freescale”

semiconductor

Technical Note (8 & 16-bits) TN 234
Porting Applications from Cosmic to CodeWarrior

Introduction

This application node describes how to port HCO8 and HC12 applications written for Cosmic
compiler to CodeWarrior. Strict ANSI-C/C++ code can be ported without any modifications. Non
ANSI-C keywords and pragmas are different or have different semantics. See chapters below for
details. Code written in assembler or inline assembler has to be changed the way that CodeWarrior’s
calling conventions and the C - Assembly interface rules are fulfilled.

Related Documents

CodeWarrior Compiler Manual, section Appendix, chapter Migration Hints

Conceptual Differences between the two Compilers

1. The code produced by CodeWarrior is fully re-entrant, even for long and floating point
arithmetic. Semaphores to avoid reentrancy and/or code saving library workspace (¢ _reg,
c_lIreg ...) in interrupt handlers should be removed. CodeWarrior always allocates local
variables on stack, or if option —or is active and if variable is suitable for register allocation, in
registers. CodeWarrior does not offer the possibility to allocate local variables in not initialized
shared data sections like Cosmic does.

2. CodeWarrior supports code and/or data banking when applicable to the target CPU (Banking
not available on HC08 CPU).

3. The Cosmic Compiler distributes data into initialized and not initialized data segments
automatically. CodeWarrior respects what the programmer specifies in his link parameter file.

Page 1 of 10 Rev. 1.1

freescale

semiconductor

Technical Note (8 & 16-bits) TN 234

Porting non ANSI-C Keywords

Semantics of the non ANSI-C Keywords

Keyword Cosmic CodeWarrior

tiny Objects: the object has a 8 bit address n.a.
Pointers:

@tiny char *p; 8 bit large pointer

char * @tiny p; pointer has 8 bit address

near Objects: the object has a 16 bit address HCOS:
Pointers: char * near p; 8 bit large pointer
(@near char *p; 16 bit large pointer HC12:

char * (@near p; pointer has 16 bit address
char * near p; 16 bit large pointer

Functions:
near calling convention

Functions:
near calling convention

far Objects: the object has a 24 bit address HCOS:
Pointers: char * farp; 16 bit large pointer
@far char *p; 24 bit large pointer HC12:

char * @far p; pointer has 24 bit address
char * farp; 24 bit large pointer

Functions:
far calling convention

Functions:
far calling convention

eeprom Objects are allocated in EEPROM area. n.a.
Writing accesses are performed by a

.S . . : (This reflect state of CodeWarrior
derivative specific runtime routine

software today. This may be implemented
in a future release of the tool.)

interrupt | Function declared with interrupt keyword Function declared with interrupt keyword
returns from an interrupt returns from an interrupt. Interrupt
number can be specified optionally.

_Bool Objects declared with Bool type are 1 bit | n.a. (use ANSI-C bitfields)

large
asm Enclose your inline assembly code with Enclose your inline assembly code with
#Hasm __asm {
<assembly code> <assembly code>
#endasm }

Page 2 of 10 Rev. 1.1

freescale
Technical Note (8 & 16-bits) TN 234
Remark for tiny/near/far her with pointers:

Cosmic: Putting a @tiny/@near/@far on the left hand side of a pointer star symbol specifies the size
of a pointer, e.g. @tiny char *p. Putting a @tiny/@near/@far on the right hand side of a pointer star
symbol specifies where the pointer is allocated, e.g. char *@tiny p.

CodeWarrior: near or far can only be placed at the right hand side of a pointer and it specifies the size
of the pointer.

Porting HC08 Code
The following table gives a CodeWarrior counterpart for every Cosmic keyword:
Cosmic CodeWarrior Remarks for CodeWarrior
€tiny €“zseg_name” #pragma DATA_SEG SHORT "zseg _name" has to be

defined once in a compilation unit before using
@'"zseg _name"

@near int *_ near p; near only allowed for pointers (8 bit wide pointer in small
memory model)

@far int *_ far p far only allowed for pointers (16 bit wide pointer in tiny
memory model)

Geeprom n.a. EEPROM allocation is not supported

@interru | interrupt Optional <number> to specify interrupt vector number

pt <number>

@nostack |n.a. Shared local memory not available

_Bool n.a. Bit variables are not supported

tasm _asm { CW support both syntax

. . your assembly

your code ..

assembly }

code ..

#endasm

Page 3 of 10 Rev. 1.1

freescale

semiconductor

Technical Note (8 & 16-bits)

TN 234

Porting HC12 Code
The following table gives a CodeWarrior counterpart for every Cosmic keyword:

Cosmic CodeWarrior Remarks for CodeWarrior
@tiny @“zseg name” #pragma DATA SEG SHORT SEG "zseg name" has to
be defined once in a compilation unit before using
@"zseg name"
Gnear ¢"nseg_name™ #pragma DATA SEG _ NEAR SEG "nseg_name" has to
be defined once in a compilation unit before using
@'"nseg_name"
near void
func (void) near only allowed for function definitions and 16 bit
int *__near p; pointers (in large memory model)
@far @"fseg_name™ #pragma DATA _SEG _ FAR SEG "fseg_name" has to be
defined once in a compilation unit before using
_ far void @"fseg name"
func (void)
int *_ far p; far only allowed for function definitions (HC12 only) and
24 bit pointers (in small/ banked memory model)
@eeprom n.a. EEPROM allocation is not supported in CW
@interrup | interrupt <number> | Qptional <number> to specify interrupt vector number in
- CW
Gnostack |n.a. Shared local memory not available
_Bool n.a. Bit variables are not supported in CW
fasm _asm { CW supports #asm #endasm too
. your . your assembly
assembly code ..
code .. }
#endasm

Page 4 of 10

Rev. 1.1

freescale

semiconductor

Technical Note (8 & 16-bits)

TN 234

Non ANSI-C Keyword Usage Examples

HCo08

The following table gives CodeWarrior counterparts for Cosmic example declarations:

Cosmic Cosmic example CodeWarrior example
keyword
@tiny @tiny int 1i; #pragma DATA SEG _ SHORT SEG "zseg name"
int @tiny 1i; #pragma DATA SEG DEFAULT
int 1 @ "zseg name";
int *ptr @ "zseg name";
int * @tiny ptr; int * near ptr;
@tiny int * ptr
@near @near int i; int 1 ;
int @near i;
@far @far int i; #pragma DATA SEG __ FAR SEG "fseg name"

int @far 1i;

int * @far ptr;

#pragma DATA SEG DEFAULT
int i @ "fseg name";

int * ptr @ "fseg name";

@interru
pt

@interrupt void
inthandler (void)

__interrupt void inthandler (void) { ..}

__interrupt 6 void inté6handler(void) { ..}

#asm

#endasm

#asm
nop
#endasm

__asm {

nop

}

#asm
nop
#endasm

Page 50f10 Rev. 1.1

freescale

semiconductor

Technical Note (8 & 16-bits) TN 234

HC12
The following table gives CodeWarrior counterparts for Cosmic example declarations:

Cosmic Cosmic example CodeWarrior example

keyword

@tiny @tiny int 1i; #pragma DATA SEG _ SHORT SEG "zseg name"
int @tiny 1i; #pragma DATA SEG DEFAULT

int 1 @ "zseg name";
@near @near int i; #pragma DATA SEG _ NEAR SEG "nseg name"
int @near i; #pragma DATA SEG DEFAULT

int 1 @ "nseg name";

int * ptr @"nseg name";

int * @near ptr; __near int my fun(void);
@near int my fun(void);

@far @far int i; #pragma DATA SEG FAR SEG "fseg name"
int Q@far i; #pragma DATA SEG DEFAULT

int 1 @ "fseg name";

int * ptr @ "fseg name";

int * Q@far ptr; int * far ptr;
@far int *ptr; __far int my fun(void);
@far int my fun(void);
@interrupt | @interrupt void __interrupt void inthandler (void) { ..}

inthandler (void) { ..}
interrupt 6 void int6handler (void) { ..}

#asm #asm __asm {
" nop nop
#endasm #endasm }
#asm
nop
#endasm

Page 6 of 10 Rev. 1.1

freescale

semiconductor

Technical Note (8 & 16-bits) TN 234

Important Pragmas

Cosmic CodeWarrior

#pragma space [] @tiny #pragma DATA SEG SHORT SEG ZEROPAGE
#pragma space [] #pragma DATA SEG DEFAULT

Calling Conventions and Parameter Passing

The calling conventions and parameter passing are significantly different. Be careful when you port
(inline-) assembler code referring to parameters or return values. The next 2 tables show how return

values and parameters are passed for HCO8 and for HC12. HCSO0S is not described.

HCO08

Topic
Return value

Cosmic
Return value is 1 byte large:
passed in A

Return value is 2 byte large:
passed in X:A

Everything else:
passed on stack

CodeWarrior
Return value is 1 byte large:
passed in A

Return value is 2 byte large:
passed in X:A

Everything else:
passed on stack

Parameters

1* parameter is 1 byte large:

Last parameter is 1 byte large:

order

passed in A passed in X, and if
2" Jast parameter is also 1 byte:
1* parameter is 2 byte large: passed in A
passed in X:A
Last parameter is 2 byte large:
Everything else: passed in X:A
passed on stack
Everything else:
passed on stack
Parameter passing Right to left Left to right

Page 7 of 10

Rev. 1.1

freescale

semiconductor

Technical Note (8 & 16-bits)

TN 234

HC12

Topic
Return value

Cosmic

Return value is 1 byte large:
passed in B

Return value is 2 byte large:
passed in D

Return value is 4 byte large:
passed in X:D

Everything else:
passed on stack

CodeWarrior

Return value is 1 byte large:
passed in B

Return value is 2 byte large:
passed in D

Return value is 3 byte large:
passed in B:X

Return value is 4 byte large:
passed in X:D

Everything else:
passed on stack

Parameters 1* parameter is 1 or 2 byte large: Last parameter is 1 byte large:
passed in D passed in B
1* parameter is 4 byte large: Last parameter is 2 byte large:
passed in X:D passed in D
Everything else: Last parameter is 3 byte large:
passed on stack passed in B:X
Last parameter is 4 byte large:
passed in X:D
Everything else:
passed on stack
Parameter Right to left Left to right

passing order

Page 8 of 10

Rev. 1.1

freescale

semiconductor

Technical Note (8 & 16-bits) TN 234

Interfacing C to Assembly

* The Cosmic assembler references external C objects by a leading underscore: XREF _cobj

* The Cosmic inline assembler references external C objects by a leading underscore: #asm lda
_cobj #endasm

* The Cosmic C compiler references external assembler objects without underscore, but the
assembler definition must have a leading underscore: XDEF _asmobj

* For CodeWarrior Assembler and Inline Assembler, there is no need of leading underscores for
external definitions and references. This is easier, but register names cannot be used as object

names.
Language Cosmic CodeWarrior
C extern int myasmobi; extern int myasmobj;
int myCobj; int myCobj;
myCobj = myasmobij; myCobj = myasmobij;
Inline Assmbly | #asm #asm ior
lda myCobj __asm {
sta myasmobj lda myCobj
#endasm sta myasmobj
#endasm ;or }
Assembly XDEF myasmobj XDEF myasmobj
XREF myCobj XREF myCobj
lda myCobj lda myCobj
sta myasmobj; sta myasmobij;

Assembly Pseudo Instructions (Aliases)

CodeWarrior does not support Cosmic assembler pseudo instructions, unless they are specified in a
binary application interface.

HC12X
Cosmic CodeWarrior
lbsr fun JSR fun, PCR
clrd CLRA
CLRB
1slw ASLW
tstd CPD #0

Page 9 of 10 Rev. 1.1

freescale

semiconductor

Technical Note (8 & 16-bits)

TN 234

1slx ASLX

1sly ASLY

Coding Example

Following HCO8 example show how object allocation and pointer kinds are translated from Cosmic to

CodeWarrior:

Cosmic CodeWarrior

@tiny char

tchl, tch2;

@tiny char * ptch;
@tiny char * @tiny
tptch;

void foo(void) {
ptch = &tchl;

*ptch = 0;
tptch = &tch2;
*tptch = 0;

#pragma DATA SEG __ SHORT SEG Zeropage
#pragma DATA SEG DEFAULT

char tchl,tch2 @"Zeropage";
char * near ptch;
char * near tptch @"Zeropage";

void foo (void) {
ptch = &tchl;

*ptch = 0;
tptch = &tch2;
*tptch = 0;

Page 10 of 10

Rev. 1.1

	Introduction
	Related Documents
	Conceptual Differences between the two Compilers
	Porting non ANSI-C Keywords
	Semantics of the non ANSI-C Keywords
	Porting HC08 Code
	Porting HC12 Code

	Non ANSI-C Keyword Usage Examples
	HC08
	HC12

	Important Pragmas
	Calling Conventions and Parameter Passing
	HC08
	HC12

	Interfacing C to Assembly
	Assembly Pseudo Instructions (Aliases)
	HC12X

	Coding Example

