freescale ,
semiconductor Technical Note TN260

Debugging the Linux® Kernel using the
CodeWarrior™ IDE for ColdFire® Architectures
Version 2.4 with Abatron

By: Oscar Gueta

You can use the CodeWarrior IDE to debug Linux applications, the Linux kernel and kernel modules.
This document provides step-by-step instructions for configuring the CodeWarrior IDE for Linux
debugging using the Abatron BDI2000.

Introduction

To develop and debug Linux embedded applications, use the CodeWarrior Target Resident Kernel
(TRK). The CodeWarrior TRK is a highly-modular, reusable debug server that resides on the target
system and communicates with the CodeWarrior debugger.

On embedded Linux systems, the CodeWarrior TRK is packaged as a regular Linux application for use
with the CodeWarrior debugger. The CodeWarrior TRK source code is provided to you so that you can
modify it to work in custom situations.

For more information about the CodeWarrior TRK, see “Using CodeWarrior Target-Resident Kernel”
in the CodeWarrior™ Development Studio for ColdFire® Architectures, Linux® Platform Edition
Version 2.4 Targeting Manual.

For Linux kernel and module development and debugging the Abatron BDI2000 is the preferred tool.

This document covers debugging the Linux kernel for MCF5329EVB. You can use the same
methodology to set up the environment for other Freescale Evaluation Boards (EVB).

Refer to the release notes included in the CodeWarrior Development Studio for the specifics of each
EVB. The release notes are located in the following directory in the CodeWarrior installation:

CWilnstallDir/CodeWarriorIDE/Release Notes/

Setting up the BSP for the Freescale Evaluation Board (EVB)

First, set up the Board Support Package (BSP) and make sure that the base boot loader and Linux
kernel boot correctly on the EVB.

Page 10f19

73
>“freescale ,
semiconductor Technical Note TN260

NOTE Find the Board Support Package image files for test boards at
www.codewarrior.com under:
Downloads > Linux Board Support Packages > BSPs for Coldfire
Architectures.

For more information on setting up Linux on the EVB, refer to the User Manual located on the BSP
ISO disc. To mount the disc:

1. Login as root, or use sudo privileges, to mount the ISO file (change ISO filename as needed).
mount -o loop m532xevb-20071102-1tib.iso /mnt/cdrom

2. Change to the user manual directory:
cd /mnt/cdrom/Help/software

3. Open the pdf file User_Manual_ MCGF5329.pdf (change user manual name as needed).

Follow the instructions and set up the environment on the host Linux machine. For the MCF5329EVB,
the original dBUG boot loader included on the board is recommended, and is configured as the boot
loader for the Linux kernel. Mount the Linux file system using Network File System (NFS).

Configuring Abatron BDI2000

The release notes provided with the IDE state that the target board must have the original dBUG
firmware to use the kernel/module debugging feature. You must configure the BDI2000 device with
"stop" mode to support the kernel/module debugging feature.

The CodeWarrior IDE includes BDI files with the correct Abatron settings that correspond to each
supported board. The .bdi files are located in CWInstallDir/CodeWarriorIDE/
CodeWarrior/ThirdPartyTools.

Example: CWInstallDir/CodeWarriorIDE/CodeWarrior/ThirdPartyTools/
MCF532x/Abatron/Sample_BDI_Files/MCF5329_stop.bdi

NOTE Do not use a target initialization file with the kernel project when using
the Abatron debug tool.

If you are doing kernel debugging with the P&E USB ColdFire MultiLink
Cable, use StartBootloader.cfg as the target initialization file.

NOTE This example uses the MCF5329EVB, MCF5329_stop.bdi, and the
B20mcf . exe Abatron flashing/configuring utility that is located on the
diskette provided with the Abatron tool.

Page 2 of 19

g |

73
e
> freescale ,
semiconductor Technical Note TN260

1. Connect a serial cable between a serial port on the host computer and the serial port of the
Abatron tool.

NOTE To connect to the Abatron using the network, the Abatron tool must be
configured with a static IP address. This IP address is transmitted to the
Abatron tool over a serial connection.

2. Run B20mcf . exe. This window-based Abatron configuration utility is located on the diskette
that comes with the Abatron tool.

NOTE You can download the source files for a command line tool, bdisetup,
from the Abatron web page and compile them using gcc, if the window-
based tool B20mc £ . exe is not available.

iim MCF5329_stop.bdi - BDI2000 Setup for ColdFire =] 3]
Fie Setup Tools View Hep

NEEEARNE R

For Help, press F1 [[A

3. From the menu, select File > New.
The Open dialog box appears.
4. Select MCF5329_stop.bdi from the BDI files directory.

Example: CWInstallDir/CodeWarriorIDE/CodeWarrior/ThirdPartyTools/
MCF532x/Abatron/Sample_BDI_Files/MCF5329_stop.bdi

5. Click Open.

Page 3 of 19

g |

73
e
> freescale ,
semiconductor Technical Note TN260

6. From the menu, select Setup.

The Communication Setup window appears.

—Channel—— [~ Baudrate

{« COM1 " 9600
" COM2 19200
" 38400
" COM3 & 57600
" COM4 115200

|P Address:

" Network I
Cancel | oK I

Verify that the Channel and Baudrate are set correctly for the serial port on your host machine.

Click the Test button to test the serial communication between the host machine and the Abatron
tool via the serial port.

A message box confirms that the link to BDI was successfully tested.

x

1) Link to BDI successful tested!

9. Click OK to return to the main Communication Setup screen.

Page 4 0f 19

g |

L 4
- Treescaie ,
semiconductor Technical Note TN260
10. Confirm your Channel and Baudrate settings and click the Connect button to connect to the
BDI2000 Loader.
— Connect BDI2000 Loader
[B SN: 11130820C

@ COM1 8500 !
Fieois 2 MAC: 000CO1111308
C COM3 38400
" COM4 + 57500

— BDI2000 Firmware / Logic

Current Newest Cunient

Loader 1.05 Update
Firmware 1) 1lls)
Logic 1.0 105 [Synch

~ TCP/IP Configuration
IP - Address [192.168.1.3
Subnet Mask [255.255 255.0
Default Gateway |1D.1 71.77.254

Concel | ok | Transmit |
Connecting to BDI2000 Loader passed!

11. Update the firmware, if needed. New versions of firmware are provided by Abatron.
12. Enter the IP Address and Subnet Mask address into the edit boxes.
13. Click Transmit to transmit the desired TCP/IP configuration to the Abatron tool.

~ Connect BDI12000 Loader
~Channel—— ~Baudrate- SN: 11130820.C
= COM1 " 9800 :
~ COM2 ¢ 19200 MAC: 000C01111308
" COM3 " 33400
" COM4 * 57600 Cormect |
—BDI2000 Fi / Logic
Current Newest Current |
Loader 1.05 Update
Firmware 113 113 [e
Logic 1.05 1.05 " Synch

~ TCPAP Configuration

IF - Address [192188.1.3
Subnet Mask | 255.255.255.0
Default Gateway |

Cancel Ok ‘

Wiiting setup data passed

Page S of 19

73
> freescale ,
semiconductor Technical Note TN260

14. Transmit the default BDI Working Mode settings which were read from the previously opened
BDI file.

BDI Working Mode

Identification IM CF5329 Evaluation Board

—Statup—— [Breakpointy 000000
Workspace | 40000400 Hex
" Reset % Freeze R
@ Stop P Vectorbase 40000000 Hex
" Run o Loop Level Ilf urrent j
Use no target vectors v CPU Type IMCF53""‘ ﬂ
Clock Rate IZGUUDUUDU Hz

Use Breakpoint Logic | |
Wiiting setup data passed

Transmit Close |

Abatron is now ready.

Configuring PE Micro USB Multilink

CodeWarrior IDE for ColdFire Architectures includes P&E Micro USB Multilink's Linux driver,
called windrv6 under Linux. This driver compiles and installs at CodeWarrior IDE installation time
and is known to compile and work on the supported Linux distributions described in CodeWarrior
release notes.

For newer versions of the drivers or to address problems when compiling or loading this driver, visit
http://www.pemicro.com.

Configuring BSP/Linux Kernel using LTIB

You must use the Linux Target Image Builder (LTIB) to configure the settings of the Linux image you
are building. Specifically, you need to change the boot loader, kernel configuration and the kernel
sources.

1. Change the directory to the LTIB subdirectory.

Example: cd /home/<username>/1ltib-m532xevb-20071102
2. Run the command:

./1ltib --configure

This command launches the LTIB shell script which begins the installation of the LTIB files and
launches the LTIB configuration screen.

Page 6 of 19

-

‘o
‘o .
> freescale ,
semiconductor Technical Note TN260

NOTE A log file named host_config. log contains a record of the install
progress. View this file using the tail -f host_config.log
command.

NOTE According to the BSP documentation and the CodeWarrior release notes,
you must use dBUG as the boot loader.

3. Select the Build a boot loader option.
4. Under Bootloader choice select Build dBUG bootloader.

LTIB: Freescale M532xEVB Coldfire/M68k (moMMII)

B
Bootloader choice (Build dBUG bootloader)

<Select>

5. Select the Configure the kernel option.

This tells the kernel configuration screen to launch after the LTIB configuration is done.

Page 7 of 19

-

‘o
‘o .
>“freescale
semiconductor Technical Note TN260

6. Select the Leave the sources after building option.

LTIB: Freescale M532xEVEB Coldfire/MG68k (noMMU)

k

[§] Leave the sources after building

7. Select Exit.
You are asked if you want to save the LTIB configuration.
8. Click Yes to save the LTIB configuration.
The setup continues and the kernel configuration screen appears.

9. Next, enter the Kernel Hacking option.

Kernel hacking —-——>

10. Select the Kernel debugging option.

Page 8 of 19

-

‘o
‘o .
>“freescale ,
semiconductor Technical Note TN260

[*] Kernel debugging

11. Select the Compile the Kernel with debug info option.

[*1 Compile the kernel with debug info

12. Click Exit to exit the Kernel hacking screen.
13. Select Exit.

You are asked if you want to save the kernel configuration.
14. Click Yes to save the kernel configuration.

The kernel recompiles with debug information.

A Build Succeeded message appears in the terminal window upon successful completion.

Page 9 of 19

g |

7" freescale

semiconductor Technical Note TN260

Creating the Linux Kernel CodeWarrior Project

After you compile the kernel, you need to create a kernel project.

1.

Open the CodeWarrior IDE.

a) Open a terminal window from the Linux desktop.

b) Change to the CWInstallDir/CodeWarriorIDE/ subdirectory.
¢) Run the CodeWarrior configuration file:

. /cwide

The CodeWarrior IDE top level menu window appears.

‘2 CodeWarrior i .:JQ.I,LI
File Edit Search Prajent Debug Tools Window Help |E“2"{
=

In the CodeWarrior IDE menu, select File > Open.

A standard file open dialog box appears.

Select the uncompressed kernel image built in the previous procedure.
LTIBInstallDir/rpm/BUILD/linux/vmlinux

File Selection

‘Itih—mﬁﬂ:—leuh—zﬂﬂ?l 102/rpm/BUILDS linud/vmlinus — |

O kernel A
3 lib

59 MAINTAINERS

0 ™Makefile

O mm

0 Module.symuers
3 net Get Info... |
(5 README

(5 REPORTING-BUGS -
O scripts Cancel |
O security
3O sound Open
0 system.map
3 usr

ﬁ rmlinus

O vmlinus.bin

by

4. Click Open.

NOTE If you did not compile the kernel with debug symbols, the IDE displays an
error message.

Page 10 of 19

g |

73
e
> freescale ,
semiconductor Technical Note TN260

5. The Choose Debugger window appears.

Choose Debugger = (]

— Choose a debugger:
() ColdFire &batron Serial
@ ColdFire &batron TCRAIP
(23 ColdFire CodeVwarrior TRE Serial
(2 ColdFire Code'warriorTRE TCPAIP
() ColdFire Ethernet Tap BDM
() ColdFire PEMICRO USE
() ColdFire USE Tap BDM

[cancel | [l ok ||

'8

6. Select the ColdFire Abatron TCP/IP option.
7. Click OK.

The IDE creates a dummy CodeWarrior project named vml inux.mcp. The vml inux.mcp file
is in the same directory as vimlinux (/rpm/BUILD/1inux). This directory also contains the
source code files used to build the kernel.

As the IDE creates this project, it displays a progress bar that indicates project creation progress.
If the IDE cannot find a kernel source file, it displays a dialog box that allows you to navigate to
and select the missing file.

o
File Edit Search Project Debug Tools Window Help |
(@ vese B =Y I [I T
J/FilesVLink Order /Targets '\
| File | Code | Data [uf
[) main.c o 0« @A
A unistdh a o @4
M thread_info.h 0 [} =
M bitops.h o o]
¢ M do_mounts.c [} 0« @
M kdev_th 0 0 @
D string.h] o =@
M do_mounts h o o =
M delay b 0 0 =
& ﬂ do_mounts_rd.c 0 0« @
& m inflate a] 0« @
M swabh o o =@
A swabh 1} 0 @
& D initramfs.c i] 0« =
¢ @) calibrate.c 0 0.3
M) delayh o o @
3 n dma.c i] 0« =
A pageh i} i} =
¢ M) processe o 0« @
B] processor h 1] o =
« [ptracec [} 0« 3@
¢ [semaphore.c i} 0.3
) currenth 0 0 =]
635 files 0 0

You have created a CodeWarrior Linux kernel debug project.

Page 11 of 19

7" freescale

semiconductor

Technical Note

TN260

Configuring the Kernel Project for Debugging

Now that you have created a CodeWarrior project for your Linux kernel image, the next step is to
configure this project for debugging. The CodeWarrior IDE provides the correct kernel debug settings
to use via . xml files located in CWInstallDir/CodeWarriorIDE/CodeWarrior/
ColdFire_Support/KernelDebug_Settings.

1. Open the Target Settings window by selecting Edit > ELF DEBUG SETTINGS.
2. Edit the CF Debugger Settings.

a)

b)

9

d)

In the Target Settings Panels pane, select CF Debugger Settings.

The CF Debugger Settings panel appears in the Target Settings window.

Configure the base CF Debugger Settings options using the Import Panel button, which brings
up a file selection window. Navigate to:

CWInstallDir/CodeWarriorIDE/CodeWarrior/ColdFire_Support/
KernelDebug_Settings/TargetPlatformName/CF Debugger

Settings.xml
Click Open.

This imports the default settings for the ColdFire Debugger.

In the Target Processor list box, make sure that the processor selected matches the processor
on your target board.

In the Target OS list box, select Linux.

When using the Abatron tool, clear the Use Target Initialization File checkbox.

E Target Settings Panels

E CF Debugger Settings

= Target
Target Settings
#ccess Paths
Build Extras
Runtime Settings
File Mappings
Source Trees
GNU Target

= Language Settings
GNU Assembler
GNU Disassembler
GNU Compiler

~ Linker
GHU Linker

= Editor
Custom Keywards

= Debugger
Debugger Settings
Remote Debugging
CF Debugger Settings
Dehyooer PIC Settinns

£

Target Processor:| 5329

— [use Target Initialization File

= Target 05:[Linux

|{Compﬂer}EﬁSK_SupporUIm'tial1zat1un_Fﬂes.-’StartBnotlnader| [Browse...

- D Use Memory Configuration File

| [Bromwse...

__Programn Download Options

Initial Launch Successive Runs
Executable [of Executable [of
Constant Data [f Constant Data [of
Initialized Data [f Initialized Data [
Ininitialized Data [] |Jninitialized Data O

D Verify Memary Writes

Factory Settings] [Revert Panel]

[Export Panel...] [Import Panel...] [Save]

Page 12 of 19

wr
4\

73
e
> freescale ,
semiconductor Technical Note TN260

NOTE Do not use an initialization file with the Abatron BDI2000 tool.
If you are using a USB P&E Micro cable, or other debug device, you must
specify an initialization file.

g) Under Program Download Options for both the Initial Launch and Successive Runs
sections, check the following:

* Executable
¢ Constant Data
e Initialized Data

These options specify what portions of the project to download on the initial and successive
launches of the kernel.

h) Click Save if you made any changes.
The IDE saves your settings.
3. Edit the Linux Kernel Debug Settings.

The Linux Kernel Debug Settings panel provides settings to enable threaded debug and delayed
software breakpoint support.

a) In the Target Settings Panel window, select Linux Kernel Debug Settings.
The Linux Kernel Debug Settings panel appears.

ELF DEBUG Settings [vmlinwx.mcp] =10| x|
[§ Target Settings Panels [§ Linux Kernel Debug Settings
ource | rees _\
GNU Target — [] Enable Memory Translation -

= Langquage Settings
GMNU Assembler

GNU Disassembler

GNU Compiler Virtusl Base dddress
= Linker

GNU Linker Memory Size
w Editor
Custom Keywords
= Debugger
Debugger Settings [Enable Threaded Debugging Support
Remote Debugging
CF Debugger Settings [Enable Delayed Software Breakpoint Support
Debugger PIC Settings
Linux Kernel Boot Parame...
Linwe Kernel Debug Settings|
Source Folder Mapping
= Command-Line Extras
GNU Environment]
GHU Tools i

(Factory Settings | [Revert Panel (Enport Panel... | [Import Panel...] | save |

b) Import the settings for this screen using the Import Panel button. Import the following . xm1
file:

CWInstallDir/CodeWarriorIDE/CodeWarrior/ColdFire_Support/

Page 13 0f 19

g |

73
e
> freescale ,
semiconductor Technical Note TN260

KernelDebug_ Settings/TargetPlatformName/Linux Kernel Debug
Settings.xml.

c) Click Save if you made any changes.
The IDE saves your settings.
4. Edit the Remote Debugging options.
a) In the Target Settings Panels window, select Remote Debugging.
The Remote Debugging settings panel appears in the Target Settings window.

ELFE DEEUG Settings [vmlinux.mcp]
——
E Target Settings Panels E REemote Debugging
SOUFceE Trees A
GHU Target — Connection Settings

= Language Settings Connection:[ColdFire Abatron TCF/IP 2] Edit Connection... I

GMU Aszernbler
GMU Dizassernbler Rermnote download path

GHU Compiler | |
= Linker

GMU Linker _
= Editor O] Launch remote host application
Custom Keywords ’7| |

= Debugger
Debugger Settings
Rernote Debugging
CF Debugger Settings
Debugger PIC Settings

Limee Kernel Bodt Parare.., [Download 05
;Ln:rcte;:LShﬁa?;?:;f‘ Connection: [ColdFire Abatron Serial 2] [W
~ CDENFEIES:;iL:::r::::ES | 03 Image Path: | | Chooze. ..
GHU Tools Fi
[Factory Settings] [Revert Panel] [Export Panel...] [Import Panel...] [Save]

b) Make sure that you select the debug probe you are using in the Connection list box. In this
case, select ColdFire Abatron TCP/IP.

c) Select Edit Connection to modify the IP Address of the debug probe.
The ColdFire Abatron TCP/IP configuration screen appears.

Page 14 of 19

73
> freescale ,
semiconductor Technical Note TN260

d) Change the IP Address to the same IP address as your Abatron tool.

Mame: [CaldFire Abatron TCP/IP |

Dehugger:[ColdFire Abatron &] [Show in processes list

— Connection Type:| TCPAIP E

IP Address: [192.168.1.3 |

Enter an |F address in the format of 127.0.0.1:1000 or host damain.com:1000.

[Log Communications Data to Log i ndow

[Factory Settings] [Revert Panel] Cancel I 0K I

e) Click OK to save settings and exit the screen.
f) Click Save, if you made changes.
The IDE saves your settings.
5. Close the Target Settings panel.

You have now configured the project for debugging.

Debugging the Linux Kernel

At this point, the environment is ready to start a debug session.

1. Click on the CodeWarrior debug icon or select from the menu Project > Debug to start
downloading the Linux kernel.

The kernel starts downloading to the RAM of the target board.

vmlinux
Downloading 2105344 bytes...

Page 150f 19

b -

C 4
o.®

> freescale

semiconductor

Technical Note

You can observe the Linux boot process in a serial console:

I3 Tera Term Web 3.1 - COM1 VT

Fle Edit Setup Wep Control Window Help

device=eth0, addr=192.168.1.1, mask=255.255.255.0, gw=192.168.1.254, _:J
host=192.168.1.1, domain=, nis—-domain=(none),
bootserver=192.168.1.2, rootserver=192.168.1.2, rootpath=
Looking up port of RPC 100003/2 on 192.168.1.2
Looking up port of RPC 100005-/1 on 192.168.1.2
VFS: Mounted root (nfs filesystem).
Freeing unused kernel memory: 76k freed (0x401cl000 - 0x401d43000)
init started: BusyBox vl1.00 (2006.07.05-20:48+0000) multi-call binary
init started: BusyBox v1.00 (2006.07.05-20:48+0000) multi-call binary
Starting pid 17, console : '/etc/rc.d/rcS'
Setting the hostname to freescale
Mounting filesystens
Setting up networking on loopback device:
Setting up networking on ethO:
Adding static route for default gateway to 192.168.1.1:
Setting nameserver to 192.168.0.1 in setc/resolv.conf:
Starting the boa webserver:
Starting pid 95, console :

‘/bins/sh’

BusyBox v1.00 (2006.07.05-20:48+0000) Built-in shell {msh)
Enter 'help' for a list of built-in commands.

'y 5

The IDE displays the CodeWarrior debugger.

vmlinux (Thread 0x401AAB54) =10 %]
File Edit Search Project Debuy Data Linux Tools Window Help I
Il oo '
[Sstack B1] [§@ varisbles: Live | vale Location
} Mo ocsl varisbles }.
£ i

-

EL:S«nu: £l
Program “"vmlinux" is executing. AN
Choose Stop from the Debug menu to stop it.

7

() | Line 1 Col1 | Source Ml |-

Page 16 of 19

h -

g |

7" freescale

semiconductor

Technical Note

TN260

2. Click the Stop button to stop execution of the Linux kernel.

The debugger windows show what the kernel is currently executing.

vmlinux (Thread 0x401AAB54) =10 x|
File Edit Search Project Debug Data Linux Tools Window Help I
(5] - [x]nl@l[olE
Stack (4] @ Variables: Live | Walue Location (=]
cpu—idle Y A fo0s] varisbles s
default_idle J J
£ 4
-
[Eswmo: /home fogueta/Itib-m5329/rpm /BUILD/ linux-2.6.16 /arch /méEknommu /kernel /process c m|
* At
void default idle(void)
{ |
local_irqg disable();
while (lneed_resched(}) {
/* This stop will re-enable interrupts */
- __asm__("stop #0x2000" : : : "cc");
» local _irq disable();
i
- local_irq enable();
i
void (*idle) (void) = default_idle;
J*
F |
£ 4] Line 60 Col 1| Source M-l -

3. Asanexample, set a breakpoint in the process creation module of the Linux kernel (do_fork ()
at fork.c) to break when the operating system is creating a process.

A red dot appears next to the line of code where the breakpoint is set.

File Edit Search Project Debug

Tools Window

=10Ix|
Heip |

IE @ Fath: | /home /ogueta/1tib-mS322/rpm/BUILD flinux-2 6.16 fkernel fTork ¢
I+

* 0k, this is the main fork-routine.
+

*

* it and waits for it to finish using
+
long do_fork (unsigned long clone_flags,

unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int _ user *parent_tidptr,
int _ uwser *child_tidptr)

struct task_struct *p;

int trace = 0;

long pid = alloc_pidmap();

if (pid < 0)
return -EAGAIN;

if (unlikely{current-»ptrace)) {
if (trace)

b

It copies the process, and if successful kick-starts

the VM if required

trace = fork_traceflag (clone_flags);

clone_flags |= CLOME_PTRACE;

o) ©

* p = copy_process(clone_flags, stack start, regs, stack_size, parent_tidy
/‘i—

+ Do this prior waking vp the new thread - the thread pointer
* might get invalid after that point, if the thread exits quickly

Line 1284 Col3 [||~] I

Page 17 of 19

73
>“freescale ,
semiconductor Technical Note TN260

4. Click the Run icon

The debugger stops at the requested point when a process is being created. You can trigger this
action by typing a command in the Linux serial console.
-l

File Edit Search Project Debug Data Linux Tools Window Ilep'

5] |l mlwlwl DEE

[o Varisbles: Live | Vale Location]|
mé8k_clone 8] B oonild_tidptr 0x00000000 Ox401C0FEC [N
W do_fork clone_flags 2816 30z
[+ parent_tidpir 0x00000000 Ox401COFEE
[regs Ox401C0OF94 Ox401COFE0
stack_size o Ox401COF64

stack_start 1075580872 0x40 I COFSC
trace o 305

]

)

-
[EBlSource: 7home/ogusta/ ib-ms828 /rpm /BURD /linix=2.6.16 fkernel fork.c
return -EAGAIN;
if (unlikely{current-:ptrace)) {
trace = fork_traceflag (clone_flags);
if (trace)
clone_flags |= CLONE_PTRACE;
i

o

4.3 p = copy_process(clone_flags, stack _start, regs, stack_size, parent i
I
* Do this prior waking up the new thread - the thread pointer
* might get invalid after that point. if the thread exits quickly
*f
if (!IS_ERR(p})) {
struct completion vfork;

0,[Une 1309 Col1 | Source #Jod 1

You can now continue debugging the Linux kernel.

Passing Parameters to the Linux Kernel from the CodeWarrior Software

The latest BSPs include Linux kernels that allow the user to include the kernel boot parameters in the
binary itself. This removes the need to pass parameters externally.

For Linux kernels that do not support this feature, the CodeWarrior IDE includes a panel for passing
parameters. At boot time, the Linux kernel looks for the parameters at the memory location right after
the last kernel symbol (A_end). Symbols can be located at System.map, which is produced by the
linker during kernel compilation. As an example, a MCF5485 Linux kernel produces these symbols at
the end of the file:

c02b0085 A __ initramfs_end
c02b2000 A _ init_end
c02b2000 D init_thread_ union
c02b4000 A _end

In this case, the last symbol is at 0xc02b4000. However, as MCF5485 is an MMU-enabled unit, it uses
a "normal" Linux kernel, so that all addresses appearing in Sy stem.map are virtual addresses. In this
case, the kernel needs a physical address, so you must perform a conversion: remove the number "c"
from the address, which results in 0x002b4000. Use this location in the CodeWarrior panel.

For pcLinux BSPs (such as the ones corresponding to V2 and V3 cores), no conversion is needed.

Page 18 of 19

A 4
4\

Additional Information

* CodeWarrior™ Development Studio for ColdFire® Architectures, Linux® Platform Edition
Version 2.4 Targeting Manual contains useful information and is the starting point for learning
to use the CodeWarrior IDE for Linux.

* The BSP user manual contains vital information to quickly start using Linux in the target EVB.

* For information on Feature Support and Known Issues, refer to the CodeWarrior Release
Notes.

e Visithttp://www.freescale.com/support for additional assistance.

How to Reach Us: Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Home Page:
www.freescale.com

E-mail: Freescale Semiconductor reserves the right to make changes without further notice to any products
support@freescale.com herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
USA/Europe or Locations Not Listed: s‘uitlalbility.o_f its products for apy p_articular purpose, nor does Free§cale Semicg_nducto_r asgume any
Freescale Semiconductor liability arising out of the application or use of any product or circuit, and specifically disclaims any
Technical Information Center, CH370 and all liability, including without limitation consequential or incidental damages. “Typical’ parameters
é%oo gf A'X‘? SCh%Oslgiad that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
+1_a8r60?5r,21_ré2207n4a0r +1-480-768-2130 in different applications and actual performance may vary over time. All operating parameters,
support@freescale.com including “Typicals”, must be validated for each customer application by customer’s technical experts.

Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Europe, Middle East, and Africa: Freescale Semiconductor products are not designed, intended, or authorized for use as components

Freescale Halbleiter Deutschland GmbH

Technical Information Center in systems intended for surgical implant into the body, or other applications intended to support or

Schatzbogen 7 sustain life, or for any other application in which the failure of the Freescale Semiconductor product

81221925'6[1238%% GEerrrll_aP]y could create a situation where personal injury or death may occur. Should Buyer purchase or use

146 8 52200080 (E(ngr}i%;ls)) Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall

+49 89 92103 559 (German) indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and

+33 1 69 35 48 48 (French) distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney

support@freescale.com fees arising out of, directly or indirectly, any claim of personal injury or death associated with such

Japan: unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was

Freescale Semiconductor Japan Ltd. negligent regarding the design or manufacture of the part.

Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku, Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior™

Tokyo 153-0064, Japan . . .) .

0120 191014 or +81 3 5437 9125 is a trademark or registered trademark of Freescale Semiconductor, Inc. StarCore® is a registered

support.japan @freescale.com trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other
product or service names are the property of their respective owners.

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. © Freescale Semiconductor, Inc. 2007. All rights reserved.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-521-6274 or 303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

@,

Document Number: TN260 : & freescale

10 March 2008 semiconductor

	Debugging the Linux® Kernel using the CodeWarrior™ IDE for ColdFire® Architectures Version 2.4 with Abatron
	Introduction
	Setting up the BSP for the Freescale Evaluation Board (EVB)
	Configuring Abatron BDI2000
	Configuring PE Micro USB Multilink
	Configuring BSP/Linux Kernel using LTIB
	Creating the Linux Kernel CodeWarrior Project
	Configuring the Kernel Project for Debugging
	Debugging the Linux Kernel
	Passing Parameters to the Linux Kernel from the CodeWarrior Software
	Additional Information

