960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

Rev. 6 — 2 December 2024

Product data sheet

1 General description

These RF power transistors are designed for applications operating at frequencies between 960 and 1215 MHz such as distance measuring equipment (DME), transponders and secondary radars for air traffic control. These devices are suitable for use in pulse applications, including Mode S ELM.

2 Features and benefits

- · Characterized with Series Equivalent Large-Signal Impedance Parameters
- Internally Matched for Ease of Use
- Qualified up to a Maximum of 50 V_{DD} Operation
- Integrated ESD Protection
- · Greater Negative Gate-Source Voltage Range for Improved Class C Operation

3 Typical performance

Table 1. Typical Pulse Performance

 V_{DD} = 50 Volts, I_{DQ} = 200 mA

Application	Signal Type	P _{out} ^[1] (W)	Freq. (MHz)	G _{ps} (dB)	η _D (%)
Narrowband Short Pulse	Pulse (128 µsec, 10% Duty Cycle)	500 Peak	1030	19.7	62.0
Narrowband Mode S ELM	Pulse (48 × (32 µsec on, 18 µsec off), Period 2.4 msec, 6.4% Long-term Duty Cycle)	500 Peak	1030	19.7	62.0
Broadband	Pulse (128 µsec, 10% Duty Cycle)	500 Peak	960–1215	18.5	57.0

[1] Minimum output power for each specified pulse condition.

Table 2. Load Mismatch

Frequency			Peak Power		
(MHz)	Signal Type	VSWR	(W)	Test Voltage	Result
1030	Pulse	10:1 at All Phase Angles	500	50	No Device Degradation

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

4 Pinning information

5 Ordering information

Table 3. Ordering Information					
Device	Tape and Reel Information	Package			
MRF6V12500HR5		NI-780H-2L			
MRF6V12500HSR5	R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel	NI-780S-2L			
MRF6V12500GSR5		NI-780GS-2L			

6 Maximum ratings

Table 4. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +110	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	–65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature ^[1]	TJ	225	°C

[1] Continuous use at maximum temperature will affect MTTF.

7 Thermal characteristics

Table 5. Thermal Characteristics

Characteristic	Symbol	Value ^[1]	Unit
Thermal Impedance, Junction to Case Case Temperature 80°C, 500 W Peak, 128 µsec Pulse Width, 10% Duty Cycle	Ζ _{θJC}	0.044	°C/W

[1] Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to https://www.nxp.com/RF and search for AN1955.

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

8 ESD protection characteristics

Table 6. ESD Protection Characteristics				
Test Methodology	Class			
Human Body Model (per JESD22-A114)	2, passes 2600 V			
Machine Model (per EIA/JESD22-A115)	B, passes 200 V			
Charge Device Model (per JESD22-C101)	IV, passes 2000 V			

9 Electrical characteristics

9.1 DC characteristics — off characteristics

Table 7. DC Characteristics — Off Characteristics

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Characteristic	Symbol	Min	Тур	Мах	Unit
Gate-Source Leakage Current $(V_{GS} = 5 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$	I _{GSS}			10	µAdc
Drain-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 200 mA)	V _{(BR)DSS}	110			Vdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 50 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	20	µAdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 90 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}			200	µAdc

9.2 DC characteristics — on characteristics

Table 8. DC Characteristics — On Characteristics

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Characteristic	Symbol	Min	Тур	Max	Unit
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 1.32 mA)	V _{GS(th)}	0.9	1.7	2.4	Vdc
Gate Quiescent Voltage $(V_{DD} = 50 \text{ Vdc}, I_D = 200 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GS(Q)}	1.7	2.4	3.2	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 3.26 Adc)	V _{DS(on)}	_	0.25		Vdc

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

9.3 Dynamic characteristics

Table 9. Dynamic Characteristics

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})^{[1]}$

Characteristic	Symbol	Min	Тур	Мах	Unit
Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	0.2		pF
Output Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	697	_	pF
Input Capacitance (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}		1391	_	pF

[1] Part internally matched both on input and output.

9.4 Functional tests

Table 10. Functional Tests

(In NXP Narrowband Test Fixture, $T_A = 25^{\circ}$ C unless otherwise noted, 50 ohm system) $V_{DD} = 50$ Vdc, $I_{DQ} = 200$ mA, $P_{out} = 500$ W Peak (50 W Avg.), f = 1030 MHz, 128 µsec Pulse Width, 10% Duty Cycle

Characteristic	Symbol	Min	Тур	Max	Unit
Power Gain	G _{ps}	18.5	19.7	22.0	dB
Drain Efficiency	η _D	58.0	62.0	—	%
Input Return Loss	IRL	_	-18	-9	dB

9.5 Typical broadband performance

Table 11. Typical Broadband Performance — 960–1215 MHz

(In NXP 960–1215 MHz Test Fixture, 50 ohm system) V_{DD} = 50 Vdc, I_{DQ} = 200 mA, P_{out} = 500 W Peak (50 W Avg.), f = 960–1215 MHz, 128 µsec Pulse Width, 10% Duty Cycle

Characteristic	Symbol	Min	Тур	Мах	Unit
Power Gain	G _{ps}	_	18.5	—	dB
Drain Efficiency	η _D	_	57.0	—	%

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

10 Test circuit schematic, parts list and component layout

10.1 Test circuit schematic

Figure 2. MRF6V12500H(HS) Test Circuit Schematic

10.2 Component designations and values

Table 12. MRF6V12500H(HS) Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C2	5.1 pF Chip Capacitors	ATC100B5R1CT500XT	ATC
C3, C4, C5, C6	33 pF Chip Capacitors	ATC100B330JT500XT	ATC
C7, C10	10 μF, 50 V Chip Capacitors	GRM55DR61H106KA88L	Murata
C8, C11, C13, C16	2.2 μF, 100 V Chip Capacitors	2225X7R225KT3AB	ATC
C9	22 μF, 25 V Chip Capacitor	TPSD226M025R0200	AVX
C12	1 μF, 100 V Chip Capacitor	GRM31CR72A105KA01L	Murata
C14, C15	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
R1, R2	56 Ω , 1/4 W Chip Resistors	CRCW120656R0FKEA	Vishay
R3, R4	0 Ω, 3 A Chip Resistors	CRCW12060000Z0EA	Vishay

MRF6V12500H Product data sheet

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

10.3 Component layout

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

10000 Ciss 1000 Coss C, CAPACITANCE (pF) 100 Measured with ±30 mV(rms)ac @ 1 MHz $V_{GS} = 0 V dc \equiv$ 10 1 Crss 0.1 10 0 20 30 40 50 VDS, DRAIN-SOURCE VOLTAGE (VOLTS) Figure 4. Capacitance versus Drain-Source Voltage 160 140 Maximum operating T_{case} (° C) P_{out} = 475 W 120 100 P_{out} = 525 W 80 P_{out} = 500 W 60 40 V_{DD} = 50 Vdc, I_{DQ} = 200 mA f = 1030 MHz, Pulse Width = 128 μsec 20 0 5 10 0 15 20 25 DUTY CYCLE (%) Figure 5. Safe Operating Area 22 80 21 70 Gps 20 η_{D,} DRAIN EFFICIENCY (%) 60 POWER GAIN (dB) 50 19 18 40 η_D 17 30 G_{bs}, 16 20 V_{DD} = 50 Vdc, I_{DQ} = 200 mA, f = 1030 MHz 15 10 Pulse Width = $128 \ \mu sec$, Duty Cycle = 10%14 0 100 30 1000 Pout, OUTPUT POWER (WATTS) PEAK Figure 6. Power Gain and Drain Efficiency versus Output Power

11 Typical characteristics performance graphs — 1030 MHz

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

11 Typical characteristics performance graphs — 1030 MHz...continued

MRF6V12500H Product data sheet

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

11 Typical characteristics performance graphs — 1030 MHz...continued

Product data sheet

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

11 Typical characteristics performance graphs — 1030 MHz...continued

Component layout and parts list - 960-1215 MHz 12

12.1 Component layout - 960-1215 MHz

Figure 14. MRF6V12500H(HS) Test Circuit Component Layout - 960-1215 MHz

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

12.2 Component designations and values — 960–1215 MHz

Table 13. MRF6V12500H(HS) Test Circuit Component Designations and Values — 960–1215 MHz

Part	Description	Part Number	Manufacturer
C1	2.2 pF Chip Capacitor	ATC100B2R2JT500XT	ATC
C2	0.2 pF Chip Capacitor	ATC100B0R2BT500XT	ATC
C3, C4	33 pF Chip Capacitors	ATC100B330JT500XT	ATC
C5, C6, C11, C12	2.2 μF, 100 V Chip Capacitors	G2225X7R225KT3AB	ATC
C7	22 μF, 35 V Tantalum Capacitor	T491X226K035AT	Kemet
C8	8.2 pF Chip Capacitor	ATC100B8R2CT500XT	ATC
C9, C10	39 pF Chip Capacitors	ATC100B390JT500XT	ATC
C13, C14	0.022 μF, 100 V Chip Capacitors	C1825C223K1GAC	Kemet
C15, C16	0.10 μF, 100 V Chip Capacitors	C1812F104K1RAC	Kemet
C17, C18	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
R1, R2	22 Ω, 1/4 W Chip Resistors	CRCW120622R0FKEA	Vishay
РСВ	0.030", ε _r = 2.55	AD255A	Arlon

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

13 Typical characteristics performance graphs — 960–1215 MHz

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

13 Typical characteristics performance graphs — 960–1215 MHz...continued

960–1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

14 Package information

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DELETED
- 4. DIMENSION H IS MEASURED .030 (.762) AWAY FROM PACKAGE BODY.

STYLE 1:

- PIN 1. DRAIN
 - 2. GATE 3. SOURCE

	INCH MILLIN		LIME	TER		INCH		MILLIMETER		TER		
DIM	MIN	MAX	MIN		MAX	DIM	MIN		MAX	MIN		MAX
А	1.335	- 1.345	33.91	_	34.16	R	.365	—	.375	9.27	_	9.53
В	.380	390	9.65	_	9.91	S	.365	_	.375	9.27	_	9.52
С	.125	170	3.18	_	4.32	aaa	-	.005	_	-	0.12	7 —
D	.495	505	12.57	_	12.83	bbb	-	.010	_	-	0.25	4 —
Е	.035	045	0.89	_	1.14	ccc	-	.015	_	-	0.38	1 —
F	.003	006	0.08	_	0.15	-	_	_	_	-	_	_
G	1.10	0 BSC	27	.94	BSC	-	-	_	_	_	_	_
Н	.057	067	1.45	_	1.7	-	_	_	_	_	_	_
К	.170	210	4.32	_	5.33	-	_	_	_	-	_	_
М	.774	786	19.66	_	19.96	-	_	_	_	-	—	_
Ν	.772	788	19.6	_	20	-	_	_	_	_	_	_
Q	ø.118	– ø.138	øЗ	_	ø3.51	-	-	_	_	_	_	_
¢	NXP SEMIC	CONDUCTORS N.V. HTS RESERVED		M	ECHANICA	LOUT	LINE	PF	RINT VERS	SION NOT	то з	SCALE
TITLE:							DOCUME	NT NC	: 98ASB1	5607C	f	REV: H
	NI-780					STANDARD: NON-JEDEC						
SOT1792-1					14	4 MA	R 2016					

Figure 19. Package Outline (NI-780H-2L) — Notes, Dimensions

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DELETED
- 4. DIMENSION H IS MEASURED .030 (0.762) AWAY FROM PACKAGE BODY.

STYLE 1:

- PIN 1. DRAIN 2. GATE 3. SOURCE

MAX
1.02
0.76
7 —
4 —
1 —
_
_
_
_
_
-
_
SCALE
REV: J
R 2016
>

Figure 21. Package Outline (NI-780S-2L) - Notes, Dimensions

NXP Semiconductors

MRF6V12500H

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- A. DIMENSION AT IS MEASURED WITH REFERENCE TO DATUM T. THE POSITIVE VALUE IMPLIES THAT THE PACKAGE BOTTOM IS HIGHER THAN THE LEAD BOTTOM.

	IN	СН	MILL	IMETER		INCH		MILLIMETER		
DIM	MIN	MAX	Min	MAX	DIM	Min	MAX	Min	MAX	
AA	.805	.815	20.45	20.70	Z	R.000	R.040	R0.00	R1.02	
A1	.002	.008	0.05	0.20	ť	0.	8`	0`	8`	
BB	.380	.390	9.65	9.91						
B1	.546	.562	13.87	14.27						
сс	.125	.170	3.18	4.32	مەت	.005		0.	0.13	
D	.495	.505	12.57	12.83	bbb	.010		0.	25	
E	.035	.045	0.89	1.14	ccc	.015		0.38		
F	.003	.006	0.08	0.15						
L	.038	.046	0.97	1.17						
L1	,010	BSC	0.	25 BSC						
М	.774	.786	19.66	19.96						
N	.772	.788	19.61	20.02						
R	.365	.375	9.27	9.53						
S	.365	.375	9.27	9.53						
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICAL OU						LINE	PRINT VERS	SION NOT T	O SCALE	
TITLE:						DOCUMENT NO: 98ASA00193D REV: C				
NI-780GS-2L						STANDARD: NON-JEDEC				
					SOT1802	-1	22	FEB 2016		
Figure 23, Package Outline (NI-780GS-21) — Notes, Dimensions										

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

15 Product documentation and software

Refer to the following resources to aid your design process.

Application Notes

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

• RF High Power Model

16 Revision history

The following table summarizes revisions to this document.

 Table 14. Revision History

Document ID	Release date	Description
MRF6V12500H Rev. 6	25 November 2024	 Table 2, Ordering information: updated the Device column to reflect the correct orderable part numbers, p. 2
MRF6V12500H Rev. 5	13 July 2016	 Added part number MRF6V12500GS, pp. 1, 3 Added NI-780GS-2L package isometric, p. 1, and Mechanical Outline, pp. 15–16
MRF6V12500H Rev. 4	10 March 2015	 MRF6V12500HR3 tape and reel option replaced with MRF6V12500HR5 and MRF6V12500HSR3 tape and reel option replaced with MRF6V12500HSR5 per PCN15551 Modified figure titles and/or graph axes labels to clarify application use, pp. 6, 7, 9 Typical performance table: added Narrowband Mode S ELM application data, p. 1
MRF6V12500H Rev. 3	13 June 2012	 Table 3, ESD Protection Characteristics: added the device's ESD passing level as applicable to each ESD class, p. 2 Modified figure titles and/or graph axes labels to clarify application use, pp. 5, 6, 9 Fig. 6, Output Power versus Input Power: corrected P_{out}, Output Power unit of measure to watts, p. 5 Fig. 9, Output Power versus Input Power: corrected P_{out}, Output Power unit of measure to watts, p. 6 Fig. 11, MTTF versus Junction Temperature: MTTF end temperature on graph changed to match maximum operating junction temperature, p. 6

NXP Semiconductors

MRF6V12500H

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

Document ID	Release date	Description
MRF6V12500H Rev. 2	15 September 2010	 Maximum Ratings table: corrected V_{DSS} from -0.5, +100 to -0.5, +110 Vdc, p. 2 Added 960-1215 MHz Broadband application as follows: Typical Performance, pp. 1, 2 Fig. 13, Test Circuit Component Layout and Table 6, Test Circuit Component Designations and Values, p. 8 Fig. 14, Pulsed Power Gain, Drain Efficiency and IRL versus Frequency, p. 9 Fig. 15, Power Gain and Drain Efficiency versus Output Power, p. 9 Fig. 16, Series Equivalent Source and Load Impedance, p. 10
MRF6V12500H Rev. 1	28 April 2010	 Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related "Continuous use at maximum temperature will affect MTTF" footnote added, p. 1 Added RF High Power Model availability to Product Software, p. 9
MRF6V12500H Rev. 0	14 September 2009	Initial Release of Data Sheet

Table 14. Revision History...continued

MRF6V12500H Product data sheet

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>https://www.nxp.com</u>.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

All information provided in this document is subject to legal disclaimers.

MRF6V12500H

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules,

regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <u>PSIRT@nxp.com</u>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

 $\ensuremath{\mathsf{NXP}}\xspace$ B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. **NXP** — wordmark and logo are trademarks of NXP B.V.

960-1215 MHz, 500 W, 50 V RF Power LDMOS Transistors

Contents

 Features and benefits	1
 Typical performance	1
 4 Pinning information	1
 5 Ordering information 6 Maximum ratings 7 Thermal characteristics 8 ESD protection characteristics 9 Electrical characteristics 9.1 DC characteristics — off characteristics 	2
 Maximum ratings Thermal characteristics ESD protection characteristics Electrical characteristics DC characteristics — off characteristics 	2
 7 Thermal characteristics	2
 8 ESD protection characteristics 9 Electrical characteristics 9.1 DC characteristics — off characteristics 	2
9Electrical characteristics9.1DC characteristics — off characteristics	3
9.1 DC characteristics — off characteristics	3
	3
9.2 DC characteristics — on characteristics .	3
9.3 Dynamic characteristics	4
9.4 Functional tests	4
9.5 Typical broadband performance	4
10 Test circuit schematic, parts list and	
component layout	5
10.1 Test circuit schematic	5
10.2 Component designations and values	5
10.3 Component layout	6
11 Typical characteristics performance	
graphs — 1030 MHz	7
12 Component layout and parts list — 96	0—
1215 MHz	10
12.1 Component layout — 960–1215 MHz	10
12.2 Component designations and values —	
960–1215 MHz	11
13 Typical characteristics performance	
graphs — 960–1215 MHz	12
14 Package information	14
15 Product documentation and software	20
16 Revision history	20
Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2024 NXP B.V.

All rights reserved.

For more information, please visit: https://www.nxp.com

n Document feedback Date of release: 2 December 2024 Document identifier: MRF6V12500H