BMI7018

18-cell battery-cell controller IC

Rev. 1.0 — 23 September 2024

Product data sheet

1 General description

The BMI7018 is a lithium-ion battery-cell controller IC. It can be used in industrial applications, such as energy storage systems (ESS) and uninterruptible power supply (UPS) systems.

The BMI7018 offers transport protocol link (TPL3 - proprietary isolated daisy chain protocol of NXP) and Serial Peripheral Interface (SPI) for communication with the host microcontroller unit (MCU).

These devices support high precision cell voltage and temperature measurements along with various cell voltage balancing strategies. Aside from a SPI interface to enable direct communication with the host MCU, they provide alternatively a daisy chain communication interface which supports capacitive and inductive isolation between nodes.

18-cell battery-cell controller IC

2 Features and benefits

- Ambient temperature range: from –20°C to +60°C
- · Support for cell-voltage and cell-temperature measurements from the host MCU to the cell
- Cell voltage measurement
 - 4 to 18 cells per device
 - Operating voltage range from 9 V to 90 V
 - Supports bus bars voltage measurement with -3 V to +5 V input voltage
 - 16-bit resolution and up to ±0.8 mV typical measurement accuracy with ultra low long-term drift
 - Integrated configurable digital filter
- External temperature and auxiliary voltage measurements
 - One analog input for absolute measurement, 5 V input range
 - Eight analog inputs configurable as absolute or ratiometric, 5 V input range
 - 16-bit resolution and ±5 mV typical measurement accuracy
 - Integrated configurable digital filter
- Internal measurement
 - Two redundant internal temperature sensors
 - Supply voltages
 - External transistor current
- · Cell voltage balancing
 - 18 internal balancing field effect transistors (FET), up to 360 mA peak with 0.5 Ω R_{DSon} per channel (typ.)
 - Support for simultaneous passive balancing of all channels with automatic odd/even sequence
 - Global balancing timeout timer
 - Timer controlled balancing with individual timers with 10 s resolution and up to 45 h duration
 - Voltage controlled balancing with global and individual undervoltage thresholds
 - Temperature controlled balancing; if balancing resistors or the IC are in overtemperature, balancing is interrupted
 - Configurable pulse width modulation (PWM) duty cycle balancing
 - Automatic pause of balancing during measurement with configurable filter settling time
 - Configurable delay of the start of balancing after transition to sleep
 - Automatic discharge of the battery pack (emergency discharge)
 - Constant current cell balancing to compensate the balancing current variation due to cell voltage variation
- I²C-bus leader interface to control external devices, for example, EEPROMs and security ICs
- · Configurable alarm output
- Cyclic wake-up to monitor the pack and the balancing function during sleep.
- Capability to wake up the host MCU via daisy chain in case of a fault event.
- Host interface supporting SPI or isolated daisy chain communication (TPL3)
 - 2 Mbit/s data rate for TPL interface
 - 4 Mbit/s data rate for SPI interface
- TPL3 daisy chain communication supports
 - Two-wire daisy chain with capacitive or inductive isolation
 - Protocol supporting up to six daisy chains and 62 nodes per chain
- · Unique device ID with dynamic addressing
- · Operation modes
 - Active mode FP (12 mA typ.)
 - Sleep mode LP (60 µA typ.)
 - Deep Sleep mode ULP (15 μA typ.)

BMI7018

18-cell battery-cell controller IC

3 Applications

3.1 Industrial

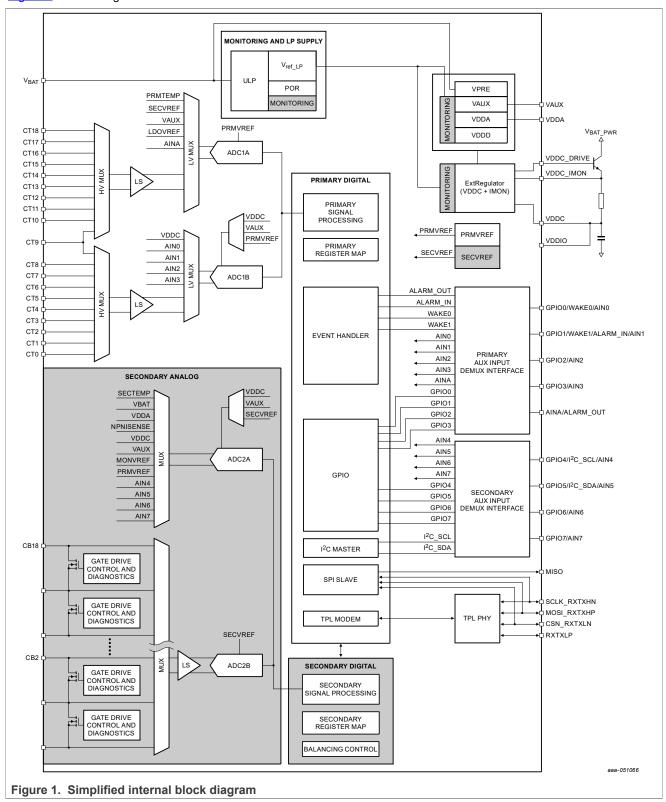
- Energy storage systems (ESS)
- Uninterruptible power supply (UPS)

4 Ordering information

Table 1. Ordering information

Type number	Package					
	Name	ame Description				
MBMI7018	l '	Plastic, thermal enhanced low profile quad flat package; 64 terminals; 0.50 mm pitch; 10 x 10 x 1.4 mm body	SOT1510-2			

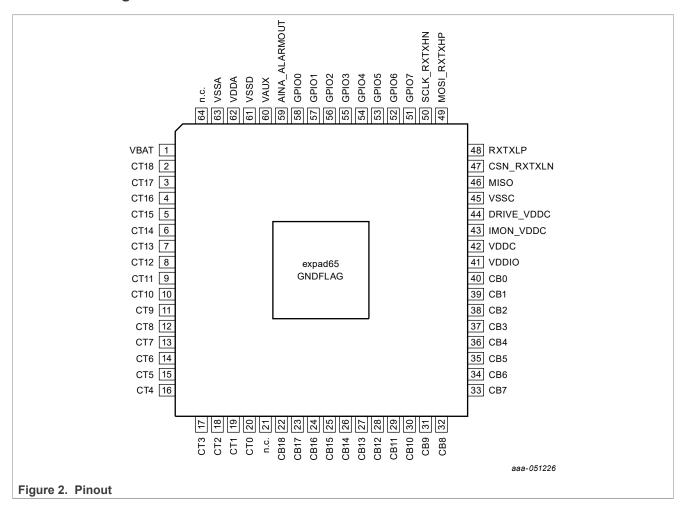
4.1 Ordering options


Table 2. Part numbers

Type number	Description
MBMI7018TA1AE	TPL interface
MBMI7018SA1AE	SPI interface

18-cell battery-cell controller IC

5 Block diagram


Figure 1 shows the general architecture of the BMI7018.

18-cell battery-cell controller IC

6 Pinning information

6.1 Pinout diagram

6.2 Pin description

Table 3. Pin description

able 3. Fill description					
Symbol	Pin	Description			
VBAT	1	Supply input of the product.			
CT18	2	Cell terminal 18 input.			
CT17	3	Cell terminal 17 input.			
CT16	4	Cell terminal 16 input.			
CT15	5	Cell terminal 15 input.			
CT14	6	Cell terminal 14 input.			
CT13	7	Cell terminal 13 input.			
CT12	8	Cell terminal 12 input.			
CT11	9	Cell terminal 11 input.			
CT10	10	Cell terminal 10 input.			

BMI7018

All information provided in this document is subject to legal disclaimers.

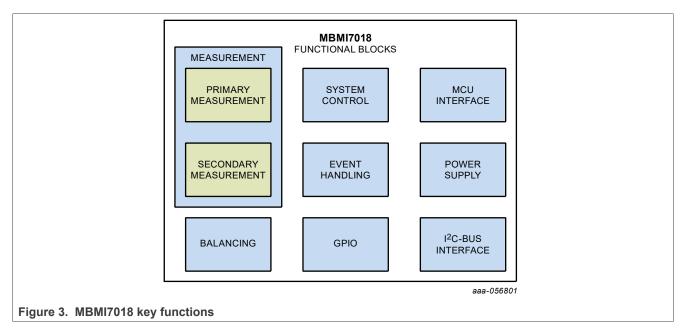
© 2024 NXP B.V. All rights reserved.

Table 3. Pin description...continued

Symbol	Pin	Description
СТ9	11	Cell terminal 9 input.
CT8	12	Cell terminal 8 input.
CT7	13	Cell terminal 7 input.
CT6	14	Cell terminal 6 input.
CT5	15	Cell terminal 5 input.
CT4	16	Cell terminal 4 input.
СТЗ	17	Cell terminal 3 input.
CT2	18	Cell terminal 2 input.
CT1	19	Cell terminal 1 input.
СТО	20	Cell terminal 0 input.
n.c.	21	Not connected.
CB18	22	Secondary cell terminal 18 input 1. High input for cell 17 balancing
CB17	23	 Secondary cell terminal 17 input Low input for cell 17 balancing High input for cell 16 balancing
CB16	24	 Secondary cell terminal 16 input Low input for cell 16 balancing High input for cell 15 balancing
CB15	25	 Secondary cell terminal 15 input Low input for cell 15 balancing High input for cell 14 balancing
CB14	26	 Secondary cell terminal 14 input Low input for cell 14 balancing High input for cell 13 balancing
CB13	27	 Secondary cell terminal 13 input Low input for cell 13 balancing High input for cell 12 balancing
CB12	28	 Secondary cell terminal 12 input Low input for cell 12 balancing High input for cell 11 balancing
CB11	29	 Secondary cell terminal 11 input Low input for cell 11 balancing High input for cell 10 balancing
CB10	30	Secondary cell terminal 10 input Low input for cell 10 balancing High input for cell 9 balancing
СВ9	31	 Secondary cell terminal 9 input Low input for cell 9 balancing High input for cell 8 balancing
CB8	32	 Secondary cell terminal 8 input Low input for cell 8 balancing High input for cell 7 balancing
СВ7	33	 Secondary cell terminal 7 input Low input for cell 7 balancing High input for cell 6 balancing

Table 3. Pin description...continued

Symbol	Pin	Description
CB6	34	Secondary cell terminal 6 input Low input for cell 6 balancing High input for cell 5 balancing
CB5	35	 Secondary cell terminal 5 input Low input for cell 5 balancing High input for cell 4 balancing
CB4	36	 Secondary cell terminal 4 input Low input for cell 4 balancing High input for cell 3 balancing
CB3	37	 Secondary cell terminal 3 input Low input for cell 3 balancing High input for cell 2 balancing
CB2	38	Secondary cell terminal 2 input Low input for cell 2 balancing High input for cell 1 balancing
CB1	39	Secondary cell terminal 1 input Low input for cell 1 balancing High input for cell 0 balancing
CB0	40	Secondary cell terminal 0 input Low input for cell 0 balancing
VDDIO	41	External VDDIO supply input.
VDDC	42	External VDDC supply input.
IMON_VDDC	43	External NPN monitoring input.
DRIVE_VDDC	44	External NPN base output.
VSSC	45	VDDIO and VDDC ground reference.
MISO	46	SPI follower data output to leader.
CSN_RXTXLN	47	 SPI chip select input from leader TPLRX negative input from lower node TPLTX negative output to lower node if not used to be tied to GND through a pulldown resistor
RXTXLP	48	 TPLRX positive input from lower node TPLTX positive output to lower node if not used to be tied to GND through a pulldown resistor
MOSI_RXTXHP	49	 SPI follower data input from leader TPLRX positive input from upper node TPLTX positive output to upper node if not used to be tied to GND through a pulldown resistor
SCLK_RXTXHN	50	SPI clock input from leader TPLRX negative input from upper node TPLTX negative output to upper node if not used to be tied to GND through a pulldown resistor
GPIO7	51	Analog input AIN7 for ratiometric measurement to VAUX/VDDC Analog input AIN7 for absolute measurement General-purpose input 7 General-purpose output 7 if not used to be tied to GND


Table 3. Pin description...continued

Symbol	Pin	Description	
GPIO6	52	Analog input AIN6 for ratiometric measurement to VAUX / VDDC Analog input AIN6 for absolute measurement General-purpose input 6 General-purpose output 6 if not used to be tied to GND	
GPIO5	53	 Analog input AIN5 for ratiometric measurement to VAUX/VDDC Analog input AIN5 for absolute measurement General-purpose input 5 General-purpose output 5 I2CSDA if not used to be tied to GND 	
GPIO4	54	Analog input AIN4 for ratiometric measurement to VAUX/VDDC Analog input AIN4 for absolute measurement General-purpose input 4 General-purpose output 4 I2CSCL if not used to be tied to GND	
GPIO3	55	 Analog input AIN3 for ratiometric measurement to VAUX/VDDC Analog input AIN3 for absolute measurement General-purpose input 3 General-purpose output 3 if not used to be tied to GND 	
GPIO2	56	 Analog input AIN2 for ratiometric measurement to VAUX/VDDC Analog input AIN2 for absolute measurement General-purpose input 2 General-purpose output 2 if not used to be tied to GND 	
GPIO1	57	 Analog input AlN1 for ratiometric measurement to VAUX/VDDC Analog input AlN1 for absolute measurement General-purpose input 1 General-purpose output 1 Wake-up input 1 Alarm input if not used to be tied to GND 	
GPIO0	58	 Analog input AIN0 for ratiometric measurement to VAUX/VDDC Analog input AIN0 for absolute measurement General-purpose input 0 General-purpose output 0 if not used to be tied to GND Wake-up input 0 	
AINA_ALARMOUT	59	Analog input AINA for absolute measurement Alarm output if not used to be tied to GND	
VAUX	60	Supply output for external sensors.	
VSSD	61	Digital ground.	
VDDA	62	Internal analog supply. Should be connected to a 100nF capacitor. Should not be used for application.	
VSSA	63	Analog ground.	
n.c.	64	Not connected.	
GNDFLAG	Expad 65	Grounded exposed pad.	

18-cell battery-cell controller IC

7 Functional description

The BMI7018 is a lithium-ion battery-cell controller IC designed for industrial applications. The key functions of the BMI7018 are shown in Figure 3.

The System control block defines the operational state and the basic configuration of the device.

The <u>Event handling</u> block configures the behavior of the device as response to events such as faults, wake-up, and alarms.

The <u>Power supply</u> section contains information about the power supply of the IC and the external supplies the BMI7018 offers.

The BMI7018 can measure and balance up to 18 battery cells. The measurement block, containing the primary and secondary measurements, is described in <u>Section 7.4 "Measurement"</u>. <u>Section 7.5 "Cell balancing"</u> contains information about the cell balancing functionality.

The BMI7018 provides eight general-purpose input/output (GPIO) pins. The GPIO ports can be used for several purposes, such as interrupt pins or to implement an I²C-bus interface. See Section 7.6 "GPIO pins" for details about the GPIO pins and Section 7.8 "I2C-bus interface" for details on the I²C-bus interface.

Communication between the superior control unit and the BMI7018 is established via TPL or SPI by the microcontroller interface.

7.1 System control

The system control function block controls the operating modes of the device and, along with the operation mode, the availability of the various supply voltages described in <u>Section 7.3</u>.

7.1.1 Operation modes

The device offers four different operation modes.

18-cell battery-cell controller IC

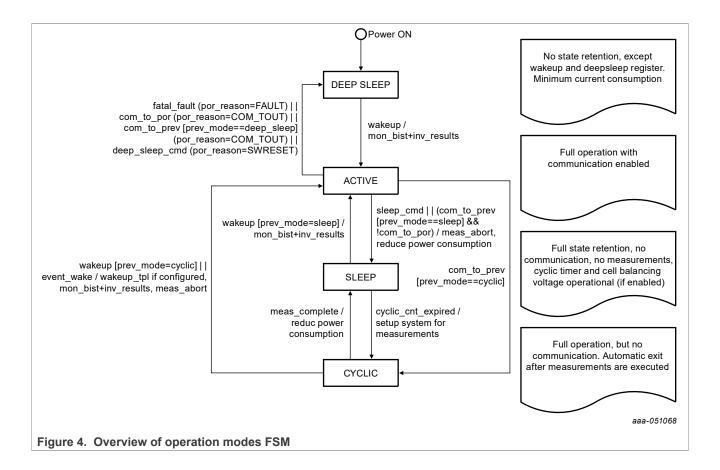


Table 4. Explanation of symbols

Documentation	
Abort measurement if currently ongoing.	
Send TPL wake-up frame.	
Reset and initialize IC.	
Run supply monitor BIST and set all measurement result registers to invalid.	
Communication timeout occurred and timeout reaction is configured to POR.	
Communication timeout occurred and timeout reaction is configured to transition back to previous mode.	
Cyclic wake-up counter has expired.	
An event configured for wake-up occurred: internal events configurable for wake-up, i.e., OV/UV events, or configurable external wake-up sources, i.e., GPIO wake-up pin.	
A fatal internal fault occurred or an internal event that is configured to trigger a POR occurred.	
SW command to transition to sleep (SYS_MODE register).	
SW command to transition to deep sleep (SYS_MODE register).	
Wake-up event on the MCU interface detected.	
Previous mode before transition.	
FEH_POR_REASON register.	
Measurement cycle completed.	

Each operation mode has different features and power consumptions associated with it.

18-cell battery-cell controller IC

Table 5. Operation modes

Operation mode	Behavior	Application usage
Deep sleep (ULP)	Device is off; activation possible only via communication.	Storage mode and default mode after reset.
Sleep (LP)	Low-power operation mode.	Inactive mode, for example, parking of the vehicle; cell balancing possible.
Active	All functions enabled; full performance of device.	Monitoring of the battery.
Cyclic	Device switches automatically between Sleep mode and Active mode.	Balancing while parking of a vehicle.

7.1.1.1 Deep Sleep mode

In Deep Sleep mode, the device is offering the lowest current consumption. Deep Sleep mode is entered automatically after a power-on reset. The device remains in Deep Sleep mode until it detects bus activity. Other wake-up sources are disabled. The deep sleep storage data registers (SYS_DS_STORAGE0 and SYS_DS_STORAGE1) retain their current information. The register FEH_POR_REASON contains the information about the reason for entering Deep Sleep mode. All other registers are reset.

Setting the bit field SYS_MODE.TARGETMODE to DEEPSLEEP (14h) initiates the transition to Deep Sleep mode. This bit field must be set with a message that accesses only the SYS_MODE.TARGETMODE register.

Note: Single-register access is achieved by setting DATALEN to 00b. See <u>Section 7.9.1.1 "TPL3 message</u> structure" for details.

7.1.1.2 Sleep mode

In Sleep mode, the current consumption is very low. The device monitors the wake-up sources, but does not perform ADC conversions. Balancing is possible in Sleep mode. The register content of the <u>cell balancing</u> registers, the <u>system control registers</u>, the <u>event handling registers</u>, and the <u>primary measurement register</u> remain valid. All other registers are reset. With the SYS_CYC_WAKEUP_CFG register set to 0000h, the BMI7018 remains in Sleep mode until a transition to Active mode is initiated. With SYS_CYC_WAKEUP_CFG register set to a value other than 0000h the device automatically changes between Sleep and Cyclic modes.

The sequence to enter Sleep mode in a controlled way is:

- 1. Read undervoltage and overvoltage status bits to confirm system integrity.
- 2. Disable the measurement (measurement results are invalidated).
- 3. Read undervoltage and overvoltage status bits and discard the results.
- 4. Read FEH WAKEUP REASON to ensure no wake-up events are pending.
- 5. Send go-to-sleep command.

Setting the bit field SYS_MODE.TARGETMODE to SLEEP (0Ah) initiates the transition to Sleep mode. This bit field must be set with a message that accesses only the SYS_MODE.TARGETMODE register.

Note: Single-register access is achieved by setting DATALEN to 00b. See <u>Section 7.9.1.1 "TPL3 message structure"</u> for details.

7.1.1.3 Active mode

In Active mode, the device is fully operational. When entering Active mode, all measurement results are invalidated. A <u>BIST</u> is executed when entering into Active mode to check the integrity of the device.

18-cell battery-cell controller IC

7.1.1.4 Cyclic mode

Cyclic mode is entered via Sleep mode with SYS_CYC_WAKEUP_CFG register set to a value other than 0000h. The device automatically transitions between cyclic and sleep states. In the cyclic state, BMI7018 executes one periodic measurement (Section 7.4.3.1 "Periodic measurement") and evaluates the results for undervoltage and overvoltage conditions. After the evaluation, it either returns to Sleep mode or wakes up if any of the configured wake-up events (Section 7.2.2 "Events") has been detected. The bit field SYS_CYC_WAKEUP_CFG.PERIOD configures the cycle time.

Note: The BMI7018 manages the MEASEN bit in Cyclic mode automatically.

7.1.2 System control features

7.1.2.1 System configuration CRC

The BMI7018 contains many configuration registers. All of these registers can be read to verify the device configuration. The BMI7018 calculates a cyclic redundancy check (CRC) across the content of the configuration registers. The MCU can use this CRC value to validate the integrity of the configuration. The CRC is recalculated whenever a register covered by the CRC is written or the CRC value is read.

The system configuration CRC covers the SYS_COM_CFG, SYS_COM_TO_CFG, SYS_SUPPLY_CFG, SYS_CYC_WAKEUP_CFG, and SYS_TPL_CFG register.

The used polynomial is: D175h (+1) = $X^{16} + X^{15} + X^{13} + X^9 + X^7 + X^6 + X^5 + X^3 + X^1 + 1$.

Notes:

- The CRC value depends on the configuration of the device and is therefore application dependent.
- The polynomial used here is different to the polynomial used for communication.

Application usage: Check integrity of the system configuration.

7.1.2.2 Communication, communication timeout configuration, and TPL configuration

The register SYS_COM_CFG contains the daisy chain and device address of the device, as well as the overall number of devices in the daisy chain.

The register SYS_COM_TO_CFG configures the communication timeout of the device.

The register SYS_TPL_CFG configures the wake-up compatibility, termination, and response properties of the TPL ports.

The configuration applied here is used by the microcontroller interface. For a detailed description, see Section 7.9 "Microcontroller interface".

7.1.2.3 Supply configuration

VDDC and VAUX are intended to supply the GPIO ports and sensor networks. The bits VDDCCYC and VAUXCYC in the SYS_SUPPLY_CFG register control the state of the VDDC and VAUX supplies in Cyclic mode. The bit VAUXACT controls the state of VAUX in Active mode.

The bit CURMATCH enables the supply current matching feature of the BMI7018. When the feature is enabled, the current consumption of the BMI7018 is within $\Delta I_{BAT(FP)}$.

7.1.2.4 System mode and interval for cyclic measurements

The registers SYS_MODE and SYS_CYC_WAKEUP_CFG control the operation mode of the device and the interval for the cyclic measurements.

BMI7018

18-cell battery-cell controller IC

Application usage: State control and monitoring of the system voltages, for example, during balancing in Sleep mode.

7.1.2.5 Clock synchronization

With the register SYNCCNT, it is possible to adjust the internal clock of the BMI7018.

Application usage: Synchronize measurement timing between multiple BMI7018 devices.

7.1.2.6 System version

The SYS_VERSION register provides information about the revision of the silicon.

Table 6. System version identification

TYPE FREV		MREV	Product version	
03h	9h	1h	BMI7018	
Others	Others			

Application usage: Identification of silicon revision.

7.1.2.7 Software interface information

The BMI7018 does not contain software, but provides some information about the compatibility between the register definitions of different product variants. The SYS_PROD_VER register allows a fast assessment whether software generated for a specific product version can be used for other product versions.

Table 7. Software interface information

Major	Minor	Patch	Silicon state
2h	Oh	0h	

7.1.2.8 Unique device ID

The registers SYS_UID_LOW, SYS_UID_MID, and SYS_UID_HIGH provide together a unique identification value for each BMI7018.

Application usage: Identification of ICs for system integrity checks and tracking.

7.1.2.9 Deep sleep storage data

The registers SYS_DS_STORAGE0 and SYS_DS_STORAGE1 provide 32-bit data storage. The bits are not used by the BMI7018 and are free to be used in the overall application. The BMI7018 never clears the content of these registers. However, when the supply voltage for the BMI7018 is removed, the content of the register is lost. The register is not initialized at restart of the IC and may show any value.

Application usage: Storage of tracking data; storage of current class for contactor relays.

7.1.3 System control registers

All registers related to the system control are listed here. Details to the registers and the bit fields are explained in the register map section.

18-cell battery-cell controller IC

Table 8. Register overview: System_Control_Registers

Address	Name	Access	Reset	Description	
0h	SYS_CFG_CRC	R	0h	system configuration CRC	
1h	SYS_COM_CFG	R/W	200h	communication initialization	
2h	SYS_COM_TO_CFG	R/W	1Eh	system communication timeout	
3h	SYS_SUPPLY_CFG	R/W	8003h	supply configuration	
4h	SYS_MODE	R/W	1400h	system mode	
5h	SYS_CYC_WAKEUP_CFG	R/W	0h	interval for cyclic measurements	
6h	SYS_TPL_CFG	R/W	10h	TPL configuration	
8h	SYS_CLK_SYNC_CTRL	R/W	0h	clock Synchronization	
10h	SYS_VERSION	R	320h	device silicon identifier	
11h	SYS_UID_LOW	R	0h	unique device ID lower part	
12h	SYS_UID_MID	R	0h	unique device ID middle part	
13h	SYS_UID_HIGH	R	0h	unique device ID higher part	
14h	SYS_PROD_VER	R	200h	software interface related version of the product	
80h	SYS_DS_STORAGE0	R/W	0h	deep sleep storage data 0; the value is stored in the ULP domain	
81h	SYS_DS_STORAGE1	R/W	0h	deep sleep storage data 1; the value is stored in the ULP domain	

7.2 Event handling


The event handling block configures the reaction of the device when events or faults occur.

During regular operation of the device, events can occur. Events are items, such as wake-up or alarm signals. Events can cause a wake-up and/or an activation of the alarm output.

The term "fault" is used for events that should not occur during regular operation. Faults indicate a malfunction of the system, such as missing supply voltages. For faults, it can be selected to create a power-on reset (POR) or create a fault event. If nothing is selected, the fault is only reported.

18-cell battery-cell controller IC

Figure 5 shows the principle structure of the fault and event handling in the system.

7.2.1 Faults

The BMI7018 monitors the system for faults. The monitoring is done via dedicated hardware instances and independent of the measurement block. Some faults are critical for the correct operation of the device. These faults (VDDDLPPERMUV, VBATUV, VDDCOC, VDDDOV, VDDDUV, VDDDLPUV, OTEMPSHUTDOWN, PRMCLK, SECCLK, SLEEPOSC, and LOGICERR) trigger a POR.

Once a fault is detected, the corresponding fault bit is set. Individual faults are grouped into supply, analog, communication, and measurement-related faults allowing a quick overview. Register FEH_GRP_FLT_STAT provides the overview based on the fault group. The fault registers (FEH_SUPPLY_FLT_STAT0, FEH_SUPPLY_FLT_STAT1, FEH_ANA_FLT_STAT, FEH_COM_FLT_STAT, and FEH_MEAS_FLT_STAT) signal the specific fault. For each fault, it can be selected that the BMI7018 directly issues a POR, and/or generates a system fault event (SYSFLTEVT). If nothing is selected, the device reports the fault and continues operation.

Table 9. Overview of faults

Faults	Fault description	Forced POR	Fault group	Monitoring condition	Covered by BIST	Effects and comments
VDDDLPPERMUV	Undervoltage on internal supply for low-power operation.	Yes	SUPPLYFLT	All modes	No	
VBATOV	Overvoltage condition on pin VBAT (external supply for IC).	Selectable	SUPPLYFLT	Active and Cyclic modes	Start-up BIST	Disabling of balancing Incorrect ADC results for VBAT Disables AFECP leading to AFECPUV Invalidation of SYNC measurement results in SECM
VBATLV	Low-voltage condition on pin VBAT (external supply for IC).	Yes, in case automatic discharge is on; selectable in case automatis discharge is off	SUPPLYFLT	Active and Cyclic modes; Sleep mode if balancing is enabled	No	Generates wake event in case balancing is Active and FEH_WAKEUP_ CFG0.SYSFLTEV is set

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

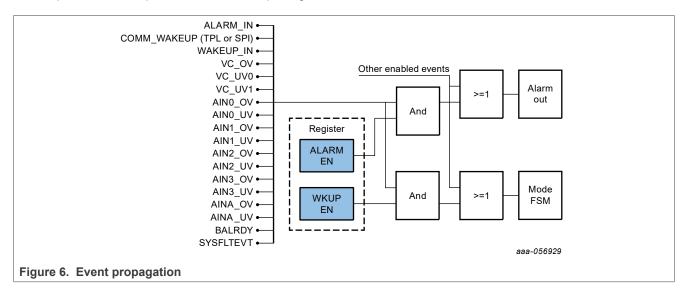
Table 9. Overview of faults...continued

Faults	Fault description	Forced POR	Fault group	Monitoring condition	Covered by BIST	Effects and comments
VBATUV	Undervoltage condition on pin VBAT (external supply for IC).	Yes	SUPPLYFLT		No	
VDDCOV	Overvoltage condition on VDDC (supply for GPIO pins and TPL interface).	Selectable	SUPPLYFLT	Active mode and Cyclic mode when VDDCCYC = 1	Manual BIST	Invalidation of APP results in case VDDC is used for ratiometric results
VDDCUV	Undervoltage condition on VDDC (supply for GPIO pins and TPL interface).	Selectable	SUPPLYFLT	Active mode and Cyclic mode when VDDCCYC = 1	Manual BIST	Invalidation of APP results in case VDDC is used for ratiometric results
VDDCOC	Overcurrent condition on VDDC.	Yes	SUPPLYFLT	Active mode and Cyclic mode when VDDCCYC = 1	No	
VDDCHC	High current condition on VDDC.	Selectable	SUPPLYFLT	Active mode and Cyclic mode when VDDCCYC = 1	No	
VAUXOV	Overvoltage condition on VAUX (supply for external circuit).	Selectable	SUPPLYFLT	Active mode when VAUXACT = 1 and Cyclic mode when VAUXCYC = 1	Manual BIST	Invalidation of APP results in case VAUX is used for ratiometric results
VAUXUV	Undervoltage condition on VAUX (supply for external circuit).	Selectable	SUPPLYFLT	Active mode when VAUXACT = 1 and Cyclic mode when VAUXCYC = 1	Manual BIST	Invalidation of APP results in case VAUX is used for ratiometric results
VDDIOOV	Overvoltage condition on VDDIO (supply for SPI and I2C-bus).	Selectable	SUPPLYFLT	Active and Cyclic modes	No	
VDDIOUV	Undervoltage condition on VDDIO (supply for SPI and I2C-bus).	Selectable	SUPPLYFLT	Active and Cyclic modes	No	
VDDDOV	Overvoltage condition on VDDD (internal digital supply).	Yes	SUPPLYFLT	Active and Cyclic modes	No	
VDDDUV	Undervoltage condition on VDDD (internal digital supply).	Yes	SUPPLYFLT	Active and Cyclic modes	No	
VDDDLPUV	Undervoltage on internal supply for low-power operation.	Yes	SUPPLYFLT	Active, Cyclic, and Sleep modes	No	
VDDAOV	Overvoltage condition on VDDA (internal analog supply).	Selectable	SUPPLYFLT	Active and Cyclic modes	Start-up BIST and manual BIST	Invalidation of SYNC measurement results in SECM
VDDAUV	Undervoltage condition on VDDA.	Selectable	SUPPLYFLT	Active and Cyclic modes	Start-up BIST and manual BIST	Invalidation of SYNC measurement results in SECM
VPREOV	Overvoltage condition on VPRE (supply of the IC).	Selectable	SUPPLYFLT	Active and Cyclic modes	No	
VPREUV	Undervoltage condition on VPRE (supply of the IC).	Selectable	SUPPLYFLT	Active and Cyclic modes	No	

Table 9. Overview of faults...continued

Faults	Fault description	Forced POR	Fault group	Monitoring condition	Covered by BIST	Effects and comments
VPREREFSOV	Overvoltage condition on VPR EREFS (supply for IC reference).	Selectable	SUPPLYFLT	Active and Cyclic modes	No	
VPREREFSUV	Undervoltage condition on VPR EREFS (supply for IC reference).	Selectable	SUPPLYFLT	Active and Cyclic modes	Start-up BIST and manual BIST	
VANAOV	Overvoltage condition on VANA.	Selectable	SUPPLYFLT	Active and Cyclic modes	Start-up BIST and manual BIST	Invalidation of SYNC measurement results in SECM
VANAUV	Undervoltage condition on VANA.	Selectable	SUPPLYFLT	Active and Cyclic modes	Start-up BIST and manual BIST	Invalidation of SYNC measurement results in SECM
AFECPOV	Overvoltage condition on AFECP.	Selectable	SUPPLYFLT	Active and Cyclic modes	Start-up BIST and manual BIST	Invalidation of SYNC measurement results in SECM
AFECPUV	Undervoltage condition on AFECP.	Selectable	SUPPLYFLT	Active and Cyclic modes	Start-up BIST and manual BIST	Invalidation of SYNC measurement results in SECM AFECPUV can only be cleared if VBATOV is cleared.
OTEMPSHUTDOWN	Too high junction temperature.	Yes	ANAFLT	Active and Cyclic modes	No	
MONBIST	BIST monitor failure.	No	ANAFLT	On entering Active mode; during manual BIST		
PRMCLK	Primary clock monitor failure.	Yes	ANAFLT	Active and Cyclic modes	No	Invalidation of SYNC measurement results in SECM
SECCLK	Secondary clock monitor failure.	Yes	ANAFLT	Active mode when SECM_CFG. MEASEN = 1	No	Invalidation of SYNC measurement results in SECM
SLEEPOSC	Low frequency oscillator failure.	Yes	ANAFLT	Active, Cyclic, and Sleep modes	No	
FUSEERR	Corrected single bit error in fuses.	No	ANAFLT	Active, Cyclic, and Sleep modes	No	
BALERR	Balancing switch fault.	No	ANAFLT	Active and Cyclic; in Sleep mode, BALERR is detected but wake is only issued in Cyclic and Active mode	No	
FRAMEERR	Communication frame error.	No	COMFLT	Active mode	No	
CRCERR	Communication CRC error.	No	COMFLT	Active mode	No	
СОМТО	Communication timeout.	Selectable	COMFLT	Active mode	No	
COMERRORS	> 255 communication errors.	Selectable	COMFLT	Active mode	No	
PRIMCALCRCFLT	Primary calibration CRC error.	No	MEASFLT	On entering Active or Cyclic mode; start of a synchronous measurement	No	Invalidation of SYNC measurement results in SECM

18-cell battery-cell controller IC


Table 9. Overview of faults...continued

Faults	Fault description	Forced POR	Fault group	Monitoring condition	Covered by BIST	Effects and comments
SECCALCCRCFLT	Secondary calibration CRC error.	No	MEASFLT	On entering Active or Cyclic mode; start of a synchronous measurement	No	Invalidation of SYNC measurement results in SECM
LOGICERR	EDC error.	Yes	MEASFLT	Active, Cyclic, and Sleep modes	No	
SYNCMEASFLT	Synchronous measurement error.	No	MEASFLT	During synchronous measurements	No	Invalidation of SYNC measurement results in SECM

Application usage: Check for faults in the system.

7.2.2 Events

Events are situations that occur during the normal operation of the product. Events include various system faults, balancing ready, voltage checks based on measured data, and so on. Events can be used to trigger a wake-up or can be output via the alarm output signal.

The register FEH_ALARM_CFG (Section 12.1.17) configures which events generate an alarm.

Registers FEH_WAKEUP_CFG0 and FEH_WAKEUP_CFG1 (<u>Section 12.1.22</u>) do configure which events generate a wake-up. The wake-up initiates state transition as described in <u>operation modes</u> and initiates wake-up commands as described in <u>Section 7.9.2</u>.

Table 10. Overview of events

Events	Event description
ALARM_IN	Alarm detection on alarm input pins
COMM_WAKEUP (TPL or SPI)	Wake-up via communication
WAKEUP_IN	Wake-up via wake-up input
VC_OV	Cell voltage on one of the cells enabled in PRMM_VC_OV_UV_CFG measured to be higher than PRMM_VC_OV_TH_CFG
VC_UV0	Cell voltage on one of the cells enabled in PRMM_VC_OV_UV_CFG measured to be lower than PRMM_VC_UV0_TH_CFG
VC_UV1	Cell voltage on one of the cells enabled in PRMM_VC_OV_UV_CFG measured to be lower than PRMM_VC_UV1_TH_CFG
AIN0_OV	Voltage at pin AIN0 measured to be above PRMM_AIN0_OV_TH_CFG
AIN0_UV	Voltage at pin AIN0 measured to be below PRMM_AIN0_UV_TH_CFG

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 10. Overview of events...continued

Events	Event description
AIN1_OV	Voltage at pin AIN1 measured to be above PRMM_AIN1_OV_TH_CFG
AIN1_UV	Voltage at pin AIN1 measured to be below PRMM_AIN1_UV_TH_CFG
AIN2_OV	Voltage at pin AIN2 measured to be above PRMM_AIN2_OV_TH_CFG
AIN2_UV	Voltage at pin AIN2 measured to be below PRMM_AIN2_UV_TH_CFG
AIN3_OV	Voltage at pin AIN3 measured to be above PRMM_AIN3_OV_TH_CFG
AIN3_UV	Voltage at pin AIN3 measured to be below PRMM_AIN3_UV_TH_CFG
AINA_OV	Voltage at pin AINA measured to be below PRMM_AINA_OV_TH_CFG
AINA_UV	Voltage at pin AINA measured to be below PRMM_AINA_UV_TH_CFG
BALRDY	Balancing activity finished; bit BALRDY is set
SYSFAULT	Occurrence of a fault (see <u>Table 9</u>) that: 1. Does not result in a POR. 2. Is enabled.

Application usage: Notification of MCU about events.

7.2.3 Alarm output

The BMI7018 offers an alarm output on AINA_ALARMOUT pin. The alarm output is only available in Active mode. The register <u>FEH_ALARM_CFG</u> defines the configuration. The configuration options are Active HIGH, Active LOW, or Heartbeat mode. In Heartbeat mode, the BMI7018 provides a pattern with a fixed high time and a selectable low time.

Application usage: Notification of MCU about events. Heartbeat mode is also used for checking of integrity of the alarm line.

7.2.4 Alarm input

The BMI7018 offers an alarm input on GPIO1 pin. The register FEH_ALARM_CFG defines the configuration. The configuration options are Active HIGH, Active LOW, or Heartbeat mode. In Heartbeat mode, the BMI7018 expects a pattern with a fixed high time and a selectable low time. The bit FEH_ALARM_CFG.ALARMINHBINV allows inverting the expected pattern. The device is then expecting a fixed low time and a selectable high time.

Application usage: Forwarding of events. Heartbeat mode is also used for checking of integrity of the alarm line.

7.2.5 Built-in self-test (BIST)

The BMI7018 has two BIST methods implemented. The start-up BIST is executed automatically each time the device is entering into Active mode. The manual BIST is started when the bit FEH_MON_BIST_CTRL.STARTBIST is set. FEH_MON_BIST_CTRL.BISTCRC reflects the CRC result of the last BIST. This information shows a completion of the BIST. The individual results of the BIST can be read in the register FEH_MON_BIST_RES. The covered faults of the BIST are shown in Table 9.

Note: Execution of the BIST is manipulating the inputs to the measurements of the BMI7018. The execution of the BIST results in erratic measurements and triggers system faults. During the execution of the start-up BIST, the system faults are masked. No masking is applied during the manual BIST. The BMI7018 reacts to the faults introduced during the manual BIST in the same way as in normal operation. As per the configuration of the device, invalidation of the measurement result, an activation of the fault and alarm outputs, or a POR is initiated. Measurement results that have been acquired while the BIST was Active must be discarded.

Application usage: Functionality check of monitoring instances.

18-cell battery-cell controller IC

7.2.6 Event handling configuration CRC

The BMI7018 contains many configuration registers. For validation of the correctness of the configuration of the device, all configuration registers can be read. The BMI7018 is calculating a CRC across the content of the configuration registers. The MCU can use this CRC value to validate the integrity of the configuration. The CRC is recalculated whenever a register covered by the CRC is written or the CRC value is read.

The event handling CRC covers the FEH_ALARM_CFG, FEH_ALARM_OUT_CFG0, FEH_ALARM_OUT_CFG1, FEH_WAKEUP_CFG0, FEH_WAKEUP_CFG1, FEH_SUPPLY_FLT_POR_CFG0, FEH_SUPPLY_FLT_POR_CFG1, FEH_ANA_FLT_POR_CFG, FEH_SUPPLY_FLT_EVT_CFG0, FEH_SUPPLY_FLT_EVT_CFG1, FEH_ANA_FLT_EVT_CFG, FEH_COM_FLT_EVT_CFG, and FEH_MEAS_FLT_EVT_CFG register.

The used polynomial is: D175h (+1) = $X^{16} + X^{15} + X^{13} + X^9 + X^7 + X^6 + X^5 + X^3 + X^1 + 1$.

Notes:

- The CRC value depends on the configuration of the device and is therefore application dependent.
- The polynomial used here is different to the polynomial used for communication.

Application usage: Check of integrity of the system configuration.

7.2.7 Last POR reason

The register FEH_POR_REASON provides information about the reason of the last POR. The error code for the various reasons is listed in the FEH_POR_REASON register.

A POR may not always be initiated by a single source, but by an event that causes multiple reasons to occur simultaneously. In case supplies are affected, the integrity of the FEH_POR_REASON may also be affected. Because of this reason, the content of the FEH_POR_REASON should only be considered as an indication and so used only for debugging purposes.

Application usage: Debugging information.

7.2.8 Event handling registers

All registers related to the event handling are listed here. Details of registers and the bit fields are explained in the register map section.

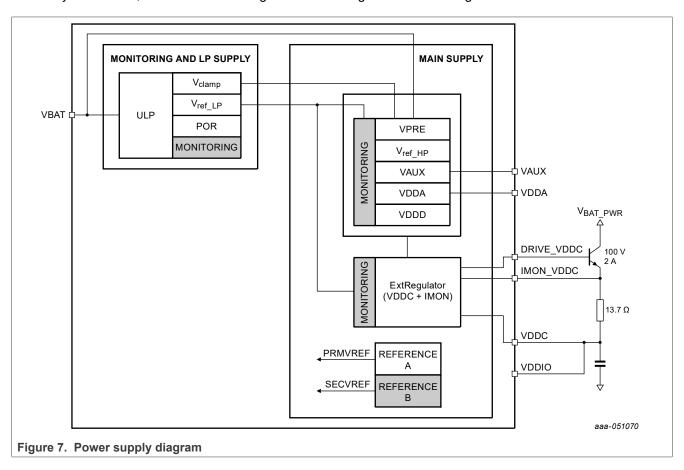
Table 11. Register overview: Event_Handling_Registers

Address	Name	Access	Reset	Description
400h	FEH_CFG_CRC	R	0h	configuration CRC
401h	FEH_ALARM_CFG	R/W	0h	general alarm configuration
402h	FEH_ALARM_OUT_CFG0	R/W	0h	alarm output source selection
403h	FEH_ALARM_OUT_CFG1	R/W	0h	alarm output source selection
404h	FEH_ALARM_OUT_REASON0	R	0h	alarm output reason
405h	FEH_ALARM_OUT_REASON1	R	0h	alarm output reason
408h	FEH_WAKEUP_CFG0	R/W	0h	wake up source configuration
409h	FEH_WAKEUP_CFG1	R/W	0h	wake up source configuration
40Ah	FEH_WAKEUP_REASON0	R	0h	wake up reason register
40Bh	FEH_WAKEUP_REASON1	R	0h	wake up reason register
410h	FEH_MON_BIST_CTRL	R/W	0h	monitor BIST control register
411h	FEH_MON_BIST_RES	R	FFh	monitor BIST result register; value changes at start-up, if everything is fine to 0000h

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.


Table 11. Register overview: Event_Handling_Registers...continued

Address	Name	Access	Reset	Description
41Eh	FEH_ACC_ERR	R	0h	access error status register
41Fh	FEH_GRP_FLT_STAT	R	0h	main system fault status register; this register holds one bit per fault group. For each fault group a separate status register exists. The bit here is cleared if all its sources are cleared.
420h	FEH_SUPPLY_FLT_STATO	R/W	0h	supply fault status register 0 (these monitors are part of the BIST)
421h	FEH_SUPPLY_FLT_STAT1	R/W	0h	supply fault status register 1 (these monitors are not part of the BIST)
422h	FEH_ANA_FLT_STAT	R/W	0h	analog fault status register
423h	FEH_COM_FLT_STAT	R/W	0h	communication fault status register
424h	FEH_MEAS_FLT_STAT	R/W	0h	other fault status register
428h	FEH_SUPPLY_FLT_POR_CFG0	R/W	0h	supply fault POR selection 0
429h	FEH_SUPPLY_FLT_POR_ CFG1	R/W	0h	supply fault POR selection 1
42Ah	reserved	R	0h	analog fault POR selection
42Bh	FEH_COM_FLT_POR_CFG	R/W	8h	communication fault POR enable register
430h	FEH_SUPPLY_FLT_EVT_ CFG0	R/W	0h	supply fault event selection register 0
431h	FEH_SUPPLY_FLT_EVT_ CFG1	R/W	0h	supply fault event selection register 1
432h	FEH_ANA_FLT_EVT_CFG	R/W	0h	analog fault event enable register
433h	FEH_COM_FLT_EVT_CFG	R/W	0h	communication fault event enable register
434h	FEH_MEAS_FLT_EVT_CFG	R/W	0h	measurement fault event enable register
480h	FEH_POR_REASON	R	0h	power-on reset reason. The value is stored in the ULP domain.

18-cell battery-cell controller IC

7.3 Power supply

The power supply block provides all voltages that are required internally, as well as the voltages provided externally. In addition, it monitors the voltages for overvoltage and undervoltage.

7.3.1 Overview

<u>Table 12</u> gives an overview of the supplies, the intended usage, the source, and the diagnostic information for this supply.

Table 12. Supply overview

Supply	Intended usage	Source	Diagnostics
VBAT	External supply for IC	External	Overvoltage and undervoltage Analog voltage measurement
VPRE	Supply of the IC	VBAT	Overvoltage
VPREREF	Supply for IC references	VBAT	Undervoltage and overvoltage
VAUX	Supply for external circuits	VPRE	Undervoltage and overvoltage Analog voltage measurement
VDDC	Supply for GPIO pins and TPL interface	External	 Undervoltage and overvoltage Analog current measurement High current and overcurrent Analog voltage measurement

18-cell battery-cell controller IC

Table 12. Supply overview...continued

Supply	Intended usage	Source	Diagnostics
VDDIO	Supply for SPI and I ² C-bus	External or VDDC	Undervoltage and overvoltage
Internal: RevLDO	Reference for supplies	VPRE	Analog voltage measurement
Internal: VDDA	Internal analog supply	VPRE	Undervoltage and overvoltage Analog voltage measurement
Internal: VDDD	Internal digital supply	VPRE	Undervoltage and overvoltage (forces power-on reset, info can be read in FEH_POR_REASON.SOURCE)
Internal: RefA	Reference voltage for ADC1	VPREREF	Analog voltage measurement
Internal: RefB	Reference voltage for ADC2	VPREREF	Analog voltage measurement
Internal: RevMON	Supply monitoring	VPREREF	Analog voltage measurement
Internal: VANA	Internal analog supply	VPRE	Undervoltage and overvoltage
Internal: IBIAS	Internal reference current	VPRE	Undercurrent and overcurrent
Internal: AFE charge pump	Internal analog supply	VPRE	Undervoltage and overvoltage

Table 13 gives an overview of the availability of the supplies in the various operation modes.

Table 13. Availability of supplies vs. operation modes

Supply	Active mode	Cyclic mode	Sleep mode	Deep sleep mode
VDDC	Available	Available if VDDCCYC = 1	Off	Off
VAUX	Available if VAUXACT = 1	Available if VAUXCYC = 1	Off	Off

7.3.2 **VPRE**

VPRE is a preregulated supply voltage. VPRE is generated out of the VBAT voltage. Most of the supply voltages, reference voltages, and reference currents are derived from VPRE. A detailed overview is given in Table 12.

7.3.3 VAUX

VAUX is intended to supply external analog circuits, such as resistor and negative temperature coefficient (NTC) networks.

VAUX can also be used as reference voltage for the ADC converter in case ratiometric measurements are needed. See Section 7.4 for more details.

7.3.4 VDDC

VDDC is used for the GPIO pins and the TPL communication. VDDC can also be used as supply for VDDIO and external analog circuits, and as reference voltage for the ADC converter in case ratiometric measurements are needed. To limit the power dissipation inside the IC, VDDC is generated via an external transistor. See Section 7.4 for more details.

7.3.5 VDDIO

VDDIO is an input voltage of the BMI7018. VDDIO can be supplied by a 5 V supply, such as VDDC, or via an external 3.3 V regulator. VDDIO is used for SPI and I²C-bus interface.

BMI7018

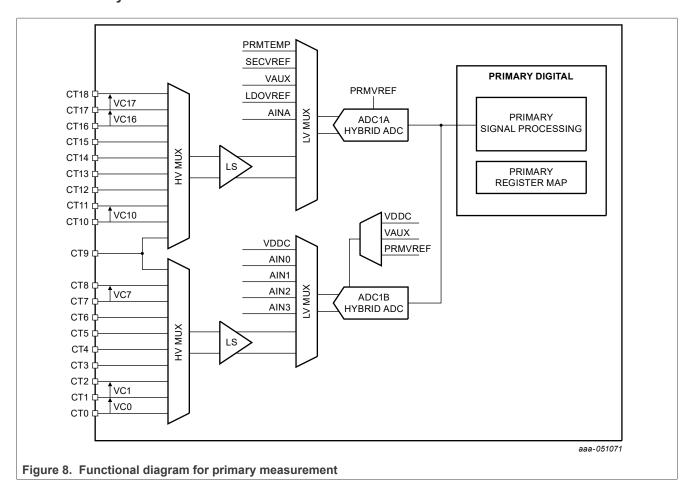
18-cell battery-cell controller IC

7.3.6 VDDA

VDDA is an internal supply. On pin VDDA, an external capacitor must be connected to buffer the supply, see <u>Section 11.1.1.1</u>. No other circuit is allowed to be attached.

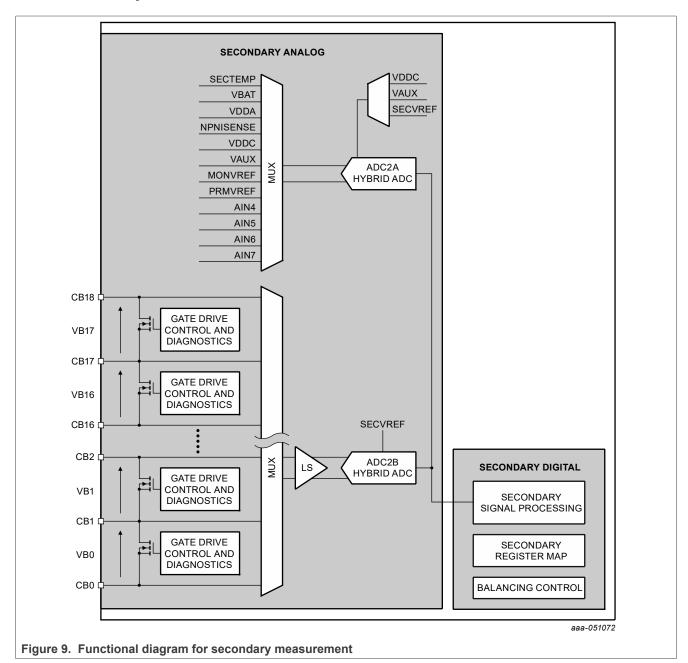
7.3.7 Others

VDDD, RefA, RefB, VANA, IBIAS, and analog front-end (AFE) are internal voltages or currents. They do not have a direct connection to a pin of the IC.


7.4 Measurement

The BMI7018 offers a primary and a secondary measurement chain. The two chains are independent from each other. The measurement operations of the two measurement chains can be synchronized.

7.4.1 Functional diagram


Figure 8 and Figure 9 show the functional diagrams of the measurement blocks.

7.4.1.1 Primary measurement

18-cell battery-cell controller IC

7.4.1.2 Secondary measurement

7.4.2 Functional description

The BMI7018 offers a primary and a secondary measurement chain. The primary measurement chain is using the registers listed in the <u>Primary Measurement Registers</u> block. The secondary measurement chain is using the registers listed in the <u>Secondary Measurement Registers</u> block. The two register blocks are independent of each other. The two chains are independent from each other.

The event handling block monitors the synchronicity between the primary and secondary measurements. See <u>Section 7.2</u> for details on the event handling block.

18-cell battery-cell controller IC

The registers block <u>All Measurement Registers</u> is writing simultaneously into the primary and the secondary measurement registers. This mechanism provides a comfortable way of ensuring the measurement configuration registers are set simultaneously for the primary and secondary measurement chain. A read back of the All Measurement Registers is not possible. The BMI7018 returns 0000h as data in case one of the All Measurement Registers is read.

7.4.2.1 Measurement sequence

To achieve a high sampling rate, the primary measurement chain has two ADCs.

ADC1A measures:

- The primary IC temperature (PRMTEMP)
- The cell voltages 9 to 17 (VC9 to VC17)
- The auxiliary supply (VAUX)
- The voltage reference for the secondary measurement chain (SECVREF)
- · The analog input AINA
- The voltage reference for the internal power supplies (LDOVREF)

ADC1B measures:

- The supply voltage for GPIO and the TPL interface (VDDC)
- The cell voltages 0 to 8 (VC0 to VC8)
- The analog inputs 0 to 3 (AIN0 to AIN3)

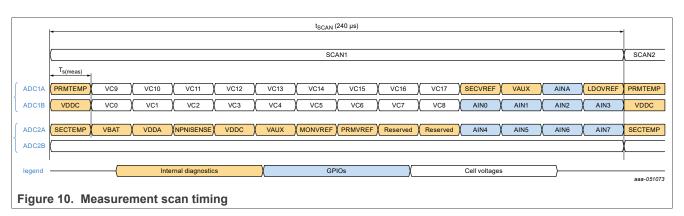
The primary measurement chain measures all signals cyclically. Once an ADC conversion is completed, the next signal is measured. After all 14 signals are measured once, the scan is completed and the next measurement cycle starts (Figure 10).

The secondary measurement chain has two ADCs.

ADC2A measures:

- The secondary IC temperature (SECTEMP)
- · The battery supply (VBAT)
- The analog supply voltage (VDDA)
- The current in the external NPN (NPNISENSE)
- The supply voltage for GPIO and the TPL interface (VDDC)
- The auxiliary supply (VAUX)
- The reference for the primary measurement chain (PRMVREF)
- The reference (MONVREF)
- The analog inputs 4 to 7 (AIN4 to AIN7)

ADC2A measures cyclically, similar to ADC1A and ADC1B. After all 14 channels are measured once, the scan is completed and the next cycle starts.


ADC2B measures the cell voltages via the balancing pins (VB0 to VB17). As the cell balancing pins do not have an external antialiasing filter, ADC2B uses an internal antialiasing filter. The sampling scheme of the BMI7018 implements appropriate settling times for the internal antialiasing filter. ADC2B measures one signal several times before it switches to the next signal. In a synchronous measurement cycle, the signal is measured for SECM_PER_CTRL.PERLEN × 14 × $t_{s(meas)}$. In a fast VB measurement cycle, each signal is measured for 28 × $t_{s(meas)}$.

Disabling measurements has no influence on the sequence for ADC1A, ADC1B, and ADC2A. ADC2B skips cells that are disabled.

18-cell battery-cell controller IC

Notes:

- PRMM PER CTRL.PERLEN and SECM PER CTRL.PERLEN must be set to the same value.
- SECVREF is available when secondary measurement is enabled. PRMVREF is available when primary measurement is enabled.

The result of a single scan cycle as shown in <u>Figure 10</u> is not directly available. The BMI7018 makes the averaged value over multiple scan cycles available.

7.4.2.2 Measurement configuration

The registers PRMM_VC_CFG, PRMM_AIN_CFG, PRMM_VBUF_CFG, SECM_VBUF_CFG, SECM_VB_CFG, and SECM_AIN_CFG configure the measurements that are enabled. Disabling signals measured by ADC1A, ADC1B, or ADC2A does not influence the measurement timing. Signals measured by ADC2B are only measured when enabled. Disabled channels are skipped.

The registers PRMM_AIN_CFG and SECM_AIN_CFG contain the bitfields RATIOMETRICAIN0 to RATIOMETRICAIN7. These bits configure the measurement of the pins AIN0 to AIN7. Options are:

- · Absolute regarding SECVREF or PRMVREF.
- · Ratiometric to VAUX.
- Ratiometric to VDDC.

The bits FLTAPPINV in PRMM_AIN_CFG and SECM_AIN_CFG force an automatic invalidation of the application timed measurement results once a measurement fault (see <u>Section 7.4.4</u>) is detected.

7.4.2.3 Measurement configuration CRC

The BMI7018 contains many configuration registers. For validation of the correctness of the configuration of the device, all configuration registers can be read. The BMI7018 calculates a CRC across the content of the configuration registers. The MCU can use this CRC value to validate the integrity of the configuration. The CRC is recalculated whenever a register covered by the CRC is written or the CRC value is read.

PRMM_CFG_CRC contains the CRC value for the registers PRMM_CFG, PRMM_PER_CTRL, PRMM_VC_CFG0, PRMM_VC_CFG1, PRMM_AIN_CFG, PRMM_VBUF_CFG, PRMM_VC_OV_UV_CFG0, PRMM_VC_OV_UV_CFG1, PRMM_VC_OV_TH_CFG, PRMM_VC_UV0_TH_CFG, PRMM_VC_UV1_TH_CFG, PRMM_AIN0_OV_TH_CFG, PRMM_AIN1_OV_TH_CFG, PRMM_AIN2_OV_TH_CFG, PRMM_AIN3_OV_TH_CFG, PRMM_AIN0_UV_TH_CFG, PRMM_AIN0_UV_TH_CFG, PRMM_AIN1_UV_TH_CFG, PRMM_AIN2_UV_TH_CFG, PRMM_AIN3_UV_TH_CFG, PRMM_AIN3_UV_TH_CFG.

SECM_CFG_CRC contains the CRC value of the registers SECM_CFG, SECM_PER_CTRL, SECM_VB_CFG, SECM_AIN_CFG, and SECM_VBUF_CFG.

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

The used polynomial is: D175h (+1) = $X^{16} + X^{15} + X^{13} + X^9 + X^7 + X^6 + X^5 + X^3 + X^1 + 1$.

Notes:

- The CRC value depends on the configuration of the device and is therefore application dependent.
- The polynomial used here is different to the polynomial used for communication.

Application usage: Check of integrity of the system configuration.

7.4.2.4 Undervoltage and overvoltage checks

The BMI7018 performs an undervoltage and overvoltage check after each periodic measurement. For the cell terminals voltages, this check is optional. Register PRMM_VC_OV_UV_CFG configures which of the cell voltages take part in the undervoltage and overvoltage comparison. The register PRMM_VC_OV_TH_CFG contains the overvoltage threshold to be used for the comparison. The results of the comparisons are available in the PRMM_VC_OV_FLT_STAT register.

The register PRMM_VC_UV0_TH_CFG contains the threshold used for cell undervoltage-based balancing as described in the Cell undervoltage based balancing. The results of the comparison can be read in the PRMM_VC_UV0_FLT_STAT register.

The register PRMM_VC_UV1_TH_CFG contains the threshold used for global undervoltage-based balancing as described in the <u>Global undervoltage based balancing</u>. The results of the comparison can be read in the PRMM_VC_UV1_FLT_STAT register.

The registers PRMM_AIN0_OV_TH_CFG to PRMM_AIN3_OV_TH_CFG and PRMM_AINA_OV_TH_CFG and PRMM_AIN0_UV_TH_CFG to PRMM_AIN3_UV_TH_CFG and PRMM_AINA_UV_TH_CFG contain the undervoltage and overvoltage thresholds for AIN0 to AIN3 and AINA. The results of the comparison can be read in the PRMM_AIN_OV_FLT_STAT and PRMM_AIN_UV_FLT_STAT registers. The thresholds set by these registers are also used for the Temperature-modulated balancing.

The BMI7018 performs the undervoltage and overvoltage comparison together. In some cases, it can be of interest to compare only to one of the thresholds. Configuring not used thresholds to the invalid code (8000h) prevents setting the corresponding undervoltage or overvoltage bits.

7.4.2.5 Measurement data format

The BMI7018 provides the measurement results as 16-bit two's complement. Code 8000h represents invalid data (see Section 7.4.4). Clamping is signaled when the measured value is out of the measurement range of the BMI7018. Code 7FFFh indicates the value is clamped positively. Code 8001h indicates a negative clamping.

Measurements that have only a positive measurement range, for instance all GPIO measurements, are still provided as 16-bit two's complement.

Table 14. Measurement data representation

Code	Value	Example for PRMM_APP_VC0
7FFFh	Positive clamped value	Positive clamping occurred; cell voltage above measurement range
7FFEh	maximum positive value = 32766 ^[1]	32766 × LSB × V _{meas(res)} = 5.05 V
0001h	+1	+1 LSB × V _{meas(res)} = 154 μV
0000h	0	0 V
FFFFh	-1	-1 LSB × V _{meas(res)} = -154 μV
8002h	Maximum negative value = −32766 ^[1]	-32766 × LSB × V _{meas(res)} = −5.05 V

18-cell battery-cell controller IC

Table 14. Measurement data representation...continued

Code	Value	Example for PRMM_APP_VC0
8001h	Negative clamped value	Negative clamping occurred; cell voltage below measurement range
8000h	Invalid	Measurement is invalidated, for example, fewer than 16 scans

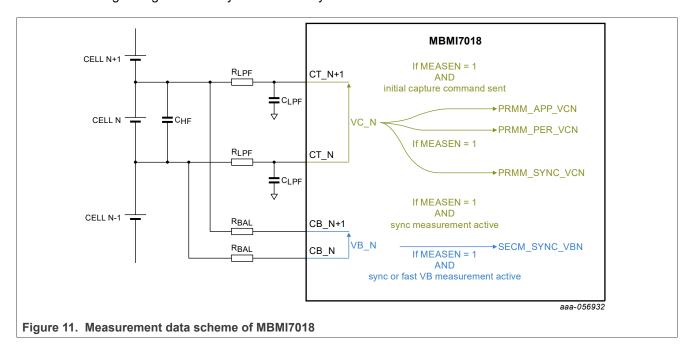
^[1] Saturation may occur before maximum value is reached (see Section 7.4.2.6).

7.4.2.6 Measurement saturation, resolution, and references

Table 15 lists the measurement location and the reference potential for the individual measurements of the BMI7018. The table also lists the resolution of the measurements and, when applicable, the saturation values. If a single ADC conversion is outside the saturation limits, the measurement result register for this measurement indicates clamping. If the value is below the lower saturation limit, the negative clamping value (8001h) is used. If the value is above the upper saturation limit, the positive clamping value (7FFFh) is used.

Table 15. Measurements and references

Measurement	Measurement location	Reference potential	Conversion formula (typ.)	Saturation	
Cell terminal measurement VC(X); X = 0 to 17	CT(X+1)	CT(X)	154 μV × result register value	Positive saturation at 7FF7h Negative saturation at 8008h	
Cell voltage at balancing pins VB(X); X = 0 to 17	CB(X+1)	CB(X)	154 μV × result register value	Positive saturation at 7FF7h negative saturation at B2D9h	
AIN(X); X = 0 to 7, A	AIN(X)	AINX_VSSA	154 μV × result register value (for absolute measurement) 3.05176 m% × result register value (for ratiometric measurement) positive saturation at 7FF Negative saturation at FE		
VDDA	VDDA	VSSA	154 μV × result register value	Not applicable	
VBAT	VBAT	VSSA	3.128 mV × result register value	Not applicable	
PRMTEMP	Internal	Internal	32.4 mK × result register value (to get result in Kelvin) 32.4 mK × result register value - 273.15 (to get result in °C)		
SECTEMP	Internal	Internal	32.4 mK × result register value (to get result in Kelvin) 32.4 mK × result register value - 273.15 (to get result in °C)	Not applicable	
VAUX	VAUX	ADC1A: AINX_GND ADC2A: VSSA	308 μV × result register value (for absolute measurement)		
VDDC	VDDC	ADC1A: AINX_GND ADC2A: VSSA	308 μV × result register value Not applicable		
NPNISENSE	VDDC_IMON	VDDC	7.69 µV × result register value	Not applicable	
PRMVREF	Internal	Internal	38.452 μV × result register value	Not applicable	
SECVREF	Internal	Internal	38.452 μV × result register value-	Not applicable	


7.4.3 Measurement modes

The BMI7018 allows four main measurement modes:

18-cell battery-cell controller IC

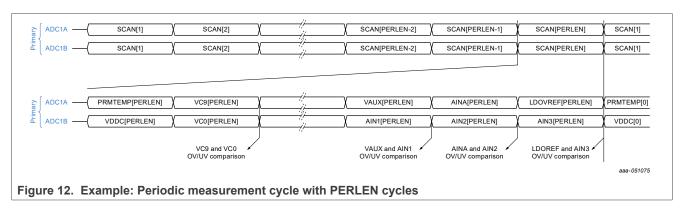
- · Periodic measurements
- Application timed continuous measurements
- · Synchronized measurements of VC and VB terminals
- · Fast VB measurements

The synchronized and fast VB measurements are mutually exclusive, all measurements can run in parallel with each other. When measurements run in parallel, one ADC conversion result is used for all active measurement modes. Figure 11 shows the measurement location for the cell voltages and the result registers where the cell voltage data are stored. Figure 11 also shows the conditions that trigger the storing of the ADC result to the result register sets. Based on this, one ADC conversion result for a cell terminal voltage can be used for the periodic, the application and the synchronous measurements. Not all inputs have all register sets. For instance the cell balancing voltages have only a set for the synchronous results.

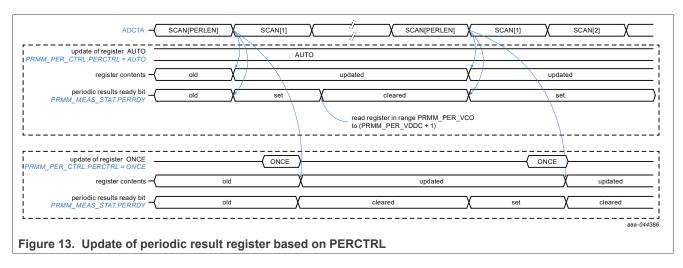
18-cell battery-cell controller IC

<u>Table 16</u> shows the key characteristics of the measurement modes.

Table 16. Overview of measurement modes


Measurement	Measurement frequency	Averaging interval	Result update	Start condition	Applies to
Periodic	$f_{PER} = \frac{1}{14 \times t_{s(meas)}} = approx. 4.2 \text{ kHz}$	defined by bit field PERLEN (primary: 16 to 511 measurements)	periodically depending on PERCTRL	continuous measurement (as soon as MEASEN is set 1)	ADC1A, ADC1B, and ADC2A
Application timed continuous	$f_{APP} = \frac{1}{14 \times t_{s(meas)}} = approx. 4.2 \text{ kHz}$	defined by capture command (16 to 65535 measurements)		continuous measurement (as soon as MEASEN is set 1 and first capture command for the signal is received)	ADC1A, ADC1B, and ADC2A
Synchronized	$f_{SYNC_PRMM} = \frac{1}{14 \times t_{s(meas)}} = approx. 4.2 \text{ kHz}$ $f_{SYNC_SECM} = \frac{1}{t_{s(meas)}} = approx. 59 \text{ kHz}$	defined by bit field PERLEN (primary: 16 to 511 measurements) (secondary: must use same time interval as primary)	after measurement is finished	start of a synchronous measurement cycle ^[1]	ADC1A, ADC1B, ADC2A, and ADC2B
Fast VB	$f_{\text{fast VB}} = \frac{1}{t_{\text{s(meas)}}} = \text{approx. 59 kHz}$	28 × t _{s(meas)}	after measurement is finished	start of a fast VB measurement (SECM_ SYNC_CTRL.FASTFB)	ADC2B

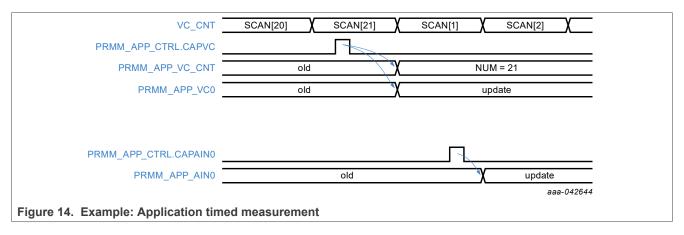
^[1] Set PRMM_SYNC_CTRL.SYNCCYC and SECM_SYNC_CTRL.SYNCCYC simultaneously via writing to ALLM_SYNC_CTRL.SYNCCYC.


18-cell battery-cell controller IC

7.4.3.1 Periodic measurement

In Periodic Measurement mode, a configurable number of samples is taken and an averaged result is stored. The number of measurement cycles is defined in PRMM_PER_CTRL.PERLEN and SECM_PER_CTRL.PERLEN. Once the device has performed the configured number of measurements for a signal, the result is checked for undervoltage or overvoltage conditions (see Undervoltage and overvoltage checks). Once the device has completed the configured number of the measurements for all signals, the averaged results are stored in the periodic measurement result registers. Based on this implementation, the undervoltage and overvoltage flags are updated before the measurement results are available.

The update of the periodic result registers (PRMM_PER_NUM to PRMM_PER_LDOVREF and SECM_PER_NUM to SECM_PER_NPNISENSE) is done based on the bit field PRMM_PER_CTRL.PERCTRL and SECM_PER_CTRL.PERCTRL. When PERCTRL is set to auto, the result registers contain the latest generated results. Setting PERCTRL to ONCE initiates one update. After the update, the result registers are frozen. This mechanism allows reading of time aligned measurement data across multiple devices. PRMM_PER_NUM and SECM_PER_NUM contain the number of the periodic cycle in which the primary periodic results have been created, the other registers contain the measurement results.


Application usage: Measurement over a fixed time period; used for all undervoltage and overvoltage checks.

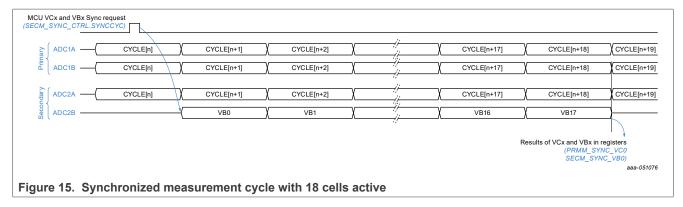
Note: PRMM_PER_CTRL and SECM_PER_CTRL must have the same setting. ALLM_PER_CTRL sets PRMM_PER_CTRL and SECM_PER_CTRL simultaneously.

18-cell battery-cell controller IC

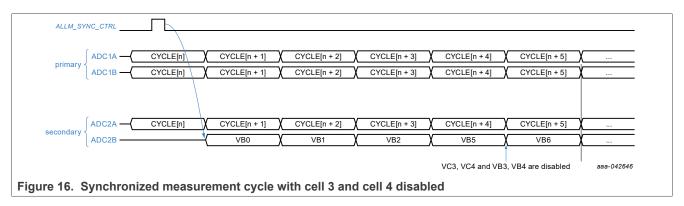
7.4.3.2 Application timed measurement

The application timed measurement averages the measurement results between two capture commands. The time between the capture commands is up to the application, but must allow minimum 16 scan cycles and maximum 65534 scan cycles. If a capture is shorter than 16 measurements or longer than 65535 measurements, the results registers are set to invalid. A capture command means writing of PRMM_APP_CTRL[5:0] and/or SECM_APP_CTRL[9:6] with logic 1. The measurement results are made available in the application result registers (PRMM_APP_VC_CNT to PRMM_APP_AIN3 and SECM_APP_AIN4 to SECM_APP_AIN7). Register PRMM_APP_VC_CNT contains the number of cell voltage measurements performed within the last VC capture cycle. The other register contains the measured voltages. Bits PRMM_MEAS_STAT[5:0] and SECM_MEAS_STAT[3:0] signal that more than 16 measurements have been performed, which indicates that a new capture can be initiated.

Application usage: Measurement over an MCU controlled time period.

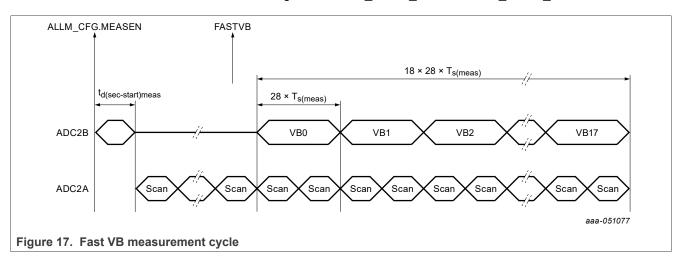

7.4.3.3 Synchronized measurement

The synchronized measurement is a measurement of the primary and secondary voltages. The synchronized measurement is initiated by setting the bits PRMM_SYNC_CTRL.SYNCCYC and SECM_SYNC_CTRL.SYNCCYC. To ensure synchronous measurements, the bits must be set simultaneously. The bit ALLM_SYNC_CTRL.SYNCCYC can be used to set the PRMM_SYNC_CTRL.SYNCCYC and SECM_SYNC_CTRL.SYNCCYC simultaneously.


The synchronous measurement cycle starts with the next periodic measurement. ADC2B measures the cells continuously until the number of samples for one period is reached. ADC1A and ADC1B operate as usual. When ADC2B has completed the measurement for VB17, all the synchronous measurement result registers are updated. The secondary measurement registers are populated with the average results of ADC2B for the individual cells. The primary measurement registers are populated with the average results of ADC1A/ADC1B while ADC2B has measured the same cell. The bits PRMM_MEAS_STAT.SYNCRDY and SECM MEAS STAT.SYNCRDY signal the completion of the measurement.

The results of the synchronized measurement are available in the registers PRMM_SYNC_NUM to PRMM_SYNC_VC17 and SECM_SYNC_NUM to SECM_SYNC_VB17. PRMM_SYNC_NUM and SECM_SYNC_NUM contain the number of the synchronous cycle in which the synchronous results have been created, the other registers contain the measured voltages.

18-cell battery-cell controller IC


ADC2B skips cells that are disabled during a synchronized or fast VB measurement.

Application usage: Independent time synchronized measurement of the cell voltage.

7.4.3.4 Fast VB measurement

The fast VB measurement is a measurement of the VBx voltages. The fast VB measurement is initiated by setting the bit SECM_SYNC_CTRL.FASTVB. ADC2B measures each enabled VBx voltage for $28 \times t_{s(meas)}$. A fast VB measurement is started latest with the second scan cycle after the bit ALLM_SYNC_CTRL.FASTVB is set. The bit SECM_MEAS_STAT.FASTVBRDY signals the completion of the measurement. The averaged results for each channel are available in the registers SECM_SYNC_VB0 to SECM_SYNC_VB17.

Application usage: Check of the connectivity of VB terminals and open load detection.

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

7.4.4 Invalidation of measurement results

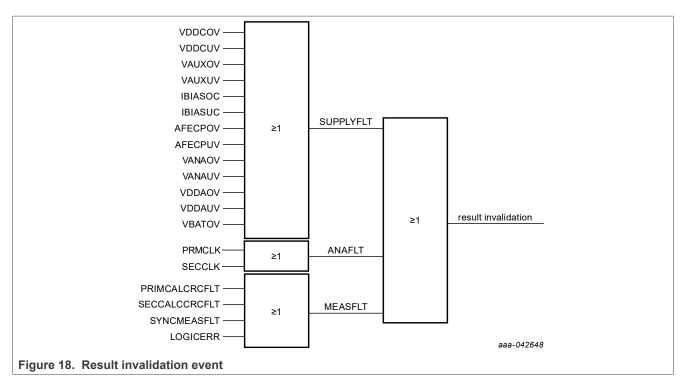

The BMI7018 invalidates the measurement results in order to avoid usage of old or corrupted data. The code 8000h represents invalid data (see <u>Measurement data format</u>). <u>Table 17</u> gives an overview of the events and the result registers that are invalidated.

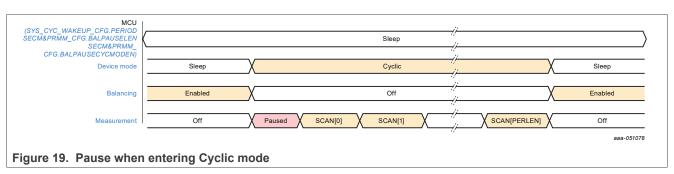
Table 17. Invalidation of measurement results

Event	Invalidated results	Comment	
Transition into Active mode.	Primary and secondary measurement results.		
Read of a measurement register.	Register that was read.	The result is always invalidated, independently, of the communication success of the register to the MCU.	
Faults leading to result invalidation	Secondary synchronous measurement results (registers SECM_SYNC_VB0 to SECM_SYNC_VB17).	All primary results, the secondary periodic, and secondary application results are not invalidated.	
Faults leading to result invalidation with PRMM_AIN_CFG.FLTAPPINV set to 1.	Application measurement results of AIN0 to AIN3 and AINA (registers PRMM_APP_AIN0 to PRMM_APP_AIN3 and PRMM_APP_AINA).	Periodic results are not invalidated.	
Faults leading to result invalidation with SECM_AIN_CFG.FLTAPPINV set to 1.	Application measurement results of AIN4 to AIN7 (registers SECM_APP_AIN4 to SECM_APP_AIN7).	Periodic results are not invalidated.	
Receiving of a capture command before 16 scans are performed.	Application measurements with fewer than 16 scans.	PRMM_APP_VC_CNT shows the actual number of scans performed.	
Receiving of a capture command after 65535 scans are performed.	Application measurements with more than 65535 scans.	PRMM_APP_VC_CNT shows FFFFh.	
Disabling of the measurement.	Primary and secondary measurement results.		

There are various sources that can lead to an erratic measurement. The fault events leading to a result invalidation are shown in <u>Figure 18</u>.

18-cell battery-cell controller IC

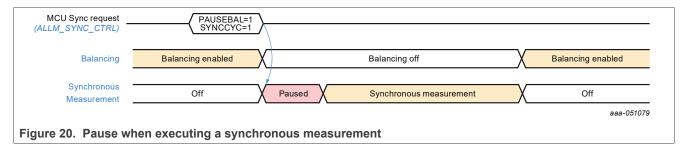
Note: Figure 18 shows only the supply faults that can cause an invalidation of the results. All faults leading to a supply fault are shown in Table 9.

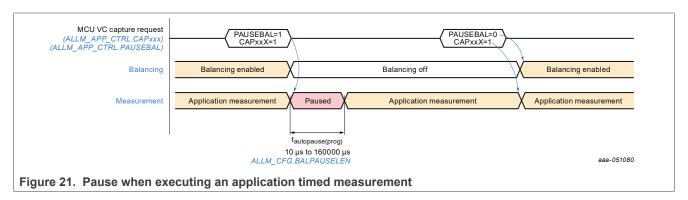

Note: VAUXUV, VAUXOV, VDDCUV, and VDDCOV only cause an invalidation of the results if they are used as references for the measurement.

7.4.5 Pausing of balancing

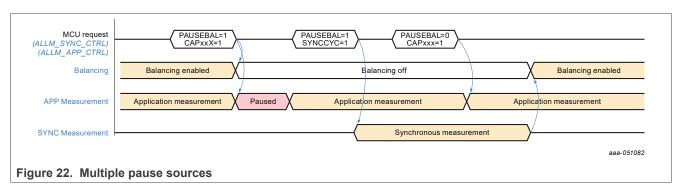
In a typical battery management system (BMS), each battery cell terminal is connected with a single wire to the application circuit of the BMI7018 (see <u>Figure 55</u>). An active cell balancing leads to voltage drop at the connectors and wirings. The voltage drop creates an undesired offset in the voltages measured by the BMI7018. To allow an accurate measurement, the BMI7018 provides the option to pause the balancing. To allow the external filters to settle to their steady state value, the measurement after start of a pause can be delayed.

The bit fields PRMM_CFG.BALPAUSELEN and SECM_CFG.BALPAUSELEN control the length of the pause before the measurement is started. In order to avoid generation of a SYNCMEASFLT, PRMM_CFG.BALPAUSELEN, and SECM_CFG.BALPAUSELEN must be set to the same value.


The bits PRMM_CFG.BALPAUSECYCMODEN and SECM_CFG.BALPAUSECYCMODEN force a balancing pause during the measurement and a pause after transitioning from Sleep to Cyclic mode and the start of the first measurement in Cyclic mode.


BMI7018

18-cell battery-cell controller IC


The bits PRMM_SYNC_CTRL.PAUSEBAL and SECM_SYNC_CTRL.PAUSEBAL allow forcing a pause for a synchronized measurement (Section 7.4.3.3) or a Fast VB measurement (Section 7.4.3.4).

The bits PRMM_APP_CTRL.PAUSEBAL and SECM_SYNC_APP_CTRL.PAUSEBAL allow forcing a pause for an application timed measurement (Section 7.4.3.2).

In case one or more measurements with balancing are triggered, the IC keeps the balancing paused until the last measurement sequence is completed. If a different measurement pauses the balancing already, the new measurement is directly started without a pause.

Note: Keep the configuration for primary and secondary measurements identical to avoid triggering a SYNCMEASFLT. The usage of the ALLM_xxx registers ensures primary and secondary measurements are set identical.

7.4.6 Registers for primary measurement

All registers related to the primary measurement are listed here. Details to the registers and the bitfields are explained in the register map section.

Table 18. Register overview: Primary_Measurement_Registers

Address	Name	Access	Reset	Description
1800h	PRMM_CFG	R/W	0h	general measurement control
1801h	PRMM_APP_CTRL	R/W	7C00h	application measurement control
1802h	PRMM_PER_CTRL	R/W	10h	periodic measurement control
1803h	PRMM_SYNC_CTRL	W	0h	synchronous measurement control
1808h	PRMM_VC_CFG0	R/W	0h	cell voltage measurement enable
1809h	PRMM_VC_CFG1	R/W	0h	cell voltage measurement enable
180Ah	PRMM_AIN_CFG	R/W	20h	AINx measurement enables
180Bh	PRMM_AIN_OL_CFG	R/W	0h	AINx open-load detection enable
180Ch	PRMM_VBUF_CFG	R/W	3h	voltage buffer enable
1810h	PRMM_VC_OV_UV_CFG0	R/W	0h	cell voltage overvoltage and undervoltage check enable
1811h	PRMM_VC_OV_UV_CFG1	R/W	0h	cell voltage overvoltage and undervoltage check enable
1812h	PRMM_VC_OV_TH_CFG	R/W	7FFFh	upper comparator limit for VC0 to VC17
1813h	PRMM_VC_UV0_TH_CFG	R/W	0h	lower comparator limit 0 for VC0 to VC17
1814h	PRMM_VC_UV1_TH_CFG	R/W	0h	lower comparator limit 1 for VC0 to VC17
1815h	PRMM_AIN0_OV_TH_CFG	R/W	7FFFh	upper comparator limit for AIN0
1816h	PRMM_AIN1_OV_TH_CFG	R/W	7FFFh	upper comparator limit for AIN1
1817h	PRMM_AIN2_OV_TH_CFG	R/W	7FFFh	upper comparator limit for AIN2
1818h	PRMM_AIN3_OV_TH_CFG	R/W	7FFFh	upper comparator limit for AIN3
1819h	PRMM_AINA_OV_TH_CFG	R/W	7FFFh	upper comparator limit for AINA
181Ah	PRMM_AINO_UV_TH_CFG	R/W	8001h	lower comparator limit for AIN0
181Bh	PRMM_AIN1_UV_TH_CFG	R/W	8001h	lower comparator limit for AIN1
181Ch	PRMM_AIN2_UV_TH_CFG	R/W	8001h	lower comparator limit for AIN2
181Dh	PRMM_AIN3_UV_TH_CFG	R/W	8001h	lower comparator limit for AIN3
181Eh	PRMM_AINA_UV_TH_CFG	R/W	8001h	lower comparator limit for AINA
1820h	PRMM_CAL_CRC	R/W	0h	CRC over calibration data
1821h	PRMM_CFG_CRC	R	0h	CRC over configuration values
1822h	PRMM_VC_OV_FLT_STATO	R	0h	cell voltage overvoltage status
1823h	PRMM_VC_OV_FLT_STAT1	R	0h	cell voltage overvoltage status
1824h	PRMM_VC_UV0_FLT_STAT0	R	0h	cell voltage undervoltage status regarding limit 0
1825h	PRMM_VC_UV0_FLT_STAT1	R	0h	cell voltage undervoltage status regarding limit 0
1826h	PRMM_VC_UV1_FLT_STAT0	R	0h	cell voltage undervoltage status regarding limit 1
1827h	PRMM_VC_UV1_FLT_STAT1	R	0h	cell voltage under-voltage status regarding limit 1
1828h	PRMM_AIN_OV_FLT_STAT	R	0h	AINx overvoltage status
1829h	PRMM_AIN_UV_FLT_STAT	R	0h	AINx undervoltage status
183Eh	PRMM_MEAS_STAT	R	0h	measurement status
183Fh	PRMM_APP_VC_CNT	R	0h	application measurement VC sample count number
1840h	PRMM_APP_VC0	R	8000h	application measurement result cell 0
1841h	PRMM_APP_VC1	R	8000h	application measurement result cell 1
1842h	PRMM_APP_VC2	R	8000h	application measurement result cell 2

Table 18. Register overview: Primary_Measurement_Registers...continued

Address	Name	Access	Reset	Description
1844h	PRMM_APP_VC4	R	8000h	application measurement result cell 4
1845h	PRMM_APP_VC5	R	8000h	application measurement result cell 5
1846h	PRMM_APP_VC6	R	8000h	application measurement result cell 6
1847h	PRMM_APP_VC7	R	8000h	application measurement result cell 7
1848h	PRMM_APP_VC8	R	8000h	application measurement result cell 8
1849h	PRMM_APP_VC9	R	8000h	application measurement result cell 9
184Ah	PRMM_APP_VC10	R	8000h	application measurement result cell 10
184Bh	PRMM_APP_VC11	R	8000h	application measurement result cell 11
184Ch	PRMM_APP_VC12	R	8000h	application measurement result cell 12
184Dh	PRMM_APP_VC13	R	8000h	application measurement result cell 13
184Eh	PRMM_APP_VC14	R	8000h	application measurement result cell 14
184Fh	PRMM_APP_VC15	R	8000h	application measurement result cell 15
1850h	PRMM_APP_VC16	R	8000h	application measurement result cell 16
1851h	PRMM_APP_VC17	R	8000h	application measurement result cell 17
1852h	PRMM_APP_AINA	R	8000h	application measurement result AINA
1853h	PRMM_APP_AINO	R	8000h	application measurement result AIN0
1854h	PRMM_APP_AIN1	R	8000h	application measurement result AIN1
1855h	PRMM_APP_AIN2	R	8000h	application measurement result AIN2
1856h	PRMM_APP_AIN3	R	8000h	application measurement result AIN3
185Fh	PRMM_PER_NUM	R	0h	measurement period number of the primary periodic results
1860h	PRMM_PER_VC0	R	8000h	periodic measurement result cell 0
1861h	PRMM_PER_VC1	R	8000h	periodic measurement result cell 1
1862h	PRMM_PER_VC2	R	8000h	periodic measurement result cell 2
1863h	PRMM_PER_VC3	R	8000h	periodic measurement result cell 3
1864h	PRMM_PER_VC4	R	8000h	periodic measurement result cell 4
1865h	PRMM_PER_VC5	R	8000h	periodic measurement result cell 5
1866h	PRMM_PER_VC6	R	8000h	periodic measurement result cell 6
1867h	PRMM_PER_VC7	R	8000h	periodic measurement result cell 7
1868h	PRMM_PER_VC8	R	8000h	periodic measurement result cell 8
1869h	PRMM_PER_VC9	R	8000h	periodic measurement result cell 9
186Ah	PRMM_PER_VC10	R	8000h	periodic measurement result cell 10
186Bh	PRMM_PER_VC11	R	8000h	periodic measurement result cell 11
186Ch	PRMM_PER_VC12	R	8000h	periodic measurement result cell 12
186Dh	PRMM_PER_VC13	R	8000h	periodic measurement result cell 13
186Eh	PRMM_PER_VC14	R	8000h	periodic measurement result cell 14
186Fh	PRMM_PER_VC15	R	8000h	periodic measurement result cell 15
1870h	PRMM_PER_VC16	R	8000h	periodic measurement result cell 16
1871h	PRMM_PER_VC17	R	8000h	periodic measurement result cell 17
1872h	PRMM_PER_AINA	R	8000h	periodic measurement result AINA
1873h	PRMM_PER_AINO	R	8000h	periodic measurement result AIN0
186Fh 1870h 1871h 1872h	PRMM_PER_VC15 PRMM_PER_VC16 PRMM_PER_VC17 PRMM_PER_AINA	R R R	8000h 8000h 8000h 8000h	periodic measurement result cell 15 periodic measurement result cell 16 periodic measurement result cell 17 periodic measurement result AINA

Table 18. Register overview: Primary_Measurement_Registers...continued

Address	Name	Access	Reset	Description
1874h	PRMM_PER_AIN1	R	8000h	periodic measurement result AIN1
1875h	PRMM_PER_AIN2	R	8000h	periodic measurement result AIN2
1876h	PRMM_PER_AIN3	R	8000h	periodic measurement result AIN3
1877h	PRMM_PER_PRMTEMP	R	8000h	periodic measurement result primary device temperature
1878h	PRMM_PER_SECVREF	R	8000h	periodic measurement result secondary voltage reference
1879h	PRMM_PER_VAUX	R	8000h	periodic measurement result auxiliary supply voltage
187Ah	PRMM_PER_VDDC	R	8000h	periodic measurement result VDDC
187Fh	PRMM_SYNC_NUM	R	0h	measurement period number of the synchronous results.
1880h	PRMM_SYNC_VC0	R	8000h	synchronous measurement result cell 0
1881h	PRMM_SYNC_VC1	R	8000h	synchronous measurement result cell 1
1882h	PRMM_SYNC_VC2	R	8000h	synchronous measurement result cell 2
1883h	PRMM_SYNC_VC3	R	8000h	synchronous measurement result cell 3
1884h	PRMM_SYNC_VC4	R	8000h	synchronous measurement result cell 4
1885h	PRMM_SYNC_VC5	R	8000h	synchronous measurement result cell 5
1886h	PRMM_SYNC_VC6	R	8000h	synchronous measurement result cell 6
1887h	PRMM_SYNC_VC7	R	8000h	synchronous measurement result cell 7
1888h	PRMM_SYNC_VC8	R	8000h	synchronous measurement result cell 8
1889h	PRMM_SYNC_VC9	R	8000h	synchronous measurement result cell 9
188Ah	PRMM_SYNC_VC10	R	8000h	synchronous measurement result cell 10
188Bh	PRMM_SYNC_VC11	R	8000h	synchronous measurement result cell 11
188Ch	PRMM_SYNC_VC12	R	8000h	synchronous measurement result cell 12
188Dh	PRMM_SYNC_VC13	R	8000h	synchronous measurement result cell 13
188Eh	PRMM_SYNC_VC14	R	8000h	synchronous measurement result cell 14
188Fh	PRMM_SYNC_VC15	R	8000h	synchronous measurement result cell 15
1890h	PRMM_SYNC_VC16	R	8000h	synchronous measurement result cell 16
1891h	PRMM_SYNC_VC17	R	8000h	synchronous measurement result cell 17

18-cell battery-cell controller IC

7.4.7 Registers for secondary measurement

All registers related to the secondary measurement are listed here. Details to the registers and the bitfields are explained in the register map section.

Table 19. Register overview: Secondary_Measurement_Registers

	Name -		1	
Address	Name	Access	Reset	Description
1C00h	SECM_CFG	R/W	0h	general measurement control
1C01h	SECM_APP_CTRL	W	0h	application measurement control
1C02h	SECM_PER_CTRL	R/W	10h	periodic measurement control
1C03h	SECM_SYNC_CTRL	R/W	7C00h	synchronous measurement control
1C08h	SECM_VB_CFG0	R/W	0h	balance voltage measurement enable
1C09h	SECM_VB_CFG1	R/W	0h	balance voltage measurement enable
1C0Ah	SECM_AIN_CFG	R/W	80h	measurement enables for extra channel
1C0Bh	SECM_AIN_OL_CFG	R/W	0h	AINx open-load detection enable
1C0Ch	SECM_VBUF_CFG	R/W	3h	voltage buffer enable
1C20h	SECM_CAL_CRC	R/W	0h	CRC over calibration data
1C21h	SECM_CFG_CRC	R	0h	CRC over configuration values
1C3Eh	SECM_MEAS_STAT	R	0h	measurement status
1C53h	SECM_APP_AIN4	R	8000h	application measurement result AIN4
1C54h	SECM_APP_AIN5	R	8000h	application measurement result AIN5
1C55h	SECM_APP_AIN6	R	8000h	application measurement result AIN6
1C56h	SECM_APP_AIN7	R	8000h	application measurement result AIN7
1C5Fh	SECM_PER_NUM	R	0h	measurement period number of the secondary periodic results
1C73h	SECM_PER_AIN4	R	8000h	periodic measurement result AIN4
1C74h	SECM_PER_AIN5	R	8000h	periodic measurement result AIN5
1C75h	SECM_PER_AIN6	R	8000h	periodic measurement result AIN6
1C76h	SECM_PER_AIN7	R	8000h	periodic measurement result AIN7
1C77h	SECM_PER_SECTEMP	R	8000h	periodic measurement result secondary device temperature
1C78h	SECM_PER_PRMVREF	R	8000h	periodic measurement result primary voltage reference
1C79h	SECM_PER_VAUX	R	8000h	periodic measurement result auxiliary supply voltage
1C7Ah	SECM_PER_VBAT	R	8000h	periodic measurement result VBAT
1C7Bh	SECM_PER_VDDA	R	8000h	periodic measurement result VDDA
1C7Ch	SECM_PER_VDDC	R	8000h	periodic measurement result VDDC
1C7Eh	SECM_PER_NPNISENSE	R	8000h	periodic measurement result NPN current sensor
1C7Fh	SECM_SYNC_NUM	R	0h	measurement number of the secondary synchronous results
1C80h	SECM_SYNC_VB0	R	8000h	synchronous measurement result from balancing pins cell 0.
1C81h	SECM_SYNC_VB1	R	8000h	synchronous measurement result from balancing pins cell 1
1C82h	SECM_SYNC_VB2	R	8000h	synchronous measurement result from balancing pins cell 2
1C83h	SECM_SYNC_VB3	R	8000h	synchronous measurement result from balancing pins cell 3
1C84h	SECM_SYNC_VB4	R	8000h	synchronous measurement result from balancing pins cell 4
1C85h	SECM_SYNC_VB5	R	8000h	synchronous measurement result from balancing pins cell 5
1C86h	SECM_SYNC_VB6	R	8000h	synchronous measurement result from balancing pins cell 6
	<u> </u>	1	1	<u> </u>

18-cell battery-cell controller IC

Table 19. Register overview: Secondary_Measurement_Registers...continued

Address	Name	Access	Reset	Description
1C87h	SECM_SYNC_VB7	R	8000h	synchronous measurement result from balancing pins cell 7
1C88h	SECM_SYNC_VB8	R	8000h	synchronous measurement result from balancing pins cell 8
1C89h	SECM_SYNC_VB9	R	8000h	synchronous measurement result from balancing pins cell 9
1C8Ah	SECM_SYNC_VB10	R	8000h	synchronous measurement result from balancing pins cell 10
1C8Bh	SECM_SYNC_VB11	R	8000h	synchronous measurement result from balancing pins cell 11
1C8Ch	SECM_SYNC_VB12	R	8000h	synchronous measurement result from balancing pins cell 12
1C8Dh	SECM_SYNC_VB13	R	8000h	synchronous measurement result from balancing pins cell 13
1C8Eh	SECM_SYNC_VB14	R	8000h	synchronous measurement result from balancing pins cell 14
1C8Fh	SECM_SYNC_VB15	R	8000h	synchronous measurement result from balancing pins cell 15
1C90h	SECM_SYNC_VB16	R	8000h	synchronous measurement result from balancing pins cell 16
1C91h	SECM_SYNC_VB17	R	8000h	synchronous measurement result from balancing pins cell 17

7.4.8 Registers for all measurement

The registers block <u>All Measurement Registers</u> is writing simultaneously into the primary and the secondary measurement registers. This mechanism provides a comfortable way of ensuring the measurement configuration registers are set simultaneously for the primary and secondary measurement chain. A read back of the All Measurement Registers is not possible. The BMI7018 returns 0000h as data in case one of the All Measurement Registers is read.

Table 20. Register overview: All_Measurement_Registers

Address	Name	Access	Reset	Description
1400h	ALLM_CFG	W	0h	general measurement control
1401h	ALLM_APP_CTRL	W	7C00h	application measurement control
1402h	ALLM_PER_CTRL	W	10h	periodic measurement control
1403h	ALLM_SYNC_CTRL	W	7C00h	synchronous measurement control
1408h	ALLM_VCVB_CFG0	W	0h	cell voltage measurement enable
1409h	ALLM_VCVB_CFG1	W	0h	cell voltage measurement enable

7.5 Cell balancing

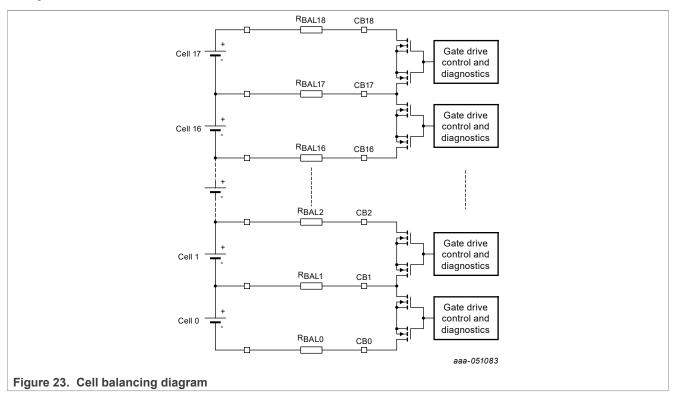
The cell voltage-balancing function allows discharging individual cells based on external resistors and PWM modulated currents controlled by the BMI7018. A constant current mode-balancing feature permits to limit the current variation due to the cell voltage. Because of the balancing structure, the balancing switches are enabled alternatively depending of their position on the module (odd/even). Different PWM duty cycle can be used to define the average current. The internal switches can be controlled by individual balancing timers and/or by the cell voltage. Additionally, the balancing process can be interrupted based on an external temperature sensor in order to manage the heat dissipation of the balancing resistors.

7.5.1 Functions

The BMI7018 allows two main balancing modes:

- · Timer-based balancing
- · Cell voltage-based balancing

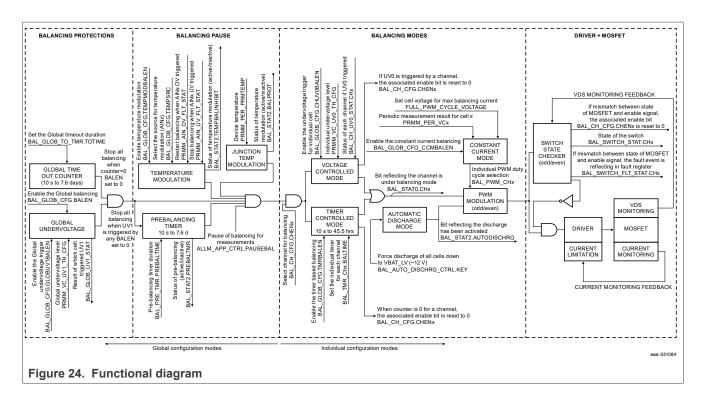
Combining of balancing modes is possible.


18-cell battery-cell controller IC

Other balancing functions enhance the balancing functionality.

- · Global balancing timeout
- · Global cell undervoltage-based balancing
- · Temperature modulated balancing
- Junction temperature balancing protection
- · Constant current balancing
- · prebalancing timer
- PWM
- · Auto pause
- · Emergency discharge
- · Analog switch monitoring

7.5.1.1 Cell balancing diagram


The cell-balancing circuit uses two back-to-back MOSFET transistors for each cell to support negative cell voltages.

7.5.2 Functional diagram

Figure 24 shows the functional diagram of the balancing functionality.

18-cell battery-cell controller IC

7.5.3 Functional description

During balancing, odd and even balance MOSFET banks are alternatively enabled at the fixed frequency f_{PWM(bal)}. The following are descriptions of the different balancing modes.

7.5.3.1 Timer-based balancing

The timer-based balancing allows a time-controlled discharge of the cells. The discharge time for the cells can be set individually for the channels. Individual discharge time is set by writing into the registers BAL_TMR_CH0 to BAL_TMR_CH17. Writing into BAL_TMR_CH_ALL sets all registers BAL_TMR_CH0 to BAL_TMR_CH17 simultaneously. If the timer-based balancing is active, the balancing timer counter counts down every 10 seconds. Once the timer for a cell expires, the balancing action for this cell stops.

To enable timer-based balancing, the bits BAL_GLOB_CFG.BALEN and BAL_GLOB_CFG.TMRBALEN must be logic 1. BAL_GLOB_TO_TMR.TOTIME must be non-zero.

The timer-based balancing can be combined with the other balancing functions. The other enabled balancing functions can cause an interruption of the balancing activity. During the interruption, the balancing timer of the affected channel does not decrement.

Note: Even if timer-based balancing is not enabled BAL_GLOB_CFG.TMRBALEN = 0, writing 0 in any BAL_TMR_CHx register will stop the balancing of the corresponding channel and will be reported in the corresponding BAL_CH_CFG register (CHENx bit set to 0). Writing any other value will have no effect on the balancing.

Application usage: Timer-based balancing is a state-of-the-art way for cell balancing.

7.5.3.2 Cell undervoltage based balancing

The cell voltage-balancing function allows discharging of a cell until the cell reaches the undervoltage threshold set in PRMM_VC_UV0_TH_CFG. For the monitoring of the cell voltage, the primary measurement chain is used.

18-cell battery-cell controller IC

To enable cell undervoltage-based balancing, the bits BAL_GLOB_CFG.BALEN and BAL_GLOB_CFG.CHUV0BALEN must be logic 1. BAL_GLOB_TO_TMR.TOTIME must be non-zero.

The cell undervoltage-based balancing can be combined with the other balancing functions. Other enabled balancing functions can cause an interruption or complete stop of the balancing activity.

Application usage: Cell undervoltage-based balancing is a new way for cell balancing. It discharges the cells to the PRMM VC UV0 TH CFG threshold.

Note: The cyclic measurement must be active to allow cell voltage-measurement updates. If cyclic measurements are disabled, the balancing continues until the global balancing timeout function stops the discharge.

7.5.3.3 Global undervoltage based balancing

The global undervoltage-balancing function allows discharging of a cell until one cell reaches the undervoltage threshold PRMM_VC_UV1_TH_CFG. For the monitoring of the cell voltages, the primary measurement chain is used.

To enable global undervoltage-based balancing, the bits BAL_GLOB_CFG.BALEN and BAL_GLOB_CFG.GLOBUV1BALEN must be logic 1. BAL_GLOB_TO_TMR.TOTIME must be non-zero.

The global undervoltage-based balancing can be combined with the other balancing functions. Other enabled balancing functions can cause an interruption or complete stop of the balancing activity.

Application usage: Global undervoltage-based balancing is a protection feature to avoid deep discharge of cells because of current consumption of the IC during balancing.

Note: The cyclic measurement must be active to allow cell voltage-measurement updates. If cyclic measurements are disabled, the balancing continues until the global balancing timeout function stops the discharge.

7.5.3.4 Global balancing timeout

The global-balancing timeout timer is used to configure the maximum balancing time for all balancing activities. The counter counts down every 10 seconds as soon as its value is non-zero, independent of any other conditions. Once the timer expires, the balancing switches are switched OFF. The bit BAL_GLOB_CFG.BALEN is set to logic 0. The global-balancing timeout timer and the balancing timers for the individual channels use independent clock sources. In case balancing actions are intended, the global-balancing timeout should be set long enough to allow the needed balancing activities.

Application usage: Global timeout is protection feature to avoid deep discharge.

7.5.3.5 prebalancing timer

The prebalancing timer <u>BAL_PRE_TMR</u> allows delaying or pausing of the balancing activity. The counter decrements as soon as bit BAL_GLOB_CFG.BALEN is set logic 1. Once the counter is expired, the balancing activity is enabled. The prebalancing timer holds the timers for the timer-based balancing. The prebalancing timer has no impact on the global balancing timeout.

Application usage: The prebalancing timer can be set to allow a cooldown of the system before the balancing activity is started.

7.5.3.6 Temperature-modulated balancing

The temperature-modulated balancing is an add-on to the other balancing functions. It cannot be used standalone. This mode is activated when BAL_GLOB_CFG.TEMPMODBALEN is set to 1.The source of the temperature-modulated balancing can be selected with BAL_GLOB_CFG.TEMPSRC. Only AIN0 to AIN3 can

18-cell battery-cell controller IC

be used. The temperature-modulated balancing works with a two-point approach. The balancing is stopped once the selected analog-input pin falls below the lower comparator limit (register PRMM_AINO_UV_TH_CFG. If timer-based balancing is active, the balancing timers are on hold as well. The global balancing timeout timer continues. Once the selected analog input pin exceeds the upper comparator limit (register PRMM_AINO_OV_TH_CFG to PRMM_AINO_OV_TH_CFG, the balancing activity is started again. The cell balancing timers decrement again.

Application usage: Temperature-modulated balancing allows thermal management during balancing.

Note: The cyclic measurement must be active to allow updates of the AIN pin measurements. If cyclic measurements are disabled, the balancing is not modulated.

7.5.3.7 PWM for balancing

The PWM for balancing allows operating the activated analog balancing switch in PWM mode. The PWM duty cycle is controlled with registers BAL_PWM_CH0 to BAL_PWM_CH17 and can be set from 0 to 100 % by 0.39 % step.

Application usage: PWM for balancing allows thermal management during balancing.

7.5.3.8 Constant current cell balancing

The Constant Current Cell Balancing mode allows to balance with a constant current based on a fixed balancing resistor and a changing cell voltage. The Constant Current mode balancing feature permits to have less variation of the balancing current versus cell voltage. It adapts automatically the PWM duty cycle of the activated balancing channels based on their primary periodic measurement results. This mode is activated when BAL GLOB CFG.CCMBALEN is set to 1.

As the balancing current depends on the external balancing resistor, to keep a constant balancing current, a configurable full PWM cycle voltage register (register <u>FULL_PWM_CYCLE_VOLTAGE</u>) sets the minimum cell voltage on which the balancing is operating at the maximum current (100 % ON in respective odd or even sequence). The PWM duty cycle can be calculated from the following equation <code>[PWM]_DutyCycle=V_(Cell_min)/V Cell.</code>

BAL_PWM_CH0 to BAL_PWM_CH17 registers are automatically updated with the last duty cycle calculated by the device.

Application usage: PWM for balancing allows constant current during balancing.

7.5.3.9 Analog balancing switch monitoring

The analog balancing switch does the actual switching of the balancing current. It is implemented for each channel. Each switch has a current limitation circuit. Each switch is monitored for the correct status when the switch is enabled for monitoring (BAL_SWITCH_MON_CFG) and the balancing is enabled (BAL_GLOB_CFG.BALEN = 1).

A violation of the status is detected when the voltage across the corresponding CB pins is:

- Above the output fault detection voltage threshold, when the switch shall be closed
- Below the output fault detection voltage threshold, when the switch shall be open

Note: Connectivity of the CB pins is checked via the cell balancing terminal pulldown resistors in the measurement block (see <u>Section 7.7.2</u>).

Application usage: Execution and monitoring of balancing activities.

18-cell battery-cell controller IC

7.5.3.10 Junction temperature balancing protection

The Junction Temperature Balancing mode is an additional protection to avoid the risk of over temperature on the die during balancing sequence. It cannot be deactivated. It is enabled when balancing operation is enabled.

Balancing of all cells are interrupted when the internal IC primary junction temperature measurement is above the junction temperature upper threshold for cell balancing thermal protection. If timer-based balancing is active, the balancing timers are on hold as well. The individual balancing timers will resume automatically when the internal IC primary junction temperature measurement has decreased by the junction temperature hysteresis for cell balancing thermal protection and the cell balancing timers decrement again.

The pause does not affect the global balancing timeout timer.

7.5.3.11 Auto pause

The auto pause feature is implemented as part of the measurement function. The cell balancing function receives the pause signal, which temporarily inhibits the cell balancing. The balancing function holds the individual balancing timer. The pause does not influence the global timeout timer.

Application usage: The auto pause feature is used to avoid influence of the balancing activity on the secondary cell voltage measurement.

7.5.3.12 Automatic discharge

The automatic discharge functionality allows an emergency discharge of the cells. The discharge is started by writing the enable key (DEADh) into register BAL_AUTO_DISCHRG_CTRL. Once the automatic discharge is enabled, the balancing switches are turned on with 100 % duty cycle. The discharge is stopped by writing the disable key (2152h) into register BAL_AUTO_DISCHRG_CTRL or when a supply low-voltage condition occurs.

The automatic discharge is the only balancing feature that can be active in case the BAL_GLOB_CFG.BALEN is logic 0. Automatic discharge is independent of the temperature modulation. The global balancing timeout has no influence on the automatic discharge, but when the automatic discharge is active, the global balancing timeout timer is on hold. In case an overvoltage condition on VBAT is present during auto discharge, the automatic discharge is put on hold. The global balancing timeout timer is resuming from hold. Clearing of the overvoltage error flag (FEH_SUPPLY_FLT_STAT0.VBATOV) enables the auto discharge again. The global balancing timeout timer is again put on hold.

In case a switch error on a balancing switch is detected, the affected channel is turned off.

7.5.4 Cell balancing process

7.5.4.1 Start of balancing

The bit BAL_GLOB_CFG.BALEN is the global enabling bit for the balancing circuit. All balancing related functions, including diagnostics are only active if the bit is set to logic 1.

7.5.4.2 Balancing operation

During balancing in Active mode, the BMI7018 is operating the same way as without balancing. Once the balancing activity of a channel is completed, the individual balancing enable bit BAL_CH_CFG.CHEN0 to CHEN17 for this channel is cleared.

When the cyclic wake-up function is used, the BMI7018 enters into Cyclic mode at the selected set time interval. In Cyclic mode, one periodic measurement is performed. The measurement results are used for the voltage-and temperature-based balancing functionality.

18-cell battery-cell controller IC

7.5.4.3 Completion of balancing

When all individual balancing enable bits BAL_CH_CFG.CHEN0 to BAL_CH_CFG.CHEN17 are cleared, the balancing activity is finished. The bit BAL_GLOB_CFG.BALEN is reset and the bit BAL_STAT1.RDY is set to logic 1.

The following conditions clear the balancing enable bits:

- · Global balancing timer is expired
- Timer-based balancing is activated and all activated individual balancing timers are expired
- Global undervoltage based balancing is activated and one activated cell has reached the global undervoltage threshold
- Cell undervoltage based balancing is activated and all activated cells have reached the undervoltage threshold

Note: The BMI7018 does not report the reason for clearing the individual enable bits.

7.5.5 Cell balancing diagnostics

The BMI7018 provides diagnostic to monitor the integrity of the balancing operation. Connectivity of the CB pins is checked via the cell balancing terminal pulldown resistors in the measurement block (see <u>Section 7.7.2</u>).

7.5.5.1 Switch status monitoring

Registers BAL_SWITCH_STAT0 and BAL_SWITCH_STAT1 provide for each switch the status (open or closed).

7.5.5.2 Analog balancing switch monitoring

The analog balancing switch monitoring does the monitoring of each individual switch. Registers BAL_SWITCH_FLT_STAT0 and BAL_SWITCH_FLT_STAT1 provide, for each switch, a fault indication. Any deviation of the physical state of the balancing circuit from the intended one is considered as a fault.

Each switch is monitored for the correct status, overcurrent, and open-load detection circuit with a separate enable.

Application usage: Execution and monitoring of balancing activities.

7.5.6 Cell balancing registers

All registers related to the cell balancing are listed here. Details on the registers and the bit fields are explained in the register map section.

Table 21. Register overview: Balancing_Registers

Address	Name	Access	Reset	Description
1000h	BAL_GLOB_CFG	R/W	0h	The global balancing configuration register is used to configure the balancing modes.
1001h	BAL_GLOB_TO_TMR	R/W	Oh	The Global Balancing timeout timer register is used to configure the maximum balancing time for all balancing activities to make sure that in case of fault the balancing switches are switched OFF.
1002h	BAL_CH_CFG0	R/W	0h	balancing channel individual enable channel 0 - 15
1003h	BAL_CH_CFG1	R/W	0h	balancing channel individual enable channel 16 - 17
1004h	BAL_PRE_TMR	R/W	0h	prebalancing timer
1005h	BAL_AUTO_DISCHRG_CTRL	R/W	2152h	emergency discharge enable

Table 21. Register overview: Balancing_Registers...continued

Table 21.	Register overview: Baiancin	g_Register	5continued	
Address	Name	Access	Reset	Description
1006h	BAL_SWITCH_MON_CFG0	R/W	FFFFh	balancing switch monitoring enable
1007h	BAL_SWITCH_MON_CFG1	R/W	3h	balancing switch monitoring enable
1008h	FULL_PWM_CYCLE_ VOLTAGE	R/W	0h	full PWM cycle voltage
1009h	BAL_CH_UV0_STAT0	R	0h	channel undervoltage balancing status channel 0 - 15
100Ah	BAL_CH_UV0_STAT1	R	0h	channel undervoltage balancing status channel 16 - 17
100Bh	BAL_GLOB_UV1_STAT0	R	0h	global undervoltage balancing status channel 0 - 15
100Ch	BAL_GLOB_UV1_STAT1	R	0h	global undervoltage balancing status channel 16 - 17
100Dh	BAL_STAT0	R	0h	logical balancing channel status channel 0 - 15
100Eh	BAL_STAT1	R	0h	logical balancing channel status channel 16 - 17
100Fh	BAL_STAT2	R	0h	balancing status
1010h	BAL_SWITCH_STAT0	R	0h	physical balancing channel status channel 0 - 15
1011h	BAL_SWITCH_STAT1	R	0h	physical balancing channel status channel 16 - 17
1012h	BAL_SWITCH_FLT_STAT0	R	0h	balancing switch fault channel 0 - 15
1013h	BAL_SWITCH_FLT_STAT1	R	0h	balancing switch fault channel 16 - 17
101Fh	BAL TMR CH_ALL	W	0h	virtual register, writes in parallel into BAL_TMR_CH0 up to BAL_TMR_CH17
1020h	BAL_TMR_CH0	R/W	0h	balancing timer channel 0
1021h	BAL_TMR_CH1	R/W	0h	balancing timer channel 1
1022h	BAL_TMR_CH2	R/W	0h	balancing timer channel 2
1023h	BAL_TMR_CH3	R/W	0h	balancing timer channel 3
1024h	BAL_TMR_CH4	R/W	0h	balancing timer channel 4
1025h	BAL_TMR_CH5	R/W	0h	balancing timer channel 5
1026h	BAL_TMR_CH6	R/W	0h	balancing timer channel 6
1027h	BAL_TMR_CH7	R/W	0h	balancing timer channel 7
1028h	BAL_TMR_CH8	R/W	0h	balancing timer channel 8
1029h	BAL_TMR_CH9	R/W	0h	balancing timer channel 9
102Ah	BAL_TMR_CH10	R/W	0h	balancing timer channel 10
102Bh	BAL_TMR_CH11	R/W	0h	balancing timer channel 11
102Ch	BAL_TMR_CH12	R/W	0h	balancing timer channel 12
102Dh	BAL_TMR_CH13	R/W	0h	balancing timer channel 13
102Eh	BAL_TMR_CH14	R/W	0h	balancing timer channel 14
102Fh	BAL_TMR_CH15	R/W	0h	balancing timer channel 15
1030h	BAL_TMR_CH16	R/W	0h	balancing timer channel 16
1031h	BAL_TMR_CH17	R/W	0h	balancing timer channel 17
1032h	BAL_PWM_CH_ALL	W	FFh	virtual register, writes in parallel into BAL_PWM_CH0 up to BAL_PWM_CH17
1033h	BAL_PWM_CH0	R/W	FFh	balancing PWM channel 0
1034h	BAL_PWM_CH1	R/W	FFh	balancing PWM channel 1
1035h	BAL_PWM_CH2	R/W	FFh	balancing PWM channel 2
1036h	BAL_PWM_CH3	R/W	FFh	balancing PWM channel 3
	1			·

18-cell battery-cell controller IC

Table 21. Register overview: Balancing_Registers...continued

Address	Name	Access	Reset	Description
1037h	BAL_PWM_CH4	R/W	FFh	balancing PWM channel 4
1038h	BAL_PWM_CH5	R/W	FFh	balancing PWM channel 5
1039h	BAL_PWM_CH6	R/W	FFh	balancing PWM channel 6
103Ah	BAL_PWM_CH7	R/W	FFh	balancing PWM channel 7
103Bh	BAL_PWM_CH8	R/W	FFh	balancing PWM channel 8
103Ch	BAL_PWM_CH9	R/W	FFh	balancing PWM channel 9
103Dh	BAL_PWM_CH10	R/W	FFh	balancing PWM channel 10
103Eh	BAL_PWM_CH11	R/W	FFh	balancing PWM channel 11
103Fh	BAL_PWM_CH12	R/W	FFh	balancing PWM channel 12
1040h	BAL_PWM_CH13	R/W	FFh	balancing PWM channel 13
1041h	BAL_PWM_CH14	R/W	FFh	balancing PWM channel 14
1042h	BAL_PWM_CH15	R/W	FFh	balancing PWM channel 15
1043h	BAL_PWM_CH16	R/W	FFh	balancing PWM channel 16
1044h	BAL_PWM_CH17	R/W	FFh	balancing PWM channel 17

7.5.7 Balancing related registers

The most important registers related to the balancing function and the related content are shown in <u>Table 22</u>.

Table 22. Balancing related registers

Register	Content
PRMM_AIN0_OV_TH_CFG (Section 12.1.147)	upper comparator limit for AIN0
PRMM_AIN1_OV_TH_CFG (Section 12.1.148)	upper comparator limit for AIN1
PRMM_AIN2_OV_TH_CFG (Section 12.1.149)	upper comparator limit for AIN2
PRMM_AIN3_OV_TH_CFG (Section 12.1.150)	upper comparator limit for AIN3
PRMM_AIN0_UV_TH_CFG (Section 12.1.152)	lower comparator limit for AIN0
PRMM_AIN1_UV_TH_CFG (Section 12.1.153)	lower comparator limit for AIN1
PRMM_AIN2_UV_TH_CFG (Section 12.1.154)	lower comparator limit for AIN2
PRMM_AIN3_UV_TH_CFG (Section 12.1.155)	lower comparator limit for AIN3
PRMM_VC_UV1_TH_CFG (Section 12.1.146)	lower comparator limit 1 for VC0 to VC17
PRMM_VC_UV0_TH_CFG (Section 12.1.145)	lower comparator limit 0 for VC0 to VC17

7.6 GPIO pins

The GPIO pins allow a flexible usage for specific application functions. The functionalities offered by the GPIOs are:

- Analog input for auxiliary (ratiometric) measurements (all GPIO pins)
- · Analog input for auxiliary (absolute) measurements (all GPIO pins and AINA pin)
- General-purpose inputs (all GPIO pins)
- General-purpose outputs (all GPIO pins)
- Wake input (GPIO0 and GPIO1)
- Alarm input (GPIO1)

18-cell battery-cell controller IC

- Alarm output (AINA)
- I²C-bus leader interface (GPIO4 and GPIO5)

Each pin offers several functionalities. Table 23 shows an overview of the pins and the functions.

Table 23. GPIO functions

Pin	Function
GPIO0	 Analog input AIN0 for ratiometric measurement to VAUX or VDDC Analog input AIN0 for absolute measurement General-purpose input 0 General-purpose output 0 Wake-up input 0
GPIO1	 Analog input AIN1 for ratiometric measurement to VAUX or VDDC Analog input AIN1 for absolute measurement General-purpose input 1 General-purpose output 1 Wake-up input 1 Alarm input
GPIO2	 Analog input AIN2 for ratiometric measurement to VAUX or VDDC Analog input AIN2 for absolute measurement General-purpose input 2 General-purpose output 2
GPIO3	 Analog input AIN3 for ratiometric measurement to VAUX or VDDC Analog input AIN3 for absolute measurement General-purpose input 3 General-purpose output 3
GPIO4	 Analog input AIN4 for ratiometric measurement to VAUX or VDDC Analog input AIN4 for absolute measurement General-purpose input 4 General-purpose output 4 I²C-bus SCL
GPIO5	 Analog input AIN5 for ratiometric measurement to VAUX or VDDC Analog input AIN5 for absolute measurement General-purpose input 5 General-purpose output 5 I²C-bus SDA
GPIO6	 Analog input AIN6 for ratiometric measurement to VAUX or VDDC Analog input AIN6 for absolute measurement General-purpose input 6 General-purpose output 6
GPIO7	 Analog input AIN7 for ratiometric measurement to VAUX or VDDC Analog input AIN7 for absolute measurement General-purpose input 7 General-purpose output 7
AINA	Analog input AINA for absolute measurement Alarm output

Configuring a special function (wake, alarm, I²C-bus) sets the configuration of the GPIO pin automatically for this functionality. More than one function can be selected.

18-cell battery-cell controller IC

When a pin is configured as analog input, an external low-pass filter is mandatory. If no external low-pass filter is present, the analog measurement functionality must be disabled. Configuring I²C-bus functionality and general-purpose output functionality results in I²C-bus functionality. General-purpose output settings are ignored in this case.

7.6.1 Analog input

The primary measurement chain measures the voltage at GPIO0 to GPIO3 and AINA.

The secondary measurement chain measures the voltage at GPIO4 to GPIO7.

Note: During cyclic measurement of the BMI7018, only the primary measurement chain is active. GPIO4 to GPIO7 cannot be monitored in cyclic mode.

Note: The leakage current of $I_{L(GPIO)}$ is for GPIO2 to GPIO7 only guaranteed if VDDC is available. If GPIO2 and GPIO3 shall be measured in cyclic mode, VDDC must be enabled (set bit SYS_SUPPLY_CFG.VDDCCYC to logic 1).

Details on the measurement functionality are in the measurement section.

Application usage: Analog voltage measurements for various functions, such as temperature-based balancing (GPIO0 to GPIO3), voltage measurements, and independent voltage measurements.

7.6.2 I²C-bus leader interface

GPIO4 and GPIO5 offer an I²C-bus leader interface.

Details on the I^2 C-bus leader interface functionality are in the I^2 C-bus interface section.

Application usage: Communication to other components, i.e., external EEPROM, near-field communication (NFC).

7.6.3 General-purpose input

All GPIO pins offer a general-purpose input functionality.

The bits GPIO_CFG0.INPEN0 to GPIO_CFG0.INPEN7 enable the pin for input. The bits GPIO_IN.IN0 to GPIO_IN.IN7 reflect the status of the pin. The bits GPIO_IN.HIGHDET0 to GPIO_IN.HIGHDET7 provide the info whether a high level was present at the pin since the last read command.

Application usage: Reading of digital input signals.

7.6.4 General-purpose output

All GPIO pins offer a general-purpose output functionality.

The bits GPIO_CFG0.OUTEN0 to GPIO_CFG0.OUTEN7 enable the pin for output. The bits GPIO_CFG1.ODEN0 to GPIO_CFG1.ODEN7 configure the output pin for open-drain configuration. The bits GPIO_OUT.OUT0 to GPIO_OUT.OUT7 set the state for the output.

Application usage: Driving of digital outputs signals.

7.6.5 Wake input

GPIO0 and GPIO1 offer a wake-up input functionality. FEH_WAKEUP_CFG0.WAKEUPIN configures GPIO0 as wake-up input. FEH_WAKEUP_CFG0.ALARMIN configures GPIO1 as wake-up input.

Note: GPIO0 expects an active HIGH signal. GPIO1 can be configured for acting on active HIGH, active LOW, or heartbeat signals.

18-cell battery-cell controller IC

Application usage: Wake-up of the system on external triggers.

7.6.6 Alarm input

GPIO1 offers an alarm input functionality. FEH_ALARM_CFG.ALARMIN configures GPIO1 as alarm input. See Section 7.2 on how to use the alarm input event.

Note: An alarm reported in FEH_ALARM_OUT_REASON0.ALARMIN should be re-checked by the pack controller. To such purpose, the pack controller may clear the flag (set it to 0) to check if the error is reconfirmed.

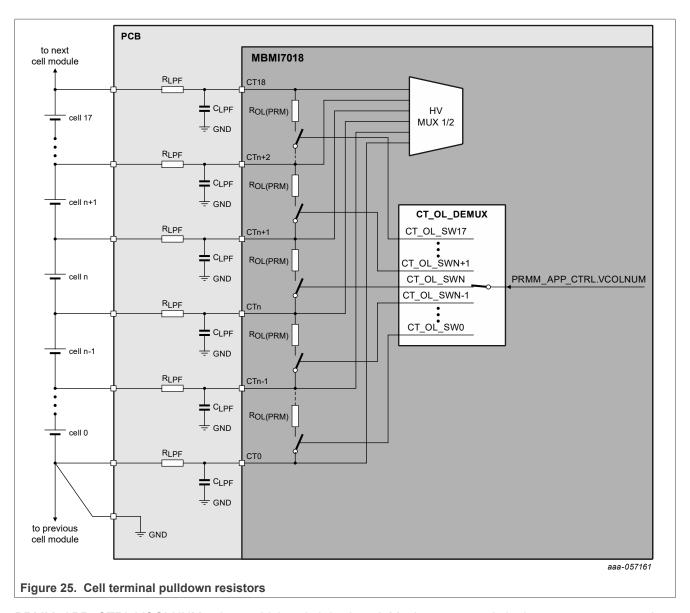
Application usage: Wake-up of the system by alarms.

7.6.7 GPIO registers

All registers related to the GPIOs are listed here. Details to the registers and the bit fields are explained in the register map section.

Table 24. Register overview: GPIO Registers

Address	Name	Access	Reset	Description
800h	GPIO_CFG0	R/W	0h	GPIO configuration 0
801h	GPIO_CFG1	R/W	0h	GPIO configuration 1
802h	GPIO_OUT	R/W	0h	GPIO output
804h	GPIO_IN	R	0h	GPIO input

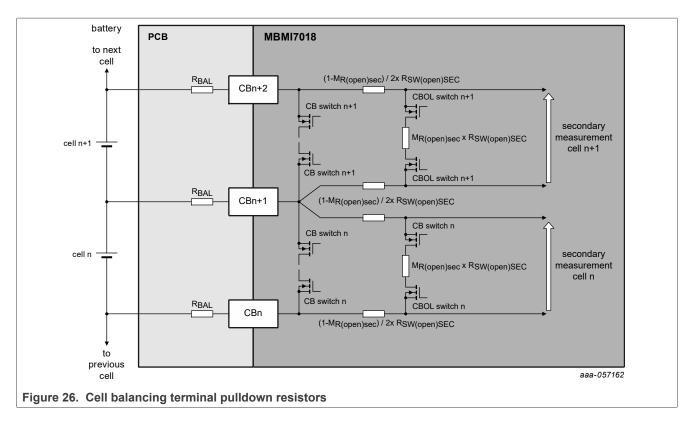

7.7 Diagnostics

The BMI7018 provides diagnostic options to validate the integrity of the measurement chain.

7.7.1 Cell-terminal pulldown resistors (CTx pins)

The BMI7018 allows turning on a pulldown resistor between two adjacent cell terminal pins.

18-cell battery-cell controller IC


PRMM_APP_CTRL.VCOLNUM selects which switch is closed. Maximum one switch closes at one moment in time.

Application usage: Monitoring of the cell terminal connectivity and testing of the multiplexer functionality.

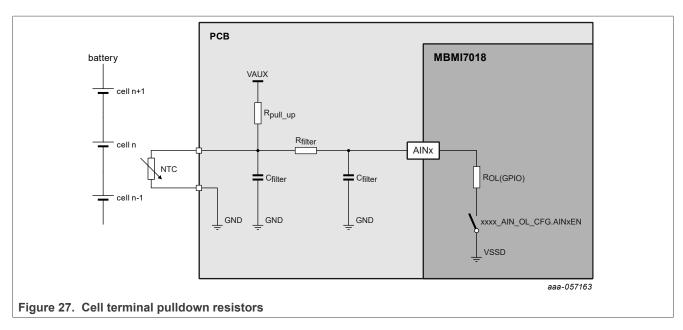
7.7.2 Cell-balancing terminal pulldown resistors (CBx pins)

The BMI7018 allows turning on a pulldown resistor network between two adjacent cell-balancing terminal pins.

18-cell battery-cell controller IC

SECM_SYNC_CTRL.VBOLNUM selects which switch is closed. Possible options are:

- One selected switch is closed (SECM SYNC CTRL.VBOLNUM is set to 0d to 17d)
- The BMI7018 closes the switch for the channel ADC2B is measuring (SECM_SYNC_CTRL.VBOLNUM is set to 30d = 1Eh)
- No switch is closed (SECM_SYNC_CTRL.VBOLNUM is set to 1Fh)


Maximum one switch closes at one moment in time.

Application usage: Monitoring of the cell balancing terminal connectivity and testing of the multiplexer functionality.

7.7.3 AlNx terminal pulldown resistors (AlNx pins)

The BMI7018 allows turning on a pulldown resistor for each individual analog input pin to GND.

18-cell battery-cell controller IC

PRMM_AIN_OL_CFG.AIN0EN to PRMM_AIN_OL_CFG.AIN3EN and PRMM_AIN_OL_CFG_AINAEN control the OL_DETECT_SW for AIN0 to AIN3 and AINA.

SECM_AIN_OL_CFG.AIN4EN to SECM_AIN_OL_CFG.AIN7EN control the OL_DETECT_SW for AIN4 to AIN7.

Application usage: Monitoring of the connectivity of the AIN pins and testing of the multiplexer functionality.

7.7.4 Calibration CRCs

The BMI7018 is calibrated at the end of the device production line. The calibration data is protected by a CRC. In case the register PRMM_CAL_CRC or SECM_CAL_CRC contains the value BEEFh, the calibration data is intact. If a different value is returned, the calibration data may be corrupted. Performance of devices with corrupted calibration data must not be trusted. The bit PRIMCALCRCFLT is signaling that a fault on the primary calibration data is detected. The bit SECCALCCRCFLT is signaling a fault on the secondary calibration data. Both error bits result in a result invalidation trigger (Figure 18).

Note: Even when the BMI7018 provides error bits for the calibration CRC faults, the MCU must check the PRMM_CAL_CRC and SECM_CAL_CRC register content as well.

Application usage: Check of integrity of the calibration.

7.7.5 Measurement status bits

The registers PRMM_MEAS_STAT and SECM_MEAS_STAT contain several status bits. The bits MEASFLT, ANAFLT, and SUPPLYFLT signal faults that lead to invalidation of the measurement results (see <u>Section 7.4.4</u>). The bit COMFLT has no direct influence on the measurement, but is included in the registers as important diagnostic information.

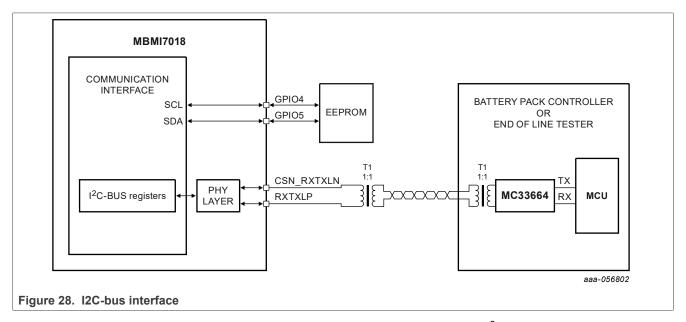
The bits SYNCRDY and PERRDY signal that the new synchronized measurement results (see <u>Section 7.4.4</u>) or the new periodic measurement results (see <u>Section 7.4.3.3</u>) are available. The bits APPRDYVC, APPRDYAIN0 to APPRDYAIN7, and APPRDYAINA signal that new application timed measurement results can be requested (see <u>Section 7.4.3.1</u>).

Application usage: Monitoring of the measurement chains.

18-cell battery-cell controller IC

7.7.6 Synchronization monitoring

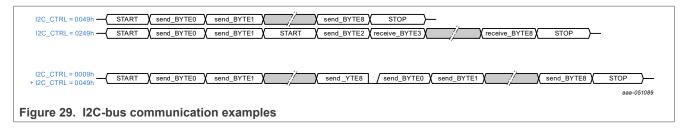
The purpose of a synchronous measurement is to measure with the primary and secondary measurement chain the same input at the same moment in time. To ensure that the measurements are performed at the same moment in time, the BMI7018 monitors the synchronicity of the measurement chains during a synchronous measurement cycle. In case a deviation is detected, the bit SYNCMEASFLT is set. Reasons for deviations could be that the values of PRMM_PER_CTRL.PERLEN and SECM_PER_CTRL.PERLEN are unequal, the PRMM_SYNC_CTRL.SYNCCYC and SECM_SYNC_CTRL.SYNCCYC are not set simultaneously. Also differences in the enabled cells in the PRMM_VC_CFG and SECM_VB_CFG result in a SYNCMEASFLT.


Application usage: Ensure synchronicity of the measurement chains during a synchronous measurement cycle.

7.8 I²C-bus interface

The I²C-bus block allows communication to other components on the printed-circuit board (PCB), i.e., EEPROM, NFC. The device acts as I²C-bus leader. The I²C-bus leader module creates I²C-bus transactions as configured via the microcontroller interface. The BMI7018 executes the I²C-bus transaction autonomously. An ongoing transaction has no impact on other blocks and can be executed parallel to any other task of the BMI7018.

The I²C-bus interface is compliant to NXP <u>UM10204</u> for I²C-bus operation in Standard mode. The interface also supports Fast mode and Fast mode plus.


Transactions with a length below 14 bytes (including the device address) can be set up in one communication frame. If longer transactions are needed, the I²C-bus is held until the next part of the transaction has been set up. The I²C-bus offers various diagnostic information to allow a monitoring of the I²C-bus from the application microcontroller.

Register I2C_CFG allows enabling and disabling of the interface and setting the I²C-bus clock frequency. Register I2C_CTRL initiates I²C-bus communication. Register I2C_STAT provides the status information of the interface. The data registers (I2C_DATA0 to I2C_DATA17) contain the actual data to be transmitted. After a read operation, the data read on the I²C-bus is stored in the data registers.

To ensure that all I²C-bus transitions are correct, it must be avoid sending the BMI7018 to Sleep mode while a transaction is pending.

18-cell battery-cell controller IC

<u>Figure 29</u> shows some possible I²C-bus transactions. The first line is a write command. The second line is a write with a switch to read. The third transaction shows a long sequence using two I²C-bus transactions. Direct read commands, without using the switch to read function, are supported, as well. NXP <u>UM10204</u> provides details about the I²C-bus.

7.8.1 I²C-bus registers

All registers related to the I²C-bus interface are listed here. Details to the registers and the bitfields are explained in the register map section.

Table 25. Register overview: I2C_Registers

Address	Name	Access	Reset	Description
C00h	I2C_CFG	R/W	0h	I2C configuration
C01h	I2C_CTRL	R/W	0h	I2C control
C02h	I2C_STAT	R	0h	I2C status
C04h	I2C_DATA0	R/W	0h	I2C data register 0
C05h	I2C_DATA1	R/W	0h	I2C data register 1
C06h	I2C_DATA2	R/W	0h	I2C data register 2
C07h	I2C_DATA3	R/W	0h	I2C data register 3
C08h	I2C_DATA4	R/W	0h	I2C data register 4
C09h	I2C_DATA5	R/W	0h	I2C data register 5
C0Ah	I2C_DATA6	R/W	0h	I2C data register 6
C0Bh	I2C_DATA7	R/W	0h	I2C data register 7
C0Ch	I2C_DATA8	R/W	0h	I2C data register 8
C0Dh	I2C_DATA9	R/W	0h	I2C data register 9
C0Eh	I2C_DATA10	R/W	0h	I2C data register 10
C0Fh	I2C_DATA11	R/W	0h	I2C data register 11
C10h	I2C_DATA12	R/W	0h	I2C data register 12
C11h	I2C_DATA13	R/W	0h	I2C data register 13
C12h	I2C_DATA14	R/W	0h	I2C data register 14
C13h	I2C_DATA15	R/W	0h	I2C data register 15
C14h	I2C_DATA16	R/W	0h	I2C data register 16
C15h	I2C_DATA17	R/W	0h	I2C data register 17

7.9 Microcontroller interface

The microcontroller interface facilitates the communication between the microcontroller and the BMI7018. The interface is based on registers and exchanges data, i.e., the voltage measurements and GPIO pin status information.

18-cell battery-cell controller IC

The microcontroller interface features:

- Single leader multiple follower communication
- Flexible or fixed frame length options (64-, 80-, 96-, and 112-bit frames)

Communication is done via SPI or TPL. The frame format for SPI and TPL communication is equivalent.

7.9.1 TPL3 message format

Command and response frames are exchanged primarily between a single leader and a single follower. Broadcast commands can be transmitted from one leader to multiple followers. The purpose of the command and response transactions is to read and write to registers within the BMI7018 register map.

The BMI7018 uses TPL3 protocol, which supports messages with a length of 64 bits, 80 bits, 96 bits, and 112 bits. The dynamic message-length feature reduces the number of transactions for read/write of consecutive registers.

The BMI7018 defines a set of fields that constitute the message format.

7.9.1.1 TPL3 message structure

The device supports dynamic message length.

The symbols used in the messages are listed in Table 26.

Because of the padding option, the number of register data provided in the data fields do not have to match with the message length. The data used for padding is used for CRC calculation, but has otherwise no effect. If a message contains fewer data fields than specified by DATALEN[1:0], the communication frame is discarded.

Table 26. Symbol description

Symbol	Value	Description	
CMD[1:0]		Operation to be performed	
	00	Wake-up message or no operation (NOP) ^[1]	
	01	Read request message	
	10	Write request message	
	11	Response message	
MADD		Indicates the address of the leader transmitting	
	0	leader 0 (also used by BMI7018 in all response messages)	
	1	leader 1	
CADD[2:0]		Daisy chain address	
	0	Reserved for future usage	
	1	Daisy chain 1	
	2	Daisy chain 2	
	3	Daisy chain 3	

Table 26. Symbol description...continued

Symbol	Value	Description	
	4	Daisy chain 4	
5		Daisy chain 5	
		Daisy chain 6	
	7	All daisy chains	
DEVADD[5:0]		Device address in the daisy chain	
	0	Unenumerated device	
	1 to 62	Device address	
	63	All devices	
MSGCNT[3:0]		Each BMI7018 has a local message counter which is incremented after a message was sent. The counter rolls over to 0.	
	0 to 15	Response message: current message counter value other messages: ignored by the BMI7018	
DATLEN[1:0] ^[2]		Number of valid data fields in the message	
	0	DATA0 is valid	
	1	DATA0 and DATA 1 are valid	
	2	DATA0, and DATA1 and DATA2 are valid	
	3	All four data fields are valid	
REGADD[13:0]		Indicates the start address of the register access	
	0 to 16383	Register addressed	
0 0000b reserved (only for read commands)		This field is reserved and must have the value 0.	
PAD ^[3] (only for read	0	No padding used in response frames	
commands)	1	Padding is used in response frames	
RESPLEN[1:0] (only for read commands)		Number of registers to be transferred in one response frame. If RESPLEN is greater than the number of registers to be transmitted, the device adapts the response length to fit the number of registers.	
	0	Response length is one register	
	1	Response length is two registers	
	2	Response length is three registers	
	3	Response length is four registers	
NUMREG[7:0] (only for read		Number of total registers requested	
commands)	0	One register	
	1 to 255	Number of total registers requested = NUMREG + 1	
DATA0[15:0]		Data to be transferred	
DATA1[15:0]		Data to be transferred	
DATA2[15:0]		Data to be transferred	
DATA3[15:0]		Data to be transferred	
Padded	0000h	Optional padding of message	
CRC[15:0]		CRC value	
		•	

Differentiation for wake-up message and NOP messages is described in Section 7.9.1.4.1. Read commands with DATALEN \neq 0 are accepted, but only DATA0 is used.

See <u>Section 7.9.1.3</u>.

18-cell battery-cell controller IC

7.9.1.2 Message CRC generation

The leader and followers calculate a 16-bit CRC on the entire message using the processes detailed in this section. The CRC is calculated using the polynomial $X^{16} + X^{13} + X^{12} + X^{11} + X^{10} + X^8 + X^6 + X^5 + X^2 + 1$ (identified by 3D65h - MSB first notation) with a seed value of 0000h. The seed value represents the initial status of the CRC calculation.

Note: In Koopman notation, the polynomial corresponds to 9EB2h.

Table 27. CRC parameters

The state of the s			
Description	Value		
CRC result width	16 bits		
Polynomial (MSB-first notation)	3D65h		
Polynomial (Koopman notation)	9EB2h		
Seed	0000h		

Procedure for CRC encoding (transmission)

The part of the message being encoded are bits from MSB to bit 16, bits 15 to 0 are reserved for CRC result.

- 1. Calculate the CRC over the message bits MSB to bit 16 using the given polynomial, and the seed as initial value.
- 2. Once the CRC is calculated, append it at the end of the message, and the message can be transmitted.

Table 28. CRC calculation examples

·				
Message bits MSB to 16	CRC, 16 bit	Frame		
1FFF FFFF FFEEh	7EF4h	1FFF FFFF FFEE 7EF4h		
9FF0 1403 7C01h	D0C2h	9FF0 1403 7C01 D0C2h		
4410 187F 070Eh	9434h	4410 187F 070E 9434h		

Procedure for CRC check (reception)

Calculate the CRC over all bits of the received message (including CRC) using the given polynomial, and the seed as initial value.

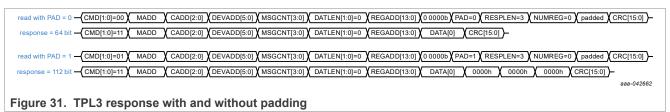
- If the result is 00h, the CRC is correct. The BMI7018 processes the message.
- If the result is different than 00h, the CRC is incorrect. The BMI7018 discards the message, sets the CRCERR fault bit in the FEH COM FLT STAT register, and increments the COMERRCNT.

Note: The bit COMFLT signals the occurrence of communication faults, as well.

Table 29. CRC check examples

Frame	CRC check result, 16 bit
01FF 0000 FFEE 948Eh	0000h
9FF0 1403 7C01 D0C2h	0000h
4410 187F 070E 9434h	0000h
C418 9009 0000 0000 0000 10F9h	0000h

7.9.1.3 Multiread responses with padding


The TPL3 protocol offers the option to request multiple consecutive registers with one read request message. The symbol RESPLEN[1:0] defines the number of registers to be transferred in one message. The symbol NUMREG[7:0] defines the number of registers that are requested. To transfer the requested number of

18-cell battery-cell controller IC

registers, the BMI7018 sends as many messages with DATALEN[1:0] = RESPLEN[1:0] as needed. If the last message has less data to transfer than specified in RESPLEN[1:0], the device sends in the last message only the remaining register data.

The symbol PAD configures the length of this last message. With PAD set to logic 0, the length of the last message is adapted to match the number of registers to be transferred. With PAD set to logic 1, the last message is padded with 0000h to match the requested message length (as indicated by RESPLEN). If the message is a response to an access error, the padding is done with 8000h instead.

Note: DATALEN is indicating the length of the message including the padded data.

7.9.1.4 TPL wake-up commands

The BMI7018 wakes up by any kind of bus activity; a dedicated wake message is needed. In order to wake all TPL3 devices connected, the TPL3 communication features a special command to wake up the system. In order to allow compatibility with TPL2 devices such as MC33664, the BMI7018 can also be configured to initiate an MC33664-compatible wake command.

7.9.1.4.1 TPL3 wake-up message

NOP messages do not cause a reaction of the BMI7018. The only exception to this behavior is the wake-up message. The wake-up message is a 64-bit NOP message with DATA[0] = FFEEh sent to all devices (DEVADD[5:0] = 11 1111b). The daisy chain address (CADD[2:0]), leader address (MADD), data length (DATLEN), and the message counter (MSGCNT[3:0]) are ignored.

```
wake-up = 64 bit -(CMD[1:0] = 00b)(MADD = Xb)(CADD[2:0] = XXXb)(DEVADD[5:0] = 11 1111b)(MSGCNT[3:0] = XXXXb)(DATLEN[1:0] = Xxxb)(REGADD[13:0] = XXXXb)(DATA[0] = FFEEh)(CRC[15:0])-

aaa-042663

Figure 32. Wake-up message for BMI7018
```

Once the device receives the wake-up message as explained above, the device initiates a wake-up of the system. For details of the system wake-up, see Section 7.9.2.3.

Note: The system wake-up is initiated only once after entering active mode. The second wake-up message after entering active mode is treated as a regular NOP command.

The wake-up message sent by the BMI7018 is shown in Figure 33.

```
wake-up = 64 bit -{CMD[1:0] = 00b}(MADD = 0b)(CADD[2:0] = 111b)(DEVADD[5:0] = 11 1111b)(MSGCNT[3:0] = 1111b)(DATLEN[1:0] = 11b)(REGADD[13:0] = 3FFFh)(DATA[0] = FFEEh)(CRC[15:0])-

Figure 33. Wake-up message sent by BMI7018 (WAKEUPCOMP = MBMI7018)
```

7.9.1.4.2 Wake-up compatibility for MC33664

The MC33664 uses a different wake-up message than the BMI7018. To ensure compatibility with the MC33664, the BMI7018 supports the generation of MC33664-compatible wake-up messages. The bits SYS_TPL_CFG.WAKEUPCOMP[1:0] set the wake-up message type for each TPL port. One port can be configured to MC33664 compatibility.

BMI7018

62 / 315

18-cell battery-cell controller IC

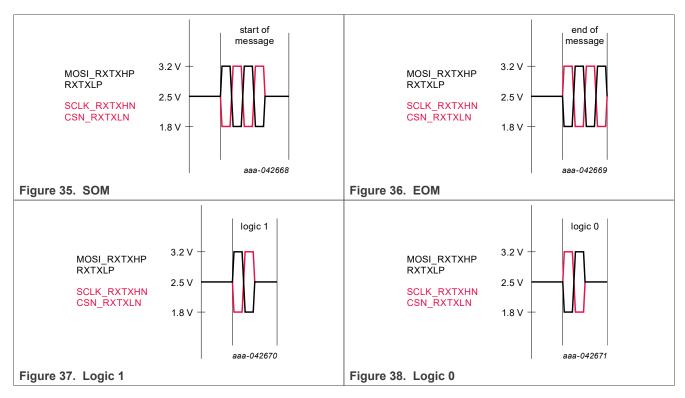
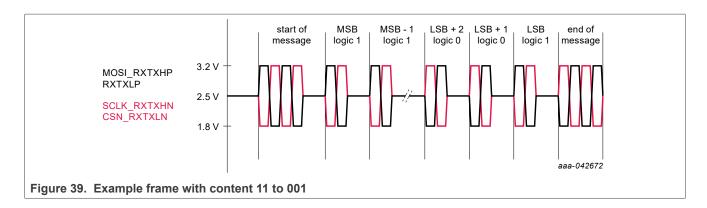
Figure 34 shows the sequence sent by the BMI7018. The sequence consists of a two messages: a start of message (SOM) symbol and an end of message (EOM) symbol. The messages are separated by a delay.

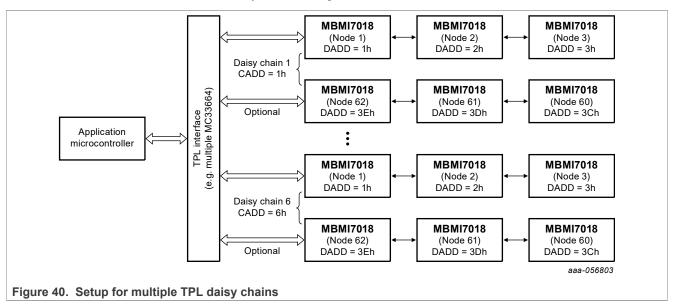
7.9.2 TPL3 interface

High-speed differential isolated communication is achieved by using transformers or capacitors. The BMI7018 offers two TPL ports to allow a daisy-chain communication of multiple devices. In one daisy chain, up to 62 nodes can be logically addressed via the device address. Device address 0d (DADD[5:0] or DEVADD[5:0] = 00 0000b) is reserved for network initialization. Device address 63d (DADD[5:0] or DEVADD[5:0]= 11 1111b) is reserved for broadcast messages.

7.9.2.1 TPL communication symbols

The TPL uses four pulse-encoded symbols for communication. The four symbols are shown in <u>Figure 35</u> to <u>Figure 38</u>. The transformer driver generates SOM and EOM symbols. They always occur at the start and end of the communication message, respectively. Data pulses are used to transfer the actual information.


Figure 39 shows a typical TPL communication frame.

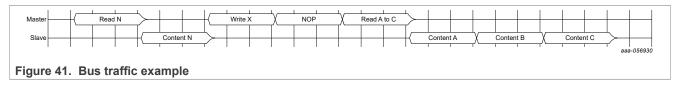
18-cell battery-cell controller IC

7.9.2.2 TPL daisy-chain communication

The TPL communication is done in a daisy-chain configuration.

During communication, each device is checking the device address field in the communication messages. Devices react only to commands that are addressed to them (DEVADD of message is equal to DADD of the device, or broadcast messages). The BMI7018 is not decoding the CADD field, but uses the CADD in all response messages. CADD = 0h must be reserved for future usage.

7.9.2.2.1 Communication methodology


The TPL communication physical layer does not offer any collision avoidance mechanism. On the higher communication layers, some mechanisms are implemented.

- The BMI7018 ignores read commands to all devices (DEVADD[5:0] = 63), because the responses would cause bus collisions
- The BMI7018 delays the start of sending of response messages in case the bus is busy. Messages received while a response is pending are ignored.

Otherwise, it is the task of the communication leader to ensure that no collisions happen. If collisions occur, it is the task of the communication leader to re-establish proper communication.

18-cell battery-cell controller IC

Write commands to the BMI7018 do not generate a response message. Read commands sent by the leader may generate a single response or multiple responses depending on the parameters used in the read request. The message size and start register are identified in the read command sent by the leader.

7.9.2.2.2 Message processing and compensation of forward delays

Each message received by the BMI7018 is checked for integrity after reception. Valid messages for an individual device (DEVADD[5:0] = 0 to 3Eh) are executed within the delay time between two messages ($t_{d(req)MCU}$). The execution of write messages for all devices (DEVADD[5:0] = 3Fh) is delayed. The delay is calculated based on:

- The device address (SYS COM CFG.DADD)
- The number of nodes in the daisy chain (SYS COM CFG.NUMNODES)
- The direction of the communication (MADD of the communication message)
- · The average forward delay

Table 30. Equation used for delay if MADD = 0

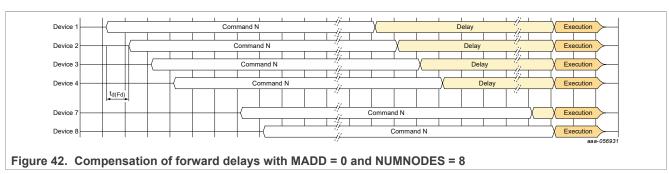

$$t_{\text{delay}} = (\text{NUMNODES-DADD}) \times t_{\text{d(Fd)}}$$

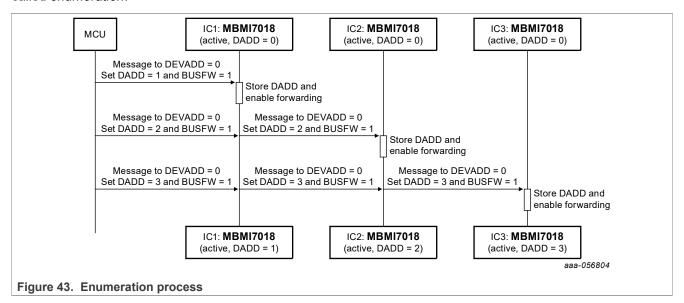
Table 31. Equation used for delay if MADD = 1

$$t_{\text{delay}} = (\text{DADD-1}) \times t_{\text{d(Fd)}}$$

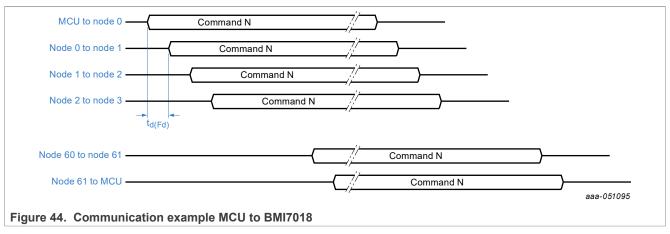
Note: Read messages for all devices are ignored as they would cause bus collisions.

Compensating the forward delays allows all devices to execute global write commands at nearly the same moment in time.

Notes: For proper operation of the forward delay compensation:

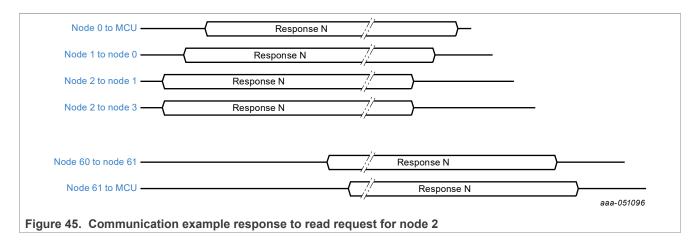

- For proper operation of the forward delay compensation:
 - The SYS COM CFG.NUMNODES must be set correctly in all devices
 - If NUMNODES DADD < 0, then the device considers $t_{delay} = 0$
 - The devices must be enumerated in incrementing order when MADD = 0 is used and in decrementing order when MADD = 1 is used
- During the delay time, it is forbidden to send new messages to the BMI7018.

Application usage: Synchronized start and end of measurements.


18-cell battery-cell controller IC

7.9.2.2.3 Device address and enumeration of devices

After power-up or Deep Sleep mode, the BMI7018 starts with DADD = 0. To allow forwarding of messages and therefore enable communication toward a complete daisy chain, the DADD has to be assigned. This process is called *enumeration*.



An unenumerated device (DADD = 0) does not forward any communication. This behavior allows setting the device address for each device in the daisy chain based on the position in the daisy chain. An enumerated device (DADD \neq 0) with enabled bus forwarding (bit SYS_COM_CFG.BUSFW) forwards any communication received on one TPL port to the other TPL port. This behavior allows communication from upper nodes to lower nodes and lower nodes to upper nodes. All devices in a daisy chain receive any communication sent by the application microcontroller.

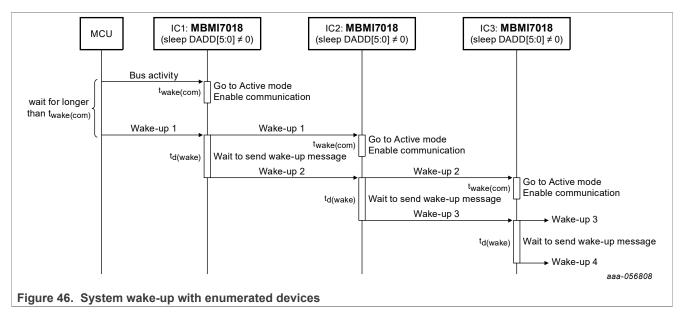
Responses to read commands are transmitted at both TPL interfaces. <u>Figure 45</u> shows a response assuming that command N in Figure 44 was a read command for node 2.

18-cell battery-cell controller IC

7.9.2.3 Wake-up by TPL communication

The BMI7018 contains bus wake-up capability. An BMI7018 can wake up other devices, and other devices can wake up the BMI7018. If the BMI7018 detects a wake-up condition and the wake-up is enabled, the device initiates a wake-up pulse sequence on the bus.

7.9.2.3.1 Wake-up of BMI7018


The BMI7018 wakes up once there is any communication on the TPL bus.

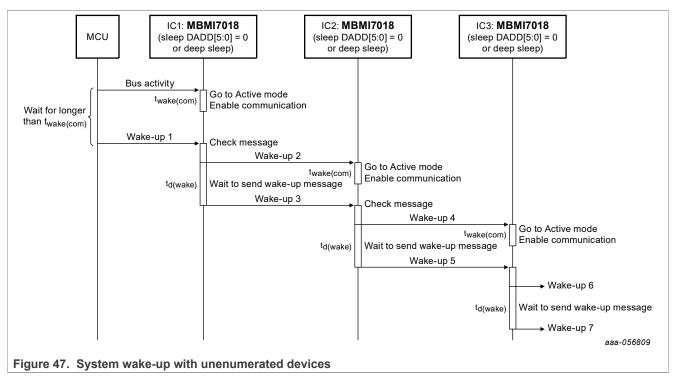
7.9.2.3.1.1 Wake-up with enumerated devices (DADD[5:0] ≠ 0 and BUSFW = 1) using device wake-up messages

The first wake-up message or bus activity initiates a transition to Active mode. In Active mode, an enumerated BMI7018 with BUSFW = 1 forwards any message. The second wake-up message transmitted by the MCU is forwarded to the next BMI7018 in the daisy chain. The first BMI7018 has now received two wake-up messages. It automatically sends one additional wake-up message toward the second BMI7018.

The second BMI7018 in the daisy chain receives one forwarded wake-up message plus the generated message and acts in the same way as the first BMI7018. This behavior wakes the entire daisy chain. Figure 46 illustrates this behavior.

18-cell battery-cell controller IC

Notes:

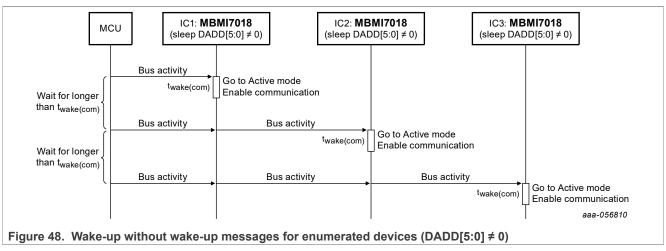

- The wake-up message used here is the one defined in Section 7.9.1.4.1.
- Reception of a valid message during the wait time between the wake-up messages ($t_{d(wake)}$) stops the wake-up process.

7.9.2.3.1.2 Wake-up with unenumerated devices (DADD[5:0] = 0) using device wake-up messages

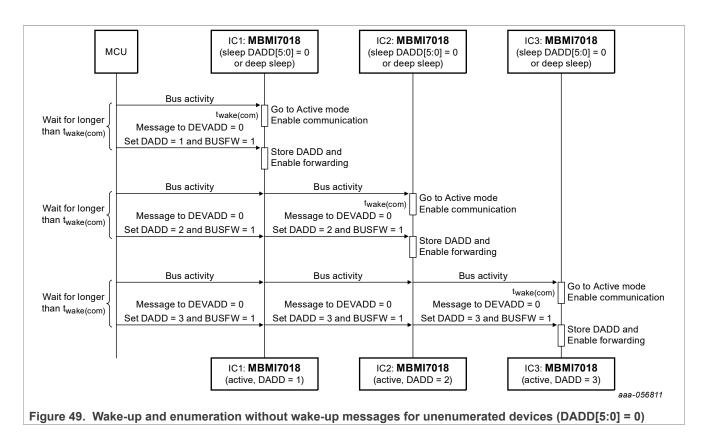
An unenumerated BMI7018 does not forward communication. The microcontroller can communicate only with the physically first IC of the daisy chain. Assigning a daisy chain address (DADD \neq 0) and enabling the bus forwarding (BUSFW = 1) enables communication with the first and second IC. Continuing this process allows assigning unique addresses to all devices in the daisy chain based on their physical position in the daisy chain.

The first wake-up message or bus activity initiates a transition to Active mode. In Active mode, an unenumerated BMI7018 does not forward messages. The second wake-up message transmitted by the MCU is not forwarded to the next BMI7018 in the daisy chain. To wake up the entire daisy chain, the unenumerated BMI7018 automatically sends two wake-up messages toward the second BMI7018.

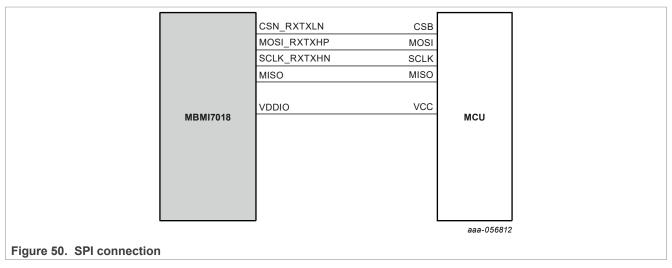
18-cell battery-cell controller IC


Notes:

- The wake-up message used here is the one defined in Section 7.9.1.4.1.
- Reception of a valid message during the wait time between the wake-up messages ($t_{d(wake)}$) stops the wake-up process.

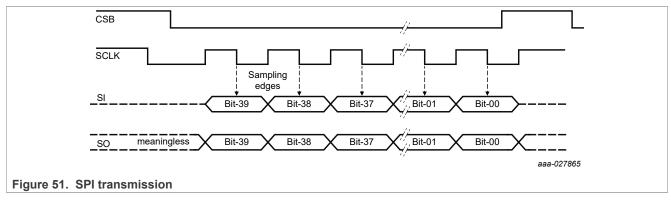

7.9.2.3.1.3 Wake-up with regular communication

The usage of wake-up messages as described in <u>Section 7.9.2.3.1.1</u> and <u>Section 7.9.2.3.1.2</u> automatically ensures the wake-up of the whole daisy chain. It is also possible to wake the system without usage of dedicated wake-up messages.


With start of bus activity, the first device in the chain starts to wake up. Once the device has completed the transition to Active mode, the device can receive and send messages. If the device is enumerated and the bus forwarding is enabled, the device forwards the communication. The resulting bus activity wakes up the next device in the daisy chain.

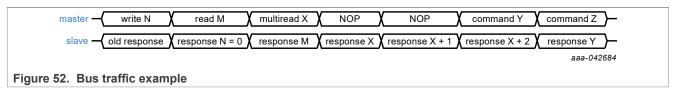
18-cell battery-cell controller IC

7.9.3 SPI interface


The SPI input signal levels to the BMI7018 operate at 5.0 V logic levels but are 3.3 V compatible.

The VDDIO pin can be connected to the VDDC pin to get 5.0 V SPI output signal levels. To get 3.3 V SPI output signal levels, the VDDIO pin should be connected to an external 3.3 V supply.

The BMI7018 SPI is a standard SPI with a chip select (CSN_RXTXLN), clock (SCLK_RXTXHN), leader input follower output (MISO), and leader output follower input (MOSI) (MOSI_RXTXHP). The shifting of the data


18-cell battery-cell controller IC

follows a first in first out (FIFO) order, with both input and output words transferring the most significant bit (MSB) first. The microcontroller controls all SPI communication to the BMI7018.

The BMI7018 decodes the SPI message with the rising edge of the chip select (CSN_RXTXLN) pin. The clock polarity is active HIGH (idles LOW). The rising edge on SCLK changes data bits, with the falling edge data bits are sampled (valid). The BMI7018 responds to a received command with the next transmission.

The BMI7018 accepts read requests for more registers than the actual data length. NOP messages allow the device to send pending data. If the device has no data anymore to send, it responds with all remaining bits logic 0. Other commands than NOP commands cancel the transmission of pending data. To write commands, the device responds with all bits logic 0.

Change of the data length of the SPI frames is allowed. However, the user must ensure that pending responses fit the SPI frame length. Otherwise, a response frame error is generated.

7.9.4 Microcontroller interface monitoring

The microcontroller interface facilitates several diagnostics and monitoring functionalities. They are explained in the following sections.

7.9.4.1 Communication error counter

If any communication issue (FRAMEERR, CRCERR, RSPLENERR) is detected, the communication error counter FEH_COM_FLT_STAT.COMERRCNT increases by one. A write to the FEH_COM_FLT_STAT.COMERRCNT with any data unequal to 00h resets the counter.

7.9.4.2 Error counter overflow

In case the communication error counter is maxed out, the communication error counter stays at the maximum value, and the bit FEH_COM_FLT_STAT.ERRCNTOF is set. A write to the bit with logic 1 clears the FEH_COM_FLT_STAT.ERRCNTOF bit.

Application usage: An error counter overflow can be used to trigger a power-on reset of the device.

7.9.4.3 Response errors

Response errors can only occur when the BMI7018 is used with SPI communication. In case the length of an SPI frame does not match the length of the response frame to be transmitted, the CRC bit field is

18-cell battery-cell controller IC

not at the end of the message. This error is signaled with the bit FEH_COM_FLT_STAT.RSPLENERR and FEH_COM_FLT_STAT.COMERRCNT is increased. A write to the bit with logic 1 clears the FEH_COM_FLT_STAT.RSPLENERR bit.

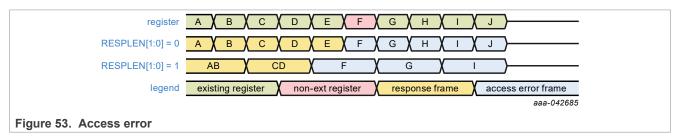
7.9.4.4 Communication timeout

In case the device does not receive or transmit a valid message for a time longer than set in SYS_COM_TO_CFG.COMTO a communication timeout error is generated. The bit FEH_COM_FLT_STAT.COMTO is set and FEH_COM_FLT_STAT.COMERRCNT is increased. The further reaction of the BMI7018 depends on the configuration in the event handling. A write to the bit with logic 1 clears the FEH_COM_FLT_STAT.COMTO bit.

The bit field SYS_COM_TO_CFG.COMTODISABLE allows disabling the communication timeout. Disabling of the communication timeout is only allowed for development purposes.

7.9.4.5 CRC error

The BMI7018 checks all messages it receives for a correct CRC. In case the device detects an invalid CRC for the received message a CRC error is generated. The bit FEH_COM_FLT_STAT.CRCERR is set and FEH_COM_FLT_STAT.COMERRCNT is increased. A write to the bit with logic 1 clears the FEH_COM_FLT_STAT.CRCERR bit.


7.9.4.6 Frame error

The BMI7018 checks all messages for a valid frame length. Frames with 64 bit, 80 bit, 96 bit, and 112 bit are accepted. In case the device detects an invalid frame a frame error is generated. The bit FEH_COM_FLT_STAT.FRAMEERR is set and FEH_COM_FLT_STAT.COMERRCNT is increased. A write to the bit with logic 1 clears the FEH_COM_FLT_STAT.FRAMEERR bit.

7.9.4.7 Access error

An access error is detected when a non-existing register is accessed. For the access, it does not matter if it is read or write. Write into read only, or read of write-only registers do not trigger an access error. If an access error occurs for a read request, the device responds with a regular response frame. REGADD[13:0] contains the error indicator 3FFFh. DATA[0] contains the address where the access error was triggered. Bit 15 and bit 14 of DATA[0] are set to 00b. Data padding for access errors is done with 8000h instead of 0000h.

If the access error occurs within a response message to a multiread command, the device provides the readable content until the frame is sent, in which the access error occurs. The frame with the access error contains in DATA[0] the address in which the error occurred. Subsequent frames contain in DATA[0] the address that this frame would use. Access error frames are sent, independent whether the frame would use accessible or non-accessible content, until the requested number of messages is sent. Figure 53 shows the behavior of the BMI7018 in case an access error occurs during a multiread command.

The register FEH_ACC_ERR contains information about the type of the last access error and the register addressed during this access.

18-cell battery-cell controller IC

Note: An access error does not increment the communication error counter.

7.9.4.8 Response of the device to communication errors

When an error in the communication to the BMI7018 is detected (FRAMEERR, CRCERR, RSPLENERR), the message is discarded. The BMI7018 does not send a response to this command.

7.9.5 Microcontroller interface related registers

The most important registers for the microcontroller interface and the related content are shown in Table 32.

Table 32. Microcontroller interface related registers

Register	Content
FEH_COM_FLT_EVT_CFG (Section 12.1.41)	communication faults events
FEH_COM_FLT_POR_CFG (Section 12.1.37)	reset due to communication faults
FEH_COM_FLT_STAT (Section 12.1.33)	communication errors
SYS_COM_TO_CFG (Section 12.1.3)	communication timeout configuration
SYS_COM_CFG (Section 12.1.2)	communication configuration

8 Limiting values

8.1 BMI7018 limiting values

Table 33. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{BAT}	VBAT voltage		-0.3	-	94	V
V _{i(CTn)}	Cell terminal input voltage (CTn) (n = 0 to 17)		-0.3	-	(n+1) * 5	V
V _{i(CTn)}	Cell terminal input voltage (CTn) (n = 18)		-0.3	-	94	V
V _{i(CBn)}	Cell terminal balance input voltage (CBn) (n = 0 to 17)		-0.3	-	(n+1) * 5	V
V _{i(CBn)}	Cell terminal balance input voltage (CBn) (n = 18)		-0.3	-	94	V
$V_{dif(CT)}$	Cell terminal input differential voltage		-5	_	10	V
I _{i(CTn)}	cell terminal input current	open load detection disabled	-500	_	500	nA
V _{i(dif)bal}	balancing input differential voltage		-4.5	_	12.5	V
I _{i(bal)}	input current on balancing pins		_	_	330	mA
V_{DDA}	VDDA voltage		-0.3	_	1.65	V
V_{DDC}	VDDC voltage		-0.3	_	5.5	V
V _{DDIO}	VDDIO voltage		-0.3	_	5.5	V
V _{AUX}	VAUX voltage		-0.3	_	4	V
V _{GPIOx}	GPIOx voltage		-0.3	_	VDDC + 0.5	V

18-cell battery-cell controller IC

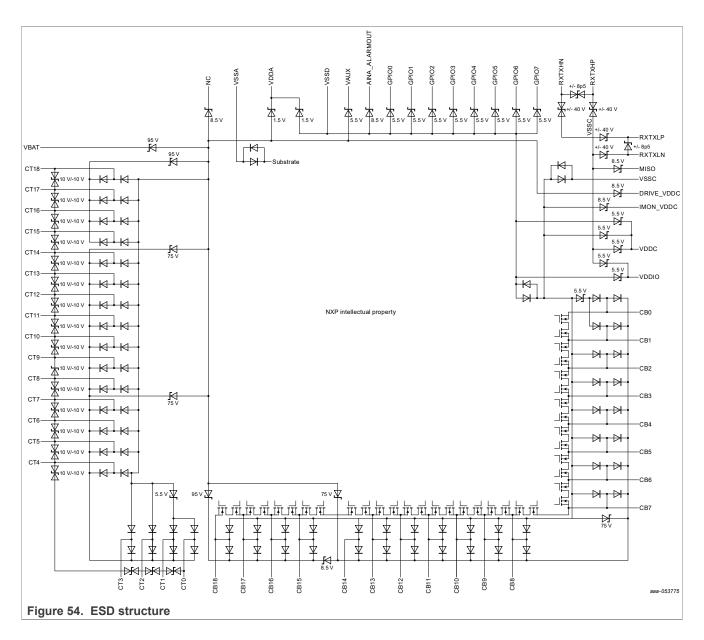
Table 33. Limiting values...continued

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{AINA}	AINA and ALARM _{OUT} voltage		-0.3		VDDC + 0.5	V
V _{bus(TPL)}	voltage on TPL communication bus pins	Relative to VSSC	-27	_	40	V
V _{i(IMONVDDC)}	input voltage on IMON_VDDC pin		-0.3	_	7	V
V _{i(DRIVEVDDC)}	input voltage on DRIVE_VDDC pin		-0.3	_	7	V
Thermal maximu	ım ratings		'		'	
Tj	junction temperature		-40	_	165	°C
T _{stg}	storage temperature		-55	_	150	°C
T _{reflow(peak)}	peak package reflow temperature	Pin soldering temperature limit is for 30 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a malfunction or permanent damage to the device.	_	_	260	°C
ESD ratings	1					
V _{ESD1}	electrostatic discharge voltage	At any pin; human body model (HBM): according to AEC-Q100-002 (100 pF, 1.5 kΩ)	-2	_	+2	kV
V _{ESD2}	electrostatic discharge voltage	At pin VBAT, CTx, CBx, VDDIO, VDDC, CSN_RXTXLN, RXTXLP, MOSI_RXTXHP, SCLK_RXTXHN, GPIOx, AINA_ALARMOUT, VAUX, ; HBM: according to AEC-Q100-002 (100 pF, 1.5 kΩ); against all GNDs shorted together	-4	_	+4	kV
V _{ESD3}	electrostatic discharge voltage	At all pins; charged device model (CDM): according to AEC-Q100-011 (field induced charge; 4 pF)	-500	_	+500	V
V _{ESD4}	electrostatic discharge voltage	At corner pins; CDM: according to AEC-Q100-011 (field induced charge; 4 pF)	-750	_	+750	V
V _{ESD5}	electrostatic discharge voltage	At pin VBAT, CTx, CBx, VDDIO, VDDC, VSSC, CSN_RXTXLN, RXTXLP, MOSI_RXTXHP, SCLK_RXTXHN, GPIOx, AIINA_ALARMOUT, VAUX, VSSA, GNDFLAG; according to IEC 61000-4-2, unpowered (150 pF, 330 Ω) with recommended ESD capacitors as in section application information - with floating ground	-8	_	+8	kV

18-cell battery-cell controller IC

Table 33. Limiting values...continued


In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ESD6}	electrostatic discharge voltage	At pin VBAT, CTx, CBx, VDDIO, VDDC, VSSC, CSN_RXTXLN, RXTXLP, MOSI_RXTXHP, SCLK_RXTXHN, GPIOx, AllNA_ALARMOUT, VAUX, VSSA, GNDFLAG; according to ISO-10605, unpowered (150 pF, 330 Ω) with recommended ESD capacitors as in section application information - with ground referenced	-8	_	+8	kV
V _{ESD7}	electrostatic discharge voltage	At pin VBAT, CTx, CBx, VDDIO, VDDC, VSSC, CSN_RXTXLN, RXTXLP, MOSI_RXTXHP, SCLK_RXTXHN, GPIOx, AIINA_ALARMOUT, VAUX, VSSA, GNDFLAG; according to ISO-10605, unpowered (150 p F, 2 kΩ) with recommended ESD capacitors as in section application information - with ground referenced	-8	_	+8	kV
V _{ESD8}	electrostatic discharge voltage	At pin VBAT, CTx, CBx, VDDIO, VDDC, VSSC, CSN_RXTXLN, RXTXLP, MOSI_RXTXHP, SCLK_RXTXHN, GPIOx, AIINA_ALARMOUT, VAUX, VSSA, GNDFLAG; according to ISO-10605, powered (330 p F, $2 \mathrm{k}\Omega$) with recommended ESD capacitors as in section application information - with ground referenced	-8	_	+8	kV

8.2 ESD structure

The <u>Figure 54</u> shows the ESD structure of the BMI7018. Values in front of each ESD structure are the guaranteed voltage ratings, not the triggering voltages.

18-cell battery-cell controller IC

9 Thermal characteristics

Table 34. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Rth _{ja}	Junction to ambient natural convection four layer board (2s2p)	Ta = -20 60 °C	_	_	27	K/W
Rth _{jc}	Junction to case bottom (exposed pad)	Ta = -20 60 °C	_	_	1	K/W

18-cell battery-cell controller IC

10 Characteristics

10.1 BMI7018 Electrical characteristics

Table 35. Characteristics

Vbat = 9 V to 90 V; Ta = -20 °C to 60 °C; Tj = -20 °C to 85 °C; all voltages are defined with respect to ground; positive currents flow into the IC. Typical values are given at Vbat = 72 V; Ta = 25 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VBAT			,			
V _{BAT}	VBAT operating range		9	_	90	V
V _{BAT(th)ov}	VBAT overvoltage threshold		90	_	93	V
V _{BAT(th)uv}	VBAT undervoltage threshold		7	8	9	V
$V_{BAT(th)lv}$	VBAT low-voltage (LV) threshold	FP and FPC modes and LP mode with cell balancing	10.5	12	13.5	V
ΔV _{max1(VBAT-upperCT)}	Maximum voltage difference 1 between battery supply voltage and pin CT18 or highest CTn	V _{bat} = 35 V to maximum supply voltage	-2.1	_	2.5	V
ΔV _{max2(VBAT-upperCT)}	Maximum voltage difference between battery supply voltage and pin CT18 or highest CTn	V _{bat} = 9 V +1.5 V to 35 V	-1.5	_	2	V
∆V _{bal(VBAT-upperCB)}	Maximum voltage difference between battery supply voltage and pin CB18 or highest CBn	T _j = -20°C to 85°C, V _{bat} = 9 V to 81V, V _{cell} = -5V to 5V	-0.4	_	0.4	V
Current consumption	on					
I _{BAT(ULP)}	IBAT current in deep sleep mode	Tj= -20°C85°C	_	-	19	μΑ
I _{BAT(LP)}	IBAT current in sleep mode	Tj= -20°C85°C	_	-	115	μA
BAT(add)LP	Additional IBAT current in sleep mode in sleep mode due to balancing	sleep mode with balancing enabled	_	_	2.9	mA
I _{BAT(FP)}	Full Power mode current consumption measuring all cell voltages and auxiliary inputs.	No external load. No cell balancing.	_	_	14.9	mA
BAT(FPC)2	Cyclic mode current consumption measuring all cell voltages, primary auxiliary inputs, and module voltage.	No secondary measurement. No balancing. No external current consumption. No communication.	_	_	12.3	mA
I _{BATCB(FPC)}	IBAT additional current in FP or FPC mode when all CB enable	All cell balancing enabled.	-	_	700	uA
$\Delta I_{BAT(FP)}$	IC to IC operating current imbalance	Ta = -20 °C to 60 °C, Vbat = 45 V, Ta and Vbat are the same for both ICs,Active mode / all ADCs runningNo balancing operation / No communication / No external load	_	_	400	μА
Cell voltage measu	rement accuracy for primary meas	surement - BOL				
V _{err(meas)(A)(CTx)}	Cell voltage measurement error CTx, range A. (LFP cells)	Vcell=3.3 V, Tj=25°C, VBAT= 9 V81 V	-0.8	_	0.8	mV
V _{err(meas)(B)(CTx)}	Cell voltage measurement error CTx, range B. (NMC cells)	Vcell=0 V4.5 V, Tj=-20°C85°C, VBAT= 9 V81 V	-3	_	3	mV
V _{err(meas)(C)(CTx)}	Cell voltage measurement error CTx, range C. (full range)	Vcell=-1 V5 V, Tj=-20°C85°C, VBAT operating range	-5	_	5	mV

18-cell battery-cell controller IC

Table 35. Characteristics...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Cell voltage meas	surement accuracy for primary mea	surement - EOL				
V _{err(meas)(F)(CTx)}	Cell voltage measurement error CTx, range F. (NMC cells)	Vcell=0 V4.5 V, Tj=-20°C 85°C,VBAT=9 V81 V	-5	_	5	mV
V _{err(meas)(G)(CTx)}	Cell voltage measurement error CTx, range G. (full range)	Vcell=-1 V5 V, Tj=-20°C85°C, VBAT= full range	-7	_	7	mV
Cell voltage meas	urement accuracy for secondary m	easurement - BOL				
V _{err(meas)(A)(CBx)}	Cell voltage measurement error CBx, range A. (LFP cells)	Vcell=3.3 V, Tj=25°C, VBAT= 9 V81 V	-1.7	_	1.7	mV
V _{err(meas)(B)(CBx)}	Cell voltage measurement error CBx, range B. (NMC cells)	Vcell=0 V4.5 V, Tj=-20°C85°C, VBAT= 9 V81 V	-3	_	3	mV
V _{err(meas)(C)(CBx)}	Cell voltage measurement error CBx, range C. (full range)	Vcell=-1 V5 V, Tj=-20°C85°C, VBAT operating range	-5	_	5	mV
Cell voltage meas	surement accuracy for secondary m	easurement - EOL				
V _{err(meas)(F)(CBx)}	Cell voltage measurement error CBx, range F. (NMC cells)	Vcell=0 V4.5 V, Tj=-20°C 85°C,VBAT=9 V81 V	-5	_	5	mV
V _{err(meas)(G)(CBx)}	Cell voltage measurement error CBx, range G. (full range)	Vcell=-1 V5 V, Tj=-20°C85°C, VBAT= full range	-7	_	7	mV
Communication (TPL)			1	-	
I _{VDDC(TPL)wait}	TPL current on VDDC, device in waiting state	2 RX ON,No TX	_	_	1.4	mA
I _{VDDC} (TPL)forward	TPL current on VDDC, device in forward state	1 RX ON,1 TX ON(TX averaged on bit period)		_	11.2	mA
I _{VDDC} (TPL)respond	TPL current on VDDC, device in responding state	NO RX, 2 TX ON(TX averaged on bit period)	_	_	21	mA
VDDA			,	'		'
V_{DDA}	VDDA voltage		1.5	1.55	1.6	V
I _{lim(VDDA)}	Current limit of VDDA		_	_	12	mA
t _{startup(VDDA)}	VDDA startup time	Cload=100 nF	_	_	50	μs
V _{DDA(th)uv}	VDDA undervoltage threshold		1.36	1.4	1.44	V
V _{DDA(th)ov}	VDDA overvoltage threshold		1.65	1.7	1.75	V
VAUX			'	'		
V _{AUX}	VAUX output voltage		3.19	3.3	3.41	V
I _{VAUX}	VAUX external current capability		_	_	5	mA
I _{lim(VAUX)}	Current limit of VAUX		-	_	12	mA
t _{startup(VAUX)}	VAUX startup time	1 KΩ load,100 nF ext cap	_	_	200	μs
V _{AUX(th)uv}	VAUX undervoltage threshold		2.88	3.0	3.12	V
V _{AUX(th)ov}	VAUX overvoltage threshold		3.5	3.65	3.8	V
VDDC		1		I		
V_{DDC}	VDDC output voltage		4.85	5.0	5.15	V
I _{VDDC}	External VDDC current drive capability	Ta = -20 °C to 60 °C		_	15	mA
t _{startup(VDDC)}	Startup time of VDDC	14 Ω sense resistor 5 mA load and 470 nF capacitor		_	400	μs

18-cell battery-cell controller IC

Table 35. Characteristics...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{out(DRIVE_VDDC)}	Driver output current (base current)		-60	_	300	uA
V _{DDC(th)uv}	VDDC undervoltage threshold		4.51	4.65	4.79	V
V _{DDC(th)ov}	VDDC overvoltage threshold		5.2	5.35	5.5	V
V _{sense(VDDC)hc}	Sense voltage of VDDC high current event		167	190	213	mV
V _{trig(VDDC)oc}	Trigger voltage of VDDC overcurrent event	for Ta > +25°C, VDDC overcurrent threshold max = 336mV (external NPN transistor thermal protection)	264	300	350	mV
VDDIO			-			'
V _{DDIO(th)uv}	VDDIO undervoltage threshold		2.96	3.03	3.1	V
V _{DDIO(th)ov}	VDDIO overvoltage threshold		5.25	5.375	5.5	V
Internal temperati	ure measurement	1	ı	1	1	1
$T_{j(meas)}$	IC temperature measurement range		-45	_	155	°C
$\Delta T_{j(meas)}$	IC temperature measurement error	Range to be measured is -20 °C to 85 °C	-3	_	3	°C
Overtemperature p	rotection			·		
T _{sd(th)}	Shutdown temperature threshold	Of VPRE regulator	160	_	175	°C
Mode switching				<u>'</u>		
t _{wake(com)}	Maximum wake-up to communication time	Measured from start of wake- event.	_	_	2.4	ms
t _{sw(act-Sleep)}	Switching time from Active mode to Sleep mode		_	_	0.3	ms
t _{sw(act-deepsleep)}	Switching time from Active mode to deep Sleep mode		_	_	0.3	ms
t _{sw(act-cyc)}	Switching time from Active mode to Cyclic mode		_	_	0.3	ms
t _{wait(cyc-soc)}	Waiting time between entering in Cyclic mode and start of conversation		5	_	_	ms
t _{sw(cyc-act)}	Switching time from Cyclic mode to Active mode		_	_	0.8	ms
t _{sw(cyc-sleep)}	Switching time from Cyclic mode to Sleep mode	After completion of the measurement.	_	_	0.3	ms
t _{sw(sleep-act)}	Switching time from Sleep mode to Active mode		_	_	2.1	ms
t _{sw(sleep-cyc)}	Switching time from Sleep mode to Cyclic mode			_	1.6	ms
t _{startup(deepsleep-act)}	Start-up time from Deep Sleep mode to Active mode		_		2.1	ms
t _{wake(cyc)} res	Cyclic mode wake-up time resolution		93	100	107	ms
α _{wake(cyc)}	Cyclic mode wake-up time accuracy		-7	_	7	%

18-cell battery-cell controller IC

Table 35. Characteristics...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{max(Cwu)}	Maximum Cyclic mode wake-up timer period		6094	6553	7012	s
BIST					'	
t _{check(fr)} BIST	Frame check time for BIST	from setting FEH_MON_BIST_ CTRL.STARTBIST until final results available	_	_	500	μs
Measurement res	olution			_		'
V _{meas(res)VBAT}	Measured voltage resolution		_	3.128	-	mV/LSB
V _{meas(res)}	Measured voltage resolution		_	154	_	μV/LSB
T _{meas(res)}	Primary and secondary measured temperature resolution		_	32.4	_	mK/LSB
V _{meas(res)(supply)}	Supply voltage measurement resolution (VAUX, VDDC)		_	308	_	uV/LSB
V _{meas(res)(vdda)}	Supply voltage measurement resolution (VDDA)		_	154	_	uV/LSB
VREF limits	'			<u> </u>		
N _{limit(VREF)}	Limits for reference voltages during fault-free operation	PRMM_PER_SECVREF and SECM_PER_PRMVREF	6577h	-	65A9h	LSB
Cell terminal leak	age		1		'	
I _{L(absdyn)}	Dynamic absolute leakage current	absolute cell voltage measurement pin current leakage during measurement sequence	-130	_	130	nA
$I_{L(difdyn)}$	Dynamic differential leakage current	differential cell voltage measurement pin current leakage during measurement sequence	-25	_	25	nA
Cell terminal nois	е			<u> </u>		
$V_{n(meas)}$	Measurement noise voltage	sampling period = 16 scans,T _j = 85 °C	_	_	300	μVRMS
$\alpha_{ct(ch)}$	Channel crosstalk	based on differential voltage between channel x and x + 1; T _j = -20°C to 85°C	_	_	-70	dB
Cell terminal oper	n load detection					
R _{open(prm)}	Primary open load resistance		6.8	_	13.2	kΩ
R _{sw(open)sec}	Secondary cell voltage open- load mechanism switched impedance		13.8	_	26.2	kΩ
M _{ratio(open)sec}	Ratio between VBx measurement and actual voltage at VBx pin	CBOL switch closed; VC > 1.5 V	93.6	_	94.1	%
Measurement acq	uisition		1	<u>'</u>		
N _{s(PI)}	Number of periodic integrator samples		16	_	511	
$N_{s(AI)}$	Number of application integrator samples		16	_	65534	

18-cell battery-cell controller IC

Table 35. Characteristics...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Measurement tin	ning					
t _{appmeas}	Application measurement time	application result availability after capture command	_	_	265	μs
t _{d(prm-start)} meas	Delay time from global primary measurement enable to measurement start			_	100	μs
t _{d(sec-start)meas}	Delay time from secondary measurement enable to measurement start		_	_	100	μs
t _{autopause(prog)}	Programmable autopause time		10	_	160000	μs
t _{autopause(acc)}	Autopause timer accuracy		-5	_	5	%
t _{autopause(res)}	Autopause time resolution			10	_	μs
T _{s(meas)}	Measurement sampling period		16.15	17	17.85	μs
t _{sync(meas)}	Measurement synchronization time	from any cell to any cell	129.2	136	142.8	μs
VBAT measurem	ent accuracy					
V _{I(acc)} VBAT	Measured voltage minimum accuracy	Tj = -20 °C to 85 °C, VBAT >= 17 V at pin VBAT (wo Rvbat)	-50	_	50	mV
$\Delta V_{I(meas)VBAT}$	Measured Voltage Max Relative Error	Tj = -20 °C to 85 °C, VBAT >= 17 V at pin VBAT (wo Rvbat)	_	_	0.3	%
VBAT measurem	nent noise		'		'	
V _{n(VBAT)(RMS)}	Measurement noise	Sampling period = 16 scan samples, Tj = 85 °C	_	_	10	mVrms
Balancing			'			
I _{bal}	Balancing current	T_j =-20°C to 85°C, R_{bal} = 10 to 450 Ω, pic current	0	_	360	mA
I _{lim(bal)}	Balancing current limit	Tj = -20°C to 85°C	360	_	800	mA
R _{sw(bal)}	Balancing switch resistance	T _j = -20°C to 85°CV _{bat} = 9 V to 81V, 4 to 18 cells	_	_	1.1	Ω
V _{th(fault)Bal}	Output fault detection voltage threshold	T _j = -20 °C to +85 °C	0.25	_	0.65	V
I _{L(CBx)}	CBx leakage current	Tj= -2085°C,0 <vcbx+1 -<br="">VCBx<5,ULP mode</vcbx+1>	-500	_	500	nA
I _{L(CBx)}	CBx leakage current	Tj= -2085°C,0 <vcbx +1 - VCBx<5,ULP and LP mode,Balancing disabled</vcbx 	-2	_	2	μА
I _{L(CBx)3}	CBx input leakage current	Tj = -20 °C85 °C,-3 <vcbx+1 -="" disabled<="" modes,balancing="" td="" vcbx<5,all=""><td>-10</td><td>_</td><td>10</td><td>μА</td></vcbx+1>	-10	_	10	μА
T _{th(act)otp}	overtemperature protection activation threshold	threshold for primary temperature measurement to stop balancing		3254h	_	LSB
T _{th(rel)otp}	overtemperature protection release threshold	threshold for primary temperature measurement to restart balancing	_	3010h	_	LSB

18-cell battery-cell controller IC

Table 35. Characteristics...continued

 $Vbat = 9 \ V$ to $90 \ V$; $Ta = -20 \ ^{\circ}C$ to $60 \ ^{\circ}C$; $Tj = -20 \ ^{\circ}C$ to $85 \ ^{\circ}C$; all voltages are defined with respect to ground; positive currents flow into the IC. Typical values are given at $Vbat = 72 \ V$; $Ta = 25 \ ^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Balancing timings	·					
t _{r(bal)}	Balancing rise time	T_j = -20 °C to +85 °CR _{bal} = 15 Ω	1	_	100	μs
t _{f(bal)}	Balancing fall time	T_j = -20°C to 85°C, R_{bal} = 15 Ω , from last $bal_{chcfg.chenx}$ bit falling edge or $bal_{globcfg.balen}$ bit falling edge, no fatal fault	1	_	100	μs
t _{d(bal)}	Balancing delay time	T_j = -20 °C to +85 °C,RBal = 15 Ω	_	_	150	μs
t _{gbal(max)}	Maximum global balancing time		609475,5	655350	701224.5	s
t _{gbal(res)}	Global balancing time resolution		_	_	10	s
t _{gbal(acc)}	Global balancing time accuracy	T _j = -20°C to +85°C	-7%	_	7%	
^t gprebal(max)	Maximum global pre-balancing time		609475	655350	701225	s
t _{gprebal(res)}	Global pre-balancing time resolution		_	_	10	s
t _{gprebal(acc)}	Global pre-balancing time accuracy		-7%	_	7%	
t _{ibal(max)}	Maximum individual balancing time		_	_	163830	s
t _{ibal(res)}	Individual balancing time resolution		_	_	10	s
t _{ibal(acc)}	Individual balancing time accuracy	T _j = -20°C to + 85°C	-7% of (program period – 10 s)	— med	7% of (program period – 10 s)	med
δ_{PWM}	Pulse width modulation (PWM) duty cycle		0	_	100	%
$\delta_{PWM(res)}$	Pulse width modulation (PWM) duty cycle resolution		1/2 ⁸	_	_	%
f _{PWM(bal)}	Pulse width modulation (PWM) balancing frequency		_	2	_	Hz
Analog inputs						
V _{meas(aux)(abs)}	Auxiliary input measured voltage (absolute value)		0	_	5	V
V _{meas(ratiom)} VAUX	Auxiliary input measured voltage (ratiometric value)	VAUX voltage used by external circuitry connected to AINx pins	0	_	VAUX * 0.975	V
V _{meas(ratiom)} VDDC	Auxiliary input measured voltage (ratiometric value)	VDDC voltage used by external circuitry connected to AINx pins	0	_	V _{VDDC} * 0.975	V
E _{G(abs)}	Absolute gain error	T _j = -20 °C to +85 °C	-0.08	_	0.08	%
V _{err(offset)(abs)}	Absolute offset error voltage	T _j = -20 °C to +85 °C	-3		3	mV
E _{T(meas)ratiom}	Ratiometric measurement total error	T _j = -20 °C to +85 °C	-0.006 - 0.15% * V _{AINx}	_	0.006 + 0.15% * V _{AINx}	V
V _{n(meas)} RMS	RMS measurement noise voltage	Sampling period = 16 scan samples,Tj = 85degC	_	_	300	μV
V _{meas(res)(abs)}	Measured voltage resolution	Absolute measurement (absolute reference voltage)	_	154	_	μV/LS

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 35. Characteristics...continued

 $Vbat = 9 \ V \ to \ 90 \ V$; $Ta = -20 \ ^{\circ}C$ to $60 \ ^{\circ}C$; $Tj = -20 \ ^{\circ}C$ to $85 \ ^{\circ}C$; all voltages are defined with respect to ground; positive currents flow into the IC. Typical values are given at $Vbat = 72 \ V$; $Ta = 25 \ ^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{meas(res)(ratiom)}	Measured voltage resolution	Ratiometric measurement (VAUX or VDDC)	_	3.05176 x 10 ⁻³	_	% / LSB
GPIO				1		
V _{OH(GPIO)}	Output logic high voltage on GPIO pins	I _{GPIO} = 1 mA Including routing and all GPIOs / I ² C driving at the same time.	V _{VDDC} - 0.4V	_	V _{VDDC}	_
V _{OL(GPIO)}	Output logic low voltage on GPIO pins	I _{GPIO} = 1 mA Including routing and all GPIOs / I ² C driving at the same time.	_	_	0.4	V
I _{OH(tot)} GPIO	Total HIGH-level output current on GPIO pins		_	_	8	mA
I _{OL(tot)} GPIO	Total LOW-level output current on GPIO pins		_	_	20	mA
V _{IL(GPIO)}	Input logic low voltage on GPIO pins		_	_	0.8	V
V _{IH(GPIO)}	Input logic high voltage on GPIO pins		2.0	_	_	V
V _{hys(GPIO)}	Input hysteresis voltage on GPIO pins		0.15	_	1.0	V
V _{IL(wake)} GPIO	Input logic low wake-up voltage on GPIO pins		_	_	0.8	V
V _{IH(wake)} GPIO	Input logic high wake-up voltage on GPIO pins		2.5	_	_	V
V _{hys(wake)} GPIO	Input hysteresis wake-up voltage on GPIO pins		0.03	_	1.2	V
t _{deglitch(GPIO)}	Deglitch time on GPIO pins (not for wake up and alarm)		3.81	_	5.6	μs
I _{L(GPIO)}	Leakage current on GPIO pins	GPIO0 and GPIO1	_	_	100	nA
I _{L(GPIO)}	Leakage current on GPIO pins	GPIO2 to GPIO7, VDDC Active.	_	_	100	nA
GPIO Diagnostics			1			
R _{OL(GPIO)}	GPIO openload diagnostic resistance		6.8	10	13.2	kΩ
Wake pin			•			
t _{deglitch(GPIO0)} wake	Wake-up time of deglitch function on pin GPIO0		50	80	100	μs
ALARM						
t _{alarm(deglitch)} GPIO1	Alarm time of deglitch filter on GPIO1 pin		93	_	118.27	μs
t _{heartbeat(IH)}	Heartbeat input high time	if ALARMINHBINV = 0, then heartbeat input high time; if ALA RMINHBINV = 1, then heartbeat input low time	360	_	640	μs
t _{heartbeat(IL)}	Heartbeat input low time	ALARMINHB = T _{500u}	360	_	640	μs
t _{heartbeat(IL)}	Heartbeat input low time	ALARMINHB = T _{1ms}	830	_	1180	μs
t _{heartbeat(IL)}	Heartbeat input low time	ALARMINHB = T _{10ms}	9240	_	10860	μs
t _{heartbeat(IL)}	Heartbeat input low time	ALARMINHB = T _{100ms}	93350	_	107630	μs

BMI7018

18-cell battery-cell controller IC

Table 35. Characteristics...continued

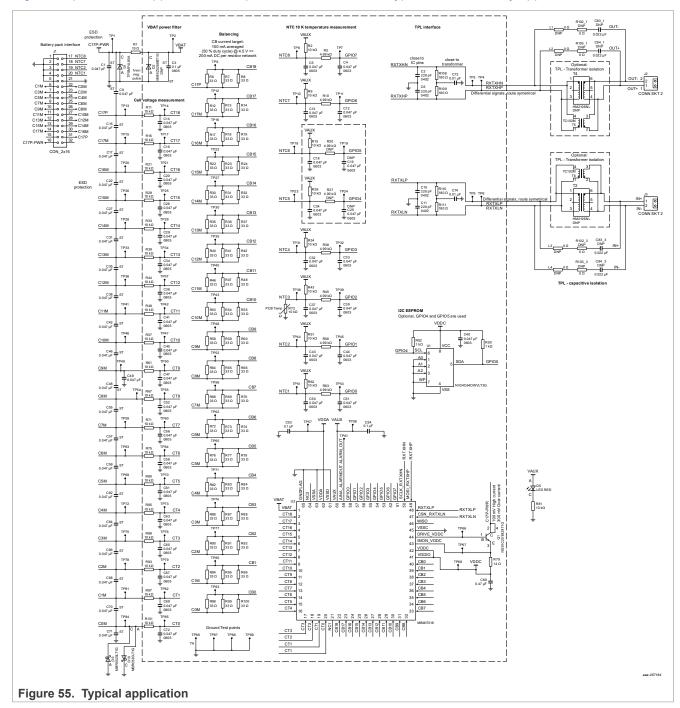
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{O(source)} alarm	Alarm line output source current	$V_{VDDIO} = V_{VDDC}V_{ALARM_OUT} = V_{VDDIO} - 0.8 V$	2	_	_	mA
I _{O(sink)alarm}	Alarm line output sink current	V _{ALARM_OUT} = 0.8 V	2	_	_	mA
I _{O(source)alarm}	Alarm line output source current	V _{VDDIO} = V _{VDDC} V _{ALARM_OUT} = - 0.4 V	1	_	_	mA
I _{O(sink)alarm}	Alarm line output sink current	V _{VDDIO} = V _{VDDC} V _{ALRM_OUT} = 0.4 V	1	_	_	mA
t _{heartbeat(OH)}	Heartbeat output high time		460	_	540	μs
t _{heartbeat(OL)}	Heartbeat output low time	ALARMOUTHB = T _{500us}	460	_	540	μs
t _{heartbeat(OL)}	Heartbeat output low time	ALARMOUTHB=T _{1ms}	930	_	1080	μs
t _{heartbeat(OL)}	Heartbeat output low time	ALARMOUTHB=T _{10ms}	9340	_	10760	μs
t _{heartbeat(OL)}	Heartbeat output low time	ALARMOUTHB=T _{100ms}	93450	_	107530	μs
I ² C-bus interface	•			-1		
t _{to(I2C-bus)}	I ² C-bus timeout time		35	_	55	μs
V _{IL(I2C-bus)}	I ² C-bus input logic low voltage		_	_	0.3 * V _{VDDIO}	V
V _{IH(I2C-bus)}	I ² C-bus input logic high voltage		0.7 * V _{VDDIO}	_	_	V
V _{hys(I2C-bus)}	I ² C-bus input hysteresis voltage		0.05 * V _{VDDIO}	_	_	V
I _{I(I2C-bus)}	Input current on I ² C pins	Only with VDDC/VDDIO ON.	-10	_	+10	μA
C _{i(I2C-bus)}	Input capacitance on I ² C pins		_	_	10	pF
V _{OL(I2C-bus)}	I ² C-bus output logic low voltage	I _{OL_I2C=} 5 mA, Including routing and all GPIOs / I2C driving at the same time.	_	_	0.4	V
t _{f(o)I2C-bus}	I ² C-bus output fall time from V _{IH(min)} to V _{IL(max)}		0	_	120	ns
f _{SCL}	SCL clock frequency	bit I2C _{CFG.CLKSEL} = 1 no clock stretching	0	_	100	kHZ
t _{HD;STA}	Hold time (repeated) START condition		4.0	_	_	μs
t_{LOW}	LOW period of the SCL clock std. mode		4.7	_	_	μs
t _{HIGH}	HIGH period of the SCL clock std. mode		4.0	_	_	μs
t_{LOW}	LOW period of the SCL clock fast mode		1.3	_	_	μs
t _{HIGH}	HIGH period of the SCL clock fast mode		0.6	_	_	μs
t _{SU;STA}	Set-up time for a repeated START condition		4.7	_	_	μs
t _{SU;DAT}	Data set-up time		250	_	_	ns
t _{SU;STO}	Set-up time for STOP condition		4.0	_	_	μs
C _{bus}	Capacitive load for each bus line		_	_	100	pF

18-cell battery-cell controller IC

Table 35. Characteristics...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{VD;DAT}	Data valid time std. mode			_	3.45	μs
t _{VD;ACK}	Data valid acknowledge time std. mode		_	_	3.45	μs
t _{VD;DAT}	Data valid time fast mode		_	_	0.9	μs
t _{VD;ACK}	Data valid acknowledge time fast mode		_	_	0.9	μs
Communication ti	mings		'			
t _{d(rec-trans)}	Time between request received by the device and response transmitted		1.3	_	8	μs
t _{d(TPL)}	Time between two consecutive response message frames transmitted by the product		1.3	_	2.8	μs
t _{to(EOM)}	Time for end of message timeout	SOM symbol to EOM symbol	250	_	300	μs
t _{d(req)MCU}	Time between two requests transmitted by MCU		1.3	_	_	μs
$t_{d(Fd)}$	Forward delay time	Time required by a message to propagate from one port of the device to the other port of the same device; the delay is measured between SOM to SOM	_	0.5	1.7	μs
$t_{d(wake)}$	Time between two consecutive wake-up messages.		3	_	4	ms
R _{data(TPL)}	TPL data rate		1.9	_	2.1	Mbit/s
Communication ti	meout					
t _{to(com)res}	Communication time-out resolution		9.5	10	10.5	ms
t _{to(com)min}	Minimal communication time-out time		9.5	10	10.5	ms
t _{to(com)max}	Maximum communication time- out time		2422.5	2550	2677.5	ms
Communication (T	ΓPL)					
V _{th(sleep-wake)dif}	Differential receiver threshold voltage in deep Sleep mode or in Sleep mode to wake-up		1.15	_	_	V
V _{th(full} power)dif	Differential receiver threshold voltage	Active mode rising _{edge}	0.48	_	0.68	V
V _{hys(RX)dif}	Differential receiver hysteresis voltage		70	_	130	mV
V _{o(peak)dif}	Differential peak output voltage	R_{Idiff} = 120 ΩV_{VDDC} > 4.85V V_{VDDC} < 5.15V	1.1	_	2.2	V
R _{term(act)}	Termination resistance in Active mode	IC configured in TPL mode and not in sleep states		170		Ω
R _{term(sleep)}	Termination resistance in sleep mode	In SPI mode and in deep sleep and sleep states	20	_	100	kΩ

18-cell battery-cell controller IC


Table 35. Characteristics...continued

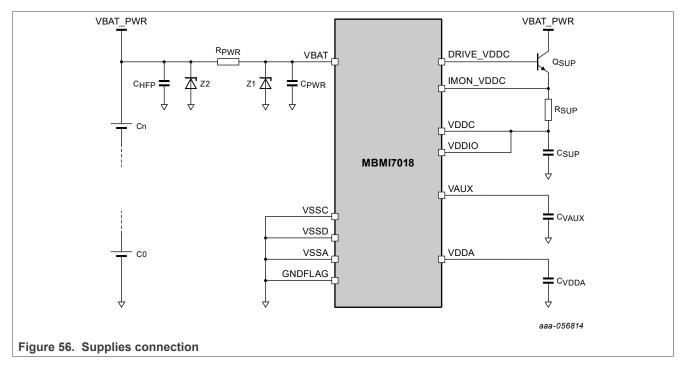
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Communication	(SPI)		,			
V _{IL(SPI)}	SPI input low voltage on MOSI, CSN, SCLK pins		_	_	0.8	V
V _{IH(SPI)}	SPI input high voltage on MOSI, CSN, SCLK pins		2.0	_	VDDIO + 0.3	V
V _{hys(SPI)}	SPI input hysteresis voltage on MOSI, CSN, SCLK pins		30	_	600	mV
V _{IH(wake)} CSN	SPI input logic high wake-up voltage on CSN pin		2.5	_	_	V
V _{IL(wake)} CSN	SPI input logic low wake-up voltage on CSN pin		_	_	0.8	V
V _{hys(wake)} CSN	SPI input hysteresis wake-up voltage on CSN pin		30	_	1200	mV
V _{OL(SPI)}	SPI output logic low voltage on MISO pin	2 mA	_	_	0.4	V
V _{OH(SPI)}	SPI output logic high voltage on MISO pin	-2 mA	VDDIO - 0.4	_	_	V
f _{SPI}	SPI output logic high voltage on MISO pin		_	_	4.2	MHz
t _{en(MISO)}	MISO enable time		0	_	40	ns
t _{dis(MISO)}	MISO disable time		0	_	40	ns
t _{v(data)} MISO	MISO data valid after rising edge of SCLK		0	_	45	ns
t _{d(data)transfer}	Sequential data transfer delay time		1	_	_	μs
t _{sclkh}	SCLK high time		90	_	_	ns
t _{sclkl}	SCLK low time		90	_	_	ns
t _{FALLSPI}	SCLK, CSN, and MOSI fall time		_	_	15	ns
t _{RISESPI}	SCLK, CSN and MOSI rise time		_	_	15	ns
t _{SETUPSPI}	MOSI to SCLK falling edge setup time		20	_	_	ns
t _{HOLDSPI}	MOSI to SCLK falling edge hold time		20	_		ns
CSN _{LEAD}	CSN lead time		100	_	_	ns
CSN _{LAG}	CSN lag time		100	_	-	ns
SCLK _{SBL}	SCLK stable before CSN low		40	_	<u> </u>	ns
SCLK _{SBH}	SCLK stable after CSN high		40	_		ns
t _{low(wake)}	Minimum CSN low time before rising edge for wake-up		12	_	_	us

18-cell battery-cell controller IC

11 Application information

Figure 55 provides an application example for the BMI7018 in a typical 18-cell battery application.

18-cell battery-cell controller IC


11.1 Typical applications

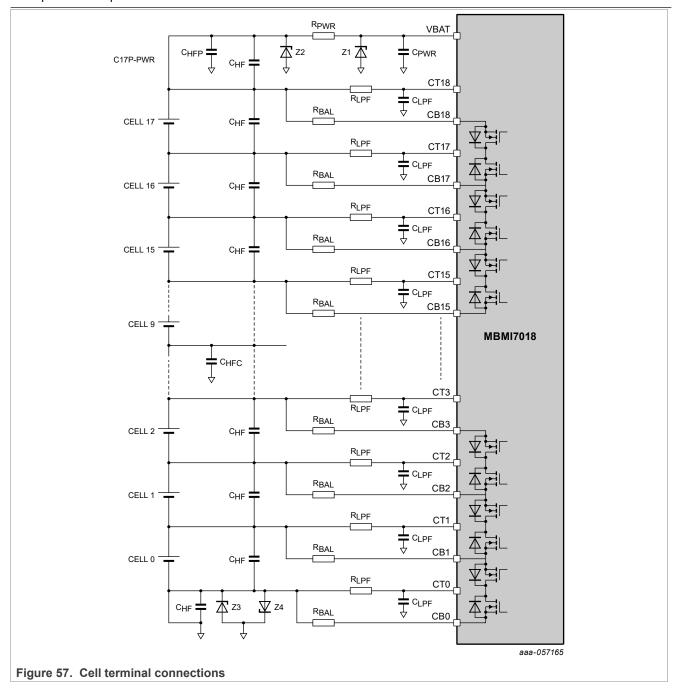
11.1.1 External components

This section provides information about recommended external components and how to select them.

11.1.1.1 Power supplies

The recommended schematic to supply the BMI7018 and enable voltages is described in Figure 56.

The component values and comments are described in Table 36.


Table 36. Supply components

ID	Value	Units	Comment
C _{HFP}	0.047	μF	100 V capacitor; should not be changed to sustain ESD and hotplug.
R _{PWR}	10 / 0.1W	Ω	do not exceed to avoid excessive voltage drop between VBAT and CT18; Combined with C _{PWR} to filter noise above 160 kHz.
C _{PWR}	0.1	μF	100 V capacitor; should not be changed.
Z2			Optional: To sustain negative iso pulses; TPSMF4L85A or equivalent
Z1			Optional: Overvoltage protection; use MMSZ5268BT1G or equivalent.
Q _{SUP}			Ballast NPN transistor; PBHV8215Z or equivalent; (Key parameters: Vceo min = 120 V, Beta min = 50, Icbo < 50 μ A).
R _{SUP}	14	Ω	Optimal value for VDDC current sourcing and monitoring in TPL applications.
C _{SUP}	0.47	μF	25 V capacitor, should not be changed.
C _{VAUX}	0.1	μF	25 V capacitor, should not be changed.
C _{VDDA}	0.1	μF	25 V capacitor, should not be changed.

18-cell battery-cell controller IC

11.1.1.2 Cell terminal filters

<u>Figure 57</u> shows the recommended cell terminal connections first order low-pass filters, cell balancing connections, and ESD protection capacitors.

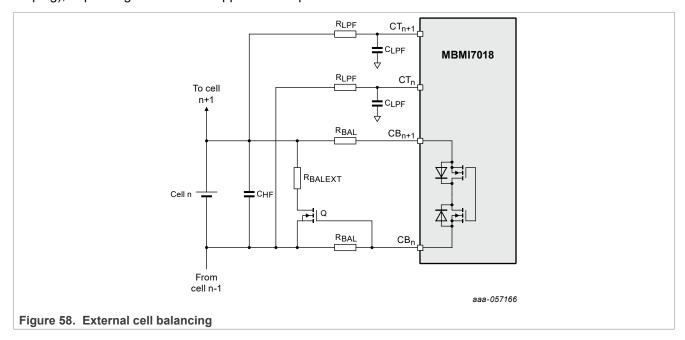
The component values and comments are described in Table 37

18-cell battery-cell controller IC

Table 37. Cell terminal connection component values

ID	Value	Units	Comments				
C _{HF}	0.047	μF	25 V capacitor; should not be changed to sustain ESD				
C _{HFC}	0.047	μF	otional: 100 V common mode capacitor on the middle cell to improve EMC performances				
R _{LPF}	10	kΩ	Should not be changed; Antialiasing filtering with C_{LPF} : fcut : 338 Hz (ten times below 4 kHz internal ADC sampling)				
C _{LPF}	0.047	μF	100 V capacitor; should not be changed				
R _{BAL}	Х	Ω	Any value is possible if following cell balance current limits are not exceeded: 9 mA > I > 300 mA peak (Vcellmax / (2 x Rbal))				
Z3, Z4			optional: Schottky diodes to improve EMC performances - for example, MBR0520LT1G				

11.1.1.3 External cell balancing


External cell balancing can be implemented with external transistors to increase the total balancing current or shift the power dissipation out of the device toward external cell-balancing resistors. For one cell-balancing channel switched on, the total balancing current will be the sum of the currents through the internal (through 2xRbal) and external (through Rbalext) transistors. NMOS, PMOS, and BJT can be used in a similar way.

<u>Figure 58</u> shows the principle of such implementation with an NMOSFET (Q) as external cell balancing transistor. The NMOSFET is switched on synchronously with the internal cell-balancing switches, when the voltage drop across Rbal reaches the NMOSFET Vgs threshold of the NMOSFET.

The maximum Vgs voltage equals Vcell/2. Low Vgs NMOSFET should be selected to ensure a good saturation at the desired current. The selected NMOSFET should be capable for the required cell balancing current, power dissipation, and also capable sustaining negative Vgs voltage when the adjacent cell-balancing channel is on.

The behavior is fully transparent for the application and does not require any specific software adaptation.

The user is in charge of selecting and validating the external transistors type, characteristics, external balancing resistors, and additional components to protect the transistor against electrical overstresses (for example, hotplug), depending on the user's application requirements.

18-cell battery-cell controller IC

11.1.1.4 Temperature channels

Figure 59 shows configuration of AINx inputs configured as temperature measurements

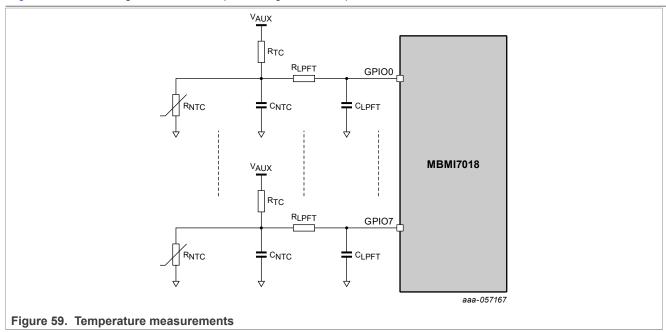
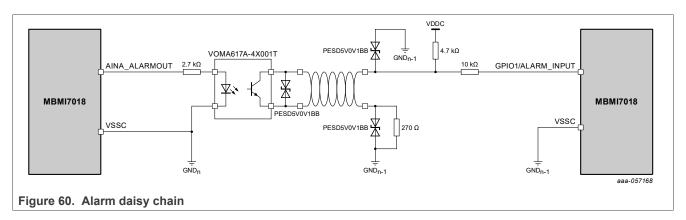



Table 38. AiNx filter components for temperature measurements

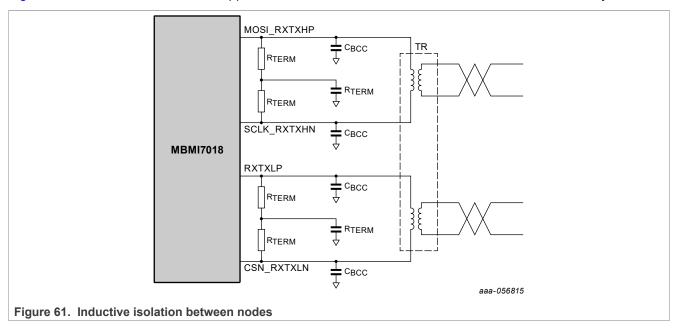
ID	Value	Units	Comments
R _{TC}	10	kΩ	Optimal for R_{NTC} = 10 k Ω ; If changed, see C_{LPFT} .
R _{NTC}	10	kΩ	Nominal value resistance is given at 25 °C.
C _{NTC}	0.047	μF	Optional: ESD protection for off board NTC.
R _{LPFT}	5	kΩ	Should not be changed for NTC = 10 k Ω to get Fcut around 330 Hz with C _{LPFT} and keep timing margin for cyclic acquisitions.
C _{LPFT}	0.047	μF	Should not be changed for NTC = $10 \text{ k}\Omega$.

11.1.1.5 Alarm signal daisy chain

Figure 60 shows the connection of the alarm daisy chain signal between two battery-cell controllers

BMI7018

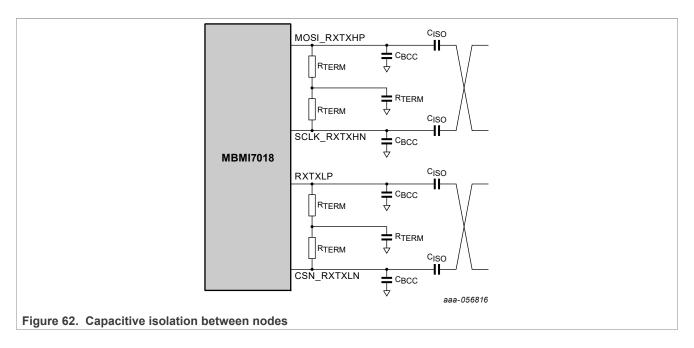
18-cell battery-cell controller IC


11.1.1.6 BMI7018 - Isolated communication interface

High-speed differential isolated communication is achieved by using transformers or capacitors.

11.1.1.6.1 BMI7018 distributed applications

11.1.1.6.1.1 Transformer isolation

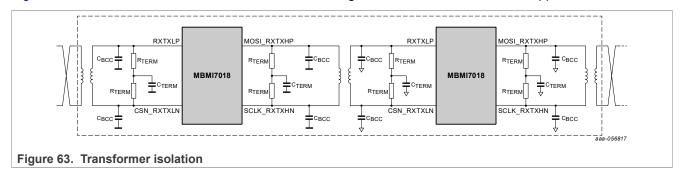

Figure 61 shows the recommended application schematic with transformer isolation in a distributed system.

11.1.1.6.1.2 Capacitive isolation

<u>Figure 62</u> shows the recommended application schematic for capacitive isolation, between nodes, in a distributed system.

18-cell battery-cell controller IC

11.1.1.6.1.3 Component values


Table 39. Component values

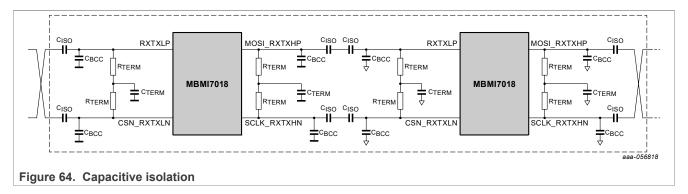
ID	Value	Units	Comments			
C _{BCC}	220	pF	Common mode capacitors			
C _{ISO}	22	nF	Isolation capacitors			
R _{TERM}	180	Ω	Split termination resistor			
C _{TERM}	10	nF	Split termination capacitor			
TR	1:1		1 x dual channel 1:1 transformer (i.e., Pulse Electronic HM2118/HM2168) or 2 x single channel transformers (i.e., Pulse Electronic TC102M, HM2119, HM2106/HM2166, TDK P303506-A1-51) - no center taps required - no common mode chokes required - Insertion Loss : -1 dB max - OCL 60 μH min			

11.1.1.6.2 BMI7018 centralized applications

11.1.1.6.2.1 Transformer isolation

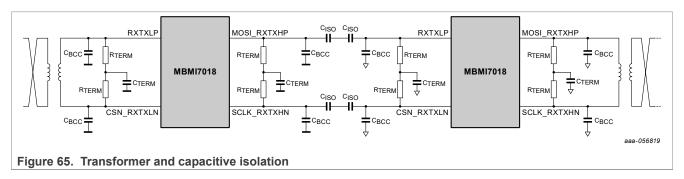
<u>Figure 63</u> shows the recommended schematic when using transformers in a centralized application.

BMI7018


All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC


11.1.1.6.2.2 Capacitive isolation

<u>Figure 64</u> shows the recommended schematic when using capacitors in a centralized application for onboard and offboard connections.

11.1.1.6.2.3 Transformer and capacitive isolation

<u>Figure 65</u> shows the recommended schematic in a centralized application when using capacitors for onboard connections and transformers for offboard connections.

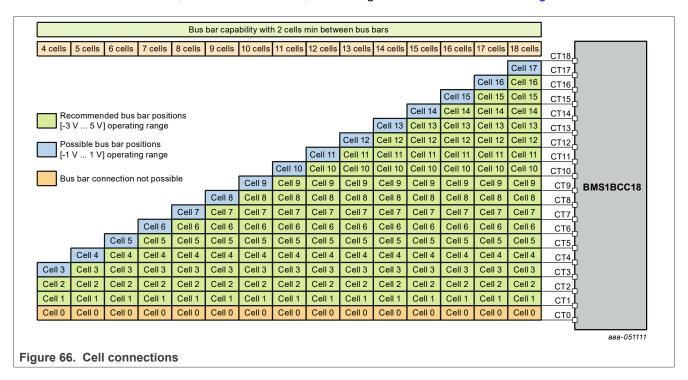
11.1.1.6.2.4 Component values

Table 40. Component values

ID	Value	Units	Comments			
C _{BCC}	220	pF	Common mode capacitors			
C _{ISO}	22	nF	Isolation capacitors			
R _{TERM}	180	Ω	Split termination resistor			
C _{TERM}	10	nF	Split termination capacitor			
TR	1:1		1 x dual-channel 1:1 transformer (i.e., Pulse Electronic HM2118/HM2168) or 2 x single channel transformers (i.e., Pulse Electronic TC102M, HM2119, HM2106/HM2166, TDK P303506-A1-51) - no center taps required - no common mode chokes required - Insertion Loss: –1 dB max - OCL 60 μH min			

11.1.2 Cell and bus bar connections on CT/CB terminals

The cells are connected to the CT pins starting from the lower position. Unused CT pins remain on the upper CT pins and can be connected to the next lower CT pin without need of external components. Unused CB pins connection follows the same connection strategy as for unused CT pins.


BMI7018

18-cell battery-cell controller IC

Unused CT pins with complete low pass filter can be connected to the next lower CT pins through a connector.

Bus bars are considered as cells and can be connected to CT pins to allow bus bar voltage measurement through primary measurement chain and to CB pins for secondary measurement. Two cells minimum should separate two bus bars.

Positions for cell connection, bus bars connection, and voltages are summarized in the Figure 66.

18-cell battery-cell controller IC

12 Register map

Table 41. BMI7018 register map

Start address	End address	Range	Function	
00001C00h	00001FFFh	00000400h	secondary measurement	
00001800h	00001BFFh	00000400h	primary measurement	
00001400h	000017FFh	00000400h	all measurements	
00001000h	000013FFh	00000400h	cell balancing registers	
00000C00h	00000FFFh	00000400h	<u>I²C-bus interface</u>	
00000800h	00000BFFh	00000400h	<u>GPIO</u>	
00000400h	000007FFh	00000400h	event handling	
00000000h	000003FFh	00000400h	system control	

12.1 Register description

Table 42. Register overview: System_Control_Registers

Address	Name	Access	Reset	Description
0h	SYS_CFG_CRC	R	0h	system configuration CRC
1h	SYS_COM_CFG	R/W	200h	communication initialization
2h	SYS_COM_TO_CFG	R/W	1Eh	system communication timeout
3h	SYS_SUPPLY_CFG	R/W	8003h	supply configuration
4h	SYS_MODE	R/W	1400h	system mode
5h	SYS_CYC_WAKEUP_CFG	R/W	0h	interval for cyclic measurements
6h	SYS_TPL_CFG	R/W	10h	TPL configuration
8h	SYS_CLK_SYNC_CTRL	R/W	0h	clock Synchronization
10h	SYS_VERSION	R	320h	device silicon identifier
11h	SYS_UID_LOW	R	0h	unique device ID lower part
12h	SYS_UID_MID	R	0h	unique device ID middle part
13h	SYS_UID_HIGH	R	0h	unique device ID higher part
14h	SYS_PROD_VER	R	200h	software interface related version of the product
80h	SYS_DS_STORAGE0	R/W	0h	deep sleep storage data 0; the value is stored in the ULP domain
81h	SYS_DS_STORAGE1	R/W	0h	deep sleep storage data 1; the value is stored in the ULP domain

Table 43. Register overview: Event_Handling_Registers

Address	Name	Access	Reset	Description
400h	FEH_CFG_CRC	R	0h	configuration CRC
401h	FEH_ALARM_CFG	R/W	0h	general alarm configuration
402h	FEH_ALARM_OUT_CFG0	R/W	0h	alarm output source selection
403h	FEH_ALARM_OUT_CFG1	R/W	0h	alarm output source selection
404h	FEH_ALARM_OUT_REASON0	R	0h	alarm output reason
405h	FEH_ALARM_OUT_REASON1	R	0h	alarm output reason
408h	FEH_WAKEUP_CFG0	R/W	0h	wake up source configuration

Table 43. Register overview: Event_Handling_Registers...continued

Address	Name	Access	Reset	Description
409h	FEH_WAKEUP_CFG1	R/W	0h	wake up source configuration
40Ah	FEH_WAKEUP_REASON0	R	0h	wake up reason register
40Bh	FEH_WAKEUP_REASON1	R	0h	wake up reason register
410h	FEH_MON_BIST_CTRL	R/W	0h	monitor BIST control register
411h	FEH_MON_BIST_RES	R	FFh	monitor BIST result register; value changes at start-up, if everything is fine to 0000h
41Eh	FEH_ACC_ERR	R	0h	access error status register
41Fh	FEH_GRP_FLT_STAT	R	0h	main system fault status register; this register holds one bit per fault group. For each fault group a separate status register exists. The bit here is cleared if all its sources are cleared.
420h	FEH_SUPPLY_FLT_STAT0	R/W	0h	supply fault status register 0 (these monitors are part of the BIST)
421h	FEH_SUPPLY_FLT_STAT1	R/W	0h	supply fault status register 1 (these monitors are not part of the BIST)
422h	FEH_ANA_FLT_STAT	R/W	0h	analog fault status register
423h	FEH_COM_FLT_STAT	R/W	0h	communication fault status register
424h	FEH_MEAS_FLT_STAT	R/W	0h	other fault status register
428h	FEH_SUPPLY_FLT_POR_ CFG0	R/W	0h	supply fault POR selection 0
429h	FEH_SUPPLY_FLT_POR_ CFG1	R/W	0h	supply fault POR selection 1
42Ah	reserved	R	0h	analog fault POR selection
42Bh	FEH_COM_FLT_POR_CFG	R/W	8h	communication fault POR enable register
430h	FEH_SUPPLY_FLT_EVT_ CFG0	R/W	0h	supply fault event selection register 0
431h	FEH_SUPPLY_FLT_EVT_ CFG1	R/W	0h	supply fault event selection register 1
432h	FEH_ANA_FLT_EVT_CFG	R/W	0h	analog fault event enable register
433h	FEH_COM_FLT_EVT_CFG	R/W	0h	communication fault event enable register
434h	FEH_MEAS_FLT_EVT_CFG	R/W	0h	measurement fault event enable register
480h	FEH_POR_REASON	R	0h	power-on reset reason. The value is stored in the ULP domain.

Table 44. Register overview: GPIO_Registers

Address	Name	Access	Reset	Description
800h	GPIO_CFG0	R/W	0h	GPIO configuration 0
801h	GPIO_CFG1	R/W	0h	GPIO configuration 1
802h	GPIO_OUT	R/W	0h	GPIO output
804h	GPIO_IN	R	0h	GPIO input

Table 45. Register overview: I2C_Registers

Address	Name	Access	Reset	Description
C00h	I2C_CFG	R/W	0h	I2C configuration
C01h	I2C_CTRL	R/W	0h	I2C control
C02h	I2C_STAT	R	0h	I2C status
C04h	I2C_DATA0	R/W	0h	I2C data register 0
C05h	I2C_DATA1	R/W	0h	I2C data register 1
C06h	I2C_DATA2	R/W	0h	I2C data register 2
C07h	I2C_DATA3	R/W	0h	I2C data register 3
C08h	I2C_DATA4	R/W	0h	I2C data register 4
C09h	I2C_DATA5	R/W	0h	I2C data register 5
C0Ah	I2C_DATA6	R/W	0h	I2C data register 6
C0Bh	I2C_DATA7	R/W	0h	I2C data register 7
C0Ch	I2C_DATA8	R/W	0h	I2C data register 8
C0Dh	I2C_DATA9	R/W	0h	I2C data register 9
C0Eh	I2C_DATA10	R/W	0h	I2C data register 10
C0Fh	I2C_DATA11	R/W	0h	I2C data register 11
C10h	I2C_DATA12	R/W	0h	I2C data register 12
C11h	I2C_DATA13	R/W	0h	I2C data register 13
C12h	I2C_DATA14	R/W	0h	I2C data register 14
C13h	I2C_DATA15	R/W	0h	I2C data register 15
C14h	I2C_DATA16	R/W	0h	I2C data register 16
C15h	I2C_DATA17	R/W	0h	I2C data register 17

Table 46. Register overview: Balancing_Registers

Address	Name	Access	Reset	Description
1000h	BAL_GLOB_CFG	R/W	0h	The global balancing configuration register is used to configure the balancing modes.
1001h	BAL_GLOB_TO_TMR	R/W	0h	The Global Balancing timeout timer register is used to configure the maximum balancing time for all balancing activities to make sure that in case of fault the balancing switches are switched OFF.
1002h	BAL_CH_CFG0	R/W	0h	balancing channel individual enable channel 0 - 15
1003h	BAL_CH_CFG1	R/W	0h	balancing channel individual enable channel 16 - 17
1004h	BAL_PRE_TMR	R/W	0h	prebalancing timer
1005h	BAL_AUTO_DISCHRG_CTRL	R/W	2152h	emergency discharge enable
1006h	BAL_SWITCH_MON_CFG0	R/W	FFFFh	balancing switch monitoring enable
1007h	BAL_SWITCH_MON_CFG1	R/W	3h	balancing switch monitoring enable
1008h	FULL_PWM_CYCLE_ VOLTAGE	R/W	0h	full PWM cycle voltage
1009h	BAL_CH_UV0_STAT0	R	0h	channel undervoltage balancing status channel 0 - 15
100Ah	BAL_CH_UV0_STAT1	R	0h	channel undervoltage balancing status channel 16 - 17
100Bh	BAL_GLOB_UV1_STAT0	R	0h	global undervoltage balancing status channel 0 - 15

Table 46. Register overview: Balancing_Registers...continued

Address	Register overview: Balancii Name	Access	Reset	Description
100Ch	BAL_GLOB_UV1_STAT1	R	0h	global undervoltage balancing status channel 16 - 17
100Dh	BAL_STATO	R	0h	logical balancing channel status channel 0 - 15
100Eh	BAL_STAT1	R	0h	logical balancing channel status channel 16 - 17
100Fh	BAL_STAT2	R	0h	balancing status
1010h	BAL_SWITCH_STAT0	R	0h	physical balancing channel status channel 0 - 15
1011h	BAL_SWITCH_STAT1	R	0h	physical balancing channel status channel 16 - 17
1012h	BAL_SWITCH_FLT_STAT0	R	0h	balancing switch fault channel 0 - 15
1013h	BAL_SWITCH_FLT_STAT1	R	0h	balancing switch fault channel 16 - 17
101Fh	BAL_TMR_CH_ALL	W	0h	virtual register, writes in parallel into BAL_TMR_CH0 up to BAL_TMR_CH17
1020h	BAL_TMR_CH0	R/W	0h	balancing timer channel 0
1021h	BAL_TMR_CH1	R/W	0h	balancing timer channel 1
1022h	BAL_TMR_CH2	R/W	0h	balancing timer channel 2
1023h	BAL_TMR_CH3	R/W	0h	balancing timer channel 3
1024h	BAL_TMR_CH4	R/W	0h	balancing timer channel 4
1025h	BAL_TMR_CH5	R/W	0h	balancing timer channel 5
1026h	BAL_TMR_CH6	R/W	0h	balancing timer channel 6
1027h	BAL_TMR_CH7	R/W	0h	balancing timer channel 7
1028h	BAL_TMR_CH8	R/W	0h	balancing timer channel 8
1029h	BAL_TMR_CH9	R/W	0h	balancing timer channel 9
102Ah	BAL_TMR_CH10	R/W	0h	balancing timer channel 10
102Bh	BAL_TMR_CH11	R/W	0h	balancing timer channel 11
102Ch	BAL_TMR_CH12	R/W	0h	balancing timer channel 12
102Dh	BAL_TMR_CH13	R/W	0h	balancing timer channel 13
102Eh	BAL_TMR_CH14	R/W	0h	balancing timer channel 14
102Fh	BAL_TMR_CH15	R/W	0h	balancing timer channel 15
1030h	BAL_TMR_CH16	R/W	0h	balancing timer channel 16
1031h	BAL_TMR_CH17	R/W	0h	balancing timer channel 17
1032h	BAL_PWM_CH_ALL	W	FFh	virtual register, writes in parallel into BAL_PWM_CH0 up to BAL_PWM_CH17
1033h	BAL_PWM_CH0	R/W	FFh	balancing PWM channel 0
1034h	BAL_PWM_CH1	R/W	FFh	balancing PWM channel 1
1035h	BAL_PWM_CH2	R/W	FFh	balancing PWM channel 2
1036h	BAL_PWM_CH3	R/W	FFh	balancing PWM channel 3
1037h	BAL_PWM_CH4	R/W	FFh	balancing PWM channel 4
1038h	BAL_PWM_CH5	R/W	FFh	balancing PWM channel 5
1039h	BAL_PWM_CH6	R/W	FFh	balancing PWM channel 6
103Ah	BAL_PWM_CH7	R/W	FFh	balancing PWM channel 7
103Bh	BAL_PWM_CH8	R/W	FFh	balancing PWM channel 8
103Ch	BAL_PWM_CH9	R/W	FFh	balancing PWM channel 9
103Dh	BAL_PWM_CH10	R/W	FFh	balancing PWM channel 10
	<u>i</u>			1

Table 46. Register overview: Balancing_Registers...continued

Address	Name	Access	Reset	Description
103Eh	BAL_PWM_CH11	R/W	FFh	balancing PWM channel 11
103Fh	BAL_PWM_CH12	R/W	FFh	balancing PWM channel 12
1040h	BAL_PWM_CH13	R/W	FFh	balancing PWM channel 13
1041h	BAL_PWM_CH14	R/W	FFh	balancing PWM channel 14
1042h	BAL_PWM_CH15	R/W	FFh	balancing PWM channel 15
1043h	BAL_PWM_CH16	R/W	FFh	balancing PWM channel 16
1044h	BAL_PWM_CH17	R/W	FFh	balancing PWM channel 17

Table 47. Register overview: All_Measurement_Registers

Address	Name	Access	Reset	Description
1400h	ALLM_CFG	W	0h	general measurement control
1401h	ALLM_APP_CTRL	W	7C00h	application measurement control
1402h	ALLM_PER_CTRL	W	10h	periodic measurement control
1403h	ALLM_SYNC_CTRL	W	7C00h	synchronous measurement control
1408h	ALLM_VCVB_CFG0	W	0h	cell voltage measurement enable
1409h	ALLM_VCVB_CFG1	W	0h	cell voltage measurement enable

Table 48. Register overview: Primary_Measurement_Registers

Address	Name	Access	Reset	Description
1800h	PRMM_CFG	R/W	0h	general measurement control
1801h	PRMM_APP_CTRL	R/W	7C00h	application measurement control
1802h	PRMM_PER_CTRL	R/W	10h	periodic measurement control
1803h	PRMM_SYNC_CTRL	W	0h	synchronous measurement control
1808h	PRMM_VC_CFG0	R/W	0h	cell voltage measurement enable
1809h	PRMM_VC_CFG1	R/W	0h	cell voltage measurement enable
180Ah	PRMM_AIN_CFG	R/W	20h	AINx measurement enables
180Bh	PRMM_AIN_OL_CFG	R/W	0h	AINx open-load detection enable
180Ch	PRMM_VBUF_CFG	R/W	3h	voltage buffer enable
1810h	PRMM_VC_OV_UV_CFG0	R/W	0h	cell voltage overvoltage and undervoltage check enable
1811h	PRMM_VC_OV_UV_CFG1	R/W	0h	cell voltage overvoltage and undervoltage check enable
1812h	PRMM_VC_OV_TH_CFG	R/W	7FFFh	upper comparator limit for VC0 to VC17
1813h	PRMM_VC_UV0_TH_CFG	R/W	0h	lower comparator limit 0 for VC0 to VC17
1814h	PRMM_VC_UV1_TH_CFG	R/W	0h	lower comparator limit 1 for VC0 to VC17
1815h	PRMM_AIN0_OV_TH_CFG	R/W	7FFFh	upper comparator limit for AIN0
1816h	PRMM_AIN1_OV_TH_CFG	R/W	7FFFh	upper comparator limit for AIN1
1817h	PRMM_AIN2_OV_TH_CFG	R/W	7FFFh	upper comparator limit for AIN2
1818h	PRMM_AIN3_OV_TH_CFG	R/W	7FFFh	upper comparator limit for AIN3
1819h	PRMM_AINA_OV_TH_CFG	R/W	7FFFh	upper comparator limit for AINA
181Ah	PRMM_AINO_UV_TH_CFG	R/W	8001h	lower comparator limit for AIN0

Table 48. Register overview: Primary_Measurement_Registers...continued

Address	Name	Access	Reset	Description
181Bh	PRMM_AIN1_UV_TH_CFG	R/W	8001h	lower comparator limit for AIN1
181Ch	PRMM_AIN2_UV_TH_CFG	R/W	8001h	lower comparator limit for AIN2
181Dh	PRMM_AIN3_UV_TH_CFG	R/W	8001h	lower comparator limit for AIN3
181Eh	PRMM_AINA_UV_TH_CFG	R/W	8001h	lower comparator limit for AINA
1820h	PRMM_CAL_CRC	R/W	0h	CRC over calibration data
1821h	PRMM_CFG_CRC	R	0h	CRC over configuration values
1822h	PRMM_VC_OV_FLT_STAT0	R	0h	cell voltage overvoltage status
1823h	PRMM_VC_OV_FLT_STAT1	R	0h	cell voltage overvoltage status
1824h	PRMM_VC_UV0_FLT_STAT0	R	0h	cell voltage undervoltage status regarding limit 0
1825h	PRMM_VC_UV0_FLT_STAT1	R	0h	cell voltage undervoltage status regarding limit 0
1826h	PRMM_VC_UV1_FLT_STAT0	R	0h	cell voltage undervoltage status regarding limit 1
1827h	PRMM_VC_UV1_FLT_STAT1	R	0h	cell voltage under-voltage status regarding limit 1
1828h	PRMM_AIN_OV_FLT_STAT	R	0h	AINx overvoltage status
1829h	PRMM_AIN_UV_FLT_STAT	R	0h	AINx undervoltage status
183Eh	PRMM_MEAS_STAT	R	0h	measurement status
183Fh	PRMM_APP_VC_CNT	R	0h	application measurement VC sample count number
1840h	PRMM_APP_VC0	R	8000h	application measurement result cell 0
1841h	PRMM_APP_VC1	R	8000h	application measurement result cell 1
1842h	PRMM_APP_VC2	R	8000h	application measurement result cell 2
1843h	PRMM_APP_VC3	R	8000h	application measurement result cell 3
1844h	PRMM_APP_VC4	R	8000h	application measurement result cell 4
1845h	PRMM_APP_VC5	R	8000h	application measurement result cell 5
1846h	PRMM_APP_VC6	R	8000h	application measurement result cell 6
1847h	PRMM_APP_VC7	R	8000h	application measurement result cell 7
1848h	PRMM_APP_VC8	R	8000h	application measurement result cell 8
1849h	PRMM_APP_VC9	R	8000h	application measurement result cell 9
184Ah	PRMM_APP_VC10	R	8000h	application measurement result cell 10
184Bh	PRMM_APP_VC11	R	8000h	application measurement result cell 11
184Ch	PRMM_APP_VC12	R	8000h	application measurement result cell 12
184Dh	PRMM_APP_VC13	R	8000h	application measurement result cell 13
184Eh	PRMM_APP_VC14	R	8000h	application measurement result cell 14
184Fh	PRMM_APP_VC15	R	8000h	application measurement result cell 15
1850h	PRMM_APP_VC16	R	8000h	application measurement result cell 16
1851h	PRMM_APP_VC17	R	8000h	application measurement result cell 17
1852h	PRMM_APP_AINA	R	8000h	application measurement result AINA
1853h	PRMM_APP_AIN0	R	8000h	application measurement result AIN0
1854h	PRMM_APP_AIN1	R	8000h	application measurement result AIN1
1855h	PRMM_APP_AIN2	R	8000h	application measurement result AIN2
1856h	PRMM_APP_AIN3	R	8000h	application measurement result AIN3
185Fh	PRMM_PER_NUM	R	0h	measurement period number of the primary periodic results

Table 48. Register overview: Primary_Measurement_Registers...continued

Address	Name	Access	Reset	Description
1860h	PRMM_PER_VC0	R	8000h	periodic measurement result cell 0
1861h	PRMM_PER_VC1	R	8000h	periodic measurement result cell 1
1862h	PRMM_PER_VC2	R	8000h	periodic measurement result cell 2
1863h	PRMM_PER_VC3	R	8000h	periodic measurement result cell 3
1864h	PRMM_PER_VC4	R	8000h	periodic measurement result cell 4
1865h	PRMM_PER_VC5	R	8000h	periodic measurement result cell 5
1866h	PRMM_PER_VC6	R	8000h	periodic measurement result cell 6
1867h	PRMM_PER_VC7	R	8000h	periodic measurement result cell 7
1868h	PRMM_PER_VC8	R	8000h	periodic measurement result cell 8
1869h	PRMM_PER_VC9	R	8000h	periodic measurement result cell 9
186Ah	PRMM_PER_VC10	R	8000h	periodic measurement result cell 10
186Bh	PRMM_PER_VC11	R	8000h	periodic measurement result cell 11
186Ch	PRMM_PER_VC12	R	8000h	periodic measurement result cell 12
186Dh	PRMM_PER_VC13	R	8000h	periodic measurement result cell 13
186Eh	PRMM_PER_VC14	R	8000h	periodic measurement result cell 14
186Fh	PRMM_PER_VC15	R	8000h	periodic measurement result cell 15
1870h	PRMM_PER_VC16	R	8000h	periodic measurement result cell 16
1871h	PRMM_PER_VC17	R	8000h	periodic measurement result cell 17
1872h	PRMM_PER_AINA	R	8000h	periodic measurement result AINA
1873h	PRMM_PER_AIN0	R	8000h	periodic measurement result AIN0
1874h	PRMM_PER_AIN1	R	8000h	periodic measurement result AIN1
1875h	PRMM_PER_AIN2	R	8000h	periodic measurement result AIN2
1876h	PRMM_PER_AIN3	R	8000h	periodic measurement result AIN3
1877h	PRMM_PER_PRMTEMP	R	8000h	periodic measurement result primary device temperature
1878h	PRMM_PER_SECVREF	R	8000h	periodic measurement result secondary voltage reference
1879h	PRMM_PER_VAUX	R	8000h	periodic measurement result auxiliary supply voltage
187Ah	PRMM_PER_VDDC	R	8000h	periodic measurement result VDDC
187Fh	PRMM_SYNC_NUM	R	0h	measurement period number of the synchronous results.
1880h	PRMM_SYNC_VC0	R	8000h	synchronous measurement result cell 0
1881h	PRMM_SYNC_VC1	R	8000h	synchronous measurement result cell 1
1882h	PRMM_SYNC_VC2	R	8000h	synchronous measurement result cell 2
1883h	PRMM_SYNC_VC3	R	8000h	synchronous measurement result cell 3
1884h	PRMM_SYNC_VC4	R	8000h	synchronous measurement result cell 4
1885h	PRMM_SYNC_VC5	R	8000h	synchronous measurement result cell 5
1886h	PRMM_SYNC_VC6	R	8000h	synchronous measurement result cell 6
1887h	PRMM_SYNC_VC7	R	8000h	synchronous measurement result cell 7
1888h	PRMM_SYNC_VC8	R	8000h	synchronous measurement result cell 8
1889h	PRMM_SYNC_VC9	R	8000h	synchronous measurement result cell 9
188Ah	PRMM_SYNC_VC10	R	8000h	synchronous measurement result cell 10
188Bh	PRMM_SYNC_VC11	R	8000h	synchronous measurement result cell 11

Table 48. Register overview: Primary_Measurement_Registers...continued

Address	Name	Access	Reset	Description
188Ch	PRMM_SYNC_VC12	R	8000h	synchronous measurement result cell 12
188Dh	PRMM_SYNC_VC13	R	8000h	synchronous measurement result cell 13
188Eh	PRMM_SYNC_VC14	R	8000h	synchronous measurement result cell 14
188Fh	PRMM_SYNC_VC15	R	8000h	synchronous measurement result cell 15
1890h	PRMM_SYNC_VC16	R	8000h	synchronous measurement result cell 16
1891h	PRMM_SYNC_VC17	R	8000h	synchronous measurement result cell 17

Table 49. Register overview: Secondary_Measurement_Registers

Address	Name	Access	Reset	Description
1C00h	SECM_CFG	R/W	0h	general measurement control
1C01h	SECM_APP_CTRL	W	0h	application measurement control
1C02h	SECM_PER_CTRL	R/W	10h	periodic measurement control
1C03h	SECM_SYNC_CTRL	R/W	7C00h	synchronous measurement control
1C08h	SECM_VB_CFG0	R/W	0h	balance voltage measurement enable
1C09h	SECM_VB_CFG1	R/W	0h	balance voltage measurement enable
1C0Ah	SECM_AIN_CFG	R/W	80h	measurement enables for extra channel
1C0Bh	SECM_AIN_OL_CFG	R/W	0h	AINx open-load detection enable
1C0Ch	SECM_VBUF_CFG	R/W	3h	voltage buffer enable
1C20h	SECM_CAL_CRC	R/W	0h	CRC over calibration data
1C21h	SECM_CFG_CRC	R	0h	CRC over configuration values
1C3Eh	SECM_MEAS_STAT	R	0h	measurement status
1C53h	SECM_APP_AIN4	R	8000h	application measurement result AIN4
1C54h	SECM_APP_AIN5	R	8000h	application measurement result AIN5
1C55h	SECM_APP_AIN6	R	8000h	application measurement result AIN6
1C56h	SECM_APP_AIN7	R	8000h	application measurement result AIN7
1C5Fh	SECM_PER_NUM	R	0h	measurement period number of the secondary periodic results
1C73h	SECM_PER_AIN4	R	8000h	periodic measurement result AIN4
1C74h	SECM_PER_AIN5	R	8000h	periodic measurement result AIN5
1C75h	SECM_PER_AIN6	R	8000h	periodic measurement result AIN6
1C76h	SECM_PER_AIN7	R	8000h	periodic measurement result AIN7
1C77h	SECM_PER_SECTEMP	R	8000h	periodic measurement result secondary device temperature
1C78h	SECM_PER_PRMVREF	R	8000h	periodic measurement result primary voltage reference
1C79h	SECM_PER_VAUX	R	8000h	periodic measurement result auxiliary supply voltage
1C7Ah	SECM_PER_VBAT	R	8000h	periodic measurement result VBAT
1C7Bh	SECM_PER_VDDA	R	8000h	periodic measurement result VDDA
1C7Ch	SECM_PER_VDDC	R	8000h	periodic measurement result VDDC
1C7Eh	SECM_PER_NPNISENSE	R	8000h	periodic measurement result NPN current sensor
1C7Fh	SECM_SYNC_NUM	R	0h	measurement number of the secondary synchronous results
1C80h	SECM_SYNC_VB0	R	8000h	synchronous measurement result from balancing pins cell 0.

18-cell battery-cell controller IC

Table 49. Register overview: Secondary_Measurement_Registers...continued

Address	Name	Access	Reset	Description
1C81h	SECM_SYNC_VB1	R	8000h	synchronous measurement result from balancing pins cell 1
1C82h	SECM_SYNC_VB2	R	8000h	synchronous measurement result from balancing pins cell 2
1C83h	SECM_SYNC_VB3	R	8000h	synchronous measurement result from balancing pins cell 3
1C84h	SECM_SYNC_VB4	R	8000h	synchronous measurement result from balancing pins cell 4
1C85h	SECM_SYNC_VB5	R	8000h	synchronous measurement result from balancing pins cell 5
1C86h	SECM_SYNC_VB6	R	8000h	synchronous measurement result from balancing pins cell 6
1C87h	SECM_SYNC_VB7	R	8000h	synchronous measurement result from balancing pins cell 7
1C88h	SECM_SYNC_VB8	R	8000h	synchronous measurement result from balancing pins cell 8
1C89h	SECM_SYNC_VB9	R	8000h	synchronous measurement result from balancing pins cell 9
1C8Ah	SECM_SYNC_VB10	R	8000h	synchronous measurement result from balancing pins cell 10
1C8Bh	SECM_SYNC_VB11	R	8000h	synchronous measurement result from balancing pins cell 11
1C8Ch	SECM_SYNC_VB12	R	8000h	synchronous measurement result from balancing pins cell 12
1C8Dh	SECM_SYNC_VB13	R	8000h	synchronous measurement result from balancing pins cell 13
1C8Eh	SECM_SYNC_VB14	R	8000h	synchronous measurement result from balancing pins cell 14
1C8Fh	SECM_SYNC_VB15	R	8000h	synchronous measurement result from balancing pins cell 15
1C90h	SECM_SYNC_VB16	R	8000h	synchronous measurement result from balancing pins cell 16
1C91h	SECM_SYNC_VB17	R	8000h	synchronous measurement result from balancing pins cell 17

12.1.1 SYS_CFG_CRC register

System configuration CRC

Table 50. SYS_CFG_CRC register - system configuration CRC (address 0h) bit allocation

					_											
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		CRC														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 51. SYS_CFG_CRC register - system configuration CRC (address 0h)

	·· • · • <u>-</u> • · • <u>-</u> • · · • · •	5	<u> </u>	(
Bit	Symbol	Access	Value	Description
15:0	CRC	R	Oh	This CRC value is recalculated with any write to a covered register and with any read to this register. The updated CRC value is available latest 100 μs after the last write. The CRC value is application specific and must be re-calculated by the MCU. The used polynomial is: D175h (+1) = X^{16} + X^{15} + X^{13} + X^{9} + X^{7} + X^{6} + X^{5} + X^{3} + X^{1} + 1. Following registers are included: SYS_COM_CFG, SYS_COM_TO_CFG, SYS_SUPPLY_CFG, SYS_CYC_WAKEUP_CFG, SYS_TPL_CFG.
	1	1	1	

18-cell battery-cell controller IC

12.1.2 SYS_COM_CFG register

Communication initialization

Table 52. SYS_COM_CFG register - communication initialization (address 1h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol			NUMN	ODES			BUSFW	CADD
Reset	0	0	0	0	0	0	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol	CA	DD						
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 53. SYS_COM_CFG register - communication initialization (address 1h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:10	NUMNODES	R/W	0h	Number of nodes in the daisy chain. Difference of NUMNODES and DADD defines the wait time for global write commands.
9	BUSFW	R/W		Bus forwarding
			0	DISABLED (read-write) Disabled
			1*	ENABLED (read-write) Enabled if DADD is unequal 00h
8:6	CADD	R/W		Defines the daisy chain address CADD = chain address CADD is only used for responses to a all chain read request.
			000*	RESERVED (read-write) Reserved for future usage
			111	GLOBAL (read-write) Reserved for global write commands
5:0	DADD	R/W		Defines the device address DADD = device address
			00h*	UNENUMERATED (read-write) Device is unenumerated; bus forwarding is disabled.
			3Fh	GLOBAL (read-write) Used for global read and write commands

12.1.3 SYS_COM_TO_CFG register

System communication timeout

Table 54. SYS_COM_TO_CFG register - system communication timeout (address 2h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	COMTODISABLE											CON	ИΤО			
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

18-cell battery-cell controller IC

Table 55. SYS_COM_TO_CFG register - system communication timeout (address 2h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:8	COMTODISABLE	R/W		Communication timeout disable. Only intended for software development activities. Must never be used in release software.
			00h*	DEFAULT (read-write) Communication timeout enabled
			5Ah	DISABLED (read-write) Communication timeout disabled
7:0	СОМТО	R/W		Communication timeout time COMTO * 10 milliseconds A value of 0 is treated as 10 ms.
			00h	T_MIN (read-write) 10 ms
			01h	T_10m (read-write) 10 ms
			1Eh*	T_300m (read-write) 300 ms
			FFh	T_MAX (read-write) 2550 ms

12.1.4 SYS_SUPPLY_CFG register

Supply configuration

Table 56. SYS_SUPPLY_CFG register - supply configuration (address 3h) bit allocation

	and the conjust in the conjust of the conjust in the conjust of the conjust in th													
Bit	15	14	13	12	11	10	9	8						
Symbol	CURMATCH		reserved											
Reset	1	0	0	0	0	0	0	0						
Access	R/W	R	R	R	R	R	R	R						
Bit	7	6	5	4	3	2	1	0						
Symbol			reserved			VDDCCYC	VAUXCYC	VAUXACT						
Reset	0	0	0	0	0	0	1	1						
Access	R	R	R	R	R	R/W	R/W	R/W						

Table 57. SYS_SUPPLY_CFG register - supply configuration (address 3h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15	CURMATCH	R/W		Enable IC supply current matching in active mode.
			0	DISABLED (read-write) Supply current matching is disabled
			1*	ENABLED (read-write) Supply current matching is enabled
14:3	reserved	R	0h	This read-only field is reserved and always has the value 0.
2	VDDCCYC	R/W		Enable VDDC in cyclic mode.
			0*	DISABLED (read-write) VDDC is disabled in cyclic mode
			1	ENABLED (read-write) VDDC is enabled in cyclic mode
1	VAUXCYC	R/W		Enable VAUX in cyclic mode.
			0	DISABLED (read-write) VAUX is disabled in cyclic mode
			1*	ENABLED (read-write) VAUX is enabled in cyclic mode
0	VAUXACT	R/W		Enable VAUX in active mode.
			0	DISABLED (read-write) VAUX is disabled in active mode

BMI7018

All information provided in this document is subject to legal disclaimers.

18-cell battery-cell controller IC

Table 57. SYS_SUPPLY_CFG register - supply configuration (address 3h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			1*	ENABLED (read-write) VAUX is enabled in active mode

12.1.5 SYS_MODE register

System mode

Table 58. SYS MODE register - system mode (address 4h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	reserved PREVMODE							ı	reserved			TAF	RGETMC	DDE		
Reset	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	W	W	W	W	W

Table 59. SYS_MODE register - system mode (address 4h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:13	reserved	R	0h	This read-only field is reserved and always has the value 0.
12:8	PREVMODE	R		Previous mode. Other values as stated are invalid.
			0Ah	SLEEP (read) Sleep mode
			14h*	DEEPSLEEP (read) Deep sleep mode
			CYCLIC (read) Cyclic mode	
7:5	reserved	R	0h	This read-only field is reserved and always has the value 0.
4:0	TARGETMODE	W	Oh	Target mode. The mode transition starts immediately after writing. Other values as stated are ignored.
			0Ah	SLEEP (write) Sleep mode
			14h	DEEPSLEEP (write) Deep sleep mode

12.1.6 SYS_CYC_WAKEUP_CFG register

Interval for cyclic measurements

Table 60. SYS_CYC_WAKEUP_CFG register - interval for cyclic measurements (address 5h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		PERIOD														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

18-cell battery-cell controller IC

Table 61. SYS_CYC_WAKEUP_CFG register - interval for cyclic measurements (address 5h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:0	PERIOD	R/W		Time between two cyclic wake-up events. PERIOD * 100 milliseconds
			0000h*	DISABLED (read-write) Cyclic wakeup disabled
			0001h	PERIOD (read-write) PERIOD * 100 ms
			FFFFh	PERIOD_MAX (read-write) Maximum period time = 6553500 ms = approximately 1.8 h

12.1.7 SYS_TPL_CFG register

TPL configuration

Table 62. SYS TPL CFG register - TPL configuration. (address 6h) bit allocation

		3	3.	,	· · / · · · · ·			
Bit	15	14	13	12	11	10	9	8
Symbol	reserved							
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	reserved		RESPCFG		TXTERMH	TXTERML	WAKEUPCOMP	
Reset	0	0	0	1	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W

Table 63. SYS_TPL_CFG register - TPL configuration. (address 6h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:6	reserved	R	0h	This read-only field is reserved and always has the value 0.
5:4	5:4 RESPCFG R			Response interface
			00	SAME (read-write) Responses are only transmitted on the receiving port.
			01*	BOTH (read-write) Responses are transmitted on both ports if DADD is unequal 00h.
			10	OPPOSITE (read-write) Responses are transmitted on the opposite port of the receiving port.
			11	RESERVED (read-write) Reserved, do not use. For now same as BOTH.
3	TXTERMH	R/W		Termination active while transmit for the higher TPL port. (Pin 49 and pin 50)
			0*	DISABLED (read-write) Disabled; termination is inactive during transmit. Required for normal TPL operation.
			1	ENABLED (read-write) Enabled; termination is active during transmit. Only needed at final daisy-chain node to have equal power consumption.
2	TXTERML	R/W		Termination active while transmit for the lower TPL port. (Pin 47 and pin 48)

18-cell battery-cell controller IC

 ${\bf Table~63.~SYS_TPL_CFG~register-TPL~configuration.~(address~6h)}... {\it continued}$

Legend: * reset value

Bit	Symbol	Access	Value	Description
			0*	DISABLED (read-write) Disabled; termination is inactive during transmit. Required for normal TPL operation.
			1	ENABLED (read-write) Enabled; termination is active during transmit. Only needed at final daisy-chain node to have equal power consumption.
1:0	WAKEUPCOMP	R/W		Defines compatibility for the MC33664 wake-up by the Daisy Chain. Undefined values are treated as HIGHER.
			00*	DEFAULT (read-write) Wake-up signal on both ports is compatible to BMI7018.
			01	LOWER (read-write) Wake-up signal on lower TPL port is compatible to MC33664. The other port is compatible to BMI7018.
			10	HIGHER (read-write) Wake-up signal on higher TPL port is compatible to MC33664. The other port is compatible to BMI7018.

12.1.8 SYS_CLK_SYNC_CTRL register

Clock synchronization

Table 64. SYS_CLK_SYNC_CTRL register - clock Synchronization (address 8h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								SYNO	CCNT							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W							

Table 65. SYS_CLK_SYNC_CTRL register - clock Synchronization (address 8h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:0	SYNCCNT	R/W		Synchronization counter value: Writing a 0000h resets the counter with no adjustment. For other values it is checked if the internal counter value is higher, in which case the oscillator frequency is decreased. If it is lower the internal oscillator frequency is increased. Reading the value returns the current internal counter value. 1 LSB = 10 μ s.
			0000h*	RESET (read-write) Counter is reset with no adjustment.
			0001h	ADJUST (read-write) 10 μs

12.1.9 SYS_VERSION register

Device silicon identifier

Table 66. SYS_VERSION register - device silicon identifier (address 10h) bit allocation

				,				(0.00		,						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				TY	PE					FR	EV			MR	EV	
Reset	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	1
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

BMI7018

18-cell battery-cell controller IC

Table 67. SYS_VERSION register - device silicon identifier (address 10h)

Bit	Symbol	Access	Value	Description
15:8	TYPE	R	3h	Type identifier. Development samples might show a different value.
7:4	FREV	R	9h	Full mask revision ID
3:0	MREV	R	1h	Metal revision ID

12.1.10 SYS_UID_LOW register

Unique device ID lower part

Table 68. SYS_UID_LOW register - unique device ID lower part (address 11h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LC	W							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 69. SYS_UID_LOW register - unique device ID lower part (address 11h)

I	Bit	Symbol	Access	Value	Description
•	15:0	LOW	R	0h	Lower part of unique device ID

12.1.11 SYS_UID_MID register

Unique device ID middle part

Table 70. SYS_UID_MID register - unique device ID middle part (address 12h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								М	ID							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 71. SYS_UID_MID register - unique device ID middle part (address 12h)

Bit	Symbol	Access	Value	Description
15:0	MID	R	0h	Middle part of unique device ID

12.1.12 SYS_UID_HIGH register

Unique device ID higher part

Table 72. SYS_UID_HIGH register - unique device ID higher part (address 13h) bit allocation

	_		'	J			-	9 - 1			,					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								HIG	ЭH							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 73. SYS_UID_HIGH register - unique device ID higher part (address 13h)

Bit	Symbol	Access	Value	Description
15:0	HIGH	R	0h	Higher part of unique device ID

12.1.13 SYS_PROD_VER register

Software interface related version of the product

Table 74. SYS_PROD_VER register - software interface related version of the product (address 14h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		rese	rved			MA	JOR			MIN	IOR			PAT	СН	
Reset	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 75. SYS_PROD_VER register - software interface related version of the product (address 14h)

Bit	Symbol	Access	Value	Description
15:12	reserved	R	0h	This read-only field is reserved and always has the value 0.
11:8	MAJOR	R	2h	Major Revision: Software interface change, register-map or registers changed. Non-compatible with previous versions. (Auto SAR nomenclature)
7:4	MINOR	R	Oh	Minor Revision: Software interface change, for example improvement or extension which is covered by additional registers or transparent to the software. Existing software is compatible but may not use new features. (AutoSAR nomenclature).
3:0	PATCH	R	Oh	Patch: Patch with no software interface change. (AutoSAR nomenclature)

12.1.14 SYS_DS_STORAGE0 register

Deep sleep storage data 0; the value is stored in the ULP domain

Table 76. SYS DS STORAGE0 register - Deep Sleep Storage Data0. (address 80h) bit allocation

	_		_	- 3							,					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								DA	TA							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 77. SYS DS STORAGE0 register - Deep Sleep Storage Data0. (address 80h)

				,
Bit	Symbol	Access	Value	Description
15:0	DATA	R/W	0h	Deep Sleep surviving data; this register has no reset. This register allows to store application data and has no influence on the device.

12.1.15 SYS_DS_STORAGE1 register

Deep sleep storage data 1; the value is stored in the ULP domain

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 78. SYS_DS_STORAGE1 register - Deep Sleep Storage Data1. (address 81h) bit allocation

				-						•	,					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								DA	TA							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 79. SYS_DS_STORAGE1 register - Deep Sleep Storage Data1. (address 81h)

Bit	Symbol	Access	Value	Description
15:0	DATA	R/W	0h	Deep Sleep surviving data; this register has no reset. This register allows to store application data and has no influence on the device.

12.1.16 FEH_CFG_CRC register

Configuration CRC

Table 80. FEH CFG CRC register - configuration CRC (address 400h) bit allocation

	_			J		,				,						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		-						CF	RC							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 81. FEH_CFG_CRC register - configuration CRC (address 400h)

Bit	Symbol	Access	Value	Description
15:0	CRC	R	Oh	This CRC value is recalculated with any transition into Active mode, with any write to a covered register and with any read to this register. The updated CRC value is available latest 100 µs after the last write. The CRC value is application specific and must be re-calculated by the MCU. The used polynomial is: D175h (+1) = X ¹⁶ + X ¹⁵ + X ¹³ + X ⁹ + X ⁷ + X ⁶ + X ⁵ + X ³ + X ¹ + 1. Following registers are included: FEH_ALARM_CFG, FEH_ALARM_OUT_CFG0, FEH_ALARM_OUT_CFG1, FEH_WAKEUP_CFG0, FEH_WAKEUP_CFG1, FEH_SUPPLY_FLT_POR_CFG0, FEH_SUPPLY_FLT_POR_CFG1, FEH_COM_FLT_POR_CFG, FEH_SUPPLY_FLT_EVT_CFG0, FEH_SUPPLY_FLT_EVT_CFG0, FEH_SUPPLY_FLT_EVT_CFG, FEH_COM_FLT_EVT_CFG, FEH_MEAS_FLT_EVT_CFG.

12.1.17 FEH_ALARM_CFG register

General alarm configuration

Table 82. FEH_ALARM_CFG register - general alarm configuration (address 401h) bit allocation

Table 02	able 62. FEH_ALAKIM_CFG register - general alarm conniguration (address 40 m) bit allocation										
Bit	15	14	13	12	11	10	9	8			
Symbol				reserved				ALARMI NHBINV			
Reset	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R	R	R/W			
Bit	7	6	5	4	3	2	1	0			

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 82. FEH_ALARM_CFG register - general alarm configuration (address 401h) bit allocation...continued

Symbol	ALARM	OUTHB	ALARI	MOUT	ALARI	/INHB	ALARMIN		
Reset	0	0	0	0	0 0		0	0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Table 83. FEH_ALARM_CFG register - general alarm configuration (address 401h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:9	reserved	R	0h	This read-only field is reserved and always has the value 0.
8	ALARMINHBINV	R/W		Inverted heartbeat input
			0*	DISABLED (read-write) Normal heartbeat (LOW with HIGH pulses) input used
			1	ENABLED (read-write) Inverted heartbeat (HIGH with LOW pulses) input used
7:6	ALARMOUTHB	R/W		Output heartbeat low time setting
			00*	T_500u (read-write) 500 us
			01	T_1ms (read-write) 1 ms
			10	T_10ms (read-write) 10 ms
			11	T_100ms (read-write) 100 ms
5:4	ALARMOUT	R/W		Enable alarm output
			00*	DISABLED (read-write) disabled. Alarm output is high impedance.
			01	HIGH_ACTIVE (read-write) high active
			10	LOW_ACTIVE (read-write) low active
			11	HEARTBEAT (read-write) heartbeat configuration
3:2	ALARMINHB	R/W		Input heartbeat low time setting
			00*	T_500u (read-write) 500 us
			01	T_1ms (read-write) 1 ms
			10	T_10ms (read-write) 10 ms
			11	T_100ms (read-write) 100 ms
1:0	ALARMIN	R/W		Enable alarm input Enabling the alarm input automatically enables the digital receiver for the Alarm input pin.
			00*	DISABLED (read-write) Alarm input is disabled
			01	HIGH_ACTIVE (read-write) Alarm input is enabled, high active
			10 LOW_ACTIVE (read-write) Alarm inpu	
			11	HEARTBEAT (read-write) Alarm input is enabled, heartbeat configuration

18-cell battery-cell controller IC

12.1.18 FEH_ALARM_OUT_CFG0 register

Alarm output source selection

Table 84. FEH_ALARM_OUT_CFG0 register - alarm output source selection (address 402h) bit allocation

	_		3				,	
Bit	15	14	13	12	11	10	9	8
Symbol	reserved	SYSFLTEVT	BALRDY	WAKEUPIN	ALARMIN	AIN3UV	AIN3OV	AIN2UV
Reset	0	0	0	0	0	0	0	0
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol	AIN2OV	AIN1UV	AIN10V	AIN0UV	AIN0OV	VCUV1	VCUV0	VCOV
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 85. FEH_ALARM_OUT_CFG0 register - alarm output source selection (address 402h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15	reserved	R	0h	This read-only field is reserved and always has the value 0.
14	SYSFLTEVT	R/W		Enable output on alarm output for a detected and selected system fault.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
13	BALRDY	R/W		Enable output on alarm output for cell voltage balancing ready.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
12	WAKEUPIN	R/W		Enable output on detected wakeup input. Enabling this bit automatically enables the digital receiver for the wakeup input pin.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
11	ALARMIN	R/W		Enable output on alarm output for detected alarm input.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
10	AIN3UV	R/W		Enable output on alarm output for AIN3_UV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
9	AIN3OV	R/W		Enable output on alarm output for AIN3_OV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
8	AIN2UV	R/W		Enable output on alarm output for AIN2_UV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
7	AIN2OV	R/W		Enable output on alarm output for AIN2_OV.
			0*	DISABLED (read-write) disabled

18-cell battery-cell controller IC

Table 85. FEH_ALARM_OUT_CFG0 register - alarm output source selection (address 402h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	ENABLED (read-write) enabled
6	AIN1UV	R/W		Enable output on alarm output for AIN1_UV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
5	AIN1OV	R/W		Enable output on alarm output for AIN1_OV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
4	AIN0UV	R/W		Enable output on alarm output for AIN0_UV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
3	AIN0OV	R/W		Enable output on alarm output for AIN0_OV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
2	VCUV1	R/W		Enable output on alarm output for VC_UV1.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
1	VCUV0	R/W		Enable output on alarm output for VC_UV0.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
0	VCOV	R/W		Enable output on alarm output for VC_OV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled

12.1.19 FEH_ALARM_OUT_CFG1 register

Alarm output source selection

Table 86. FEH_ALARM_OUT_CFG1 register - alarm output source selection (address 403h) bit allocation

Bit	15	14	13	12	11	10	9	8	
Symbol		reserved							
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R/W	
Bit	7	6	5	4	3	2	1	0	
Symbol			rese	rved			AINAUV	AINAOV	
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R/W	R/W	

18-cell battery-cell controller IC

Table 87. FEH_ALARM_OUT_CFG1 register - alarm output source selection (address 403h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:9	reserved	R	0h	This read-only field is reserved and always has the value 0.
8	BALPROT	R/W		Enable output on alarm output for detected balancing protection
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
7:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	AINAUV	R/W		Enable output on alarm output for AINA_UV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
0	AINAOV	R/W		Enable output on alarm output for AINA_OV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled

12.1.20 FEH_ALARM_OUT_REASON0 register

Alarm output reason

Table 88. FEH_ALARM_OUT_REASON0 register - alarm output reason (address 404h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	reserved	SYSFLTEVT	BALRDY	WAKEUPIN	ALARMIN	AIN3UV	AIN3OV	AIN2UV
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	AIN2OV	AIN1UV	AIN1OV	AIN0UV	AIN0OV	VCUV1	VCUV0	VCOV
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 89. FEH_ALARM_OUT_REASON0 register - alarm output reason (address 404h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15	reserved	R	0h	This read-only field is reserved and always has the value 0.
14	SYSFLTEVT	R		Detected system fault. Read clears bit.
			0* NO_ALARM (read) Alarm not caused by detected fault	
			1	ALARM (read) Alarm caused by detected system fault
13	BALRDY	R		Cell voltage balancing ready Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by cell voltage balancing ready
			1	ALARM (read) Alarm caused by cell voltage balancing ready
12	WAKEUPIN	R		Detected wakeup input Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by detected wakeup input

18-cell battery-cell controller IC

Table 89. FEH_ALARM_OUT_REASON0 register - alarm output reason (address 404h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	ALARM (read) Alarm caused by detected wakeup input
11	ALARMIN	R		Detected alarm input Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by detected alarm input
			1	ALARM (read) Alarm caused by detected alarm input
10	AIN3UV	R		AIN3_UV Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by AlN3_UV
			1	ALARM (read) Alarm caused by AIN3_UV
9	AIN3OV	R		AIN3_OV Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by AlN3_OV
			1	ALARM (read) Alarm caused by AIN3_OV
8	AIN2UV	R		AIN2_UV Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by AIN2_UV
			1	ALARM (read) Alarm caused by AIN2_UV
7	AIN2OV	R		AIN2_OV Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by AIN2_OV
			1	ALARM (read) Alarm caused by AIN2_OV
6	AIN1UV	R		AIN1_UV Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by AIN1_UV
			1	ALARM (read) Alarm caused by AIN1_UV
5	AIN1OV	R		AIN1_OV Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by AIN1_OV
			1	ALARM (read) Alarm caused by AIN1_OV
4	AIN0UV	R		AIN0_UV Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by AIN0_UV
			1	ALARM (read) Alarm caused by AIN0_UV
3	AIN0OV	R		AIN0_OV Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by AIN0_OV
			1	ALARM (read) Alarm caused by AIN0_OV
2	VCUV1	R		VC_UV1 Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by VC_UV1
			1	ALARM (read) Alarm caused by VC_UV1
1	VCUV0	R		VC_UV0 Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by VC_UV0
			1	ALARM (read) Alarm caused by VC_UV0
0	VCOV	R		VC_OV Read clears bit.
			0*	NO_ALARM (read) Alarm not caused by VC_OV
			1	ALARM (read) Alarm caused by VC_OV

18-cell battery-cell controller IC

12.1.21 FEH_ALARM_OUT_REASON1 register

Alarm output reason

Table 90. FEH_ALARM_OUT_REASON1 register - alarm output reason (address 405h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol				reserved				BALPROT
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol			rese	rved			AINAUV	AINAOV
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 91. FEH_ALARM_OUT_REASON1 register - alarm output reason (address 405h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:9	reserved	R	0h	This read-only field is reserved and always has the value 0.
8	BALPROT	R		Balancing protection detection Read clears bit.
			0*	NO_WAKE (read) Alarm not caused by detected Balancing protection
7.0			1	WAKE_UP (read) Alarm caused by detected Balancing protection
7:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	AINAUV	R		AINA_UV Read clears bit.
			0*	NO_WAKE (read) Alarm not caused by AINA_UV
			1	WAKE_UP (read) Alarm caused by AINA_UV
0	AINAOV	R		AINA_OV Read clears bit.
			0*	NO_WAKE (read) Alarm not caused by AINA_OV
			1	WAKE_UP (read) Alarm caused by AINA_OV

12.1.22 FEH_WAKEUP_CFG0 register

Wake-up source configuration

Table 92. FEH_WAKEUP_CFG0 register - wake-up source configuration (address 408h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	TPLWAKEUP	SYSFLTEVT	BALRDY	WAKEUPIN	ALARMIN	AIN3UV	AIN3OV	AIN2UV
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol	AIN2OV	AIN1UV	AIN1OV	AIN0UV	AIN0OV	VCUV1	VCUV0	VCOV
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

BMI7018

18-cell battery-cell controller IC

Table 93. FEH_WAKEUP_CFG0 register - wake up source configuration (address 408h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15	TPLWAKEUP	R/W		Wake TPL
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled. Device sends wake- up frames on TPL if wake-up reason was other than communication
14	SYSFLTEVT	R/W		Enable wakeup on a detected system fault.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
13	BALRDY	R/W		Enable wakeup on cell voltage balancing ready.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
12	WAKEUPIN	R/W		Enable wakeup on detected wakeup input. Enabling this bit automatically enables the digital receiver for wake-up input 0.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
11	ALARMIN	R/W		Enable wakeup on detected alarm input
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
10	AIN3UV	R/W		Enable wakeup on AIN3_UV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
9	AIN3OV	R/W		Enable wakeup on AIN3_OV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
8	AIN2UV	R/W		Enable wakeup on AIN2_UV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
7	AIN2OV	R/W		Enable wakeup on AIN2_OV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
6	AIN1UV	R/W		Enable wakeup on AIN1_UV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
5	AIN1OV	R/W		Enable wakeup on AIN1_OV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
4	AIN0UV	R/W		Enable wakeup on AIN0_UV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
3	AIN0OV	R/W		Enable wakeup on AIN0_OV.

18-cell battery-cell controller IC

Table 93. FEH_WAKEUP_CFG0 register - wake up source configuration (address 408h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
2	VCUV1	R/W		Enable wakeup on VC_UV1.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
1	VCUV0	R/W		Enable wakeup on VC_UV0.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
0	VCOV	R/W		Enable wakeup on VC_OV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled

12.1.23 FEH_WAKEUP_CFG1 register

Wake-up source configuration

Table 94. FEH_WAKEUP_CFG1 register - wake-up source configuration (address 409h) bit allocation

Bit	15	14	13	12	11	10	9	8	
Symbol		reserved							
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R/W	
Bit	7	6	5	4	3	2	1	0	
Symbol			rese	rved			AINAUV	AINAOV	
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R/W	R/W	

Table 95. FEH_WAKEUP_CFG1 register - wake up source configuration (address 409h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:9	reserved	R	0h	This read-only field is reserved and always has the value 0.
8	BALPROT	R/W		Enable wakeup on detected balancing protection
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
7:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	AINAUV	R/W		Enable wakeup on AINA_UV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled
0	AINAOV	R/W		Enable wakeup on AINA_OV.
			0*	DISABLED (read-write) disabled
			1	ENABLED (read-write) enabled

BMI7018

18-cell battery-cell controller IC

12.1.24 FEH_WAKEUP_REASON0 register

Wake-up reason register

Table 96. FEH_WAKEUP_REASON0 register - wake-up reason register (address 40Ah) bit allocation

					1.3.000 (0.000	,		
Bit	15	14	13	12	11	10	9	8
Symbol	COMM	SYSFLTEVT	BALRDY	WAKEUPIN	ALARMIN	AIN3UV	AIN3OV	AIN2UV
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	AIN2OV	AIN1UV	AIN1OV	AIN0UV	AIN0OV	VCUV1	VCUV0	VCOV
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 97. FEH_WAKEUP_REASON0 register - wake up reason register (address 40Ah)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15	СОММ	R		Communication detected Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by detected communication
			1	WAKE_UP (read) Wakeup caused by detected communication
14	SYSFLTEVT	R		Detected system fault. Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by detected system fault
			1	WAKE_UP (read) Wakeup caused by detected system fault
13	BALRDY	R		Cell voltage balancing ready Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by cell voltage balancing ready
			1	WAKE_UP (read) Wakeup caused by cell voltage balancing ready
12	WAKEUPIN	R		Detected wakeup input Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by detected wakeup input
			1	WAKE_UP (read) Wakeup caused by detected wakeup input
11	ALARMIN	R		Detected alarm input Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by detected Wakeup input
			1	WAKE_UP (read) Wakeup caused by detected Wakeup input
10	AIN3UV	R		AIN3_UV Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by AIN3_UV
			1	WAKE_UP (read) Wakeup caused by AIN3_UV
9	AIN3OV	R		AIN3_OV Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by AIN3_OV
			1	WAKE_UP (read) Wakeup caused by AIN3_OV

18-cell battery-cell controller IC

Table 97. FEH_WAKEUP_REASON0 register - wake up reason register (address 40Ah)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
8	AIN2UV	R		AIN2_UV Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by AIN2_UV
			1	WAKE_UP (read) Wakeup caused by AIN2_UV
7	AIN2OV	R		AIN2_OV Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by AIN2_OV
			1	WAKE_UP (read) Wakeup caused by AIN2_OV
6	AIN1UV	R		AIN1_UV Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by AIN1_UV
			1	WAKE_UP (read) Wakeup caused by AIN1_UV
5	AIN1OV	R		AIN1_OV Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by AIN1_OV
			1	WAKE_UP (read) Wakeup caused by AIN1_OV
4	AIN0UV	R		AIN0_UV Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by AIN0_UV
			1	WAKE_UP (read) Wakeup caused by AIN0_UV
3	AIN0OV	R		AIN0_OV Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by AIN0_OV
			1	WAKE_UP (read) Wakeup caused by AIN0_OV
2	VCUV1	R		VC_UV1 Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by VC_UV1
			1	WAKE_UP (read) Wakeup caused by VC_UV1
1	VCUV0	R		VC_UV0 Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by VC_UV0
			1	WAKE_UP (read) Wakeup caused by VC_UV0
0	VCOV	R		VC_OV Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by VC_OV
			1	WAKE_UP (read) Wakeup caused by VC_OV
			[1	wake_OP (read) wakeup caused by VC_OV

12.1.25 FEH_WAKEUP_REASON1 register

Wake-up reason register

Table 98. FEH_WAKEUP_REASON1 register - wake-up reason register (address 40Bh) bit allocation

Table 30	e 30. I EII_WARLOF_REASON Fregister - wake-up reason register (address 40bil) bit allocation								
Bit	15	14	13	12	11	10	9	8	
Symbol		reserved							
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	
Bit	7	6	5	4	3	2	1	0	
Symbol			rese	rved			AINAUV	AINAOV	
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 99. FEH_WAKEUP_REASON1 register - wake up reason register (address 40Bh)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:9	reserved	R	0h	This read-only field is reserved and always has the value 0.
8	BALPROT	R		Balancing protection detection Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by detected Balancing protection
			1	WAKE_UP (read) Wakeup caused by detected Balancing protection
7:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	AINAUV	R		AIN0_UV Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by AINA_UV
			1	WAKE_UP (read) Wakeup caused by AINA_UV
0	AINAOV	R		AINA_OV Read clears bit.
			0*	NO_WAKE (read) Wakeup not caused by AINA_OV
			1	WAKE_UP (read) Wakeup caused by AINA_OV

12.1.26 FEH_MON_BIST_CTRL register

Monitor BIST control register

Table 100. FEH_MON_BIST_CTRL register - monitor BIST control register (address 410h) bit allocation

					,			
Bit	15	14	13	12	11	10	9	8
Symbol				BIST	CRC			
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol				BISTCRC				STARTBIST
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	W

Table 101. FEH_MON_BIST_CTRL register - monitor BIST control register (address 410h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:1	BISTCRC	R/W	Oh	CRC of the sequential BIST results. The value is different for the automatic BIST after start-up and a manual started BIST, as more monitors are then included. If the resulting CRC differs from the defined values, the BIST was not executed correctly.
			10B7h	STARTUP (read-write) Value 10B7h represents correct CRC value for start-up BIST
			4E3Dh	MAN_NO_VAUX (read-write) Value 4E3Dh represents the correct CRC value for a manual started BIST if VAUX is not enabled
			7742h	MANUAL (read-write) Value 7742h represents correct CRC value for manual started BIST
0	STARTBIST	W		Start BIST of all supply monitors, including VAUXOV, VAUXUV, VDDCOV and VDDCUV, which are not run at start-up. If the

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 101. FEH_MON_BIST_CTRL register - monitor BIST control register (address 410h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
				BIST is executed while measurements are running, some created secondary measurement results might be invalid. Read as zero.
			0*	NO_START (write) Do not start BIST
			0*	STATUS (read) Read as zero.
			1	START (write) Start BIST

12.1.27 FEH_MON_BIST_RES register

Monitor BIST result register; value changes at start up, if everything is fine to 0000h

Table 102. FEH MON BIST RES register - Monitor BIST result register (address 411h) bit allocation

			3		(
Bit	15	14	13	12	11	10	9	8
Symbol		rese	rved		VDDCUV	VDDCOV	VAUXUV	VAUXOV
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	VPRERE FSUV	AFECPUV	AFECPOV	VANAUV	VANAOV	VDDAUV	VDDAOV	VBATOV
Reset	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R

Table 103. FEH_MON_BIST_RES register - Monitor BIST result register (address 411h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:12	reserved	R	0h	This read-only field is reserved and always has the value 0.
11	VDDCUV	R		VDDC Supply under-voltage BIST failed. Not part of start-up BIST, only executed for manual BIST execution.
			0*	PASS (read) BIST passed
			1	FAIL (read) BIST failed
10	VDDCOV	R		VDDC Supply over-voltage BIST failed. Not part of start-up BIST, only executed for manual BIST execution.
			0*	PASS (read) BIST passed
			1	FAIL (read) BIST failed
9	VAUXUV	R		VAUX Supply under-voltage BIST failed. Not part of start-up BIST, only executed for manual BIST execution.
			0*	PASS (read) BIST passed
			1	FAIL (read) BIST failed
8	VAUXOV	R		VAUX Supply over-voltage BIST failed. Not part of start-up BIST, only executed for manual BIST execution.
			0*	PASS (read) BIST passed
			1	FAIL (read) BIST failed
7	VPREREFSUV	R		VPREREFSUV Supply under-voltage BIST failed.

BMI7018

18-cell battery-cell controller IC

Table 103. FEH_MON_BIST_RES register - Monitor BIST result register (address 411h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			0	PASS (read) BIST passed
			1*	FAIL (read) BIST failed
6	AFECPUV	R		Analog Frontend Charge Pump under-voltage BIST failed.
			0	PASS (read) BIST passed
		1*	FAIL (read) BIST failed	
5	AFECPOV	R		Analog Frontend Charge Pump over-voltage BIST failed.
			0	PASS (read) BIST passed
			1*	FAIL (read) BIST failed
4	VANAUV	R		VANA under-voltage BIST failed.
			0	PASS (read) BIST passed
		1*	FAIL (read) BIST failed	
3	VANAOV	IAOV R		VANA over-voltage BIST failed.
			0	PASS (read) BIST passed
			1*	FAIL (read) BIST failed
2	VDDAUV	R		VDDA Supply under-voltage BIST failed.
			0	PASS (read) BIST passed
			1*	FAIL (read) BIST failed
1	VDDAOV	R		VDDA Supply over-voltage BIST failed.
			0	PASS (read) BIST passed
			1*	FAIL (read) BIST failed
0	VBATOV	R		VBAT Supply over-voltage BIST failed.
			0	PASS (read) BIST passed
			1*	FAIL (read) BIST failed

12.1.28 FEH_ACC_ERR register

Access error status register

Table 104. FEH_ACC_ERR register - access error status register (address 41Eh) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	ERRSTAT	ERRACC	ERRADD					
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol				ERR	ADD			
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 105. FEH_ACC_ERR register - access error status register (address 41Eh)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15	ERRSTAT	R		Access error status Read clears bit.
			0*	NO_ERROR (read) No error occurred
			1	ERROR (read) Access error has occurred
14	ERRACC	R		Access type of the last access error Read clears bit.
			0*	READ (read) Last error occurred during a read access
			1	WRITE (read) Last error occurred during a write access
13:0	ERRADD	R	Oh	Address of the last access which created an access error Read clears bits.

12.1.29 FEH_GRP_FLT_STAT register

Main system fault status register; this register holds one bit per fault group. For each fault group a separate status register exists. The bit here is cleared if all its sources are cleared.

Table 106. FEH_GRP_FLT_STAT register - Main system fault status register (address 41Fh) bit allocation

			J	,			,	
Bit	15	14	13	12	11	10	9	8
Symbol				rese	erved			
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol		rese	rved		MEASFLT	COMFLT	ANAFLT	SUPPLYFLT
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 107. FEH_GRP_FLT_STAT register - Main system fault status register (address 41Fh) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:4	reserved	R	0h	This read-only field is reserved and always has the value 0.
3	MEASFLT	R		Measurement fault status
			0*	NO_ERROR (read) No measurement fault detected
			1	ERROR (read) Measurement fault detected
2	COMFLT	R		Communication fault status
			0*	NO_ERROR (read) No communication fault detected
			1	ERROR (read) Communication fault detected.
1	ANAFLT	R		Analog fault status
			0*	NO_ERROR (read) No analog fault detected
			1	ERROR (read) Analog fault detected
0	SUPPLYFLT	R		Internal/external supply fault status
			0*	NO_ERROR (read) No supply error detected
			1	ERROR (read) Supply error detected

18-cell battery-cell controller IC

12.1.30 FEH_SUPPLY_FLT_STAT0 register

Supply fault status register 0 (these monitors are part of the BIST)

Table 108. FEH_SUPPLY_FLT_STAT0 register - Supply fault status register 0 (address 420h) bit allocation

	_						,	
Bit	15	14	13	12	11	10	9	8
Symbol		rese	rved		VDDCUV	VDDCOV	VAUXUV	VAUXOV
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol	VPRERE FSUV	AFECPUV	AFECPOV	VANAUV	VANAOV	VDDAUV	VDDAOV	VBATOV
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 109. FEH_SUPPLY_FLT_STAT0 register - Supply fault status register 0 (address 420h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:12	reserved	R	0h	This read-only field is reserved and always has the value 0.
11	VDDCUV	R/W		VDDC Supply under-voltage fault. Write 1 clears bit.
			0*	NO_UV (read-write) No VDDC Supply under-voltage detected.
			1	UV (read-write) VDDC Supply under-voltage detected.
10	VDDCOV	R/W		VDDC Supply over-voltage fault. Write 1 clears bit.
			0*	NO_OV (read-write) No VDDC Supply over-voltage detected.
			1	OV (read-write) VDDC Supply over-voltage detected.
9	VAUXUV	R/W		VAUX Supply under-voltage fault. Write 1 clears bit.
			0*	NO_UV (read-write) No VAUX Supply under-voltage detected.
			1	UV (read-write) VAUX Supply under-voltage detected.
8	VAUXOV	R/W		VAUX Supply over-voltage fault. Write 1 clears bit.
			0*	NO_OV (read-write) No VAUX Supply over-voltage detected.
			1	OV (read-write) VAUX Supply over-voltage detected.
7	VPREREFSUV	R/W		VPREREFS Supply under-voltage fault. Write 1 clears bit.
			0*	NO_UV (read-write) No VPREREFS Supply under-voltage detected.
			1	UV (read-write) VPREREFS Supply under-voltage detected.
6	AFECPUV	R/W		AFE Charge Pump under-voltage fault. Write 1 clears bit.
			0*	NO_UV (read-write) No AFE Charge Pump under-voltage detected.
			1	UV (read-write) AFE Charge Pump under-voltage detected.
5	AFECPOV	R/W		AFE Charge Pump over-voltage fault. Write 1 clears bit.
			0*	NO_OV (read-write) No AFE Charge Pump over-voltage detected.

18-cell battery-cell controller IC

Table 109. FEH_SUPPLY_FLT_STAT0 register - Supply fault status register 0 (address 420h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	OV (read-write) AFE Charge Pump over-voltage detected.
4	VANAUV	R/W		VANA Supply under-voltage fault. Write 1 clears bit.
			0*	NO_UV (read-write) No VANA Supply under-voltage detected.
			1	UV (read-write) VANA Supply under-voltage detected.
3	VANAOV	R/W		VANA Supply over-voltage fault. Write 1 clears bit.
			0*	NO_OV (read-write) No VANA Supply over-voltage detected.
			1	OV (read-write) VANA Supply over-voltage detected.
2	VDDAUV	R/W		VDDA Supply under-voltage fault. Write 1 clears bit.
	VBB/ICV		0*	NO_UV (read-write) No VDDA Supply under-voltage detected.
			1	UV (read-write) VDDA Supply under-voltage detected.
1	VDDAOV	R/W		VDDA Supply over-voltage fault. Write 1 clears bit.
			0*	NO_OV (read-write) No VDDA Supply over-voltage detected.
			1	OV (read-write) VDDA Supply over-voltage detected.
0	VBATOV	R/W		VBAT Supply over-voltage fault. Write 1 clears bit.
			0*	NO_OV (read-write) No VBAT Supply over-voltage detected.
			1	OV (read-write) VBAT Supply over-voltage detected.

12.1.31 FEH_SUPPLY_FLT_STAT1 register

Supply fault status register 1 (these monitors are not part of the BIST)

Table 110. FEH_SUPPLY_FLT_STAT1 register - Supply fault status register 1 (address 421h) bit allocation

Table 110. 1 E11_0011 E1_1 E1_01A11 register - outply fault status register 1 (address 42111) bit allocation										
Bit	15	14	13	12	11	10	9	8		
Symbol		reserved								
Reset	0	0	0	0	0	0	0	0		
Access	R	R	R	R	R	R	R	R		
Bit	7	6	5	4	3	2	1	0		
Symbol	reserved	VPREUV	VPREOV	VDDIOUV	VDDIOOV	VDDCHC	VPRERE FSOV	VBATLV		
Reset	0	0	0	0	0	0	0	0		
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Table 111. FEH_SUPPLY_FLT_STAT1 register - Supply fault status register 1 (address 421h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:7	reserved	R	0h	This read-only field is reserved and always has the value 0.
6	VPREUV	R/W		VPRE Supply under-voltage fault. Write 1 clears bit.
			0*	NO_UV (read-write) No VPRE Supply under-voltage detected.

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 111. FEH_SUPPLY_FLT_STAT1 register - Supply fault status register 1 (address 421h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	UV (read-write) VPRE Supply under-voltage detected.
5	VPREOV	R/W		VPRE Supply over-voltage fault. Write 1 clears bit.
			0*	NO_OV (read-write) No VPRE Supply over-voltage detected.
			1	OV (read-write) VPRE Supply over-voltage detected.
4	VDDIOUV	R/W		VDDIO Supply under-voltage fault. Write 1 clears bit.
			0*	NO_UV (read-write) No VDDIO Supply under-voltage detected.
			1	UV (read-write) VDDIO Supply under-voltage detected.
3	VDDIOOV	R/W		VDDIO Supply over-voltage fault. Write 1 clears bit.
			0*	NO_OV (read-write) No VDDIO Supply over-voltage detected.
			1	OV (read-write) VDDIO Supply over-voltage detected.
2	VDDCHC	R/W		VDDC high-current fault. Write 1 clears bit.
			0*	NO_HC (read-write) No VDDC high-current detected.
			1	HC (read-write) VDDC high-current detected.
1	VPREREFSOV	R/W		VPREREFS Supply over-voltage fault. Write 1 clears bit.
			0*	NO_OV (read-write) No VPREREFS Supply over-voltage detected.
			1	OV (read-write) VPREREFS Supply over-voltage detected.
0	VBATLV	R/W		VBAT Supply low-voltage fault. Write 1 clears bit.
			0*	NO_LV (read-write) No VBAT Supply low-voltage detected.
			1	LV (read-write) VBAT Supply low-voltage detected.

12.1.32 FEH_ANA_FLT_STAT register

Analog fault status register

Table 112. FEH_ANA_FLT_STAT register - analog fault status register (address 422h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol		reserved						
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol			rese	rved			BALFLT	MONBIST
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R/W	R/W

18-cell battery-cell controller IC

Table 113. FEH_ANA_FLT_STAT register - analog fault status register (address 422h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	BALFLT	R/W		Cell balance function fault. Write 1 clears bit.
			0*	NO_FLT (read-write) No cell balancing fault detected
			1	FAULT (read-write) Cell balancing fault detected
0	MONBIST	R/W		Monitor BIST failure fault. Write 1 clears bit.
			0*	NO_FLT (read-write) No monitor BIST failure detected.
			1	FAILURE (read-write) Monitor BIST failure detected.

12.1.33 FEH_COM_FLT_STAT register

Communication fault status register

Table 114. FEH_COM_FLT_STAT register - communication fault status register (address 423h) bit allocation

anocatio	•••							
Bit	15	14	13	12	11	10	9	8
Symbol				COME	RRCNT			
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol		reserved		RSPLENERR	COMTO	ERRCNTOF	CRCERR	FRAMEERR
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R/W	R/W	R/W	R/W	R/W

Table 115. FEH_COM_FLT_STAT register - communication fault status register (address 423h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:8	COMERRONT	R/W		Number of communication errors (frame errors, CRC errors) since last clear, counter saturates at 0xFF. Write with any data unequal 0 clears the counter. The counter value is preserved during Sleep mode. Write 1 clears bits. Write 1 clears bits.
			00h*	NO_ERROR (read-write) No communication error occurred
			01h	CNT (read-write) CNT errors occurred
			FFh	MAX (read-write) Maximum communication error counter = 255 communication errors occurred.
7:5	reserved	R	0h	This read-only field is reserved and always has the value 0.
4	RSPLENERR	R/W		Response length error Write 1 clears bit.
			0*	NO_ERROR (read-write) No response length error occurred
			1	ERROR (read-write) The number of SPI clocks did not fit to the length of a requested response
3	СОМТО	R/W		Communication timeout fault status Write 1 clears bit.
			0*	NO_TIMEOUT (read-write) No communication timeout has happened.

18-cell battery-cell controller IC

Table 115. FEH_COM_FLT_STAT register - communication fault status register (address 423h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	TIMEMOUT (read-write) Communication timeout has happened.
2	ERRCNTOF	R/W		Communication error counter overflow Write 1 clears bit.
			0*	NO_MAX (read-write) Communication error counter has not reached max value.
			1	MAX (read-write) Communication error counter has reached max value.
1	CRCERR	R/W		Communication CRC error Write 1 clears bit.
			0*	NO_ERROR (read-write) No communication CRC error detected.
			1	ERROR (read-write) Communication CRC error detected.
0	FRAMEERR	R/W		Communication frame error (Wrong number of bits or bit-length error) Write 1 clears bit.
			0*	NO_ERROR (read-write) No communication frame error detected.
			1	ERROR (read-write) Communication frame error detected.

12.1.34 FEH_MEAS_FLT_STAT register

Other fault status register

Table 116. FEH_MEAS_FLT_STAT register - other fault status register (address 424h) bit allocation

			3		(3.5.5.	,		
Bit	15	14	13	12	11	10	9	8
Symbol				rese	rved			
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol			reserved	SYNCME ASFLT	SECCAL CRCFLT	PRIMCA LCRCFLT		
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R/W	R/W	R/W

Table 117. FEH_MEAS_FLT_STAT register - other fault status register (address 424h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:3	reserved	R	0h	This read-only field is reserved and always has the value 0.
2	SYNCMEASFLT	R/W		Synchronization fault between the measurement units Write 1 clears bit.
			0*	NO_FLT (read-write) No synchronization fault between the measurement units for a Sync cycle has been detected
			1	FAULT (read-write) Synchronization fault between the measurement units for a Sync cycle has been detected
1	SECCALCRCFLT	R/W		A fault in the secondary measurement chain calibration data Write 1 clears bit.

18-cell battery-cell controller IC

Table 117. FEH_MEAS_FLT_STAT register - other fault status register (address 424h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			0*	NO_FLT (read-write) No fault in secondary measurement chain calibration data detected.
			1	FAULT (read-write) A fault in the secondary measurement chain calibration data has been detected.
0	PRIMCALCRCFLT	R/W		A fault in the primary measurement chain calibration data Write 1 clears bit.
			0*	NO_FLT (read-write) No fault in primary measurement chain calibration data detected.
			1	FAULT (read-write) A fault in the primary measurement chain calibration data has been detected.

12.1.35 FEH_SUPPLY_FLT_POR_CFG0 register

Supply fault POR selection 0

Table 118. FEH_SUPPLY_FLT_POR_CFG0 register - supply fault POR selection 0 (address 428h) bit allocation

on the second se								
15	14	13	12	11	10	9	8	
	rese	rved		VDDCUVEN	VDDCOVEN	VAUXUVEN	VAUXOVEN	
0	0	0	0	0	0	0	0	
R	R	R	R	R/W	R/W	R/W	R/W	
7	6	5	4	3	2	1	0	
VPRERE FSUVEN	AFECPUVEN	AFECPOVEN	VANAUVEN	VANAOVEN	VDDAUVEN	VDDAOVEN	VBATOVEN	
0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	0 R 7 VPRERE FSUVEN 0	15 14 rese 0 0 0 R R R 7 6 VPRERE FSUVEN 0 0	15 14 13 reserved 0 0 0 R R R 7 6 5 VPRERE FSUVEN AFECPUVEN AFECPOVEN 0 0 0	15 14 13 12 reserved 0 0 0 0 R R R R 7 6 5 4 VPRERE FSUVEN AFECPUVEN AFECPOVEN AFECPOVEN VANAUVEN 0 0 0 0	15 14 13 12 11 reserved VDDCUVEN 0 0 0 0 0 R R R R R/W 7 6 5 4 3 VPRERE FSUVEN AFECPUVEN AFECPOVEN VANAUVEN VANAOVEN VANAOVEN 0 0 0 0 0	15 14 13 12 11 10 reserved VDDCUVEN VDDCOVEN 0 0 0 0 0 0 0 R R R R/W R/W R/W 7 6 5 4 3 2 2 VPRERE FSUVEN AFECPUVEN AFECPOVEN VANAUVEN VANAOVEN VDDAUVEN VDDAUVEN 0 0 0 0 0	15 14 13 12 11 10 9 reserved VDDCUVEN VDDCOVEN VAUXUVEN 0 0 0 0 0 0 0 R R R R/W R/W R/W R/W 7 6 5 4 3 2 1 VPRERE FSUVEN AFECPOVEN VANAUVEN VANAOVEN VDDAUVEN VDDAOVEN 0 0 0 0 0 0 0	

Table 119. FEH_SUPPLY_FLT_POR_CFG0 register - supply fault POR selection 0 (address 428h) Legend: * reset value

Bit	Symbol	Access	Value	Description	
15:12	reserved	R	0h	This read-only field is reserved and always has the value 0.	
11	VDDCUVEN	R/W		POR on VDDC under-voltage fault.	
			0*	NO_POR (read-write) No POR in case of VDDC under-voltage	
			1	POR (read-write) VDDC under-voltage error leads to POR	
10	10 VDDCOVEN	VDDCOVEN	R/W		POR on VDDC over-voltage fault.
			0*	NO_POR (read-write) No POR in case of VDDC over-voltage	
			1	POR (read-write) VDDC over-voltage error leads to POR	
9	VAUXUVEN	R/W		POR on VAUX under-voltage fault.	
			0*	NO_POR (read-write) No POR in case of VAUX supply under-voltage	
			1	POR (read-write) VAUX supply under-voltage error leads to POR	

BMI7018

18-cell battery-cell controller IC

Table 119. FEH_SUPPLY_FLT_POR_CFG0 register - supply fault POR selection 0 (address 428h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
8	VAUXOVEN	R/W		POR on VAUX over-voltage fault.
			0*	NO_POR (read-write) No POR in case of VAUX supply over-voltage
			1	POR (read-write) VAUX supply over-voltage error leads to POR
7	VPREREFSUVEN	R/W		POR on VPREREFS Supply under-voltage fault.
			0*	NO_POR (read-write) No POR in case of VPREREFS supply under-voltage
			1	POR (read-write) VPREREFS supply under-voltage error leads to POR
6	AFECPUVEN	R/W		POR on AFE Charge Pump under-voltage fault.
			0*	NO_POR (read-write) No POR in case of AFE Charge Pump under-voltage
			1	POR (read-write) AFE Charge Pump under-voltage error leads to POR
5	AFECPOVEN	R/W		POR on AFE Charge Pump over-voltage fault.
			0*	NO_POR (read-write) No POR in case of AFE Charge Pump over-voltage
			1	POR (read-write) AFE Charge Pump over-voltage error leads to POR
4	VANAUVEN	R/W		POR on VANA Supply under-voltage fault.
			0*	NO_POR (read-write) No POR in case of VANA supply under-voltage
			1	POR (read-write) VANA supply under-voltage error leads to POR
3	VANAOVEN	R/W		POR on VANA Supply over-voltage fault.
			0*	NO_POR (read-write) No POR in case of VANA supply overvoltage
			1	POR (read-write) VANA supply over-voltage error leads to POR
2	VDDAUVEN	R/W		POR on VDDA Supply under-voltage fault.
			0*	NO_POR (read-write) No POR in case of VDDA supply under-voltage
			1	POR (read-write) VDDA supply under-voltage error leads to POR
1	VDDAOVEN	R/W		POR on VDDA Supply over-voltage fault.
			0*	NO_POR (read-write) No POR in case of VDDA supply overvoltage
			1	POR (read-write) VDDA supply over-voltage error leads to POR
0	VBATOVEN	R/W		POR on VBAT Supply over-voltage fault.
			0*	NO_POR (read-write) No POR in case of VBAT supply overvoltage
			1	POR (read-write) VBAT supply over-voltage error leads to POR

18-cell battery-cell controller IC

12.1.36 FEH_SUPPLY_FLT_POR_CFG1 register

Supply fault POR selection 1

Table 120. FEH_SUPPLY_FLT_POR_CFG1 register - supply fault POR selection 1 (address 429h) bit allocation

anocatio	/11							
Bit	15	14	13	12	11	10	9	8
Symbol				rese	rved			
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	reserved	VPREUVEN	VPREOVEN	VDDIOUVEN	VDDIOOVEN	VDDCHCEN	VPRERE FSOVEN	VBATLVEN
Reset	0	0	0	0	0	0	0	0
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 121. FEH_SUPPLY_FLT_POR_CFG1 register - supply fault POR selection 1 (address 429h) Legend: * reset value

Bit	Symbol	Access	Value	Description	
15:7	reserved	R	0h	This read-only field is reserved and always has the value 0.	
6	VPREUVEN	R/W		POR on VPRE Supply under-voltage fault.	
			0*	NO_POR (read-write) No POR in case of VPRE supply under-voltage	
			1	POR (read-write) VPRE supply under-voltage error leads to POR	
5	VPREOVEN	R/W		POR on VPRE Supply over-voltage fault.	
			0*	NO_POR (read-write) No POR in case of VPRE over-voltage	
			1	POR (read-write) VPRE over-voltage error leads to POR	
4	VDDIOUVEN	R/W		POR on VDDIO Supply under-voltage fault.	
				0*	NO_POR (read-write) No POR in case of VDDIO supply under-voltage
			1	POR (read-write) VDDIO supply under-voltage error leads to POR	
3	VDDIOOVEN	R/W		POR on VDDIO Supply over-voltage fault.	
			0*	NO_POR (read-write) No POR in case of VDDIO supply over-voltage	
			1	POR (read-write) VDDIO supply over-voltage error leads to POR	
2	VDDCHCEN	R/W		POR on VDDC high-current fault.	
			0*	NO_POR (read-write) No POR in case of VDDC high-current	
			1	POR (read-write) VDDC high-current error leads to POR	
1	VPREREFSOVEN	R/W		POR on VPREREFS Supply over-voltage fault.	
			0*	NO_POR (read-write) No POR in case of VPREREFS over-voltage	
			1	POR (read-write) VPREREFS over-voltage error leads to POR	

18-cell battery-cell controller IC

Table 121. FEH_SUPPLY_FLT_POR_CFG1 register - supply fault POR selection 1 (address 429h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
0	VBATLVEN	R/W		POR on VBAT Supply low-voltage fault.
			0*	NO_POR (read-write) No POR in case of VBAT supply low-voltage
			1	POR (read-write) VBAT supply low-voltage error leads to POR

12.1.37 FEH_COM_FLT_POR_CFG register

Communication fault POR enable register

Table 122. FEH_COM_FLT_POR_CFG register - communication fault POR enable register (address 42Bh) bit allocation

anouatio									
Bit	15	14	13	12	11	10	9	8	
Symbol		reserved							
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	
Bit	7	6	5	4	3	2	1	0	
Symbol		rese	rved		COMTOEN	ERRCNT OFEN	reserved		
Reset	0	0	0	0	1	0	0	0	
Access	R	R	R	R	R/W	R/W	R	R	

Table 123. FEH_COM_FLT_POR_CFG register - communication fault POR enable register (address 42Bh) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:4	reserved	R	0h	This read-only field is reserved and always has the value 0.
3	COMTOEN	R/W		Create a POR if a communication timeout happens.
			0	PREV_MOD (read-write) Device fallbacks to prev. Mode in case of communication timeout
			1*	POR (read-write) POR in case of communication timeout
2	ERRCNTOFEN	R/W		Communication error counter max value leads to POR
			0*	NO_POR (read-write) Communication error counter has reached max value.
			1	POR (read-write) Communication error counter max value leads to POR
1:0	reserved	R	0h	This read-only field is reserved and always has the value 0.

18-cell battery-cell controller IC

12.1.38 FEH_SUPPLY_FLT_EVT_CFG0 register

Supply fault event selection register 0

Table 124. FEH_SUPPLY_FLT_EVT_CFG0 register - supply fault event selection register 0 (address 430h) bit allocation

anocano	/II							
Bit	15	14	13	12	11	10	9	8
Symbol		rese	rved		VDDCUVEN	VDDCOVEN	VAUXUVEN	VAUXOVEN
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol	VPRERE FSUVEN	AFECPUVEN	AFECPOVEN	VANAUVEN	VANAOVEN	VDDAUVEN	VDDAOVEN	VBATOVEN
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 125. FEH_SUPPLY_FLT_EVT_CFG0 register - supply fault event selection register 0 (address 430h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:12	reserved	R	0h	This read-only field is reserved and always has the value 0.
11	VDDCUVEN	R/W		Event on VDDC under-voltage fault.
			0*	NO_EV (read-write) No event on VDDC under-voltage fault.
			1	EVENT (read-write) Event on VDDC under-voltage fault.
10	VDDCOVEN	R/W		Event on VDDC over-voltage fault.
			0*	NO_EV (read-write) No event on VDDC over-voltage fault.
			1	EVENT (read-write) Event on VDDC over-voltage fault.
9	VAUXUVEN	R/W		Event on VAUX under-voltage fault.
			0*	NO_EV (read-write) No event on VAUX under-voltage fault.
			1	EVENT (read-write) Event on VAUX under-voltage fault.
8	VAUXOVEN	R/W		Event on VAUX over-voltage fault.
			0*	NO_EV (read-write) No event on VAUX over-voltage fault.
			1	EVENT (read-write) Event on VAUX over-voltage fault.
7	VPREREFSUVEN	R/W		Event on VPREREFS Supply under-voltage fault.
			0*	NO_EV (read-write) No event on VPREREFS Supply undervoltage fault.
			1	EVENT (read-write) Event on VPREREFS Supply undervoltage fault.
6	AFECPUVEN	R/W		Event on AFE Charge Pump under-voltage fault.
			0*	NO_EV (read-write) No event on AFE Charge Pump undervoltage fault.
			1	EVENT (read-write) Event on AFE Charge Pump undervoltage fault.
5	AFECPOVEN	R/W		Event on AFE Charge Pump over-voltage fault.
			0*	NO_EV (read-write) No event on AFE Charge Pump overvoltage fault.

18-cell battery-cell controller IC

Table 125. FEH_SUPPLY_FLT_EVT_CFG0 register - supply fault event selection register 0 (address 430h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	EVENT (read-write) Event on AFE Charge Pump overvoltage fault.
4	VANAUVEN	R/W		Event on VANA Supply under-voltage fault.
			0*	NO_EV (read-write) No event on VANA Supply undervoltage fault.
			1	EVENT (read-write) Event on VANA Supply under-voltage fault.
3	VANAOVEN	R/W		Event on VANA Supply over-voltage fault.
				NO_EV (read-write) No event on VANA Supply over-voltage fault.
			1	EVENT (read-write) Event on VANA Supply over-voltage fault.
2	VDDAUVEN	R/W		Event on VDDA Supply under-voltage fault.
			0*	NO_EV (read-write) No event on VDDA Supply undervoltage fault.
			1	EVENT (read-write) Event on VDDA Supply under-voltage fault.
1	VDDAOVEN	R/W		Event on VDDA Supply over-voltage fault.
			0*	NO_EV (read-write) No event on VDDA Supply over-voltage fault.
			1	EVENT (read-write) Event on VDDA Supply over-voltage fault.
0	VBATOVEN	R/W		Event on VBAT Supply over-voltage fault.
			0*	NO_EV (read-write) No event on VBAT Supply over-voltage fault.
			1	EVENT (read-write) Event on VBAT Supply over-voltage fault.

12.1.39 FEH_SUPPLY_FLT_EVT_CFG1 register

Supply fault event selection register 1

Table 126. FEH_SUPPLY_FLT_EVT_CFG1 register - supply fault event selection register 1 (address 431h) bit allocation

Bit	15	14	13	12	11	10	9	8	
Symbol		reserved							
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	
Bit	7	6	5	4	3	2	1	0	
Symbol	reserved	VPREUVEN	VPREOVEN	VDDIOUVEN	VDDIOOVEN	VDDCHCEN	VPRERE FSOVEN	VBATLVEN	
Reset	0	0	0	0	0	0	0	0	
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

18-cell battery-cell controller IC

Table 127. FEH_SUPPLY_FLT_EVT_CFG1 register - supply fault event selection register 1 (address 431h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:7	reserved	R	0h	This read-only field is reserved and always has the value 0.
6	VPREUVEN	R/W		Event on VPRE Supply under-voltage fault.
			0*	NO_EV (read-write) No event on VPRE Supply undervoltage fault.
			1	EVENT (read-write) Event on VPRE Supply under-voltage fault.
5	VPREOVEN	R/W		Event on VPRE Supply over-voltage fault.
			0*	NO_EV (read-write) No event on VPRE Supply over-voltage fault.
			1	EVENT (read-write) Event on VPRE Supply over-voltage fault.
4	VDDIOUVEN	R/W		Event on VDDIO Supply under-voltage fault.
			0*	NO_EV (read-write) No event on VDDIO Supply undervoltage fault.
			1	EVENT (read-write) Event on VDDIO Supply under-voltage fault.
3	VDDIOOVEN	R/W		Event on VDDIO Supply over-voltage fault.
			0*	NO_EV (read-write) No event on VDDIO Supply overvoltage fault.
			1	EVENT (read-write) Event on VDDIO Supply over-voltage fault.
2	VDDCHCEN	R/W		Event on VDDC high-current fault.
			0*	NO_EV (read-write) No event on VDDC high-current fault.
			1	EVENT (read-write) Event on VDDC high-current fault.
1	VPREREFSOVEN	R/W		Event on VPREREFS Supply over-voltage fault.
			0*	NO_EV (read-write) No event on VPREREFS Supply overvoltage fault.
			1	EVENT (read-write) Event on VPREREFS Supply overvoltage fault.
0	VBATLVEN	R/W		Event on VBAT Supply low-voltage fault.
			0*	NO_EV (read-write) No event on VBAT Supply low-voltage fault.
			1	EVENT (read-write) Event on VBAT Supply low-voltage fault.

12.1.40 FEH_ANA_FLT_EVT_CFG register

Analog fault event enable register

Table 128. FEH_ANA_FLT_EVT_CFG register - analog fault event enable register (address 432h) bit allocation

anouatio								
Bit	15	14	13	12	11	10	9	8
Symbol	reserved							
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 128. FEH_ANA_FLT_EVT_CFG register - analog fault event enable register (address 432h) bit allocation...continued

Symbol			BALFLTEN	MONBISTEN				
Reset	0 0 0 0 0 0						0	
Access	R	R	R	R	R	R	R/W	R/W

Table 129. FEH_ANA_FLT_EVT_CFG register - analog fault event enable register (address 432h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	BALFLTEN	R/W		Event on cell balance function fault.
			0*	NO_EV (read-write) No event on cell balance function fault.
			1	EVENT (read-write) Event on cell balance function fault.
0	MONBISTEN	R/W		Event on Monitor BIST fault.
			0*	NO_EV (read-write) No event on Monitor BIST fault.
			1	EVENT (read-write) Event on Monitor BIST fault.

12.1.41 FEH_COM_FLT_EVT_CFG register

Communication fault event enable register

Table 130. FEH_COM_FLT_EVT_CFG register - communication fault event enable register (address 433h) bit allocation

anocano	711									
Bit	15	14	13	12	11	10	9	8		
Symbol		reserved								
Reset	0	0	0	0	0	0	0	0		
Access	R	R	R	R	R	R	R	R		
Bit	7	6	5	4	3	2	1	0		
Symbol	reserved			RSPLEN ERREN	reserved	ERRCNT OFEN	CRCERREN	FRAMEE RREN		
Reset	0	0	0	0	0	0	0	0		
Access	R	R	R	R/W	R	R/W	R/W	R/W		

Table 131. FEH_COM_FLT_EVT_CFG register - communication fault event enable register (address 433h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:5	reserved	R	0h	This read-only field is reserved and always has the value 0.
4	RSPLENERREN	R/W		Event on number of SPI clocks did not fit to the length of a requested response
			0*	NO_EV (read-write) No event on number of SPI clocks did not fit to the length of a requested response
			1	EVENT (read-write) Event on number of SPI clocks did not fit to the length of a requested response
3	reserved	R	0h	This read-only field is reserved and always has the value 0.

18-cell battery-cell controller IC

Table 131. FEH_COM_FLT_EVT_CFG register - communication fault event enable register (address 433h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
2	ERRCNTOFEN	R/W		Event on communication error counter has reached max value.
			0*	NO_EV (read-write) No event on communication error counter has reached max value.
			1	EVENT (read-write) Event on communication error counter has reached max value.
1	CRCERREN R/W			Event on communication CRC error detected.
			0*	NO_EV (read-write) No event on communication CRC error detected.
			1	EVENT (read-write) Event on communication CRC error detected.
0	FRAMEERREN	R/W		Event on communication error detected. Wrong number of bits, bit-length error.
			0*	NO_EV (read-write) No event on communication error detected.
			1	EVENT (read-write) Event on communication error detected.

12.1.42 FEH_MEAS_FLT_EVT_CFG register

Measurement fault event enable register

Table 132. FEH_MEAS_FLT_EVT_CFG register - measurement fault event enable register (address 434h) bit allocation

Bit	15	14	13	12	11	10	9	8			
Symbol	reserved										
Reset	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R	R	R			
Bit	7	6	5	4	3	2	1	0			
Symbol			reserved	SYNCME ASFLTEN	SECCAL CRCFLTEN	PRIMCA LCRCFLTEN					
Reset	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R/W	R/W	R/W			

Table 133. FEH_MEAS_FLT_EVT_CFG register - measurement fault event enable register (address 434h) Legend: * reset value

Bit	Symbol	Access	Value	Description		
15:3	reserved	R	0h	This read-only field is reserved and always has the value 0.		
2	SYNCMEASFLTEN	R/W	Event on synchronization fault between the measurement for a Sync cycle.			
			0*	NO_EV (read-write) No event on synchronization fault.		
			1	EVENT (read-write) Event on synchronization fault.		
1	SECCALCRCFLTEN	R/W		Event on secondary calibration CRC fault.		
			0*	NO_EV (read-write) No event on secondary calibration CRC fault.		

18-cell battery-cell controller IC

Table 133. FEH_MEAS_FLT_EVT_CFG register - measurement fault event enable register (address 434h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description			
			1	EVENT (read-write) Event on secondary calibration CRC fault.			
0	PRIMCALCRCFLTEN	R/W	Event on primary calibration CRC fault.				
			0*	NO_EV (read-write) No event on primary calibration CRC fault.			
			1	EVENT (read-write) Event on primary calibration CRC fault.			

12.1.43 FEH_POR_REASON register

Power-on reset reason. The value is stored in the ULP domain.

Table 134. FEH_POR_REASON register - power on reset reason (address 480h) bit allocation

							,									
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	reserved						SOURCE									
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 135. FEH_POR_REASON register - power on reset reason (address 480h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:10	reserved	R	0h	This read-only field is reserved and always has the value 0.
9:0	SOURCE	R		Reason for POR. POR sources are binary coded and protected by an EDC. Other values as shown below represent errors in EDC.
			000h*	VDDDLPPERMUV (read) POR caused by VDDDLP PERMUV
			00Fh	VDDDLPUV (read) POR caused by VDDDLPUV
			04Eh	VDDDUV (read) POR caused by VDDDUV
			083h	VBATLV (read) POR caused by VBATLV
			08Ch	VDDIOUV (read) POR caused by VDDIOUV
			0BFh	SWRESET (read) POR caused by software Deep Sleep request
			0C2h	VBATOV (read) POR caused by VBATOV
			0CDh	VDDDOV (read) POR caused by VDDDOV
			105h	VDDCOV (read) POR caused by VDDCOV
			10Ah	VAUXUV (read) POR caused by VAUXUV
			144h	VBATUV (read) POR caused by VBATUV
			14Bh	VDDIOOV (read) POR caused by VDDIOOV
			186h	VDDCUV (read) POR caused by VDDCUV
			189h	VAUXOV (read) POR caused by VAUXOV
			1C7h	VDDCOC (read) POR caused by VDDCOC
			1C8h	VDDCHC (read) POR caused by VDDCHC

18-cell battery-cell controller IC

Table 135. FEH_POR_REASON register - power on reset reason (address 480h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description					
			211h	VDDAUV (read) POR caused by VDDAUV					
			21Eh	SLEEPOSC (read) POR caused by SLEEPOSC					
			222h	VPREUV (read) POR caused by VPREUV					
			250h	VDDAOV (read) POR caused by VDDAOV					
			25Fh	COMTO (read) POR caused by COMTO					
			292h	VPREOV (read) POR caused by VPREOV					
			29Dh	SECCLK (read) POR caused by SECCLK					
			2A1h	LOGICERR (read) POR caused by LOGICERR					
			2D3h	VPREREFSOV (read) POR caused by VPREREFSOV					
			2DCh	PRMCLK (read) POR caused by PRMCLK					
			2E0h	COMERRORS (read) POR caused by COMERRORS					
			314h	VPREREFSUV (read) POR caused by VPREREFSUV					
			31Bh	OTEMPSHUTDOWN (read) POR caused by OTEMPSHUT DOWN					
			355h	VANAOV (read) POR caused by VANAOV					
			397h	AFECPOV (read) POR caused by AFECPOV					
			398h	AFECPUV (read) POR caused by AFECPUV					
			3D6h	VANAUV (read) POR caused by VANAUV					

12.1.44 GPIO_CFG0 register

GPIO configuration 0

Table 136. GPIO_CFG0 register - GPIO configuration 0 (address 800h) bit allocation

			,	,			
15	14	13	12	11	10	9	8
OUTEN7	OUTEN6	OUTEN5	OUTEN4	OUTEN3	OUTEN2	OUTEN1	OUTEN0
0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
7	6	5	4	3	2	1	0
INPEN7	INPEN6	INPEN5	INPEN4	INPEN3	INPEN2	INPEN1	INPEN0
0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	OUTEN7 0 R/W 7 INPEN7 0	OUTEN7 OUTEN6 0 0 R/W R/W 7 6 INPEN7 INPEN6 0 0	15 14 13 OUTEN7 OUTEN6 OUTEN5 0 0 0 R/W R/W R/W 7 6 5 INPEN7 INPEN6 INPEN5 0 0 0	15 14 13 12 OUTEN7 OUTEN6 OUTEN5 OUTEN4 0 0 0 0 R/W R/W R/W R/W 7 6 5 4 INPEN7 INPEN6 INPEN5 INPEN4 0 0 0 0	15 14 13 12 11 OUTEN7 OUTEN6 OUTEN5 OUTEN4 OUTEN3 0 0 0 0 0 R/W R/W R/W R/W R/W 7 6 5 4 3 INPEN7 INPEN6 INPEN5 INPEN4 INPEN3 0 0 0 0 0	15 14 13 12 11 10 OUTEN7 OUTEN6 OUTEN5 OUTEN4 OUTEN3 OUTEN2 0 0 0 0 0 0 R/W R/W R/W R/W R/W 7 6 5 4 3 2 INPEN7 INPEN6 INPEN5 INPEN4 INPEN3 INPEN2 0 0 0 0 0 0	15 14 13 12 11 10 9 OUTEN7 OUTEN6 OUTEN5 OUTEN4 OUTEN3 OUTEN2 OUTEN1 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W 7 6 5 4 3 2 1 INPEN7 INPEN6 INPEN5 INPEN4 INPEN3 INPEN2 INPEN1 0 0 0 0 0 0 0

Table 137. GPIO_CFG0 register - GPIO configuration 0 (address 800h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15	OUTEN7	R/W		Enable the output of the GPIO7.
			0*	DISABLED (read-write) Output is disabled
			1	ENABLED (read-write) Output is enabled. If an analog measurement function is enabled on this GPIO, the GPIO

18-cell battery-cell controller IC

Table 137. GPIO_CFG0 register - GPIO configuration 0 (address 800h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
				output is automatically disabled. This is not reflected in this bit.
14	OUTEN6	R/W		Enable the output of the GPIO6.
			0*	DISABLED (read-write) Output is disabled
			1	ENABLED (read-write) Output is enabled. If an analog measurement function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in this bit.
13	OUTEN5	R/W		Enable the output of the GPIO5.
			0*	DISABLED (read-write) Output is disabled
			1	ENABLED (read-write) Output is enabled. If an analog measurement function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in this bit.
12	OUTEN4	R/W		Enable the output of the GPIO4.
			0*	DISABLED (read-write) Output is disabled
			1	ENABLED (read-write) Output is enabled. If an analog measurement function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in this bit.
11	OUTEN3	R/W		Enable the output of the GPIO3.
			0*	DISABLED (read-write) Output is disabled
			1	ENABLED (read-write) Output is enabled. If an analog measurement function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in this bit.
10	OUTEN2	R/W		Enable the output of the GPIO2.
			0*	DISABLED (read-write) Output is disabled
			1	ENABLED (read-write) Output is enabled. If an analog measurement function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in this bit.
9	OUTEN1	R/W		Enable the output of the GPIO1.
			0*	DISABLED (read-write) Output is disabled
			1	ENABLED (read-write) Output is enabled. If an analog measurement function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in this bit.
8	OUTEN0	R/W		Enable the output of the GPIO0.
			0*	DISABLED (read-write) Output is disabled
			1	ENABLED (read-write) Output is enabled. If an analog measurement function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in this bit.
7	INPEN7	R/W		Enable the input for GPIO7. If a special function requires digital input, the according receiver is enabled automatically. This is not reflected in this bit.
			0*	DISABLED (read-write) Input is disabled

18-cell battery-cell controller IC

Table 137. GPIO_CFG0 register - GPIO configuration 0 (address 800h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	ENABLED (read-write) Input is enabled
6	INPEN6	R/W		Enable the input for GPIO6. If a special function requires digital input, the according receiver is enabled automatically. This is not reflected in this bit.
			0*	DISABLED (read-write) Input is disabled
			1	ENABLED (read-write) Input is enabled
5	INPEN5	R/W		Enable the input for GPIO5. If a special function requires digital input, the according receiver is enabled automatically. This is not reflected in this bit.
			0*	DISABLED (read-write) Input is disabled
			1	ENABLED (read-write) Input is enabled
4	INPEN4	R/W		Enable the input for GPIO4. If a special function requires digital input, the according receiver is enabled automatically. This is not reflected in this bit.
			0*	DISABLED (read-write) Input is disabled
			1	ENABLED (read-write) Input is enabled
3	INPEN3	R/W		Enable the input for GPIO3. If a special function requires digital input, the according receiver is enabled automatically. This is not reflected in this bit.
			0*	DISABLED (read-write) Input is disabled
			1	ENABLED (read-write) Input is enabled
2	INPEN2	R/W		Enable the input for GPIO2. If a special function requires digital input, the according receiver is enabled automatically. This is not reflected in this bit.
			0*	DISABLED (read-write) Input is disabled
			1	ENABLED (read-write) Input is enabled
1	INPEN1	R/W		Enable the input for GPIO1. If a special function requires digital input, the according receiver is enabled automatically. This is not reflected in this bit.
			0*	DISABLED (read-write) Input is disabled
			1	ENABLED (read-write) Input is enabled
0	INPEN0	R/W		Enable the input for GPIO0. If a special function requires digital input, the according receiver is enabled automatically. This is not reflected in this bit.
			0*	DISABLED (read-write) Input is disabled
			1	ENABLED (read-write) Input is enabled

12.1.45 GPIO_CFG1 register

GPIO configuration 1

Table 138. GPIO_CFG1 register - GPIO configuration 1 (address 801h) bit allocation

Bit	15	14	13	12	11	10	9	8				
Symbol	reserved											
Reset	0	0	0	0	0	0	0	0				
Access	R	R	R	R	R	R	R	R				

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 138. GPIO_CFG1 register - GPIO configuration 1 (address 801h) bit allocation...continued

Bit	7	6	5	4	3	2	1	0
Symbol	ODEN7	ODEN6	ODEN5	ODEN4	ODEN3	ODEN2	ODEN1	ODEN0
Reset	0	0	0	0	0	0	0	0
Access	R/W							

Table 139. GPIO_CFG1 register - GPIO configuration 1 (address 801h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7	ODEN7	R/W		Open Drain enable, GPIO7.
			0*	DISABLED (read-write) Open Drain disabled
			1	ENABLED (read-write) Open Drain enabled
6	ODEN6	R/W		Open Drain enable, GPIO6.
			0*	DISABLED (read-write) Open Drain disabled
			1	ENABLED (read-write) Open Drain enabled
5	ODEN5	R/W		Open Drain enable, GPIO5.
			0*	DISABLED (read-write) Open Drain disabled
			1	ENABLED (read-write) Open Drain enabled
4	ODEN4	R/W		Open Drain enable, GPIO4.
			0*	DISABLED (read-write) Open Drain disabled
			1	ENABLED (read-write) Open Drain enabled
3	ODEN3	R/W		Open Drain enable, GPIO3.
			0*	DISABLED (read-write) Open Drain disabled
			1	ENABLED (read-write) Open Drain enabled
2	ODEN2	R/W		Open Drain enable, GPIO2.
			0*	DISABLED (read-write) Open Drain disabled
			1	ENABLED (read-write) Open Drain enabled
1	ODEN1	R/W		Open Drain enable, GPIO1.
			0*	DISABLED (read-write) Open Drain disabled
			1	ENABLED (read-write) Open Drain enabled
0	ODEN0	R/W		Open Drain enable, GPIO0.
			0*	DISABLED (read-write) Open Drain disabled
			1	ENABLED (read-write) Open Drain enabled

12.1.46 GPIO_OUT register

GPIO output

Table 140. GPIO_OUT register - GPIO output (address 802h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	reserved							
Reset	0	0	0	0	0	0	0	0

BMI7018

All information provided in this document is subject to legal disclaimers.

18-cell battery-cell controller IC

Table 140. GPIO_OUT register - GPIO output (address 802h) bit allocation...continued

Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
Reset	0	0	0	0	0	0	0	0
Access	R/W							

Table 141. GPIO_OUT register - GPIO output (address 802h)

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7	OUT7	R/W		Set the output level of the gpio function for GPIO7.
			0*	LOW (read-write) GPIO is low
			1	HIGH (read-write) GPIO is high
6	OUT6	R/W		Set the output level of the gpio function for GPIO6.
			0*	LOW (read-write) GPIO is low
			1	HIGH (read-write) GPIO is high
5	OUT5	R/W		Set the output level of the gpio function for GPIO5.
			0*	LOW (read-write) GPIO is low
			1	HIGH (read-write) GPIO is high
4	OUT4	R/W		Set the output level of the gpio function for GPIO4.
			0*	LOW (read-write) GPIO is low
			1	HIGH (read-write) GPIO is high
3	OUT3	R/W		Set the output level of the gpio function for GPIO3.
			0*	LOW (read-write) GPIO is low
			1	HIGH (read-write) GPIO is high
2	OUT2	R/W		Set the output level of the gpio function for GPIO2.
			0*	LOW (read-write) GPIO is low
			1	HIGH (read-write) GPIO is high
1	OUT1	R/W		Set the output level of the gpio function for GPIO1.
			0*	LOW (read-write) GPIO is low
			1	HIGH (read-write) GPIO is high
0	OUT0	R/W		Set the output level of the gpio function for GPIO0.
			0*	LOW (read-write) GPIO is low
			1	HIGH (read-write) GPIO is high

18-cell battery-cell controller IC

12.1.47 GPIO_IN register

GPIO input

Table 142. GPIO_IN register - GPIO input (address 804h) bit allocation

	_	3		,				
Bit	15	14	13	12	11	10	9	8
Symbol	HIGHDET7	HIGHDET6	HIGHDET5	HIGHDET4	HIGHDET3	HIGHDET2	HIGHDET1	HIGHDET0
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 143. GPIO_IN register - GPIO input (address 804h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15	HIGHDET7	R		High value on GPIO7. Read clears bit.
			0*	NO_HIGH (read) No high level observed
			1	HIGH (read) High level observed.
14	HIGHDET6	R		High value on GPIO6. Read clears bit.
			0*	NO_HIGH (read) No high level observed
			1	HIGH (read) High level observed.
13	HIGHDET5	R		High value on GPIO5. Read clears bit.
			0*	NO_HIGH (read) No high level observed
			1	HIGH (read) High level observed.
12	HIGHDET4	R		High value on GPIO4. Read clears bit.
			0*	NO_HIGH (read) No high level observed
			1	HIGH (read) High level observed.
11	HIGHDET3	R		High value on GPIO3. Read clears bit.
			0*	NO_HIGH (read) No high level observed
			1	HIGH (read) High level observed.
10	HIGHDET2	R		High value on GPIO2. Read clears bit.
			0*	NO_HIGH (read) No high level observed
			1	HIGH (read) High level observed.
9	HIGHDET1	R		High value on GPIO1. Read clears bit.
			0*	NO_HIGH (read) No high level observed
			1	HIGH (read) High level observed.
8	HIGHDET0	R		High value on GPIO0. Read clears bit.
			0*	NO_HIGH (read) No high level observed
			1	HIGH (read) High level observed.
7	IN7	R		Read the level of the gpio function of GPIO7.
			0*	LOW (read) GPIO is low

BMI7018

All information provided in this document is subject to legal disclaimers.

18-cell battery-cell controller IC

Table 143. GPIO_IN register - GPIO input (address 804h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	HIGH (read) GPIO is high
6	IN6	R		Read the level of the gpio function of GPIO6.
			0*	LOW (read) GPIO is low
			1	HIGH (read) GPIO is high
5	IN5	R		Read the level of the gpio function of GPIO5.
			0*	LOW (read) GPIO is low
			1	HIGH (read) GPIO is high
4	IN4	R		Read the level of the gpio function of GPIO4.
			0*	LOW (read) GPIO is low
			1	HIGH (read) GPIO is high
3	IN3	R		Read the level of the gpio function of GPIO3.
			0*	LOW (read) GPIO is low
			1	HIGH (read) GPIO is high
2	IN2	R		Read the level of the gpio function of GPIO2.
			0*	LOW (read) GPIO is low
			1	HIGH (read) GPIO is high
1	IN1	R		Read the level of the gpio function of GPIO1.
			0*	LOW (read) GPIO is low
			1	HIGH (read) GPIO is high
0	IN0	R		Read the level of the gpio function of GPIO0.
			0*	LOW (read) GPIO is low
			1	HIGH (read) GPIO is high

12.1.48 I2C_CFG register

I2C configuration

Table 144. I2C_CFG register - I2C configuration (address C00h) bit allocation

		•							
Bit	15	14	13	12	11	10	9	8	
Symbol		reserved							
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	
Bit	7	6	5	4	3	2	1	0	
Symbol	reserved CLKSEL						SEL	EN	
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R/W	R/W	R/W	

18-cell battery-cell controller IC

Table 145. I2C_CFG register - I2C configuration (address C00h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:3	reserved	R	0h	This read-only field is reserved and always has the value 0.
2:1	CLKSEL	R/W		I ² C-bus clock selection
			00*	F_100k (read-write) Clock is 100 kHz
			01	F_400k (read-write) Clock is 400 kHz
			10	F_1000k (read-write) Clock is 1000 kHz
			11	RESERVED (read-write) Reserved. Do not use.
0	EN	R/W		Enable I ² C-bus interface. If the I ² C-bus interface is disabled while it is active, a stop condition is created and the bus is released. When enabling this bit the GPIO to which the I ² C-bus lines are connected are switched to the I ² C-bus function (input receiver active and open-drain output function).
			0*	DISABLED (read-write) Interface disabled
			1	ENABLED (read-write) Interface enabled

12.1.49 I2C_CTRL register

I2C control

Table 146. I2C CTRL register - I2C control (address C01h) bit allocation

	and 1101 120_0111210 9 10101 120 00111101 (analogo 00111) and analogo									
Bit	15	14	13	12	11	10	9	8		
Symbol	ol reserved		RDAFTER							
Reset	0	0	0	0	0	0	0	0		
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W		
Bit	7	6	5	4	3	2	1	0		
Symbol	reserved	STPAFTER	START							
Reset	0	0	0	0	0	0	0	0		
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Table 147. I2C_CTRL register - I2C control (address C01h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:8	RDAFTER	R/W		Switch to read after RDAFTER bytes. Repeats the start condition after byte RDAFTER .
			00h*	NO_READ (read-write) No switch to read.
			01h	READ_1 (read-write) Switch to read after 1 byte
			24h	READ_36 (read-write) Switch to read after 36 bytes
			25h	RESERVED (read-write) Reserved. Do not use.
7	reserved	R	0h	This read-only field is reserved and always has the value 0.
6	STPAFTER	R/W		Send a stop condition after the last byte.
			0*	NO_STOP (read-write) No stop condition sent after last byte
			1	STOP (read-write) Stop condition sent after last byte

BMI7018

All information provided in this document is subject to legal disclaimers.

18-cell battery-cell controller IC

Table 147. I2C_CTRL register - I2C control (address C01h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
5:0	START	R/W		Starts the I ² C-bus transmission and sends START bytes (including Dev. Address to be transmitted/read).
			01h	SEND_1 (read-write) Send one byte
			24h	SEND_36 (read-write) Send 36 bytes
			25h	SEND_MAX (read-write) Send 36 bytes

12.1.50 I2C_STAT register

I2C status

Table 148. I2C STAT register - I2C status (address C02h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	rese	rved			LE	N		
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol		rese	rved		ARBLOST	NACKRCV	ACTIVE	PENDING
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 149. I2C_STAT register - I2C status (address C02h)

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:8	LEN	R		LEN bytes transferred until NACK received.
			00h*	NACK_0 (read) No bytes transmitted until NACK was received
			01h	NACK_1 (read) 1 byte transmitted until NACK was received
			24h	NACK_36 (read) 36 bytes transmitted until NACK was received
			25h	RESERVED (read) Reserved. Not used.
7:4	reserved	R	0h	This read-only field is reserved and always has the value 0.
3	ARBLOST	R		Wrong data bit
			0*	NO_FLT (read) No wrong data bits detected
			1	FAULT (read) A wrong data bit was detected
2	NACKRCV	R		NACK received
			0*	NO_NACK (read) No NACK was received
			1	NACK (read) A NACK was received
1	ACTIVE	R		I ² C-bus execution pending
			0*	NO_TRX (read) No transaction is ongoing.

18-cell battery-cell controller IC

Table 149. I2C_STAT register - I2C status (address C02h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	TRX (read) A transaction is ongoing (no STOP condition so far), bus is held with SCL low
0	PENDING	R		I ² C-bus execution pending
			0*	NO_TRX (read) No transfer is in execution, data registers can be accessed
			1	TRX (read) A transfer is in execution, no access to the data registers is allowed

12.1.51 I2C_DATA0 register

I2C data register 0

Table 150. I2C_DATA0 register - I2C data register 0 (address C04h) bit allocation

		_	_			_										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		BYTE1								BYTE0						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 151. I2C_DATA0 register - I2C data register 0 (address C04h)

Bit	Symbol	Access	Value	Description
15:8	BYTE1	R/W	0h	I ² C-bus data byte 1, i.e., data or subaddress
7:0	BYTE0	R/W	0h	I ² C-bus data byte 0, i.e., device address

12.1.52 I2C_DATA1 register

I2C data register 1

Table 152. I2C DATA1 register - I2C data register 1 (address C05h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		BYTE3								BYTE2						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 153. I2C_DATA1 register - I2C data register 1 (address C05h)

Bit	Symbol	Access	Value	Description
15:8	BYTE3	R/W	0h	I ² C-bus data byte 3
7:0	BYTE2	R/W	0h	I ² C-bus data byte 2

12.1.53 I2C_DATA2 register

I2C data register 2

18-cell battery-cell controller IC

Table 154. I2C_DATA2 register - I2C data register 2 (address C06h) bit allocation

			3			- 3	_ (
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		BYTE5								BYTE4						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 155. I2C_DATA2 register - I2C data register 2 (address C06h)

ſ	Bit	Symbol	Access	Value	Description
	15:8	BYTE5	R/W	0h	I ² C-bus data byte 5
	7:0	BYTE4	R/W	0h	I ² C-bus data byte 4

12.1.54 I2C_DATA3 register

I2C data register 3

Table 156. I2C_DATA3 register - I2C data register 3 (address C07h) bit allocation

	_	_	0			0			,							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				BY	ГЕ7							BY	ГЕ6			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 157, I2C DATA3 register - I2C data register 3 (address C07h)

			,	
Bit	Symbol	mbol Access		Description
15:8	BYTE7	R/W	0h	I ² C-bus data byte 7
7:0	BYTE6	R/W	0h	I ² C-bus data byte 6

12.1.55 I2C_DATA4 register

I2C data register 4

Table 158. I2C DATA4 register - I2C data register 4 (address C08h) bit allocation

		_	- 0			5			, ,							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				BY	ГЕ9							BY	ΓE8			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 159. I2C_DATA4 register - I2C data register 4 (address C08h)

Bit	Symbol	Access	Value	Description
15:8	BYTE9	R/W	0h	I ² C-bus data byte 9
7:0	BYTE8	R/W	0h	I ² C-bus data byte 8

18-cell battery-cell controller IC

12.1.56 I2C_DATA5 register

I2C data register 5

Table 160. I2C_DATA5 register - I2C data register 5 (address C09h) bit allocation

	_	_	-			0	•		,							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				BYT	E11							BYT	E10			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 161. I2C_DATA5 register - I2C data register 5 (address C09h)

Bit	Symbol	Access	Value	Description
15:8	BYTE11	R/W	0h	I ² C-bus data byte 11
7:0	BYTE10	R/W	0h	I ² C-bus data byte 10

12.1.57 I2C_DATA6 register

I2C data register 6

Table 162. I2C_DATA6 register - I2C data register 6 (address C0Ah) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				BYT	E13							BYT	E12			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 163. I2C_DATA6 register - I2C data register 6 (address C0Ah)

Bit	Symbol	Access	Value	Description
15:8	BYTE13	R/W	0h	I ² C-bus data byte 13
7:0	BYTE12	R/W	0h	I ² C-bus data byte 12

12.1.58 I2C_DATA7 register

I2C data register 7

Table 164. I2C_DATA7 register - I2C data register 7 (address C0Bh) bit allocation

						-9	. (,							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				BYT	E15							BYT	E14			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 165. I2C_DATA7 register - I2C data register 7 (address C0Bh)

Bit	Symbol	Access	Value	Description
15:8	BYTE15	R/W	0h	I ² C-bus data byte 15
7:0	BYTE14	R/W	0h	I ² C-bus data byte 14

BMI7018

All information provided in this document is subject to legal disclaimers.

18-cell battery-cell controller IC

12.1.59 I2C_DATA8 register

I2C data register 8

Table 166. I2C_DATA8 register - I2C data register 8 (address C0Ch) bit allocation

	_	_	-			0	•		,							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				BYT	E17							BYT	E16			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 167. I2C_DATA8 register - I2C data register 8 (address C0Ch)

Bit	Symbol	Access	Value	Description
15:8	BYTE17	R/W	0h	I ² C-bus data byte 17
7:0	BYTE16	R/W	0h	I ² C-bus data byte 16

12.1.60 I2C_DATA9 register

I2C data register 9

Table 168. I2C_DATA9 register - I2C data register 9 (address C0Dh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				BYT	E19							BYT	E18			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 169. I2C_DATA9 register - I2C data register 9 (address C0Dh)

Bit	Symbol	Access	Value	Description
15:8	BYTE19	R/W	0h	I ² C-bus data byte 19
7:0	BYTE18	R/W	0h	I ² C-bus data byte 18

12.1.61 I2C_DATA10 register

I2C data register 10

Table 170. I2C_DATA10 register - I2C data register 10 (address C0Eh) bit allocation

		<u>-</u>										-				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				BYT	E21							BYT	E20			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 171. I2C_DATA10 register - I2C data register 10 (address C0Eh)

Bit	Symbol	Access	Value	Description
15:8	BYTE21	R/W	0h	I ² C-bus data byte 21
7:0	BYTE20	R/W	0h	I ² C-bus data byte 20

BMI7018

All information provided in this document is subject to legal disclaimers.

18-cell battery-cell controller IC

12.1.62 I2C_DATA11 register

I2C data register 11

Table 172. I2C_DATA11 register - I2C data register 11 (address C0Fh) bit allocation

		_	_			_										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				BYT	E23							BYT	E22			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 173. I2C_DATA11 register - I2C data register 11 (address C0Fh)

Bit	Symbol	Access	Value	Description
15:8	BYTE23	R/W	0h	I ² C-bus data byte 23
7:0	BYTE22	R/W	0h	I ² C-bus data byte 22

12.1.63 I2C_DATA12 register

I2C data register 12

Table 174. I2C_DATA12 register - I2C data register 12 (address C10h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				BYT	E25							BYT	E24			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 175. I2C_DATA12 register - I2C data register 12 (address C10h)

Bit	Symbol	Access	Value	Description
15:8	BYTE25	R/W	0h	I ² C-bus data byte 25
7:0	BYTE24	R/W	0h	I ² C-bus data byte 24

12.1.64 I2C_DATA13 register

I2C data register 13

Table 176. I2C DATA13 register - I2C data register 13 (address C11h) bit allocation

		<u>-</u>							,							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		-		BYT	E27							BYT	E26			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 177. I2C DATA13 register - I2C data register 13 (address C11h)

			<u> </u>	· · · · · · · · · · · · · · · · · · ·
Bit	Symbol	Access	Value	Description
15:8	BYTE27	R/W	0h	I ² C-bus data byte 27
7:0	BYTE26	R/W	0h	I ² C-bus data byte 26

BMI7018 Product data sheet All information provided in this document is subject to legal disclaimers.

18-cell battery-cell controller IC

Table 177. I2C_DATA13 register - I2C data register 13 (address C11h)...continued

Bit	Symbol	Access	Value	Description

12.1.65 I2C_DATA14 register

I2C data register 14

Table 178. I2C_DATA14 register - I2C data register 14 (address C12h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				BYT	E29							BYT	E28			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 179. I2C_DATA14 register - I2C data register 14 (address C12h)

Bit	Symbol	Access	Value	Description
15:8	BYTE29	R/W	0h	I ² C-bus data byte 29
7:0	BYTE28	R/W	0h	I ² C-bus data byte 28

12.1.66 I2C_DATA15 register

I2C data register 15

Table 180. I2C_DATA15 register - I2C data register 15 (address C13h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				BYT	E31							BYT	E30			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 181. I2C_DATA15 register - I2C data register 15 (address C13h)

Bit	Symbol	Access	Value	Description
15:8	BYTE31	R/W	0h	I ² C-bus data byte 31
7:0	BYTE30	R/W	0h	I ² C-bus data byte 30

12.1.67 I2C_DATA16 register

I2C data register 16

Table 182. I2C_DATA16 register - I2C data register 16 (address C14h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	BYTE33								BYTE32							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

18-cell battery-cell controller IC

Table 183. I2C_DATA16 register - I2C data register 16 (address C14h)

	Bit	Symbol	Access	Value	Description
	15:8	BYTE33	R/W	0h	I ² C-bus data byte 33
Ì	7:0	BYTE32	R/W	0h	I ² C-bus data byte 32

12.1.68 I2C_DATA17 register

I2C data register 17

Table 184. I2C_DATA17 register - I2C data register 17 (address C15h) bit allocation

		_	- 3			- 0	,									
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				BYT	E35							BYT	E34			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 185. I2C_DATA17 register - I2C data register 17 (address C15h)

Bit	Symbol	Access	Value	Description
15:8	BYTE35	R/W	0h	I ² C-bus data byte 35
7:0	BYTE34	R/W	0h	I ² C-bus data byte 34

12.1.69 BAL_GLOB_CFG register

The global balancing configuration register is used to configure the balancing modes.

Table 186. BAL GLOB CFG register - Global Balancing Configuration (address 1000h) bit allocation

	<u> </u>			ianioning coming	garanon (aaa	ilogo roccii, bit anocation			
Bit	15	14	13	12	11	10	9	8	
Symbol			reserved		TEMPSRC				
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R/W	R/W	R/W	
Bit	7	6	5	4	3	2	1	0	
Symbol	reserved		CCMBALEN	TEMPMO DBALEN	GLOBUV1 BALEN	CHUV0 BALEN	TMRBALEN	BALEN	
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	

Table 187. BAL_GLOB_CFG register - Global Balancing Configuration (address 1000h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:11	reserved	R	0h	This read-only field is reserved and always has the value 0.
10:8	TEMPSRC	R/W		Selects the source channel (AINx) for temperature modulated balancing. The MSB is ignored.
			000*	AIN0 (read-write) Selects AIN0 as source for temperature measurement.
			001	AIN1 (read-write) Selects AIN1 as source for temperature measurement.

BMI7018

All information provided in this document is subject to legal disclaimers.

18-cell battery-cell controller IC

Table 187. BAL_GLOB_CFG register - Global Balancing Configuration (address 1000h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			010	AIN2 (read-write) Selects AIN2 as source for temperature measurement.
			011	AIN3 (read-write) Selects AIN3 as source for temperature measurement.
7:6	reserved	R	0h	This read-only field is reserved and always has the value 0.
5	CCMBALEN	R/W		Enables the constant current balancing. When active the product adapts automatically the PWM duty cycle of the activated balancing channels based on their primary periodic measurement results to limit the balancing current variation due to cell voltage variation.
			0*	NOCCM (read-write) Constant Current Balancing is not active.
			1	CCM (read-write) Constant Current Balancing is active.
4	TEMPMODBALEN	R/W		Enables the temperature modulated balancing. After an over- temperature condition the balancing is halted until an under- temperature condition is detected.
			0*	NOTEMPMOD (read-write) Balancing is not temperature modulated.
			1	TEMPMOD (read-write) Balancing is temperature modulated.
GL0	GLOBUV1BALEN	R/W		Enables the Global undervoltage based balancing feature.
			0*	INDEPENDENT (read-write) Balancing is independent of the global undervoltage threshold.
			1	STOP (read-write) Balancing for all cells stops once the global undervoltage threshold is reached by any cell.
2	CHUV0BALEN	R/W		Enables the voltage based balancing for the individual channel. Balancing stops once each individual channel reaches the under-voltage threshold.
			0*	INDEPENDENT (read-write) Balancing is independent of the cell undervoltage threshold.
			1	STOP (read-write) Balancing for the individual cells stops once the cell undervoltage threshold is reached.
1	TMRBALEN	R/W		Enables the timer based balancing feature. All channel individual counters are stopped if zero.
			0*	INDEPENDENT (read-write) Balancing is independent of the cell balancing timer.
			1	STOP (read-write) Balancing for all cells will be stopped when cell balancing timer expires.
0	BALEN	R/W		Enables the balancing activity. This bit is cleared in case of a balancing timeout or if an enabled global under-voltage condition is reached. All channel individual counters are stopped if zero. The emergency discharge works without setting this bit.
			0*	DISABLED (read-write) Balancing is disabled.
		1	ENABLED (read-write) Balancing is enabled.	

12.1.70 BAL_GLOB_TO_TMR register

The Global Balancing timeout timer register is used to configure the maximum balancing time for all balancing activities to make sure that in case of fault the balancing switches are switched OFF.

18-cell battery-cell controller IC

Table 188. BAL_GLOB_TO_TMR register - Global Balancing Timeout (address 1001h) bit allocation

										1		,				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								ТОТ	IME							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 189. BAL_GLOB_TO_TMR register - Global Balancing Timeout (address 1001h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:0	TOTIME	R/W		Balancing timeout value, used for normal balancing. The value of this field represents the current counter value when read. The BAL_GLOB_CFG.BALEN is cleared when zero is reached. The counter saturates at zero. It counts down regardless of the balancing enable state as long as its value is non-zero. TOTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is expired
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			FFFFh	MAX (read-write) Maximum balancing time = 655350 seconds = approximately 182 hours = approximately 7.6 days

12.1.71 BAL_CH_CFG0 register

Balancing channel individual enable channel 0 - 15

Table 190. BAL_CH_CFG0 register - balancing channel individual enable channel 0 - 15 (address 1002h) bit allocation

anocatio								
Bit	15	14	13	12	11	10	9	8
Symbol	CHEN15	CHEN14	CHEN13	CHEN12	CHEN11	CHEN10	CHEN9	CHEN8
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol	CHEN7	CHEN6	CHEN5	CHEN4	CHEN3	CHEN2	CHEN1	CHEN0
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 191. BAL_CH_CFG0 register - balancing channel individual enable channel 0 - 15 (address 1002h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15	CHEN15	R/W	0*	Enable balancing for channel 15. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer DISABLED (read-write) Balancing for Channel 15 is disabled. The balancing timer for Channel 15 is stopped.

BMI7018

All information provided in this document is subject to legal disclaimers.

18-cell battery-cell controller IC

Table 191. BAL_CH_CFG0 register - balancing channel individual enable channel 0 - 15 (address 1002h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	ENABLED (read-write) Balancing for Channel 15 is enabled.
14	CHEN14	R/W		Enable balancing for channel 14. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer
			0*	DISABLED (read-write) Balancing for Channel 14 is disabled. The balancing timer for Channel 14 is stopped.
			1	ENABLED (read-write) Balancing for Channel 15 is enabled.
13	3 CHEN13 R/W		Enable balancing for channel 13. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer	
			0*	DISABLED (read-write) Balancing for Channel 13 is disabled. The balancing timer for Channel 13 is stopped.
			1	ENABLED (read-write) Balancing for Channel 13 is enabled.
12	2 CHEN12 R/W	R/W		Enable balancing for channel 12. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer
			0*	DISABLED (read-write) Balancing for Channel 12 is disabled. The balancing timer for Channel 12 is stopped.
			1	ENABLED (read-write) Balancing for Channel 12 is enabled.
11	CHEN11	R/W		Enable balancing for channel 11. The bit is cleared by the device in case of
			0*	DISABLED (read-write) Balancing for Channel 11 is disabled. The balancing timer for Channel 11 is stopped.
			1	ENABLED (read-write) Balancing for Channel 11 is enabled.
10	CHEN10	R/W		Enable balancing for channel 10. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer
			0*	DISABLED (read-write) Balancing for Channel 10 is disabled. The balancing timer for Channel 10 is stopped.
			1	ENABLED (read-write) Balancing for Channel 10 is enabled.
9	CHEN9	R/W		Enable balancing for channel 9. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer
			0*	DISABLED (read-write) Balancing for Channel 9 is disabled. The balancing timer for Channel 9 is stopped.

18-cell battery-cell controller IC

Table 191. BAL_CH_CFG0 register - balancing channel individual enable channel 0 - 15 (address 1002h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	ENABLED (read-write) Balancing for Channel 9 is enabled.
8	CHEN8	R/W		Enable balancing for channel 8. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer
			0*	DISABLED (read-write) Balancing for Channel 8 is disabled. The balancing timer for Channel 8 is stopped.
			1	ENABLED (read-write) Balancing for Channel 8 is enabled.
7	CHEN7 R/W		Enable balancing for channel 7. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer	
			0*	DISABLED (read-write) Balancing for Channel 7 is disabled. The balancing timer for Channel 7 is stopped.
			1	ENABLED (read-write) Balancing for Channel 7 is enabled.
6	CHEN6 R/W		Enable balancing for channel 6. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer	
			0*	DISABLED (read-write) Balancing for Channel 6 is disabled. The balancing timer for Channel 6 is stopped.
			1	ENABLED (read-write) Balancing for Channel 6 is enabled.
5	CHEN5	R/W		Enable balancing for channel 5. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer
			0*	DISABLED (read-write) Balancing for Channel 5 is disabled. The balancing timer for Channel 5 is stopped.
			1	ENABLED (read-write) Balancing for Channel 5 is enabled.
4	CHEN4	R/W		Enable balancing for channel 4. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer
			0*	DISABLED (read-write) Balancing for Channel 4 is disabled. The balancing timer for Channel 4 is stopped.
			1	ENABLED (read-write) Balancing for Channel 4 is enabled.
3	CHEN3 R/W		Enable balancing for channel 3. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer	
			0*	DISABLED (read-write) Balancing for Channel 3 is disabled. The balancing timer for Channel 3 is stopped.

18-cell battery-cell controller IC

Table 191. BAL_CH_CFG0 register - balancing channel individual enable channel 0 - 15 (address 1002h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	ENABLED (read-write) Balancing for Channel 3 is enabled.
2	CHEN2	R/W		Enable balancing for channel 2. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer
			0*	DISABLED (read-write) Balancing for Channel 2 is disabled. The balancing timer for Channel 2 is stopped.
			1	ENABLED (read-write) Balancing for Channel 2 is enabled.
1	CHEN1	R/W		Enable balancing for channel 1. The bit is cleared by the device in case of
				a detected over-current condition
				 a enabled and detected under-voltage condition
				a timeout of the channel timer
			0*	DISABLED (read-write) Balancing for Channel 1 is disabled. The balancing timer for Channel 1 is stopped.
			1	ENABLED (read-write) Balancing for Channel 1 is enabled.
0	CHEN0	R/W		Enable balancing for channel 0. The bit is cleared by the device in case of • a detected over-current condition
				a enabled and detected under-voltage conditiona timeout of the channel timer
			0*	DISABLED (read-write) Balancing for Channel 0 is disabled. The balancing timer for Channel 0 is stopped.
			1	ENABLED (read-write) Balancing for Channel 0 is enabled.

12.1.72 BAL_CH_CFG1 register

Balancing channel individual enable channel 16 - 17

Table 192. BAL_CH_CFG1 register - balancing channel individual enable channel 16 - 17 (address 1003h) bit allocation

Bit	15	14	13	12	11	10	9	8					
Symbol		reserved											
Reset	0	0	0	0	0	0	0	0					
Access	R	R	R	R	R	R	R	R					
Bit	7	6	5	4	3	2	1	0					
Symbol			rese	rved			CHEN17	CHEN16					
Reset	0	0	0	0	0	0	0	0					
Access	R	R	R	R	R	R	R/W	R/W					

18-cell battery-cell controller IC

Table 193. BAL_CH_CFG1 register - balancing channel individual enable channel 16 - 17 (address 1003h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	CHEN17	R/W		Enable balancing for channel 17. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer
			0*	DISABLED (read-write) Balancing for Channel 17 is disabled. The balancing timer for Channel 17 is stopped.
			1	ENABLED (read-write) Balancing for Channel 17 is enabled.
0	CHEN16	R/W		Enable balancing for channel 16. The bit is cleared by the device in case of • a detected over-current condition • a enabled and detected under-voltage condition • a timeout of the channel timer
			0*	DISABLED (read-write) Balancing for Channel 16 is disabled. The balancing timer for Channel 16 is stopped.
			1	ENABLED (read-write) Balancing for Channel 16 is enabled.

12.1.73 BAL_PRE_TMR register

prebalancing timer

Table 194. BAL_PRE_TMR register - prebalancing timer (address 1004h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		PREBALTIME														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 195. BAL_PRE_TMR register - prebalancing timer (address 1004h)

Bit	Symbol	Access	Value	Description
15:0	PREBALTIME	R/W		Downcounter which runs if BALEN is set. Inhibits the balancing and holds the individual channel timer. The value of this field represents the current counter value when read. The counting saturates at 0 and activates the balancing. The BAL_GLOB_TO_TMR is not influenced by this timer. PREBALTIME * 10 seconds
			0000h*	EXPIRED (read-write) prebalancing time is expired.
			0001h	PREBAL (read-write) prebalancing time is set to PREBAL * 10 seconds
			FFFFh	MAX (read-write) Maximum prebalancing time = 655350 seconds = approximately 182 hours = approximately 7.6 days

18-cell battery-cell controller IC

12.1.74 BAL_AUTO_DISCHRG_CTRL register

Emergency discharge enable

Table 196. BAL_AUTO_DISCHRG_CTRL register - emergency discharge enable (address 1005h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		KEY														
Reset	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0
Access	R/W															

Table 197. BAL_AUTO_DISCHRG_CTRL register - emergency discharge enable (address 1005h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:0	KEY	R/W		Key for enabling auto discharge. After enabling with DEADh the discharge will continue until disable key 2152h is received. Other values will be ignored.
			0001h	OTHERS (read-write) Other values will be ignored.
			2152h*	DISABLED (read-write) Disable key for auto discharge.
			DEADh	ENABLED (read-write) Enable key for auto discharge.

12.1.75 BAL_SWITCH_MON_CFG0 register

Balancing switch monitoring enable

Table 198. BAL_SWITCH_MON_CFG0 register - balancing switch monitoring enable (address 1006h) bit allocation

anouano								
Bit	15	14	13	12	11	10	9	8
Symbol	MONEN15	MONEN14	MONEN13	MONEN12	MONEN11	MONEN10	MONEN9	MONEN8
Reset	1	1	1	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol	MONEN7	MONEN6	MONEN5	MONEN4	MONEN3	MONEN2	MONEN1	MONEN0
Reset	1	1	1	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 199. BAL_SWITCH_MON_CFG0 register - balancing switch monitoring enable (address 1006h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15	MONEN15	R/W		Enable balancing switch monitoring for channel 15.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 15 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 15 is enabled.
14	MONEN14	R/W		Enable balancing switch monitoring for channel 14.

BMI7018

18-cell battery-cell controller IC

Table 199. BAL_SWITCH_MON_CFG0 register - balancing switch monitoring enable (address 1006h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			0	DISABLED (read-write) Balancing switch monitoring for Channel 14 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 14 is enabled.
13	MONEN13	R/W		Enable balancing switch monitoring for channel 13.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 13 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 13 is enabled.
12	MONEN12	R/W		Enable balancing switch monitoring for channel 12.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 12 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 12 is enabled.
11	MONEN11	R/W		Enable balancing switch monitoring for channel 11.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 11 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 11 is enabled.
10	MONEN10	R/W		Enable balancing switch monitoring for channel 10.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 10 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 10 is enabled.
9	MONEN9	R/W		Enable balancing switch monitoring for channel 9.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 9 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 9 is enabled.
8	MONEN8	R/W		Enable balancing switch monitoring for channel 8.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 8 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 8 is enabled.
7	MONEN7	R/W		Enable balancing switch monitoring for channel 7.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 7 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 7 is enabled.
6	MONEN6	R/W		Enable balancing switch monitoring for channel 6.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 6 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 6 is enabled.
5	MONEN5	R/W		Enable balancing switch monitoring for channel 5.

18-cell battery-cell controller IC

Table 199. BAL_SWITCH_MON_CFG0 register - balancing switch monitoring enable (address 1006h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			0	DISABLED (read-write) Balancing switch monitoring for Channel 5 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 5 is enabled.
4	MONEN4	R/W		Enable balancing switch monitoring for channel 4.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 4 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 4 is enabled.
3	MONEN3	R/W		Enable balancing switch monitoring for channel 3.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 3 is disabled.
		1*	ENABLED (read-write) Balancing switch monitoring for Channel 3 is enabled.	
2	MONEN2	R/W		Enable balancing switch monitoring for channel 2.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 2 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 2 is enabled.
1	MONEN1	R/W		Enable balancing switch monitoring for channel 1.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 1 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 1 is enabled.
0	MONEN0	R/W		Enable balancing switch monitoring for channel 0.
			0	DISABLED (read-write) Balancing switch monitoring for Channel 0 is disabled.
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 0 is enabled.

12.1.76 BAL_SWITCH_MON_CFG1 register

Balancing switch monitoring enable

Table 200. BAL_SWITCH_MON_CFG1 register - balancing switch monitoring enable (address 1007h) bit allocation

Bit	15	14	13	12	11	10	9	8			
Symbol		reserved									
Reset	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R	R	R			
Bit	7	6	5	4	3	2	1	0			
Symbol			rese	rved			MONEN17	MONEN16			
Reset	0	0	0	0	0	0	1	1			
Access	R	R	R	R	R	R	R/W	R/W			

18-cell battery-cell controller IC

Table 201. BAL_SWITCH_MON_CFG1 register - balancing switch monitoring enable (address 1007h)

Legend: * reset value

Bit	Symbol	Access	Value	Description				
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.				
1	MONEN17	R/W		Enable balancing switch monitoring for channel 17.				
			0	DISABLED (read-write) Balancing switch monitoring for Channel 17 is disabled.				
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 17 is enabled.				
0	MONEN16	R/W		Enable balancing switch monitoring for channel 16.				
			0	DISABLED (read-write) Balancing switch monitoring for Channel 16 is disabled.				
			1*	ENABLED (read-write) Balancing switch monitoring for Channel 16 is enabled.				

12.1.77 FULL_PWM_CYCLE_VOLTAGE register

Full PWM cycle voltage

Table 202. FULL_PWM_CYCLE_VOLTAGE register - full PWM cycle voltage (address 1008h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		FULLPWM														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 203. FULL_PWM_CYCLE_VOLTAGE register - full PWM cycle voltage (address 1008h)

Bit	Symbol	Access	Value	Description
15:0	FULLPWM	R/W		FULL PWM cycle voltage setting to set the cell voltage on which the balancing is operating at the maximum current.(ie : min operating cell voltage in the application) Setting format is the same than cell voltage measurement.

12.1.78 BAL_CH_UV0_STAT0 register

Channel undervoltage balancing status channel 0 - 15

Table 204. BAL_CH_UV0_STAT0 register - channel undervoltage balancing status channel 0 - 15 (address 1009h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 205. BAL_CH_UV0_STAT0 register - channel under-voltage balancing status channel 0 - 15 (address 1009h)

Bit	Symbol	Access	Value	Description
15	CH15	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 15. Read clears bit.
			0*	NOUV (read) Balancing of channel 15 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 15 was disabled due to under-voltage condition.
14	CH14	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 14. Read clears bit.
			0*	NOUV (read) Balancing of channel 14 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 14 was disabled due to under-voltage condition.
13	CH13	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 13. Read clears bit.
			0*	NOUV (read) Balancing of channel 13 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 13 was disabled due to under-voltage condition.
12	CH12	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 12. Read clears bit.
			0*	NOUV (read) Balancing of channel 12 was not disabled due to under-voltage condition.
		1	UV (read) Balancing of channel 12 was disabled due to under-voltage condition.	
11	CH11	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 11. Read clears bit.
			0*	NOUV (read) Balancing of channel 11 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 11 was disabled due to under-voltage condition.
10	CH10	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 10. Read clears bit.
			0*	NOUV (read) Balancing of channel 10 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 10 was disabled due to under-voltage condition.
9	CH9	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 9. Read clears bit.
			0*	NOUV (read) Balancing of channel 9 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 9 was disabled due to under-voltage condition.
8	CH8	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 8. Read clears bit.
			0*	NOUV (read) Balancing of channel 8 was not disabled due to under-voltage condition.

18-cell battery-cell controller IC

Table 205. BAL_CH_UV0_STAT0 register - channel under-voltage balancing status channel 0 - 15 (address 1009h)...continued

Bit	Symbol	Access	Value	Description
			1	UV (read) Balancing of channel 8 was disabled due to under-voltage condition.
7	CH7	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 7. Read clears bit.
			0*	NOUV (read) Balancing of channel 7 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 7 was disabled due to under-voltage condition.
6	CH6	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 6. Read clears bit.
			0*	NOUV (read) Balancing of channel 6 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 6 was disabled due to under-voltage condition.
5	CH5	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 5. Read clears bit.
			0*	NOUV (read) Balancing of channel 5 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 5 was disabled due to under-voltage condition.
4	CH4	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 4. Read clears bit.
			0*	NOUV (read) Balancing of channel 4 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 4 was disabled due to under-voltage condition.
3	CH3	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 3. Read clears bit.
			0*	NOUV (read) Balancing of channel 3 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 3 was disabled due to under-voltage condition.
2	CH2	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 2. Read clears bit.
			0*	NOUV (read) Balancing of channel 2 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 2 was disabled due to under-voltage condition.
1	CH1	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 1. Read clears bit.
			0*	NOUV (read) Balancing of channel 1 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 1 was disabled due to under-voltage condition.
0	CH0	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 0. Read clears bit.

18-cell battery-cell controller IC

Table 205. BAL_CH_UV0_STAT0 register - channel under-voltage balancing status channel 0 - 15 (address 1009h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			0*	NOUV (read) Balancing of channel 0 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 0 was disabled due to under-voltage condition.

12.1.79 BAL_CH_UV0_STAT1 register

Channel undervoltage balancing status channel 16 - 17

Table 206. BAL_CH_UV0_STAT1 register - channel undervoltage balancing status channel 16 - 17 (address 100Ah) bit allocation

	unoution										
Bit	15	14	13	12	11	10	9	8			
Symbol	reserved										
Reset	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R	R	R			
Bit	7	6	5	4	3	2	1	0			
Symbol			rese	rved			CH17	CH16			
Reset	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R	R	R			

Table 207. BAL_CH_UV0_STAT1 register - channel under-voltage balancing status channel 16 - 17 (address 100Ah)

Bit	Symbol	Access	Value	Description
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	CH17	R		Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 17. Read clears bit.
			0*	NOUV (read) Balancing of channel 17 was not disabled due to under-voltage condition.
	1		1	UV (read) Balancing of channel 17 was disabled due to under-voltage condition.
0	CH16 R			Status bit, if a channel under-voltage condition was the reason for disabling individual balancing of channel 16. Read clears bit.
			0*	NOUV (read) Balancing of channel 16 was not disabled due to under-voltage condition.
			1	UV (read) Balancing of channel 16 was disabled due to under-voltage condition.

18-cell battery-cell controller IC

12.1.80 BAL_GLOB_UV1_STAT0 register

Global undervoltage balancing status channel 0 - 15

Table 208. BAL_GLOB_UV1_STAT0 register - global undervoltage balancing status channel 0 - 15 (address 100Bh) bit allocation

DIL GIIOC	of the control										
Bit	15	14	13	12	11	10	9	8			
Symbol	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8			
Reset	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R	R	R			
Bit	7	6	5	4	3	2	1	0			
Symbol	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0			
Reset	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R	R	R			

Table 209. BAL_GLOB_UV1_STAT0 register - global under-voltage balancing status channel 0 - 15 (address 100Bh)

Bit	Symbol	Access	Value	Description
15	CH15	R		Status bit, if a global under-voltage of channel 15 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 15.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 15.
14	4 CH14	R		Status bit, if a global under-voltage of channel 14 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 14.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 14.
13	CH13	CH13 R		Status bit, if a global under-voltage of channel 13 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 13.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 13.
12	CH12	R		Status bit, if a global under-voltage of channel 12 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 12.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 12.
11	CH11	R		Status bit, if a global under-voltage of channel 11 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 11.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 11.

18-cell battery-cell controller IC

Table 209. BAL_GLOB_UV1_STAT0 register - global under-voltage balancing status channel 0 - 15 (address 100Bh)...continued

Bit	Symbol	Access	Value	Description
10	CH10	R		Status bit, if a global under-voltage of channel 10 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 10.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 10.
9	CH9	R		Status bit, if a global under-voltage of channel 9 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 9.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 9.
8	8 CH8	R		Status bit, if a global under-voltage of channel 8 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 8.
			1	UV (read) Balancing was disabled due to global under- voltage condition of channel 8.
7	7 CH7	17 R		Status bit, if a global under-voltage of channel 7 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 7.
			1	UV (read) Balancing was disabled due to global under- voltage condition of channel 7.
6	CH6	R		Status bit, if a global under-voltage of channel 6 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 6.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 6.
5	CH5	R		Status bit, if a global under-voltage of channel 5 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 5.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 5.
4	CH4	R		Status bit, if a global under-voltage of channel 4 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 4.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 4.
3	СНЗ	R		Status bit, if a global under-voltage of channel 3 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 3.

18-cell battery-cell controller IC

Table 209. BAL_GLOB_UV1_STAT0 register - global under-voltage balancing status channel 0 - 15 (address 100Bh)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 3.
2	CH2	R		Status bit, if a global under-voltage of channel 2 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 2.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 2.
1	1 CH1	R		Status bit, if a global under-voltage of channel 1 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 1.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 1.
0	CH0	H0 R		Status bit, if a global under-voltage of channel 0 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 0.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 0.

12.1.81 BAL_GLOB_UV1_STAT1 register

Global undervoltage balancing status channel 16 - 17

Table 210. BAL_GLOB_UV1_STAT1 register - global undervoltage balancing status channel 16 - 17 (address 100Ch) bit allocation

	oution .								
Bit	15	14	13	12	11	10	9	8	
Symbol				rese	rved				
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	
Bit	7	6	5	4	3	2	1	0	
Symbol			rese	rved			CH17	CH16	
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

Table 211. BAL_GLOB_UV1_STAT1 register - global under-voltage balancing status channel 16 - 17 (address 100Ch)

Bit	Symbol	Access	Value	Description
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	CH17	R		Status bit, if a global under-voltage of channel 17 condition was the reason for disabling the global balancing. Read clears bit.

18-cell battery-cell controller IC

Table 211. BAL_GLOB_UV1_STAT1 register - global under-voltage balancing status channel 16 - 17 (address 100Ch)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 17.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 17.
0	CH16	CH16 R		Status bit, if a global under-voltage of channel 16 condition was the reason for disabling the global balancing. Read clears bit.
			0*	NOUV (read) Balancing was not disabled due to global under-voltage condition of channel 16.
			1	UV (read) Balancing was disabled due to global undervoltage condition of channel 16.

12.1.82 BAL_STAT0 register

Logical balancing channel status channel 0 - 15

Table 212. BAL_STAT0 register - logical balancing channel status channel 0 - 15 (address 100Dh) bit allocation

anoution .								
Bit	15	14	13	12	11	10	9	8
Symbol	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 213. BAL_STAT0 register - logical balancing channel status channel 0 - 15 (address 100Dh) Legend: * reset value

Bit	Symbol	Access	Value	Description
15	CH15	R		Balancing channel 15 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 15 inactive.
			1	ACTIVE (read) Balancing for channel 15 active.
14	14 CH14	R		Balancing channel 14 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 14 inactive.
			1	ACTIVE (read) Balancing for channel 14 active.
13	CH13	3 R		Balancing channel 13 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 13 inactive.
			1	ACTIVE (read) Balancing for channel 13 active.
12	CH12	R		Balancing channel 12 status (without PWM and odd/even switching)

BMI7018

All information provided in this document is subject to legal disclaimers.

18-cell battery-cell controller IC

Table 213. BAL_STAT0 register - logical balancing channel status channel 0 - 15 (address 100Dh)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			0*	INACTIVE (read) Balancing for channel 12 inactive.
			1	ACTIVE (read) Balancing for channel 12 active.
11	CH11	R		Balancing channel 11 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 11 inactive.
			1	ACTIVE (read) Balancing for channel 11 active.
10	CH10	R		Balancing channel 10 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 10 inactive.
			1	ACTIVE (read) Balancing for channel 10 active.
9	CH9	R		Balancing channel 9 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 9 inactive.
			1	ACTIVE (read) Balancing for channel 9 active.
8	CH8	R		Balancing channel 8 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 8 inactive.
			1	ACTIVE (read) Balancing for channel 8 active.
7	CH7	R		Balancing channel 7 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 7 inactive.
			1	ACTIVE (read) Balancing for channel 7 active.
6	CH6	R		Balancing channel 6 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 6 inactive.
			1	ACTIVE (read) Balancing for channel 6 active.
5	CH5	R		Balancing channel 5 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 5 inactive.
			1	ACTIVE (read) Balancing for channel 5 active.
4	CH4	R		Balancing channel 4 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 4 inactive.
			1	ACTIVE (read) Balancing for channel 4 active.
3	CH3	R		Balancing channel 3 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 3 inactive.
			1	ACTIVE (read) Balancing for channel 3 active.
2	CH2	R		Balancing channel 2 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 2 inactive.
			1	ACTIVE (read) Balancing for channel 2 active.

18-cell battery-cell controller IC

Table 213. BAL_STAT0 register - logical balancing channel status channel 0 - 15 (address 100Dh)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
1	CH1	R		Balancing channel 1 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 1 inactive.
			1	ACTIVE (read) Balancing for channel 1 active.
0	CH0	R		Balancing channel 0 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 0 inactive.
			1	ACTIVE (read) Balancing for channel 0 active.

12.1.83 BAL_STAT1 register

Logical balancing channel status channel 16 - 17

Table 214. BAL_STAT1 register - logical balancing channel status channel 16 - 17 (address 100Eh) bit allocation

anocatio	VII .								
Bit	15	14	13	12	11	10	9	8	
Symbol				rese	rved				
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	
Bit	7	6	5	4	3	2	1	0	
Symbol			rese	rved			CH17	CH16	
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

Table 215. BAL_STAT1 register - logical balancing channel status channel 16 - 17 (address 100Eh) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	CH17	R		Balancing channel 17 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 17 inactive.
			1	ACTIVE (read) Balancing for channel 17 active.
0	CH16 R			Balancing channel 16 status (without PWM and odd/even switching)
			0*	INACTIVE (read) Balancing for channel 16 inactive.
			1	ACTIVE (read) Balancing for channel 16 active.

18-cell battery-cell controller IC

12.1.84 BAL_STAT2 register

Balancing status

Table 216. BAL_STAT2 register - balancing status (address 100Fh) bit allocation

Bit	15	14	13	12	11	10	9	8	
Symbol	BALRDY	BALPRO TFLG	reserved						
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	
Bit	7	6	5	4	3	2	1	0	
Symbol		rese	rved		BALPROT	AUTODI SCHRG	TEMPBA LINHIBIT	PREBALTMR	
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

Table 217. BAL_STAT2 register - balancing status (address 100Fh)

Bit	Symbol	Access	Value	Description
15	BALRDY	R		The ready bit is set after the cell balancing operation is finished. Reasons for this are that the last BAL_CH_EN.CHx has been cleared by hardware or the BAL_GLOB_CFG.BALEN has been cleared by hardware. With setting of BAL_GLOB_CFG.BALEN this bit is cleared. Read clears bit.
			0*	ONGOING (read) Balancing operation in progress.
			1	FINISHED (read) Balancing operation finished.
14	BALPROTFLG	R		Balancing protection flag. This bit is set when the BALPROT is ACTIVE. Read clears bit.
			0*	NOOCCURENCE (read) Balancing protection was not active.
			1	OCCURRED (read) Balancing protection was active.
13:4	reserved	R	0h	This read-only field is reserved and always has the value 0.
3	BALPROT	R		Balancing protection status
			0*	INACTIVE (read) Balancing protection allows balancing.
			1	ACTIVE (read) Balancing protection inhibits balancing.
2	AUTODISCHRG	R		Auto discharge status
			0*	INACTIVE (read) Auto discharge inactive
			1	ACTIVE (read) Auto discharge active
1	TEMPBALINHIBIT	R		Temperature balancing status
			0*	INACTIVE (read) Temperature based balancing control allows balancing.
			1	ACTIVE (read) Temperature based balancing control inhibits balancing.
0	PREBALTMR	R		preBalancing status
			0*	INACTIVE (read) No prebalancing timer active.
			1	ACTIVE (read) prebalancing timer active (Balancing is inhibited).

18-cell battery-cell controller IC

12.1.85 BAL_SWITCH_STAT0 register

Physical balancing channel status channel 0 - 15

Table 218. BAL_SWITCH_STAT0 register - physical balancing channel status channel 0 - 15 (address 1010h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 219. BAL_SWITCH_STAT0 register - physical balancing channel status channel 0 - 15 (address 1010h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15	CH15	R		Balancing FET status channel 15 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.
14	CH14	R		Balancing FET status channel 14 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
		1	CLOSED (read) Balancing FET is closed.	
13	CH13	R		Balancing FET status channel 13 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.
12	CH12	R		Balancing FET status channel 12 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.
11	CH11	R		Balancing FET status channel 11 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.
10	CH10	R		Balancing FET status channel 10 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.

BMI7018

All information provided in this document is subject to legal disclaimers.

18-cell battery-cell controller IC

Table 219. BAL_SWITCH_STAT0 register - physical balancing channel status channel 0 - 15 (address 1010h)...continued

Bit	Symbol	Access	Value	Description
			1	CLOSED (read) Balancing FET is closed.
)	CH9	R		Balancing FET status channel 9 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.
3	CH8	R		Balancing FET status channel 8 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.
7	CH7	R		Balancing FET status channel 7 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.
6	CH6	R		Balancing FET status channel 6 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.
5	CH5	R		Balancing FET status channel 5 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.
4	CH4	R		Balancing FET status channel 4 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.
3	CH3	R		Balancing FET status channel 3 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.
2	CH2	R		Balancing FET status channel 2 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.
I	CH1	R		Balancing FET status channel 1 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.

18-cell battery-cell controller IC

Table 219. BAL_SWITCH_STAT0 register - physical balancing channel status channel 0 - 15 (address 1010h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	CLOSED (read) Balancing FET is closed.
0	СНО	R		Balancing FET status channel 0 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.

12.1.86 BAL_SWITCH_STAT1 register

Physical balancing channel status channel 16 - 17

Table 220. BAL_SWITCH_STAT1 register - physical balancing channel status channel 16 - 17 (address 1011h) bit allocation

Bit	15	14	13	12	11	10	9	8			
Symbol		reserved									
Reset	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R	R	R			
Bit	7	6	5	4	3	2	1	0			
Symbol	reserved							CH16			
Reset	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R	R	R			

Table 221. BAL_SWITCH_STAT1 register - physical balancing channel status channel 16 - 17 (address 1011h)

Bit	Symbol	Access	Value	Description
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	CH17	R		Balancing FET status channel 17 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.
0	CH16	R		Balancing FET status channel 16 This is the actual status (including odd/even activation and PWM duty cycle) from the switch monitor circuit.
			0*	OPEN (read) Balancing FET is open.
			1	CLOSED (read) Balancing FET is closed.

18-cell battery-cell controller IC

12.1.87 BAL_SWITCH_FLT_STAT0 register

balancing switch fault channel 0 - 15

Table 222. BAL_SWITCH_FLT_STAT0 register - balancing switch fault channel 0 - 15 (address 1012h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 223. BAL_SWITCH_FLT_STAT0 register - balancing switch fault channel 0 - 15 (address 1012h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15	CH15	R		Balancing switch fault channel 15. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
14	CH14	R		Balancing switch fault channel 14. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
13	CH13	R		Balancing switch fault channel 13. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
12	CH12	R		Balancing switch fault channel 12. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
11	CH11	R		Balancing switch fault channel 11. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.

18-cell battery-cell controller IC

Table 223. BAL_SWITCH_FLT_STAT0 register - balancing switch fault channel 0 - 15 (address 1012h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
10	CH10	R		Balancing switch fault channel 10. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
9	CH9	R		Balancing switch fault channel 9. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
8	CH8	R		Balancing switch fault channel 8. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
7	CH7	R		Balancing switch fault channel 7. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
6	CH6	R		Balancing switch fault channel 6. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
5	CH5	R		Balancing switch fault channel 5. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
4	CH4	R		Balancing switch fault channel 4. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
3	СНЗ	R		Balancing switch fault channel 3. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
2	CH2	R		Balancing switch fault channel 2. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.

18-cell battery-cell controller IC

Table 223. BAL_SWITCH_FLT_STAT0 register - balancing switch fault channel 0 - 15 (address 1012h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
1	CH1	R		Balancing switch fault channel 1. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
0	CH0	R		Balancing switch fault channel 0. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.

12.1.88 BAL_SWITCH_FLT_STAT1 register

balancing switch fault channel 16 - 17

Table 224. BAL_SWITCH_FLT_STAT1 register - balancing switch fault channel 16 - 17 (address 1013h) bit allocation

allocation											
Bit	15	14	13	12	11	10	9	8			
Symbol				rese							
Reset	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R	R	R			
Bit	7	6	5	4	3	2	1	0			
Symbol			rese	rved			CH17	CH16			
Reset	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R	R	R			

Table 225. BAL_SWITCH_FLT_STAT1 register - balancing switch fault channel 16 - 17 (address 1013h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	CH17	R		Balancing switch fault channel 17. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.
0	CH16	R		Balancing switch fault channel 16. Physical state of the Balancing circuit has differed from the expected one. This could be due to a broken switch, leakages or over current. Read clears bit.
			0*	NOFLT (read) No fault detected.
			1	FAULT (read) Wrong switch state has been detected.

18-cell battery-cell controller IC

12.1.89 BAL_TMR_CH_ALL register

virtual register, writes in parallel into BAL_TMR_CH0 up to BAL_TMR_CH17

Table 226. BAL_TMR_CH_ALL register - Virtual register, writes all BAL_TMR registers (address 101Fh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BAL7	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Table 227. BAL_TMR_CH_ALL register - Virtual register, writes all BAL_TMR registers (address 101Fh)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	W	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	W		Sets the balancing time for all channels. BALTIME * 10 seconds
			0000h*	EXPIRED (write) Balancing time is set to 0.
			0001h	BALTIME (write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.90 BAL_TMR_CH0 register

balancing timer channel 0

Table 228. BAL_TMR_CH0 register - balancing timer channel 0 (address 1020h) bit allocation

	-			J		<u> </u>		-			. , .					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BAL	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 229. BAL_TMR_CH0 register - balancing timer channel 0 (address 1020h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 0. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds

18-cell battery-cell controller IC

Table 229. BAL_TMR_CH0 register - balancing timer channel 0 (address 1020h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.91 BAL_TMR_CH1 register

balancing timer channel 1

Table 230. BAL TMR CH1 register - balancing timer channel 1 (address 1021h) bit allocation

	_		_	5		9		-			,					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BAL7	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						

Table 231. BAL_TMR_CH1 register - balancing timer channel 1 (address 1021h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 1. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.92 BAL_TMR_CH2 register

balancing timer channel 2

Table 232. BAL_TMR_CH2 register - balancing timer channel 2 (address 1022h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BAL7	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						

Table 233. BAL_TMR_CH2 register - balancing timer channel 2 (address 1022h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.

18-cell battery-cell controller IC

Table 233. BAL_TMR_CH2 register - balancing timer channel 2 (address 1022h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
13:0	BALTIME	R/W		Balancing time for channel 2. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.93 BAL_TMR_CH3 register

balancing timer channel 3

Table 234. BAL_TMR_CH3 register - balancing timer channel 3 (address 1023h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BALT	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						

Table 235. BAL_TMR_CH3 register - balancing timer channel 3 (address 1023h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 3. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.94 BAL_TMR_CH4 register

balancing timer channel 4

Table 236. BAL_TMR_CH4 register - balancing timer channel 4 (address 1024h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	I reserved BALTIME															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

18-cell battery-cell controller IC

Table 236. BAL_TMR_CH4 register - balancing timer channel 4 (address 1024h) bit allocation...continued

Access	R	R	R/W													
																1

Table 237. BAL_TMR_CH4 register - balancing timer channel 4 (address 1024h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 4. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.95 BAL_TMR_CH5 register

balancing timer channel 5

Table 238. BAL TMR CH5 register - balancing timer channel 5 (address 1025h) bit allocation

				3					()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved					,		BAL	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W							

Table 239. BAL_TMR_CH5 register - balancing timer channel 5 (address 1025h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 5. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.96 BAL_TMR_CH6 register

balancing timer channel 6

18-cell battery-cell controller IC

Table 240. BAL_TMR_CH6 register - balancing timer channel 6 (address 1026h) bit allocation

				-					•		,					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BAL	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W							

Table 241. BAL_TMR_CH6 register - balancing timer channel 6 (address 1026h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 6. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.97 BAL_TMR_CH7 register

balancing timer channel 7

Table 242. BAL TMR CH7 register - balancing timer channel 7 (address 1027h) bit allocation

······ - ···· - ···· - ···· - ···· - ···· - ··· - ·																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BAL7	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						

Table 243. BAL_TMR_CH7 register - balancing timer channel 7 (address 1027h)

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 7. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

18-cell battery-cell controller IC

12.1.98 BAL_TMR_CH8 register

balancing timer channel 8

Table 244. BAL_TMR_CH8 register - balancing timer channel 8 (address 1028h) bit allocation

				0		-			•		,					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BAL	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W							

Table 245. BAL_TMR_CH8 register - balancing timer channel 8 (address 1028h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 8. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.99 BAL_TMR_CH9 register

balancing timer channel 9

Table 246. BAL_TMR_CH9 register - balancing timer channel 9 (address 1029h) bit allocation

	U/ \-			9.000.	1001001			w	/ (000 .0.	-0,					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BAL	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 247. BAL_TMR_CH9 register - balancing timer channel 9 (address 1029h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 9. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.

18-cell battery-cell controller IC

Table 247. BAL_TMR_CH9 register - balancing timer channel 9 (address 1029h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.100 BAL_TMR_CH10 register

balancing timer channel 10

Table 248. BAL TMR CH10 register - balancing timer channel 10 (address 102Ah) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BALT	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						

Table 249. BAL_TMR_CH10 register - balancing timer channel 10 (address 102Ah)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 10. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.101 BAL_TMR_CH11 register

balancing timer channel 11

Table 250. BAL_TMR_CH11 register - balancing timer channel 11 (address 102Bh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BALT	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						

18-cell battery-cell controller IC

Table 251. BAL_TMR_CH11 register - balancing timer channel 11 (address 102Bh)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 11. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.102 BAL_TMR_CH12 register

balancing timer channel 12

Table 252. BAL_TMR_CH12 register - balancing timer channel 12 (address 102Ch) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BALT	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						

Table 253. BAL_TMR_CH12 register - balancing timer channel 12 (address 102Ch)

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 12. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

18-cell battery-cell controller IC

12.1.103 BAL_TMR_CH13 register

balancing timer channel 13

Table 254. BAL_TMR_CH13 register - balancing timer channel 13 (address 102Dh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BAL	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W							

Table 255. BAL_TMR_CH13 register - balancing timer channel 13 (address 102Dh)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 13. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.104 BAL_TMR_CH14 register

balancing timer channel 14

Table 256. BAL_TMR_CH14 register - balancing timer channel 14 (address 102Eh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BALT	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						

Table 257. BAL_TMR_CH14 register - balancing timer channel 14 (address 102Eh)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 14. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.

18-cell battery-cell controller IC

Table 257. BAL_TMR_CH14 register - balancing timer channel 14 (address 102Eh)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.105 BAL_TMR_CH15 register

balancing timer channel 15

Table 258. BAL_TMR_CH15 register - balancing timer channel 15 (address 102Fh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BAL	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W							

Table 259. BAL_TMR_CH15 register - balancing timer channel 15 (address 102Fh)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 15. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	PWM0 (read-write) Balancing time is set to 0.
			0001h	PWM1 (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.106 BAL_TMR_CH16 register

balancing timer channel 16

Table 260. BAL_TMR_CH16 register - balancing timer channel 16 (address 1030h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BALT	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						

18-cell battery-cell controller IC

Table 261. BAL_TMR_CH16 register - balancing timer channel 16 (address 1030h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 16. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

12.1.107 BAL_TMR_CH17 register

balancing timer channel 17

Table 262. BAL_TMR_CH17 register - balancing timer channel 17 (address 1031h) bit allocation

			_													
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	rese	rved							BAL7	ГІМЕ						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						

Table 263. BAL_TMR_CH17 register - balancing timer channel 17 (address 1031h)

Bit	Symbol	Access	Value	Description
15:14	reserved	R	0h	This read-only field is reserved and always has the value 0.
13:0	BALTIME	R/W		Balancing time for channel 17. The value of this field represents the current counter value when read. The counting saturates at 0. If the value is zero, the balancing for this channel is stopped. The counting is only active if balancing is enabled, timer based balancing is enabled and the channel enable is set. BALTIME * 10 seconds
			0000h*	EXPIRED (read-write) Balancing time is set to 0.
			0001h	BALTIME (read-write) Balancing time is set to BALTIME * 10 seconds
			3FFFh	MAX (read-write) Sets maximum balancing time of 163830 seconds = approximately 45.5 hours.

18-cell battery-cell controller IC

12.1.108 BAL_PWM_CH_ALL register

virtual register, writes in parallel into BAL_PWM_CH0 up to BAL_PWM_CH17

Table 264. BAL_PWM_CH_ALL register - Virtual register, writes all BAL_PWM registers (address 1032h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				rese	rved							PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Table 265. BAL_PWM_CH_ALL register - Virtual register, writes all BAL_PWM registers (address 1032h)

Legend: * reset value

Bit	Symbol	Access	Value	Description			
15:8	reserved	W	0h	This read-only field is reserved and always has the value 0.			
7:0	PWM	W Sets the balancing PWM for all channels. PWM * 100/255%					
			00h	DISABLED (write) PWM duty cycle set to 0.			
			80h	PWM50 (write) PWM duty cycle set to 128/255 *100 %= 50%.			
			FFh*	MAX (write) PWM duty cycle set to 100%.			

12.1.109 BAL_PWM_CH0 register

Balancing PWM channel 0

Table 266. BAL_PWM_CH0 register - balancing PWM channel 0 (address 1033h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				rese	rved							PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 267. BAL_PWM_CH0 register - balancing PWM channel 0 (address 1033h)

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 0. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

18-cell battery-cell controller IC

12.1.110 BAL_PWM_CH1 register

Balancing PWM channel 1

Table 268. BAL_PWM_CH1 register - balancing PWM channel 1 (address 1034h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				rese	rved					,		PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 269. BAL_PWM_CH1 register - balancing PWM channel 1 (address 1034h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 1. PWM * 100/255%
			00h	DISABLED (read-write) .
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

12.1.111 BAL_PWM_CH2 register

Balancing PWM channel 2

Table 270. BAL_PWM_CH2 register - balancing PWM channel 2 (address 1035h) bit allocation

		_	_													
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				rese	rved							PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 271. BAL_PWM_CH2 register - balancing PWM channel 2 (address 1035h)

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 2. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

18-cell battery-cell controller IC

12.1.112 BAL_PWM_CH3 register

Balancing PWM channel 3

Table 272. BAL_PWM_CH3 register - balancing PWM channel 3 (address 1036h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				rese	rved							PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 273. BAL_PWM_CH3 register - balancing PWM channel 3 (address 1036h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 3. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

12.1.113 BAL_PWM_CH4 register

balancing PWM channel 4

Table 274. BAL_PWM_CH4 register - balancing PWM channel 4 (address 1037h) bit allocation

		_	_						•							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				rese	rved							PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 275. BAL_PWM_CH4 register - balancing PWM channel 4 (address 1037h)

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 4. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

18-cell battery-cell controller IC

12.1.114 BAL_PWM_CH5 register

Balancing PWM channel 5

Table 276. BAL_PWM_CH5 register - balancing PWM channel 5 (address 1038h) bit allocation

		_		- 3					- (
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				rese	rved							PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 277. BAL_PWM_CH5 register - balancing PWM channel 5 (address 1038h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 5. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

12.1.115 BAL_PWM_CH6 register

Balancing PWM channel 6

Table 278. BAL PWM CH6 register - balancing PWM channel 6 (address 1039h) bit allocation

		_	_						•							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				rese	rved							PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 279. BAL_PWM_CH6 register - balancing PWM channel 6 (address 1039h)

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 6. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

18-cell battery-cell controller IC

12.1.116 BAL_PWM_CH7 register

Balancing PWM channel 7

Table 280. BAL_PWM_CH7 register - balancing PWM channel 7 (address 103Ah) bit allocation

				- 3					. (
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	reserved											PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 281. BAL_PWM_CH7 register - balancing PWM channel 7 (address 103Ah)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 7. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

12.1.117 BAL_PWM_CH8 register

Balancing PWM channel 8

Table 282. BAL PWM CH8 register - balancing PWM channel 8 (address 103Bh) bit allocation

		_	_						•							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				rese	rved							PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 283. BAL_PWM_CH8 register - balancing PWM channel 8 (address 103Bh)

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 8. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

18-cell battery-cell controller IC

12.1.118 BAL_PWM_CH9 register

Balancing PWM channel 9

Table 284. BAL_PWM_CH9 register - balancing PWM channel 9 (address 103Ch) bit allocation

				- 3					- (,					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		reserved										PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 285. BAL_PWM_CH9 register - balancing PWM channel 9 (address 103Ch)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 9. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

12.1.119 BAL_PWM_CH10 register

Balancing PWM channel 10

Table 286. BAL_PWM_CH10 register - balancing PWM channel 10 (address 103Dh) bit allocation

		_	_													
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				rese	rved							PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 287. BAL_PWM_CH10 register - balancing PWM channel 10 (address 103Dh)

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 10. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

18-cell battery-cell controller IC

12.1.120 BAL_PWM_CH11 register

Balancing PWM channel 11

Table 288. BAL_PWM_CH11 register - balancing PWM channel 11 (address 103Eh) bit allocation

				3					1		,					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	l reserved									-		PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 289. BAL_PWM_CH11 register - balancing PWM channel 11 (address 103Eh)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 11. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

12.1.121 BAL_PWM_CH12 register

Balancing PWM channel 12

Table 290. BAL_PWM_CH12 register - balancing PWM channel 12 (address 103Fh) bit allocation

		_	_													
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				rese	rved							PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 291. BAL_PWM_CH12 register - balancing PWM channel 12 (address 103Fh)

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 12 PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

18-cell battery-cell controller IC

12.1.122 BAL_PWM_CH13 register

Balancing PWM channel 13

Table 292. BAL_PWM_CH13 register - balancing PWM channel 13 (address 1040h) bit allocation

									(,					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	ol reserved									,		PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 293. BAL_PWM_CH13 register - balancing PWM channel 13 (address 1040h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 13. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

12.1.123 BAL_PWM_CH14 register

Balancing PWM channel 14

Table 294. BAL_PWM_CH14 register - balancing PWM channel 14 (address 1041h) bit allocation

		_	_													
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				rese	rved							PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 295. BAL_PWM_CH14 register - balancing PWM channel 14 (address 1041h)

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 14. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

18-cell battery-cell controller IC

12.1.124 BAL_PWM_CH15 register

Balancing PWM channel 15

Table 296. BAL_PWM_CH15 register - balancing PWM channel 15 (address 1042h) bit allocation

									(,					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	ol reserved									-		PV	VM			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 297. BAL_PWM_CH15 register - balancing PWM channel 15 (address 1042h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 15. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

12.1.125 BAL_PWM_CH16 register

Balancing PWM channel 16

Table 298. BAL_PWM_CH16 register - balancing PWM channel 16 (address 1043h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol				rese	rved							PV	/ M			
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 299. BAL_PWM_CH16 register - balancing PWM channel 16 (address 1043h)

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 16. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

18-cell battery-cell controller IC

12.1.126 BAL_PWM_CH17 register

Balancing PWM channel 17

Table 300. BAL_PWM_CH17 register - balancing PWM channel 17 (address 1044h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	reserved						PWM									
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R	R/W							

Table 301. BAL_PWM_CH17 register - balancing PWM channel 17 (address 1044h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:8	reserved	R	0h	This read-only field is reserved and always has the value 0.
7:0	PWM	R/W		Balancing PWM for channel 17. PWM * 100/255%
			00h	DISABLED (read-write) PWM duty cycle set to 0.
			80h	PWM50 (read-write) PWM duty cycle set to 128/255 *100 %= 50%.
			FFh*	MAX (read-write) PWM duty cycle set to 100%.

12.1.127 ALLM_CFG register

General measurement control

Table 302. ALLM_CFG register - general measurement control (address 1400h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol				BALPAL	JSELEN			
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W
Bit	7	6	5	4	3	2	1	0
Symbol			BALPAU	JSELEN			BALPAUSEC YCMODEN	MEASEN
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 303. ALLM_CFG register - general measurement control (address 1400h)

Bit	Symbol	Access	Value	Description
15:2	BALPAUSELEN	W		Writes BALPAUSELEN for primary and secondary measurement.
1	BALPAUSECYCM ODEN	W		Writes BALPAUSECYCMODEN for primary and secondary measurement.
0	MEASEN	W	0h	Writes MEASEN for primary and secondary measurement.

18-cell battery-cell controller IC

12.1.128 ALLM_APP_CTRL register

Application measurement control

Table 304. ALLM_APP_CTRL register - application measurement control (address 1401h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	PAUSEBAL			CAPAIN7	CAPAIN6			
Reset	0	1	1	1	1	1	0	0
Access	W	W	W	W	W	W	W	W
Bit	7	6	5	4	3	2	1	0
Symbol	CAPAIN5	CAPAIN4	CAPAIN3	CAPAIN2	CAPAIN1	CAPAIN0	CAPAINA	CAPVC
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 305. ALLM_APP_CTRL register - application measurement control (address 1401h)

Bit	Symbol	Access	Value	Description
15	PAUSEBAL	W	0h	Writes PAUSEBAL for primary and secondary measurement.
14:10	VCOLNUM	W	1Fh	Writes VCOLNUM for primary measurement, if CAPVC is set. No influence on secondary measurement.
9	CAPAIN7	W	Oh	No influence on primary measurement as long as it is used without the PAUSEBAL bit. Writes CAPAIN7 for secondary measurement.
8	CAPAIN6	W	Oh	No influence on primary measurement as long as it is used without the PAUSEBAL bit. Writes CAPAIN6 for secondary measurement.
7	CAPAIN5	W	Oh	No influence on primary measurement as long as it is used without the PAUSEBAL bit. Writes CAPAIN5 for secondary measurement.
6	CAPAIN4	W	Oh	No influence on primary measurement as long as it is used without the PAUSEBAL bit. Writes CAPAIN4 for secondary measurement.
5	CAPAIN3	W	Oh	Writes CAPAIN3 for primary measurement. No influence on secondary measurement as long as it is used without the PAU SEBAL bit.
4	CAPAIN2	W	Oh	Writes CAPAIN2 for primary measurement. No influence on secondary measurement as long as it is used without the PAU SEBAL bit.
3	CAPAIN1	W	Oh	Writes CAPAIN1 for primary measurement. No influence on secondary measurement as long as it is used without the PAU SEBAL bit.
2	CAPAIN0	W	Oh	Writes CAPAIN0 for primary measurement. No influence on secondary measurement as long as it is used without the PAU SEBAL bit.
1	CAPAINA	W	0h	Writes CAPAINA for primary measurement. No influence on secondary measurement as long as it is used without the PAU SEBAL bit.
0	CAPVC	W	Oh	Writes CAPVC for primary measurement. No influence on secondary measurement as long as it is used without the PAU SEBAL bit.

18-cell battery-cell controller IC

12.1.129 ALLM_PER_CTRL register

periodic measurement control

Table 306. ALLM_PER_CTRL register - periodic measurement control (address 1402h) bit allocation

	_	_				, .		
Bit	15	14	13	12	11	10	9	8
Symbol		reserved		PERCTRL		PERLEN		
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W
Bit	7	6	5	4	3	2	1	0
Symbol				PER	LEN			
Reset	0	0	0	1	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 307. ALLM_PER_CTRL register - periodic measurement control (address 1402h)

Bit	Symbol	Access	Value	Description
15:13	reserved	W	0h	This read-only field is reserved and always has the value 0.
12	PERCTRL	W	0h	Writes PERCTRL for primary and secondary measurement.
11:9	reserved	W	0h	This read-only field is reserved and always has the value 0.
8:0	PERLEN	W	10h	Writes PERLEN for primary and secondary measurement.

12.1.130 ALLM_SYNC_CTRL register

Synchronous measurement control

Table 308. ALLM_SYNC_CTRL register - synchronous measurement control (address 1403h) bit allocation

			- · · · · · · · · · · · · · · · · · · ·			<u> </u>	, , , , , , , , , , , , , , , , , , , ,	
Bit	15	14	13	12	11	10	9	8
Symbol	PAUSEBAL				reserved			
Reset	0	1	1	1	1	1	0	0
Access	W	W	W	W	W	W	W	W
Bit	7	6	5	4	3	2	1	0
Symbol			rese	rved	,		FASTVB	SYNCCYC
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 309. ALLM_SYNC_CTRL register - synchronous measurement control (address 1403h)

Tubic out	able 665. ALLIN_6 THO_6 THE register - Synchronous medisarement control (address 14661)									
Bit	Symbol	Access	Value	Description						
15	PAUSEBAL	W	0h	Writes PAUSEBAL for primary and secondary measurement.						
14:10	VBOLNUM	W	1Fh	No influence on primary measurement. Writes VBOLNUM for secondary measurement.						
9:2	reserved	W	0h	This read-only field is reserved and always has the value 0.						
1	FASTVB	W	0h	Dummy fast measurement cycle on primary measurement. Writes FASTVB for secondary measurement.						
0	SYNCCYC	W	0h	Writes SYNCCYC for primary and secondary measurement.						

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

12.1.131 ALLM_VCVB_CFG0 register

Cell voltage measurement enable

Table 310. ALLM_VCVB_CFG0 register - cell voltage measurement enable (address 1408h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	VCVB15EN	VCVB14EN	VCVB13EN	VCVB12EN	VCVB11EN	VCVB10EN	VCVB9EN	VCVB8EN
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W
Bit	7	6	5	4	3	2	1	0
Symbol	VCVB7EN	VCVB6EN	VCVB5EN	VCVB4EN	VCVB3EN	VCVB2EN	VCVB1EN	VCVB0EN
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 311. ALLM_VCVB_CFG0 register - cell voltage measurement enable (address 1408h)

Bit	Symbol	Access	Value	Description
15	VCVB15EN	W	0h	Writes VC15EN for primary and VB15EN secondary measurement.
14	VCVB14EN	W	0h	Writes VC14EN for primary and VB14EN secondary measurement.
13	VCVB13EN	W	0h	Writes VC13EN for primary and VB13EN secondary measurement.
12	VCVB12EN	W	0h	Writes VC12EN for primary and VB12EN secondary measurement.
11	VCVB11EN	W	0h	Writes VC11EN for primary and VB11EN secondary measurement.
10	VCVB10EN	W	0h	Writes VC10EN for primary and VB10EN secondary measurement.
9	VCVB9EN	W	0h	Writes VC9EN for primary and VB9EN secondary measurement.
8	VCVB8EN	W	0h	Writes VC8EN for primary and VB8EN secondary measurement.
7	VCVB7EN	W	0h	Writes VC7EN for primary and VB7EN secondary measurement.
6	VCVB6EN	W	0h	Writes VC6EN for primary and VB6EN secondary measurement.
5	VCVB5EN	W	0h	Writes VC5EN for primary and VB5EN secondary measurement.
4	VCVB4EN	W	0h	Writes VC4EN for primary and VB4EN secondary measurement.
3	VCVB3EN	W	0h	Writes VC3EN for primary and VB3EN secondary measurement.
2	VCVB2EN	W	0h	Writes VC2EN for primary and VB2EN secondary measurement.
1	VCVB1EN	W	0h	Writes VC1EN for primary and VB1EN secondary measurement.
0	VCVB0EN	W	0h	Writes VC0EN for primary and VB0EN secondary measurement.

18-cell battery-cell controller IC

12.1.132 ALLM_VCVB_CFG1 register

Cell voltage measurement enable

Table 312. ALLM_VCVB_CFG1 register - cell voltage measurement enable (address 1409h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol		reserved						
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W
Bit	7	6	5	4	3	2	1	0
Symbol			rese	rved			VCVB17EN	VCVB16EN
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 313. ALLM_VCVB_CFG1 register - cell voltage measurement enable (address 1409h)

Bit	Symbol	Access	Value	Description
15:2	reserved	W	0h	this read-only field is reserved and always has the value 0
1	VCVB17EN	W	0h	writes VC17EN for primary and VB17EN secondary measurement
0	VCVB16EN	W	Oh	writes VC16EN for primary and VB16EN secondary measurement

12.1.133 PRMM_CFG register

General measurement control

Table 314. PRMM_CFG register - general measurement control (address 1800h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol				BALPAU	JSELEN			
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol			BALPAU	JSELEN			BALPAUSEC YCMODEN	MEASEN
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 315. PRMM_CFG register - general measurement control (address 1800h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:2	BALPAUSELEN	R/W		Pause time of balancing before measurement cycle is executed. An on-going balancing pause operation is not influenced by a change of this value. BALPAUSELEN * 10 µs
			0000h*	NO_PAUSE (read-write) No Pause.

18-cell battery-cell controller IC

Table 315. PRMM_CFG register - general measurement control (address 1800h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			0001h	PAUSE_10u (read-write) Pause = 10 us
			3FFFh	MAX (read-write) Maximum pause = 163830 us = 163 ms
1	BALPAUSECYCM ODEN			Enable balancing auto pause. This delays the start of measurements after entering Cyclic mode until the auto pause counter has elapsed.
			0*	DISABLED (read-write) Auto pause for balancing is disabled.
			1	ENABLED (read-write) Auto pause for balancing is enabled. Measurements are started when the auto pause counter is elapsed.
0	MEASEN	R/W		Enable the data acquisition. Setting this bit to zero initiates a result clear and invalidate action (this includes resetting all ready bits). This bit is cleared when entering Sleep mode. Cyclic measurements are always executed, regardless of the value of this bit. Balancing is not stopped automatically (if in Active mode), as it would be permanently inhibited while measurement is active. If balancing shall be paused, do so via the balancing control.
			0*	DISABLED (read-write) Data acquisition disabled
			1	ENABLED (read-write) Data acquisition enabled

12.1.134 PRMM_APP_CTRL register

Application measurement control

Table 316. PRMM_APP_CTRL register - application measurement control (address 1801h) bit allocation

					()		,	
Bit	15	14	13	12	11	10	9	8
Symbol	PAUSEBAL			VCOLNUM			CAPAIN7	CAPAIN6
Reset	0	1	1	1	1	1	0	0
Access	W	R/W	R/W	R/W	R/W	R/W	W	W
Bit	7	6	5	4	3	2	1	0
Symbol	CAPAIN5	CAPAIN4	CAPAIN3	CAPAIN2	CAPAIN1	CAPAIN0	CAPAINA	CAPVC
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 317. PRMM_APP_CTRL register - application measurement control (address 1801h) Legend: * reset value

_090				
Bit	Symbol	Access	Value	Description
15	PAUSEBAL	W		Pause the balancing during this capture cycle. If balancing was not paused before, the start of data capture is delayed until the auto pause timer has elapsed. If no CAPxxx is set this bit is ignored.
			0*	NO_PAUSE (write) Continue with balancing.
			1	PAUSE (write) Pause the balancing during this capture cycle.
14:10	VCOLNUM	R/W		VC number for which the open-load detection is enabled.

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 317. PRMM_APP_CTRL register - application measurement control (address 1801h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
				0 to 17 channel for which the open-load detection is enabled. 18 to 30 reserved (no open-load detection mechanism is enabled). Writing this bitfield is only possible if CAPVC is set as well.
			1Fh*	DISABLED (read-write) Open-load detection is disabled
9	CAPAIN7	W		AIN7 is not part of the primary measurement chain. Still, when used in combination with PAUSEBAL, a pause of the balancing is forced. The allows to keep the primary and secondary measurement chain synchronized.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
8	CAPAIN6	W		AIN6 is not part of the primary measurement chain. Still, when used in combination with PAUSEBAL, a pause of the balancing is forced. The allows to keep the primary and secondary measurement chain synchronized.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
7	CAPAIN5	W		AIN5 is not part of the primary measurement chain. Still, when used in combination with PAUSEBAL, a pause of the balancing is forced. The allows to keep the primary and secondary measurement chain synchronized.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
6	CAPAIN4	W		AIN4 is not part of the primary measurement chain. Still, when used in combination with PAUSEBAL, a pause of the balancing is forced. The allows to keep the primary and secondary measurement chain synchronized.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
5	CAPAIN3	W		Capture command for AIN3. When used in combination with PAUSEBAL, a pause of the balancing is forced.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
4	CAPAIN2	W		Capture command for AIN2. When used in combination with PAUSEBAL, a pause of the balancing is forced.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
3	CAPAIN1	W		Capture command for AIN1. When used in combination with PAUSEBAL, a pause of the balancing is forced.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
2	CAPAIN0	W		Capture command for AIN0. When used in combination with PAUSEBAL, a pause of the balancing is forced.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.

18-cell battery-cell controller IC

Table 317. PRMM_APP_CTRL register - application measurement control (address 1801h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
1	CAPAINA	W		Capture command for AINA. When used in combination with PAUSEBAL, a pause of the balancing is forced.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
0	CAPVC	W		Capture the application measurement values of the cell terminal measurements. The values are now readable via the app_result register. This bit is only available in the primary measurement chain.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.

12.1.135 PRMM_PER_CTRL register

Periodic measurement control

Table 318. PRMM_PER_CTRL register - periodic measurement control (address 1802h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	reserved			PERCTRL	reserved			PERLEN
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R/W	R	R	R	R/W
Bit	7	6	5	4	3	2	1	0
Symbol				PER	LEN			
Reset	0	0	0	1	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 319. PRMM_PER_CTRL register - periodic measurement control (address 1802h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:13	reserved	R	0h	This read-only field is reserved and always has the value 0.
12	PERCTRL	R/W		Control the periodic result behavior.
			0*	AUTO (read-write) Periodic results are automatically updated
			1	ONCE (read-write) Periodic results are updated once with the last results. (each write updates the results).
11:9	reserved	R	0h	This read-only field is reserved and always has the value 0.
8:0	PERLEN	R/W		Number of measurements for one periodic measurement. The minimum is 16. Writing a value lower than 16 leads to a 16 in the register.
			010h*	PER_16 (read-write) minimum value = 16 measurements per period
			011h	PER_17 (read-write) 17 measurements per period
			1FFh	PER_MAX (read-write) maximum value = 511 measurements per period

18-cell battery-cell controller IC

12.1.136 PRMM_SYNC_CTRL register

Synchronous measurement control

Table 320. PRMM_SYNC_CTRL register - synchronous measurement control (address 1803h) bit allocation

Bit	15	14	13	12	11	10	9	8	
Symbol	PAUSEBAL		reserved						
Reset	0	0	0	0	0	0	0	0	
Access	W	W	W	W	W	W	W	W	
Bit	7	6	5	4	3	2	1	0	
Symbol			rese	FASTCYC	SYNCCYC				
Reset	0	0	0	0	0	0	0	0	
Access	W	W	W	W	W	W	W	W	

Table 321. PRMM_SYNC_CTRL register - synchronous measurement control (address 1803h)

Bit	Symbol	Access	Value	Description
15	15 PAUSEBAL	W		Pause the balancing during this capture cycle. If balancing was not paused before, the start of data capture is delayed until the auto pause timer has elapsed. If no capture cycle is started this bit is ignored.
			0*	NO_PAUSE (write) Continue with balancing.
			1	PAUSE (write) Pause the balancing during this capture cycle.
14:2	reserved	W	0h	This read-only field is reserved and always has the value 0.
1	1 FASTCYC	W		Start of a dummy Fast measurement cycle. In this cycle nothing is actually measured and stored. The bit is only implemented to keep the balancing auto pause synchronous between primary and secondary measurement. If set together with SYNCCYC or during an active synchronous measurement cycle, this bit is ignored. Read as zero.
			0*	NO_FAST (write) No new start of a dummy fast measurement cycle.
			0*	STATUS (read) Read as zero.
			1	FAST (write) Start a new dummy fast measurement cycle.
0	0 SYNCCYC	W		Start a synchronous measurement cycle. In this cycle the CT and CB voltages are measured and stored as matching pairs. If no VC channel is enabled or if set during a running synchronous measurement cycle the set is ignored. Read as zero.
			0*	NO_START (write) No new start a synchronous measurement cycle.
			0*	STATUS (read) Read a zero
			1	START (write) Start a synchronous measurement cycle.

18-cell battery-cell controller IC

12.1.137 PRMM_VC_CFG0 register

Cell voltage measurement enable

Table 322. PRMM_VC_CFG0 register - cell voltage measurement enable (address 1808h) bit allocation

	_			,		,		
Bit	15	14	13	12	11	10	9	8
Symbol	VC15EN	VC14EN	VC13EN	VC12EN	VC11EN	VC10EN	VC9EN	VC8EN
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol	VC7EN	VC6EN	VC5EN	VC4EN	VC3EN	VC2EN	VC1EN	VC0EN
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 323. PRMM_VC_CFG0 register - cell voltage measurement enable (address 1808h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15	VC15EN R/W 0*			Enable measurement of cell voltage 15. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
14	VC14EN R/V	R/W		Enable measurement of cell voltage 14. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
13	VC13EN R/W	R/W		Enable measurement of cell voltage 13. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
12	VC12EN	R/W		Enable measurement of cell voltage 12. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
11	VC11EN	R/W		Enable measurement of cell voltage 11. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
10	VC10EN	R/W		Enable measurement of cell voltage 10. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
9	VC9EN	R/W		Enable measurement of cell voltage 9. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled

18-cell battery-cell controller IC

Table 323. PRMM_VC_CFG0 register - cell voltage measurement enable (address 1808h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
8	VC8EN R/W			Enable measurement of cell voltage 8. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
7	VC7EN	R/W		Enable measurement of cell voltage 7. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
6	VC6EN	R/W		Enable measurement of cell voltage 6. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
5	VC5EN	R/W		Enable measurement of cell voltage 5. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
4	VC4EN	R/W		Enable measurement of cell voltage 4. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
3	VC3EN	R/W		Enable measurement of cell voltage 3. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
2	VC2EN	R/W		Enable measurement of cell voltage 2. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
1	VC1EN	R/W		Enable measurement of cell voltage 1. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
0	VC0EN	R/W		Enable measurement of cell voltage 0. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled

18-cell battery-cell controller IC

12.1.138 PRMM_VC_CFG1 register

Cell voltage measurement enable

Table 324. PRMM_VC_CFG1 register - cell voltage measurement enable (address 1809h) bit allocation

			,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		
15	14	13	12	11	10	9	8
			rese	rved			
0	0	0	0	0	0	0	0
R	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0
	reserved						VC16EN
0	0	0	0	0	0	0	0
R	R	R	R	R	R	R/W	R/W
	15 0 R 7	15 14 0 0 R R 7 6	15 14 13 0 0 0 0 R R R R 7 6 5 rese 0 0 0	15 14 13 12 rese 0 0 0 0 R R R R 7 6 5 4 reserved 0 0 0 0	15 14 13 12 11 reserved 0 0 0 0 0 R R R R R 7 6 5 4 3 reserved 0 0 0 0 0	15 14 13 12 11 10 reserved 0 0 0 0 0 0 R R R R R R 7 6 5 4 3 2 reserved 0 0 0 0 0 0	15 14 13 12 11 10 9 reserved 0 0 0 0 0 0 0 R R R R R R R 7 6 5 4 3 2 1 reserved VC17EN 0 0 0 0 0 0

Table 325. PRMM_VC_CFG1 register - cell voltage measurement enable (address 1809h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	VC17EN	R/W		Enable measurement of cell voltage 17. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
0	VC16EN	R/W		Enable measurement of cell voltage 16. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled

12.1.139 PRMM_AIN_CFG register

AINx measurement enables

Table 326. PRMM_AIN_CFG register - AINx measurement enables (address 180Ah) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	RATIOME	TRICAIN3	RATIOME	TRICAIN2	RATIOMETRICAIN1		RATIOMETRICAIN0	
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol	rese	rved	FLTAPPINV	AINAEN	AIN3EN	AIN2EN	AIN1EN	AIN0EN
Reset	0	0	1	0	0	0	0	0
Access	R	R	R/W	R/W	R/W	R/W	R/W	R/W

18-cell battery-cell controller IC

Table 327. PRMM_AIN_CFG register - AINx measurement enables (address 180Ah)

Bit	Symbol	Access	Value	Description
15:14	RATIOMETRICAIN3	R/W		Reference selection for AIN3. Changes to these bits during active measurement can lead to undefined results.
			00*	PRMVREF (read-write) Absolute (PRMVREF)
			01	RESERVED (read-write) reserved
			10	VAUX (read-write) Ratiometric (VAUX)
			11	VDDC (read-write) Ratiometric (VDDC)
13:12	RATIOMETRICAIN2	R/W		Reference selection for AIN2. Changes to these bits during active measurement can lead to undefined results.
			00*	PRMVREF (read-write) Absolute (PRMVREF)
			01	RESERVED (read-write) reserved
			10	VAUX (read-write) Ratiometric (VAUX)
			11	VDDC (read-write) Ratiometric (VDDC)
11:10	1:10 RATIOMETRICAIN1	R/W		Reference selection for AIN1. Changes to these bits during active measurement can lead to undefined results.
			00*	PRMVREF (read-write) Absolute (PRMVREF)
			01	RESERVED (read-write) reserved
			10	VAUX (read-write) Ratiometric (VAUX)
			11	VDDC (read-write) Ratiometric (VDDC)
9:8	RATIOMETRICAIN0	R/W		Reference selection for AIN0. Changes to these bits during active measurement can lead to undefined results.
			00*	PRMVREF (read-write) Absolute (PRMVREF)
			01	RESERVED (read-write) reserved
			10	VAUX (read-write) Ratiometric (VAUX)
			11	VDDC (read-write) Ratiometric (VDDC)
7:6	reserved	R	0h	This read-only field is reserved and always has the value 0.
5	FLTAPPINV	R/W		Invalidate AINx application results in case of fault.
			0	VALID (read-write) AINx application results are not invalidated in case of a fault
			1*	INVALID (read-write) AINx application results are invalidated when a fault is detected.
4	AINAEN	R/W		Enable measurement of AINA. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
3	AIN3EN	R/W		Enable measurement of AIN3. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled. If a GPIO output function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in the GPIO output enable bit.
2	AIN2EN	R/W		Enable measurement of AIN2. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled

18-cell battery-cell controller IC

Table 327. PRMM_AIN_CFG register - AINx measurement enables (address 180Ah)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	ENABLED (read-write) Measurement enabled. If a GPIO output function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in the GPIO output enable bit.
1	AIN1EN	R/W		Enable measurement of AIN1. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled. If a GPIO output function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in the GPIO output enable bit.
0	AIN0EN	R/W		Enable measurement of AIN0. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled. If a GPIO output function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in the GPIO output enable bit.

12.1.140 PRMM_AIN_OL_CFG register

AINx open-load detection enable

Table 328. PRMM_AIN_OL_CFG register - AINx open-load detection enable (address 180Bh) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol				rese	rved			
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol		reserved		AINAEN	AIN3EN	AIN2EN	AIN1EN	AIN0EN
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R/W	R/W	R/W	R/W	R/W

Table 329. PRMM_AIN_OL_CFG register - AINx open-load detection enable (address 180Bh)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:5	reserved	R	0h	This read-only field is reserved and always has the value 0.
4	AINAEN	R/W		Open-load detection circuit for AINA
			0*	DISABLED (read-write) Disable the open-load detection circuit.
			1	ENABLED (read-write) Enable the open-load detection circuit.
3	AIN3EN	R/W		Open-load detection circuit for AIN3
			0*	DISABLED (read-write) Disable the open-load detection circuit.

18-cell battery-cell controller IC

Table 329. PRMM_AIN_OL_CFG register - AINx open-load detection enable (address 180Bh)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	ENABLED (read-write) Enable the open-load detection circuit.
2	AIN2EN	R/W		Open-load detection circuit for AIN2
			0*	DISABLED (read-write) Disable the open-load detection circuit.
			1	ENABLED (read-write) Enable the open-load detection circuit.
1	AIN1EN R/W	R/W		Open-load detection circuit for AIN1
			0*	DISABLED (read-write) Disable the open-load detection circuit.
			1	ENABLED (read-write) Enable the open-load detection circuit.
)	AIN0EN	R/W		Open-load detection circuit for AIN0
			0*	DISABLED (read-write) Disable the open-load detection circuit.
			1	ENABLED (read-write) Enable the open-load detection circuit.

12.1.141 PRMM_VBUF_CFG register

Voltage buffer enable

Table 330. PRMM_VBUF_CFG register - voltage buffer enable (address 180Ch) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol				rese	rved			
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol			rese	rved			VDDCEN	VAUXEN
Reset	0	0	0	0	0	0	1	1
Access	R	R	R	R	R	R	R/W	R/W

Table 331. PRMM_VBUF_CFG register - voltage buffer enable (address 180Ch)

Legend: * reset value

Bit	Symbol	Access	Value	Description			
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.			
1	VDDCEN	R/W	Voltage buffer for primary VDDC measurement				
			0 DISABLED (read-write) Voltage buffer for primary measurement is disabled.				
			1*	ENABLED (read-write) Voltage buffer for primary VDDC measurement is enabled.			
0	VAUXEN	R/W		Voltage buffer for primary VAUX measurement			
			0	DISABLED (read-write) Voltage buffer for primary VAUX measurement is disabled.			

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 331. PRMM_VBUF_CFG register - voltage buffer enable (address 180Ch)...continued

Legend: * reset value

١	3it	Symbol	Access	Value	Description
				1*	ENABLED (read-write) Voltage buffer for primary VAUX measurement is enabled.

12.1.142 PRMM_VC_OV_UV_CFG0 register

Cell voltage overvoltage and undervoltage check enable

Table 332. PRMM_VC_OV_UV_CFG0 register - cell voltage over-voltage and under-voltage check enable (address 1810h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	VC15EN	VC14EN	VC13EN	VC12EN	VC11EN	VC10EN	VC9EN	VC8EN
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol	VC7EN	VC6EN	VC5EN	VC4EN	VC3EN	VC2EN	VC1EN	VC0EN
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 333. PRMM_VC_OV_UV_CFG0 register - cell voltage over-voltage and under-voltage check enable (address 1810h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15	VC15EN	R/W		Include VC15 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC15 is not included in VC overvoltage and under-voltage checks.
			1	UV_OV (read-write) VC15 is included in VC over-voltage and under-voltage checks.
14	VC14EN	R/W		Include VC14 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC14 is not included in VC overvoltage and under-voltage checks.
			1	UV_OV (read-write) VC14 is included in VC over-voltage and under-voltage checks.
13	VC13EN	R/W		Include VC13 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC13 is not included in VC overvoltage and under-voltage checks.
			1	UV_OV (read-write) VC13 is included in VC over-voltage and under-voltage checks.
12	VC12EN	R/W		Include VC12 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC12 is not included in VC overvoltage and under-voltage checks.
			1	UV_OV (read-write) VC12 is included in VC over-voltage and under-voltage checks.
11	VC11EN	R/W		Include VC11 in VC over-voltage and under-voltage checks

18-cell battery-cell controller IC

Table 333. PRMM_VC_OV_UV_CFG0 register - cell voltage over-voltage and under-voltage check enable (address 1810h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			0*	NO_CHECK (read-write) VC11 is not included in VC overvoltage and under-voltage checks.
			1	UV_OV (read-write) VC11 is included in VC over-voltage and under-voltage checks.
10	VC10EN	R/W		Include VC10 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC10 is not included in VC overvoltage and under-voltage checks.
			1	UV_OV (read-write) VC10 is included in VC over-voltage and under-voltage checks.
9	VC9EN	R/W		Include VC9 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC9 is not included in VC over-voltage and under-voltage checks.
			1	UV_OV (read-write) VC9 is included in VC over-voltage and under-voltage checks.
8	VC8EN	R/W		Include VC8 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC8 is not included in VC over-voltage and under-voltage checks.
			1	UV_OV (read-write) VC8 is included in VC over-voltage and under-voltage checks.
7	VC7EN	R/W		Include VC7 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC7 is not included in VC over-voltage and under-voltage checks.
			1	UV_OV (read-write) VC7 is included in VC over-voltage and under-voltage checks.
6	VC6EN	R/W		Include VC6 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC6 is not included in VC overvoltage and under-voltage checks.
			1	UV_OV (read-write) VC6 is included in VC over-voltage and under-voltage checks.
5	VC5EN	R/W		Include VC5 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC5 is not included in VC overvoltage and under-voltage checks.
			1	UV_OV (read-write) VC5 is included in VC over-voltage and under-voltage checks.
4	VC4EN	R/W		Include VC4 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC4 is not included in VC overvoltage and under-voltage checks.
			1	UV_OV (read-write) VC4 is included in VC over-voltage and under-voltage checks.
3	VC3EN	R/W		Include VC3 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC3 is not included in VC overvoltage and under-voltage checks.
			1	UV_OV (read-write) VC3 is included in VC over-voltage and under-voltage checks.
2	VC2EN	R/W		Include VC2 in VC over-voltage and under-voltage checks

18-cell battery-cell controller IC

Table 333. PRMM_VC_OV_UV_CFG0 register - cell voltage over-voltage and under-voltage check enable (address 1810h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			0*	NO_CHECK (read-write) VC2 is not included in VC overvoltage and under-voltage checks.
			1	UV_OV (read-write) VC2 is included in VC over-voltage and under-voltage checks.
1	VC1EN	R/W		Include VC1 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC1 is not included in VC over-voltage and under-voltage checks.
			1	UV_OV (read-write) VC1 is included in VC over-voltage and under-voltage checks.
0	VC0EN	R/W		Include VC0 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC0 is not included in VC over-voltage and under-voltage checks.
			1	UV_OV (read-write) VC0 is included in VC over-voltage and under-voltage checks.

12.1.143 PRMM_VC_OV_UV_CFG1 register

Cell voltage over-voltage and under-voltage check enable

Table 334. PRMM_VC_OV_UV_CFG1 register - cell voltage over-voltage and under-voltage check enable (address 1811h) bit allocation

, ,								
Bit	15	14	13	12	11	10	9	8
Symbol				rese	rved			
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol			rese	rved	,		VC17EN	VC16EN
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R/W	R/W

Table 335. PRMM_VC_OV_UV_CFG1 register - cell voltage over-voltage and under-voltage check enable (address 1811h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	VC17EN	R/W		Include VC17 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC17 is not included in VC overvoltage and under-voltage checks.
			1	UV_OV (read-write) VC17 is included in VC over-voltage and under-voltage checks.
0	VC16EN	R/W		Include VC16 in VC over-voltage and under-voltage checks
			0*	NO_CHECK (read-write) VC16 is not included in VC overvoltage and under-voltage checks.

18-cell battery-cell controller IC

Table 335. PRMM_VC_OV_UV_CFG1 register - cell voltage over-voltage and under-voltage check enable (address 1811h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	UV_OV (read-write) VC16 is included in VC over-voltage and under-voltage checks.

12.1.144 PRMM_VC_OV_TH_CFG register

Upper comparator limit for VC0 to VC17

Table 336. PRMM_VC_OV_TH_CFG register - upper comparator limit for VC0 to VC17 (address 1812h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LIN	ΛΙΤ							
Reset	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W															

Table 337. PRMM_VC_OV_TH_CFG register - upper comparator limit for VC0 to VC17 (address 1812h)

Bit	Symbol	Access	Value	Description
15:0	LIMIT	R/W	7FFFh	Limit value. If this limit is reached, the OV status is activated.

12.1.145 PRMM_VC_UV0_TH_CFG register

Lower comparator limit 0 for VC0 to VC17

Table 338. PRMM_VC_UV0_TH_CFG register - lower comparator limit 0 for VC0 to VC17 (address 1813h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LIN	ΛΙΤ							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 339. PRMM_VC_UV0_TH_CFG register - lower comparator limit 0 for VC0 to VC17 (address 1813h)

Bit	Symbol	Access	Value	Description
15:0	LIMIT	R/W	0h	Limit value. If this limit is reached, the channel individual UV status is activated. Note: This limit is used for the channel individual balancing disable.

18-cell battery-cell controller IC

12.1.146 PRMM_VC_UV1_TH_CFG register

Lower comparator limit 1 for VC0 to VC17

Table 340. PRMM_VC_UV1_TH_CFG register - lower comparator limit 1 for VC0 to VC17 (address 1814h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LIN	1IT							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 341. PRMM VC UV1 TH CFG register - lower comparator limit 1 for VC0 to VC17 (address 1814h)

Bit	Symbol	Access	Value	Description
15:0	LIMIT	R/W		Limit value. If this limit is reached, the global UV status is activated. Note: This limit is used for the global balancing disable.

12.1.147 PRMM_AINO_OV_TH_CFG register

Upper comparator limit for AIN0

Table 342. PRMM_AIN0_OV_TH_CFG register - upper comparator limit for AIN0 (address 1815h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LIN	1IT							
Reset	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W															

Table 343. PRMM_AIN0_OV_TH_CFG register - upper comparator limit for AIN0 (address 1815h)

Bit	Symbol	Access	Value	Description
15:0	LIMIT	R/W	7FFFh	Limit value. If this limit is reached, the OV status is activated.

12.1.148 PRMM_AIN1_OV_TH_CFG register

Upper comparator limit for AIN1

Table 344. PRMM_AIN1_OV_TH_CFG register - upper comparator limit for AIN1 (address 1816h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LIN	1IT							
Reset	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W															

Table 345. PRMM_AIN1_OV_TH_CFG register - upper comparator limit for AIN1 (address 1816h)

				,
Bit	Symbol	Access	Value	Description
15:0	LIMIT	R/W	7FFFh	Limit value. If this limit is reached, the OV status is activated.

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

12.1.149 PRMM_AIN2_OV_TH_CFG register

Upper comparator limit for AIN2

Table 346. PRMM_AIN2_OV_TH_CFG register - upper comparator limit for AIN2 (address 1817h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LIN	1IT							
Reset	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W															

Table 347. PRMM AIN2 OV TH CFG register - upper comparator limit for AIN2 (address 1817h)

Bit	Symbol	Access	Value	Description
15:0	LIMIT	R/W	7FFFh	Limit value. If this limit is reached, the OV status is activated.

12.1.150 PRMM_AIN3_OV_TH_CFG register

Upper comparator limit for AIN3

Table 348. PRMM_AIN3_OV_TH_CFG register - upper comparator limit for AIN3 (address 1818h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LIN	ΛΙΤ							
Reset	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W															

Table 349. PRMM_AIN3_OV_TH_CFG register - upper comparator limit for AIN3 (address 1818h)

Bit	Symbol	Access	Value	Description
15:0	LIMIT	R/W	7FFFh	Limit value. If this limit is reached, the OV status is activated.

12.1.151 PRMM_AINA_OV_TH_CFG register

Upper comparator limit for AINA

Table 350. PRMM_AINA_OV_TH_CFG register - upper comparator limit for AINA (address 1819h) bit allocation

anoound																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LIN	ΛIT							
Reset	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Access	R/W															

Table 351. PRMM_AINA_OV_TH_CFG register - upper comparator limit for AINA (address 1819h)

Bit	Symbol	Access	Value	Description
15:0	LIMIT	R/W	7FFFh	Limit value. If this limit is reached, the OV status is activated.

18-cell battery-cell controller IC

12.1.152 PRMM_AIN0_UV_TH_CFG register

Lower comparator limit for AIN0

Table 352. PRMM_AIN0_UV_TH_CFG register - lower comparator limit for AIN0 (address 181Ah) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LIN	1IT							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Access	R/W															

Table 353. PRMM_AIN0_UV_TH_CFG register - lower comparator limit for AIN0 (address 181Ah)

Bit	Symbol	Access	Value	Description
15:0	LIMIT	R/W	8001h	Limit value. If this limit is reached, the UV status is activated.

12.1.153 PRMM_AIN1_UV_TH_CFG register

Lower comparator limit for AIN1

Table 354. PRMM_AIN1_UV_TH_CFG register - lower comparator limit for AIN1 (address 181Bh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LIN	ΛΙΤ							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Access	R/W															

Table 355. PRMM_AIN1_UV_TH_CFG register - lower comparator limit for AIN1 (address 181Bh)

Bit	Symbol	Access	Value	Description
15:0	LIMIT	R/W	8001h	Limit value. If this limit is reached, the UV status is activated.

12.1.154 PRMM_AIN2_UV_TH_CFG register

Lower comparator limit for AIN2

Table 356. PRMM_AIN2_UV_TH_CFG register - lower comparator limit for AIN2 (address 181Ch) bit

anoound																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LIN	ΛIT							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Access	R/W															

Table 357. PRMM_AIN2_UV_TH_CFG register - lower comparator limit for AIN2 (address 181Ch)

Bit	Symbol	Access	Value	Description
15:0	LIMIT	R/W	8001h	Limit value. If this limit is reached, the UV status is activated.

18-cell battery-cell controller IC

12.1.155 PRMM_AIN3_UV_TH_CFG register

Lower comparator limit for AIN3

Table 358. PRMM_AIN3_UV_TH_CFG register - lower comparator limit for AIN3 (address 181Dh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LIN	1IT							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Access	R/W															

Table 359. PRMM_AIN3_UV_TH_CFG register - lower comparator limit for AIN3 (address 181Dh)

Bit	Symbol	Access	Value	Description
15:0	LIMIT	R/W	8001h	Limit value. If this limit is reached, the UV status is activated.

12.1.156 PRMM_AINA_UV_TH_CFG register

Lower comparator limit for AINA

Table 360. PRMM_AINA_UV_TH_CFG register - lower comparator limit for AINA (address 181Eh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								LIN	ΛΙΤ							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Access	R/W															

Table 361. PRMM_AINA_UV_TH_CFG register - lower comparator limit for AINA (address 181Eh)

Bit	Symbol	Access	Value	Description
15:0	LIMIT	R/W	8001h	Limit value. If this limit is reached, the UV status is activated.

12.1.157 PRMM_CAL_CRC register

CRC over calibration data

Table 362. PRMM_CAL_CRC register - CRC over calibration data (address 1820h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								CF	RC							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R/W															

Table 363. PRMM_CAL_CRC register - CRC over calibration data (address 1820h)

14510 000	· · · · · · · · · · · · · · · · · · ·	rogiotor orto	Ovor ounbrution	data (dadi 000 i 020ii)
Bit	Symbol	Access	Value	Description
15:0	CRC	R/W	0h	CRC over calibration data. The CRC calculation runs automatically every time when a synchronous measurement cycle is started and when the calibration data is read from the NVM.

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 363. PRMM_CAL_CRC register - CRC over calibration data (address 1820h)...continued

Bit	Symbol	Access	Value	Description
			BEEFh	CALIBCRC (read-write) The expected value of the calibration CRC.

12.1.158 PRMM_CFG_CRC register

CRC over configuration values

Table 364. PRMM_CFG_CRC register - CRC over configuration values (address 1821h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								CF	RC							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 365. PRMM_CFG_CRC register - CRC over configuration values (address 1821h)

Bit	Symbol	Access	Value	Description
15:0	CRC	R	0h	This CRC value is recalculated with any transition into Active mode, with any write to a covered register and with any read to this register. The updated CRC value is available latest 100 μ s after the last write. The CRC value is application specific and must be re-calculated by the MCU. The used polynomial is: D175h (+1) = $X^{16} + X^{15} + X^{13} + X^{9} + X^{7} + X^{6} + X^{5} + X^{3} + X^{1} + 1$.
				Following registers are included: PRMM_CFG, PRMM_PER_CTRL, PRMM_VC_CFG0, PRMM_VC_CFG1, PRMM_AIN_CFG, PRMM_VBUF_CFG, PRMM_VC_OV_UV_CFG0, PRMM_VC_OV_UV_CFG1, PRMM_VC_OV_TH_CFG, PRMM_VC_UV1_TH_CFG, PRMM_AIN0_OV_TH_CFG, PRMM_AIN1_OV_TH_CFG, PRMM_AIN2_OV_TH_CFG, PRMM_AIN3_OV_TH_CFG, PRMM_AINA_OV_TH_CFG, PRMM_AIN0_UV_TH_CFG, PRMM_AIN1_UV_TH_CFG, PRMM_AIN2_UV_TH_CFG, PRMM_AIN3_UV_TH_CFG, PRMM_AINA_UV_TH_CFG.

12.1.159 PRMM_VC_OV_FLT_STAT0 register

Cell voltage over-voltage status

Table 366. PRMM_VC_OV_FLT_STAT0 register - cell voltage over-voltage status (address 1822h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	VC15	VC14	VC13	VC12	VC11	VC10	VC9	VC8
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 366. PRMM_VC_OV_FLT_STAT0 register - cell voltage over-voltage status (address 1822h) bit allocation...continued

Bit	7	6	5	4	3	2	1	0
Symbol	VC7	VC6	VC5	VC4	VC3	VC2	VC1	VC0
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 367. PRMM_VC_OV_FLT_STAT0 register - cell voltage over-voltage status (address 1822h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15	VC15	R		Over-voltage status VC15 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
14	VC14	R		Over-voltage status VC14 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
13	VC13	R		Over-voltage status VC13 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
12	VC12	R		Over-voltage status VC12 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
11	VC11	R		Over-voltage status VC11 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
10	VC10	R		Over-voltage status VC10 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
9	VC9	R		Over-voltage status VC9 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
8	VC8	R		Over-voltage status VC8 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
7	VC7	R		Over-voltage status VC7 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
6	VC6	R		Over-voltage status VC6 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
5	VC5	R		Over-voltage status VC5 Read clears bit.
			0*	NO_OV (read) No over-voltage detected

18-cell battery-cell controller IC

Table 367. PRMM_VC_OV_FLT_STAT0 register - cell voltage over-voltage status (address 1822h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	OV (read) Over-voltage detected
4	VC4	R		Over-voltage status VC4 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
3	VC3	R		Over-voltage status VC3 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
2	VC2	R		Over-voltage status VC2 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
1	VC1	R		Over-voltage status VC1 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
0	VC0	R		Over-voltage status VC0 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected

12.1.160 PRMM_VC_OV_FLT_STAT1 register

Cell voltage over-voltage status

Table 368. PRMM_VC_OV_FLT_STAT1 register - cell voltage over-voltage status (address 1823h) bit allocation

anouano	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Bit	15	14	13	12	11	10	9	8
Symbol				rese	rved			
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol			rese	rved	,		VC17	VC16
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 369. PRMM_VC_OV_FLT_STAT1 register - cell voltage over-voltage status (address 1823h) Legend: * reset value

•						
Bit	Symbol	Access	Value	Description		
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.		
1	VC17	R		Over-voltage status VC17 Read clears bit.		
			0*	NO_OV (read) No over-voltage detected		
			1	OV (read) Over-voltage detected		
0	VC16	R		Over-voltage status VC16 Read clears bit.		

18-cell battery-cell controller IC

Table 369. PRMM_VC_OV_FLT_STAT1 register - cell voltage over-voltage status (address 1823h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description	
			0*	NO_OV (read) No over-voltage detected	
			1	OV (read) Over-voltage detected	

12.1.161 PRMM_VC_UV0_FLT_STAT0 register

Cell voltage under-voltage status regarding limit 0

Table 370. PRMM_VC_UV0_FLT_STAT0 register - cell voltage under-voltage status regarding limit 0 (address 1824h) bit allocation

on anocation								
Bit	15	14	13	12	11	10	9	8
Symbol	VC15	VC14	VC13	VC12	VC11	VC10	VC9	VC8
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	VC7	VC6	VC5	VC4	VC3	VC2	VC1	VC0
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 371. PRMM_VC_UV0_FLT_STAT0 register - cell voltage under-voltage status regarding limit 0 (address 1824h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15	VC15	R		Under-voltage status VC15 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
14	VC14	R		Under-voltage status VC14 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
13	VC13	R		Under-voltage status VC13 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
12	VC12	R		Under-voltage status VC12 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
11	VC11	R		Under-voltage status VC11 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
10	VC10	R		Under-voltage status VC10 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
9	VC9	R		Under-voltage status VC9 Read clears bit.

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 371. PRMM_VC_UV0_FLT_STAT0 register - cell voltage under-voltage status regarding limit 0 (address 1824h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
8	VC8	R		Under-voltage status VC8 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
7	VC7	R		Under-voltage status VC7 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
6	VC6	R		Under-voltage status VC6 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
5	VC5	R		Under-voltage status VC5 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
		1	UV (read) Under-voltage detected	
4	VC4	R		Under-voltage status VC4 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
3	VC3	R		Under-voltage status VC3 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
2	VC2	R		Under-voltage status VC2 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
1	VC1	R		Under-voltage status VC1 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
0	VC0	R		Under-voltage status VC0 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected

12.1.162 PRMM_VC_UV0_FLT_STAT1 register

Cell voltage under-voltage status regarding limit 0

Table 372. PRMM_VC_UV0_FLT_STAT1 register - cell voltage under-voltage status regarding limit 0 (address 1825h) bit allocation

DIC 41100	or anotation								
Bit	15	14	13	12	11	10	9	8	
Symbol	reserved								
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

18-cell battery-cell controller IC

Table 372. PRMM_VC_UV0_FLT_STAT1 register - cell voltage under-voltage status regarding limit 0 (address 1825h) bit allocation...continued

Bit	7	6	5	4	3	2	1	0
Symbol			VC17	VC16				
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 373. PRMM_VC_UV0_FLT_STAT1 register - cell voltage under-voltage status regarding limit 0 (address 1825h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	VC17	R		Under-voltage status VC17 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
0	VC16	R		Under-voltage status VC16 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected

12.1.163 PRMM_VC_UV1_FLT_STAT0 register

Cell voltage under-voltage status regarding limit 1

Table 374. PRMM_VC_UV1_FLT_STAT0 register - cell voltage under-voltage status regarding limit 1 (address 1826h) bit allocation

of anotation								
Bit	15	14	13	12	11	10	9	8
Symbol	VC15	VC14	VC13	VC12	VC11	VC10	VC9	VC8
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	VC7	VC6	VC5	VC4	VC3	VC2	VC1	VC0
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 375. PRMM_VC_UV1_FLT_STAT0 register - cell voltage under-voltage status regarding limit 1 (address 1826h)

Legend: * reset value

•				
Bit	Symbol	Access	Value	Description
15	VC15	R		Under-voltage status VC15 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
14	VC14	R		Under-voltage status VC14 Read clears bit.
			0*	NO_UV (read) No under-voltage detected

18-cell battery-cell controller IC

Table 375. PRMM_VC_UV1_FLT_STAT0 register - cell voltage under-voltage status regarding limit 1 (address 1826h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	UV (read) Under-voltage detected
13	VC13	R		Under-voltage status VC13 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
12	VC12	R		Under-voltage status VC12 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
11	VC11	R		Under-voltage status VC11 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
10	VC10	R		Under-voltage status VC10 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
9	VC9	R		Under-voltage status VC9 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
8	VC8	R		Under-voltage status VC8 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
7	VC7	R		Under-voltage status VC7 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
6	VC6	R		Under-voltage status VC6 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
5	VC5	R		Under-voltage status VC5 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
4	VC4	R		Under-voltage status VC4 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
3	VC3	R		Under-voltage status VC3 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
2	VC2	R		Under-voltage status VC2 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
1	VC1	R		Under-voltage status VC1 Read clears bit.

18-cell battery-cell controller IC

Table 375. PRMM_VC_UV1_FLT_STAT0 register - cell voltage under-voltage status regarding limit 1 (address 1826h)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
0	VC0	R		Under-voltage status VC0 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected

12.1.164 PRMM_VC_UV1_FLT_STAT1 register

Cell voltage under-voltage status regarding limit 1

Table 376. PRMM_VC_UV1_FLT_STAT1 register - cell voltage under-voltage status regarding limit 1 (address 1827h) bit allocation

DIC 01100								
Bit	15	14	13	12	11	10	9	8
Symbol				rese	rved			
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol			rese	rved			VC17	VC16
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 377. PRMM_VC_UV1_FLT_STAT1 register - cell voltage under-voltage status regarding limit 1 (address 1827h)

Legend: * reset value

Bit	Symbol	Access	Value	Description	
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.	
1	VC17	R		Under-voltage status VC17 Read clears bit.	
				0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected	
0	VC16	R		Under-voltage status VC16 Read clears bit.	
			0*	NO_UV (read) No under-voltage detected	
			1	UV (read) Under-voltage detected	

12.1.165 PRMM_AIN_OV_FLT_STAT register

AINx over-voltage status

Table 378. PRMM_AIN_OV_FLT_STAT register - AINx over-voltage status (address 1828h) bit allocation

					,		/	
Bit	15	14	13	12	11	10	9	8
Symbol		reserved						
Reset	0	0	0	0	0	0	0	0

18-cell battery-cell controller IC

Table 378. PRMM_AIN_OV_FLT_STAT register - AINx over-voltage status (address 1828h) bit allocation...continued

Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	reserved		AINA	AIN3	AIN2	AIN1	AIN0	
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 379. PRMM_AIN_OV_FLT_STAT register - AINx over-voltage status (address 1828h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:5	reserved	R	0h	This read-only field is reserved and always has the value 0.
4	AINA	R		Over-voltage status AINA Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
3	AIN3	R		Over-voltage status AIN3 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
2	AIN2	R		Over-voltage status AIN2 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
1	AIN1	R		Over-voltage status AIN1 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected
0	AIN0	R		Over-voltage status AIN0 Read clears bit.
			0*	NO_OV (read) No over-voltage detected
			1	OV (read) Over-voltage detected

12.1.166 PRMM_AIN_UV_FLT_STAT register

AINx under-voltage status

Table 380. PRMM_AIN_UV_FLT_STAT register - AINx under-voltage status (address 1829h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol				rese	rved			
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol		reserved		AINA	AIN3	AIN2	AIN1	AIN0
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 381. PRMM_AIN_UV_FLT_STAT register - AINx under-voltage status (address 1829h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:5	reserved	R	0h	This read-only field is reserved and always has the value 0.
4	AINA	R		Under-voltage status AINA Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
3	AIN3	R		Under-voltage status AIN3 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
2	AIN2	N2 R		Under-voltage status AIN2 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
I	AIN1	R		Under-voltage status AIN1 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected
)	AIN0	R		Under-voltage status AIN0 Read clears bit.
			0*	NO_UV (read) No under-voltage detected
			1	UV (read) Under-voltage detected

12.1.167 PRMM_MEAS_STAT register

Measurement status

Table 382. PRMM_MEAS_STAT register - measurement status (address 183Eh) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	MEASFLT	COMFLT	ANAFLT	SUPPLYFLT	rese	rved	SYNCRDY	PERRDY
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol	rese	rved	APPRDYAIN3	APPRDYAIN2	APPRDYAIN1	APPRDYAIN0	APPRDYAINA	APPRDYVC
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 383. PRMM_MEAS_STAT register - measurement status (address 183Eh)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15	MEASFLT	R		Measurement fault status
			0*	NO_FLT (read) No measurement fault detected
			1	FAULT (read) Measurement fault detected
14	COMFLT	R		Communication fault status
			0*	NO_FLT (read) No communication fault detected
			1	FAULT (read) Communication fault detected.

18-cell battery-cell controller IC

Table 383. PRMM_MEAS_STAT register - measurement status (address 183Eh)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
13	ANAFLT	R		Analog fault status
			0*	NO_FLT (read) No analog fault detected
			1	FAULT (read) Analog fault detected
12	SUPPLYFLT	R		Internal/external supply fault status
			0*	NO_FLT (read) No supply error detected
			1	FAULT (read) Supply error detected
11:10	reserved	R	0h	This read-only field is reserved and always has the value 0.
9	SYNCRDY	R		Synchronous measurement data is ready for readout, the bit is cleared by a read into the safety result range.
			0*	NO_DATA (read) No data available
			1	DATA (read) Sample data available.
8	PERRDY	R		New periodic result data has been created (depending on the periodic update mode, they might need to be requested), the bit is cleared by a read to any register in the range PRMM_PER_VC0 to (PRMM_PER_VDDC + 1) if PRMM_PER_CTRL. PERCTRL is set to AUTO. If PRMM_PER_CTRL.PERCTRL is set to ONCE, a write to PRMM_PER_CTRL.PERCTRL == ONCE clears it.
			0*	NO_DATA (read) No data available
			1	DATA (read) Sample data available.
7:6	reserved	R	0h	This read-only field is reserved and always has the value 0.
5	APPRDYAIN3	R		A new AIN3 application result can be requested / captured.
			0*	NO_DATA (read) No data available (<16 sample)
			1	DATA (read) Data can be captured (>=16 samples are captured).
4	APPRDYAIN2	R		A new AIN2 application result can be requested / captured.
			0*	NO_DATA (read) No data available (<16 sample)
			1	DATA (read) Data can be captured (>=16 samples are captured).
3	APPRDYAIN1	R		A new AIN1 application result can be requested / captured.
			0*	NO_DATA (read) No data available (<16 sample)
			1	DATA (read) Data can be captured (>=16 samples are captured).
2	APPRDYAIN0	R		A new AIN0 application result can be requested / captured.
			0*	NO_DATA (read) No data available (<16 sample)
			1	DATA (read) Data can be captured (>=16 samples are captured).
1	APPRDYAINA	R		A new AINA application result can be requested / captured.
			0*	NO_DATA (read) No data available (<16 sample)
			1	DATA (read) Data can be captured (>=16 samples are captured).
0	APPRDYVC	R		A new VC application result can be requested / captured.
			0*	NO_DATA (read) No data available (<16 sample)

18-cell battery-cell controller IC

Table 383. PRMM_MEAS_STAT register - measurement status (address 183Eh)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	DATA (read) Data can be captured (>=16 samples are captured).

12.1.168 PRMM_APP_VC_CNT register

Application measurement VC sample count number

Table 384. PRMM_APP_VC_CNT register - application measurement VC sample count number (address 183Fh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								NU	JM							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 385. PRMM_APP_VC_CNT register - application measurement VC sample count number (address 183Fh)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:0	NUM	R		Number of samples used for Application result. Read clears bits.
			0000h*	LOW (read) Zero or insufficient samples, VC Application results are invalid.
			FFFFh	OVERRUN (read) Sample counter overrun, VC Application results are invalid.

12.1.169 PRMM_APP_VC0 register

Application measurement result cell 0

Table 386. PRMM_APP_VC0 register - application measurement result cell 0 (address 1840h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 387. PRMM_APP_VC0 register - application measurement result cell 0 (address 1840h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 0 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

18-cell battery-cell controller IC

12.1.170 PRMM_APP_VC1 register

Application measurement result cell 1

Table 388. PRMM_APP_VC1 register - application measurement result cell 1 (address 1841h) bit allocation

	_	_	_	3	- 111								,			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 389. PRMM_APP_VC1 register - application measurement result cell 1 (address 1841h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 1 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.171 PRMM_APP_VC2 register

Application measurement result cell 2

Table 390. PRMM_APP_VC2 register - application measurement result cell 2 (address 1842h) bit allocation

		_	_	-							•		,			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 391. PRMM_APP_VC2 register - application measurement result cell 2 (address 1842h)

		0 11		, , , , , , , , , , , , , , , , , , ,
Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 2 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.172 PRMM_APP_VC3 register

Application measurement result cell 3

Table 392. PRMM_APP_VC3 register - application measurement result cell 3 (address 1843h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 393. PRMM_APP_VC3 register - application measurement result cell 3 (address 1843h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 3 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.173 PRMM_APP_VC4 register

Application measurement result cell 4

Table 394. PRMM_APP_VC4 register - application measurement result cell 4 (address 1844h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 395. PRMM_APP_VC4 register - application measurement result cell 4 (address 1844h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 4 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.174 PRMM_APP_VC5 register

Application measurement result cell 5

Table 396. PRMM_APP_VC5 register - application measurement result cell 5 (address 1845h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 397. PRMM_APP_VC5 register - application measurement result cell 5 (address 1845h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 5 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.175 PRMM_APP_VC6 register

Application measurement result cell 6

Table 398. PRMM_APP_VC6 register - application measurement result cell 6 (address 1846h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 399. PRMM_APP_VC6 register - application measurement result cell 6 (address 1846h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 6 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.176 PRMM_APP_VC7 register

Application measurement result cell 7

Table 400. PRMM_APP_VC7 register - application measurement result cell 7 (address 1847h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 401. PRMM_APP_VC7 register - application measurement result cell 7 (address 1847h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 7 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.177 PRMM_APP_VC8 register

Application measurement result cell 8

Table 402. PRMM_APP_VC8 register - application measurement result cell 8 (address 1848h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 403. PRMM_APP_VC8 register - application measurement result cell 8 (address 1848h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 8 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.178 PRMM APP VC9 register

Application measurement result cell 9

Table 404. PRMM_APP_VC9 register - application measurement result cell 9 (address 1849h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 405. PRMM APP VC9 register - application measurement result cell 9 (address 1849h)

				,
Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 9 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.179 PRMM_APP_VC10 register

Application measurement result cell 10

Table 406. PRMM_APP_VC10 register - application measurement result cell 10 (address 184Ah) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 407. PRMM_APP_VC10 register - application measurement result cell 10 (address 184Ah)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 10 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.180 PRMM_APP_VC11 register

Application measurement result cell 11

Table 408. PRMM_APP_VC11 register - application measurement result cell 11 (address 184Bh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 409. PRMM APP VC11 register - application measurement result cell 11 (address 184Bh)

В	it	Symbol	Access	Value	Description
1:	5:0	VALUE	R	8000h	Measured voltage of cell 11 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.181 PRMM_APP_VC12 register

Application measurement result cell 12

Table 410. PRMM_APP_VC12 register - application measurement result cell 12 (address 184Ch) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							

18-cell battery-cell controller IC

Table 410. PRMM_APP_VC12 register - application measurement result cell 12 (address 184Ch) bit allocation...continued

Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 411. PRMM_APP_VC12 register - application measurement result cell 12 (address 184Ch)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 12 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.182 PRMM_APP_VC13 register

Application measurement result cell 13

Table 412. PRMM_APP_VC13 register - application measurement result cell 13 (address 184Dh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 413. PRMM APP VC13 register - application measurement result cell 13 (address 184Dh)

		- 11		,
Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 13 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.183 PRMM_APP_VC14 register

Application measurement result cell 14

Table 414. PRMM_APP_VC14 register - application measurement result cell 14 (address 184Eh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 415. PRMM APP VC14 register - application measurement result cell 14 (address 184Eh)

		- 5 - -		()
Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 14 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

18-cell battery-cell controller IC

12.1.184 PRMM_APP_VC15 register

Application measurement result cell 15

Table 416. PRMM_APP_VC15 register - application measurement result cell 15 (address 184Fh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 417. PRMM_APP_VC15 register - application measurement result cell 15 (address 184Fh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 15 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.185 PRMM_APP_VC16 register

Application measurement result cell 16

Table 418. PRMM_APP_VC16 register - application measurement result cell 16 (address 1850h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 419. PRMM_APP_VC16 register - application measurement result cell 16 (address 1850h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 16 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.186 PRMM_APP_VC17 register

Application measurement result cell 17

Table 420. PRMM_APP_VC17 register - application measurement result cell 17 (address 1851h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 421. PRMM_APP_VC17 register - application measurement result cell 17 (address 1851h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 17 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.187 PRMM_APP_AINA register

Application measurement result AINA

Table 422. PRMM_APP_AINA register - application measurement result AINA (address 1852h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 423. PRMM_APP_AINA register - application measurement result AINA (address 1852h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AINA at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.188 PRMM_APP_AIN0 register

Application measurement result AIN0

Table 424. PRMM_APP_AIN0 register - application measurement result AIN0 (address 1853h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 425. PRMM_APP_AIN0 register - application measurement result AIN0 (address 1853h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of AIN0 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.189 PRMM_APP_AIN1 register

Application measurement result AIN1

Table 426. PRMM_APP_AIN1 register - application measurement result AIN1 (address 1854h) bit allocation

		_	_	_												
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 427. PRMM_APP_AIN1 register - application measurement result AIN1 (address 1854h)

				, , , , , , , , , , , , , , , , , , ,
Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of AIN1 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.190 PRMM_APP_AIN2 register

Application measurement result AIN2

Table 428. PRMM_APP_AIN2 register - application measurement result AIN2 (address 1855h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 429. PRMM_APP_AIN2 register - application measurement result AIN2 (address 1855h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AIN2 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.191 PRMM_APP_AIN3 register

Application measurement result AIN3

Table 430. PRMM_APP_AIN3 register - application measurement result AIN3 (address 1856h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 431. PRMM_APP_AIN3 register - application measurement result AIN3 (address 1856h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AIN3 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.192 PRMM_PER_NUM register

Measurement period number of the primary periodic results

Table 432. PRMM_PER_NUM register - measurement period number of the primary periodic results (address 185Fh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								NU	JM							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

246 / 315

18-cell battery-cell controller IC

Table 433. PRMM_PER_NUM register - measurement period number of the primary periodic results (address 185Fh)

Bit	Symbol	Access	Value	Description
15:0	NUM	R	0h	Number of the periodic cycle in which the primary periodic results have been created. The value is incremented for each periodic cycle executed. The counting wraps at its limit.

12.1.193 PRMM_PER_VC0 register

Periodic measurement result cell 0

Table 434. PRMM PER VC0 register - periodic measurement result cell 0 (address 1860h) bit allocation

				3	. p								,			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 435. PRMM_PER_VC0 register - periodic measurement result cell 0 (address 1860h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 0 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.194 PRMM_PER_VC1 register

Periodic measurement result cell 1

Table 436. PRMM_PER_VC1 register - periodic measurement result cell 1 (address 1861h) bit allocation

			_													
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 437. PRMM_PER_VC1 register - periodic measurement result cell 1 (address 1861h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 1 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.195 PRMM_PER_VC2 register

Periodic measurement result cell 2

Table 438. PRMM PER VC2 register - periodic measurement result cell 2 (address 1862h) bit allocation

										- 1-			,			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 439. PRMM_PER_VC2 register - periodic measurement result cell 2 (address 1862h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 2 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.196 PRMM_PER_VC3 register

Periodic measurement result cell 3

Table 440. PRMM_PER_VC3 register - periodic measurement result cell 3 (address 1863h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 441. PRMM_PER_VC3 register - periodic measurement result cell 3 (address 1863h)

E	Bit	Symbol	Access	Value	Description
1	5:0	VALUE	R		Measured voltage of cell 3 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.197 PRMM_PER_VC4 register

Periodic measurement result cell 4

Table 442. PRMM_PER_VC4 register - periodic measurement result cell 4 (address 1864h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 443. PRMM_PER_VC4 register - periodic measurement result cell 4 (address 1864h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 4 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.198 PRMM_PER_VC5 register

Periodic measurement result cell 5

Table 444. PRMM_PER_VC5 register - periodic measurement result cell 5 (address 1865h) bit allocation

		_	_	_												
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 445. PRMM_PER_VC5 register - periodic measurement result cell 5 (address 1865h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 5 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.199 PRMM_PER_VC6 register

Periodic measurement result cell 6

Table 446. PRMM_PER_VC6 register - periodic measurement result cell 6 (address 1866h) bit allocation

				9	. p								,			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 447. PRMM_PER_VC6 register - periodic measurement result cell 6 (address 1866h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 6 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.200 PRMM_PER_VC7 register

Periodic measurement result cell 7

Table 448. PRMM_PER_VC7 register - periodic measurement result cell 7 (address 1867h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE.					_	-	
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 449. PRMM_PER_VC7 register - periodic measurement result cell 7 (address 1867h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 7 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.201 PRMM_PER_VC8 register

Periodic measurement result cell 8

Table 450. PRMM PER VC8 register - periodic measurement result cell 8 (address 1868h) bit allocation

										•			,			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 451. PRMM_PER_VC8 register - periodic measurement result cell 8 (address 1868h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 8 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.202 PRMM_PER_VC9 register

Periodic measurement result cell 9

Table 452. PRMM_PER_VC9 register - periodic measurement result cell 9 (address 1869h) bit allocation

				9	. p								,			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 453. PRMM_PER_VC9 register - periodic measurement result cell 9 (address 1869h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 9 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.203 PRMM_PER_VC10 register

Periodic measurement result cell 10

Table 454. PRMM_PER_VC10 register - periodic measurement result cell 10 (address 186Ah) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 455. PRMM_PER_VC10 register - periodic measurement result cell 10 (address 186Ah)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 10 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.204 PRMM_PER_VC11 register

Periodic measurement result cell 11

Table 456. PRMM_PER_VC11 register - periodic measurement result cell 11 (address 186Bh) bit allocation

		_	_	_												
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE.							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 457. PRMM_PER_VC11 register - periodic measurement result cell 11 (address 186Bh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 11 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.205 PRMM_PER_VC12 register

Periodic measurement result cell 12

Table 458. PRMM_PER_VC12 register - periodic measurement result cell 12 (address 186Ch) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 459. PRMM_PER_VC12 register - periodic measurement result cell 12 (address 186Ch)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 12 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.206 PRMM_PER_VC13 register

Periodic measurement result cell 13

Table 460. PRMM_PER_VC13 register - periodic measurement result cell 13 (address 186Dh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 461. PRMM_PER_VC13 register - periodic measurement result cell 13 (address 186Dh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 13 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.207 PRMM_PER_VC14 register

Periodic measurement result cell 14

Table 462. PRMM PER VC14 register - periodic measurement result cell 14 (address 186Eh) bit allocation

											•		,			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 463. PRMM_PER_VC14 register - periodic measurement result cell 14 (address 186Eh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 14 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.208 PRMM_PER_VC15 register

Periodic measurement result cell 15

Table 464. PRMM PER VC15 register - periodic measurement result cell 15 (address 186Fh) bit allocation

				5	p.						(,			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 465. PRMM_PER_VC15 register - periodic measurement result cell 15 (address 186Fh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 15 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.209 PRMM_PER_VC16 register

Periodic measurement result cell 16

Table 466. PRMM_PER_VC16 register - periodic measurement result cell 16 (address 1870h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	VALUE															
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 467. PRMM_PER_VC16 register - periodic measurement result cell 16 (address 1870h)

Bit	Symbol	Access	Value	Description									
15:0	VALUE	R		Measured voltage of cell 16 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).									

12.1.210 PRMM_PER_VC17 register

Periodic measurement result cell 17

Table 468. PRMM PER VC17 register - periodic measurement result cell 17 (address 1871h) bit allocation

											•		,			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol	VALUE															
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 469. PRMM_PER_VC17 register - periodic measurement result cell 17 (address 1871h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 17 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.211 PRMM_PER_AINA register

Periodic measurement result AINA

Table 470. PRMM_PER_AINA register - periodic measurement result AINA (address 1872h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 471. PRMM_PER_AINA register - periodic measurement result AINA (address 1872h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AINA of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.212 PRMM_PER_AIN0 register

Periodic measurement result AIN0

Table 472. PRMM_PER_AIN0 register - periodic measurement result AIN0 (address 1873h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 473. PRMM_PER_AIN0 register - periodic measurement result AIN0 (address 1873h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AIN0 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.213 PRMM_PER_AIN1 register

Periodic measurement result AIN1

Table 474. PRMM_PER_AIN1 register - periodic measurement result AIN1 (address 1874h) bit allocation

										•			•			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 475. PRMM_PER_AIN1 register - periodic measurement result AIN1 (address 1874h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AIN1 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.214 PRMM_PER_AIN2 register

Periodic measurement result AIN2

Table 476. PRMM_PER_AIN2 register - periodic measurement result AIN2 (address 1875h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	LUE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 477. PRMM_PER_AIN2 register - periodic measurement result AIN2 (address 1875h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AIN2 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.215 PRMM_PER_AIN3 register

Periodic measurement result AIN3

Table 478. PRMM_PER_AIN3 register - periodic measurement result AIN3 (address 1876h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 479. PRMM_PER_AIN3 register - periodic measurement result AIN3 (address 1876h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AIN3 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.216 PRMM_PER_PRMTEMP register

Periodic measurement result primary device temperature

Table 480. PRMM_PER_PRMTEMP register - periodic measurement result primary device temperature (address 1877h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 481. PRMM_PER_PRMTEMP register - periodic measurement result primary device temperature (address 1877h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured value of primary temperature sensor of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.217 PRMM_PER_SECVREF register

Periodic measurement result secondary voltage reference

Table 482. PRMM_PER_SECVREF register - periodic measurement result secondary voltage reference (address 1878h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 483. PRMM_PER_SECVREF register - periodic measurement result secondary voltage reference (address 1878h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of secondary reference voltage of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.218 PRMM_PER_VAUX register

Periodic measurement result auxiliary supply voltage

Table 484. PRMM_PER_VAUX register - periodic measurement result auxiliary supply voltage (address 1879h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 485. PRMM_PER_VAUX register - periodic measurement result auxiliary supply voltage (address 1879h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of VAUX of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

18-cell battery-cell controller IC

12.1.219 PRMM_PER_VDDC register

Periodic measurement result VDDC

Table 486. PRMM_PER_VDDC register - periodic measurement result VDDC (address 187Ah) bit allocation

			_								•		,			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 487. PRMM_PER_VDDC register - periodic measurement result VDDC (address 187Ah)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of VDDC of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.220 PRMM_SYNC_NUM register

Measurement period number of the synchronous results.

Table 488. PRMM_SYNC_NUM register - measurement period number of the synchronous results. (address 187Fh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								NU	JM							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 489. PRMM_SYNC_NUM register - measurement period number of the synchronous results. (address 187Fh)

Bit	Symbol	Access	Value	Description
15:0	NUM	R		Number of the synchronous cycle in which the synchronous results have been created. The value is incremented for each synchronous cycle executed. The counting wraps at its limit.

12.1.221 PRMM_SYNC_VC0 register

Synchronous measurement result cell 0

Table 490. PRMM_SYNC_VC0 register - synchronous measurement result cell 0 (address 1880h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 491. PRMM SYNC VC0 register - synchronous measurement result cell 0 (address 1880h)

		,		,
Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 0 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.222 PRMM_SYNC_VC1 register

Synchronous measurement result cell 1

Table 492. PRMM_SYNC_VC1 register - synchronous measurement result cell 1 (address 1881h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 493. PRMM_SYNC_VC1 register - synchronous measurement result cell 1 (address 1881h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 1 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.223 PRMM_SYNC_VC2 register

Synchronous measurement result cell 2

Table 494. PRMM_SYNC_VC2 register - synchronous measurement result cell 2 (address 1882h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 495. PRMM SYNC VC2 register - synchronous measurement result cell 2 (address 1882h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 2 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.224 PRMM_SYNC_VC3 register

Synchronous measurement result cell 3

Table 496. PRMM_SYNC_VC3 register - synchronous measurement result cell 3 (address 1883h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							

BMI7018

18-cell battery-cell controller IC

Table 496. PRMM_SYNC_VC3 register - synchronous measurement result cell 3 (address 1883h) bit allocation...continued

Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 497. PRMM_SYNC_VC3 register - synchronous measurement result cell 3 (address 1883h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 3 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.225 PRMM_SYNC_VC4 register

Synchronous measurement result cell 4

Table 498. PRMM_SYNC_VC4 register - synchronous measurement result cell 4 (address 1884h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 499. PRMM SYNC VC4 register - synchronous measurement result cell 4 (address 1884h)

				,
Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 4 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.226 PRMM_SYNC_VC5 register

Synchronous measurement result cell 5

Table 500. PRMM_SYNC_VC5 register - synchronous measurement result cell 5 (address 1885h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 501. PRMM SYNC VC5 register - synchronous measurement result cell 5 (address 1885h)

		,		,
Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 5 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

18-cell battery-cell controller IC

12.1.227 PRMM_SYNC_VC6 register

Synchronous measurement result cell 6

Table 502. PRMM_SYNC_VC6 register - synchronous measurement result cell 6 (address 1886h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 503. PRMM SYNC VC6 register - synchronous measurement result cell 6 (address 1886h)

				,
Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 6 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.228 PRMM_SYNC_VC7 register

Synchronous measurement result cell 7

Table 504. PRMM_SYNC_VC7 register - synchronous measurement result cell 7 (address 1887h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 505. PRMM_SYNC_VC7 register - synchronous measurement result cell 7 (address 1887h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 7 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.229 PRMM_SYNC_VC8 register

Synchronous measurement result cell 8

Table 506. PRMM_SYNC_VC8 register - synchronous measurement result cell 8 (address 1888h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 507. PRMM_SYNC_VC8 register - synchronous measurement result cell 8 (address 1888h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 8 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.230 PRMM_SYNC_VC9 register

Synchronous measurement result cell 9

Table 508. PRMM_SYNC_VC9 register - synchronous measurement result cell 9 (address 1889h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 509. PRMM_SYNC_VC9 register - synchronous measurement result cell 9 (address 1889h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 9 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.231 PRMM_SYNC_VC10 register

Synchronous measurement result cell 10

Table 510. PRMM_SYNC_VC10 register - synchronous measurement result cell 10 (address 188Ah) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		VALUE														
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 511. PRMM SYNC VC10 register - synchronous measurement result cell 10 (address 188Ah)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 10 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.232 PRMM_SYNC_VC11 register

Synchronous measurement result cell 11

Table 512. PRMM_SYNC_VC11 register - synchronous measurement result cell 11 (address 188Bh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							

BMI7018

18-cell battery-cell controller IC

Table 512. PRMM_SYNC_VC11 register - synchronous measurement result cell 11 (address 188Bh) bit allocation...continued

Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 513. PRMM_SYNC_VC11 register - synchronous measurement result cell 11 (address 188Bh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 11 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.233 PRMM_SYNC_VC12 register

Synchronous measurement result cell 12

Table 514. PRMM_SYNC_VC12 register - synchronous measurement result cell 12 (address 188Ch) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 515. PRMM_SYNC_VC12 register - synchronous measurement result cell 12 (address 188Ch)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 12 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.234 PRMM_SYNC_VC13 register

Synchronous measurement result cell 13

Table 516. PRMM_SYNC_VC13 register - synchronous measurement result cell 13 (address 188Dh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 517. PRMM SYNC VC13 register - synchronous measurement result cell 13 (address 188Dh)

		,		,
Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 13 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

18-cell battery-cell controller IC

12.1.235 PRMM_SYNC_VC14 register

Synchronous measurement result cell 14

Table 518. PRMM_SYNC_VC14 register - synchronous measurement result cell 14 (address 188Eh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 519. PRMM SYNC VC14 register - synchronous measurement result cell 14 (address 188Eh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 14 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.236 PRMM_SYNC_VC15 register

Synchronous measurement result cell 15

Table 520. PRMM_SYNC_VC15 register - synchronous measurement result cell 15 (address 188Fh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 521. PRMM_SYNC_VC15 register - synchronous measurement result cell 15 (address 188Fh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 15 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.237 PRMM_SYNC_VC16 register

Synchronous measurement result cell 16

Table 522. PRMM_SYNC_VC16 register - synchronous measurement result cell 16 (address 1890h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 523. PRMM_SYNC_VC16 register - synchronous measurement result cell 16 (address 1890h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 16 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.238 PRMM_SYNC_VC17 register

Synchronous measurement result cell 17

Table 524. PRMM_SYNC_VC17 register - synchronous measurement result cell 17 (address 1891h) bit allocation

anoound																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 525. PRMM_SYNC_VC17 register - synchronous measurement result cell 17 (address 1891h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 17 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.239 SECM_CFG register

General measurement control

Table 526. SECM_CFG register - general measurement control (address 1C00h) bit allocation

	· · · · · · · · · · · · · · · · · · ·					,			
Bit	15	14	13	12	11	10	9	8	
Symbol	BALPAUSELEN								
Reset	0	0	0	0	0	0	0	0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Bit	7	6	5	4	3	2	1	0	
Symbol			BALPAU	JSELEN			BALPAUSEC YCMODEN	MEASEN	
Reset	0	0	0	0	0	0	0	0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Table 527. SECM_CFG register - general measurement control (address 1C00h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:2	BALPAUSELEN	R/W		Pause time of balancing before measurement cycle is executed. An on-going balancing pause operation is not influenced by a change of this value. BALPAUSELEN * 10 µs
			0000h*	NO_PAUSE (read-write) No Pause.
			0001h	PAUSE_10u (read-write) Pause = 10 us

3MI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 527. SECM_CFG register - general measurement control (address 1C00h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			3FFFh	MAX (read-write) Maximum pause = 163830 us = 163 ms
1	BALPAUSECYCM ODEN	R/W		Enable balancing auto pause. This delays the start of measurements after entering Cyclic mode until the auto pause counter has elapsed. This field has no effect in secondary measurement.
			0*	DISABLED (read-write) auto pause for balancing is disabled.
			1	ENABLED (read-write) auto pause for balancing is enabled. Measurements are started when the auto pause counter is elapsed.
0	MEASEN	R/W		Enable the data acquisition. Setting this bit to zero initiates a result clear and invalidate action (this includes resetting all ready bits). This bit is cleared when entering Sleep mode. Cyclic measurements are always executed, regardless of the value of this bit. Balancing is not stopped automatically (if in Active mode), as it would be permanently inhibited while measurement is active. If balancing shall be paused, do so via the balancing control.
			0*	DISABLED (read-write) Data acquisition disabled
			1	ENABLED (read-write) Data acquisition enabled

12.1.240 SECM_APP_CTRL register

Application measurement control

Table 528. SECM_APP_CTRL register - application measurement control (address 1C01h) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	PAUSEBAL			reserved			CAPAIN7	CAPAIN6
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W
Bit	7	6	5	4	3	2	1	0
Symbol	CAPAIN5	CAPAIN4	CAPAIN3	CAPAIN2	CAPAIN1	CAPAIN0	CAPAINA	CAPVC
Reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

Table 529. SECM_APP_CTRL register - application measurement control (address 1C01h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15	PAUSEBAL	W		Pause the balancing during this capture cycle. If balancing was not paused before, the start of data capture is delayed until the auto pause timer has elapsed. This field has no effect in secondary measurement.
			0*	NO_PAUSE (write) Continue with balancing.
			1	PAUSE (write) Pause the balancing during this capture cycle.
14:10	reserved	W	0h	This read-only field is reserved and always has the value 0.

18-cell battery-cell controller IC

Table 529. SECM_APP_CTRL register - application measurement control (address 1C01h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
9	CAPAIN7	W		Capture command for AIN7. When used in combination with PAUSEBAL, a pause of the balancing is forced.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
8	CAPAIN6	W		Capture command for AIN6. When used in combination with PAUSEBAL, a pause of the balancing is forced.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
7	CAPAIN5	W		Capture command for AIN5. When used in combination with PAUSEBAL, a pause of the balancing is forced.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
6	CAPAIN4	W		Capture command for AIN4. When used in combination with PAUSEBAL, a pause of the balancing is forced.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
5	CAPAIN3	W		AIN3 is not part of the secondary measurement chain. Still, when used in combination with PAUSEBAL, a pause of the balancing is forced. The allows to keep the primary and secondary measurement chain synchronized.
		0*	NO_CAP (write) Measurements are not captured.	
		1	CAP (write) Measurements are captured.	
4	CAPAIN2	W		AIN2 is not part of the secondary measurement chain. Still, when used in combination with PAUSEBAL, a pause of the balancing is forced. The allows to keep the primary and secondary measurement chain synchronized.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
3	CAPAIN1	W		AIN1 is not part of the secondary measurement chain. Still, when used in combination with PAUSEBAL, a pause of the balancing is forced. The allows to keep the primary and secondary measurement chain synchronized.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
2	CAPAIN0	W		AIN0 is not part of the secondary measurement chain. Still, when used in combination with PAUSEBAL, a pause of the balancing is forced. The allows to keep the primary and secondary measurement chain synchronized.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.
1	CAPAINA	W		AINA is not part of the secondary measurement chain. Still, when used in combination with PAUSEBAL, a pause of the balancing is forced. The allows to keep the primary and secondary measurement chain synchronized.
			0*	NO CAP (write) Measurements are not captured.

18-cell battery-cell controller IC

Table 529. SECM_APP_CTRL register - application measurement control (address 1C01h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			1	CAP (write) Measurements are captured.
0	CAPVC	W		Trigger the balancing auto pause if set in combination with the PAUSEBAL bit. Needed to keep primary and secondary measurement synchron when used via the ALLM access. In primary: Capture the application measurement value of the cell terminal measurements.
			0*	NO_CAP (write) Measurements are not captured.
			1	CAP (write) Measurements are captured.

12.1.241 SECM_PER_CTRL register

Periodic measurement control

Table 530. SECM_PER_CTRL register - periodic measurement control (address 1C02h) bit allocation

14510 000		it_o iite iogio	to: poriodio	portodio mododioment control (dadroco 1902m) bit direction					
Bit	15	14	13	12	11	10	9	8	
Symbol		reserved		PERCTRL		reserved		PERLEN	
Reset	0	0	0	0	0	0	0	0	
Access	R	R	R	R/W	R	R	R	R/W	
Bit	7	6	5	4	3	2	1	0	
Symbol				PER	LEN				
Reset	0	0	0	1	0	0	0	0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Table 531. SECM_PER_CTRL register - periodic measurement control (address 1C02h)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:13	reserved	R	0h	This read-only field is reserved and always has the value 0.
12	PERCTRL	R/W		Control the periodic result behavior.
			0*	AUTO (read-write) Periodic results are automatically updated
			1	ONCE (read-write) Periodic results are updated once with the last results. (each write updates the results).
11:9	reserved	R	0h	This read-only field is reserved and always has the value 0.
8:0	PERLEN	R/W		Number of measurements for one periodic measurement. The minimum is 16. Writing a value lower than 16 leads to a 16 in the register.
			010h*	PER_16 (read-write) minimum value = 16 measurements per period
			011h	PER_17 (read-write) 17 measurements per period
			1FFh	PER_MAX (read-write) maximum value = 511 measurements per period

18-cell battery-cell controller IC

12.1.242 SECM_SYNC_CTRL register

Synchronous measurement control

Table 532. SECM_SYNC_CTRL register - synchronous measurement control (address 1C03h) bit allocation

						`	,		
Bit	15	14	13	12	11	10	9	8	
Symbol	PAUSEBAL			VBOLNUM			rese	reserved	
Reset	0	1	1	1	1	1	0	0	
Access	W	R/W	R/W	R/W	R/W	R/W	W	W	
Bit	7	6	5	4	3	2	1	0	
Symbol			rese	rved			FASTVB	SYNCCYC	
Reset	0	0	0	0	0	0	0	0	
Access	W	W	W	W	W	W	W	W	

Table 533. SECM_SYNC_CTRL register - synchronous measurement control (address 1C03h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15	PAUSEBAL	W		Pause the balancing during this capture cycle. If balancing was not paused before, the start of data capture is delayed until the auto pause timer has elapsed. If no capture cycle is started this bit is ignored.
			0*	NO_PAUSE (write) Continue with balancing.
			1	PAUSE (write) Pause the balancing during this capture cycle.
14:10	VBOLNUM	R/W		VB number for which the open load detection is enabled. 0 to 17 channel for which the open load detection is enabled. 18 to 29 reserved (no open load detection mechanism is enabled) 30 the open load detection is enabled for the currently measured channel.
			1Fh*	DISABLED (read-write) Open-load detection is disabled
9:2	reserved	W	0h	This read-only field is reserved and always has the value 0.
1	FASTVB	W		Start a fast VB measurement cycle. The fast VB measurement is a measurement of the VBx voltages. The fast VB measurement is initiated by setting the bit SECM_SYNC_CTRL.FASTVB. ADC2B measures each enabled VBx voltage for 28×x×t _{s(meas)} . Read as zero.
			0*	NO_FAST (write) No new start of a fast VB measurement cycle.
			0*	STATUS (read) Read as zero.
			1	FAST (write) Start a new fast VB measurement cycle.
0	SYNCCYC	W		Start a synchronous measurement cycle. In this cycle the CT and CB voltages are measured and stored as matching pairs. If no VB channel is enabled or if set during a running synchronous measurement cycle or a running Fast VB cycle, the set is ignored. Read as zero.
			0*	NO_START (write) No new start a synchronous measurement cycle.

18-cell battery-cell controller IC

Table 533. SECM_SYNC_CTRL register - synchronous measurement control (address 1C03h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			0* STATUS (read) Read as zero.	
			1	START (write) Start a synchronous measurement cycle.

12.1.243 SECM_VB_CFG0 register

Balance voltage measurement enable

Table 534. SECM VB CFG0 register - balance voltage measurement enable (address 1C08h) bit allocation

	0_0	_or oo rogioto	. Daidilloo re	balance voltage measurement enable (address 1990ii) bit anotation				
Bit	15	14	13	12	11	10	9	8
Symbol	VB15EN	VB14EN	VB13EN	VB12EN	VB11EN	VB10EN	VB9EN	VB8EN
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol	VB7EN	VB6EN	VB5EN	VB4EN	VB3EN	VB2EN	VB1EN	VB0EN
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 535. SECM_VB_CFG0 register - balance voltage measurement enable (address 1C08h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15	VB15EN	R/W		Enable measurement of balance voltage 15. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
14	VB14EN	R/W		Enable measurement of balance voltage 14. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
13	VB13EN	R/W		Enable measurement of balance voltage 13. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
12	VB12EN	R/W		Enable measurement of balance voltage 12. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
11	VB11EN	R/W		Enable measurement of balance voltage 11. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
10	VB10EN	R/W		Enable measurement of balance voltage 10. Changes to this bit during active measurement can lead to undefined results.

18-cell battery-cell controller IC

Table 535. SECM_VB_CFG0 register - balance voltage measurement enable (address 1C08h)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
9	VB9EN	R/W		Enable measurement of balance voltage 9. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
8	VB8EN	R/W		Enable measurement of balance voltage 8. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
7	VB7EN	R/W		Enable measurement of balance voltage 7. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
6	VB6EN	R/W		Enable measurement of balance voltage 6. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
5	VB5EN	R/W		Enable measurement of balance voltage 5. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
4	VB4EN	R/W		Enable measurement of balance voltage 4. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
3	VB3EN	R/W		Enable measurement of balance voltage 3. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
2	VB2EN	R/W		Enable measurement of balance voltage 2. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
1	VB1EN	R/W		Enable measurement of balance voltage 1. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
0	VB0EN	R/W		Enable measurement of balance voltage 0. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled

18-cell battery-cell controller IC

12.1.244 SECM_VB_CFG1 register

Balance voltage measurement enable

Table 536. SECM_VB_CFG1 register - balance voltage measurement enable (address 1C09h) bit allocation

						(, , , , , , , , , , , , , , , , , , , ,	
Bit	15	14	13	12	11	10	9	8
Symbol				rese	rved			
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol			rese	rved			VB17EN	VB16EN
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R/W	R/W

Table 537. SECM_VB_CFG1 register - balance voltage measurement enable (address 1C09h) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	VB17EN	R/W		Enable measurement of balance voltage 17. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled
0	VB16EN	R/W		Enable measurement of balance voltage 16. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled

12.1.245 SECM_AIN_CFG register

Measurement enables for extra channel

Table 538. SECM_AIN_CFG register - measurement enables for extra channel (address 1C0Ah) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	RATIOME	TRICAIN7	RATIOME	TRICAIN6	RATIOME	TRICAIN5	RATIOMETRICAIN4	
Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol	FLTAPPINV		reserved		AIN7EN	AIN6EN	AIN5EN	AIN4EN
Reset	1	0	0	0	0	0	0	0
Access	R/W	R	R	R	R/W	R/W	R/W	R/W

18-cell battery-cell controller IC

Table 539. SECM_AIN_CFG register - measurement enables for extra channel (address 1C0Ah) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:14	RATIOMETRICAIN7	R/W		Reference selection for AIN7. Changes to these bits during active measurement can lead to undefined results.
			00*	SECVREF (read-write) Absolute (SECVREF)
			01	RESERVED (read-write) reserved
			10	VAUX (read-write) Ratiometric (VAUX)
			11	VDDC (read-write) Ratiometric (VDDC)
13:12	RATIOMETRICAIN6	R/W		Reference selection for AIN6. Changes to these bits during active measurement can lead to undefined results.
			00*	SECVREF (read-write) Absolute (SECVREF)
			01	RESERVED (read-write) reserved
			10	VAUX (read-write) Ratiometric (VAUX)
			11	VDDC (read-write) Ratiometric (VDDC)
11:10	RATIOMETRICAIN5	R/W		Reference selection for AIN5. Changes to these bits during active measurement can lead to undefined results.
			00*	SECVREF (read-write) Absolute (SECVREF)
			01	RESERVED (read-write) reserved
			10	VAUX (read-write) Ratiometric (VAUX)
			11	VDDC (read-write) Ratiometric (VDDC)
9:8	RATIOMETRICAIN4	R/W		Reference selection for AIN4. Changes to these bits during active measurement can lead to undefined results.
			00*	SECVREF (read-write) Absolute (SECVREF)
			01	RESERVED (read-write) reserved
			10	VAUX (read-write) Ratiometric (VAUX)
			11	VDDC (read-write) Ratiometric (VDDC)
7	FLTAPPINV	R/W		Invalidate AINx application results in case of fault.
			0	VALID (read-write) AINx application results are not invalidated in case of a fault
			1*	INVALID (read-write) AINx application results are invalidated when a fault is detected.
6:4	reserved	R	0h	This read-only field is reserved and always has the value 0.
3	AIN7EN	R/W		Enable measurement of AIN7. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled. If a GPIO output function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in the GPIO output enable bit.
2	AIN6EN	R/W		Enable measurement of AIN6. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled. If a GPIO output function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in the GPIO output enable bit.

18-cell battery-cell controller IC

Table 539. SECM_AIN_CFG register - measurement enables for extra channel (address 1C0Ah)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
1	AIN5EN	R/W		Enable measurement of AIN5. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled. If a GPIO output function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in the GPIO output enable bit.
0	AIN4EN	R/W		Enable measurement of AIN4. Changes to this bit during active measurement can lead to undefined results.
			0*	DISABLED (read-write) Measurement disabled
			1	ENABLED (read-write) Measurement enabled. If a GPIO output function is enabled on this GPIO, the GPIO output is automatically disabled. This is not reflected in the GPIO output enable bit.

12.1.246 SECM_AIN_OL_CFG register

AINx open-load detection enable

Table 540. SECM_AIN_OL_CFG register - AINx open-load detection enable (address 1C0Bh) bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol				rese	rved			
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol		rese	rved		AIN7EN	AIN6EN	AIN5EN	AIN4EN
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R/W	R/W	R/W	R/W

Table 541. SECM_AIN_OL_CFG register - AINx open-load detection enable (address 1C0Bh) Legend: * reset value

Bit	Symbol	Access	Value	Description
15:4	reserved	R	0h	This read-only field is reserved and always has the value 0.
3	AIN7EN R/W			open-load detection circuit for AIN7
			0*	DISABLED (read-write) Disable the open-load detection circuit.
			1	ENABLED (read-write) Enable the open-load detection circuit.
2	AIN6EN	R/W		open-load detection circuit for AIN6
			0*	DISABLED (read-write) Disable the open-load detection circuit.
			1	ENABLED (read-write) Enable the open-load detection circuit.
1	AIN5EN	R/W		open-load detection circuit for AIN5

18-cell battery-cell controller IC

Table 541. SECM_AIN_OL_CFG register - AINx open-load detection enable (address 1C0Bh)...continued Legend: * reset value

Bit	Symbol	Access	Value	Description
			0*	DISABLED (read-write) Disable the open-load detection circuit.
			1	ENABLED (read-write) Enable the open-load detection circuit.
0	AIN4EN	R/W		open-load detection circuit for AIN4
			0*	DISABLED (read-write) Disable the open-load detection circuit.
			1	ENABLED (read-write) Enable the open-load detection circuit.

12.1.247 SECM_VBUF_CFG register

Voltage buffer enable

Table 542. SECM_VBUF_CFG register - voltage buffer enable (address 1C0Ch) bit allocation

					•			
Bit	15	14	13	12	11	10	9	8
Symbol				rese	rved			
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol			rese	rved			VDDCEN	VAUXEN
Reset	0	0	0	0	0	0	1	1
Access	R	R	R	R	R	R	R/W	R/W

Table 543. SECM_VBUF_CFG register - voltage buffer enable (address 1C0Ch)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15:2	reserved	R	0h	This read-only field is reserved and always has the value 0.
1	VDDCEN	R/W		Enable the voltage buffer for secondary VDDC measurement.
			0	DISABLED (read-write) Voltage buffer for VDDC is disabled.
			1*	ENABLED (read-write) Voltage buffer for VDDC is enabled.
0	VAUXEN	R/W		Enable the voltage buffer for secondary VAUX measurement.
			0	DISABLED (read-write) Voltage buffer for VAUX is disabled.
			1*	ENABLED (read-write) Voltage buffer for VAUX is enabled.

12.1.248 SECM_CAL_CRC register

CRC over calibration data

Table 544. SECM_CAL_CRC register - CRC over calibration data (address 1C20h) bit allocation

		_	_	_					•		,					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								CF	RC							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 544. SECM_CAL_CRC register - CRC over calibration data (address 1C20h) bit allocation...continued

		_	_	_					•		,						
Access	R/W	l															

Table 545. SECM_CAL_CRC register - CRC over calibration data (address 1C20h)

Bit	Symbol	Access	Value	Description
15:0	CRC	R/W		CRC over calibration data. The CRC calculation runs automatically every time when a synchronous measurement cycle is started and when the calibration data is read from the NVM.
			BEEFh	CALIBCRC (read-write) The expected value of the calibration CRC.

12.1.249 SECM_CFG_CRC register

CRC over configuration values

Table 546. SECM_CFG_CRC register - CRC over configuration values (address 1C21h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								CF	RC							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 547. SECM CFG CRC register - CRC over configuration values (address 1C21h)

Table 34	7. SECWI_CI G_CICC	register - Cito	over configuration	on values (address 102 m)
Bit	Symbol	Access	Value	Description
15:0	CRC	R	Oh	This CRC value is recalculated with any transition into Active mode, with any write to a covered register and with any read to this register. The updated CRC value is available latest 100 µs after the last write. The CRC value is application specific and must be re-calculated by the MCU. The used polynomial is: D175h (+1) = $X^{16} + X^{15} + X^{13} + X^9 + X^7 + X^6 + X^5 + X^3 + X^1 + 1$. Following registers are included: SECM_CFG, SECM_PER_CTRL, SECM_VB_CFG0, SECM_VB_CFG1, SECM_AIN_CFG, SECM_VBUF_CFG.

12.1.250 SECM_MEAS_STAT register

Measurement status

Table 548. SECM_MEAS_STAT register - measurement status (address 1C3Eh) bit allocation

	_				(,	-	
Bit	15	14	13	12	11	10	9	8
Symbol	MEASFLT	COMFLT	ANAFLT	SUPPLYFLT	reserved	FASTVBRDY	SYNCRDY	PERRDY
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol		rese	rved		APPRDYAIN7	APPRDYAIN6	APPRDYAIN5	APPRDYAIN4
Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 549. SECM_MEAS_STAT register - measurement status (address 1C3Eh)

Legend: * reset value

Bit	Symbol	Access	Value	Description
15	MEASFLT	R		Measurement fault status
			0*	NO_FLT (read) No measurement fault detected
			1	FAULT (read) Measurement fault detected
14	COMFLT	R		Communication fault status
			0*	NO_FLT (read) No communication fault detected
			1	FAULT (read) Communication fault detected.
13	ANAFLT	R		Analog fault status
			0*	NO_FLT (read) No analog fault detected
			1	FAULT (read) Analog fault detected
12	SUPPLYFLT	R		Internal/external supply fault status
			0*	NO_FLT (read) No supply error detected
			1	FAULT (read) Supply error detected
11	reserved	R	0h	This read-only field is reserved and always has the value 0.
10	FASTVBRDY	R		Fast VB measurement data is ready for readout, the bit is cleared by a read to any register in the range SECM_SYNC_VB0 to SECM_SYNC_VB17 or if a synchronous measurement cycle is completed.
			0*	NO_DATA (read) No data available
			1	DATA (read) Sample data available.
9	SYNCRDY	R		Synchronous measurement data is ready for readout, the bit is cleared by a read to any register in the range SECM_SYNC_VB0 to SECM_SYNC_VB17 or if a fast VB measurement cycle is completed.
			0*	NO_DATA (read) No data available
			1	DATA (read) Sample data available.
8	PERRDY	R		New periodic result data has been created (depending on the periodic update mode, they might need to be requested), the bit is cleared by a read to any register in the range SECM_PER_AIN4 to SECM_PER_NPNISENSE if SECM_PER_CTRL. PERCTRL is set to AUTO. If SECM_PER_CTRL.PERCTRL is set to ONCE, a write to SECM_PER_CTRL.PERCTRL == ONCE clears it.
			0*	NO_DATA (read) No data available
			1	DATA (read) Sample data available.
7:4	reserved	R	0h	This read-only field is reserved and always has the value 0.
3	APPRDYAIN7	R		A new AIN7 application result can be requested / captured.
			0*	NO_DATA (read) No data available (<16 sample)
			1	DATA (read) Data can be captured (>=16 samples are captured).
2	APPRDYAIN6	R		A new AIN6 application result can be requested / captured.
			0*	NO_DATA (read) No data available (<16 sample)
			1	DATA (read) Data can be captured (>=16 samples are captured).
1	APPRDYAIN5	R		A new AIN5 application result can be requested / captured.

18-cell battery-cell controller IC

Table 549. SECM_MEAS_STAT register - measurement status (address 1C3Eh)...continued

Legend: * reset value

Bit	Symbol	Access	Value	Description
			0*	NO_DATA (read) No data available (<16 sample)
			1	DATA (read) Data can be captured (>=16 samples are captured).
0	APPRDYAIN4	R		A new AIN4 application result can be requested / captured.
			0*	NO_DATA (read) No data available (<16 sample)
			1	DATA (read) Data can be captured (>=16 samples are captured).

12.1.251 SECM_APP_AIN4 register

Application measurement result AIN4

Table 550. SECM_APP_AIN4 register - application measurement result AIN4 (address 1C53h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 551. SECM_APP_AIN4 register - application measurement result AIN4 (address 1C53h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AIN4 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

18-cell battery-cell controller IC

12.1.252 SECM_APP_AIN5 register

Application measurement result AIN5

Table 552. SECM_APP_AIN5 register - application measurement result AIN5 (address 1C54h) bit allocation

	_	_	_	9	- 111					-			, ,			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 553. SECM_APP_AIN5 register - application measurement result AIN5 (address 1C54h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of AIN5 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.253 SECM_APP_AIN6 register

Application measurement result AIN6

Table 554. SECM_APP_AIN6 register - application measurement result AIN6 (address 1C55h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 555. SECM_APP_AIN6 register - application measurement result AIN6 (address 1C55h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AIN6 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.254 SECM_APP_AIN7 register

Application measurement result AIN7

Table 556. SECM_APP_AIN7 register - application measurement result AIN7 (address 1C56h) bit allocation

			_													
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 557. SECM APP AIN7 register - application measurement result AIN7 (address 1C56h)

		0 11		,
Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of AIN7 at the last application capture as signed integer. A read to this register sets its content to invalid (8000h).

12.1.255 SECM_PER_NUM register

Measurement period number of the secondary periodic results

Table 558. SECM_PER_NUM register - measurement period number of the secondary periodic results (address 1C5Fh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								NU	JM							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 559. SECM_PER_NUM register - measurement period number of the secondary periodic results (address 1C5Fh)

Bit	Symbol	Access	Value	Description
15:0	NUM	R	0h	Number of the periodic cycle in which the secondary periodic results have been created. The value is incremented for each periodic cycle executed. The counting wraps at its limit.

12.1.256 SECM_PER_AIN4 register

Periodic measurement result AIN4

Table 560. SECM_PER_AIN4 register - periodic measurement result AIN4 (address 1C73h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 561. SECM PER AIN4 register - periodic measurement result AIN4 (address 1C73h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AIN4 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.257 SECM_PER_AIN5 register

Periodic measurement result AIN5

Table 562. SECM PER AIN5 register - periodic measurement result AIN5 (address 1C74h) bit allocation

	_	_	_	9						- (-			,			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Table 563. SECM_PER_AIN5 register - periodic measurement result AIN5 (address 1C74h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AIN5 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.258 SECM_PER_AIN6 register

Periodic measurement result AIN6

Table 564. SECM_PER_AIN6 register - periodic measurement result AIN6 (address 1C75h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 565. SECM_PER_AIN6 register - periodic measurement result AIN6 (address 1C75h)

				,
Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AIN6 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.259 SECM_PER_AIN7 register

Periodic measurement result AIN7

Table 566. SECM_PER_AIN7 register - periodic measurement result AIN7 (address 1C76h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 567. SECM_PER_AIN7 register - periodic measurement result AIN7 (address 1C76h)

				(4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of AIN7 of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.260 SECM_PER_SECTEMP register

Periodic measurement result secondary device temperature

Table 568. SECM_PER_SECTEMP register - periodic measurement result secondary device temperature (address 1C77h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 569. SECM_PER_SECTEMP register - periodic measurement result secondary device temperature (address 1C77h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured temperature of secondary temperature sensor of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.261 SECM_PER_PRMVREF register

Periodic measurement result primary voltage reference

Table 570. SECM_PER_PRMVREF register - periodic measurement result primary voltage reference (address 1C78h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 571. SECM_PER_PRMVREF register - periodic measurement result primary voltage reference (address 1C78h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of the primary voltage reference of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.262 SECM_PER_VAUX register

Periodic measurement result auxiliary supply voltage

Table 572. SECM_PER_VAUX register - periodic measurement result auxiliary supply voltage (address 1C79h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 573. SECM_PER_VAUX register - periodic measurement result auxiliary supply voltage (address 1C79h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of VAUX of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

18-cell battery-cell controller IC

12.1.263 SECM_PER_VBAT register

Periodic measurement result VBAT

Table 574. SECM_PER_VBAT register - periodic measurement result VBAT (address 1C7Ah) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 575. SECM_PER_VBAT register - periodic measurement result VBAT (address 1C7Ah)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of VBAT of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.264 SECM_PER_VDDA register

Periodic measurement result VDDA

Table 576. SECM_PER_VDDA register - periodic measurement result VDDA (address 1C7Bh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 577. SECM_PER_VDDA register - periodic measurement result VDDA (address 1C7Bh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of VDDA of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.265 SECM_PER_VDDC register

Periodic measurement result VDDC

Table 578. SECM_PER_VDDC register - periodic measurement result VDDC (address 1C7Ch) bit allocation

		_	_	_												
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		-						VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 579. SECM_PER_VDDC register - periodic measurement result VDDC (address 1C7Ch)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of VDDC of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

18-cell battery-cell controller IC

12.1.266 SECM_PER_NPNISENSE register

Periodic measurement result NPN current sensor

Table 580. SECM_PER_NPNISENSE register - periodic measurement result NPN current sensor (address 1C7Eh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 581. SECM_PER_NPNISENSE register - periodic measurement result NPN current sensor (address 1C7Eh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of NPN current sensor of the periodic cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.267 SECM_SYNC_NUM register

Measurement number of the secondary synchronous results

Table 582. SECM_SYNC_NUM register - measurement number of the secondary synchronous results (address 1C7Fh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								NU	JM							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 583. SECM_SYNC_NUM register - measurement number of the secondary synchronous results (address 1C7Fh)

Bit	Symbol	Access	Value	Description
15:0	NUM	R	Oh	Number of the synchronous cycle in which the secondary results have been created. The value is incremented for each synchronous cycle executed. The counting wraps at its limit. The value is not incremented for FASTVB cycle.

12.1.268 SECM_SYNC_VB0 register

Synchronous measurement result from balancing pins cell 0.

Table 584. SECM_SYNC_VB0 register - synchronous measurement result from balancing pins cell 0. (address 1C80h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		-						VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

BMI7018

18-cell battery-cell controller IC

Table 585. SECM_SYNC_VB0 register - synchronous measurement result from balancing pins cell 0. (address 1C80h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 0 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.269 SECM_SYNC_VB1 register

Synchronous measurement result from balancing pins cell 1

Table 586. SECM_SYNC_VB1 register - synchronous measurement result from balancing pins cell 1 (address 1C81h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 587. SECM_SYNC_VB1 register - synchronous measurement result from balancing pins cell 1 (address 1C81h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 1 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.270 SECM_SYNC_VB2 register

Synchronous measurement result from balancing pins cell 2

Table 588. SECM_SYNC_VB2 register - synchronous measurement result from balancing pins cell 2 (address 1C82h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 589. SECM_SYNC_VB2 register - synchronous measurement result from balancing pins cell 2 (address 1C82h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 2 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

18-cell battery-cell controller IC

12.1.271 SECM_SYNC_VB3 register

Synchronous measurement result from balancing pins cell 3

Table 590. SECM_SYNC_VB3 register - synchronous measurement result from balancing pins cell 3 (address 1C83h) bit allocation

/																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 591. SECM_SYNC_VB3 register - synchronous measurement result from balancing pins cell 3 (address 1C83h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 3 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.272 SECM_SYNC_VB4 register

Synchronous measurement result from balancing pins cell 4

Table 592. SECM_SYNC_VB4 register - synchronous measurement result from balancing pins cell 4 (address 1C84h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 593. SECM_SYNC_VB4 register - synchronous measurement result from balancing pins cell 4 (address 1C84h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 4 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.273 SECM_SYNC_VB5 register

Table 594. SECM_SYNC_VB5 register - synchronous measurement result from balancing pins cell 5 (address 1C85h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE.							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 595. SECM_SYNC_VB5 register - synchronous measurement result from balancing pins cell 5 (address 1C85h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 5 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.274 SECM_SYNC_VB6 register

Synchronous measurement result from balancing pins cell 6

Table 596. SECM_SYNC_VB6 register - synchronous measurement result from balancing pins cell 6 (address 1C86h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 597. SECM_SYNC_VB6 register - synchronous measurement result from balancing pins cell 6 (address 1C86h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 6 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.275 SECM_SYNC_VB7 register

Synchronous measurement result from balancing pins cell 7

Table 598. SECM_SYNC_VB7 register - synchronous measurement result from balancing pins cell 7 (address 1C87h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 599. SECM_SYNC_VB7 register - synchronous measurement result from balancing pins cell 7 (address 1C87h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 7 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.276 SECM_SYNC_VB8 register

18-cell battery-cell controller IC

Table 600. SECM_SYNC_VB8 register - synchronous measurement result from balancing pins cell 8 (address 1C88h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 601. SECM_SYNC_VB8 register - synchronous measurement result from balancing pins cell 8 (address 1C88h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 8 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.277 SECM_SYNC_VB9 register

Synchronous measurement result from balancing pins cell 9

Table 602. SECM_SYNC_VB9 register - synchronous measurement result from balancing pins cell 9 (address 1C89h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 603. SECM_SYNC_VB9 register - synchronous measurement result from balancing pins cell 9 (address 1C89h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 9 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.278 SECM_SYNC_VB10 register

Table 604. SECM_SYNC_VB10 register - synchronous measurement result from balancing pins cell 10 (address 1C8Ah) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 605. SECM_SYNC_VB10 register - synchronous measurement result from balancing pins cell 10 (address 1C8Ah)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 10 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.279 SECM_SYNC_VB11 register

Synchronous measurement result from balancing pins cell 11

Table 606. SECM_SYNC_VB11 register - synchronous measurement result from balancing pins cell 11 (address 1C8Bh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE.							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 607. SECM_SYNC_VB11 register - synchronous measurement result from balancing pins cell 11 (address 1C8Bh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 11 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.280 SECM_SYNC_VB12 register

Synchronous measurement result from balancing pins cell 12

Table 608. SECM_SYNC_VB12 register - synchronous measurement result from balancing pins cell 12 (address 1C8Ch) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 609. SECM_SYNC_VB12 register - synchronous measurement result from balancing pins cell 12 (address 1C8Ch)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 12 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.281 SECM_SYNC_VB13 register

18-cell battery-cell controller IC

Table 610. SECM_SYNC_VB13 register - synchronous measurement result from balancing pins cell 13 (address 1C8Dh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 611. SECM_SYNC_VB13 register - synchronous measurement result from balancing pins cell 13 (address 1C8Dh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 13 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.282 SECM_SYNC_VB14 register

Synchronous measurement result from balancing pins cell 14

Table 612. SECM_SYNC_VB14 register - synchronous measurement result from balancing pins cell 14 (address 1C8Eh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 613. SECM_SYNC_VB14 register - synchronous measurement result from balancing pins cell 14 (address 1C8Eh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 14 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.283 SECM_SYNC_VB15 register

Table 614. SECM_SYNC_VB15 register - synchronous measurement result from balancing pins cell 15 (address 1C8Fh) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		VALUE														
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

18-cell battery-cell controller IC

Table 615. SECM_SYNC_VB15 register - synchronous measurement result from balancing pins cell 15 (address 1C8Fh)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R	8000h	Measured voltage of cell 15 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.284 SECM_SYNC_VB16 register

Synchronous measurement result from balancing pins cell 16

Table 616. SECM_SYNC_VB16 register - synchronous measurement result from balancing pins cell 16 (address 1C90h) bit allocation

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	.UE							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 617. SECM_SYNC_VB16 register - synchronous measurement result from balancing pins cell 16 (address 1C90h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 16 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).

12.1.285 SECM_SYNC_VB17 register

Synchronous measurement result from balancing pins cell 17

Table 618. SECM_SYNC_VB17 register - synchronous measurement result from balancing pins cell 17 (address 1C91h) bit allocation

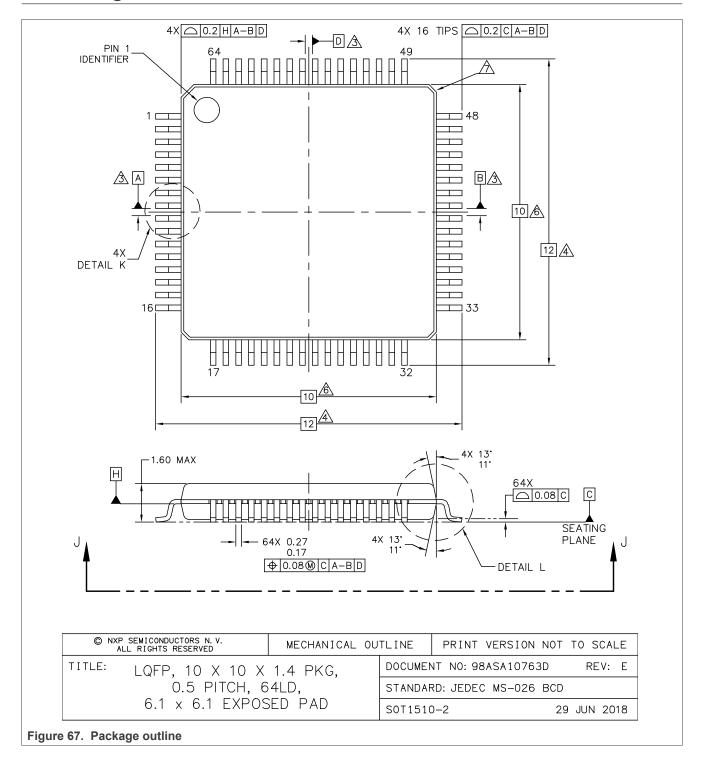
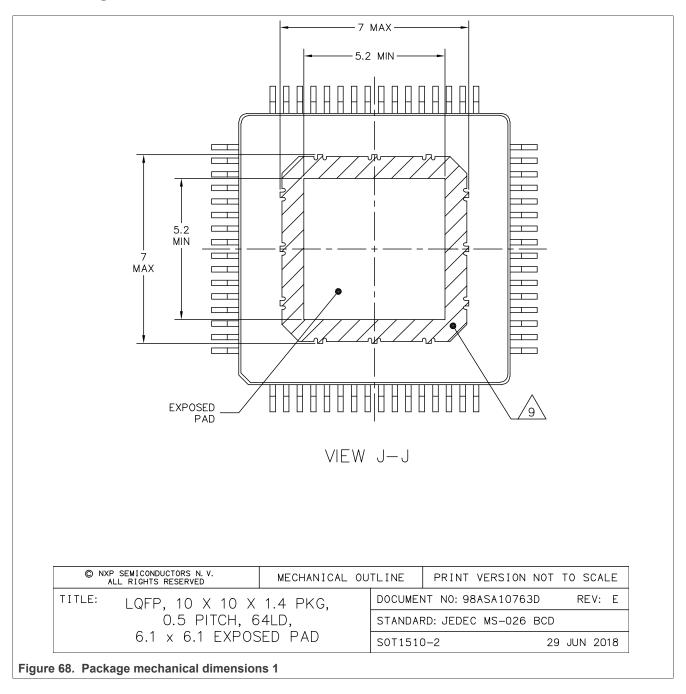
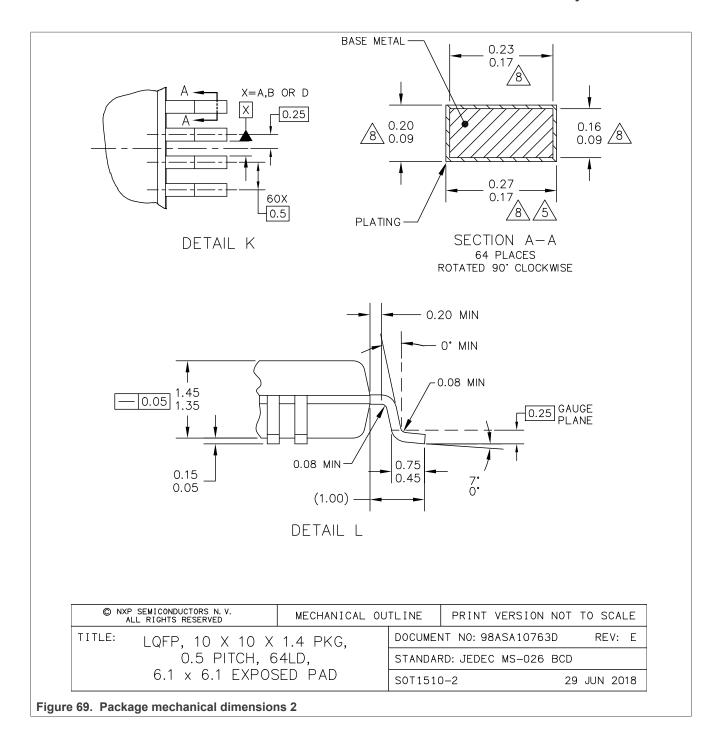

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol								VAL	UE.							
Reset	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Table 619. SECM_SYNC_VB17 register - synchronous measurement result from balancing pins cell 17 (address 1C91h)

Bit	Symbol	Access	Value	Description
15:0	VALUE	R		Measured voltage of cell 17 of the last synchronous cycle as signed integer. A read to this register sets its content to invalid (8000h).


18-cell battery-cell controller IC


13 Package outline

18-cell battery-cell controller IC

13.1 Package mechanical dimensions

18-cell battery-cell controller IC

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

 $\stackrel{\frown}{ \bigtriangleup}$ datums a, b and d to be determined at datum plane H.

 \triangle DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.

DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM DIMENSION BY MORE THAN 0.08 MM. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07 MM.

DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE. DIMENSIONS ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.

 \triangle exact shape of each corner is optional.

A THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 MM AND 0.25 MM FROM THE LEAD TIP.

A HATCHED AREA REPRESENTS POSSIBLE MOLD FLASH ON EXPOSED PAD.

KEEP OUT ZONE REPRESENTS AREA ON PCB THAT MUST NOT HAVE ANY EXPOSED METAL (EG. TRACE/VIA) FOR PCB ROUTING DUE TO THE POSSIBILITY OF SHORTING TO TIE BAR/EXPOSED PAD.

© NXP SEMICONDUCTORS N. V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE
TITLE: LQFP, 10 X 10 X	1.4 PKG,	DOCUMEN	NT NO: 98ASA10763D	REV: E
*	0.5 PITCH, 64LD,)
6.1 x 6.1 EXPOS	SED PAD	S0T1510)–2 2	9 JUN 2018

Figure 70. Package mechanical dimensions 3

18-cell battery-cell controller IC

14 Revision history

Table 620. Revision history

Document ID	Release date	Description
BMI7018 v.1.0	23 Sep 2024	Initial version

18-cell battery-cell controller IC

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition					
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.					
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.					
Product [short] data sheet	Production	This document contains the product specification.					

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

BMI7018

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

18-cell battery-cell controller IC

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

18-cell battery-cell controller IC

Tables

Tab. 1.	Ordering information	3	Tab. 48.	Register overview: Primary_Measurement_
Tab. 2.	Part numbers	3		Registers100
Tab. 3.	Pin description		Tab. 49.	Register overview: Secondary_
Tab. 4.	Explanation of symbols	10		Measurement_Registers103
Tab. 5.	Operation modes	11	Tab. 50.	SYS_CFG_CRC register - system
Tab. 6.	System version identification			configuration CRC (address 0h) bit
Tab. 7.	Software interface information			allocation104
Tab. 8.	Register overview: System_Control_		Tab. 51.	SYS_CFG_CRC register - system configuration CRC (address 0h)104
Tab. 9.	Registers Overview of faults		Tab. 52.	SYS_COM_CFG register - communication
Tab. 10.	Overview of events		1ab. 52.	
Tab. 10.		10	Tob E2	initialization (address 1h) bit allocation105
1ab. 11.	Register overview: Event_Handling_	20	Tab. 53.	SYS_COM_CFG register - communication
Tob 10	Registers		Tob E4	initialization (address 1h)
Tab. 12.	Supply overview		Tab. 54.	SYS_COM_TO_CFG register - system
Tab. 13.	Availability of supplies vs. operation modes			communication timeout (address 2h) bit
Tab. 14.	Measurement data representation		T	allocation
Tab. 15.	Measurements and references		Tab. 55.	SYS_COM_TO_CFG register - system
Tab. 16.	Overview of measurement modes			communication timeout (address 2h) 106
Tab. 17.	Invalidation of measurement results	35	Tab. 56.	SYS_SUPPLY_CFG register - supply
Tab. 18.	Register overview: Primary_Measurement_			configuration (address 3h) bit allocation 106
	Registers	38	Tab. 57.	SYS_SUPPLY_CFG register - supply
Tab. 19.	Register overview: Secondary_			configuration (address 3h) 106
	Measurement_Registers	41	Tab. 58.	SYS_MODE register - system mode
Tab. 20.	Register overview: All_Measurement_			(address 4h) bit allocation107
	Registers	42	Tab. 59.	SYS_MODE register - system mode
Tab. 21.	Register overview: Balancing_Registers	48		(address 4h)107
Tab. 22.	Balancing related registers	50	Tab. 60.	SYS_CYC_WAKEUP_CFG register -
Tab. 23.	GPIO functions	51		interval for cyclic measurements (address
Tab. 24.	Register overview: GPIO_Registers	53		5h) bit allocation107
Tab. 25.	Register overview: I2C_Registers		Tab. 61.	SYS_CYC_WAKEUP_CFG register -
Tab. 26.	Symbol description			interval for cyclic measurements (address
Tab. 27.	CRC parameters			5h)108
Tab. 28.	CRC calculation examples		Tab. 62.	SYS_TPL_CFG register - TPL
Tab. 29.	CRC check examples			configuration. (address 6h) bit allocation 108
Tab. 30.	Equation used for delay if MADD = 0		Tab. 63.	SYS_TPL_CFG register - TPL
Tab. 31.	Equation used for delay if MADD = 1			configuration. (address 6h)108
Tab. 32.	Microcontroller interface related registers		Tab. 64.	SYS_CLK_SYNC_CTRL register - clock
Tab. 33.	Limiting values			Synchronization (address 8h) bit allocation 109
Tab. 34.	Thermal characteristics		Tab. 65.	SYS CLK SYNC CTRL register - clock
Tab. 35.	Characteristics		145. 00.	Synchronization (address 8h)109
Tab. 36.	Supply components		Tab. 66.	· · · · · · · · · · · · · · · · · · ·
Tab. 37.	Cell terminal connection component values		145. 00.	identifier (address 10h) bit allocation109
Tab. 38.	AiNx filter components for temperature	00	Tab. 67.	SYS VERSION register - device silicon
100.00.	measurements	91	145. 07.	identifier (address 10h)
Tab. 39.	Component values		Tab. 68.	SYS_UID_LOW register - unique device ID
Tab. 40.	Component values		1ab. 00.	lower part (address 11h) bit allocation110
Tab. 41.	BMI7018 register map		Tab. 69.	SYS_UID_LOW register - unique device ID
Tab. 42.	Register overview: System Control	90	1ab. 09.	lower part (address 11h)110
1ab. 42.	• • • = =	06	Tab 70	SYS_UID_MID register - unique device ID
Tob 42	Registers	90	Tab. 70.	
Tab. 43.	Register overview: Event_Handling_	06	Tob 74	middle part (address 12h) bit allocation110
T-L 44	Registers		Tab. 71.	SYS_UID_MID register - unique device ID
Tab. 44.	Register overview: GPIO_Registers		T-1- 70	middle part (address 12h)
Tab. 45.	Register overview: I2C_Registers		Tab. 72.	SYS_UID_HIGH register - unique device ID
Tab. 46.	Register overview: Balancing_Registers	98	T . ==	higher part (address 13h) bit allocation 110
Tab. 47.	Register overview: All_Measurement_	400	Tab. 73.	SYS_UID_HIGH register - unique device ID
	Registers	100		higher part (address 13h)111

Tab. 74.	SYS_PROD_VER register - software interface related version of the product		Tab. 98.	FEH_WAKEUP_REASON1 register - wake-up reason register (address 40Bh) bit	
-	(address 14h) bit allocation	111	T 1 00	allocation	122
Tab. 75.	SYS_PROD_VER register - software		lab. 99.	FEH_WAKEUP_REASON1 register - wake	400
	interface related version of the product			up reason register (address 40Bh)	.123
	(address 14h)	111	Tab. 100.	FEH_MON_BIST_CTRL register - monitor	
Tab. 76.	SYS_DS_STORAGE0 register - Deep			BIST control register (address 410h) bit	
	Sleep Storage Data0. (address 80h) bit			allocation	123
	allocation	111	Tab. 101.	FEH_MON_BIST_CTRL register - monitor	
Tab. 77.	SYS_DS_STORAGE0 register - Deep			BIST control register (address 410h)	.123
	Sleep Storage Data0. (address 80h)	111	Tab. 102.	FEH_MON_BIST_RES register - Monitor	
Tab. 78.	SYS DS STORAGE1 register - Deep			BIST result register (address 411h) bit	
	Sleep Storage Data1. (address 81h) bit			allocation	124
	allocation	112	Tab. 103.	FEH_MON_BIST_RES register - Monitor	
Tab. 79.	SYS_DS_STORAGE1 register - Deep			BIST result register (address 411h)	.124
	Sleep Storage Data1. (address 81h)	112	Tab 104	FEH_ACC_ERR register - access error	
Tab. 80.	FEH_CFG_CRC register - configuration	–		status register (address 41Eh) bit allocation	125
1ab. 00.	CRC (address 400h) bit allocation	112	Tah 105	FEH ACC ERR register - access error	120
Tab. 81.	FEH_CFG_CRC register - configuration	112	1ab. 105.	status register (address 41Eh)	126
1ab. 01.	CRC (address 400h)	112	Tab 106	FEH_GRP_FLT_STAT register - Main	120
Tab 02	FEH ALARM CFG register - general alarm	112	1ab. 100.		
Tab. 82.		110		system fault status register (address 41Fh)	106
T-L 00	configuration (address 401h) bit allocation	112	T-h 107	bit allocation	120
Tab. 83.	FEH_ALARM_CFG register - general alarm	440	1ab. 107.	FEH_GRP_FLT_STAT register - Main	400
T 1 04	configuration (address 401h)	.113	T 1 400	system fault status register (address 41Fh)	126
Tab. 84.	FEH_ALARM_OUT_CFG0 register - alarm		Tab. 108.	FEH_SUPPLY_FLT_STAT0 register -	
	output source selection (address 402h) bit			Supply fault status register 0 (address	
	allocation	114		420h) bit allocation	. 127
Tab. 85.	FEH_ALARM_OUT_CFG0 register - alarm		Tab. 109.	FEH_SUPPLY_FLT_STAT0 register -	
	output source selection (address 402h)	114		Supply fault status register 0 (address	
Tab. 86.	FEH_ALARM_OUT_CFG1 register - alarm			420h)	127
	output source selection (address 403h) bit		Tab. 110.	FEH_SUPPLY_FLT_STAT1 register -	
	allocation	115		Supply fault status register 1 (address	
Tab. 87.	FEH_ALARM_OUT_CFG1 register - alarm			421h) bit allocation	.128
	output source selection (address 403h)	116	Tab. 111.	FEH_SUPPLY_FLT_STAT1 register -	
Tab. 88.	FEH_ALARM_OUT_REASON0 register -			Supply fault status register 1 (address	
	alarm output reason (address 404h) bit			421h)	128
	allocation	116	Tab. 112.	FEH ANA FLT STAT register - analog	
Tab. 89.	FEH_ALARM_OUT_REASON0 register -			fault status register (address 422h) bit	
	alarm output reason (address 404h)	116		allocation	129
Tab. 90.	FEH_ALARM_OUT_REASON1 register -		Tab. 113.	FEH_ANA_FLT_STAT register - analog	
	alarm output reason (address 405h) bit			fault status register (address 422h)	.130
	allocation	118	Tab. 114.	FEH_COM_FLT_STAT register -	
Tab. 91.	FEH ALARM OUT REASON1 register -			communication fault status register	
100.01.	alarm output reason (address 405h)	118		(address 423h) bit allocation	130
Tab. 92.	FEH WAKEUP CFG0 register - wake-up	110	Tah 115	FEH_COM_FLT_STAT register -	. 100
145. 52.	source configuration (address 408h) bit		145. 116.	communication fault status register	
	allocation	110		(address 423h)	130
Tab. 93.	FEH_WAKEUP_CFG0 register - wake up	110	Tab 116	FEH_MEAS_FLT_STAT register - other	. 130
1ab. 95.		110	1ab. 110.	fault status register (address 424h) bit	
Tab 04	source configuration (address 408h)	119			121
Tab. 94.	FEH_WAKEUP_CFG1 register - wake-up		Tob 117	allocationFEH MEAS FLT STAT register - other	131
	source configuration (address 409h) bit	400	1ab. 117.		404
T	allocation	120	T 1 440	fault status register (address 424h)	. 131
Tab. 95.	FEH_WAKEUP_CFG1 register - wake up		1ab. 118.	FEH_SUPPLY_FLT_POR_CFG0 register -	
	source configuration (address 409h)	120		supply fault POR selection 0 (address	4.5.5
Tab. 96.	FEH_WAKEUP_REASON0 register -			428h) bit allocation	. 132
	wake-up reason register (address 40Ah) bit		īаb. 119.	FEH_SUPPLY_FLT_POR_CFG0 register -	
	allocation	121		supply fault POR selection 0 (address	
Tab. 97.	FEH_WAKEUP_REASON0 register - wake			428h)	132
	up reason register (address 40Ah)	121			

Tab. 120.	FEH_SUPPLY_FLT_POR_CFG1 register - supply fault POR selection 1 (address		Tab. 142.	GPIO_IN register - GPIO input (address 804h) bit allocation	. 147
Tab 121	429h) bit allocationFEH_SUPPLY_FLT_POR_CFG1 register -	134	Tab. 143.	GPIO_IN register - GPIO input (address 804h)	147
145. 121.	supply fault POR selection 1 (address	12/	Tab. 144.	I2C_CFG register - I2C configuration (address C00h) bit allocation	
Tab. 122.	429h) FEH_COM_FLT_POR_CFG register - communication fault POR enable register	104	Tab. 145.	I2C_CFG register - I2C configuration (address C00h)	
Tab. 123.	(address 42Bh) bit allocation	135	Tab. 146.	I2C_CTRL register - I2C control (address C01h) bit allocation	
	communication fault POR enable register (address 42Bh)	135	Tab. 147.	I2C_CTRL register - I2C control (address C01h)	
Tab. 124.	FEH_SUPPLY_FLT_EVT_CFG0 register - supply fault event selection register 0		Tab. 148.	I2C_STAT register - I2C status (address C02h) bit allocation	
Tab. 125.	(address 430h) bit allocationFEH_SUPPLY_FLT_EVT_CFG0 register -	136	Tab. 149.	I2C_STAT register - I2C status (address C02h)	.150
	supply fault event selection register 0 (address 430h)	136	Tab. 150.	I2C_DATA0 register - I2C data register 0 (address C04h) bit allocation	. 151
Tab. 126.	FEH_SUPPLY_FLT_EVT_CFG1 register - supply fault event selection register 1		Tab. 151.	I2C_DATA0 register - I2C data register 0 (address C04h)	. 151
Tab. 127.	(address 431h) bit allocationFEH_SUPPLY_FLT_EVT_CFG1 register -	137	Tab. 152.	I2C_DATA1 register - I2C data register 1 (address C05h) bit allocation	. 151
	supply fault event selection register 1 (address 431h)	138	Tab. 153.	I2C_DATA1 register - I2C data register 1 (address C05h)	. 151
Tab. 128.	FEH_ANA_FLT_EVT_CFG register - analog fault event enable register (address		Tab. 154.	I2C_DATA2 register - I2C data register 2 (address C06h) bit allocation	. 152
Tab. 129.	432h) bit allocation FEH_ANA_FLT_EVT_CFG register -	138		I2C_DATA2 register - I2C data register 2 (address C06h)	. 152
	analog fault event enable register (address 432h)	139		I2C_DATA3 register - I2C data register 3 (address C07h) bit allocation	. 152
Tab. 130.	FEH_COM_FLT_EVT_CFG register - communication fault event enable register			I2C_DATA3 register - I2C data register 3 (address C07h)	. 152
Tab. 131.	(address 433h) bit allocationFEH_COM_FLT_EVT_CFG register -	139		I2C_DATA4 register - I2C data register 4 (address_C08h) bit allocation	. 152
	communication fault event enable register (address 433h)	139		I2C_DATA4 register - I2C data register 4 (address C08h)	. 152
Tab. 132.	FEH_MEAS_FLT_EVT_CFG register - measurement fault event enable register			I2C_DATA5 register - I2C data register 5 (address C09h) bit allocation	. 153
Tab. 133.	(address 434h) bit allocation FEH_MEAS_FLT_EVT_CFG register -	140		I2C_DATA5 register - I2C data register 5 (address C09h)	. 153
	measurement fault event enable register (address 434h)	140		I2C_DATA6 register - I2C data register 6 (address_C0Ah) bit allocation	. 153
	FEH_POR_REASON register - power on reset reason (address 480h) bit allocation	141		I2C_DATA6 register - I2C data register 6 (address_C0Ah)	. 153
	FEH_POR_REASON register - power on reset reason (address 480h)	141		I2C_DATA7 register - I2C data register 7 (address C0Bh) bit allocation	. 153
	GPIO_CFG0 register - GPIO configuration 0 (address 800h) bit allocation	142		I2C_DATA7 register - I2C data register 7 (address C0Bh)	. 153
	GPIO_CFG0 register - GPIO configuration 0 (address 800h)	142		I2C_DATA8 register - I2C data register 8 (address C0Ch) bit allocation	. 154
	GPIO_CFG1 register - GPIO configuration 1 (address 801h) bit allocation	144		I2C_DATA8 register - I2C data register 8 (address C0Ch)	. 154
	GPIO_CFG1 register - GPIO configuration 1 (address 801h)	145		I2C_DATA9 register - I2C data register 9 (address C0Dh) bit allocation	. 154
Tab. 140.	GPIO_OUT register - GPIO output (address 802h) bit allocation	145	Tab. 169.	I2C_DATA9 register - I2C data register 9 (address C0Dh)	. 154
Tab. 141.	GPIO_OUT register - GPIO output (address 802h)	146	Tab. 170.	I2C_DATA10 register - I2C data register 10 (address C0Eh) bit allocation	. 154

Tab.	171.	I2C_DATA10 register - I2C data register 10		Tab. 197.	BAL_AUTO_DISCHRG_CTRL register -	
		(address C0Eh)	154		emergency discharge enable (address	
Tab.	172.	I2C_DATA11 register - I2C data register 11			1005h)	. 164
		(address C0Fh) bit allocation	155	Tab. 198.	BAL_SWITCH_MON_CFG0 register -	
Tab.	173.	I2C_DATA11 register - I2C data register 11			balancing switch monitoring enable	
		(address C0Fh)	155		(address 1006h) bit allocation	. 164
Tab.	174.	I2C_DATA12 register - I2C data register 12		Tab. 199.	BAL_SWITCH_MON_CFG0 register -	
		(address C10h) bit allocation	155		balancing switch monitoring enable	
Tab.	175.	I2C_DATA12 register - I2C data register 12			(address 1006h)	. 164
		(address C10h)	155	Tab. 200.	BAL SWITCH MON CFG1 register -	
Tab.	176.	I2C_DATA13 register - I2C data register 13			balancing switch monitoring enable	
		(address C11h) bit allocation	155		(address 1007h) bit allocation	. 166
Tab.	177.	I2C DATA13 register - I2C data register 13		Tab. 201.	BAL_SWITCH_MON_CFG1 register -	
		(address C11h)	155		balancing switch monitoring enable	
Tab.	178.	I2C_DATA14 register - I2C data register 14			(address 1007h)	. 167
		(address C12h) bit allocation	156	Tab. 202.	FULL_PWM_CYCLE_VOLTAGE register -	
Tab.	179.	I2C_DATA14 register - I2C data register 14			full PWM cycle voltage (address 1008h) bit	
		(address C12h)	156		allocation	167
Tab	180	I2C DATA15 register - I2C data register 15	.00	Tab 203	FULL_PWM_CYCLE_VOLTAGE register -	
iub.	100.	(address C13h) bit allocation	156	145. 200.	full PWM cycle voltage (address 1008h)	167
Tah	181	I2C_DATA15 register - I2C data register 15	100	Tab 204	BAL_CH_UV0_STAT0 register - channel	07
iab.	101.	(address C13h)	156	1ab. 20 4 .	undervoltage balancing status channel 0 -	
Tah	192	I2C DATA16 register - I2C data register 16	130		15 (address 1009h) bit allocation	167
iab.	102.	_	156	Tab 205	BAL_CH_UV0_STAT0 register - channel	. 101
Tob	102	(address C14h) bit allocation	130	1ab. 205.		
iab.	103.	I2C_DATA16 register - I2C data register 16	157		under-voltage balancing status channel 0 -	160
T_ L	101	(address C14h)	157	T-6 200	15 (address 1009h)	. 100
iab.	184.	I2C_DATA17 register - I2C data register 17	457	1ab. 206.	BAL_CH_UV0_STAT1 register - channel	
- .	405	(address C15h) bit allocation	157		undervoltage balancing status channel 16 -	470
ıab.	185.	I2C_DATA17 register - I2C data register 17	457	T.I. 007	17 (address 100Ah) bit allocation	170
- .	400	(address C15h)	157	Tab. 207.	BAL_CH_UV0_STAT1 register - channel	
lab.	186.	BAL_GLOB_CFG register - Global			under-voltage balancing status channel 16	
		Balancing Configuration (address 1000h)			- 17 (address 100Ah)	. 170
		bit allocation	157	Tab. 208.	BAL_GLOB_UV1_STAT0 register - global	
Tab.	187.	BAL_GLOB_CFG register - Global			undervoltage balancing status channel 0 -	
		Balancing Configuration (address 1000h)	157		15 (address 100Bh) bit allocation	171
Tab.	188.	BAL_GLOB_TO_TMR register - Global		Tab. 209.	BAL_GLOB_UV1_STAT0 register - global	
		Balancing Timeout (address 1001h) bit			under-voltage balancing status channel 0 -	
		allocation	159		15 (address 100Bh)	. 171
Tab.	189.	BAL_GLOB_TO_TMR register - Global		Tab. 210.	BAL_GLOB_UV1_STAT1 register - global	
		Balancing Timeout (address 1001h)	159		undervoltage balancing status channel 16 -	
Tab.	190.	BAL_CH_CFG0 register - balancing			17 (address 100Ch) bit allocation	173
		channel individual enable channel 0 - 15		Tab. 211.	BAL_GLOB_UV1_STAT1 register - global	
		(address 1002h) bit allocation	159		under-voltage balancing status channel 16	
Tab.	191.	BAL_CH_CFG0 register - balancing			- 17 (address 100Ch)	.173
		channel individual enable channel 0 - 15		Tab. 212.	BAL_STAT0 register - logical balancing	
		(address 1002h)	159		channel status channel 0 - 15 (address	
Tab.	192.	BAL_CH_CFG1 register - balancing			100Dh) bit allocation	. 174
		channel individual enable channel 16 - 17		Tab. 213.	BAL_STAT0 register - logical balancing	
		(address 1003h) bit allocation	162		channel status channel 0 - 15 (address	
Tab.	193.	BAL CH CFG1 register - balancing			100Dh)	.174
		channel individual enable channel 16 - 17		Tab. 214.	BAL_STAT1 register - logical balancing	
		(address 1003h)	163		channel status channel 16 - 17 (address	
Tab	194	BAL_PRE_TMR register - prebalancing			100Eh) bit allocation	176
		timer (address 1004h) bit allocation	163	Tab. 215	BAL_STAT1 register - logical balancing	5
Tah	195	BAL_PRE_TMR register - prebalancing	. • •		channel status channel 16 - 17 (address	
	. 55.	timer (address 1004h)	163		100Eh)	176
Tah	196	BAL_AUTO_DISCHRG_CTRL register -		Tab 216	BAL_STAT2 register - balancing status	5
	. 55.	emergency discharge enable (address		210.	(address 100Fh) bit allocation	177
		1005h) bit allocation	164		(addition 1) bit diloudion	
		100011) bit dilocation	. 0-7			

Tab. 217.	BAL_STAT2 register - balancing status		Tab. 241.	BAL_TMR_CH6 register - balancing timer
	(address 100Fh)	177		channel 6 (address 1026h) 188
Tab. 218.	BAL_SWITCH_STAT0 register - physical		Tab. 242.	BAL_TMR_CH7 register - balancing timer
	balancing channel status channel 0 - 15			channel 7 (address 1027h) bit allocation 188
	(address 1010h) bit allocation	178	Tab. 243.	BAL_TMR_CH7 register - balancing timer
Tab. 219.	BAL_SWITCH_STAT0 register - physical			channel 7 (address 1027h) 188
	balancing channel status channel 0 - 15		Tab. 244.	BAL_TMR_CH8 register - balancing timer
	(address 1010h)	178		channel 8 (address 1028h) bit allocation 189
Tab. 220.	BAL_SWITCH_STAT1 register - physical		Tab. 245.	BAL_TMR_CH8 register - balancing timer
	balancing channel status channel 16 - 17			channel 8 (address 1028h) 189
	(address 1011h) bit allocation	180	Tab. 246.	BAL_TMR_CH9 register - balancing timer
Tab. 221.	BAL_SWITCH_STAT1 register - physical			channel 9 (address 1029h) bit allocation 189
	balancing channel status channel 16 - 17		Tab. 247.	BAL_TMR_CH9 register - balancing timer
	(address 1011h)	180		channel 9 (address 1029h) 189
Tab. 222.	BAL_SWITCH_FLT_STAT0 register -		Tab. 248.	BAL_TMR_CH10 register - balancing timer
	balancing switch fault channel 0 - 15			channel 10 (address 102Ah) bit allocation190
	(address 1012h) bit allocation	181	Tab. 249.	BAL_TMR_CH10 register - balancing timer
Tab. 223.	BAL_SWITCH_FLT_STAT0 register -			channel 10 (address 102Ah)190
	balancing switch fault channel 0 - 15		Tab. 250.	BAL_TMR_CH11 register - balancing timer
	(address 1012h)	181		channel 11 (address 102Bh) bit allocation 190
Tab. 224.	BAL_SWITCH_FLT_STAT1 register -		Tab. 251.	BAL_TMR_CH11 register - balancing timer
	balancing switch fault channel 16 - 17			channel 11 (address 102Bh) 191
	(address 1013h) bit allocation	183	Tab. 252.	BAL_TMR_CH12 register - balancing timer
Tab. 225.	BAL_SWITCH_FLT_STAT1 register -			channel 12 (address 102Ch) bit allocation 191
	balancing switch fault channel 16 - 17		Tab. 253.	BAL_TMR_CH12 register - balancing timer
	(address 1013h)	183		channel 12 (address 102Ch)191
Tab. 226.	BAL_TMR_CH_ALL register - Virtual		Tab. 254.	BAL_TMR_CH13 register - balancing timer
	register, writes all BAL_TMR registers			channel 13 (address 102Dh) bit allocation 192
	(address 101Fh) bit allocation	184	Tab. 255.	BAL_TMR_CH13 register - balancing timer
Tab. 227.	BAL_TMR_CH_ALL register - Virtual			channel 13 (address 102Dh)192
	register, writes all BAL_TMR registers		Tab. 256.	BAL_TMR_CH14 register - balancing timer
	(address 101Fh)	184		channel 14 (address 102Eh) bit allocation192
Tab. 228.	BAL_TMR_CH0 register - balancing timer		Tab. 257.	BAL_TMR_CH14 register - balancing timer
	channel 0 (address 1020h) bit allocation	184		channel 14 (address 102Eh) 192
lab. 229.	BAL_TMR_CH0 register - balancing timer	404	lab. 258.	BAL_TMR_CH15 register - balancing timer
T	channel 0 (address 1020h)	184	T . 050	channel 15 (address 102Fh) bit allocation 193
lab. 230.	BAL_TMR_CH1 register - balancing timer	405	lab. 259.	BAL_TMR_CH15 register - balancing timer
T 1 004	channel 1 (address 1021h) bit allocation	185	T	channel 15 (address 102Fh)
lab. 231.	BAL_TMR_CH1 register - balancing timer	405	lab. 260.	BAL_TMR_CH16 register - balancing timer
T-1- 000	channel 1 (address 1021h)	185	T-1- 004	channel 16 (address 1030h) bit allocation 193
1ab. 232.	BAL_TMR_CH2 register - balancing timer	105		BAL_TMR_CH16 register - balancing timer
Tab 222	channel 2 (address 1022h) bit allocation	185		channel 16 (address 1030h)
1ab. 233.	BAL_TMR_CH2 register - balancing timer	105	180. 202.	BAL_TMR_CH17 register - balancing timer
Tob 224	channel 2 (address 1022h)	100	Tab 262	channel 17 (address 1031h) bit allocation 194
1ab. 234.	BAL_TMR_CH3 register - balancing timer	106	1ab. 203.	BAL_TMR_CH17 register - balancing timer
Tab 225	channel 3 (address 1023h) bit allocation	100	Tab 264	channel 17 (address 1031h)
1ab. 233.	BAL_TMR_CH3 register - balancing timer channel 3 (address 1023h)	196	1ab. 204.	BAL_PWM_CH_ALL register - Virtual register, writes all BAL_PWM registers
Tab 226	BAL_TMR_CH4 register - balancing timer	100		(address 1032h) bit allocation
1ab. 250.	channel 4 (address 1024h) bit allocation	196	Tab 265	BAL_PWM_CH_ALL register - Virtual
Tab 237	BAL_TMR_CH4 register - balancing timer	100	1ab. 205.	register, writes all BAL_PWM registers
1ab. 257.	channel 4 (address 1024h)	187		(address 1032h)195
Tah 238	BAL_TMR_CH5 register - balancing timer	101	Tah 266	BAL_PWM_CH0 register - balancing PWM
1av. 200.	channel 5 (address 1025h) bit allocation	187	1ab. 200.	channel 0 (address 1033h) bit allocation 195
Tah 230	BAL_TMR_CH5 register - balancing timer	101	Tah 267	BAL_PWM_CH0 register - balancing PWM
14D. 200.	channel 5 (address 1025h)	187	.ab. 201.	channel 0 (address 1033h) 195
Tab 240	BAL_TMR_CH6 register - balancing timer		Tab 268	BAL_PWM_CH1 register - balancing PWM
	channel 6 (address 1026h) bit allocation	188	. 45. 200.	channel 1 (address 1034h) bit allocation 196
	sharms o (address 102011) bit dilocation			The state of the s

Tab. 269.	BAL_PWM_CH1 register - balancing PWM channel 1 (address 1034h) 196	Tab. 296.	BAL_PWM_CH15 register - balancing PWM channel 15 (address 1042h) bit	
Tab. 270.	BAL_PWM_CH2 register - balancing PWM channel 2 (address 1035h) bit allocation 196	Tah 207	allocation	203
Tab. 271.	BAL_PWM_CH2 register - balancing PWM		PWM channel 15 (address 1042h)	203
Tab. 272.	channel 2 (address 1035h)	Tab. 298.	BAL_PWM_CH16 register - balancing PWM channel 16 (address 1043h) bit	000
Tab. 273.	channel 3 (address 1036h) bit allocation 197 BAL_PWM_CH3 register - balancing PWM	Tab. 299.	BAL_PWM_CH16 register - balancing	
Tah 274	channel 3 (address 1036h)197 BAL_PWM_CH4 register - balancing PWM	Tah 300	PWM channel 16 (address 1043h) BAL_PWM_CH17 register - balancing	203
	channel 4 (address 1037h) bit allocation 197	1ab. 000.	PWM channel 17 (address 1044h) bit	004
Tab. 275.	BAL_PWM_CH4 register - balancing PWM channel 4 (address 1037h)197	Tab. 301.	allocationBAL_PWM_CH17 register - balancing	204
Tab. 276.	BAL_PWM_CH5 register - balancing PWM		PWM channel 17 (address 1044h)	204
Tab. 277.	channel 5 (address 1038h) bit allocation 198 BAL_PWM_CH5 register - balancing PWM	lab. 302.	ALLM_CFG register - general measurement control (address 1400h) bit	
	channel 5 (address 1038h) 198		allocation	204
Tab. 278.	BAL_PWM_CH6 register - balancing PWM	Tab. 303.	ALLM_CFG register - general	204
Tab. 279.	channel 6 (address 1039h) bit allocation 198 BAL_PWM_CH6 register - balancing PWM	Tab. 304.	measurement control (address 1400h) ALLM_APP_CTRL register - application	204
	channel 6 (address 1039h) 198		measurement control (address 1401h) bit	
Tab. 280.	BAL_PWM_CH7 register - balancing PWM		allocation	205
	channel 7 (address 103Ah) bit allocation 199	Tab. 305.	ALLM_APP_CTRL register - application	
Tab. 281.	BAL_PWM_CH7 register - balancing PWM		measurement control (address 1401h)	205
T	channel 7 (address 103Ah)	Tab. 306.	ALLM_PER_CTRL register - periodic	
lab. 282.	BAL_PWM_CH8 register - balancing PWM		measurement control (address 1402h) bit	000
Tab 202	channel 8 (address 103Bh) bit allocation 199	Tab 207	allocation	206
1ab. 203.	BAL_PWM_CH8 register - balancing PWM channel 8 (address 103Bh)199	1ab. 307.	ALLM_PER_CTRL register - periodic measurement control (address 1402h)	206
Tab. 284.	BAL_PWM_CH9 register - balancing PWM	Tab. 308.	ALLM_SYNC_CTRL register - synchronous	
	channel 9 (address 103Ch) bit allocation 200		measurement control (address 1403h) bit	
Tab. 285.	BAL_PWM_CH9 register - balancing PWM		allocation	206
	channel 9 (address 103Ch)200	Tab. 309.	ALLM_SYNC_CTRL register - synchronous	
Tab. 286.	BAL_PWM_CH10 register - balancing		measurement control (address 1403h)	206
	PWM channel 10 (address 103Dh) bit	Tab. 310.	ALLM_VCVB_CFG0 register - cell voltage	
T-1- 007	allocation		measurement enable (address 1408h) bit	007
1ab. 287.	BAL_PWM_CH10 register - balancing PWM channel 10 (address 103Dh)200	Tab 211	allocationALLM_VCVB_CFG0 register - cell voltage	207
Tah 288	BAL_PWM_CH11 register - balancing	1ab. 511.	measurement enable (address 1408h)	207
100. 200.	PWM channel 11 (address 103Eh) bit	Tab. 312.	ALLM_VCVB_CFG1 register - cell voltage	201
	allocation201		measurement enable (address 1409h) bit	
Tab. 289.	BAL_PWM_CH11 register - balancing		allocation	208
	PWM channel 11 (address 103Eh)201	Tab. 313.	ALLM_VCVB_CFG1 register - cell voltage	
Tab. 290.	BAL_PWM_CH12 register - balancing		measurement enable (address 1409h)	208
	PWM channel 12 (address 103Fh) bit	Tab. 314.	PRMM_CFG register - general	
Tab 201	allocation		measurement control (address 1800h) bit allocation	200
1ab. 291.	BAL_PWM_CH12 register - balancing PWM channel 12 (address 103Fh)201	Tah 315	PRMM_CFG register - general	208
Tab 292	BAL_PWM_CH13 register - balancing	1ab. 515.	measurement control (address 1800h)	208
100. 202.	PWM channel 13 (address 1040h) bit	Tab. 316.	PRMM_APP_CTRL register - application	
	allocation202		measurement control (address 1801h) bit	
Tab. 293.	BAL_PWM_CH13 register - balancing		allocation	209
	PWM channel 13 (address 1040h)202	Tab. 317.	PRMM_APP_CTRL register - application	
Tab. 294.	BAL_PWM_CH14 register - balancing	- 1	measurement control (address 1801h)	209
	PWM channel 14 (address 1041h) bit	Iab. 318.	PRMM_PER_CTRL register - periodic	
Tab 205	allocation		measurement control (address 1802h) bit	244
1ab. 295.	BAL_PWM_CH14 register - balancing PWM channel 14 (address 1041h)202		allocation	∠11
	1 VVIVI OHAHHOL 17 (audi 033 104111)202			

Tab. 319.	PRMM_PER_CTRL register - periodic	Tab. 340.	PRMM_VC_UV1_TH_CFG register - lower	
	measurement control (address 1802h)211		comparator limit 1 for VC0 to VC17	
Tab. 320.	PRMM_SYNC_CTRL register -	T 044	(address 1814h) bit allocation	223
	synchronous measurement control (address 1803h) bit allocation212	1ab. 341.	PRMM_VC_UV1_TH_CFG register - lower comparator limit 1 for VC0 to VC17	
Tah 321	PRMM SYNC CTRL register -		(address 1814h)	223
140. 021.	synchronous measurement control	Tab. 342.	PRMM AINO OV TH CFG register -	220
	(address 1803h)212		upper comparator limit for AIN0 (address	
Tab. 322.	PRMM_VC_CFG0 register - cell voltage		1815h) bit allocation	223
	measurement enable (address 1808h) bit	Tab. 343.	PRMM_AIN0_OV_TH_CFG register -	
	allocation213		upper comparator limit for AIN0 (address	
Tab. 323.	PRMM_VC_CFG0 register - cell voltage		1815h)	. 223
T-1- 004	measurement enable (address 1808h)213	Tab. 344.	PRMM_AIN1_OV_TH_CFG register -	
lab. 324.	PRMM_VC_CFG1 register - cell voltage		upper comparator limit for AIN1 (address	222
	measurement enable (address 1809h) bit allocation	Tab 3/15	1816h) bit allocationPRMM_AIN1_OV_TH_CFG register -	223
Tab 325	PRMM_VC_CFG1 register - cell voltage	1ab. 545.	upper comparator limit for AIN1 (address	
145. 020.	measurement enable (address 1809h)215		1816h)	. 223
Tab. 326.	PRMM_AIN_CFG register - AINx	Tab. 346.	PRMM_AIN2_OV_TH_CFG register -	
	measurement enables (address 180Ah) bit		upper comparator limit for AIN2 (address	
	allocation215		1817h) bit allocation	224
Tab. 327.	PRMM_AIN_CFG register - AINx	Tab. 347.	PRMM_AIN2_OV_TH_CFG register -	
T 1 000	measurement enables (address 180Ah) 216		upper comparator limit for AIN2 (address	004
lab. 328.	PRMM_AIN_OL_CFG register - AINx	Tob 240	1817h)	. 224
	open-load detection enable (address 180Bh) bit allocation217	1ab. 346.	PRMM_AIN3_OV_TH_CFG register - upper comparator limit for AIN3 (address	
Tah 320	PRMM_AIN_OL_CFG register - AINx		1818h) bit allocation	224
145. 020.	open-load detection enable (address	Tab. 349.	PRMM_AIN3_OV_TH_CFG register -	
	180Bh)217		upper comparator limit for AIN3 (address	
Tab. 330.	PRMM_VBUF_CFG register - voltage		1818h)	. 224
	buffer enable (address 180Ch) bit	Tab. 350.	PRMM_AINA_OV_TH_CFG register -	
	allocation		upper comparator limit for AINA (address	
lab. 331.	PRMM_VBUF_CFG register - voltage	T-1- 054	1819h) bit allocation	224
Tah 332	buffer enable (address 180Ch)218 PRMM_VC_OV_UV_CFG0 register - cell	1ab. 351.	PRMM_AINA_OV_TH_CFG register - upper comparator limit for AINA (address	
1ab. 332.	voltage over-voltage and under-voltage		1819h)	224
	check enable (address 1810h) bit allocation . 219	Tab. 352.	PRMM AINO UV TH CFG register - lower	
Tab. 333.	PRMM VC OV UV CFG0 register - cell		comparator limit for AIN0 (address 181Ah)	
	voltage over-voltage and under-voltage		bit allocation	225
	check enable (address 1810h)219	Tab. 353.	PRMM_AIN0_UV_TH_CFG register - lower	
Tab. 334.	PRMM_VC_OV_UV_CFG1 register - cell		comparator limit for AIN0 (address 181Ah)	. 225
	voltage over-voltage and under-voltage	Tab. 354.	PRMM_AIN1_UV_TH_CFG register - lower	
Tab 225	check enable (address 1811h) bit allocation221		comparator limit for AIN1 (address 181Bh)	225
1ab. 333.	PRMM_VC_OV_UV_CFG1 register - cell voltage over-voltage and under-voltage	Tab 355	bit allocationPRMM_AIN1_UV_TH_CFG register - lower	225
	check enable (address 1811h)221	1ab. 555.	comparator limit for AIN1 (address 181Bh)	225
Tab. 336.	PRMM VC OV TH CFG register - upper	Tab. 356.	PRMM_AIN2_UV_TH_CFG register - lower	. 220
	comparator limit for VC0 to VC17 (address		comparator limit for AIN2 (address 181Ch)	
	1812h) bit allocation222		bit allocation	225
Tab. 337.	PRMM_VC_OV_TH_CFG register - upper	Tab. 357.	PRMM_AIN2_UV_TH_CFG register - lower	
	comparator limit for VC0 to VC17 (address		comparator limit for AIN2 (address 181Ch)	. 225
T	1812h)	Tab. 358.	PRMM_AIN3_UV_TH_CFG register - lower	
lab. 338.	PRMM_VC_UV0_TH_CFG register - lower		comparator limit for AIN3 (address 181Dh)	000
	comparator limit 0 for VC0 to VC17	Tab 250	bit allocation	226
Tah 330	(address 1813h) bit allocation222 PRMM_VC_UV0_TH_CFG register - lower	1ab. 339.	PRMM_AIN3_UV_TH_CFG register - lower comparator limit for AIN3 (address 181Dh)	226
.45. 000.	comparator limit 0 for VC0 to VC17	Tab. 360	PRMM_AINA_UV_TH_CFG register -	0
	(address 1813h)222		lower comparator limit for AINA (address	
	•		181Eh) bit allocation	226

Tab. 361.	PRMM_AINA_UV_TH_CFG register - lower comparator limit for AINA (address		Tab. 382.	PRMM_MEAS_STAT register - measurement status (address 183Eh) bit	
		226			226
	181Eh)	. 220		allocation	230
lab. 362.	PRMM_CAL_CRC register - CRC over		lab. 383.	PRMM_MEAS_STAT register -	
	calibration data (address 1820h) bit			measurement status (address 183Eh)	. 236
	allocation	226	Tab. 384.	PRMM_APP_VC_CNT register -	
Tab 363	PRMM_CAL_CRC register - CRC over			application measurement VC sample count	
145. 000.	calibration data (address 1820h)	226		• • • • • • • • • • • • • • • • • • • •	230
T 1 004		.220	T 005	number (address 183Fh) bit allocation	230
1ab. 364.	PRMM_CFG_CRC register - CRC over		1ab. 385.	PRMM_APP_VC_CNT register -	
	configuration values (address 1821h) bit			application measurement VC sample count	
	allocation	227		number (address 183Fh)	238
Tab. 365.	PRMM CFG CRC register - CRC over		Tab. 386.	PRMM_APP_VC0 register - application	
	configuration values (address 1821h)	227		measurement result cell 0 (address 1840h)	
Tob 266		221			220
1ab. 300.	PRMM_VC_OV_FLT_STAT0 register - cell		T	bit allocation	230
	voltage over-voltage status (address		lab. 387.	PRMM_APP_VC0 register - application	
	1822h) bit allocation	. 227		measurement result cell 0 (address 1840h)	. 238
Tab. 367.	PRMM_VC_OV_FLT_STAT0 register - cell		Tab. 388.	PRMM_APP_VC1 register - application	
	voltage over-voltage status (address			measurement result cell 1 (address 1841h)	
	1822h)	228		bit allocation	230
T-1- 000		220	T-1- 200		239
1ab. 368.	PRMM_VC_OV_FLT_STAT1 register - cell		1ab. 389.	PRMM_APP_VC1 register - application	
	voltage over-voltage status (address			measurement result cell 1 (address 1841h)	. 239
	1823h) bit allocation	. 229	Tab. 390.	PRMM APP VC2 register - application	
Tab. 369.	PRMM_VC_OV_FLT_STAT1 register - cell			measurement result cell 2 (address 1842h)	
	voltage over-voltage status (address			bit allocation	239
	1823h)	229	Tab 201	PRMM_APP_VC2 register - application	00
T-1- 070		229	1ab. 591.		000
iab. 370.	PRMM_VC_UV0_FLT_STAT0 register - cell			measurement result cell 2 (address 1842h)	. 239
	voltage under-voltage status regarding limit		Tab. 392.	PRMM_APP_VC3 register - application	
	0 (address 1824h) bit allocation	. 230		measurement result cell 3 (address 1843h)	
Tab. 371.	PRMM_VC_UV0_FLT_STAT0 register - cell			bit allocation	239
	voltage under-voltage status regarding limit		Tab 393	PRMM_APP_VC3 register - application	
	0 (address 1824h)	230	100.000.		240
T-1- 070		.230	T-1- 204	measurement result cell 3 (address 1843h)	. 240
lab. 3/2.	PRMM_VC_UV0_FLT_STAT1 register - cell		1ab. 394.	PRMM_APP_VC4 register - application	
	voltage under-voltage status regarding limit			measurement result cell 4 (address 1844h)	
	0 (address 1825h) bit allocation	. 231		bit allocation	240
Tab. 373.	PRMM_VC_UV0_FLT_STAT1 register - cell		Tab. 395.	PRMM_APP_VC4 register - application	
	voltage under-voltage status regarding limit			measurement result cell 4 (address 1844h)	240
	0 (address 1825h)	232	Tab 306	PRMM_APP_VC5 register - application	
T-6 074		. 232	1ab. 590.		
Tab. 374.	PRMM_VC_UV1_FLT_STAT0 register - cell			measurement result cell 5 (address 1845h)	
	voltage under-voltage status regarding limit			bit allocation	240
	1 (address 1826h) bit allocation	. 232	Tab. 397.	PRMM_APP_VC5 register - application	
Tab. 375.	PRMM_VC_UV1_FLT_STAT0 register - cell			measurement result cell 5 (address 1845h)	. 240
	voltage under-voltage status regarding limit		Tab. 398.	PRMM_APP_VC6 register - application	
	1 (address 1826h)	232		measurement result cell 6 (address 1846h)	
Tob 276		.202			240
1ab. 370.	PRMM_VC_UV1_FLT_STAT1 register - cell		T 1 000	bit allocation	240
	voltage under-voltage status regarding limit		Tab. 399.	PRMM_APP_VC6 register - application	
	1 (address 1827h) bit allocation	. 234		measurement result cell 6 (address 1846h)	. 241
Tab. 377.	PRMM_VC_UV1_FLT_STAT1 register - cell		Tab. 400.	PRMM_APP_VC7 register - application	
	voltage under-voltage status regarding limit			measurement result cell 7 (address 1847h)	
	1 (address 1827h)	234		bit allocation	241
Tab 279	PRMM_AIN_OV_FLT_STAT register - AINx	.201	Tab 401	PRMM_APP_VC7 register - application	
1ab. 576.			1ab. 401.	· · · · · · · · · · · · · · · · ·	044
	over-voltage status (address 1828h) bit			measurement result cell 7 (address 1847h)	. 24 1
	allocation	234	lab. 402.	PRMM_APP_VC8 register - application	
Tab. 379.	PRMM_AIN_OV_FLT_STAT register - AINx			measurement result cell 8 (address 1848h)	
	over-voltage status (address 1828h)	. 235		bit allocation	. 241
Tab. 380	PRMM_AIN_UV_FLT_STAT register - AINx		Tab. 403	PRMM_APP_VC8 register - application	
	under-voltage status (address 1829h) bit			measurement result cell 8 (address 1848h)	2/11
		225	Tob 404		. 4
T 1 004	allocation	235	180. 404.	PRMM_APP_VC9 register - application	
ıab. 381.	PRMM_AIN_UV_FLT_STAT register - AINx			measurement result cell 9 (address 1849h)	
	under-voltage status (address 1829h)	.236		bit allocation	241

Tab. 405.	PRMM_APP_VC9 register - application measurement result cell 9 (address 1849h)	242	Tab. 425.	PRMM_APP_AIN0 register - application measurement result AIN0 (address 1853h)245
Tab. 406.	PRMM_APP_VC10 register - application measurement result cell 10 (address	. 242	Tab. 426.	PRMM_APP_AIN1 register - application measurement result AIN1 (address 1854h)
	184Ah) bit allocation	242		bit allocation245
Tab. 407.	PRMM_APP_VC10 register - application		Tab. 427.	PRMM_APP_AIN1 register - application
	measurement result cell 10 (address 184Ah)	242		measurement result AIN1 (address 1854h)246 PRMM_APP_AIN2 register - application
T-h 400		242	1ab. 420.	
1ab. 408.	PRMM_APP_VC11 register - application measurement result cell 11 (address			measurement result AIN2 (address 1855h) bit allocation
	184Bh) bit allocation	2/12	Tah 420	PRMM_APP_AIN2 register - application
Tab 400	PRMM APP VC11 register - application	242	1ab. 425.	measurement result AIN2 (address 1855h)246
1ab. 405.	measurement result cell 11 (address		Tob 420	
	184Bh)	242	1ab. 430.	PRMM_APP_AIN3 register - application
Tob 440		242		measurement result AIN3 (address 1856h)
1ab. 410.	PRMM_APP_VC12 register - application		T-1- 404	bit allocation
	measurement result cell 12 (address	0.40	1ab. 431.	PRMM_APP_AIN3 register - application
	184Ch) bit allocation	. 242		measurement result AIN3 (address 1856h) 246
lab. 411.	PRMM_APP_VC12 register - application		lab. 432.	PRMM_PER_NUM register - measurement
	measurement result cell 12 (address			period number of the primary periodic
	184Ch)	243		results (address 185Fh) bit allocation246
Tab. 412.	PRMM_APP_VC13 register - application		Tab. 433.	PRMM_PER_NUM register - measurement
	measurement result cell 13 (address			period number of the primary periodic
	184Dh) bit allocation	. 243		results (address 185Fh)247
Tab. 413.	PRMM_APP_VC13 register - application		Tab. 434.	PRMM PER VC0 register - periodic
	measurement result cell 13 (address			measurement result cell 0 (address 1860h)
	184Dh)	243		bit allocation247
Tab. 414.	PRMM_APP_VC14 register - application		Tab. 435.	PRMM_PER_VC0 register - periodic
145. 111.	measurement result cell 14 (address		145. 100.	measurement result cell 0 (address 1860h) 247
	184Eh) bit allocation	243	Tah 436	PRMM_PER_VC1 register - periodic
Tah /115	PRMM_APP_VC14 register - application	270	14D. 1 50.	measurement result cell 1 (address 1861h)
1ab. 4 15.	measurement result cell 14 (address			bit allocation247
		242	Tob 427	
T-b 440	184Eh)	243	1ab. 437.	PRMM_PER_VC1 register - periodic
1ab. 416.	PRMM_APP_VC15 register - application		T 1 400	measurement result cell 1 (address 1861h) 247
	measurement result cell 15 (address	044	1ab. 438.	PRMM_PER_VC2 register - periodic
T 1 447	184Fh) bit allocation	244		measurement result cell 2 (address 1862h)
lab. 417.	PRMM_APP_VC15 register - application			bit allocation
	measurement result cell 15 (address		Tab. 439.	PRMM_PER_VC2 register - periodic
	184Fh)	244		measurement result cell 2 (address 1862h) 248
Tab. 418.	PRMM_APP_VC16 register - application		Tab. 440.	PRMM_PER_VC3 register - periodic
	measurement result cell 16 (address			measurement result cell 3 (address 1863h)
	1850h) bit allocation	244		bit allocation248
Tab. 419.	PRMM_APP_VC16 register - application		Tab. 441.	PRMM_PER_VC3 register - periodic
	measurement result cell 16 (address			measurement result cell 3 (address 1863h) 248
	1850h)	. 244	Tab. 442.	PRMM_PER_VC4 register - periodic
Tab. 420.	PRMM_APP_VC17 register - application			measurement result cell 4 (address 1864h)
	measurement result cell 17 (address			bit allocation248
	1851h) bit allocation	244	Tab. 443.	PRMM_PER_VC4 register - periodic
Tah 421	PRMM APP VC17 register - application			measurement result cell 4 (address 1864h) 248
145. 121.	measurement result cell 17 (address		Tah 444	PRMM_PER_VC5 register - periodic
	1851h)	2/15	iab. III.	measurement result cell 5 (address 1865h)
Tah 122	PRMM_APP_AINA register - application	. 270		bit allocation
14b. 1 22.	measurement result AINA (address 1852h)		Tab 445	PRMM PER VC5 register - periodic
	` ,	24E	1au. 440.	
Tab 400	bit allocation	240	Tob 440	measurement result cell 5 (address 1865h) 249
18D. 423.	PRMM_APP_AINA register - application	045	ıap. 446.	PRMM_PER_VC6 register - periodic
T-6 404	measurement result AINA (address 1852h).	. 243		measurement result cell 6 (address 1866h)
1ab. 424.	PRMM_APP_AIN0 register - application		T-1- 447	bit allocation
	measurement result AIN0 (address 1853h)	0.45	ıab. 447.	PRMM_PER_VC6 register - periodic
	bit allocation	245		measurement result cell 6 (address 1866h) 249

Tab. 448.	PRMM_PER_VC7 register - periodic		Tab. 468.	PRMM_PER_VC17 register - periodic	
	measurement result cell 7 (address 1867h)			measurement result cell 17 (address	
	bit allocation	. 249		1871h) bit allocation25	52
Tab. 449.	PRMM_PER_VC7 register - periodic		Tab. 469.	PRMM_PER_VC17 register - periodic	
	measurement result cell 7 (address 1867h)	249		measurement result cell 17 (address	
Tab. 450.	PRMM_PER_VC8 register - periodic			1871h) 25	53
	measurement result cell 8 (address 1868h)		Tab. 470.	PRMM_PER_AINA register - periodic	
	bit allocation	. 249		measurement result AINA (address 1872h)	
Tab. 451.	PRMM_PER_VC8 register - periodic			bit allocation25	53
	measurement result cell 8 (address 1868h)	250	Tab. 471.	PRMM_PER_AINA register - periodic	
Tab. 452.	PRMM_PER_VC9 register - periodic			measurement result AINA (address 1872h) 25	3
	measurement result cell 9 (address 1869h)		Tab. 472.	PRMM_PER_AIN0 register - periodic	
	bit allocation	. 250		measurement result AIN0 (address 1873h)	
Tab. 453.	PRMM_PER_VC9 register - periodic			bit allocation25	53
	measurement result cell 9 (address 1869h)	250	Tab. 473.	PRMM_PER_AIN0 register - periodic	
Tab. 454.	PRMM_PER_VC10 register - periodic			measurement result AIN0 (address 1873h) 25	53
	measurement result cell 10 (address		Tab. 474.	PRMM_PER_AIN1 register - periodic	
	186Ah) bit allocation	250		measurement result AIN1 (address 1874h)	
Tab. 455.	PRMM PER VC10 register - periodic			bit allocation25	53
	measurement result cell 10 (address		Tab. 475.	PRMM_PER_AIN1 register - periodic	
	186Ah)	250		measurement result AIN1 (address 1874h)25	54
Tab. 456.	PRMM_PER_VC11 register - periodic		Tab. 476.	PRMM_PER_AIN2 register - periodic	
	measurement result cell 11 (address			measurement result AIN2 (address 1875h)	
	186Bh) bit allocation	250		bit allocation25	54
Tab. 457.	PRMM_PER_VC11 register - periodic		Tab. 477.	PRMM_PER_AIN2 register - periodic	
	measurement result cell 11 (address			measurement result AIN2 (address 1875h)25	54
	186Bh)	251	Tab. 478.	PRMM_PER_AIN3 register - periodic	
Tab. 458.	PRMM_PER_VC12 register - periodic			measurement result AIN3 (address 1876h)	
	measurement result cell 12 (address			bit allocation25	54
	186Ch) bit allocation	. 251	Tab. 479.	PRMM_PER_AIN3 register - periodic	
Tab. 459.	PRMM_PER_VC12 register - periodic			measurement result AIN3 (address 1876h)25	54
	measurement result cell 12 (address		Tab. 480.	PRMM_PER_PRMTEMP register - periodic	
	186Ch)	251		measurement result primary device	
Tab. 460.	PRMM PER VC13 register - periodic			temperature (address 1877h) bit allocation 25	54
	measurement result cell 13 (address		Tab. 481.	PRMM_PER_PRMTEMP register - periodic	
	186Dh) bit allocation	. 251		measurement result primary device	
Tab. 461.	PRMM_PER_VC13 register - periodic			temperature (address 1877h)25	55
	measurement result cell 13 (address		Tab. 482.	PRMM PER SECVREF register - periodic	
	186Dh)	251		measurement result secondary voltage	
Tab. 462.	PRMM_PER_VC14 register - periodic			reference (address 1878h) bit allocation 25	55
	measurement result cell 14 (address		Tab. 483.	PRMM_PER_SECVREF register - periodic	
	186Eh) bit allocation	251		measurement result secondary voltage	
Tab. 463.	PRMM_PER_VC14 register - periodic			reference (address 1878h)25	55
	measurement result cell 14 (address		Tab. 484.	PRMM_PER_VAUX register - periodic	
	186Eh)	252		measurement result auxiliary supply	
Tab. 464.	PRMM_PER_VC15 register - periodic			voltage (address 1879h) bit allocation25	55
	measurement result cell 15 (address		Tab. 485.	PRMM_PER_VAUX register - periodic	
	186Fh) bit allocation	252		measurement result auxiliary supply	
Tab. 465.	PRMM_PER_VC15 register - periodic			voltage (address 1879h) 25	55
	measurement result cell 15 (address		Tab. 486.	PRMM_PER_VDDC register - periodic	
	186Fh)	. 252		measurement result VDDC (address	
Tab. 466.	PRMM_PER_VC16 register - periodic			187Ah) bit allocation25	56
	measurement result cell 16 (address		Tab. 487.	PRMM_PER_VDDC register - periodic	
	1870h) bit allocation	252		measurement result VDDC (address	
Tab. 467.	PRMM_PER_VC16 register - periodic			187Ah)25	56
	measurement result cell 16 (address		Tab. 488.	PRMM_SYNC_NUM register -	
	1870h)	. 252		measurement period number of the	
				synchronous results. (address 187Fh) bit	
				allocation	56

Tab. 489.	PRMM_SYNC_NUM register -	Tab. 512.	PRMM_SYNC_VC11 register -	
	measurement period number of the		synchronous measurement result cell 11	000
T	synchronous results. (address 187Fh) 256	T. 540	(address 188Bh) bit allocation	260
lab. 490.	PRMM_SYNC_VC0 register - synchronous	Tab. 513.	PRMM_SYNC_VC11 register -	
	measurement result cell 0 (address 1880h)		synchronous measurement result cell 11	
	bit allocation256		(address 188Bh)	261
Tab. 491.	PRMM_SYNC_VC0 register - synchronous	Tab. 514.	PRMM_SYNC_VC12 register -	
	measurement result cell 0 (address 1880h) 257		synchronous measurement result cell 12	
Tab. 492.	PRMM_SYNC_VC1 register - synchronous		(address 188Ch) bit allocation	261
	measurement result cell 1 (address 1881h)	Tab. 515.	PRMM_SYNC_VC12 register -	
	bit allocation257		synchronous measurement result cell 12	
Tab. 493.	PRMM_SYNC_VC1 register - synchronous		(address 188Ch)	261
	measurement result cell 1 (address 1881h) 257	Tab. 516.	PRMM_SYNC_VC13 register -	
Tab. 494.	PRMM_SYNC_VC2 register - synchronous		synchronous measurement result cell 13	
	measurement result cell 2 (address 1882h)		(address 188Dh) bit allocation	261
	bit allocation257	Tab. 517.	PRMM_SYNC_VC13 register -	
Tab. 495.	PRMM_SYNC_VC2 register - synchronous		synchronous measurement result cell 13	
	measurement result cell 2 (address 1882h) 257		(address 188Dh)	261
Tab. 496.	PRMM_SYNC_VC3 register - synchronous	Tab. 518.	PRMM_SYNC_VC14 register -	
	measurement result cell 3 (address 1883h)		synchronous measurement result cell 14	
	bit allocation257		(address 188Eh) bit allocation	262
Tab 497	PRMM SYNC VC3 register - synchronous	Tab 519	PRMM_SYNC_VC14 register -	
145. 101.	measurement result cell 3 (address 1883h) 258	145. 010.	synchronous measurement result cell 14	
Tab 498	PRMM_SYNC_VC4 register - synchronous		(address 188Eh)	262
145. 100.	measurement result cell 4 (address 1884h)	Tab 520	PRMM_SYNC_VC15 register -	0_
	bit allocation	145. 020.	synchronous measurement result cell 15	
Tah 400	PRMM_SYNC_VC4 register - synchronous		(address 188Fh) bit allocation	262
1ab. 455.	measurement result cell 4 (address 1884h) 258	Tab 521	PRMM_SYNC_VC15 register -	202
Tah 500	PRMM_SYNC_VC5 register - synchronous	140. 521.	synchronous measurement result cell 15	
1ab. 500.	measurement result cell 5 (address 1885h)		(address 188Fh)	262
	bit allocation	Tah 522	PRMM_SYNC_VC16 register -	202
Tab 501	PRMM_SYNC_VC5 register - synchronous	1ab. 322.	synchronous measurement result cell 16	
1ab. 501.			(address 1890h) bit allocation	262
Tab	measurement result cell 5 (address 1885h) 258	Tab E22		202
1ab. 502.	PRMM_SYNC_VC6 register - synchronous	180. 525.	PRMM_SYNC_VC16 register -	
	measurement result cell 6 (address 1886h)		synchronous measurement result cell 16	262
Tab EO2	bit allocation	Tab EQ4	(address 1890h)	203
1ab. 505.	PRMM_SYNC_VC6 register - synchronous	1ab. 524.	PRMM_SYNC_VC17 register -	
T-L 504	measurement result cell 6 (address 1886h) 259		synchronous measurement result cell 17	202
1ab. 504.	PRMM_SYNC_VC7 register - synchronous	T-6 505	(address 1891h) bit allocation	203
	measurement result cell 7 (address 1887h)	1ab. 5∠5.	PRMM_SYNC_VC17 register -	
T-1- F0F	bit allocation		synchronous measurement result cell 17	000
1ab. 505.	PRMM_SYNC_VC7 register - synchronous	T-1- 500	(address 1891h)	203
T 500	measurement result cell 7 (address 1887h) 259	1ab. 5∠6.	SECM_CFG register - general	
1ab. 506.	PRMM_SYNC_VC8 register - synchronous		measurement control (address 1C00h) bit	000
	measurement result cell 8 (address 1888h)	T 507	allocation	263
T . 507	bit allocation	lab. 527.	SECM_CFG register - general	000
lab. 507.	PRMM_SYNC_VC8 register - synchronous		measurement control (address 1C00h)	263
	measurement result cell 8 (address 1888h) 260	Tab. 528.	SECM_APP_CTRL register - application	
Tab. 508.	PRMM_SYNC_VC9 register - synchronous		measurement control (address 1C01h) bit	
	measurement result cell 9 (address 1889h)		allocation	264
	bit allocation260	Tab. 529.	SECM_APP_CTRL register - application	
Tab. 509.	PRMM_SYNC_VC9 register - synchronous		measurement control (address 1C01h)	264
	measurement result cell 9 (address 1889h) 260	Tab. 530.	SECM_PER_CTRL register - periodic	
Tab. 510.	PRMM_SYNC_VC10 register -		measurement control (address 1C02h) bit	
	synchronous measurement result cell 10		allocation	266
	(address 188Ah) bit allocation260	Tab. 531.	SECM_PER_CTRL register - periodic	
Tab. 511.	PRMM_SYNC_VC10 register -		measurement control (address 1C02h)	266
	synchronous measurement result cell 10			
	(address 188Ah)260			

Tab. 532.	SECM_SYNC_CTRL register - synchronous measurement control (address 1C03h) bit allocation	Tab. 554.	SECM_APP_AIN6 register - application measurement result AIN6 (address 1C55h) bit allocation
Tab. 533.	SECM_SYNC_CTRL register - synchronous measurement control	Tab. 555.	SECM_APP_AIN6 register - application measurement result AIN6 (address 1C55h) 277
Tab. 534.	(address 1C03h)	Tab. 556.	SECM_APP_AIN7 register - application measurement result AIN7 (address 1C56h)
	voltage measurement enable (address 1C08h) bit allocation	Tab. 557.	bit allocation
Tab. 535.	SECM_VB_CFG0 register - balance voltage measurement enable (address	Tab. 558.	measurement result AIN7 (address 1C56h) 278 SECM_PER_NUM register - measurement
Tab. 536.	1C08h)268 SECM_VB_CFG1 register - balance voltage measurement enable (address	Tab. 559.	period number of the secondary periodic results (address 1C5Fh) bit allocation278 SECM_PER_NUM register - measurement
Tab. 537.	1C09h) bit allocation	T.I. 500	period number of the secondary periodic results (address 1C5Fh)278
Tah 538	voltage measurement enable (address 1C09h)270 SECM_AIN_CFG register - measurement	1ab. 560.	SECM_PER_AIN4 register - periodic measurement result AIN4 (address 1C73h) bit allocation278
145. 000.	enables for extra channel (address 1C0Ah) bit allocation	Tab. 561.	SECM_PER_AIN4 register - periodic measurement result AIN4 (address 1C73h) 278
	SECM_AIN_CFG register - measurement enables for extra channel (address 1C0Ah) 271	Tab. 562.	SECM_PER_AIN5 register - periodic measurement result AIN5 (address 1C74h)
Tab. 540.	SECM_AIN_OL_CFG register - AINx open-load detection enable (address 1C0Bh) bit allocation	Tab. 563.	bit allocation
Tab. 541.	SECM_AIN_OL_CFG register - AINx open-load detection enable (address 1C0Bh) 272	Tab. 564.	measurement result AIN5 (address 1C74h) 279 SECM_PER_AIN6 register - periodic measurement result AIN6 (address 1C75h)
Tab. 542.	SECM_VBUF_CFG register - voltage buffer enable (address 1C0Ch) bit	Tab. 565.	bit allocation
Tab. 543.	allocation	Tab. 566.	measurement result AIN6 (address 1C75h) 279 SECM_PER_AIN7 register - periodic
Tab. 544.	buffer enable (address 1C0Ch)273 SECM_CAL_CRC register - CRC over calibration data (address 1C20h) bit	Tab. 567.	measurement result AIN7 (address 1C76h) bit allocation
Tab. 545.	allocation		measurement result AIN7 (address 1C76h) 279 SECM_PER_SECTEMP register - periodic
Tab. 546.	calibration data (address 1C20h)	T-1- 500	measurement result secondary device temperature (address 1C77h) bit allocation279
Tab 547	configuration values (address 1C21h) bit allocation	lab. 569.	SECM_PER_SECTEMP register - periodic measurement result secondary device temperature (address 1C77h)
	configuration values (address 1C21h)274 SECM MEAS STAT register -	Tab. 570.	SECM_PER_PRMVREF register - periodic measurement result primary voltage
	measurement status (address 1C3Eh) bit allocation	Tab. 571.	reference (address 1C78h) bit allocation280 SECM_PER_PRMVREF register - periodic
	SECM_MEAS_STAT register - measurement status (address 1C3Eh)275		measurement result primary voltage reference (address 1C78h)
Tab. 550.	SECM_APP_AIN4 register - application measurement result AIN4 (address 1C53h) bit allocation	Tab. 572.	SECM_PER_VAUX register - periodic measurement result auxiliary supply voltage (address 1C79h) bit allocation 280
Tab. 551.	SECM_APP_AIN4 register - application measurement result AIN4 (address 1C53h) 276	Tab. 573.	SECM_PER_VAUX register - periodic measurement result auxiliary supply
Tab. 552.	SECM_APP_AIN5 register - application measurement result AIN5 (address 1C54h)	Tab. 574.	voltage (address 1C79h)280 SECM_PER_VBAT register - periodic
Tab. 553.	bit allocation		measurement result VBAT (address 1C7Ah) bit allocation281

Tab. 575.	SECM_PER_VBAT register - periodic measurement result VBAT (address 1C7Ah)	. 281	Tab. 594.	SECM_SYNC_VB5 register - synchronous measurement result from balancing pins cell 5 (address 1C85h) bit allocation 284
Tab. 576.	SECM_PER_VDDA register - periodic measurement result VDDA (address 1C7Bh) bit allocation		Tab. 595.	SECM_SYNC_VB5 register - synchronous measurement result from balancing pins cell 5 (address 1C85h)285
Tab. 577.	SECM_PER_VDDA register - periodic measurement result VDDA (address 1C7Bh)		Tab. 596.	SECM_SYNC_VB6 register - synchronous measurement result from balancing pins cell 6 (address 1C86h) bit allocation
Tab. 578.	SECM_PER_VDDC register - periodic measurement result VDDC (address 1C7Ch) bit allocation		Tab. 597.	SECM_SYNC_VB6 register - synchronous measurement result from balancing pins cell 6 (address 1C86h)285
Tab. 579.	SECM_PER_VDDC register - periodic measurement result VDDC (address 1C7Ch)		Tab. 598.	SECM_SYNC_VB7 register - synchronous measurement result from balancing pins cell 7 (address 1C87h) bit allocation
Tab. 580.	SECM_PER_NPNISENSE register - periodic measurement result NPN current sensor (address 1C7Eh) bit allocation		Tab. 599.	SECM_SYNC_VB7 register - synchronous measurement result from balancing pins cell 7 (address 1C87h)285
Tab. 581.	SECM_PER_NPNISENSE register - periodic measurement result NPN current sensor (address 1C7Eh)		Tab. 600.	SECM_SYNC_VB8 register - synchronous measurement result from balancing pins cell 8 (address 1C88h) bit allocation
Tab. 582.	SECM_SYNC_NUM register - measurement number of the secondary synchronous results (address 1C7Fh) bit	. 202	Tab. 601.	SECM_SYNC_VB8 register - synchronous measurement result from balancing pins cell 8 (address 1C88h)
Tab. 583.	allocation	. 282	Tab. 602.	SECM_SYNC_VB9 register - synchronous measurement result from balancing pins cell 9 (address 1C89h) bit allocation
Tab. 584.	synchronous results (address 1C7Fh)			SECM_SYNC_VB9 register - synchronous measurement result from balancing pins cell 9 (address 1C89h)286
Tab. 585.	cell 0. (address 1C80h) bit allocation SECM_SYNC_VB0 register - synchronous measurement result from balancing pins		Tab. 604.	SECM_SYNC_VB10 register - synchronous measurement result from balancing pins cell 10 (address 1C8Ah) bit
Tab. 586.	cell 0. (address 1C80h) SECM_SYNC_VB1 register - synchronous measurement result from balancing pins		Tab. 605.	allocation
Tab. 587.	cell 1 (address 1C81h) bit allocation SECM_SYNC_VB1 register - synchronous measurement result from balancing pins cell 1 (address 1C81h)		Tab. 606.	balancing pins cell 10 (address 1C8Ah) 287 SECM_SYNC_VB11 register - synchronous measurement result from balancing pins cell 11 (address 1C8Bh) bit
Tab. 588.	SECM_SYNC_VB2 register - synchronous measurement result from balancing pins cell 2 (address 1C82h) bit allocation		Tab. 607.	allocation
Tab. 589.	SECM_SYNC_VB2 register - synchronous measurement result from balancing pins cell 2 (address 1C82h)		Tab. 608.	balancing pins cell 11 (address 1C8Bh) 287 SECM_SYNC_VB12 register - synchronous measurement result from
Tab. 590.	SECM_SYNC_VB3 register - synchronous measurement result from balancing pins cell 3 (address 1C83h) bit allocation		Tab 609	balancing pins cell 12 (address 1C8Ch) bit allocation
Tab. 591.	SECM_SYNC_VB3 register - synchronous measurement result from balancing pins cell 3 (address 1C83h)			synchronous measurement result from balancing pins cell 12 (address 1C8Ch)287 SECM_SYNC_VB13 register -
Tab. 592.	SECM_SYNC_VB4 register - synchronous measurement result from balancing pins cell 4 (address 1C84h) bit allocation		14D. 010.	synchronous measurement result from balancing pins cell 13 (address 1C8Dh) bit allocation
Tab. 593.	SECM_SYNC_VB4 register - synchronous measurement result from balancing pins cell 4 (address 1C84h)		Tab. 611.	SECM_SYNC_VB13 register - synchronous measurement result from balancing pins cell 13 (address 1C8Dh)288

18-cell battery-cell controller IC

Tab. 612.	SECM_SYNC_VB14 register -		Tab. 616.	SECM_SYNC_VB16 register -	
	synchronous measurement result from			synchronous measurement result from	
	balancing pins cell 14 (address 1C8Eh) bit			balancing pins cell 16 (address 1C90h) bit	
	allocation	. 288		allocation	289
Tab. 613.	SECM_SYNC_VB14 register -		Tab. 617.	SECM_SYNC_VB16 register -	
	synchronous measurement result from			synchronous measurement result from	
	balancing pins cell 14 (address 1C8Eh)	. 288		balancing pins cell 16 (address 1C90h)	. 289
Tab. 614.	SECM_SYNC_VB15 register -		Tab. 618.	SECM_SYNC_VB17 register -	
	synchronous measurement result from			synchronous measurement result from	
	balancing pins cell 15 (address 1C8Fh) bit			balancing pins cell 17 (address 1C91h) bit	
	allocation	. 288		allocation	289
Tab. 615.	SECM_SYNC_VB15 register -		Tab. 619.	SECM_SYNC_VB17 register -	
	synchronous measurement result from			synchronous measurement result from	
	balancing pins cell 15 (address 1C8Fh)	. 289		balancing pins cell 17 (address 1C91h)	
			lab. 620.	Revision history	294
Figure	es				
Fig. 1.	Simplified internal block diagram		Fig. 33.	Wake-up message sent by BMI7018	
Fig. 2.	Pinout			(WAKEUPCOMP = MBMI7018)	
Fig. 3.	MBMI7018 key functions		Fig. 34.	Wake-up message used by MC33664	
Fig. 4.	Overview of operation modes FSM		Fig. 35.	SOM	
Fig. 5.	Event handling		Fig. 36.	EOM	
Fig. 6.	Event propagation		Fig. 37.	Logic 1	
Fig. 7.	Power supply diagram	22	Fig. 38.	Logic 0	
Fig. 8.	Functional diagram for primary		Fig. 39.	Example frame with content 11 to 001	
	measurement	24	Fig. 40.	Setup for multiple TPL daisy chains	
Fig. 9.	Functional diagram for secondary		Fig. 41.	Bus traffic example	65
	measurement		Fig. 42.	Compensation of forward delays with	
Fig. 10.	Measurement scan timing			MADD = 0 and NUMNODES = 8	
Fig. 11.	Measurement data scheme of MBMI7018	30	Fig. 43.	Enumeration process	
Fig. 12.	Example: Periodic measurement cycle with		Fig. 44.	Communication example MCU to BMI7018.	66
	PERLEN cycles	32	Fig. 45.	Communication example response to read	
Fig. 13.	Update of periodic result register based on			request for node 2	
	PERCTRL		Fig. 46.	System wake-up with enumerated devices	68
Fig. 14.	Example: Application timed measurement	33	Fig. 47.	System wake-up with unenumerated	
Fig. 15.	Synchronized measurement cycle with 18			devices	69
	cells active	34	Fig. 48.	Wake-up without wake-up messages for	
Fig. 16.	Synchronized measurement cycle with cell			enumerated devices (DADD[5:0] ≠ 0)	69
	3 and cell 4 disabled		Fig. 49.	Wake-up and enumeration without wake-	
Fig. 17.	Fast VB measurement cycle			up messages for unenumerated devices	
Fig. 18.	Result invalidation event			(DADD[5:0] = 0)	
Fig. 19.	Pause when entering Cyclic mode	36	Fig. 50.	SPI connection	
Fig. 20.	Pause when executing a synchronous	0.7	Fig. 51.	SPI transmission	
E: 04	measurement	37	Fig. 52.	Bus traffic example	
Fig. 21.	Pause when executing an application timed	0.7	Fig. 53.	Access error	
F: 00	measurement		Fig. 54.	ESD structure	
Fig. 22.	Multiple pause sources		Fig. 55.	Typical application	
Fig. 23.	Cell balancing diagram		Fig. 56.	Supplies connection	
Fig. 24.	Functional diagram		Fig. 57.	Cell terminal connections	
Fig. 25.	Cell terminal pulldown resistors		Fig. 58.	External cell balancing	
Fig. 26.	Cell balancing terminal pulldown resistors		Fig. 59.	Temperature measurements	
Fig. 27.	Cell terminal pulldown resistors		Fig. 60.	Alarm daisy chain	
Fig. 28.	I2C-bus interface		Fig. 61.	Inductive isolation between nodes	
Fig. 29.	I2C-bus communication examples		Fig. 62.	Capacitive isolation between nodes	
Fig. 30.	TPL3 response with and without padding		Fig. 63.	Transformer isolation	
Fig. 31.	TPL3 response with and without padding		Fig. 64.	Capacitive isolation	
Fig. 32.	Wake-up message for BMI7018	0∠	Fig. 65.	Transformer and capacitive isolation	94

BMI701

Fig. 66.	Cell connections95	Fig. 69.	Package mechanical dimensions 2	. 292
Fig. 67.	Package outline290	Fig. 70.	Package mechanical dimensions 3	. 293
Fig. 68.	Package mechanical dimensions 1291			

18-cell battery-cell controller IC

Contents

1	General description		7.4.2.5	Measurement data format	28
2	Features and benefits		7.4.2.6	Measurement saturation, resolution, and	
3	Applications			references	
3.1	Industrial		7.4.3	Measurement modes	
4	Ordering information	3	7.4.3.1	Periodic measurement	
4.1	Ordering options		7.4.3.2	Application timed measurement	
5	Block diagram	4	7.4.3.3	Synchronized measurement	
6	Pinning information	5	7.4.3.4	Fast VB measurement	34
6.1	Pinout diagram	5	7.4.4	Invalidation of measurement results	35
6.2	Pin description	5	7.4.5	Pausing of balancing	36
7	Functional description	9	7.4.6	Registers for primary measurement	37
7.1	System control	9	7.4.7	Registers for secondary measurement	41
7.1.1	Operation modes	9	7.4.8	Registers for all measurement	42
7.1.1.1	Deep Sleep mode	11	7.5	Cell balancing	42
7.1.1.2	Sleep mode	11	7.5.1	Functions	42
7.1.1.3	Active mode	11	7.5.1.1	Cell balancing diagram	43
7.1.1.4	Cyclic mode	12	7.5.2	Functional diagram	43
7.1.2	System control features		7.5.3	Functional description	
7.1.2.1	System configuration CRC		7.5.3.1	Timer-based balancing	
7.1.2.2	Communication, communication timeout		7.5.3.2	Cell undervoltage based balancing	
	configuration, and TPL configuration	12	7.5.3.3	Global undervoltage based balancing	
7.1.2.3	Supply configuration		7.5.3.4	Global balancing timeout	
7.1.2.4	System mode and interval for cyclic		7.5.3.5	prebalancing timer	
	measurements	12	7.5.3.6	Temperature-modulated balancing	
7.1.2.5	Clock synchronization		7.5.3.7	PWM for balancing	
7.1.2.6	System version		7.5.3.8	Constant current cell balancing	
7.1.2.7	Software interface information		7.5.3.9	Analog balancing switch monitoring	
7.1.2.8	Unique device ID		7.5.3.10	Junction temperature balancing protection	
7.1.2.9	Deep sleep storage data		7.5.3.11	Auto pause	
7.1.3	System control registers		7.5.3.12	Automatic discharge	
7.2	Event handling		7.5.4	Cell balancing process	
7.2.1	Faults		7.5.4.1	Start of balancing	
7.2.2	Events		7.5.4.2	Balancing operation	
7.2.3	Alarm output		7.5.4.3	Completion of balancing	
7.2.4	Alarm input		7.5.5	Cell balancing diagnostics	
7.2.5	Built-in self-test (BIST)		7.5.5.1	Switch status monitoring	
7.2.6	Event handling configuration CRC		7.5.5.2	Analog balancing switch monitoring	
7.2.7	Last POR reason		7.5.6	Cell balancing registers	
7.2.8	Event handling registers		7.5.7	Balancing related registers	
7.3	Power supply		7.6	GPIO pins	
7.3.1	Overview		7.6.1	Analog input	
7.3.2	VPRE		7.6.2	I2C-bus leader interface	52
7.3.3	VAUX		7.6.3	General-purpose input	
7.3.4	VDDC		7.6.4	General-purpose output	
7.3.5	VDDIO		7.6.5	Wake input	
7.3.6	VDDA		7.6.6	Alarm input	
7.3.7	Others		7.6.7	GPIO registers	
7.4	Measurement		7.7	Diagnostics	
7.4.1	Functional diagram		7.7.1	Cell-terminal pulldown resistors (CTx pins)	
7.4.1.1	Primary measurement		7.7.2	Cell-balancing terminal pulldown resistors	00
7.4.1.2	Secondary measurement			(CBx pins)	54
7.4.2	Functional description		7.7.3	AINx terminal pulldown resistors (AINx	5 F
7.4.2.1	Measurement sequence			pins)	55
7.4.2.1	Measurement configuration		7.7.4	Calibration CRCs	
7.4.2.3	Measurement configuration CRC		7.7. 5 7.7.5	Measurement status bits	
7.4.2.4	Undervoltage and overvoltage checks		7.7.6	Synchronization monitoring	
₁.₸.᠘.廿	onder voltage and over voltage checks	20	1.1.0	Cynonionization monitoring	51

7.8	I2C-bus interface	57	12.1.16	FEH_CFG_CRC register	112
7.8.1	I2C-bus registers	58	12.1.17	FEH_ALARM_CFG register	
7.9	Microcontroller interface		12.1.18	FEH_ALARM_OUT_CFG0 register	114
7.9.1	TPL3 message format	59	12.1.19	FEH_ALARM_OUT_CFG1 register	115
7.9.1.1	TPL3 message structure	59	12.1.20	FEH_ALARM_OUT_REASON0 register	116
7.9.1.2	Message CRC generation	61	12.1.21	FEH_ALARM_OUT_REASON1 register	118
7.9.1.3	Multiread responses with padding	61	12.1.22	FEH_WAKEUP_CFG0 register	118
7.9.1.4	TPL wake-up commands		12.1.23	FEH_WAKEUP_CFG1 register	
7.9.2	TPL3 interface		12.1.24	FEH_WAKEUP_REASON0 register	
7.9.2.1	TPL communication symbols		12.1.25	FEH_WAKEUP_REASON1 register	
7.9.2.2	TPL daisy-chain communication		12.1.26	FEH_MON_BIST_CTRL register	
7.9.2.3	Wake-up by TPL communication		12.1.27	FEH MON BIST RES register	
7.9.3	SPI interface		12.1.28	FEH ACC ERR register	
7.9.4	Microcontroller interface monitoring		12.1.29	FEH_GRP_FLT_STAT register	
7.9.4.1	Communication error counter		12.1.30	FEH_SUPPLY_FLT_STAT0 register	
7.9.4.2	Error counter overflow		12.1.31	FEH_SUPPLY_FLT_STAT1 register	
7.9.4.2 7.9.4.3			12.1.31	FEH_ANA_FLT_STAT register	
	Response errors				
7.9.4.4	Communication timeout		12.1.33	FEH_COM_FLT_STAT register	
7.9.4.5	CRC error		12.1.34	FEH_MEAS_FLT_STAT register	
7.9.4.6	Frame error		12.1.35	FEH_SUPPLY_FLT_POR_CFG0 register	
7.9.4.7	Access error	72	12.1.36	FEH_SUPPLY_FLT_POR_CFG1 register	
7.9.4.8	Response of the device to communication		12.1.37	FEH_COM_FLT_POR_CFG register	
	errors		12.1.38	FEH_SUPPLY_FLT_EVT_CFG0 register	
7.9.5	Microcontroller interface related registers		12.1.39	FEH_SUPPLY_FLT_EVT_CFG1 register	
8	Limiting values		12.1.40	FEH_ANA_FLT_EVT_CFG register	
8.1	BMI7018 limiting values		12.1.41	FEH_COM_FLT_EVT_CFG register	
8.2	ESD structure		12.1.42	FEH_MEAS_FLT_EVT_CFG register	
9	Thermal characteristics	76	12.1.43	FEH_POR_REASON register	141
10	Characteristics		12.1.44	GPIO_CFG0 register	
10.1	BMI7018 Electrical characteristics	77	12.1.45	GPIO_CFG1 register	144
11	Application information	87	12.1.46	GPIO_OUT register	145
11.1	Typical applications	88	12.1.47	GPIO_IN register	
11.1.1	External components		12.1.48	I2C_CFG register	
11.1.1.1	Power supplies		12.1.49	I2C_CTRL register	
11.1.1.2	Cell terminal filters		12.1.50	I2C_STAT register	
11.1.1.3	External cell balancing		12.1.51	I2C_DATA0 register	
11.1.1.4	Temperature channels		12.1.52	I2C_DATA1 register	
11.1.1.5	Alarm signal daisy chain		12.1.53	I2C_DATA2 register	
11.1.1.6	BMI7018 - Isolated communication		12.1.54	I2C_DATA3 register	
11.1.1.0	interface	92	12.1.55	I2C_DATA4 register	
11.1.2	Cell and bus bar connections on CT/CB	02	12.1.56	I2C_DATA5 register	
11.1.2	terminals	0/	12.1.57	I2C_DATA6 register	
12	Register map		12.1.58	I2C_DATA0 register	
12.1	Register description		12.1.59	I2C_DATA8 register	
12.1.1	SYS_CFG_CRC register		12.1.60	I2C_DATA10 register	
12.1.2	SYS_COM_CFG register		12.1.61	I2C_DATA10 register	
12.1.3	SYS_COM_TO_CFG register		12.1.62	I2C_DATA11 register	
12.1.4	SYS_SUPPLY_CFG register		12.1.63	I2C_DATA12 register	
12.1.5	SYS_MODE register		12.1.64	I2C_DATA13 register	
12.1.6	SYS_CYC_WAKEUP_CFG register		12.1.65	I2C_DATA14 register	
12.1.7	SYS_TPL_CFG register		12.1.66	I2C_DATA15 register	
12.1.8	SYS_CLK_SYNC_CTRL register		12.1.67	I2C_DATA16 register	
12.1.9	SYS_VERSION register		12.1.68	I2C_DATA17 register	
12.1.10	SYS_UID_LOW register	110	12.1.69	BAL_GLOB_CFG register	
12.1.11	SYS_UID_MID register	110	12.1.70	BAL_GLOB_TO_TMR register	
12.1.12	SYS_UID_HIGH register	110	12.1.71	BAL_CH_CFG0 register	159
12.1.13	SYS_PROD_VER register	111	12.1.72	BAL_CH_CFG1 register	
12.1.14	SYS_DS_STORAGE0 register	111	12.1.73	BAL_PRE_TMR register	163
12.1.15	SYS_DS_STORAGE1 register		12.1.74	BAL_AUTO_DISCHRG_CTRL register	
	-				

12.1.75	BAL_SWITCH_MON_CFG0 register	164	12.1.134	PRMM_APP_CTRL register	. 209
12.1.76	BAL_SWITCH_MON_CFG1 register			PRMM_PER_CTRL register	
12.1.77	FULL_PWM_CYCLE_VOLTAGE register			PRMM_SYNC_CTRL register	
12.1.78	BAL_CH_UV0_STAT0 register			PRMM_VC_CFG0 register	
12.1.79	BAL_CH_UV0_STAT1 register			PRMM_VC_CFG1 register	
12.1.80	BAL_GLOB_UV1_STAT0 register			PRMM_AIN_CFG register	
12.1.81	BAL_GLOB_UV1_STAT1 register			PRMM_AIN_OL_CFG register	
12.1.82	BAL_STAT0 register			PRMM_VBUF_CFG register	
12.1.83	BAL_STAT1 register			PRMM_VC_OV_UV_CFG0 register	
12.1.84	BAL_STAT2 register	177		PRMM VC OV UV CFG1 register	
12.1.85	BAL_SWITCH_STAT0 register			PRMM_VC_OV_TH_CFG register	
12.1.86	BAL_SWITCH_STAT1 register			PRMM_VC_UV0_TH_CFG register	
12.1.87	BAL_SWITCH_FLT_STAT0 register			PRMM_VC_UV1_TH_CFG register	
12.1.88	BAL_SWITCH_FLT_STAT1 register			PRMM_AINO_OV_TH_CFG register	
12.1.89	BAL_TMR_CH_ALL register			PRMM_AIN1_OV_TH_CFG register	
12.1.90	BAL_TMR_CH0 register			PRMM_AIN2_OV_TH_CFG register	
12.1.91	BAL_TMR_CH1 register			PRMM_AIN3_OV_TH_CFG register	
12.1.92	BAL_TMR_CH2 register			PRMM_AINA_OV_TH_CFG register	
12.1.93	BAL_TMR_CH3 register			PRMM_AIN0_UV_TH_CFG register	
12.1.94	BAL_TMR_CH4 register			PRMM_AIN1_UV_TH_CFG register	
12.1.95	BAL_TMR_CH5 register	187		PRMM_AIN2_UV_TH_CFG register	
12.1.96	BAL_TMR_CH6 register	187	12.1.155	PRMM_AIN3_UV_TH_CFG register	226
12.1.97	BAL_TMR_CH7 register	188	12.1.156	PRMM_AINA_UV_TH_CFG register	. 226
12.1.98	BAL_TMR_CH8 register	189	12.1.157	PRMM_CAL_CRC register	. 226
12.1.99	BAL_TMR_CH9 register		12.1.158	PRMM_CFG_CRC register	227
12.1.100	BAL_TMR_CH10 register		12.1.159	PRMM_VC_OV_FLT_STAT0 register	. 227
12.1.101				PRMM_VC_OV_FLT_STAT1 register	
12.1.102	BAL_TMR_CH12 register	191		PRMM_VC_UV0_FLT_STAT0 register	
12.1.103	BAL_TMR_CH13 register	192		PRMM_VC_UV0_FLT_STAT1 register	
12.1.104	BAL_TMR_CH14 register	192		PRMM_VC_UV1_FLT_STAT0 register	
	BAL_TMR_CH15 register			PRMM_VC_UV1_FLT_STAT1 register	
	BAL_TMR_CH16 register			PRMM_AIN_OV_FLT_STAT register	
12 1 107	BAL_TMR_CH17 register	194		PRMM_AIN_UV_FLT_STAT register	
	BAL_PWM_CH_ALL register			PRMM_MEAS_STAT register	
	BAL_PWM_CH0 register			PRMM_APP_VC_CNT register	
	BAL_PWM_CH1 register			PRMM_APP_VC0 register	
12.1.110	BAL_PWM_CH2 register			PRMM_APP_VC1 register	
	BAL_PWM_CH3 register			PRMM_APP_VC2 register	
12.1.112	BAL_PWM_CH4 register	107			
12.1.113	BAL_PWM_CH5 register	100	12.1.172	PRMM_APP_VC3 register PRMM_APP_VC4 register	240
				PRMM_APP_VC5 register	
	BAL_PWM_CH6 register				
	BAL_PWM_CH7 register			PRMM_APP_VC6 register	
	BAL_PWM_CH8 register			PRMM_APP_VC7 register	
	BAL_PWM_CH9 register			PRMM_APP_VC8 register	
	BAL_PWM_CH10 register			PRMM_APP_VC9 register	
	BAL_PWM_CH11 register			PRMM_APP_VC10 register	
	BAL_PWM_CH12 register			PRMM_APP_VC11 register	
	BAL_PWM_CH13 register			PRMM_APP_VC12 register	
	BAL_PWM_CH14 register			PRMM_APP_VC13 register	
	BAL_PWM_CH15 register			PRMM_APP_VC14 register	
	BAL_PWM_CH16 register			PRMM_APP_VC15 register	
	BAL_PWM_CH17 register			PRMM_APP_VC16 register	
	ALLM_CFG register			PRMM_APP_VC17 register	
12.1.128	ALLM_APP_CTRL register	205	12.1.187	PRMM_APP_AINA register	. 245
12.1.129	ALLM_PER_CTRL register	.206		PRMM_APP_AIN0 register	
	ALLM_SYNC_CTRL register			PRMM_APP_AIN1 register	
	ALLM_VCVB_CFG0 register			PRMM_APP_AIN2 register	
	ALLM_VCVB_CFG1 register			PRMM_APP_AIN3 register	
	PRMM_CFG register			PRMM_PER_NUM register	
	_ 3				

18-cell battery-cell controller IC

	PRMM_PER_VC0 register			SECM_CFG_CRC register	
	PRMM_PER_VC1 register			SECM_MEAS_STAT register	
12.1.195	PRMM_PER_VC2 register	247		SECM_APP_AIN4 register	
	PRMM_PER_VC3 register			SECM_APP_AIN5 register	
12.1.197	PRMM_PER_VC4 register	248		SECM_APP_AIN6 register	
12.1.198	PRMM_PER_VC5 register	248	12.1.254	SECM_APP_AIN7 register	277
12.1.199	PRMM_PER_VC6 register	249	12.1.255	SECM_PER_NUM register	278
12.1.200	PRMM_PER_VC7 register	249	12.1.256	SECM_PER_AIN4 register	278
12.1.201	PRMM_PER_VC8 register	249	12.1.257	SECM_PER_AIN5 register	278
12.1.202	PRMM_PER_VC9 register	250	12.1.258	SECM_PER_AIN6 register	279
12.1.203	PRMM_PER_VC10 register	250	12.1.259	SECM_PER_AIN7 register	279
12.1.204	PRMM_PER_VC11 register	250	12.1.260	SECM_PER_SECTEMP register	279
12.1.205	PRMM_PER_VC12 register	251	12.1.261	SECM_PER_PRMVREF register	280
12.1.206	PRMM_PER_VC13 register	251	12.1.262	SECM_PER_VAUX register	280
12.1.207	PRMM_PER_VC14 register	251	12.1.263	SECM_PER_VBAT register	281
12.1.208	PRMM_PER_VC15 register	252	12.1.264	SECM_PER_VDDA register	281
12.1.209	PRMM_PER_VC16 register	252	12.1.265	SECM_PER_VDDC register	281
	PRMM PER VC17 register			SECM PER NPNISENSE register	
12.1.211	PRMM_PER_AINA register	253	12.1.267	SECM_SYNC_NUM register	282
	PRMM_PER_AIN0 register			SECM_SYNC_VB0 register	
	PRMM_PER_AIN1 register			SECM_SYNC_VB1 register	
	PRMM_PER_AIN2 register			SECM_SYNC_VB2 register	
	PRMM PER AIN3 register			SECM_SYNC_VB3 register	
12.1.216	PRMM_PER_PRMTEMP register	254		SECM_SYNC_VB4 register	
	PRMM_PER_SECVREF register			SECM_SYNC_VB5 register	
	PRMM_PER_VAUX register			SECM_SYNC_VB6 register	
	PRMM_PER_VDDC register			SECM_SYNC_VB7 register	
	PRMM_SYNC_NUM register			SECM_SYNC_VB8 register	
12.1.221	PRMM_SYNC_VC0 register	256	12.1.277	SECM_SYNC_VB9 register	286
12.1.222	PRMM_SYNC_VC1 register	257	12.1.278	SECM_SYNC_VB10 register	286
12.1.223	PRMM_SYNC_VC2 register	257	12.1.279	SECM_SYNC_VB11 register	287
12.1.224	PRMM_SYNC_VC3 register	257	12.1.280	SECM_SYNC_VB12 register	287
12.1.225	PRMM_SYNC_VC4 register	258	12.1.281	SECM_SYNC_VB13 register	287
	PRMM_SYNC_VC5 register		12.1.282	SECM_SYNC_VB14 register	288
12.1.227	PRMM_SYNC_VC6 register	259		SECM_SYNC_VB15 register	
12.1.228	PRMM_SYNC_VC7 register	259	12.1.284	SECM_SYNC_VB16 register	289
12.1.229	PRMM_SYNC_VC8 register	259	12.1.285	SECM_SYNC_VB17 register	289
12.1.230	PRMM_SYNC_VC9 register	260	13	Package outline	290
12.1.231	PRMM_SYNC_VC10 register	260	13.1	Package mechanical dimensions	291
12.1.232	PRMM_SYNC_VC11 register	260	14	Revision history	
12.1.233	PRMM_SYNC_VC12 register	261		Legal information	295
	PRMM_SYNC_VC13 register				
	PRMM_SYNC_VC14 register				
	PRMM_SYNC_VC15 register				
	PRMM_SYNC_VC16 register				
	PRMM_SYNC_VC17 register				
	SECM_CFG register				
	SECM_APP_CTRL register				
	SECM_PER_CTRL register				
	SECM_SYNC_CTRL register				
	SECM_VB_CFG0 register				
	SECM_VB_CFG1 register				
	SECM_AIN_CFG register				
	SECM_AIN_OL_CFG register				
	SECM_VBUF_CFG register				
12.1.248	SECM_CAL_CRC register	273			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.