
Page 1 of 15

Technical Note TN256

Converting Projects to
CodeWarrior™ ColdFire® V7.0

by: Marcel Achim, Oscar Gueta and Alfredo Soto

Project Conversion

Converting a project created in CodeWarrior™ Development Studio for ColdFire® Architectures V6.4 to
V7.0 is a straightforward procedure. Two major changes in V7.0 may impact projects when moving from
V6.4 to V7.0:

1. Default alignment changed to ColdFire alignment: To increase runtime performance, all default
alignments on V7.0 have been changed to modulo-4 (ColdFire alignment). All libraries are now
built with these settings.

2. Simplified library configurations: Removing the TRK libraries reduced the number of libraries by
half. When debugging virtual console-based targets, include the source code module.

This document provides a general overview of the changes in V7.0 and a quick guide to successfully
migrate projects from V6.4 to V7.0. The following items are covered in this document:

• Terms and Abbreviations
• Libraries
• Performance Improvements
• Memory Map
• Code Generation
• New and Obsolete Options
• New Linker Options
• New Debugging Interfaces
• Additional information

Terms and Abbreviations
The following terms and abbreviations are used in this document:

• MSL Main Standard Libraries
• SZ_ Designation for special, small library configurations appropriate for

limited-memory ColdFire devices such as the MCF52235.
• TRK Target Resident Kernel
• V6.4 Refers to CodeWarrior Development Studio for ColdFire Architectures,

Version 6.4.
• V7.0 Refers to CodeWarrior Development Studio for ColdFire Architectures,

Version 7.0.

Page 2 of 15

Technical Note TN256

Libraries

CodeWarrior for ColdFire V7.0 delivers simplified library configurations providing the best performance
with the highest code density possible. Removing the TRK libraries (used for virtual console targets)
decreases the number of MSLs by half.

Consider these facts about the V7.0 libraries:

• V7.0 adds a new set of libraries specifically for ColdFire V4. These libraries include the V4
designation in their name (e.g., C_V4_4i_CF_MSL.a).

• V7.0 no longer builds 2i libraries by default. (For details, see Avoiding 2-byte Integers below.)

• V7.0 builds all libraries for data smaller than 8 bytes with A5-relative addressing. This limits the
amount of accessible global data to 64K for the data affected by this setting. Select this setting in
the linker panel to use A5 relative addressing for non-MSL data as well.

• All libraries now compile with ColdFire alignment as the default. If this is not what is needed,
rebuild the libraries. (For more details, see Alignment below.)

• Full C99 support is included only on full libraries (libraries without the SZ designation in their
name).

• In addition to the pre-built binaries, the CodeWarrior development tools include the source code
and project files for MSL so that you can customize the libraries.

NOTE The MCF52235 and related processors have smaller memories than many
other members of the ColdFire family. The V7.0 libraries include special,
small library configurations appropriate for such limited-memory devices.
The names of these small library files include the designation SZ_.

Page 3 of 15

Technical Note TN256

Migrating Virtual Console Targets from V6.4 to V7.0
• As mentioned before, the TRK libraries no longer exist in V7.0, so opening a V6.4 project

in V7.0 displays the error message shown in this figure:

The solution is simple: just remove that library from the project.

• Trying to link the virtual console target causes several undefined symbols to appear, as
shown below:

Page 4 of 15

Technical Note TN256

Those symbols are implemented in C_4i_CF_MSL.a. You must add that library to the
project for all targets. Of course, if those symbols are not needed, the library is not needed
either.

• Output of printf() for this library goes to the serial port. You need another file to send
the output to the virtual console:

msl/MSL_C/MSL_ColdFire/srcs/console_io_cf.c.

Copy the file to your project directory and add the file to your console target only.

NOTE Add this file to the console target only, otherwise all targets will send their
output to the UART.

• Make sure to add both files to the Link Order tab:

• Build the project and start debugging normally.

Other Linking Issues

If you run into unreferenced symbols, C_4i_CF_MSL.a contains most of the symbols needed. Include
this library in your project while removing any other MSL library (i.e. SZ libraries).

Other non-TRK targets are not affected by the migration. However, there may be situations where segment
adjustments may be needed in the Linker Configuration File (LCF) in order to complete the linking.

Avoiding 2-Byte Integers

The ColdFire cores provide only 32-bit arithmetic support. Avoid using integers as 2-byte quantities
whenever possible, as this introduces data size conversions that impact code size.

Page 5 of 15

Technical Note TN256

Performance Improvements

V7.0 incorporates the following performance improvements.

Alignment

The Code Generation settings panel's alignment option affects both structure internal alignment (offsets
within structures) and global data alignment (memory address). The default value for this setting in V6.4
was word (16 bit) (modifiable via pragma statements), reminiscent of the early 68000 16-bit bus used in
Macintosh computers. ColdFire is built on a 32-bit (long) architecture and using the 68000 alignment
imposes a runtime penalty for misaligned memory accesses, since the processor performs multiple
memory fetches to recompose misaligned data.

A major change introduced in V7.0 addresses this issue and improve performance is changing the native
alignment from 68000 to ColdFire. Thus #pragma align=native is now automatically equivalent to
#pragma align=coldfire.

In scenarios where native alignment is set to ColdFire and there is a need for compatibility with previous
releases, you must explicitly reset the native alignment in your code using a new pragma:

#pragma native_coldfire_alignment on|off|reset

If binary compatibility with the legacy 68000 alignment is absolutely required, the MSL C and C++
libraries must be recompiled manually with #pragma native_coldfire_alignment off.

A set of backwards-compatible projects and makefiles preset to these settings can be found in:

msl/MSL_C/MSL_ColdFire/Projects

msl/MSL_C++/MSL_ColdFire/Projects

These are identified with a .word suffix in their name.

NOTE Building the backwards-compatible projects overwrites the default pre-
built libraries.

Passing Parameters ABI

The Register and Standard ABI align pass arguments on 4-byte boundary offsets. The Compact ABI forces
on a 2-byte alignment all parameters except for those passed as part of a variable arguments list; these are
aligned on 2-byte boundaries for MC68000 alignment and on 4-byte boundaries otherwise. Under the
Compact ABI, passing mixed-size arguments using the MC68000 alignment can potentially degrade
performance.

You are encouraged to use the Standard or Register ABI. The Register ABI passes the first few arguments
in registers when possible, reducing code size and increasing performance. This is important as most of
the V6.4 projects are compiled against compact libraries and the default setting on each project is compact
as well.

Page 6 of 15

Technical Note TN256

V7.0 includes compact libraries and the Compact Parameters Passing setting for backwards compatibility.

When switching to a non-compact ABI, be sure to include the correct libraries (RegABI or StdABI) for
your project and select the correct Parameter Passing in your project settings.

Backwards Compatibility

The simplest backwards-compatible solution that helps achieve better runtime performance without
changing internal data type alignment involves the linker. To support unreferenced objects stripping, the
compiler allocates each variable in its own section in the ELF object, and each section possesses a header
specifying its alignment (sh_addralign)set from the processor settings panel. The LCF ALIGNALL
directive overrides this value.

In a simple scenario where only variable addresses are aligned, the LCF adds ALIGNALL(4) in the data
and bss sections. The ALIGN directive does not force individual section alignment; it only aligns the
current PC on the specified boundary. A V6.4 project using the ALIGNALL directive forces the linker to
allocate all data sections on a mod-4 boundary, but does not affect the internal alignment of structs.

See the Alignment section above for M68000 binary alignment compatibility.

Memory Map

In general, the linker memory map for stationery and examples is the same in V7.0 as in V6.4.

A typical memory map for a ColdFire device has a vector segment, and a combined .text and .rodata
segment. It has global data split between absolute and small .data and .bss segments, heap and stack,
and memory-mapped devices. Memory map segment organization varies as a function of kind (Flash,
SRAM, SDRAM) and size.

Addressing and Sections

The current toolset supports the following addressing modes: near, smart (code), far, small (data) and
position-independent (code and data). This is identical to those supported in V6.4.

ELF sections in V7.0 have the same default addressing as in V6.4. Default values can be changed globally,
either by creating new ones using #pragma section, or by redefining the properties of existing
sections. You can also change values locally using declaration qualifiers. The following table shows the
types of ELF sections and form of addressing associated with each object class.

Table 1 Object Class Associations

Object class ELF sections Addressing

Code .text Standard

Data .data .bss Standard

Sdata .sdata .sbss near_data

Page 7 of 15

Technical Note TN256

Code Generation

CodeWarrior Development Studio for ColdFire Architectures V7.0 supports the following new EVBs and
processors:

• M54455EVB

• M5373EVB

New Code Generation Options

New code generation options are available in the V7.0 Code Generation panel of your project settings.
They are: Register Coloring, Peephole, Instruction Scheduling, and Pool Sections.

Const .rodata Standard

String .rodata Standard

Absolute .abs far_absolute

Exceptions .exception far_absolute

Exceptlist .exceptlist far_absolute

Picdynrel .picdynrel far_absolute

Piddynrel .piddynrel far_absolute

Table 1 Object Class Associations (continued)

Object class ELF sections Addressing

Page 8 of 15

Technical Note TN256

Register Coloring

Enable Register Coloring to make the compiler allocate local variables to registers whenever possible. The
final effect of this option is smaller code size even with debug code. To achieve this, the compiler performs
variable lifetime analysis, causing some variables used as temporaries to disappear. Variable lifetimes are
recorded in the debugging information to provide accurate runtime values, provided the variable still
exists. Disable Register Coloring to force all local variables to be stack-based, except for compiler-
generated temporaries.

This setting corresponds to #pragma no_register_coloring.

Peephole

When on (default setting) the compiler compiles long instruction sequences into shorter ones to reduce
code size and potentially increase performance. It does not affect debugging unless the resulting
instruction is a memory-to-memory operation which might make a variable used as temporary disappear.

Scheduling

Enable Scheduling to select instruction scheduling for the ColdFire V4 whenever the optimization level is
two or higher. It schedules instructions to minimize instruction latency, enhancing performance.

Page 9 of 15

Technical Note TN256

Pool Sections

The Pool Sections setting instructs the compiler to pool definitions into a single section rather than
generating a section per definition. This applies for text, data and bss. Be aware that it prevents
deadstripping from happening because the linker cannot break contiguous sections.

Predefined symbols and processor families

The compiler defines a few symbols to support the ColdFire processors and families. The symbol
__COLDFIRE__ is always set to represent the currently selected processor. All processors and families
are symbolically represented with __MCFzzzz__, where zzzz represents either a family or a processor
part number.

ColdFire processors are combined into functional families. Selecting a family brings the parts belonging
to that set into scope. This selection occurs in the code generation settings panel. Selecting a family and
processor defines a series of built-in macros, making it possible for users to specialize their code by family
and processors within a family. The following table shows the families and the processors associated with
each family.

Table 2 ColdFire Processor Families and Associated Parts

Family Parts

521x 5211, 5212, 5213, 5214, 5215

5221x 52210, 52211, 52212, 52213

521x0 52100, 52110

5222x 52221, 52223

5223x 52230, 52231, 52232, 52233, 52234, 52235, 52236

528x 5280, 5281, 5282

5206e 5206e

5207_8 5207, 5208

523x 5235

524x 5249

525x 5251, 5253

5270_1 5270, 5271

5272 5272

5274_5 5274, 5275

5307 5307

532x 5327, 5328, 5329

Page 10 of 15

Technical Note TN256

For example, selecting 54455 brings in scope all other processors belonging to that family, as well as the
family. The resulting set of built-in symbols is { __MCF5445x__, __MCF54450__, __MCF54451__,
__MCF54452__, __MCF54453__, __MCF54454__, __MCF54455__ }. The processor values are
all distinct and the family value is simply defined. The following code illustrates this example.

 #ifdef __MCF5445x__
 /** this is true for **/

 #if __COLDFIRE__ == __MCF54455__
 /** this is true **/
 #elif __COLDFIRE__ == __MCF54454__
 /** this id false since the 54455 was selected **/
 #endif

 #endif

 #ifdef __MCF547x__
 /** this is false, we didn't select that family **/
 #endif

 #if __COLDFIRE__ == __MCF5445x__
 /** this is false since __COLDFIRE__ represents a part and not a family **/
 #endif

New and Obsolete Options

The following options are new or are obsolete in this release.

New Options

V7.0 has the following new option:

• New Declaration Specifier: __declspec(bare)

This specifier prevents the compiler from generating '_' prefixed link time names for C
objects (it does not prevent C++ name mangling). It is useful for interfacing with
assembly language.

537x 5371, 5372, 5373

5407 5407

5445x 54450, 54451, 54452, 54453, 54454, 54455

547x 5470, 5471, 5472, 5473, 5474, 5475

548x 5480, 5481, 5482, 5483, 5484, 5485

Table 2 ColdFire Processor Families and Associated Parts

Family Parts

Page 11 of 15

Technical Note TN256

Obsolete Pragmas

The following obsolete pragmas have been deprecated in V7.0.

Obsolete and New Alignments

Macintosh-legacy area alignment values are deprecated and replaced with more meaningful names. Old
names are still accepted but display compile-time warnings.

PC-Relative Strings removed from Code Generation panel

The PC-Relative Strings setting was removed from the Code Generation panel to provide consistent
behavior with all PC-relative pragmas: pcrelstrings, pcreldata and pcrelconstdata. You
can use the __declspec(pcrel) declaration specifier to force individual declarations to use PC-
relative addressing.

Table 3 Obsolete Pragmas

Pragma Purpose

code68020 Enabled extended MC680x0 addressing modes

code68881 Enabled FPU code generation

Fp_pilot_traps Enabled PalmPilot FP emulation library calls

IEEEdoubles Select between 64, 80 or 96-bit format for doubles

interrupt_fast Documentation-only entry

Macsbug Write routine names in binaries following code

Mpwc Use MPW C calling conventions

oldstyle_symbols Write routine names in binaries following code

Parameter Breaks ABI, register spec to be used instead

SDS_debug_support DWARF 1 support

Segment MacOS segment loader support

stack_cleanup Support for Pascal calling conventions on MacOS

Toc_data CFM 68K support

Table 4 Alignment value changes

Deprecated names Mac68k, mac68k4bytes, power

New accepted values byte, 68k or word, coldfire or long

Page 12 of 15

Technical Note TN256

Page 13 of 15

Technical Note TN256

New Linker Options

The following new linker options are available in the V7.0 ColdFire Linker panel of your project settings:

• Always Keep Map

• Generate Listing File

Always Keep Map

This feature retains the link map (.xMAP) so that even if the link fails, you can still use it to investigate
placement-related link failures.

Generate Listing File

This feature generates a listing of the output binary, formatting the listing according to the disassembler
settings.

New Debugging Interfaces

CodeWarrior™ Development Studio for ColdFire® Architectures V7.0 adds support for the following
debugging interfaces:

• CodeWarrior EthernetTAP remote connection support

• P&E Cyclone MAX

Page 14 of 15

Technical Note TN256

The corresponding settings are available in the Connection Settings panel of your project settings.

Document Number: TN256

6 November 2007

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior™
is a trademark or registered trademark of Freescale Semiconductor, Inc. StarCore® is a registered
trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2007. All rights reserved.

DWARF2 support

CodeWarrior™ Development Studio for ColdFire® Architectures V7.0 supports DWARF2 debug
information, which makes it compatible with most third-party debuggers in the market. This is a change
from V6.4, which supported DWARF1.

NOTE While it is possible to link objects built with DWARF1 debug information
in V7.0, debug information will not be available for those objects.

Additional information

See the CodeWarrior™ Development Studio for ColdFire® Architectures V7.0 Release Notes and
documentation for more information.

Visit http://www.freescale.com/support for additional assistance.

	Project Conversion
	Terms and Abbreviations
	Libraries
	Migrating Virtual Console Targets from V6.4 to V7.0
	Other Linking Issues
	Avoiding 2-Byte Integers

	Performance Improvements
	Alignment
	Passing Parameters ABI
	Backwards Compatibility

	Memory Map
	Addressing and Sections

	Code Generation
	New Code Generation Options

	New and Obsolete Options
	New Options
	Obsolete Pragmas
	Obsolete and New Alignments
	PC-Relative Strings removed from Code Generation panel

	New Linker Options
	Always Keep Map
	Generate Listing File

	New Debugging Interfaces
	DWARF2 support

	Additional information

