
Application Note: Software DMA

CPJ AN002A 1

Application Note AN002A

Implementation and performance
of pseudo-DMA functions

for the M·CORE architecture

Version A

Chris Joffrain
Applications Manager
MÂCORE Technology Center

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Freescale Semiconductor

© Freescale Semiconductor, Inc., 2004. All rights reserved.

Application Note: Software DMA

CPJ AN002A 2

Introduction

The purpose of this document is to describe how to implement a software based DMA
function for the MÂCORE architecture. It reviews the interrupt handling mechanism and
explains how to take advantage of the alternate register file feature. The theoretical maximum
transfer rate is investigated and limitations in real applications are discussed.

Overview

Embedded applications are heavily interrupt-driven activities. There is a number of low-
level actions that take place within a microcontroller to handle different kinds of interrupts in the
most effective way. The first part of this document reviews these tasks. The second part
describes how the MÂCORE architecture approaches these tasks. The third part investigates the
maximum data transfer rate in a pseudo-DMA application. The fourth part evaluates the
limitations in real applications and the fifth part explains the hardware requirements.

Terms, Acronyms

Context refers to the processor environment (memory, registers) available to a
user program at a given time.

Alternate register file refers to set of registers that are switched in place of the normal set of
registers seen by the user program. This usually happens when the
processor changes its flow of execution because of an interrupt or
exception.

Shadow register(s) refers to registers that automatically receive copies of the Program
Counter and Status registers during interrupt and exception processing in
order to preserve their original context.

Envelope refers to the part of software executed between the processor’s detection
of an interrupt request and the first instruction servicing the interrupt
request. The envelope is defined to contain any jump instruction to access
a handler and any interrupt recognition, prioritization, arbitration and
routing to a proper handler. The envelope also contains any software
necessary to mask and re-enable lower priority interrupts.

Handler refers to the software that is executed to service a specific interrupt. It
also contains the necessary actions to make sure that any resource
(register, memory) used by it is properly saved unless this resource is
dedicated to this handler.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note: Software DMA

CPJ AN002A 3

Part 1: Interrupt handling

Handling interrupts in an application involves a hardware implementation and a software
implementation. The hardware implementation is what the processor and system architecture is
capable of doing, by design, to assist any application responding to interrupts. The software
support is what the designer must provide, specific to the application and interrupt source, to
properly handle the interrupts for this application.

The first phase that must take place occurs at the initialization stage: the set up of all
necessary registers, pointers, memory areas and other parameters that ware required to handle
interrupts in the application. This is a software component.

The second phase is executed each time an interrupt occurs. This phase consists of the
recognition of the interrupt (i.e. synchronizing the system, waiting for the current instruction to
terminate, and transitioning to exception processing.) The time required for the current
instruction to terminate before the processor can respond to the interrupt is called ‘latency’. It
varies, depending upon the number of clock cycles required to execute each of the architecture’s
instructions and the ability of the architecture to abort lengthy multi-cycles instructions. This
latency is determined by the definition of the architecture and implemented in hardware.

The third phase is the envelope for the interrupt handler. It deals with what is needed by
the handler but not provided by the architecture in hardware. It performs the selection of the
proper handler according to the interrupt activated and is executed in two parts. The first action
occurs at the beginning of the interrupt servicing and identifies the selected interrupt, saving
some of the original context if necessary. The second action occurs at the end of the interrupt
servicing and restores the conditions that were in effect before the interrupt occurred. Although
essential to the correct working of the application, this phase has no real value for the handling of
the interrupt, represents pure overhead, and as a result should be minimal. The lesser software
context switching is required, the smaller this overhead will be for the application and the faster
the interrupt servicing will be. This will be critical in the search for MBytes per second.

The fourth and final phase is the interrupt handler itself, and examples will be given in
the analysis of real applications and how to achieve high pseudo-DMA data rates.

Part 2: MÂCORE’s way to handle interrupts

Details of the MÂCORE architecture can be found in the reference manual
MCORERM/AD. It describes the registers and their use as well as the instruction set. The case of
multiple interrupts and the use of software prioritization, is addressed in the document
“Performance Comparison: interrupt handling”.

The first task is the initialization. It performs the loading of the vector base register
pointing to the exception vector table. Loading of the system stack pointer may be part of this
task but is also necessary for the other tasks in the system and is not considered specific to the
interrupts in this document.

The second task is the first portion of the envelope and the initial response to the request
for interrupt. Two actions take place during the execution of this task: (1) waiting for the current
instruction to terminate and (2) transitioning to the interrupt handler. The majority of

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note: Software DMA

CPJ AN002A 4

MÂCORE’s instructions execute in one clock cycle. The longest MÂCORE instruction execution
time is for the DIVU or DIVS instruction and can be up to 37 clock cycles. However, MÂCORE
has a specific feature which allows this waiting time to be limited to a maximum 3 cycles. This is
called the ‘interrupt control’. Setting the IC interrupt control bit in the status register allows
lengthy instructions to be aborted before completion and thus limiting current instruction
interrupt latency to a maximum of 3 clock cycles from the time the interrupt is received. Once
interrupt processing is initiated, whether the instruction is aborted or allowed to complete, an
additional 6 clock cycles are required by the MÂCORE processor to synchronize and transition
to the interrupt service routine.

The third task, the final portion of the envelope deals with context switching and
directing the processor to the execution of a handler. In order to minimize or even eliminate the
overhead of saving the context that is interrupted, MÂCORE can switch to an alternate register
file automatically by way of special encoding of each interrupt entry in the vector table. This
means that the 16 user registers, the status register and the program counter of the current context
will be kept intact during the processing of the interrupt. If the least significant bit in the interrupt
vector is set, the processor automatically switches to the alternate register file upon entry in the
interrupt service routine and switches back upon exit from the service routine.

Part 3: MÂCORE pseudo-DMA

A pseudo-DMA function is an interrupt-driven, software implementation of a direct
memory access control function. Some knowledge of the purpose and principles of a DMA
function are required to understand this analysis. In this analysis the main actions taking place
during the interrupt are the reading of data from an I/O port and the writing of this data into a
buffer (or vice-versa).

Assumptions for implementing this pseudo-DMA are:
- 32-bit wide data bus,
- zero wait state instruction and data memory,
- 50 MHz clock frequency (20nS clock cycle).

Scenario A: single channel, single transfer DMA
In this mode, each interrupt will trigger the reading of a word (4 bytes) into a register and

the writing of this register into a memory word (4 byte locations). The transfer rate will benefit
from transferring 4 bytes at a time. However, the overhead of responding to the interrupt and
executing any software will affect the transfer rate.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note: Software DMA

CPJ AN002A 5

Flow chart and resources required

- This is where the hardware takes the handler to when ready to start
executing code.

- This is a 32-bit wide read of I/O and needs 1 register pointing to
I/O address and 1 or more registers to hold the data.

- This is a 32-bit write to memory and needs 1 register to point to
memory location(s), other registers already identified and
reserved.

- This is memory pointer update to handle data buffering/storage.

- This is to test that the DMA transfer is completed.
 (It can be a count test or a memory address test.)

- Done only once at termination of the interrupt

fig 1: basic flow chart for a software DMA

This describes the basic requirements for the interrupt handler. It needs 4 registers:
- One data holding register (r4)
- One pointer to the I/O register (r5)
- One pointer to the memory buffer (r6)
- One pointer to the end of the buffer (r7)

These registers are chosen to allow a quick register transfer (STQ and LDQ instructions) if
required for a context switch. However, the total execution time of this portion of code being
kept to a minimum, it may be preferable to let the handler complete the execution rather than
interrupt it in the middle (The penalty paid in overhead execution time is higher than the time to
wait.)

Yes

Handler Entry

Update Pointers

End of Buffer
reached?

No, branch
not taken.

Flag as
“transfer done”
and return to
other tasks.

Return Return

Write Register(s)
to Memory

Read I/O
into Register(s)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note: Software DMA

CPJ AN002A 6

The following table shows the sequence of instructions required to implement this
scenario and the clock cycle count associated.

Task MÂCORE Inst. Cycles Comments
response to interrupt - 6-9 Time to go to handler’s first instruction.
read I/O in register LD r4,[r5, IO] 2 * 1 register = 4 bytes. IO= offset to data register
write data to memory ST r4, [r6] 2 * use register as memory buffer pointer
update pointer ADDI r6, 4 1 * for 4 bytes
check if end of buffer CMP r6, r7 1 r7 holds the address of last location in buffer
branch is yes (end) BPL closure 1 1 cycle only if not taken
return from exception RTE 3 restore context
(come here when no
more DMA required)

closure:...
.....
RTE

will come here only when interrupt service is to be
closed. Will do 3 clock cycles in Branch (BPL)

TOTAL: 16-19

The total time to service this 4 bytes DMA request is 16 to 19 clock cycles.
Using a 50 MHz clock frequency, this translates to 320-380 nS (average 350 nS) or to a data
transfer rate of 10.5 to 12.5 Mbyte/s.

Scenario B: multiple channels, single channel DMA
To implement a multiple channel DMA function, the best performance can be achieved

using address this type of application, the best performance achieved using MÂCORE’s vectored
interrupt capability, such that each DMA channel is assigned its own vector and service routine.
Note that in this example all DMA channels share the same interrupt input, but that each channel
provides a different vector. The code of the handlers will be almost identical, pointers for each
channel will point to different I/O and buffer addresses. The overall performance is not affected
by the number of interrupts since no extra software (such as interrupt polling) is required.

Scenario C: single channel, multiple transfers DMA and theoretical maximum rate
In this example, the transfer will handle as many bytes/words as possible assuming that

the data will be available at the maximum rate (FIFO, buffer, synchronized data link,...)

Requirements
In order to achieve the maximum possible DMA data transfer rate it is necessary to

review the minimum requirements and possible constraints:
- Analysis is done with MÂCORE dedicated to DMA transfers for the best I/O throughput

performance.
- Interrupt will be dedicated to DMA data transfer, with minimum context switching in order

to achieve the highest possible burst transfer rate.
- Handler code size and buffer size are not limited but will be evaluated.
- Some hardware requirements are necessary, see part 5: hardware requirements.)

The flow chart in scenario A (figure 1) applies here too. The handler needs 4 registers as
pointers, 1 register as offset value and as many registers as possible as data transfer registers. It is
important to remember the following two assumptions (see also part 5, hardware requirements):

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note: Software DMA

CPJ AN002A 7

• One assumption is that this interrupt handler will not call any subroutine and for this
reason will not require R15 register as a dedicated Link Register. R15 is therefore free to
be used as a data transfer register.

• The second assumption is that R0 register can be used as a buffer pointer register. It is
usually used as the Stack Pointer but is needed in the STM and LDM instructions. For this
matter, R0’ register will be used as the interrupt handler’s pointer for the buffer operations
occurring with the LDM/STM instructions.

Other considerations
Since MÂCORE, in this analysis, is dedicated to pseudo-DMA function, it is assumed

that no other interrupt will be permitted during the transfer. As a consequence, it is not
considered to have any context saving activity. Of the 5 registers required it is possible to
combine the memory pointer with the stack pointer and consider all data transfers as stacking/de-
stacking operations. This leaves the 11 registers of the shadow bank available for the data
transfer with the use of the LDM (Load Multiple Registers) and STM (Store Multiple registers)
instructions. They are very efficient instructions as they consume 1 cycle plus only 1 cycle per
32-bit register being transferred.

Summary of the resources allocation (alternate register file):
- r0’ Dynamic memory pointer during transfers to or from memory
- r1’ Memory address holding register
- r2’ I/O address holding register
- r3’ Offset value holding register (contains the number of bytes moved = 44)
- r4’ End of buffer pointer holding register
- r5’ to r15’ Serve as 11 data dynamic transfer registers (holding 44 bytes)

Remarks:
It is better to use registers to hold the pointers rather than have these pointers in memory

or scratch registers because register based instructions consume only one cycle to execute.
LDM and STM instructions require both the use of the same register r0 as the base

pointer. As a consequence it is necessary to reload r0 for each LDM and STM operation with the
proper addresses. The role of r1 and r2 is to hold these addresses.

It is preferable to use r1 as a memory address holding register and r2 as an I/O address
register rather than store the addresses in memory or in scratch registers because it would
consume two clock cycles to retrieve each address.

R3 is necessary to hold the offset with a value of 44 (11 registers of 4 bytes each.) The
instruction ADDI (add immediate) would spare this register but cannot be used since the
maximum value that we can “add immediate” is 32 (which gives only 8 registers.) Limiting to 8
data registers and using the ‘add immediate” instruction results in lower data throughput.
Likewise, executing two ADDI instructions to add the value 44 to the register results in lower
data throughput.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note: Software DMA

CPJ AN002A 8

Performance analysis
The table below describes the instructions executed in the handler, from the entry after

recognition and jump to the handler until the return to the normal program. The instructions
marked as (*) will be discussed later.

Task MÂCORE Instructions Cycles Comments
response to interrupt - 6-9 time to reach the first instruction.
get pointer to I/O mov r0, r1 1 * restore r0 pointer with I/O address
read I/O in registers ldm r5-r15, (r0,0) 12 * read 44 bytes into 11 registers
get pointer to stack mov r0, r2 1 * restore r0 pointer with buffer address
push registers to stack stm r5-r15, (r0,0) 12 * write 44 bytes from 11 registers
update pointer addu r2, r3 1 * add R3 to R2 (update pointer)
check if end of stack cmp r2, r4 1 has r2 reached the end of buffer?
branch is yes (end) bpl closure 1 no, go wait for next interrupt
return from exception rte 3 restore context
(here other task when
finished)

closure:....
here, DMA is finished
(RTE)

will execute only once when service
is terminated.

TOTAL: 38-41 for 44 bytes transfered

Details
The list above indicates the time taken to transfer 44 bytes (11 registers) from an I/O port

to memory (which is accessed as a stack.) The total time to execute the interrupt is 38-41 cycles
or 760-820 nS (average 790 nS) for a 50MHz processor clock frequency.
This give a burst DMA transfer rate of 53.6 to 57.9 MByte/s.

This takes only 8 active instructions (16 bytes) including the termination instructions.

Scenario D: Doing more
It is possible to consider transferring more bytes during the execution of the handler. It

requires executing the first five instructions (marked * in the tables) several times. But rather
than creating a loop using a counter with compare and branch instructions, it is more efficient to
duplicate these five instructions. The cost is the addition of 5 instructions (10 bytes) and 27 clock
cycles for every 44 data bytes transferred.

The following table summarizes the performance obtained for different number of data
bytes transferred. In the formulas, N is the number of times the five instructions are repeated.

Data bytes
transferred

Intructions (bytes)
(3 + 5*N)

clock cycles
(14 + 27*N)

Transfer Rate
(@ 50MHz)

comments

44 8 (16 bytes) 41 cy 53.6 MByte/s N=1
220 28 (56 bytes) 149 cy 73.8 MByte/s N=5
440 53 (106 bytes) 284 cy 77.4 MByte/s N=10
880 103 (203 bytes) 554 cy 79.4 MByte/s N=20

2,200 253 (506 bytes) 1,364 cy 80.6 MByte/s N=50

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note: Software DMA

CPJ AN002A 9

Part 4: Real applications

Some applications may call for some data processing in the handler. This execution time
must be added to the time spent in this handler. Some applications may require data to be
transferred to and from memory once the data has been processed. This means that for an
application implementing both transfers directions the transfer rate will drop to half the values
presented here (twice as much time spent for the same bytes.)

Example: An I/O controller is designed to receive blocks of data from an I/O interface in
burst mode (fixed size blocks), perform some operations on the data or route the data, then send
this block to another I/O in burst mode (fixed size blocks.) The software in the handler can be
written to accommodate any block size.

Part 6: Hardware requirements

In order to support the software handler described above, it is necessary to look at what is
required from the hardware. Two points need consideration, the support of LDM and STM
instructions and the concept of a burst mode in the handler.

The two instructions LDM and STM provide a multiple register transfer capability by
pointing to an address, load/store data from/to that address and repeat for other registers while
incrementing the address pointer. To exploit the benefit of STM/LDM instructions, it is
necessary to
• Map the I/O as a word wide register, able to transfer 4 bytes in one access,
• Map the I/O such that the same word wide register responds to the 11 different addresses

accessed by the Load or Store instruction when executed. An easy way to do this is to map
the I/O register as responding to 16 contiguous word addresses, thereby allowing the I/O
registers to act as a FIFO data register.

To maximize data I/O throughput, the burst mode executes data transfers between I/O and
memory via a 44 byte block (the content of 11 registers.) The software does not include any test
on the availability of the data and it is assumed that the interrupt will be generated only when the
bytes that are going to be transferred, are available. This can be implemented with a FIFO (first
in-first out) mechanism or with a device able to provide data at the required rate and for the exact
amount of data (fixed length block-based transmission.) In this case, the handler can be adjusted
to transfer the exact amount of bytes. If necessary error recovery exception handling and variable
block length I/O transfer handling can be added via separate unique exception vectors. Handling
dedicated vectors and exception handling routines optimize I/O throughput while still offering
error recovery and sub-block size transfers at the beginning and end of an I/O transfer.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Application Note: Software DMA

CPJ AN002A 10

Conclusion

The table below summarizes the clock cycles and data transfer rates calculated in
different DMA modes for the MÂCORE architecture.

DMA type MCore (50MHz) comments
Single channel, single
transfer

16 – 19 cycles
10.5 – 12.5 MByte/s

4 bytes transfered

Multiple channels, single
transfer

16 – 19 cycles/channel
10.5 – 12.5 MByte/s

Arm’s penalty is interrupt
polling and masking

Single channel, multiple
transfers (BURST mode)

38 – 41 cycles (44 bytes)
53.6 – 57.9 MByte/s

Arm’s penalty: an incomplete
alternate register file

In the multiple channels mode, the transfer rate indicated is the maximum rate each channel
can achieve WHEN NO OTHER CHANNEL IS ACTIVE. If several channels, say 5 channels
were interrupting each other, the rate would be divided by 5.

All these transfer rates indicated are valid only during the transfer. Any other activity out of
the interrupt will make the transfer rate decrease in proportion. For example, if the single
channel-single transfer gets only half the time of the processor, the transfer rates will be divided
by two.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
disclaimer

