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1 Introduction

The purpose of this document is to describe how to handle 32 and more interrupts with
the MÂCORE architecture and meet the requirements of speed of execution with the lowest
possible overhead. It describes how to implement a software prioritization of interrupts and how
vectored interrupts can be used to reduce the response time. Some examples are given of how to
take advantage of the various features that have been implemented to make the MÂCORE
architecture the preferred solution for low power, real-time applications.

2 Overview

Many embedded applications have a large number of interrupt-driven activities. New
processors are now expected to handle more than a hundred different sources of interrupt. At the
maximum load on the application, there may be up to 30,000 interruptions per second, leaving no
more than 30 microseconds to process each of them. There are a number of low-level actions that
take place within a microcontroller to respond to different kinds of interrupts. These tasks, some
of which being executed in hardware and some being executed in software, introduce what is
called ‘overhead’. It is imperative that applications reduce this overhead and respond to interrupt
requests in the most effective way. The first part of this document reviews these tasks. The
second part describes how the MÂCORE architecture approaches these tasks. The third part
reviews different approaches to respond to interrupt requests.

3 Terms, Acronyms

Context Refers to the processor environment (memory, registers) available to a
user program at a given time.

Alternate register file Refers to a set of registers that are switched in place of the normal set of
registers seen by the user program. This usually happens when the
processor changes its flow of execution because of an interrupt or
exception.

Shadow register(s) Refers to registers that automatically receive copies of the Program
Counter and Status registers during interrupt and exception processing in
order to preserve their original context.

Envelope Refers to the part of software executed between the processor’s detection
of an interrupt request and the first instruction servicing the interrupt
request. The envelope is defined to contain any jump instruction to access
a handler and any interrupt recognition, prioritization, arbitration and
routing to a proper handler. The envelope may also contains any software
necessary to mask and re-enable lower priority interrupts.
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Handler Refers to the software that is executed to service a specific interrupt. It
also contains the necessary actions to make sure that any resource
(register, memory) used by it is properly saved unless this resource is
dedicated to this handler.

4 Interrupt handling

There are several ways to handle interrupts. Each offers a different compromise between
flexibility and execution time overhead. The M·CORE architecture offers four different ways
to handle interrupts: auto-vectored nested interrupts, auto-vectored non-nested interrupts,
vectored nested interrupts and vectored non-nested interrupts.

4.1 Auto-vectored interrupts
Auto-vectored nested interrupts activate the standard ‘fast interrupt’ or ‘normal

interrupt’ inputs to the processor and are serviced by branching to a predetermined
address in the vector table, the address for fast or normal interrupts services. The
interrupts are nested, which means they can be interrupted by other interrupts with a
higher priority. When the interrupts are non-nested, that means they will not be
interrupted by other requests of any priority level. The software does not require any
priority masking or unmasking and can be significantly smaller and faster.

4.2 Vectored interrupts
Vectored interrupts activate standard ‘fast interrupt’ or ‘normal interrupt’ inputs

to the processor but also provide a vector number with their request for service. This
vector number is read by the processor and used as an index to the main interrupt vector
table to access the address of the associated handler. The tasks executed by the envelope
are then reduced and incorporated into the handler itself. Nesting of vectored interrupts
will require tasks such as context saving and re-enabling of interrupts. If it is acceptable
to not interrupt current services, then the overhead can be reduced to a very minimum of
only few instructions and clock cycles.

5 General implementation (auto-vectored, nested)

Handling auto-vectored and nested interrupts in an application involves a hardware
implementation and a software implementation. The hardware implementation is what the
processor and system architecture is capable of doing, by design, to assist any application
responding to interrupts. The software implementation is what the designer must provide,
specific to the application and interrupt sources, to properly handle the interrupts for this
application, especially when software prioritization is required.

The initial phase, not included in the overhead calculation, occurs at the initialization
stage: the set up of all necessary registers, pointers, memory areas and other parameters that
are required to handle interrupts in the application. This is a software component.

The first phase is executed each time an interrupt occurs. This phase consists of the
recognition of the interrupt (i.e. synchronizing the system, waiting for the current instruction
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to terminate, and transitioning to exception processing.) The time required for the current
instruction to terminate before the processor can respond to the interrupt is called ‘latency’. It
varies, depending on the number of clock cycles required to execute each of the
architecture’s instructions and the ability of the architecture to abort multi-cycles
instructions. This latency is determined by the design of the architecture. This is a hardware
dependent component.

The second phase is the envelope for the interrupt handler. It deals with what is needed
by the handler but not provided by the architecture in hardware. It may perform the selection
of the proper handler according to the interrupt activated. The envelope is executed in two
parts. The first part occurs at the beginning of the interrupt servicing and identifies the
selected interrupt, saving some of the original context if necessary. The second part occurs at
the end of the interrupt servicing and restores the conditions that were in effect before the
interrupt occurred. Although essential to the correct working of the application, this phase
has no real value for the response to the interrupt. It adds overhead, and as a result should be
kept minimal.

Entry for all exceptions triggering a normal interrupt.

Must find (interrupt controller) which one it is,
Mask the requests lower than the one we serve.
Find the address of the handler for this request,

Re-enable interrupts (re-entrant)

SPECIFIC HANDLER (see next paragraph)

Clean completion of the interrupt,
Restore pending interrupts as there were,
Retrieve context,

Return from the common root for interrupts.

The lesser software context switching is required, the smaller this overhead will be for
the application and the faster the interrupt servicing will be.

The third and final phase is the interrupt handler itself. It is actually called from the
envelope and will return to the envelope to guarantee a proper system context saving and
restoring. It may still contain some supplemental context saving tasks as well as the
acknowledgment of the interrupt. In some application the global re-enabling of interrupts
may be left to the handler, especially when some handlers are made non-interruptible and
some others are made interruptible.

Envelope

Mask interrupts again
Restore interrupt masks
Retrieve context

Return

Find Highest Priority
Mask lower interrupts
Save further context
Find address of handler
Unmask Interrupts
JSR to handler

EXECUTE
HANDLER
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Entry to the specific handler.

Save return address for re-entrance.
Responsible for preserving the registers that will
be destroyed by the handler.

Retrieve the parameters specific to this handler.

Execute any task necessary for this handler.

Save the parameters for this handler.

Clear the interrupt that came here.
Retrieve any context saved upon entry.

Retrieve Return Address (re-entrance).

Exit handler and return to the envelope .

6 What does the MÂCORE architecture provide to handle interrupts

Several features have been designed into the M·CORE architecture to efficiently support
interrupt handling. Details of the M·CORE architecture can be found in the reference manual
MCORERM/AD.

Interrupt inputs
There are two interrupt inputs, the normal interrupt input and the fast interrupt input.

They operate in a very similar manner except that fast interrupts supersede and can
interrupt normal interrupts. They have their dedicated system shadow registers (FPC /
FPSR and EPC / EPSR).

Vectored / Auto-vectored acknowledge
All system exceptions, fast interrupt input and the normal interrupt input have a

dedicated vectored address in the interrupt table. If the hardware causing an interrupt
request can provide an interrupt vector number to the processor, this vector number is
taken in place of an auto-vectored normal interrupt. Control is passed directly to the
associated handler, saving the overhead time of identifying the interrupt source and
retrieving the handler address. Up to 96 vectored handlers can be pointed to with the
current architecture and provision has been made for expanding this number for future
applications.

Handler

Clear Interrupt

Retrieve Register(s)

Return from subroutine

Save Return Address

Save any other Register(s)

Return

Retrieve handler stack (opt.)
Load parameters
• Base addresses
• Counters
Execute appropriate code
Save parameters
Clean handler stack (opt.)
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Interrupt latency control bit
Some instructions take several clock cycles to complete. Interrupt requests occurring

during the execution of such instructions may be affected by the hardware latency. The
MÂCORE architecture provides a mechanism to avoid this problem. A latency control bit
in the status register (IC bit) allows the processor, when set, to abort multiple cycles
instructions in favor of the interrupt request. Upon return from the interrupt, the
instruction that was aborted is re-executed again.

Alternate register file
The MÂCORE architecture has a full alternate register file as defined earlier. A

response to an interrupt request can take advantage of this alternate register file and
operate on these alternate registers, leaving the user’s registers unchanged and still
having not to save a user’s context (environment). It can be automatically selected upon
detection of the interrupt or exception to provide fast context switching. This alternate
register file can also be selected by the application via a control bit (AF bit) in the
Processor Status Register (PSR).

Machine state shadow registers
Fast and normal interrupt services have their dedicated system shadow registers.

When responding to a fast interrupt request, the program counter (PC) is saved into the
fast interrupt PC shadow register (FPC) and the system status register (PSR) is saved into
the fast interrupt status shadow register (FPSR). When responding to a normal interrupt
request or an exception, the program counter (PC) is saved into the exception PC shadow
register (EPC) and the system status register (PSR) is saved into the exception status
shadow register (EPSR).

STM / LDM and STQ / LDQ instructions
Handling of multiple interrupts requires saving some information (context) related to

the current program that is suspended and restoring this context when returning control
back to the program. These operations of context switching (saving and restoring) is
facilitated in the MÂCORE architecture by the use of four instructions: Load Multiple
registers (LDM), Store Multiple registers (STM), Load registers Quadrant (LDQ) and
Store registers Quadrant (STQ). They provide a fast way to save and retrieve the selected
registers to memory (or stack) in a very few clock cycles.

Find First One instruction
This instruction has been designed to assist in finding the position of the most

significant bit 1 in a word. One application of this instruction when handling interrupts is
to find the next highest priority to serve from a list of pending interrupts found in a 32-bit
register of the interrupt controller. This instruction executes in 1 clock cycle whether the
bit found is in the first or last position. This is a powerful instruction which saves the
many instructions and clock cycles of a full algorithm prioritization.
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Barrel shifter
The barrel shifter is used to perform the ‘Find First One’ instruction and many others

also used for interrupt handling (mask processing) such as Bit Generate (BGENI), Bit
Mask (BMASKI) as well as usual logical and arithmetic shift and rotate instructions.

Supervisor scratch registers
Five scratch registers are provided to hold temporary data for the application without

having to resort to moving data to external memory with the associated drawbacks
(multiple cycles access memory, dedicated memory locations).

7 Initialization

Initialization is briefly described here. It performs the loading of the vector base register
pointing to the exception vector table. Loading of the system stack pointer may be part of this
task but is also necessary for the other tasks in the system and is not considered specific to
the processing of interrupts in this document. Other tasks performed during the initialization
phase must setup the interrupt controller, the masks to enable or disable the interrupts and
possibly execute some initialization of peripherals associated with these interrupts.

8 Hardware Latency

The first action that takes place, when an interrupt is generated, is a hardware process that
consists of several actions:

- Synchronization of the interrupt request with the system.
- Waiting for the current instruction to terminate.
- Automatic saving of the program counter and the status register.
- Identification of the interrupt or exception and fetching of the associated vector.
- Selection of the Alternate Register File if requested (low order bit in the fetched vector).

The synchronization of the interrupt request happens with the first clock edge arriving
after the required setup time. This takes a maximum of one clock cycle.

Most of MÂCORE architecture’s instructions execute in one clock cycle. The longest
execution time is for the DIVU or DIVS instruction and can be up to 37 clock cycles.
However, there is a specific feature that limits this waiting time to a maximum of three clock
cycles. This is called the ‘interrupt control’ and is accessible via an interrupt control bit (IC
bit) in the status register. Setting the IC bit to one allows multi-cycle instructions to be
aborted before completion and thus limit the interrupt latency to a maximum of 3 clock
cycles from the time the interrupt is received. Once interrupt processing is initiated, whether
the instruction is aborted or allowed to complete, an additional 3 clock cycles are required by
the MÂCORE architecture to transition to the interrupt service routine and be ready to
execute the first instruction.
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9 Software examples

New embedded applications are expected to handle at least 32 and up to 200 interrupt
sources. Not many processor derivatives have that many interrupt inputs built in the silicon
and software prioritization is required. Different techniques are also described here that
reduce or eliminate the software prioritization with the help of special hardware features.

10 Auto-vectored, nested interrupts

This is the most flexible configuration. It also has the largest overhead. Auto-vectoring
implicitly uses the Fast Interrupt vector or the Normal Interrupt vector. To handle multiple
fast or normal interrupts, the auto-vectoring function requires a software prioritization of the
interrupts. Nesting (capability of being interrupted) of interrupt services requires the saving
and restoring of the context along with the masking and unmasking of other interrupts.

The first software part that is executed in response to a global interrupt request is called
the envelope. The envelope deals with context switching and directing the processor to the
execution of the handler associated with the specific interrupt that has triggered the current
response. The envelope may also be responsible for handling higher and lower priorities
masking and unmasking. In order to minimize or even eliminate the overhead of saving the
context of the task that is interrupted, the MÂCORE architecture can switch to an alternate
register file automatically by way of special encoding of each interrupt entry in the vector
table. This means that the 16 user registers, the status register and the program counter of the
current context will be kept intact during the processing of the interrupt. If the least significant
bit in the interrupt vector is set, the processor automatically switches to the alternate register
file upon entry in the interrupt service routine and switches back upon exit from the service
routine.

The second software part is called the handler. It is specific to the interrupt request being
serviced and is often dependent of the hardware being used to process the service.

Detect the highest priority to serve:
This segment of code handles the registers of the interrupt controller designed in the

MMC2001 derivative. Software prioritization is performed here using a ‘Find First One’
instruction and a “Reverse Subtract’ instruction to generate the bit number of the highest
interrupt request found in the Normal Pending Interrupt Register.

lrw r5, [INT_CTLR] // get INT CTRL address 2 cyc
ld.w r6, (r5, INT_NIPND) // read pending list 2 cyc
ff1 r6 // get position of first bit 1 from left 1 cyc
rsubi r6, 31 // scale it as bit number 1 cyc
mtcr r6, cr10 // temporary save it to SS4 2 cyc

Generate masks for higher and lower priorities:
In this segment, it is necessary to mask the interrupt inputs with a lower priority level

than the one being selected. It is also necessary to leave enabled the interrupt inputs with
a higher priority level than the one being selected. This is what is being done here, using
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r4 as mask for the lower interrupts and r6 as mask for the higher interrupts. Register r5
holds the base address for the interrupt controller.

bgenr r7, r6 // set this bit, need all those below 1 cyc
lsli r7, 1 // 1 cyc
subi r7, 1 // all below are set to one here 1 cyc
mov r4, r7 // save copy of temp ‘all lower’ 1 cyc
ld.w r6, (r5, INT_NIER) // read mask in register 2 cyc
and r4, r6 // r4 = only lower currently enabled 1 cyc
andn r6, r7 // r6 = only higher currently permitted 1 cyc
st.w r6, (r5, INT_NIER) // write back the higher ones 2 cyc

Save minimum context (r4, r5, r6, r7):
To support re-entrance of the code (nested interrupts), it is necessary to save EPC and

EPSR before they are destroyed by another coming interrupt. This is done here along
with the saving of two other parameters that will be used upon returning from the
handler. A ‘Store Quadrant’ (STQ) instruction is used to reduce the execution time. The
context is saved to the stack, pointed to by r0.

mfcr r7, cr4 // get context EPC 2 cyc
mfcr r6, cr2 // get context EPSR 2 cyc
subi r0, 16 // make room in stack (4 registers) 1 cyc
stq r4-r7, (r0) // save with mask & controller address 5 cyc

Prepare to jump to appropriate handler:
By design of the interrupt controller, interrupt requests activate the INT (or FINT)

input to the processor. It is necessary to perform a software prioritization and
discriminate which of the 32 interrupts has been granted service and which handler must
be executed for this interrupt. This is done by using the interrupt number as an index to a
table of addresses pointing to the 32 possible handlers.

lrw r7, [it_tbl_add] // point to the table of 32 handler addresses 2 cyc
mfcr r6, cr10 // retrieve interrupt number 2 cyc
ixw r7, r6 // offset to vector table 1 cyc
ld.w r7, (r7,0) // and get routine address 2 cyc

Re-enable interrupts to allow nesting:
When the nesting of interrupts is required (handlers with long execution time), it is

necessary to re-enable interrupt in the status register by setting the Interrupt Enable bit
(IE). This is done after proper saving of the important registers (context saving).

mfcr r6, cr0 // get PSR 2 cyc
bseti r6, PSR_IE // enable flag 1 cyc
mtcr r6, cr0 // write back 2 cyc

Go to handler:
Context has been saved, interrupts have been masked and unmasked accordingly,

interrupts have been re-enabled. It is time to go to the selected handler. Address of this
handler has been calculated before re-enabling the interrupts. Now, just execute a jump to
subroutine so that the return address will be stored in r15 to be saved for re-entrance
capability.
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jsr r7 // NOW JUMP TO HANDLER 2 cyc

Return from handler:
This is where the processor returns when the handler has been executed and

completed. The tasks to be performed hereinafter are related to restoring the original
context and returning to the program that had been suspended to respond to the interrupt.

Mask interrupts for safe context restoring:
Before any context or any interrupt mask can be restored it is necessary to disable all

interrupts and operate in a stable configuration.

mfcr r6, cr0 // read PSR 2 cyc
bclri r6, PSR_IE // mask normal interrupts 1 cyc
mtcr r6, cr0 // write back 2 cyc

Restore context:
Context consists of two pointers and two critical registers that hold EPC and EPSR.

They are restored using a ‘Load Quadrant’ instruction (LDQ) which loads four registers
in 5 clock cycles. Then EPC and EPSR are loaded with their original contents.

ldq r4-r7, (r0) // retrieve saved context 5 cyc
addi r0, 16 // clean stack (4 registers) 1 cyc
mtcr r6, cr2 // restore EPSR (re-entrance) 2 cyc
mtcr r7, cr4 // restore EPC 2 cyc

Re-enable lower interrupts:
At this point, it is necessary to restore the interrupt mask the way it was at the time of

the interruption. The lower priority interrupts that were disabled must be restored.
However, higher priority interrupts may have changed (they were enabled as higher
priority). It is then necessary to take the current mask in effect for the higher priorities
and keep them when writing back the mask for the lower priority interrupts. This is done
by reading the current mask (which should have all lower interrupts disabled) and restore
the old mask for these lower interrupts.

ld.w r6, (r5, INT_NIER) // read mask, highers may have changed 2 cyc
or r6, r4 // add the lower we had disabled 1 cyc
st.w r4, (r5, INT_NIER) // write back, current higher, previous lower 2 cyc

Return from interrupt (restore PC and PSR):
Here, everything has been restored to its original state. Interrupts are still disabled and

EPC and EPSR registers hold the original PC and PSR that were suspended. Executing a
‘Return From Exception’ will reload the PC and PSR system registers with their original
values and the suspended program will resume. Interrupts will be re-enabled
automatically when reloading PSR if they were enabled in the original program.

rte // return from exception (use EPC, EPSR) 3 cyc
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Typical handler base code:
There are many possible forms of interrupt handlers. They depend on the hardware

involved and the specific task to perform. There are three basic actions that may be
required as a minimum, the saving of the return address, the clearing of the associated
interrupt request and the restoring of the return address. They are briefly described
hereinafter.

Handler entry:
When entering the handler, it is necessary to save the return address. The nesting of

other interrupts might destroy this return address during a jsr or a bsr instruction. This is
done here by saving the return address to the stack (using r0 as stack pointer).

subi r0, 4 // make room for 1 register = 4 bytes 1 cyc
st.w r15, (r0,0) // like saving done by JSR 2 cyc

Exit handler:
When all tasks have been executed for the specific interrupt, the handler returns to the

envelope for proper restoring of context and interrupt masks. Return is accomplished by
retrieving the return address from the stack and executing the equivalent of a ‘return from
subroutine’.

ld.w r15, (r0, 0) // retrieve return address 2 cyc
addi r0, 4 // clean stack (4 bytes) 1 cyc
jmp r15 // and return to envelope 2 cyc

Acknowledgment and clearing of the associated interrupt request:
Here is an example of code that can be written to clear the interrupt request that has

caused the program to come here.

lrw r4, [INT_CTLR] // retrieve interrupt controller base address
ld.w r5, (r4, INT_NIPND) // get interrupt pending register
ff1 r5 // get bit position
rsubi r5, 31 // and scale it
bgenr r5, r5 // create a clearing mask
ld.w r6, (r4, INT_SRC) // read the source
andn r6, r5 // clear the bit
st.w r6, (r4, INT_SRC) // and write back

This code is handler dependent and may not be immune to register changes,
especially when nesting of interrupts is permitted. It is the responsibility of the developer
to guarantee a stable operation by properly masking and unmasking interrupts when
necessary.

11 Auto-vectored, non-nested interrupts

This configuration reduces the overhead at the expense of potential longer ‘waiting time’
for some interrupts. Auto-vectoring implicitly uses the Fast Interrupt vector or the Normal
Interrupt vector. To handle multiple fast or normal interrupts, auto-vectoring function requires
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a software prioritization of the interrupts. Not nesting interrupts (making them non-
interruptible) saves the bytes and clock cycles associated with saving and restoring the context
as well as masking and unmasking of the other interrupts.

Detect the highest priority to serve:
This segment of code handles the registers of the interrupt controller designed in the

MMC2001 derivative. Software prioritization is performed here using a ‘Find First One’
instruction and a “Reverse Subtract’ instruction to generate the bit number of the highest
interrupt request found in the Normal Pending Interrupt Register.

lrw r5, [INT_CTLR] // get INT CTRL address and keep in context 2 cyc
ld.w r6, (r5, INT_NIPND) // read pending list 2 cyc
ff1 r6 // get position of first bit 1 from left 1 cyc
rsubi r6, 31 // scale it as bit number 1 cyc

Save minimum context (EPC and EPSR):
Although interrupts are defined as non-nested, normal interrupts can still be

interrupted by exceptions. Exceptions have their dedicated handlers and can be written to
take care of context saving. To support limited re-entrance of the code (nested
exceptions), it is necessary to save EPC and EPSR before the processing of an exception
destroys them. They are saved to scratch registers that will not be over-written since there
is no re-entrance permitted.

mfcr r7, cr4 // get context EPC 2 cyc
mtcr r7, cr6 // save context EPC 2 cyc
mfcr r7, cr2 // get context EPSR 2 cyc
mtcr r7, cr7 // save context EPSR 2 cyc

Prepare to jump to appropriate handler:
Because of a software prioritization, all interrupt requests activate the same INT input

to the processor. It is necessary to discriminate which of the 32 interrupts has been
granted service and which handler must be executed for this interrupt. This is done by
using the interrupt number as an index to a table of addresses pointing to the 32 possible
handlers.

lrw r7, [it_tbl_add] // point to table of 32 handler addresses 2 cyc
ixw r7, r6 // r6 holds the offset to vector table 1 cyc
ld.w r7, (r7,0) // and get routine address 2 cyc

Go to handler:
Context has been saved, interrupts are kept disabled. It is time to go to the selected

handler. Address of this handler has been acquired. Now, just execute a jump to
subroutine so that the return address will be stored in r15 to be saved for re-entrance
capability.

jsr r7 // NOW JUMP TO HANDLER 2 cyc
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Return from handler:
This is where the processor returns when the handler has been executed and

completed. The tasks to be performed here are related to restoring the original context
and returning to the program that had been suspended to respond to the interrupt.

Restore context:
Context consists of  two critical registers that hold EPC and EPSR. They are restored

from the two scratch registers that held them during the execution of the handler. Then
EPC and EPSR are loaded with their original contents.

mfcr r7, cr6 // get EPC 2 cyc
mtcr r7, cr4 // restore context EPC 2 cyc
mfcr r7, cr7 // get EPSR 2 cyc
mtcr r7, cr2 // restore context EPSR 2 cyc

Return from interrupt (restore PC and PSR):
Here, everything has been restored to its original state. Interrupts are still disabled and

EPC and EPSR registers hold the original PC and PSR that were suspended. Executing a
‘Return From Exception’ will reload the PC and PSR system registers with their original
values and the suspended program will resume. Interrupts will be re-enabled
automatically when reloading PSR if they were enabled in the original program.

rte // return from exception (use EPC, EPSR) 3 cyc

12 Vectored, nested interrupts

This is a very flexible configuration that does not have the overhead required by the auto-
vectoring feature. The handler vector number is provided by the interrupt mechanism,
allowing the processor to pass control directly to the associated handler. This saves the bytes
and clock cycles of  the tasks associated with software prioritization. Context saving and
restoring tasks are still required for the nesting of multiple interrupts. These tasks will be
duplicated in each handler.

Take the interrupt number:
Vectored interrupts have the vector number provided to the processor. The number is

used as an index to the interrupt vector table to get the address of the handler to execute.
This means that the handler is immediately accessed and its number is known within this
handler.

movi r6, INT_nmb // knows directly its interrupt number 1 cyc

Generate masks for higher and lower priorities:
In this segment, it is necessary to mask the interrupt inputs with a lower priority level

than the one being selected. It is also necessary to leave enabled, the interrupt inputs with
a higher priority level than the one being selected. This is what is being done here,
keeping in r4 the mask for the lower interrupts and in r6 the mask for the higher
interrupts. Register r5 holds the base address for the interrupt controller.
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bgenr r7, r6 // set this bit, need all those below 1 cyc
lsli r7, 1 // 1 cyc
subi r7, 1 // all below are set to one here 1 cyc
mov r4, r7 // save copy of temp ‘all lower’ 1 cyc
ld.w r6, (r5, INT_NIER) // read mask in register 2 cyc
and r4, r6 // r4 = only lower currently enabled 1 cyc
andn r6, r7 // r6 = only higher currently permitted 1 cyc
st.w r6, (r5, INT_NIER) // write back the higher ones 2 cyc

Save minimum context (r4, r5, r6, r7):
To support re-entrance of the code (nested interrupts), it is necessary to save EPC and

EPSR before they are destroyed by another interrupt. This is done here along with the
saving of two other parameters that will be used upon returning from the handler. A
‘Store Quadrant’ (STQ) instruction is used here to reduce the execution time. The context
is saved to the stack, pointed to by r0.

mfcr r7, cr4 // get context EPC 2 cyc
mfcr r6, cr2 // get context EPSR 2 cyc
subi r0, 16 // make room in stack (4 registers) 1 cyc
stq r4-r7, (r0) // save with mask & controller address 5 cyc

Re-enable interrupts to allow nesting:
When the nesting of interrupts is required (handlers with long execution time), it is

necessary to re-enable interrupt in the status register by setting the Interrupt Enable bit
(IE). This is done after proper saving of the important registers (context saving).

mfcr r6, cr0 // get PSR 2 cyc
bseti r6, PSR_IE // enable flag 1 cyc
mtcr r6, cr0 // write back 2 cyc

// already in handler

// **********************************
// here, code for a specific handler
// **********************************

Mask interrupts for safe context restoring:
Before any context or any interrupt mask can be restored it is necessary to disable all

interrupts and operate in a stable configuration.

mfcr r6, cr0 // read PSR 2 cyc
bclri r6, PSR_IE // mask normal interrupts 1 cyc
mtcr r6, cr0 // write back 2 cyc

Restore context:
Context consists of two pointers and two critical registers that hold EPC and EPSR.

They are restored using a ‘Load Quadrant’ instruction (LDQ) which loads four registers
in 5 clock cycles. Then EPC and EPSR are loaded with their original contents.

ldq r4-r7, (r0) // retrieve saved context 5 cyc
addi r0, 16 // clean stack (4 registers) 1 cyc
mtcr r6, cr2 // restore EPSR (re-entrance) 2 cyc
mtcr r7, cr4 // restore EPC 2 cyc
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Re-enable lower interrupts:
At this point, it is necessary to restore the interrupt mask the way it was at the time of

the interruption. The lower priority interrupts that were disabled must be restored.
However, higher priority interrupts may have changed (they were enabled as higher
priority). It is then necessary to take the current mask in effect for the higher priorities
and keep them when writing back the mask for the lower priority interrupts. This is done
by reading the current mask (which should have all lower interrupts disabled) and restore
the old mask for these lower interrupts.

ld.w r6, (r5, INT_NIER) // read mask, highers may have changed 2 cyc
or r6, r4 // add the lower we had disabled 1 cyc
st.w r4, (r5, INT_NIER) // write back, current higher, previous lower 2 cyc

Return from interrupt (restore PC and PSR):
Here, everything has been restored to its original state. Interrupts are still disabled and

EPC and EPSR registers hold the original PC and PSR that were suspended. Executing a
‘Return From Exception’ will reload the PC and PSR system registers with their original
values and the suspended program will resume. Interrupts will be re-enabled
automatically when reloading PSR if they were enabled in the original program.

rte // return from exception (use EPC, EPSR) 3 cyc

13 Vectored, non nested interrupts

This is the most time-effective configuration for normal interrupts. It has the smallest
overhead at the expense of a larger ‘waiting time’ for some interrupts. However, the gain in
execution time offered by this configuration will, in many cases, compensate the ‘waiting
time’. In short, the interrupt will have been identified, processed and completed in the time
spent saving and restoring the context.

Save minimum context (EPC and EPSR):
Although interrupts are defined as non-nested, normal interrupts can still be

interrupted by exceptions. Exceptions have their dedicated handlers and can be written to
take care of context saving. To support limited re-entrance of the code (nested
exceptions), it is necessary to save EPC and EPSR before the processing of an exception
destroys them. They are saved to scratch registers that will not be over-written since there
is no re-entrance permitted.

mfcr r7, cr4 // get context EPC 2 cyc
mtcr r7, cr6 // save context EPC 2 cyc
mfcr r7, cr2 // get context EPSR 2 cyc
mtcr r7, cr7 // save context EPSR 2 cyc

// already in appropriate handler

// **********************************
// here, code for a specific handler
// **********************************
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Restore context:
Context consists of  two critical registers that hold EPC and EPSR. They are restored

from the two scratch registers that held them during the execution of the handler. Then
EPC and EPSR are loaded with their original contents.

mfcr r7, cr6 // get EPC 2 cyc
mtcr r7, cr4 // restore context EPC 2 cyc
mfcr r7, cr7 // get EPSR 2 cyc
mtcr r7, cr2 // restore context EPSR 2 cyc

Return from interrupt (restore PC and PSR):
Here, everything has been restored to its original state. Interrupts are still disabled and

EPC and EPSR registers hold the original PC and PSR that were suspended. Executing a
‘Return From Exception’ will reload the PC and PSR system registers with their original
values and the suspended program will resume. Interrupts will be re-enabled
automatically when reloading PSR if they were enabled in the original program.

rte // return from exception (use EPC, EPSR) 3 cyc

14 Fast vectored, non nested interrupts

It has virtually no overhead. The only penalty is the latency that may affect other pending
interrupts. This solution however should be implemented when the handler is known to be
very short and when the overhead of implementing a re-entrance solution is larger than the
interrupt processing itself. The vectored capability allows the interrupt request to go directly
to the execution of the handler. The non-nested feature saves the many instructions required to
save and restore the context. The use of the fast interrupt input guarantees that potential
exceptions will not overwrite FPC and FPSR, thus saving the few remaining instructions in a
context saving task.

already in appropriate handler when entering the interrupt service

// **********************************
// here, code for a specific handler
// **********************************

Return from interrupt (restore PC and PSR):
Here, interrupts are still disabled and FPC and FPSR registers still hold the original

PC and PSR that were suspended. Executing a ‘Return From Fast Interrupt’ will reload
the PC and PSR system registers with their original values and the suspended program
will resume. Interrupts will be re-enabled automatically when reloading PSR if they were
enabled in the original program.

rfi // return from exception (use FPC, FPSR) 3 cyc
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15 Summary for 32 interrupt requests

The following table gives a close estimate of the number of bytes and clock cycles used
in the different interrupt handling techniques.

tasks Auto-Vectored
Nested

Auto-Vectored
Non-Nested

Vectored INT
Nested

Vectored INT
Non-Nested

Vectored FINT
Non-Nested

notes

H/W latency (6-9 cyc) (6-9 cyc) (6-9 cyc) (6-9 cyc) (6-9 cyc)
synchronization
& wait for instr.

to complete
S/W prioritization

of interrupt
sources

20 (17 cyc) 16 (18 cyc) 2 (1 cyc) - -
identify highest

priority and
handler

nesting for pre-
emptive interrupt

handling
50 (45 cyc) 16 (16 cyc) 50 (45 cyc) 16 (16 cyc) -

save / restore
context and
interrupts

handler
overhead 10 (8 cyc) 10 (8 cyc) - - -

specific save /
restore context

for handler

others 2 (3 cyc) 2 (3 cyc) 2 (3 cyc) 2 (3 cyc) 2 (3 cyc) basic tasks

TOTAL
bytes (cycles)

82 (82 cyc) 44 (49 cyc) 54 (58 cyc) 18 (28 cyc) 2 (9-12 cyc)
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16 Serving more than 32 interrupt requests

The software examples that have been given here are designed to handle the 32 interrupts
lines of the MMC2001’s on-chip interrupt controller, some of them being connected to
internal resources. There are applications that will require a higher number of interrupts. The
extra overhead for the M·CORE architecture to support more than 32 interrupts, say 64, 96,
128 or 256 interrupts can be evaluated for the various types of interrupt handling models that
have been discussed.

Auto-vectored and nested interrupts
This model requires a software implementation of the request prioritization. It requires
additional code to scan the various 32-bit registers holding the status bits and to modify the
registers holding the mask patterns for each block of interrupt lines. This is hardware
dependent and the code required depends on how the information is made available to the
user. By keeping track of the 32-bit block scanned and the number of inputs checked during
the Find-First-One instruction, the interrupt request number is easily calculated as an offset to
the interrupt jump table.

Auto-vectored and non-nested interrupts
Since this model does not nest interrupts, the problem of handling the interrupt masks does
not exist. Limited additional code is required here to handle interrupt request prioritization by
looking at the various registers holding the status of the interrupt requests. This is hardware
dependent and the code required depends on how the information is made available to the
user.

Vectored and nested interrupts
The model uses a vectored mode, removing the need for interrupt request prioritization. The
additional code required is reduced since there is no need for scanning multiple registers in
order to find where the highest requesting input is. Some additional code is still required to
handle the multiple interrupt masks to support nesting capability.

Vectored and non-nested interrupts
This model too uses a vectored mode, removing the need for interrupt request prioritization.
The additional code required is greatly reduced since there is no need for scanning multiple
registers in order to find where the highest requesting input is and there is no need either to
handle multiple mask registers.

Fast vectored non-nested interrupts
This model, due to a very reduced software implementation, requires no additional code when
increasing the number of interrupt inputs to 64, 96, 128 or even 256. The vectoring
mechanism takes care of the interrupt request prioritization and the selection of the
appropriate interrupt vector in the interrupt vector table. With this model, the envelope and
the handler are combined into one software module.
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17 Summary for up to 256 interrupts

The following table gives an estimate of the number of bytes and clock cycles required in
implementing up to 256 interrupts using the different interrupt handling techniques.

Number of
Interrupts

Auto-
Vectored
Nested

Auto-
Vectored

Non-
Nested

Vectored
INT

Nested

Vectored
INT
Non-

Nested

Vectored
FINT
Non-

Nested

notes

1 to 32 82 (82 cyc) 44 (49 cyc) 54 (58 cyc) 18 (28 cyc) 2 (9-12
cyc)

up to 64 92 (101
cyc)

51 (58 cyc) 60 (69 cyc) 18 (28 cyc) 2 (9-12
cyc)

estimated

up to 96 97 (107
cyc)

56 (64 cyc) 60 (69 cyc) 18 (28 cyc) 2 (9-12
cyc)

estimated

up 128 102 (113
cyc)

61 (70 cyc) 60 (69 cyc) 18 (28 cyc) 2 (9-12
cyc)

estimated

up to 256 122 (136
cyc)

81 (93 cyc) 60 (69 cyc) 18 (28 cyc) 2 (9-12
cyc)

estimated

18 Conclusion

The MÂCORE architecture offers a wide range of solutions to handle interrupt requests.
This is due to its interrupt mechanism, its instruction set and its register set model. Expanding
to more than 32 interrupt sources can easily be done at almost no expense in bytes or clock
cycles. The MÂCORE architecture is perfectly suited for real-time applications requiring very
fast response time, very small overhead with the capability to handle more than a hundred
interrupts at rates above 10,000 interrupt requests per second.
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19 Appendix 1: Sample code for Autovectored, Nested Interrupts

IRQ_Envelope

; Constants for accessing IRQ Interrupt Controller (MMC2001)
INT_NIER EQU 0x4 ; Normal Interrupt Enable Register
INT_SRC EQU 0x0 ; Interrupt Source Register
INT_NIPND EQU 0xC ; Normal Interrupt Pending Register
; IRQ disable bit constants
PSR_IE EQU 0x40
PSR_IC EQU 0x7

; **********************************************************************************
; * Start of actual code for Normal Interrupt. This is the routine that should     *
; * be branched to from the INT vector.The module is re-entrant.                   *
; * INT only uses r1-r7.      r0 is Stack, r15 holds return address    *
; **********************************************************************************

// Detect
; when entering, registers r4-r7 can be used at will (EABI specifications)

LRW r5, [INT_CTLR] // get INT CTRL address and keep in context
LD.W r6, (r5, INT_NIPND) // read pending list
FF1 r6 // get position of first bit 1 from left
rsubi r6, 31 // scale it as bit nmb (b30 was 1, now 30)
mtcr r6, cr10 // temporary save it to SS4

// mask
BGENR r7, r6 // set this bit, need all those below
LSLI r7, 1 // mult by 2
SUBI r7, 1 // and adjust
MOV r4, r7 // save copy of temp ‘all lower’
LD.W r6, (r5, INT_NIER) // read mask in register
AND r4, r6 // r4 = only lower currently enabled
ANDN r6, r7 // r6 = only higher currently permitted
ST.W r6, (r5, INT_NIER) // write back the higher ones

// save context (r4, r5, r6, r7)  
MFCR r7, cr4 // get context EPC
MFCR r6, cr2 // get context EPSR
SUBI r0, 16 // make room in stack (4 registers)
STQ r4-r7, (r0) // save with mask & controller address

// prepare to jump to appropriate handler
LRW r7, [it_tbl_add]
MFCR r6, cr10 // retrieve interrupt number
IXW r7, r6 // offset to vector table
LD.W r7, (r7,0) // and get routine address

// re-enable interrupts to allow nesting
MFCR r6, cr0 // get PSR
BSETI r6, PSR_IE // enable flag
MTCR r6, cr0 // write back

// go to handler,
JSR r7 // NOW JUMP TO HANDLER

// mask interrupts for safe context restoring
MFCR r6, cr0 // read PSR
BCLRI r6, PSR_IE // mask normal interrupts
MTCR r6, cr0 // write back

// restore context
LDQ r4-r7, (r0) // retrieve saved context
ADDI r0, 16 // clean stack (4 registers)
MTCR r6, cr2 // restore EPSR (re-entrance)
MTCR r7, cr4 // restore EPC
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// re-enable lower interrupts
LD.W r6, (r5, INT_NIER) // read mask, highers may have changed
OR r6, r4 // add the lower we had disabled
ST.W r4, (r5, INT_NIER) // write back, current higher and old lowers

// return from interrupt (restore PC and PSR)
RTE // return from exception (use PC,EPSR)

.align 2
it_tbl_add: .long int_table // address of first (for a LRW instr).
INT_CTLR: .long 0x10000000 // address of interrupt controller

// table of handler start addresses
int_table:
itbit00: .long hdlr_loop // lowest priority
// ...........................
itbit29: .long Interrupt_3
itbit30: .long Interrupt_2
itbit31: .long Interrupt_1 // highest priority

// Example
Interrupt_1:

SUBI r0, 4 // make room for 1 register = 4 bytes
ST.W r15, (r0,0) // like saving done by JSR

// **********************************
// here, code for a specific handler
// **********************************

// exit handler
LD.W r15, (r0, 0) // retrieve return address
ADDI r0, 4 // clean stack (4 bytes)
JMP r15 // and return to envelope

Interrupt_2:
Interrupt_3:
; as per Interrupt_1, but with own handler code.

// example how to clear pending interrupt
LRW r4, [INT_CTLR] // 
LD.W r5, (r4, INT_NIPND) // get pending register
FF1 r5 // get position of bit
RSUBI r5, 31 // and scale it
BGENR r5, r5 // 
LD.W r6, (r4, INT_SRC) // read the source
ANDN r6, r5 // clear the bit
ST.W r6, (r4, INT_SRC) // write back

END
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20 Appendix 2: Sample code for Auto-Vectored, Non-Nested Interrupts

IRQ_Envelope

; Constants for accessing IRQ Interrupt Controller (MMC2001)
INT_NIER EQU 0x4 ; Normal Interrupt Enable Register
INT_SRC EQU 0x0 ; Interrupt Source Register
INT_NIPND EQU 0xC ; Normal Interrupt Pending Register
; IRQ disable bit constants
PSR_IE EQU 0x40
PSR_IC EQU 0x7

; **********************************************************************************
; * Start of actual code for Normal Interrupt. This is the routine that should     *
; * be branched to from the INT vector.The module is re-entrant.                   *
; * INT only uses r1-r7.      r0 is Stack, r15 holds return address    *
; **********************************************************************************

// Detect
; when entering, registers r4-r7 can be used at will (EABI specifications)

LRW r5, [INT_CTLR] // get INT CTRL address and keep in context
LD.W r6, (r5, INT_NIPND) // read pending list
FF1 r6 // get position of first bit 1 from left
rsubi r6, 31 // scale it as bit nmb (b30 was 1, now 30)

// save context (r4, r5, r6, r7) 
MFCR r7, cr4 // get context EPC
MTCR r7, cr6 // save EPC (only once)
MFCR r7, cr2 // get context EPSR
MTCR r7, cr7 // save EPSR (only once)

// prepare to jump to appropriate handler
LRW r7, [it_tbl_add]
IXW r7, r6 // offset to vector table
LD.W r7, (r7,0) // and get routine address

// go to handler,
JSR r7 // NOW JUMP TO HANDLER

// restore context
MFCR r7, cr6 // get EPC 
MTCR r7, cr4 // restore context EPC
MFCR r7, cr7 // get EPSR
MTCR r7, cr2 // restore context EPSR

// return from interrupt (restore PC and PSR)
RTE // return from exception (use PC,EPSR)
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.align 2
it_tbl_add: .long int_table // address of first (for a LRW instr).
INT_CTLR: .long 0x10000000 // address of interrupt controller

// table of handler start addresses
int_table:
itbit00: .long hdlr_loop // lowest priority
// ...........................
itbit29: .long Interrupt_3
itbit30: .long Interrupt_2
itbit31: .long Interrupt_1 // highest priority

// Example
Interrupt_1:

SUBI r0, 4 // make room for 1 register = 4 bytes
ST.W r15, (r0,0) // like saving done by JSR

// **********************************
// here, code for a specific handler
// **********************************

// exit handler
LD.W r15, (r0, 0) // retrieve return address
ADDI r0, 4 // clean stack (4 bytes)
JMP r15 // and return to envelope

Interrupt_2:
Interrupt_3:
; as per Interrupt_1, but with own handler code.

// example how to clear pending interrupt
LRW r4, [INT_CTLR] // 
LD.W r5, (r4, INT_NIPND) // get pending register
FF1 r5 // get position of bit
RSUBI r5, 31 // and scale it
BGENR r5, r5 // 
LD.W r6, (r4, INT_SRC) // read the source
ANDN r6, r5 // clear the bit
ST.W r6, (r4, INT_SRC) // write back

END
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21 Appendix 3: Sample code for Vectored, Nested Interrupts

IRQ_Envelope

; Constants for accessing IRQ Interrupt Controller (MMC2001)
INT_NIER EQU 0x4 ; Normal Interrupt Enable Register
INT_SRC EQU 0x0 ; Interrupt Source Register
INT_NIPND EQU 0xC ; Normal Interrupt Pending Register
; IRQ disable bit constants
PSR_IE EQU 0x40
PSR_IC EQU 0x7

; **********************************************************************************
; * INT only uses r1-r7.      r0 is Stack, r15 holds return address    *
; **********************************************************************************

// Detect
; when entering, registers r4-r7 can be used at will (EABI specifications)

MOVI r6, INT_nmb // get interrupt number

// mask
BGENR r7, r6 // set this bit, need all those below
LSLI r7, 1 // mult by 2
SUBI r7, 1 // and adjust
MOV r4, r7 // save copy of temp ‘all lower’
LD.W r6, (r5, INT_NIER) // read mask in register
AND r4, r6 // r4 = only lower currently enabled
ANDN r6, r7 // r6 = only higher currently permitted
ST.W r6, (r5, INT_NIER) // write back the higher ones

// save context (r4, r5, r6, r7)  
MFCR r7, cr4 // get context EPC
MFCR r6, cr2 // get context EPSR
SUBI r0, 16 // make room in stack (4 registers)
STQ r4-r7, (r0) // save with mask & controller address

// re-enable interrupts to allow nesting
MFCR r6, cr0 // get PSR
BSETI r6, PSR_IE // enable flag
MTCR r6, cr0 // write back

// already in handler

// **********************************
// here, code for a specific handler
// **********************************

// mask interrupts for safe context restoring
MFCR r6, cr0 // read PSR
BCLRI r6, PSR_IE // mask normal interrupts
MTCR r6, cr0 // write back

// restore context
LDQ r4-r7, (r0) // retrieve saved context
ADDI r0, 16 // clean stack (4 registers)
MTCR r6, cr2 // restore EPSR (re-entrance)
MTCR r7, cr4 // restore EPC

// re-enable lower interrupts
LD.W r6, (r5, INT_NIER) // read mask, highers may have changed
OR r6, r4 // add the lower we had disabled
ST.W r4, (r5, INT_NIER) // write back, current higher and old lowers

// return from interrupt (restore PC and PSR)
RTE // return from exception (use PC,EPSR)
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.align 2
it_tbl_add: .long int_table // address of first (for a LRW instr).
INT_CTLR: .long 0x10000000 // address of interrupt controller

Interrupt_2:
Interrupt_3:
; as per Interrupt_1, but with own handler code.

// example how to clear pending interrupt
LRW r4, [INT_CTLR] // 
BSETI r5, INT_nmb // set bit for this interrupt number
LD.W r6, (r4, INT_SRC) // read the source
ANDN r6, r5 // clear the bit
ST.W r6, (r4, INT_SRC) // write back

END
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22 Appendix 4: Sample code for Vectored, Non-Nested Interrupts

IRQ_Envelope

; Constants for accessing IRQ Interrupt Controller (MMC2001)
INT_NIER EQU 0x4 ; Normal Interrupt Enable Register
INT_SRC EQU 0x0 ; Interrupt Source Register
INT_NIPND EQU 0xC ; Normal Interrupt Pending Register
; IRQ disable bit constants
PSR_IE EQU 0x40
PSR_IC EQU 0x7

; **********************************************************************************
; * INT only uses r1-r7.      r0 is Stack, r15 holds return address    *
; **********************************************************************************

// save context 
MFCR r7, cr4 // get context EPC
MTCR r7, cr6 // save EPC (only once)
MFCR r7, cr2 // get context EPSR
MTCR r7, cr7 // save EPSR (only once)

// already in appropriate handler

// **********************************
// here, code for a specific handler
// **********************************

// restore context
MFCR r7, cr6 // get EPC 
MTCR r7, cr4 // restore context EPC
MFCR r7, cr7 // get EPSR
MTCR r7, cr2 // restore context EPSR

// 
// return from interrupt (restore PC and PSR)

RTE // return from exception (use PC,EPSR)

.align 2
it_tbl_add: .long int_table // address of first (for a LRW instr).
INT_CTLR: .long 0x10000000 // address of interrupt controller

Interrupt_2:
Interrupt_3:
; as per Interrupt_1, but with own handler code.

// example how to clear pending interrupt
LRW r4, [INT_CTLR] // 
BSETI r5, INT_nmb // set bit for this interrupt number
LD.W r6, (r4, INT_SRC) // read the source
ANDN r6, r5 // clear the bit
ST.W r6, (r4, INT_SRC) // write back

END
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23 Appendix 5: Sample code for Vectored, Non-Nested Fast Interrupts

IRQ_Envelope

; Constants for accessing IRQ Interrupt Controller (MMC2001)
INT_SRC EQU 0x0 ; Interrupt Source Register
INT_FIPND EQU 0x10 ; Fast Interrupt Pending Register

; **********************************************************************************
; * r0 is Stack, r15 holds return address    *
; **********************************************************************************

// already in appropriate handler

// **********************************
// here, code for a specific handler
// **********************************

// return from interrupt (restore PC and PSR)
RFI // return from exception (use FPC,FPSR)

Interrupt_2:
Interrupt_3:
; as per Interrupt_1, but with own handler code.

// example how to clear pending interrupt
LRW r4, [INT_CTLR] // 
BSETI r5, INT_nmb // set bit for this interrupt number
LD.W r6, (r4, INT_SRC) // read the source
ANDN r6, r5 // clear the bit
ST.W r6, (r4, INT_SRC) // write back

END
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