
Freescale Semiconductor
Errata

© Freescale Semiconductor, Inc., 2007. All rights reserved.

Document Number: MPC850CE
Rev. 7, 11/2007

This document is a compilation of all MPC850 family device errata from silicon Revision 0.0 forward.
Herein, the errata are classified and numbered, and each erratum is provided with a description and
workarounds.

Table 1 provides a revision history for this document.

Table 1. Document Revision History

 Rev. No. Date Significant Change(s)

7 11/2007 • Added ESD1 errata.

6 3/2006 • Added CPM18 errata. USB stall handshake
 • Separates out rev C (End-Of-Life)

5 7/2005 • Updated CPM16 errata.

 4 4/2005 • Updated CPM5 errata.
 • Updated CPM17 errata.
Note: Revision 4 replaces MPC850 Family Device Errata Summary (MPC850CESUMM, rev. 2.1),

the contents of which are included here.

Device Errata for the
MPC850 Family

Device Errata for the MPC850 Family, Rev. 7

2 Freescale Semiconductor

Table 2 lists the silicon revisions of each device.

Table 3 summarizes all known errata for the MPC850 family and lists the corresponding silicon revision
level to which it applies. A “Y” entry indicates that the erratum applies to a particular revision level, while
a “—” entry means it does not apply.

Table 2. Revision Level to Part Marking Cross-Reference

Device Rev 0.0 Rev 0.1 Rev 0.2 Rev 0.3 Rev A Rev B

Mask Set 0F98S 1F98S 2F98S 3F98S
0H89G
2H89G

4H97G
0K24A
0K29A
0K45M

MPC850 x x x x x x

MPC850DC x

MPC850DE x x

MPC850DH x

MPC850DSL x

MPC850SAR x

MPC850SE x x x x

MPC850SR x

Table 3. Summary of MPC850 Silicon Errata and Applicable Revision

Number Name Disposition
Silicon Revision

0.0 0.1 0.2 0.3 A B

Global

GLL1 Some registers are not initialized
correctly during Power-Up RESET,
HRESET, and SRESET

No plans to
fix this

Y Y Y Y Y Y

SIU

SIU1 Spurious external bus transaction
following PLPRCR write

No fix
scheduled

Y Y Y Y Y Y

SIU2 Missed DRAM refresh cycles with
external masters

Fixed in
Rev. B

Y Y Y Y Y —

SIU3 Lock/unlock function of RSR also
locks/unlocks SCCR

Fixed in
Rev. A

Y Y Y Y — —

SIU4 Possible external bus hang occurs
under certain error conditions

No fix
scheduled

Y Y Y Y Y Y

SIU10 RTC/PIT doesn’t count properly No plans to
fix this

Y Y Y Y Y Y

CPM

CPM1 I2C receive problem in arbitration-lost
state

Fixed in
Rev. B

Y Y Y Y Y —

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 3

CPM2 I2C error in FLT bit Fixed in
Rev. A

Y Y Y Y — —

CPM3 I2C master fails to receive after
executing read or write

Fixed in
Rev. B

Y Y Y Y Y —

CPM4 Receives single-byte buffers after
failed transaction

Fixed in
Rev. A

Y Y Y Y Y —

CPM5 I2C receiver locks, holding SDA low Work
around

Y Y Y Y Y Y

CPM6 I2C master collision after “double start” Fixed in
Rev. B

Y Y Y Y Y —

CPM7 I2C: short aborted transmission after
NACK

Fixed in
Rev. B

Y Y Y Y Y —

CPM8 I2C: split receive buffer between
loopback and read

Fixed in
Rev. B

Y Y Y Y Y —

CPM9 I2C: spurious BUSY errors after
reception in I2C master mode

Fixed in
Rev. B

Y Y Y Y Y —

CPM10 USB microcode may duplicate first
byte for IN token transfer

Fixed in
Rev. B

Y Y Y Y Y —

CPM11 Port A pin (PA13) may consume
excess current in deep-sleep mode

Fixed in
Rev. B

Y Y Y Y Y —

CPM12 Improper USB initialization may cause
excess current in deep-sleep mode

Fixed in
Rev. B

Y Y Y Y Y —

CPM13 Port B pin (PB25) fails to function as
TXD3

Applies only
to Rev. A

— — — — Y —

CPM14 The ERAM4K bit in the RISC
Microcode Development Support
Control Register (RMDS) is
erroneously cleared

No fix
scheduled

Y Y Y Y Y Y

CPM15 USB underrun when ATM or Ethernet
function is used in conjunction with
USB

No fix
scheduled

Y Y Y Y Y Y

CPM16 USB endpoint lock up Work
around

Y Y Y Y Y Y

CPM17 USB occasionally ignores tokens,
violates USB protocol by providing
incorrect responses, etc.

Work
around

Y Y Y Y Y Y

CPM18 Stall handshake Work
around

Y Y Y Y Y Y

Table 3. Summary of MPC850 Silicon Errata and Applicable Revision (continued)

Number Name Disposition
Silicon Revision

0.0 0.1 0.2 0.3 A B

Device Errata for the MPC850 Family, Rev. 7

4 Freescale Semiconductor

General

G1 Core operation is limited to a 3.0V
minimum

No fix
scheduled

Y Y Y Y Y Y

G2 Higher than expected Keep Alive
Power (KAPWR) current when main
power (VDDH & VDDL) is removed

Fixed in
Rev. 0.2

Y Y — — — —

G3 EXTCLK and CLKOUT clocks may not
be in phase in half-speed bus mode

Fixed in
Rev. B

Y Y Y Y Y —

G4 Potential problems caused by skew
between EXTCLK and CLKOUT

Fixed in
Rev. B

Y Y Y Y Y —

G5 Breakdown voltage for XFC pin less
than Motorola-imposed requirements

Fixed in
Rev. A

Y Y Y Y — —

G6 Active pullup drivers switch to
high-impedance too early

Fixed in
Rev. A

Y Y Y Y — —

G7 Restriction of open collector pull up No fix
scheduled

Y Y Y Y Y Y

CPU

CPU1 Bus error unsupported by the data
cache burst

No fix
scheduled

Y Y Y Y Y Y

CPU2 D-Cache presents valid data when
parity error present on a burst

Fixed in
Rev. A

Y Y Y Y — —

CPU3 Incorrect data breakpoint detection on
store instructions

No fix
scheduled

Y Y Y Y Y Y

CPU4 Program trace mechanism error No fix
scheduled

Y Y Y Y Y Y

CPU5 Instruction cache replacement policy
bug

Fixed in
Rev. 0.3

Y Y Y — — —

CPU6 Instruction MMU bug at page
boundaries in show-all mode

No fix
scheduled

Y Y Y Y Y Y

CPU7 Possible data cache corruption when
writing SPRs

Fixed in
Rev. A

Y Y Y Y — —

CPU8 Branch prediction with sequential
branch instructions

Fixed in
Rev. B

Y Y Y Y Y —

CPU9 Missed instruction after conditional
branch

Fixed in
Rev. B

Y Y Y Y Y —

CPU10 Instruction sequencer error when
modifying MSR with interrupts enabled

Fixed in
Rev. B

Y Y Y Y Y —

CPU11 Possible excess current consumption
in deep sleep mode

No plans to
fix

Y Y Y Y Y Y

ATM

Table 3. Summary of MPC850 Silicon Errata and Applicable Revision (continued)

Number Name Disposition
Silicon Revision

0.0 0.1 0.2 0.3 A B

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 5

Description:

The following table is provided to clarify/correct the power-on RESET value of many of the
registers and lists whether each register is affected by HRESET* and/or SRESET*. The table
applies for the MPC850 Family, the MPC855T, the MPC857T, the MPC860 Family, and the
MPC862 Family.

ATM1 APCO interrupts cannot be masked No fix
scheduled

Y Y Y Y Y Y

ATM2 CPM lockup when issuing
APC_BYPASS when TX queue full

No fix
scheduled

Y Y Y Y Y Y

ATM3 CPM lockup when issuing
APC_BYPASS when TX queue full

Fixed in
Rev. B

Y Y Y Y Y —

ESD

ESD1 200 Volts ESD Machine Model (MM)
requirements on certain Parallel I/O
pins is not met

No plans to
fix

Y Y Y Y Y Y

Global

GLL1 Some registers are not initialized correctly during Power-Up RESET,
HRESET, and SRESET

Table 4. Power-On Reset of Registers

REGISTER Value at Power-On RESET*
Affected by
HRESET*

 Affected by
SRESET*

SIUMCR 01200000 YES NO

SYPCR FFFFFF07 YES NO

SWSR 0 YES YES

SIPEND 0000xxxx YES YES

SIMASK 0000xxxx YES YES

SIEL 0000xxxx YES NO

SIVEC (xx11)(11xx)xxxxxx YES YES

TESR XXXX0000 YES YES

SDCR 0 YES NO

PBR0 x NO NO

POR0 x NO NO

PBR1 x NO NO

Table 3. Summary of MPC850 Silicon Errata and Applicable Revision (continued)

Number Name Disposition
Silicon Revision

0.0 0.1 0.2 0.3 A B

Device Errata for the MPC850 Family, Rev. 7

6 Freescale Semiconductor

POR1 x NO NO

PBR2 x NO NO

POR2 x NO NO

PBR3 x NO NO

POR3 x NO NO

PBR4 x NO NO

POR4 x NO NO

PBR5 x NO NO

POR5 x NO NO

PBR6 x NO NO

POR6 x NO NO

PBR7 x NO NO

POR7 x NO NO

PGCRA 0 YES NO

PGCRB 0 YES NO

PSCR x NO NO

PIPR ??00??00 YES YES

PER 0 YES YES

BR0 XXXXX(??00)0(000?) YES NO

OR0 00000FF4 YES NO

BR1 XXXXXX(xx00)0 YES NO

OR1 XXXXXXX(xxx0) YES NO

BR2 XXXXXX(xx00)0 YES NO

OR2 XXXXXXX(xxx0) YES NO

BR3 XXXXXX(xx00)0 YES NO

OR3 XXXXXXX(xxx0) YES NO

BR4 XXXXXX(xx00)0 YES NO

OR4 XXXXXXX(xxx0) YES NO

BR5 XXXXXX(xx00)0 YES NO

OR5 XXXXXXX(xxx0) YES NO

BR6 XXXXXX(xx00)0 YES NO

OR6 XXXXXXX(xxx0) YES NO

Table 4. Power-On Reset of Registers (continued)

REGISTER Value at Power-On RESET*
Affected by
HRESET*

 Affected by
SRESET*

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 7

BR7 XXXXXX(xx00)0 YES NO

OR7 XXXXXXX(xxx0) YES NO

MAR x NO NO

MCR (xx00)0(x000)0(xxx0)X(00xx)X YES NO

MAMR xx001000 YES NO

MBMR xx001000 YES NO

MSTAT 0 YES NO

MPTPR 0200 YES NO

MDR x NO NO

TBSCR 0 YES NO

TBREFA x NO NO

TBREFB x NO NO

RTCSC 00(000x)(000x) YES YES

RTC x NO YES

RTSEC x NO YES

RTCAL x NO NO

PISCR 0 YES NO

PITC x NO NO

PITR x N/A N/A

SCCR 0(000?)(?000)(0??0)0000 YES NO

 PLPRCR ???0(0100)000 YES YES

RSR 0 YES YES

TBSCRK x YES YES

TBREFAK x YES YES

TBREFBK x YES YES

TBK x YES YES

RTCSCK x YES YES

RTCK x YES YES

RTSECK x YES YES

RTCALK x YES YES

PISCRK x YES YES

PITCK x YES YES

Table 4. Power-On Reset of Registers (continued)

REGISTER Value at Power-On RESET*
Affected by
HRESET*

 Affected by
SRESET*

Device Errata for the MPC850 Family, Rev. 7

8 Freescale Semiconductor

SCCRK x YES YES

PLPRCRK x YES YES

RSRK x YES YES

I2MOD 0 YES YES

I2ADD x NO NO

I2BRG FFFF YES NO

I2COM 0 YES YES

I2CER 0 YES YES

I2CMR 0 YES YES

SDAR x NO NO

SDSR 0 YES YES

SDMR 0 YES YES

IDSR1 0 YES YES

IDMR1 0 YES YES

IDSR2 0 YES YES

IDMR2 0 YES YES

CIVR 0 YES YES

CICR 0 YES NO

CIPR 0 YES YES

CIMR 0 YES YES

CISR 0 YES YES

PADIR 0 YES NO

PAPAR 0 YES NO

PAODR 0 YES NO

PADAT x NO NO

PCDIR 0 YES NO

PCPAR 0 YES NO

PCSO 0 YES NO

PCDAT x NO NO

PCINT 0 YES NO

PDDIR 0 YES NO

PDPAR 0 YES NO

Table 4. Power-On Reset of Registers (continued)

REGISTER Value at Power-On RESET*
Affected by
HRESET*

 Affected by
SRESET*

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 9

PDDAT x NO NO

TGCR 0 YES YES

TMR1 0 YES YES

TMR2 0 YES YES

TRR1 FFFF YES YES

TRR2 FFFF YES YES

TCR1 0 YES YES

TCR2 0 YES YES

TCN1 0 YES YES

TCN2 0 YES YES

TMR3 0 YES YES

TMR4 0 YES YES

TRR3 FFFF YES YES

TRR4 FFFF YES YES

TCR3 0 YES YES

TCR4 0 YES YES

TCN3 0 YES YES

TCN4 0 YES YES

TER1 0 YES YES

TER2 0 YES YES

TER3 0 YES YES

TER4 0 YES YES

CPCR 0 YES YES

RCCR 0 YES NO

RCTR1 NA YES YES

RCTR2 NA YES YES

RCTR3 NA YES YES

RCTR4 NA YES YES

RTER 0 YES YES

RTMR 0 YES YES

BRGC1 0 YES NO

BRGC2 0 YES NO

Table 4. Power-On Reset of Registers (continued)

REGISTER Value at Power-On RESET*
Affected by
HRESET*

 Affected by
SRESET*

Device Errata for the MPC850 Family, Rev. 7

10 Freescale Semiconductor

BRGC3 0 YES NO

BRGC4 0 YES NO

GSMR_L1 0 YES YES

GSMR_H1 0 YES YES

PSMR1 0 YES YES

TODR1 0 YES YES

DSR1 7E7E YES YES

SCCE1 0 YES YES

SCCM1 0 YES YES

SCCS1 0 YES YES

GSMR_L2 0 YES YES

GSMR_H2 0 YES YES

PSMR2 0 YES YES

TODR2 0 YES YES

DSR2 7E7E YES YES

SCCE2 0 YES YES

SCCM2 0 YES YES

SCCS2 0 YES YES

GSMR_L3 0 YES YES

GSMR_H3 0 YES YES

PSMR3 0 YES YES

TODR3 0 YES YES

DSR3 7E7E YES YES

SCCE3 0 YES YES

SCCM3 0 YES YES

SCCS3 0 YES YES

GSMR_L4 0 YES YES

GSMR_H4 0 YES YES

PSMR4 0 YES YES

TODR4 0 YES YES

DSR4 7E7E YES YES

SCCE4 0 YES YES

Table 4. Power-On Reset of Registers (continued)

REGISTER Value at Power-On RESET*
Affected by
HRESET*

 Affected by
SRESET*

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 11

Legend:
x or X = “don’t care” in either bits, nibbles, or the entire register.
0 = a single zero indicates the entire register is reset to zeros.
() = isolates bits of a nibble of the register.
? = a don’t care for POR, but if this register is affected by HRESET* or SRESET*, indicates that the value will remain the

same as what it was before the reset occurred.
NA = Not Applicable, indicates that this register has no POR value.

Projected Solution:

Not scheduled to be corrected.

SCCM4 0 YES YES

SCCS4 0 YES YES

SMCMR1 0 YES YES

SMCE1 0 YES YES

SMCM1 0 YES YES

SMCMR2 0 YES YES

SMCE2 0 YES YES

SMCM2 0 YES YES

SPMODE 0 YES YES

SPIE 0 YES YES

SPIM 0 YES YES

SPCOM 0 YES YES

PIPC 0 YES NO

PTPR 0 YES NO

PBDIR xxx(xx00)0000 YES NO

PBPAR xxx(xx00)0000 YES NO

PBODR 0 YES NO

PBDAT x YES YES

SIMODE 0 YES YES

SIGMR 0 YES NO

SISTR 0 YES NO

SICMR 0 YES YES

SICR 0 YES NO

SIRP 0 YES YES

Table 4. Power-On Reset of Registers (continued)

REGISTER Value at Power-On RESET*
Affected by
HRESET*

 Affected by
SRESET*

Device Errata for the MPC850 Family, Rev. 7

12 Freescale Semiconductor

Description:

This erratum only affects some designs which execute code from synchronous memories or bus
slaves.

Spurious external bus transactions can occur after executing a store to the PLPRCR register which
changes the PLL multiplication factor (MF bits). This store causes the PLL to freeze the clocks
while another external bus access is already visible on the pins of the chip. This appears externally
as a transaction which begins, has its clocks frozen, and then is abruptly aborted without following
the bus protocol.

This behavior will only affect systems with bus slaves that implement synchronous state machines
that are sensitive to bus protocol violations. Synchronous DRAMs are not affected, and
synchronous bus slaves that ignore bus signals when not selected (for example, Tundra QSPAN)
are not affected.

The only cases in which this erratum will cause problems are if:

1. The device is executing code from a slave which implements a state machine dependent on the
PowerPC bus protocol, where that state machine might “get lost.”

2. There is an external device which snoops the PowerPC bus and implements a state machine;
this state machine might “get lost.”

The impact of this erratum has been deemed minimal, and it will therefore not be corrected.

Work Arounds:

If the behavior described above is unacceptable in the system, the following procedure can be used
to avoid the spurious external bus transaction:

The instruction which performs the store to the PLPRCR should be on a burst-aligned address with
at least one isync instruction following it. The Instruction Cache should be enabled while executing
this sequence. Example code performing this is as follows:

bl .unlock_all
bl .invalid_all
bl .cache_en # icache initialization

.

.

.

.
lis 3, 0x0050
ori 3, 3, 0x00C0
b st_algn

SIU

SIU1 Spurious external bus transaction following PLPRCR write

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 13

.org main + 0x0200 ##

st_algn: stw 3, PLPRCR_OFFSET(4) # burst aligned address
isync # isync
lis 3, 0x1234 # Any instruction
lis 3, 0x1234 # Any instruction

Projected Solution:

No scheduled fix.

Device Errata for the MPC850 Family, Rev. 7

14 Freescale Semiconductor

Description:

IF the MPC850 is using internal arbitration (SIUMCR[EARB]=0) AND the arbitration request
level (SIUMCR[EARP]) for external masters is greater than zero,

THEN if a request by an external master (signalled by DREQ) occurs simultaneously with a
request from the DRAM refresh controller, then the request from the DRAM refresh controller will
be cancelled. This will result in a missed refresh cycle. In a system with many bus requests by
external masters, this can potentially result in the cancellation of all DRAM refreshes.

Work Arounds:

1. Program SIUMCR[EARP] to zero.

2. Increase the refresh rate to compensate for the potential cancellation of refresh cycles. Treated
probabilistically, it should be possible to keep the refresh rate above a minimum intended rate.
This is difficult to model exactly, but can be roughly estimated. For the following discussion:

N = proportion of bus bandwidth used by internal MPC850 masters (other than refresh)

E = proportion of bus bandwidth used by external masters

A = proportion of bus bandwidth available for refresh

By definition, N + E + A = 1.

The proportion of time that a refresh request can occur is (E+A).

The probability that a refresh request will be cancelled is E / (E+A). If P is the probability that
the refresh request will be successfully transacted, the P = 1 - [E / (E+A)].

Therefore, to compensate for cancellation of requests, increase the refresh request rate by 1/P.

For a numerical example, assume that internal and external masters each use 30% of the bus
bandwidth. Thus, N = 0.3, E = 0.3, and A = 0.4. In this example, set the refresh rate to 1.75
times the intended rate.

Note, however, that this workaround becomes impractical as A approaches zero.

3. Implement a software-controlled refresh, initiated by a periodic timer request. The user should
program the PIT timer (or a CPM timer) to provide a periodic interrupt. The interrupt service
routine should incorporate a software routine to refresh a memory block. This software refresh
routine can consist of either reads from the appropriate DRAM page or, more simply, execution
of the UPM’s refresh routine via a RUN command to the MCR. The second method is
recommended, as it is simpler and uses the DRAM’s internal counter to keep track of the row
to be refreshed. The user should choose the size of memory block to be refreshed per interrupt
in order to minimize the impact of the interrupt overhead.

Let’s look at an example at one extreme. Assume a system with two 4Mx32 DRAM banks
controlled by CS2 and CS3. Each bank has 2048 pages (rows) and each page must be refreshed
every 15.6 ms. If the UPM refresh pattern called by the software refresh routine is set up to loop
16 times (and therefore can refresh 16 rows per call), the timer interrupt should occur every

SIU

SIU2 Missed DRAM refresh cycles with external masters

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 15

(16/2048)*15.6ms, or approximately 120µs. If one iteration of the UPM refresh pattern is 5 clocks,
the total time required to execute the software refresh routine (plus overhead for fetching
instructions) for both banks is 5*16*2+20 = 180 clocks. Assuming an interrupt service routine
entry/exit overhead of 1200 clocks, each refresh interrupt would take approximate 1400 clocks, or
28µs (assuming a 50MHz system clock). An ISR consuming 28µs out of every 120µs period would
consume 23.3% of the CPU, with 8200 interrupts per second.

At the other extreme, we could refresh the entire memory (2048 refresh cycles per bank) every
15.6ms. In this case, the software refresh routine would require 1200+(2048/16*180) = 24240
clocks, or 485µs. In this case, the ISR would consume 485µs out of every 15.6ms, or 3% of the
CPU, and would require only 64 interrupts per second. However, system tasks would be stalled for
485µs while waiting for the refresh task to complete.

The best compromise lies between. For example, at 64 pages per interrupt, the software refresh
routine will consume 1200+(64/16*18) = 1920 clocks, or 38.5µs. The CPU bandwidth consumed
will be 38.5µs/(120µs*4) or about 8%, with about 2000 interrupts per second.

Example code implementing this software refresh follows below:
#===
#This code initialize the PIT timers to interrupt (number 0) every ~24000 clocks
xor 10,0,0
ori 10,10,0xaa33
oris 10,10,0x55cc
stw 10,RTSECK_OFFSET(20) # OPEN RTC KEY

stw 10,RTSEC_OFFSET(20) # RESET RTC divider

addis 10,10,0x80
stw 10,PISCR_OFFSET(20) # CLEAR PIT INT bit

lwz 7,SCCR_OFFSET(20)
andi. 8,7,0xffff
andis. 9,7,0xff7f
or 7,8,9
oris 7,7,0x0100
stw 7,SCCR_OFFSET(20) # RTC_CLK = SYSCLK/512

xor 9,0,0
addis 9,9,0x2f
stw 9,PITC_OFFSET(20) # Int every 24000 system clocks

xor 10,0,0
addis 10,10,0x85
stw 10,PISCR_OFFSET(20) # PIT enable
sync
#===
#The interrupt routine should include this code :
#===
INT0 :
lhz 9,PISCR_OFFSET(20) #
sth 9,PISCR_OFFSET(20) # CLEAR PIT INT bit
andi. 9,9,0x80
bc 0x4,2,INT0_L

xor 8,8,8

Device Errata for the MPC850 Family, Rev. 7

16 Freescale Semiconductor

ori 8,8,0x0030
oris 8,8,0x8080 # Refresh CS_0 by MCR command
stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)
stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)
stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)
stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)

ori 8,8,0x2000 # Refresh CS_1 by MCR command
stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)
stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)
stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)
stw 8,MCR_OFFSET(20) # MCR(UPMB,0x30)

Projected Solution:

Corrected in Revision B.

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 17

Description:

When the RSR is locked or unlocked via the RSRK register, the same function is also performed
on the SCCR.

Work Arounds:

This erratum should not affect user software as long as one is aware of it. In order to avoid possible
software errors due to this (if, for example, the associated code statements were reordered by the
user in a code revision), as a code convention one should always perform the unlock-modify-lock
operations in immediate succession on individual registers. That is, unlock the register, modify it,
then lock it.

Projected Solution:

Corrected in Revision A.

SIU

SIU3 Lock/unlock function of RSR also locks/unlocks SCCR

Device Errata for the MPC850 Family, Rev. 7

18 Freescale Semiconductor

Description:

The external bus cycle may hang when the following sequence of events occur:

1. A transaction on the external bus ends as a result of an assertion of TEA or a bus monitor
timeout occurs.

2. The next transaction also ends as result of an assertion of TEA or a bus monitor timeout occurs.
(burt 300)

Work Arounds:

None.

Projected Solution:

No scheduled fix.

SIU

SIU4 Possible external bus hang occurs under certain error conditions

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 19

Description:

The periodic interrupt timer (PIT) consists of a 16-bit counter clocked by the PITRCLK clock
supplied by the clock RTCLK (Real time clock). The 16-bit counter counts down to zero when
loaded with a value from the PITC. After the timer reaches zero, the PS bit is set and an interrupt
is generated if the PIE bit is a logic one. The user can program the RTC and PIT clock to be divided
by 4 or 256 (depending on SCCR[RTDIV]). When the RTC clock is divided by 4, an interrupt will
not occur due to a bug in the rtclk_sync_raw logic. The rtclk_sync_raw is the real time clock for
the RTC timers, and its frequency is the same as rtclk_raw. If the pll output clock is enabled and
not in reset state, and the timer has not expired, then the rtclk_sync_raw clock has a 25% duty cycle
synchronous with system T4 tick, otherwise this clock is the same as rtclk_raw.

From the ckpspcl schematics, rtclk_raw also selects rtclk_sync_raw. There is no issue in the above
statement when the pre-divider is set to 256 clocks, this is because the select line is slower then the
selected clock source. But, when the pre-divider is set to 4, there is suppose to be a rtclk_sync_raw
edge every 2 clocks. The rising edge of this clock will disappear due to a race between
rtclk_sync_raw (as the select line) and the ckp_rtclk_sysd (as the data for the mux).

At room temperature, this will generate a spike signal, and at hot temperature, this will degrade and
disappear. When this happens, the RTC will not count properly, and no interrupt will occur.

Work Arounds:

None.

Projected Solution:

Not to be corrected.

SIU

SIU10 RTC/PIT doesn’t count properly

Device Errata for the MPC850 Family, Rev. 7

20 Freescale Semiconductor

Description:

If the MPC850 I2C master transmitter loses arbitration to another I2C master which is transmitting
to the MPC850, the 860 receiver will not accept the message (address byte not acknowledged).

Work Arounds:

1. Avoid multimaster configuration.

2. The operation should be retried by the other master through software.

Projected Solution:

Corrected in Revision B.

CPM

CPM1 I2C receive problem in arbitration-lost state

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 21

Description:

An error will occur if the FLT bit is set to turn on the digital filter for the I2C. The digital filter is
activated by setting the FLT bit in the I2C mode register and is turned off at reset.

(However, note that this digital filter is not required for normal operation. The MPC8xx I2C is fully
compliant to the I2C specification even without this digital filter.)

Work Arounds:

Do not turn on the digital filter for I2C clock filter.

Projected Solution:

Corrected in Revision A.

CPM

CPM2 I2C error in FLT bit

Device Errata for the MPC850 Family, Rev. 7

22 Freescale Semiconductor

Description:

If the I2C channel is in master mode, after the I2C channel performs a transaction (read or write
command), the I2C channel will fail to receive a transmission from another master. It will respond
with NACK.

Furthermore, after the failed reception, if the I2C master then attempts to perform another
transaction (read or write command), the transaction will fail with an underrun error.

Work Arounds:

After the master I2C channel completes its transmission, disable and re-enable the channel in the
I2MOD register (thereby resetting it).

Projected Solution:

Corrected in Revision B.

SIU

CPM3 I2C master fails to receive after executing read or write

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 23

Description:

A. If the I2C channel is in master mode, then:

If the I2C master attempts a transaction (read or write command) which receives a NACK, AND

the I2C master then attempts to execute a read to another slave,

THEN the master will receive the first byte of the slave’s message in one buffer and will close the
BD, and then will continue to receive the rest of the message in the next BDs. This reception of the
first byte in a single-byte buffer will happen regardless of the MRBLR.

B. If the I2C channel is in slave mode, then:

If the I2C slave responds to a read command (for example, performs a transmission), AND

the I2C slave then responds to a write command (for example, performs a reception),

THEN the I2C slave will receive the first byte of the master’s message in one buffer and will close
the BD, and then will continue to receive the rest of the message in the next BDs. This reception
of the first byte in a single-byte buffer will happen regardless of the MRBLR.

Work Arounds:

After the I2C channel performs a transmission (master read or write, or slave response to read),
disable and re-enable the channel in the I2MOD register (thereby resetting it).

Projected Solution:

Corrected in Revision B.

CPM

CPM4 Receives single-byte buffers after failed transaction

Device Errata for the MPC850 Family, Rev. 7

24 Freescale Semiconductor

Description:

The I2C receiver may lock up, holding the I2CSDA line low, in a system that has slow rise/fall time
on the I2C clock (I2CSCL) if the environment is noisy.

Work Arounds:

Set the I2C predivider to 32 (by setting I2MOD[PDIV]=00), and restrict rise/fall time of I2CSCL
to 0.5 µs. In addition to this, for MPC850 revision B.0 and later, enable the digital filter via the
I2MOD[FLT]. [For previous revisions of the MPC850, the digital filter is not functional.]

Projected Solution:

No scheduled fix.

CPM

CPM5 I2C receiver locks, holding SDA low

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 25

Description:

The following situation will result in the I2C controller colliding with the transmission of another
master:

1. Another I2C master performs a “master write” to the I2C controller of the MPC850.

2. The I2C controller of the MPC850 is waiting for the I2C bus to become idle in order to become
the master and perform a transaction.

3. The other I2C master asserts a new “START” condition without asserting a “STOP” condition.

In this case, the I2C master of the MPC850 will incorrectly interpret the new “START” condition
as generated by itself, and will therefore drive the I2C bus concurrently with the other master.

Work Arounds:

Avoid performing back-to-back START conditions on the I2C bus.

Projected Solution:

Corrected in Revision B.

CPM

CPM6 I2C master collision after “double start”

Device Errata for the MPC850 Family, Rev. 7

26 Freescale Semiconductor

Description:

The following situation will cause the I2C controller of the MPC850 to send a short aborted
transmission:

1. The MPC850’s I2C controller performs a transaction, transmitting a buffer which has no STOP
condition at the end. The next buffer (not yet transmitted) will issue a START condition,
producing back-to-back transactions without an intervening STOP (also known as “double
start”).

2. The MPC850’s I2C controller receives a NACK on the last or next-to-last byte of the buffer.

If this case occurs, then the MPC850’s I2C controller will assert a STOP condition (as expected by
the I2C protocol). However, when software subsequently issues a new start command (I2COM =
0x81), the I2C master will begin its next transaction erratically. It will issue a START condition
and drive one bit of the message, then drive a new START condition and restart the transmission
(including the first bit).

Work Arounds:

Do not set up the MPC850’s I2C controller to perform “double start.”

Projected Solution:

Corrected in Revision B.

CPM

CPM7 I2C: short aborted transmission after NACK

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 27

Description:

IF the MPC850’s I2C master performs a loopback transaction (for example, a master write to its
own I2C address or a master write to the General Call address with General Call reception
enabled).

AND the MPC850’s I2C master then performs a master read transaction

THEN the receive buffer used for the loopback transaction will not be closed after the loopback
transaction. Instead, it will be closed after the first byte of the read transaction is received. Thus,
the received data from the read transaction will be split between the loopback buffer and the
intended receive buffer.

Work Arounds:

Avoid performing loopback transactions during normal operation.

Projected Solution:

Corrected in Revision B.

CPM

CPM8 I2C: split receive buffer between loopback and read

Device Errata for the MPC850 Family, Rev. 7

28 Freescale Semiconductor

Description:

IF the MPC850’s I2C controller is configured as an I2C master

AND the I2C controller is the target of another master’s write,

THEN after the MPC850 receives the data from the master (and thus closes the receive buffer
appropriately), it will attempt to open the next receive buffer (even though there is no receive data).
If there is no buffer available, it will generate a BUSY error.

Work Arounds:

Ignore BUSY errors in this case.

Projected Solution:

Corrected in Revision B.

CPM

CPM9 I2C: spurious BUSY errors after reception in I2C master mode

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 29

Description:

If an IN token for an end-point is received exactly between the time the first byte was written to
the FIFO and the time the second byte is written to the FIFO, then the next IN token will be
answered with a frame that has the first byte duplicated. This is caused by the microcode aborting
the in_frame state when the IN token is received and the FIFO is not full. (burt_xxx)

Work Arounds:

A microcode patch is available and will be placed on the MPC850 web site. This microcode patch
will ignore the fifo_not_ready error if FIFO filling has already started. The microcode package
includes a README document, upatch (micro assembler source), upatcch.map (listing), upatch.c
(C-format object code), and an upatch.srx (S-record format object file).

Projected Solution:

Corrected in Revision B.

CPM

CPM10 USB microcode may duplicate first byte for IN token transfer

Device Errata for the MPC850 Family, Rev. 7

30 Freescale Semiconductor

Description:

When the Port A pin PA13 is configured as the SCC2 function RXD2 and the IrDA logic is not
enabled (for example,,the EN=0 in the IRMODE register), then the MPC850 may consume excess
current due to internal contention after entering deep-sleep mode. Other than the approximate 1mA
of excess current, there are no operational issues.

Work Arounds:

Before entering deep-sleep mode, configure PA13 as a general-purpose input. When you exit
deep-sleep mode, reconfigure PA13 as the SCC2-controlled RXD2, as required.

Projected Solution:

Corrected in Revision B.

CPM

CPM11 Port A pin (PA13) may consume excess current in deep-sleep mode

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 31

Description:

An initialization problem in the USB block might cause excess current in the deep-sleep mode,
typically around 500µA.

Work Arounds:

As part of the power-on initialization sequence, the software should enable the baud rate generator
clock1 (BRGC1) by setting the EN bit to 1 and leaving it set for at least 16 system clocks before
changing the serial interface clock route register from its default value (0x00000000).

Projected Solution:

Corrected in Revision B.

CPM

CPM12 Improper USB initialization may cause excess current in deep-sleep
mode

Device Errata for the MPC850 Family, Rev. 7

32 Freescale Semiconductor

Description:

If Port B pin PB25 is configured to function as TXD3, it will fail to transmit data.

Work Arounds:

Connect a pullup resistor to Port B pin PB25 if it is configured to function as TXD3. The pin will
then transmit normally.

Projected Solution:

Corrected in Revision B.

CPM

CPM13 Port B pin (PB25) fails to function as TXD3

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 33

Description:

The ERAM4K bit is cleared in the RISC Microcode Development Support Control Register,
RMDS, if the register’s location is accessed as either part of a half-word or byte access.

Work Arounds:

If the ERAM4K is to be set, the RMDS must be accessed as part of a word starting at IMMR+9C4
to IMMR+9C7.

Projected Solution:

No scheduled fix.

CPM

CPM14 The ERAM4K bit in the RISC Microcode Development Support Control
Register (RMDS) is erroneously cleared

Device Errata for the MPC850 Family, Rev. 7

34 Freescale Semiconductor

Description:

If both USB and ATM or Ethernet are used simultaneously, USB underruns will occur.

Work Arounds:

Software should re-initialize the USB TX BD.

Projected Solution:

No scheduled fix.

CPM

CPM15 USB underrun when ATM or Ethernet function is used in conjunction
with USB

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 35

Description:

When an endpoint is used only for receiving, there may be a case where this endpoint may lock up
when an IN token is received to this endpoint. For example: 3 endpoints are set up on the 850 USB.
Endpoint 0 being a control endpoint (usually both receive and transmit) and endpoint 1 is set up as
a transmit-only endpoint and endpoint 2 set up as a receive-only end point. A lock up may occur
on endpoint 1 when an IN token is received for endpoint 1. When this occurs, the 850 will fail to
respond to this IN token. (Neither NACK nor ACK is given by the 850.)

Work Arounds:

A fix package exists on the product website. The package includes a microcode patch and the
application software workaround procedure, as well as a text file with instructions on how to
implement the workaround.

Projected Solution:

No scheduled fix.

CPM

CPM16 USB endpoint lock up

Device Errata for the MPC850 Family, Rev. 7

36 Freescale Semiconductor

Description:

A variety of erratic behavior occurs when a skew of greater than +4 or -20 ns is introduced between
the differential USB rxd-p/rxd-n pair and the single USB RX data single. This condition causes the
850’s USB module to misinterpret incoming tokens and data, further resulting in incorrect protocol
responses.

Work Arounds:

Add external logic to delay the differential input so that the skew will be less than +4 or -20 ns.

Projected Solution:

No scheduled fix.

CPM

CPM17 USB occasionally ignores tokens, violates USB protocol by providing
incorrect responses, etc.

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 37

Description:

When a control endpoint’s USEP register has STALL handshake enabled, software may not have
enough time to exit STALL upon reception of the next transaction as required by the USB protocol.

Work Arounds:

A fix package exists on the product website that will exit the endpoint out of STALL in a timely
manner. This package includes the microcode patch for CPM18 as well as CPM16 in the form of
a combination patch. The package includes a microcode patch, application software workaround
procedure, as well as a text file with instructions on how to implement the workaround.

Projected Solution:

No scheduled fix.

CPM

CPM18 Stall handshake

Device Errata for the MPC850 Family, Rev. 7

38 Freescale Semiconductor

Description:

The current versions of the MPC850 silicon are only tested and verified at 3.0V–3.6V power.
Because of this, low voltage operation at 2.2V cannot be used to power the core.

Work Arounds:

None.

Projected Solution:

No scheduled fix.

General

G1 Core operation is limited to a 3.0V minimum

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 39

Description:

There are four nodes within the MPC850 that are floating when VDDH and VDDL power is not
supplied to the device. When this condition occurs, which is typical in Power Down Mode, the
current drain on the Keep-Alive Power rail is greater than expected. (10 - 20 mA versus 10 µA).

Work Arounds:

Provide adequate current source for KAPWR pin in Power Down Mode.

Projected Solution:

Corrected in Revision 0.2.

General

G2 Higher than expected Keep Alive Power (KAPWR) current when main
power (VDDH & VDDL) is removed

Device Errata for the MPC850 Family, Rev. 7

40 Freescale Semiconductor

Description:

When the MPC850 uses EXTCLK as an input clock source and MF=001 in PLPRCR (for example,
the frequency of EXTCLK is 1/2 of the internal clock) and the half-speed bus mode is used
(EBDF=01 in SCCR), the output clock from CLKOUT could be 90 degrees or 180 degrees out of
phase from the input clock. This will affect synchronous designs where the same clock source is
used as an input to EXTCLK, as well as to an external synchronous device (for example, a
peripheral or ASIC).

Work Arounds:

Case 1. Where multiple external devices need to operate synchronously with the MPC850:

Use the CLKOUT pin of the MPC850 as the source of clock for all external, synchronous devices
(for example, CLKOUT is the affective system master clock to be used for distribution).

Case 2. Where it is necessary to synchronize an external master clock (for example, from a
backbone), an MPC850, and external peripherals, to allow data transfers in all three directions:

There is no known workaround for this case. Use full-speed bus operation.

Projected Solution:

Corrected in Revision B.

General

G3 EXTCLK and CLKOUT clocks may not be in phase in half-speed bus
mode

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 41

Description:

In correct operation, the PLL of the MPC850 will lock on the rising edge of the input clock.
However, on these revisions of the MPC850, the PLL may lock on the falling edge of the input
clock. This will affect the skew between EXTCLK and CLKOUT at the rising edge. The skew is
dependent on the duty cycle of the input clock (but for a 50% duty cycle will not exceed 2nS). This
will affect synchronous designs where the same clock source is used as an input to EXTCLK, as
well as to an external synchronous device (for example, a peripheral or ASIC).

Work Arounds:

Case 1. Where multiple external devices need to operate synchronously with the MPC850:

Use the CLKOUT pin of the MPC850 as the source of clock for all external, synchronous devices
(for example, CLKOUT is the affective system master clock to be used for distribution).

Case 2. Where it is necessary to synchronize an external master clock (for example, from a
backbone), an MPC850, and external peripherals, to allow data transfers in all three directions:

[NOTE: This workaround is a concept only. It has not been verified in hardware.]

Insert a PLL between the external master clock and the EXTCLK pin of the MPC850. Connect the
phase comparison pin of the PLL to the CLKOUT pin of the MPC 860. Also use the CLKOUT
signal as the reference clock for distribution to the local external peripherals.

Important Note: The PLL has to be capable of operating with a permanent offset of -2nS, therefore
the range of lock should extend to about -4nS.

A diagram of this concept is given below:

Projected Solution:

Corrected in Revision B.

General

G4 Potential problems caused by skew between EXTCLK and CLKOUT

PLL 860

Ext. Clock Source CLKOUT
+

-

EXTCLK

Clock
Master
at
board
level

Device Errata for the MPC850 Family, Rev. 7

42 Freescale Semiconductor

Description:

The XFC pin (B2) of this version of the MPC850 silicon fails Motorola’s XC qualification of 1 KV
for the Electrostatic Discharge (ESD) breakdown voltage test. The maximum ESD voltage that can
be applied to this pin on this silicon without damage is 750 volts.

Work Arounds:

Ensure that devices are not exposed to greater than 750 volts of electrostatic discharge.

Projected Solution:

Corrected in Revision A.

General

G5 Breakdown voltage for XFC pin less than Motorola-imposed
requirements

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 43

Description:

The active pullup drivers (which include TS, TA, BI, and BB) switch to high-impedance at a
threshold voltage which is lower than the specified minimum output voltage level VOH.
Thereafter, the pullup resistor must pull the signal beyond the specified output voltage level.
Depending upon the pullup resistor value and the capacitive load of the signal, this can result in a
deassertion time which is longer than specified.

Work Arounds:

Use a 1 kΩ pullup resistor for these drivers.

NOTE
The long rise times do not cause a problem to the processor. Furthermore, in
most systems, the longer rise times for these signals will also not present a
problem for other devices.

1. TS is normally sampled at the beginning of a bus cycle, and is thereafter a “don’t-care” until
the cycle is terminated with TA. Thus, a TS which extends into the next clock cycles will be
ignored.

2. BI must only be in its negated state when sampled concurrently with TA when a cycle is to a
burstable target. In these systems, typically the only burstable target is the UPM, which will
drive the BI actively throughout cycles in which it is in control of the target. Therefore, this
behavior will not affect operation of the memory controller. Furthermore, for burstable targets
that are not in control of the memory controller, (A) the pullup resistor should have plenty of
time to complete the signal deassertion before the TA of the cycle, and (B) the worst that could
result from a falsely asserted BI is that the master would break the burst into four accesses,
resulting in a performance degradation but not a system failure.

3. For a non-burst cycle, TA is normally sampled only once after TS is driven. TA is then a
“don’t-care” until after the next TS is driven. Therefore, there should be sufficient time for the
pullup resistor to complete the signal deassertion of TA before termination conditions for the
next cycle are sampled. For burst cycles, typically the only burstable target in the system is the
UPM, which drives the TA signal actively until the completion of the entire burst cycle, thus
avoiding the problem during the burst. And for other burstable targets, it is the responsibility
of the target to meet the appropriate assertion/deassertion timing for TA.

4. If this condition results in a long deassertion time for BB, the only affect is increased latency
between bus cycles as the bus is handed off between bus masters. That is, the bus would falsely
appear busy for a short period after the on-chip master actually released the bus.

5. TS, TA, BI, and BB will typically be lightly loaded.

Projected Solution:

Corrected in Revision A.

General

G6 Active pullup drivers switch to high-impedance too early

Device Errata for the MPC850 Family, Rev. 7

44 Freescale Semiconductor

Description:

Open collector signal may not be able to be pulled to greater than 3.5V.

Work Arounds:

Use external buffer if an open collector signal needs to be pulled to greater than 3.5V.

Projected Solution:

No scheduled fix.

General

G7 Restriction of open collector pull up

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 45

Description:

The data cache does not support a bus error which might occur on the 2nd or 3rd data beat of a
burst.

Also see CPU2.

Work Arounds:

Avoid using bus error in this case.

Projected Solution:

No scheduled fix.

CPU

CPU1 Bus error unsupported by the data cache burst

Device Errata for the MPC850 Family, Rev. 7

46 Freescale Semiconductor

Description:

If the LDST unit requests data that is not in the Data Cache, then the Data Cache will initiate a burst
cycle to the memory. If during this burst cycle, a parity error is generated on the second or third
words and not on the critical word; then the Data Cache will present the data to the LDST as the
valid data.

Work Arounds:

Disable parity.

Projected Solution:

Corrected in Revision A.

CPU

CPU2 D-Cache presents valid data when parity error present on a burst

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 47

Description:

The data breakpoint mechanism comparison of operand data and operand size is faulty. If used, it
can cause breakpoints where they should not occur, and conversely can miss breakpoints where
they should occur.

Note: The instruction and address portions of the data breakpoint mechanism operate correctly. It
is therefore still possible to use the data breakpoints to break on a store to a particular address
and/or on a store instruction in a particular address range. Only the operand comparison portion of
the data breakpoints does not function properly.

Work Arounds:

Do not use the operand comparison function of the data breakpoints for store instructions.

Projected Solution:

No scheduled fix.

CPU

CPU3 Incorrect data breakpoint detection on store instructions

Device Errata for the MPC850 Family, Rev. 7

48 Freescale Semiconductor

Description:

In the following case there is an error in the program trace mechanism.

Program

0x00004ff0: divw. r25,r27,r26

0x00004ff4: divw. r28,r27,r26

0x00004ff8: unimplemented

0x00004ffc: b 0x00005010

where 0x00005010 belong to a page with a page fault.

The divide takes a long time to complete so the instruction queue gets filled with the
unimplemented instruction, the branch and the branch target (page fault).

When the sequencer takes the unimplemented instruction it releases the fetch (that was blocked by
the MMU error). This causes the queue to get another instruction in addition to the first page fault.
Because the second fault is sequential to the branch target it is not reported by the queue flush (VF).
This causes an incorrect value to be present in the VF flush information when the unimplemented
exception occurs.

Work Arounds:

None.

Projected Solution:

No scheduled fix.

CPU

CPU4 Program trace mechanism error

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 49

Description:

I-cache replacement policy is not optimized. This does not affect the correctness of program
execution, but will affect performance by an average of 10-20%. Once new silicon is available,
performance should improve without any software changes required.

Work Arounds:

None.

Projected Solution:

Corrected in Revision 0.3.

CPU

CPU5 Instruction cache replacement policy bug

Device Errata for the MPC850 Family, Rev. 7

50 Freescale Semiconductor

Description:

The wrong instruction address is driven by the core when all the following conditions occur:

1. MPC850 works in 'show all' mode (for example, ISCT_SER bits=000 in ICTRL)

2. Sequential instruction crosses IMMU page boundary

3. Instruction cache fails to get ownership of the internal U-bus on the first clock

In this case the address driven by the core will be of the previous page and not the current one.

The impact of this erratum has been deemed minimal, and it will therefore not be corrected.

Work Arounds:

Possible work arounds include:

1. Disable show all mode.

2. Invalidate the page next to current (by using the tlbie instruction) when performing the TLB
reload operation.

Projected Solution:

No scheduled fix.

CPU

CPU6 Instruction MMU bug at page boundaries in show-all mode

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 51

Description:

A write access to a special-purpose register located in caches, MMUs or SIU might corrupt the
contents of the data-cache.

This may happen regardless of whether the cache is currently enabled or disabled (by either writing
a disable command to the DC_CST or by setting all regions to cache-inhibited in via
MD_CTR[CIDEF]). Thus, it is not possible to work around this problem by simply temporarily
disabling the data cache.

NOTE: This is a probabilistic affect, caused by an internal race condition, and therefore does not
occur in all cases. However, as it is due to a race condition, it is affected by all parameters which
affect speed of the silicon (for example, silicon revision, temperature, voltage). Therefore, if a
system exhibits behavior which varies due to these factors, it is advisable to check for occurrence
of this erratum.

The special-purpose registers affected by this include:

SPR spr_address

===========================

IMMR 0x3d30

IC_CST 0x2110

IC_ADR 0x2310

IC_DAT 0x2510

DC_CST 0x3110

DC_ADR 0x3310

DC_DAT 0x3510

MI_CTR 0x2180

MI_AP 0x2580

MI_EPN 0x2780

MI_TWC 0x2b80

MI_RPN 0x2d80

MI_DBCAM 0x2190

MI_DBRAM0 0x2390

MI_DBRAM1 0x2590

MD_CTR 0x3180

M_CASID 0x3380

MD_AP 0x3580

MD_EPN 0x3780

M_TWB 0x3980

CPU

CPU7 Possible data cache corruption when writing SPRs

Device Errata for the MPC850 Family, Rev. 7

52 Freescale Semiconductor

MD_TWC 0x3b80

MD_RPN 0x3d80

M_TW 0x3f80

MD_DBCAM 0x3190

MD_DBRAM0 0x3390

MD_DBRAM1 0x3590

DEC 0x2c00

TB Write 0x3880

TBU Write 0x3a80

DPDR 0x2d30

Work Arounds:

There are two possible work-arounds:

1. If the contents of the TLBs are not changed dynamically (fixed-page structure), any access to
the above-mentioned registers should be avoided (except for initialization).

2. If the contents of the TLBs are changed dynamically (pages are loaded on demand), then each
“mtspr” instruction which accesses one of these registers must be preceded by a store word and
a load word instruction of a data operand equal to the spr_address of the respective register. As
an example, to write the data from the general purpose register r1 to the special purpose register
M_TW, the following procedure should be followed:

 lis r2, some_address_msb # an address in RAM

 li r3, 0x3f80 # the spr_address of the M_TW from

 # the table

 stw r3, some_address_lsb(r2) # no interrupts

 lwz r3, some_address_lsb(r2) # between these

 mtspr M_TW, r1 # 3 instructions

Projected Solution:

Corrected in Revision A.

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 53

Description:

IF there are three branches in sequence in the run-time program flow

AND the third branch is in the mis-predicted path of the second branch,

THEN although the third branch is part of a predicted path, it may be “issued” from the instruction
queue. If this instruction issue in the mis-predicted path happens at the same time that the condition
of the prediction is resolved (thereby causing mis-predicted instructions to be flushed from the
instruction queue), then the resulting instruction cancellation will back up too far into the
instruction queue. This will cause the instruction sequence starting from the instruction
immediately preceding the first branch to be re-issued.

Notes:

1. Other factors of the internal state of the core also affect the occurrence of this behavior.
Therefore, not all occurrences of this instruction sequences necessarily exhibit this behavior.

2. This behavior is not necessarily harmful to the user application. For example, the instruction
preceding the first branch could be a simple move between registers.

3. Not all compilers generate this instruction sequence. The following compilers are known never
to generate code that is susceptible to this erratum:

Diab Data (all versions)

Metaware

We are continuing to investigate other compilers with their vendors; their status is unknown at this
time. We will update this list as our investigation progresses.

Work Arounds:

For every conditional branch preceded in program order by another branch:

1. IF the two possible targets of the conditional branch consist of a branch instruction and a
non-branch instruction

THEN force the prediction of the conditional branch to predict the non-branch instruction (using
the y-bit in the opcode of the conditional branch).
2. IF both of the possible targets of the conditional branch are branch instructions

THEN

1. insert a non-branch instruction before the branch on the predicted path

OR

2. insert an 'isync' instruction before the first branch.

Projected Solution:

Corrected in Revision B.

CPU

CPU8 Branch prediction with sequential branch instructions

Device Errata for the MPC850 Family, Rev. 7

54 Freescale Semiconductor

Description:

IF the instruction cache is enabled, THEN:

IF a conditional branch residing near the boundary of the current memory page is mis-predicted
such that the CPU fetches beyond the page boundary

AND the branch target also resides on another memory page

THEN the instruction at the branch target address may not be executed.

[The boundary of the current memory page is as follows:

1. If the MMU is enabled (MSR[IR]=1), then it is as defined by the associated MMU page table
entry

2. If the MMU is disabled (MSR[IR]=0), then it is at a 4KB boundary.]

Note: This erratum depends also on the internal state of the core (instruction queue cancellation
and MMU page swap), so it does not occur in all cases.

Work Arounds:

1. Disable the instruction cache. This will cause the instruction to be fetched from external
memory, and will therefore the instruction queue will not be filled until the branch is resolved.

2. Run the CPU in serialized mode (by programming the ICTRL[ISCT_SER] bits). This mode
will keep the predicted instructions from executing until the branch is resolved.

3. Avoid conditional branches with predicted paths that cross page boundaries.

Projected Solution:

Corrected in Revision B.

CPU

CPU9 Missed instruction after conditional branch

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 55

Description:

IF the following instruction sequence occurs:

mtmsr Rx # change IR (Instruction Relocate) bit or PR (Problem # State) bit in
MSR

op1

op2

AND external interrupts were previously enabled (or are being enabled by this mtmsr instruction)

AND an external interrupt or decrementer interrupt occurs (or is already pending)

AND op1 not in the Instruction cache

AND the first instruction in the interrupt handler is fetched at the same clock that the op2
instruction is prefetched from external memory (as seen on the internal bus)

THEN the sequencer takes op2 as the first instruction in the interrupt handler. Also the sequencer
and Instruction cache are out of sync in subsequent instruction fetched in the interrupt handler until
a change of flow is executed. (“Change of flow” can also be isync and mtmsr commands.)

Work Arounds:

Do not execute mtmsr that changes IR or PR bits when external interrupt (and decrementer
interrupt) are enabled (for example, when MSR[EE]=1). Allow at least two sequential instructions
after the mtmsr that changes IR or PR before enabling interrupts.

Projected Solution:

Corrected in Revision B.

CPU

CPU10 Instruction sequencer error when modifying MSR with interrupts
enabled

Device Errata for the MPC850 Family, Rev. 7

56 Freescale Semiconductor

Description:

Certain nodes of the multiplier hardware are not initialized at reset, and may thus result in
non-destructive internal contention. As a result, if the processor is put into Deep Sleep mode
without first putting the multiplier into a known state, current consumption in this mode may be
higher than expected.

The impact of this erratum has been deemed minimal, and it will therefore not be corrected.

Work Arounds:

Execute a mullw instruction at any point after reset; this will put the internal nodes in an orderly
state. Deep Sleep mode may then be entered at any time thereafter.

Projected Solution:

No plans to fix this.

CPU

CPU11 Possible excess current consumption in deep sleep mode

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 57

Description:

[Modes affected: All]

APCO interrupts cannot be masked with the IMASK field of the Receive Connection Table entry
(RCT).

Work Arounds:

Generally, if the APC is programmed well, there should not be any APCO. However, if they do
occur and the user wants to mask them, they may use one of the following methods.

A. Implement a software workaround which will:

1. Ignore the specific APCO interrupts in the Interrupt table,

OR

2. Mask all interrupts globally by using GINT mask in IDMR1 or SCCM.

B. Download the RAM microcode package for enhanced UBR support. An enhancement
supporting APCO masking has been integrated into this package.

Projected Solution:

No scheduled fix.

ATM

ATM1 APCO interrupts cannot be masked

Device Errata for the MPC850 Family, Rev. 7

58 Freescale Semiconductor

Description:

[Modes affected: All]

If a cell is scheduled for transmission via the APC_BYPASS command when the transmit queue is
full, the CPM will lock up, causing immediate failure of all channels.

In the case of a CPM lockup, the CPM must be reset. This can be accomplished either through the
CPCR[RST] or by issuing an SRESET.

This case should not happen during optimal operation. An overflow of the TX queue indicates that
more transmit traffic has been scheduled than the physical layer can transmit, which is an error
condition. Software should avoid this situation.

To fix this, the operation will be changed in the following fashion:

Operation will be changed such that this condition will not cause lockup, and an additional
semaphore bit will be provided to assist in avoiding this situation.

Work Arounds:

Monitor the transmit queue status, and do not issue the APC_BYPASS command if the number of
empty entries in the transmit queue is less than (NCITS+2).

Projected Solution:

No scheduled fix.

ATM

ATM2 CPM lockup when issuing APC_BYPASS when TX queue full

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 59

Description:

[Modes affected: Serial Receive]

If a HEC error occurs during the Presync state of the serial receive cell delineation state machine,
incorrect operation occurs. Instead of moving back to the Hunt state, the receiver decrements Alpha
by one, receives the cell into the Global Raw Cell Queue, and remains in the Presync state. The cell
delineation state machine will move back to the Hunt state only when the Alpha parameter reaches
zero. This erroneous operation can result in long receive startup times, as decrementing Alpha can
cause it to overflow back to 65535. The most common occurrence of this problem occurs when the
lock is lost due to a line going down, and in the received cell sequence when restarting there are
occurrences of both good and bad HECs.

Work Arounds:

IF at restart or in the case when lock state is lost

OR when the cell delineation state machine is not locked and the Global Raw Cell Queue contains
more than 7 cells with HEC errors

THEN program Alpha = 1 and Delta = 6.

After programming these parameters, the user must check after at least 4 system clocks that these
values were actually written to these parameters (and were not overwritten by the CPM).

[Note: A SYNC interrupt is issued in the case of loss of the lock state; see the description of the
SYNC interrupt in the User’s Manual.]

Projected Solution:

Corrected in Revision B.

ATM

ATM3 Incorrect operation in Presync state of cell delineation

Device Errata for the MPC850 Family, Rev. 7

60 Freescale Semiconductor

Description:

The MPC850 is rated for 200 Volts ESD-MM, but the PA15, PB30, PB31, PC15, PD5 and PD3
Parallel I/O pins do not meet the required 200V ESD-MM specified.

Work Arounds:

Observe proper ESD-MM handling precautions for the PA15, PB30, PB31, PC15, PD5 and PD3
Parallel I/O pins. All pins pass at 175V ESD-MM.

Projected Solution:

Will not be fixed.

ESD

ESD1 200 Volts ESD Machine Model (MM) requirements on certain Parallel
I/O pins is not met

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 61

THIS PAGE INTENTIONALLY LEFT BLANK

Device Errata for the MPC850 Family, Rev. 7

62 Freescale Semiconductor

THIS PAGE INTENTIONALLY LEFT BLANK

Device Errata for the MPC850 Family, Rev. 7

Freescale Semiconductor 63

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: MPC850CE
Rev. 7
11/2007

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2007. Printed in the United States of
America. All rights reserved.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
(800) 521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 2666 8080
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	Table 1. Document Revision History
	Table 2. Revision Level to Part Marking Cross-Reference
	Table 3. Summary of MPC850 Silicon Errata and Applicable Revision
	GLL1
	Table 4. Power-On Reset of Registers

	SIU1
	SIU2
	SIU3
	SIU4
	SIU10
	CPM1
	CPM2
	CPM3
	CPM4
	CPM5
	CPM6
	CPM7
	CPM8
	CPM9
	CPM10
	CPM11
	CPM12
	CPM13
	CPM14
	CPM15
	CPM16
	CPM17
	CPM18
	G1
	G2
	G3
	G4
	G5
	G6
	G7
	CPU1
	CPU2
	CPU3
	CPU4
	CPU5
	CPU6
	CPU7
	CPU8
	CPU9
	CPU10
	CPU11
	ATM1
	ATM2
	ATM3
	ESD1

