
Technical Note TN 238

HCS12X – Data Definition
The present document describes how programmer can help the HCS12X compiler to generate the
more optimal code for data access. It will cover following topics:

• Variables allocated in direct addressing area
• Variables allocated in extended addressing area
• Variables allocated in banked addressing area – Using Logical Addresses
• Variables allocated in banked addressing area – Using Global Addresses
• Banked Constant allocation
• Logical Addresses vs. Global Addresses

For each of the variable type enumerated above, we will describe:
• How to define a variable
• How to declare a variable
• Code generated to access the variable
• How to define a pointer pointing to such a variable
• Code generated to access the pointer and access the variable.
• Placement in PRM file.

Note 1:
Information described in this technical note apply to SMALL (-Ms) and BANKED (-Mb)
Memory model. They do not apply to LARGE (-Ml) memory model.

Note 2:
We usually recommend using SMALL memory model for application with less than 32Kb
code and BANKED memory model otherwise. We do not recommend using LARGE memory
model.

Page 1 of 7 Rev. 1.2

Technical Note TN 238
Variables allocated in Direct Addressing Area
In order to inform the compiler that a variables is allocated on the direct page, you have to define (and
declare) it in a specific segment with attribute __SHORT_SEG.

• Defining & Accessing Data on Direct Addressing Area:
1. Variable definition is done as follows:

#pragma DATA_SEG __SHORT_SEG MyShortData
unsigned char rub_short_var;
#pragma DATA_SEG DEFAULT

2. Variable declaration is done as follows:
#pragma DATA_SEG __SHORT_SEG MyShortData
extern unsigned char rub_short_var;
#pragma DATA_SEG DEFAULT

3. Access to the variable will generate following code:
 37: rub_short_var = 2;
00E08002 C602 [1] LDAB #2
00E08004 5B08 [2] STAB $08

4. There is no special pointer type for variables allocated in the direct page1. A pointer pointing to
such a variable will be defined as follows:
unsigned char* ptr_on_short_var;

5. Initializing and accessing the pointed object will then generate the code below:
 46: ptr_on_short_var = &rub_short_var;
00E0801F 180320102102 MOVW #8208,$2102
 47: (*ptr_on_short_var)++;
00E08025 62FBA0D9 INC [$A0D9,PC] /* [ptr_on_short_var,PCR] */

6. For variable defined in a __SHORT_SEG section, SEGMENT and PLACEMENT will be
done as follows in the PRM file
SEGMENTS
 DIRECT_PAGE = READ_WRITE 0x2010 TO 0x20FF;
 /* Other segment definition here*/
END
PLACEMENT
 MyShortData INTO DIRECT_PAGE;
 /* Other placement definition here*/
END

Note:
Section containing variables accessed using direct addressing mode should be allocated in
segment defined with logical addresses.

Configuring Direct Addressing Area:
On HCS12X, the direct page can be moved and is not hard-coded to 0x00..0xFF (as it was on
HCS12). The compiler does require a special setup to support this:
• The compiler and assembler option -CpDirect must be used with the starting address of the Direct

accessible area if the DIRECT register contains anything but the default value 0.
E.g. If DIRECT is initialized with 0x20, then the Direct window is from 0x2000 up to 0x20FF and

1 This assumes the usual SMALL or BANKED memory model. In the usually not necessary LARGE memory model,
pointers must be qualified __near.

Page 2 of 7 Rev. 1.2

Technical Note TN 238
the compiler and assembler option is -CpDirect0x2000. Add this option to both the compiler and to
the assembler settings.

• The DIRECT register must be initialized by the user code. The default startup code does not
initialize DIRECT.

• In the prm file, the section MyShortData has to be allocated accordingly to this area(in the example
from 0x2000 to 0x20FF).

• Be careful, there is no linker diagnostic message for an incorrect allocation of the direct section
(say if MyShortData is not allocated correctly).
For the HCS12, the linker issues a fixup overflow. But for the HCS12X this is no longer possible
as the direct page can be mapped.

Variables allocated in Extended Addressing Area
In order to inform the compiler that a variables is allocated on the extended address space, you just
need to define (and declare) it the usual way2.

1. Variable definition is done as follows:
unsigned char rub_var;

2. Variable declaration is done as follows:
extern unsigned char rub_var;

3. Access to the variable will generate following code:
 39: rub_var =7;
00E08002 C607 [1] LDAB #7
00E08004 7B2001 [3] STAB $2001

4. A pointer pointing to such a variable can be defined as follows:
unsigned char * ptr_on_var;

5. Initializing and accessing the pointed object will then generate the code below:
 57: ptr_on_var = &rub_var;
00E0805F 18032100210C MOVW #8448,$210C
 58: (*ptr_on_var)++;
00E08065 62FBA0A3 INC [$A0A3,PC] /* [ptr_on_var,PCR] */

6. Variable defined this way are allocated in predefined section DEFAULT_RAM. In the PRM
file, SEGMENT and PLACEMENT definition for this section will be done as follows:
SEGMENTS
 RAM = READ_WRITE 0x2100 TO 0x3FFF;
/* Other segment definition here*/
END
PLACEMENT
 DEFAULT_RAM INTO RAM;
 /* Other placement definition here*/
END

Note:
Section containing variables accessed using extended addressing mode should be allocated in
segment defined with logical addresses.

Variables allocated in Banked Addressing Area
Variables allocated in banked RAM can be accessed using

• Logical addresses (using RPAGE) or

2 This assumes the usual SMALL or BANKED memory model. In the usually not necessary LARGE memory model,
extended variables sections must be qualified with __NEAR_SEG and pointers with __near.

Page 3 of 7 Rev. 1.2

Technical Note TN 238
• Global addresses.

Using Logical Addresses
In order to tell the compiler you want to access a variable using his logical address you have to use the
following notation:

1. Variable definition is done as follows:
#pragma DATA_SEG __RPAGE_SEG PAGED_RAM
unsigned char rub_far_var;
#pragma DATA_SEG DEFAULT

2. Variable declaration is done as follows:
#pragma DATA_SEG __RPAGE_SEG PAGED_RAM
extern unsigned char rub_far_var;
#pragma DATA_SEG DEFAULT

3. Access to the variable will generate following code:
 38: rub_far_var = 5;
00E08002 C6FB [1] LDAB #251 /* #PAGE(rub_far_var) */
00E08004 5B16 [2] STAB $16 /* RPAGE */
00E08006 C605 [1] LDAB #5
00E08008 7B1000 [3] STAB $1000

4. A pointer pointing to such a variable can be defined as follows:
unsigned char * __rptr ptr_on_far_var;

5. Initializing and accessing the pointed object will then generate the code below:
 50: ptr_on_far_var = &rub_far_var;
00E08029 180310002105 MOVW #4096,$2105
00E0802F 180BFB2104 MOVB #251,$2104
 51: (*ptr_on_far_var)++;
00E08034 FE2105 LDX $2105 /* ptr_on_far_var:1 */
00E08037 F62104 LDAB $2104 /* ptr_on_far_var */
00E0803A 7B0016 STAB $0016 /* RPAGE */
00E0803D 6200 INC 0,X

6. For variable defined in a RPAGE section, SEGMENT and PLACEMENT will be done as
follows in the PRM file:
SEGMENTS
 RAM_FB = READ_WRITE 0xFB1000 TO 0xFB1FFF;
 RAM_FC = READ_WRITE 0xFC1000 TO 0xFC1FFF;
 RAM_FD = READ_WRITE 0xFD1000 TO 0xFD1FFF;
/* Other segment definition here*/
END
PLACEMENT
 PAGED_RAM INTO RAM_FB, RAM_FC, RAM_FD;
 /* Other placement definition here*/
END

Note:
Section containing variables accessed using logical addressing mode should be allocated in
segment defined with logical addresses.

Note:
Variables allocated in a RPAGE segment can alternatively be accessed using far pointers.
unsigned char * __far ptr_on_far_var;
In this case global addressing mode will be used to access the pointed object.

Page 4 of 7 Rev. 1.2

Technical Note TN 238
Using Global Addresses
The main reason to use global addresses is because an object may not fit into a single page of a logical
address. With objects accessed with Global Addresses, this limitation can be avoided and objects up to
the available memory size or up to 64kB can be accessed.
Using Global Addresses for pointers (== __far pointer) can be used for any object, objects do not need
to be qualified in any particular way.
In order to tell the compiler you want to access a variable using his global address you have to use the
following notation:

1. Variable definition is done as follows:
#pragma DATA_SEG __GPAGE_SEG PAGED_RAM
unsigned char rub_far_var;
#pragma DATA_SEG DEFAULT

2. Variable declaration is done as follows:
#pragma DATA_SEG __GPAGE_SEG PAGED_RAM
extern unsigned char rub_far_var;
#pragma DATA_SEG DEFAULT

3. Access to the variable will generate following code:
 35: rub_far_var = 7;
00E0802B C607 [1] LDAB #7
00E0802D 860F [1] LDAA #15 /* #GLOBAL_PAGE(rub_far_var)*/
00E0802F 5A10 [2] STAA $10 /* GPAGE*/
00E08031 187BE00F [4] GSTAB $E00F

4. A pointer pointing to such a variable will be defined as follows3:
unsigned char *__far ptr_on_far_var;

5. Initializing and accessing the pointed object will then generate the code below:
 37: ptr_on_far_var = &rub_far_var;
00E08035 1803B0002101 MOVW #45056,$2101
00E0803B 180B0F2100 MOVB #15,$2100
 38: (*ptr_on_far_var)++;
00E08040 FE2101 LDX $2101 /* ptr_on_far_var:1 */
00E08043 F62100 LDAB $2100 /* ptr_on_far_var */
00E08046 5B10 STAB $10 /* GPAGE */
00E08048 18A600 GLDAA 0,X
00E0804B 42 INCA
00E0804C 186A00 GSTAA 0,X

6. For variable defined in a GPAGE section, SEGMENT and PLACEMENT will be done as
follows in the PRM file:
SEGMENTS
 RAM_BANKED = NO_INIT 0xF9000'G TO 0xFCFFF'G;
 /* Other segment definition here*/
END
PLACEMENT
 PAGED_RAM INTO RAM RAM_BANKED;
 /* Other placement definition here*/
END

Note:
Section containing variables accessed using global addressing mode can be allocated in
segment defined with either logical or global addresses. So alternatively PRM file can look as
follows:
SEGMENTS

3 Actually __far pointer can point to any object, not just to objects allocated in a __GPAGE_SEG qualifier segment.

Page 5 of 7 Rev. 1.2

Technical Note TN 238
 RAM_FB = READ_WRITE 0xFB1000 TO 0xFB1FFF;
 RAM_FC = READ_WRITE 0xFC1000 TO 0xFC1FFF;
 RAM_FD = READ_WRITE 0xFD1000 TO 0xFD1FFF;
/* Other segment definition here*/
END
PLACEMENT
 PAGED_RAM INTO RAM_FB, RAM_FC, RAM_FD;
 /* Other placement definition here*/
END

Paged Constant allocation
Constants can be allocated in banked EEPROM or in banked FLAH and can be accessed using

• Logical addresses in EEPROM(using EPAGE)or
• Logical addresses in FLASH (using PPAGE) or
• Global addresses

Using Logical Addresses in EEPROM
In order to tell the compiler you want to access a constant using his logical address in EEPROM you
have to use the following notation:

1. Constant definition is done as follows:
#pragma CONST_SEG __EPAGE_SEG PAGED_CONST
const unsigned char cub_far_const=1;
#pragma CONST_SEG DEFAULT

2. Constant declaration is done as follows:
#pragma CONST_SEG __EPAGE_SEG PAGED_CONST
extern const unsigned char cub_far_const=1;
#pragma CONST_SEG DEFAULT

3. A pointer pointing to such a variable will be defined as follows:
const unsigned char *__eptr ptr_on_far_const;

Note:
Constants allocated in a EPAGE segment can alternatively be accessed using far pointers.
const unsigned char *__far ptr_on_far_const;
In this case global addressing mode will be used to access the pointed object.

Using Logical Addresses in FLASH
Using Logical Addresses in FLASH is supported by the compiler only for code which is not allocated
in any paged area. As this is often not the case, we recommend to use Global addressing for all data
objects in FLASH.
To implement using logical addresses, use the segment qualifier __PPAGE_SEG and the pointer
qualifier __pptr.

Using Global Addresses
1. Constant definition is done as follows:

#pragma CONST_SEG __GPAGE_SEG PAGED_CONST
const unsigned char cub_far_const=1;
#pragma CONST_SEG DEFAULT

2. Constant declaration is done as follows:
#pragma CONST_SEG __GPAGE_SEG PAGED_CONST
extern const unsigned char cub_far_const= 1;

Page 6 of 7 Rev. 1.2

Technical Note TN 238
#pragma CONST_SEG DEFAULT

3. A pointer pointing to such a variable will be defined as follows:
const unsigned char *__far ptr_on_far_const;

Logical Addresses vs. Global Addresses
• For variables which are not larger than 4K (the size of a Banked RAM window), using logical

addresses is more efficient than using global addresses.
Logical Address Global Address

Data access (Code Size)
xy = 3;

9 Bytes 10 Bytes

Data access (Execution Speed)
xy = 3

7 Cycles 8 Cycles

Pointer access (Code Size)
*xx = 4

11 Bytes 12 Bytes

Pointer access (Execution Speed)
*xx = 4

11 Cycles 12 Cycles

Pointer content increment (Code
Size) (*xx)++

11 Bytes 15 Bytes

Pointer content increment
(Execution Speed) (*xx)++

12 Cycles 16 Cycles

• If a variable is bigger than 4K, the linker will have to allocate it across a bank boundary. In
this case, we recommend to use global addressing to access the variable.

• We recommend using Global Addressing mode to access constants or string constants
allocated in FLASH.

• We recommend using logical addresses for all objects, which use logical addresses at runtime.
This includes the stack, code, direct variables, extended variables, I/O registers.

• In order to define a paged variable, make sure to use a DATA_SEG pragma. Do not attempt to
use __far keyword in this purpose. The far keyword indicates how the compiler should access
a variable, it does not change the way variables are allocated.

Page 7 of 7 Rev. 1.2

	Variables allocated in Direct Addressing Area
	Defining & Accessing Data on Direct Addressing Area:
	Configuring Direct Addressing Area:

	Variables allocated in Extended Addressing Area
	Variables allocated in Banked Addressing Area
	Using Logical Addresses
	Using Global Addresses

	Paged Constant allocation
	Using Logical Addresses in EEPROM
	Using Logical Addresses in FLASH
	Using Global Addresses

	Logical Addresses vs. Global Addresses

