode, the processor must be
running at 50 MHz, and the system must utilize SDRAM. (See the application note MPC860T
Design Advisory for loading, latency, and system calculations in standard arbitration mode,
http://www.mot.com/netcomm/aesop/mpc8XX/860/860t3.pdf.)

This erratum will not be corrected. This feature has been cancelled.

FEC14 Data or instruction corruption due to early bus access termination
Description:

Data or instruction corruption may occur in the following situation:

1. A write to a FEC register occurs while ECNTRL[ETHER_EN] is set.
(Typically, only R_DES_ACTIVE, X_DES_ACTIVE, and IEVENT are written while the device
is in normal operation. Other registers are written only during initialization.)

2. The write occurs at a point in time when the FEC is busy with transmit, receive, or DMA activity,
which will cause the write to act as a “posted” write until the FEC can service it.

3. The following internally-initiated bus access (to either the internal or external bus) completes
before this posted FEC write actually completes.

If the above situation occurs, then the next bus access may be terminated early with data that may
or may not be valid.

The failure rate is very low (once every one or two days). It is worse at higher frequencies and has
been noticed only under heavy traffic load, although it could theoretically occur at any time.

Workaround:

If only one UPM is being used (and GPL_x4 and GPL_x5 are not being used), the second UPM
may be used to implement a software workaround. The software should initialize both UPMs. The
first UPM, used in normal operation, should be programmed for optimum operation. The second
UPM should be programmed similarly, but for slower memory access for all read, write, burst read,
and burst write accesses. The UPM should be programmed such that bus accesses (from TS to the
last TA) complete in a minimum of fourteen clocks. For example, for SDRAM, the second UPM
should insert nop commands to the SDRAM at the start of the bus accesses to delay the SDRAM

MPC860/855T Family Device Errata Reference, Rev. 1.9

48 Freescale Semiconductor

FEC Errata

cycles; for EDO or fast page mode DRAM, the second UPM should extend the RAS phase of the
bus accesses.

Having programmed this, the user should follow the following procedure when writing to an FEC
register:

1. Change BR[MS] so that the memory is controlled by the ‘slow’ UPM. (This can be changed on the
fly.)

2. Perform the FEC register write.

3. Execute out of cache for a minimum of fourteen clocks (that is, perform no instruction fetches or
load/store accesses from external memory). This can be accomplished by executing a delay loop
which is locked in the instruction cache.

4. Change BR[MS] back, so that the memory is controlled by the ‘fast’ UPM.

FEC15 7-wire problem on the fast Ethernet controller at the end of an
Ethernet frame

Description:

The FEC uses the receive clock to clock in data and run the FEC as the data is comes in. When the
message has ended (signified by RENA being negated), the external clock discontinues. The FEC
switches over to use an internal clock to finish flushing the FIFO and whatever else it needs to do
at the end of the received message. The problem is the FEC was designed with the assumption that
the external clock would quit immediately after RENA is negated. The MC68160 actually gives
one more clock pulse after RENA is negated, and the level-one transceiver gives up to five more
pulses. If a clock pulse is input while the FEC is switching internal clock sources, a glitch may
occur on the internal clock line, which may cause "unpredictable results.”

Workaround:

Use an external AND gate to gate the receive clock with RENA.

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 49

FEC Errata

THIS PAGE INTENTIONALLY LEFT BLANK

MPC860/855T Family Device Errata Reference, Rev. 1.9

50 Freescale Semiconductor

FEC Errata

THIS PAGE INTENTIONALLY LEFT BLANK

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 51

FEC Errata

THIS PAGE INTENTIONALLY LEFT BLANK

MPC860/855T Family Device Errata Reference, Rev. 1.9

52 Freescale Semiconductor

FEC Errata

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 53

FEC Errata

MPC860/855T Family Device Errata Reference, Rev. 1.9

54 Freescale Semiconductor

FEC Errata

MPC860/855T Family Device Errata Reference, Rev. 1.9

Freescale Semiconductor 55

FEC Errata

Document Number: MPC860CE
Rev. 1.9
05/2008

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale are trademarks or registered trademarks of Freescale
Semiconductor, Inc. in the U.S. and other countries. All other product or
service names are the property of their respective owners. The Power
Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by
Power.org. The PowerPC name is a trademark of IBM Corp. and is used
under license. IEEE 802.3 is a registered trademark of the Institute of
Electrical and Electronics Engineers, Inc. (IEEE). This product is not
endorsed or approved by the IEEE.

© Freescale Semiconductor, Inc., 2008. All rights reserved.

	MPC860/855T Family Device Errata Reference
	Table 1. Document Revision History
	Table 2. MPC860CE Silicon Revision, Mask Set, and Version Key
	Table 3. MPC860CE Errata and Silicon Revision Key
	Table 4. Power-On Reset Value of the Registers
	Figure 1. Workaround for Case 2
	Table 5. Affected Special-Purpose Registers
	Table 6. Writing Data from r1 to M_TW

