

JN-AN-1222 (v2.6) 24-Mar-2017 © NXP Semiconductors 2017 1

Application Note: JN-AN-1222

ZigBee IoT Gateway with NFC

This Application Note describes the hardware and software components that are
required to implement the Host processor part of a Linux-based ZigBee ‘Internet of
Things’ (IoT) Gateway using NXP’s Near Field Communication (NFC) feature.

Creating a ZigBee IoT Gateway based on Linux allows the platform to utilize the vast
array of software available for the operating system to create a highly featured, robust
and scalable solution with a fast time-to-market.

1 Application Overview

The Linux-based ZigBee IoT Gateway from NXP allows the connection of a ZigBee network
to the Internet via an application data translation process in which ZigBee devices can
exchange data with any other connected device, enabling the ‘Internet of Things’. This
document describes the software on the host processor, which forms the ‘ZigBee IoT
Gateway Host’. It must be interfaced with a ZigBee Control Bridge (ZCB) in order to form a
complete ZigBee IoT Gateway. This is described in the accompanying Application Notes
ZigBee IoT Control Bridge (JN-AN-1223) and ZigBee 3.0 IoT Control Bridge (JN-AN-1216).
Moreover, the complete system is described in the IoT Gateway User Guide (JN-UG-3117),
included in this Application Note package.

1.1 Hardware

The hardware required to create the system described in this Application Note can be taken
from either the JN516x-EK004 or JN517x-DK005 hardware kit.

The following parts from either of the above kits are required to build the gateway:

 Raspberry Pi board, plus power adapter

 Micro-SD Card

 WiPi Wi-Fi USB dongle or Ethernet cable for connection to an existing LAN

 JN5169 USB dongle (OM15020) or JN5179 USB dongle (OM15021)

 Extension board for NFC reader (OM5577/PN7120S)

1.2 Operating System

The NXP IoT Gateway host functionality can be added to any Linux system, using common
system packages and a few developed by NXP. The firmware used in the NXP IoT Gateway
is compatible with the JN516x-EK004 and JN517x-DK005 hardware kits. This firmware is
based upon the OpenWrt Linux distribution. This distribution was chosen because it has
support for many cheap commercial off-the-shelf WiFi routers, and is also easy to port to
new hardware platforms. It is highly configurable and has a wide variety of packages
available for installation, providing a solution to almost any networking requirement.

 ZigBee IoT Gateway with NFC

2 © NXP Semiconductors 2017 JN-AN-1222 (v2.6) 24-Mar-2017

2 Software Architecture

2.1 Overview

The overview depicted below shows the essential IoT daemons and the dataflow between
them. A description of each system component follows in the next sections.

2.2 Main Components

2.2.1 IoT Database

The IoT database forms the heart of the IoT Gateway. It contains the following tables:

Table Description

System Contains system settings, e.g. current ZigBee Channel

Devices Contains all devices that are currently in the network.

Plug history Keeps a 24-hour plug meter history for generating usage overviews

ZCB Low-level mapping table between ZigBee’s short (network) addresses and
extended addresses

ZigBee IoT Gateway with NFC

JN-AN-1222 (v2.6) 24-Mar-2017 © NXP Semiconductors 2017 3

2.2.2 ZigBee Control Bridge (ZCB)

The ZigBee Control Bridge runs the ZigBee HA software and sends/receives fully compliant
ZigBee HA messages/clusters. This control bridge is the Coordinator in the ZigBee network.
The software runs on a JN516x or JN517x USB Dongle, and communication with this device
from Linux world is done over the serial port /dev/ttyUSB0.

The communication protocol is described in the Application Notes ZigBee IoT Gateway
Control Bridge (JN-AN-1223) and ZigBee 3.0 IoT Control Bridge (JN-AN-1216).

2.2.3 ZCB Daemon

The ZCB daemon is the counterpart of the ZCB USB dongle software. It is called iot_zb and
can be started with following syntax: iot_zb

No parameters are needed. This program communicates with the other IoT programs over
two message queues:

 An input queue for IoT commands to the ZCB (e.g. set channel) or into the ZigBee
network (e.g. controlling the color of a lamp),

 An output queue towards the Dispatcher (e.g. a new energy consumption reading from
a plug meter) where further processing or relaying takes place.

Messages over these IoT queues are JSON encoded, human-readable messages. The
queue system makes sure that messages from different sources do not get intermixed.

 Note: The ZCB daemon also has a supporting function towards the ZCB
in the sense that it keeps a translation table from ZigBee’s short (network)
addresses to extended addresses. Allocating this table into the IoT
Gateway saves valuable (RAM) memory space in the ZCB so that it can
support up to 250 nodes.

2.2.4 Secure Joiner

The Secure Joiner program is called “iot_sj” and can be started with following syntax:

iot_sj

No parameters are needed. This program is required in the Single-Touch Commissioning
scenario 3 described in the NFC Commissioning User Guide (JN-UG-3112). It serves a
socket connection through which clients can ask for the encrypted network key (secjoin
structure) given their device-specific linkinfo structure. The commissioning process is further
explained in Section 2.3, NFC Commissioning.

2.2.5 Control Interface

The Control Interface program is called “iot_ci” and can be started with following syntax:

iot_ci

No parameters are needed.

The diagram below gives an overview on how the Control Interface interacts in the system.

 ZigBee IoT Gateway with NFC

4 © NXP Semiconductors 2017 JN-AN-1222 (v2.6) 24-Mar-2017

This program handles all other non-secure-join remote accesses to the system via a socket
port (2001), setting the topology by the web interface, database interrogations, set point
commands and system controls.

The dataflow of commands towards the ZCB, and in some cases further into the wireless
network, goes via the input queue of the ZCB-Linux. Responses go back to the Control
Interface queue.

2.2.6 NFC Daemon

The NFC daemon program is called “iot_nd” and can be started with following syntax:

iot_nd

No parameters are needed. The NFC daemon implements the NFC reader functionality and
polls for NFC-forum Type2 tags with NDEF formatted payloads. Based on the URL in the
NDEF header, the corresponding “NDEF-app” is called with the rest of the NDEF payload.

In order for the PN7120-based NFC reader software to work, the Linux OS must provide the
following user-space functionality:

 Device “/dev/i2c-1” must be present in order to be able to communicate with the
PN7120

 Two GPIO pins must be accessible through the sys-fs file system /sys/class/gpio in
order to enable the PN7120 and react to its hardware interrupt

2.2.7 CGI Scripts

The IoT CGI scripts are invoked by the web server to generate web pages to external web
clients (e.g. PCs or mobile devices). The CGI scripts are written in ‘C’ and can access the
IoT database directly (for reading only) and communicate with the other IoT programs
through sockets and queues, wherever applicable.

Most CGI scripts work in close cooperation with an accompanying JavaScript program
running on the web client. Underlying HTML5 AJAX technology is used to sync and
seamlessly update the web pages’ contents with the actual data on the IoT Gateway.

ZigBee IoT Gateway with NFC

JN-AN-1222 (v2.6) 24-Mar-2017 © NXP Semiconductors 2017 5

2.3 NFC Commissioning

The Secure Joiner program plays a key role in the (secure) NFC commissioning process.
There are two potential clients for the Secure Joiner: an NFC enabled mobile phone running
a commissioning app (not provided in the evaluation kit) or the Gateway’s NFC reader.

2.3.1 Commissioning Nodes into the Network via the NFC Reader

When using the Gateway’s NFC reader, the commissioning/decommissioning mode can be
set from the web interface, prior to touching a device. Let us assume the NFC reader
daemon is in commissioning mode.

After an IoT-compatible device has touched the Gateway’s NFC reader for single-touch
commissioning, the flow through the system goes as follows:

1. The NFC daemon registers at the secure join socket (port 2000).

2. The NFC daemon sends an linkinfo data structure which it gets from the device that is
currently being single-touch commissioned.

3. The Secure Joiner reads this socket message, translates it into an “authorization
request” message and sends it to the ZCB via the input queue of the ZCB daemon.

4. The ZCB processes the data and responds with a ZCB “authorize answer” that is picked
up by the ZCB daemon and transferred to the Dispatcher daemon via its message
queue.

5. The Dispatcher daemon sends the ZCB message to the Secure Joiner daemon via its
message queue.

6. The Secure Joiner daemon translates this ZCB “authorize” message into a secjoin
message and sends it to the NFC reader over the socket.

7. The NFC daemon writes the result back into the device, which can then be
commissioned into the wireless network.

If the system cannot handle the linkinfo data structure, no response is sent, a timeout occurs
and a corresponding error message is sent to the NFC reader. During the commissioning
and decommissioning actions, the NFC reader gives audible and LED feedback to the user.

 ZigBee IoT Gateway with NFC

6 © NXP Semiconductors 2017 JN-AN-1222 (v2.6) 24-Mar-2017

Note: The Installation Code NFC commissioning has also been implemented to take benefit
from the ZigBee 3.0 out of band commissioning. If the ZigBee end node supports the
installation code, the gateway replaces the linkinfo structure with oob_request_info structure
to match the NTAG data type.

2.3.2 Secure Commissioning

To prevent the exposure of critical ZigBee information in the NTAG-I2C, it is possible to
apply a public key exchange (ECDH scheme) to derive an AES session key and encrypt the
ZigBee information stored in the NTAG-I2C. Therefore, the Host software is already
prepared to run secure commissioning and decommissioning, although this is not used in the
JN516x-EK004 or JN517x-DK005 kit.

2.3.3 Decommissioning with NFC Reader

The data flow for decommissioning is much easier. When the device touches the NFC
antenna, the reader just writes the decommission command into the NTAG-I2C tag, after
which the node can process the command and leave the network. Decommissioning also
affects the device database, as it is directly updated in the web interface even when the
device is unpowered.

ZigBee IoT Gateway with NFC

JN-AN-1222 (v2.6) 24-Mar-2017 © NXP Semiconductors 2017 7

3 OpenWrt

The OpenWrt Linux distribution was chosen due to its large hardware support, small
footprint, ease of use and large set of available packages. OpenWrt uses a heavily modified
Buildroot environment to control the build process.

The following sections explain:

 How to build a complete file system image containing both the operating system and
the Gateway host software.

 How to modify the Gateway source code and recompile it.

Warnings:

 Do everything as a non-root user!

 Issue all OpenWrt Buildroot commands in the <buildsystem root> directory, e.g.
~/openWrt/

 Do not build in a directory that has spaces in its full path

3.1 Building File System Image

3.1.1 Prerequisites

OpenWrt Buildroot is the build system for the OpenWrt Linux distribution. OpenWrt Buildroot
works on Linux. A case-sensitive file system is required and, therefore, it is not possible to
use a Cygwin Linux emulation system.

It is recommended to use a Linux distribution (Debian based), either a standalone installation
or one running in a virtual environment.

If a virtual environment is chosen, please apply the following properties for the virtual
machine:

 PC with x86 compatible CPU processor

 3GB of RAM

 HDD capacity of 30GB

For more information, please refer to the OpenWrt web site (1) (2).

 Note: Since most of the required software packages are downloaded
from remote servers, Internet access is mandatory for the following
protocols: https, ftp, git, svn.

 ZigBee IoT Gateway with NFC

8 © NXP Semiconductors 2017 JN-AN-1222 (v2.6) 24-Mar-2017

3.1.2 Setting up the Build Environment

Once the Linux system is ready, a number of software packages need to be installed.

OpenWrt buildroot requirements

Package git is required to conveniently download the OpenWrt source code and build tools
to do the cross-compilation process. Open a Linux terminal and enter the following
commands:

sudo apt-get update

sudo apt-get install git-core build-essential libssl-dev

libncurses5-dev unzip wget

Some feeds might not be available over git but only via subversion (svn) or mercurial. To
obtain these source-codes, svn and mercurial must be installed as well, using the command
below:

sudo apt-get install subversion mercurial

Application toolchain requirements

Gateway software components need additional packages that are provided with the following
command:

sudo apt-get install gawk zlib1g libncurses5 g++ flex

3.1.3 Building the File System Image

Now that the build environment is ready, you need to decompress the source code archive.
In this document, we will assume that the source code archive is located in your home
directory. After decompression of the archive, go to directory
~/JN–AN–1222/Source/Host/openWrt and start the build process with the following
command:

make TARGET=rpi_version

rpi_version refers to the version of the Raspberry Pi board that is included into your
JN516x/JN517x hardware kit. The board version is written on the PCB of the Raspberry Pi.
Currently, the Raspberry Pi 2 Model B V1.1 is the version officially supported, and the
Raspberry Pi Model B+ has become unsupported (obsolete).

The table below gives the value of rpi_version for each board version.

Raspberry Pi Board’s Version rpi_version to use

Raspberry Pi Model B+ V1.2 (obsolete) RPi-B+

Raspberry Pi 2 Model B V1.1 RPi2-B

The build process is made of several steps:

1. Download a known and stable version of the OpenWrt operating system.

2. Download all the software packages required to make a complete system.

3. Apply local patches where needed.

4. Perform auto-configuration of the buildroot to match the JN516x/JN517x kit hardware.

5. Build host and target development toolchains (compilers, linkers, utilities, etc).

6. Compile and build each software package.

7. Finally assemble the complete file system image.

ZigBee IoT Gateway with NFC

JN-AN-1222 (v2.6) 24-Mar-2017 © NXP Semiconductors 2017 9

This compilation step can take several hours. So if a standalone Linux system with multiple
CPU cores is used, the compilation process will be faster with the option –j X (replace X by
the number of cores), as shown below for 2 cores:

make –j 2 TARGET=rpi_version

 Note: On some Linux systems, the build process may fail if the path from
which the build is launched is too long. If this problem occurs, you will
need to reduce the length of buildroot’s path. One way to do this is to
move the openWrt directory to your home directory and build from that
location, like in the example below:

cp –R ~/JN-AN-1222/Source/Host/openWrt ~/myBuildRoot

cd ~/myBuildroot

make TARGET=rpi_version

3.1.4 Cleaning buildroot

If you want to clean everything, use the following command:

make clean_all

 Note: This command will remove the complete build-root, including all the
software packages that have been downloaded. We recommend that
these software packages are saved beforehand with the following
command (to be adapted according to your environment, xx.yy
represents the version of the OpenWrt system):

cp –R ~/JN-AN-1222/Source/Host/openWrt/openWrt-xx.yy/dl ~/openWrtFeeds

3.1.5 Rebuilding a File System Image

When rebuilding the system, you can reuse the previously downloaded packages (about
450 MB) for the next build with the command:

make DL=~/openWrtFeeds TARGET=rpi_version

3.1.6 Programming the Raspberry Pi

After a successful make process, your image can be found at:

~/JN-AN-1222/Source/Host/openWrt/openWrt-

xx.yy/bin/brcm2708/openwrt-brcm2708-sdcard-vfat-ext4.img

where xx.yy represents the version of the OpenWrt system. Follow the instructions in the
Raspberry Pi Installing Guide (3) to flash the SDCard image.

3.1.7 Updating Gateway Host Software

The complete source code of the Gateway Host software is provided within this Application
Note package. NXP provides the source as an OpenWrt package, located in the directory
Source/Host/openWrt/packages/NXP.

 ZigBee IoT Gateway with NFC

10 © NXP Semiconductors 2017 JN-AN-1222 (v2.6) 24-Mar-2017

During system image build process, this package is copied into the openWrt build-root,
e.g. in the location Source/Host/openWrt/openWrt-xx.yy/packages/NXP, where xx.yy
represents the version of the OpenWrt system.

It can then be used as a starting point for further software developments. A complete
description of the source code structure is available in Section 5, IoT Gateway Software.

After updating the source code, it needs to be recompiled. The commands to do this are:

cd ~/JN-AN-1222/Source/Host/openWrt/openWrt-xx.yy

make package/iot_gw/{clean,compile,install}

When the source has been built, the file system image can be updated with:

cd ~/JN-AN-1222/Source/Host/openWrt

make

Then proceed with flashing the SD Card.

ZigBee IoT Gateway with NFC

JN-AN-1222 (v2.6) 24-Mar-2017 © NXP Semiconductors 2017 11

4 Miscellaneous

4.1 Access to IoT Gateway System Console

For various reasons, such as controlling process execution, it might be useful to log into the
Gateway. This can be done in two ways. In both cases, you will need access to a Linux
command line interface running the BusyBox shell (4).

4.1.1 Local Console Access

The Raspberry Pi board has HDMI and USB ports. If you connect an HDMI monitor and a
USB keyboard then you will have access to the system console.

4.1.2 Remote Console Access

You can have remote access to the Raspberry Pi board using an SSL connection. On a
Windows PC, a tool like Tera Term (5), PuTTY (6) or any SSH (7) command line tool may
help.

In your Linux development environment, you can use the ssh command line tool.

The credentials to connect are:

Login root

Password snap

4.2 IoT Processes Check

Open a new terminal (PuTTY) window to the IoT Gateway and run the following command:

ps | grep iot

Your output should contain all the IoT daemons, as shown in the screenshot below.

 ZigBee IoT Gateway with NFC

12 © NXP Semiconductors 2017 JN-AN-1222 (v2.6) 24-Mar-2017

4.3 Changing the ZCB Image in a Running System

4.3.1 Re-flashing the ZCB USB Dongle

At the very first boot, the ZCB USB dongle is updated with a version of the ZCB firmware
contained in the Gateway image. When the ZCB image needs to be updated at a later stage,
be sure to first stop the iot_zb daemon that connects to the ZigBee USB dongle and then
flash the previously downloaded image to “/tmp”. Then start the IoT programs again:

/etc/init.d/iot_zb_initd stop

cp [new_firmware.bin]

/usr/share/iot/ZigbeeNodeControlBridge_3v0_JN51xx.bin #

xx={69,79}

/usr/bin/JennicModuleAutoProgram.sh

/etc/init.d/iot_zb_initd start

 Note: The Control Bridge binary must have the specific name
ZigbeeNodeControlBridge_3v0_JN51xx.bin and be located in
/usr/share/iot.

Since the Flashing programming tool is a rather complex piece of software, it deserves some
extra attention. The Flashing programming software contains several parts: code to control
the bootloader of the JN51xx device, code to extend the bootloader functionality, the actual
flashing code itself, and a shell script that puts all the parts together. The following sections
detail how the update process is handled.

4.3.2 Controlling the Bootloader

The program that puts the JN51xx bootloader into program mode (or back) is called iot_jf.

It has the following options:

 iot_jf prog: put the bootloader into programming mode

 iot_jf normal: put the bootloader back into normal mode, which gives the UART back to
the application.

 Note: An awkward side-effect of this program is that it removes the
/dev/ttyUSB0 device, so we need to repair this after the call
(see Section 4.3.5, Shell Script).

4.3.3 Extending the Bootloader

After a new ZCB image has been flashed, and prior to starting it, the JN51xx EEPROM must
be erased. The EEPROM-erase command is not available in the standard bootloader, so
directly after flashing the new program, the bootloader functionality is extended with a piece
of software called a Flash Programmer Extension. It is stored in directory /usr/share/iot/.

4.3.4 Flashing the JN51xx

The actual Flash programming program is based on the JN51xx Production Flash
Programmer (JN-SW-4107). The flash program is called iot_jp and is called as follows:

ZigBee IoT Gateway with NFC

JN-AN-1222 (v2.6) 24-Mar-2017 © NXP Semiconductors 2017 13

iot_jp -I 38400 -P 1000000 -s /dev/ttyUSB0 -f <binary file> -v -V

2

The options are:

 -I <baud>: Initial baud rate of the bootloader, must be 38400

 -P <baud>: The programming baud rate, set to a million baud

 -s <dev>: The name of the serial port to which the JN51xx is connected

 -f <binfile>: The binary file that contains the new ZCB image

 -v: Verify after programming the binary file

 -V <level>: Verbosity level

4.3.5 Shell Script

The shell script that puts all the parts together is called JennicModuleAutoProgram.sh and
performs the following steps:

1. Switch the bootloader to the programming state (iot_jf)

2. Re-install the ftdi_sio driver to get /dev/ttyUSB0 back

3. Call the Flash programmer (iot_jp)

4. Switch the bootloader back to the normal state (iot_jf)

5. Re-install the ftdi_sio to get /dev/ttyUSB0 back

6. Report the flashing result

This script is run at the very first boot of the Gateway. However, it can be executed at any
time by accessing the Gateway System Console (see Section 4.1 Access to IoT Gateway
System Console). The Control Bridge firmware can then be put in the Gateway file system
using, for example, the scp command (Linux) or pscp command (Windows). Section 4.3.1
provides additional information on how to update the ZCB firmware.

When called manually from the command line, the programming and verification progress
can be executed in sequence.

4.4 Reverting to the Default ZCB Image

At first boot, the ZigBee Control Bridge is flashed with the relevant binary file from the folder
/usr/share/iot. Once successfully flashed, the following file is created to avoid reflashing the
ZCB at each boot:

/usr/share/iot/.zcb_flashed

In the case in which the Control Bridge has been flashed with an external tool, it is possible

to revert to the default ZCB firmware by deleting the file /usr/share/iot/.zcb_flashed

and rebooting the Gateway.

 ZigBee IoT Gateway with NFC

14 © NXP Semiconductors 2017 JN-AN-1222 (v2.6) 24-Mar-2017

4.5 Changing the ZigBee Protocol Version

By default, the software package is configured to use ZigBee protocol version 3.0. It is
possible to switch back to ZigBee 2.0 at Host image build-time or at run-time.

4.5.1 Changing at Host Image Build-time

To change the ZigBee protocol version at image build-time, use the command set below
(from the buildroot directory), after having built the image at least once:

make menuconfig

Then go to the menu:

NXP ->

 Internet of Thing - Gateway software ->

 Select Zigbee protocol version for Control Bridge

and select appropriate ZigBee protocol version.

4.5.2 Changing at Run-time

To change ZigBee protocol version at run-time, use the command set below (from the
target’s Linux command line interface):

echo _2v0 > /usr/share/iot/ZigbeeProtocolVersion.txt

_2v0 can be replaced by _3v0 as well.

Then apply the instructions from Section 4.4.

ZigBee IoT Gateway with NFC

JN-AN-1222 (v2.6) 24-Mar-2017 © NXP Semiconductors 2017 15

5 IoT Gateway Software

5.1 Source Code File Structure

All the source files for the IoT Gateway are located under directory

 Source/Host/openWrt/packages/NXP/iot_gw/src

The table below depicts how files are organized in the provided zip archive. Path
descriptions start from the directory

src

Path Description

daemons/ Contains the source code related to daemons

ControlInterface/ Control Interface daemon

dbp/ Database manager

nfcRpiAlt/ NFC daemon

SecureJoiner/ Secure joiner daemon

ZCB/ ZigBee Control Bridge daemon

IotCommon/ The IotCommon directory contains all files related to common features
of daemons and CGI scripts.

jnFlasher/ Contains the code to build JN5169 flasher for the Linux environment.

www/ Contains all the files related to the web interface.

cgi-bin/ CGI scripts are located here

css/ Cascading Style Sheets, for web pages.

img/ Image repository, for web pages.

js/ Java Script repository

Zcb/ Contains the ZigBee Control Bridge images. These binaries are built
from another development environment and has to be hand-copied into
this location each time a new version is available.

The package contains binaries for JN5168, JN5169 and JN5179, and
for the ZigBee protocol version 2.0 and 3.0.

5.2 Building IoT Software for Another Target

The source code provided with the Application Note is provided as an OpenWrt software
package. However, the following sections explain how to build all the pieces of software for
an embedded Linux systems other than OpenWrt.

5.2.1 Cross-compile Environment Variables

In the directory Source/Host/openWrt/packages/NXP/iot_gw/src there is a makefile
(Makefile) which can be used to cross-compile the source code to almost any Linux platform.
This makefile relies on the following environment variables:

Environment Variables Content Description

TARGET_MACHINE Used for file and code selection.

Must be equal to RASPBERRYPI

TARGET_OS Used for file and code selection.

Must be equal to OPENWRT

CFLAGS Contains target specific flags.

Must end with :

-DTARGET_RASPBERRYPI

 ZigBee IoT Gateway with NFC

16 © NXP Semiconductors 2017 JN-AN-1222 (v2.6) 24-Mar-2017

-DTARGET_OPENWRT

CC Path to C compiler

CXX Path to C++ compiler

AR Path to archiver

LD Path to linker

ZCB_VERSION Contains one the values below:
_3v0 : for ZigBee version 3.0
_2v0 : for ZigBee version 2.0

The table above shows the environment configuration that needs to be set to select the
correct cross-compiler and linker for the embedded Linux target.

File Source/Host/openWrt/packages/NXP/iot_gw/Makefile provides an example of how to set
up these environment settings.

 Note: For IoT Gateway development, it is important to set the

environment according to your environment.

5.2.2 Top-level makefile

In the same directory, Source/Host/openWrt/packages/NXP/iot_gw/src, the top-level
makefile also supports different targets. When it is executed, all sub-directories will be built
recursively. The supported targets are detailed in the table below.

Targets Content

build Compiles images

all A combination of clean and build

clean Remove all .o files, executable binaries and generated scripts.

5.2.3 Use of IoT Gateway Target Directories

The following target directories are used by the IoT Gateway software:

Directory Content

/usr/share/iot Contains the IoT database

Also contains the software version text and JSON files for the test programs

/usr/bin IoT programs, daemons and scripts

/etc/init.d Init scripts to start or stop the IoT daemons

/tmp For log files and message queues

/www Modified index.html

/www/css IoT CSS files

/www/js IoT JavaScript files

/www/img IoT web page images

 Note: Calling make clean first before make build will ensure that

everything is built again from scratch.

ZigBee IoT Gateway with NFC

JN-AN-1222 (v2.6) 24-Mar-2017 © NXP Semiconductors 2017 17

5.2.4 IoT Specific Settings

A number of directories have to be created, using the commands below:

mkdir /www/img

mkdir /www/css

mkdir /www/js

mkdir /www/cgi-bin

mkdir /usr/share/iot

The right document paths must be set in the Apache configuration file. To do this:

1. Edit the Apache configuration file using the command below:

vi /etc/apache/httpd.conf

2. Change some of the paths as specified below:

/usr/share/htdocs -> /www

/usr/share/cgi-bin -> /www/cgi-bin

3. Save the file.

4. Update access rights on the directory /tmp so that for software updates can be done:

chmod o+w /tmp

5. Start the Apache web server:

apachectl start

6. Make sure that Apache also starts after a reboot, by editing the file /etc/rc.local:

vi /etc/rc.local

 and adding the following line:

apachectl start

5.2.5 IoT Gateway Initialization

When all items are copied to the target, the initialization scripts (required once after each
upload) must be run to set everything correctly for start-up. The initialization script (see the
appendix “Initialization Script After Upload”) does the following:

 Creates some IoT directories if they do not already exist

 Sets the permissions correctly for the uploaded images

 Sets the write permissions on /tmp for the update mechanism

 Creates automatic start-up scripts for new IoT programs/daemons

 Upgrades the new Control Bridge image

This script can be run via a SSH terminal window on the IoT Gateway or typed locally (see
Section 4.1 Access to IoT Gateway System Console).

 ZigBee IoT Gateway with NFC

18 © NXP Semiconductors 2017 JN-AN-1222 (v2.6) 24-Mar-2017

6 Release Details

6.1 Compatibility

6.2 New Features

Feature Description

Version 2.2

None

Version 2.1

JN5179 ZCB Added support for JN5179 ZigBee Control Bridge for JN517x-DK005

Version 2.0

ZigBee 3.0 Added support for ZigBee protocol version 3.0.

6.3 Known Issues

ID Severity Description

Versions 2.1 and 2.2

lpap799 Minor Smart plug power consumption not correct (add Configure Reporting)

lpap811 Minor Unexpected jumps in web interface at on/off toggling for lamps

6.4 Bug Fixes

ID Description

Versions 2.1 and 2.2

None

Product Type Part Number Build

Version 2.2

Evaluation Kit JN516x-EK004 -

Evaluation Kit JN517x-DK005 -

ZigBee IoT Gateway with NFC

JN-AN-1222 (v2.6) 24-Mar-2017 © NXP Semiconductors 2017 19

Appendices

Initialization Script After Upload

1 #!/bin/sh

2 # --

3 # Author: nlv10677

4 # Copyright: NXP B.V. 2015. All rights reserved

5 # --

6 # ---

7 # Create some directories if they not already exists

8 # ---

9 echo "+++++++++ Init start +++++++" >> /tmp/su.log

10 echo "Init 1: Make IoT directories" >> /tmp/su.log

11 if [! -d /usr/share/iot]; then

12 mkdir /usr/share/iot

13 fi

14 if [! -d /www/img]; then

15 mkdir /www/img

16 fi

17 if [! -d /www/js]; then

18 mkdir /www/js

19 fi

20 if [! -d /www/css]; then

21 mkdir /www/css

22 fi

23 if [! -d /www/cgi-bin]; then

24 mkdir /www/cgi-bin

25 fi

26 # ---

27 # Set the persmissions right of our uploaded images

28 # ---

29 echo "Init 2: Set permissions right" >> /tmp/su.log

30 chmod +x /etc/init.d/iot_*

31 chmod +x /usr/bin/iot_*

32 chmod +x /usr/bin/killbyname

33 chmod +x /www/cgi-bin/iot_*

34 # ---

35 # Set the write persmissions on /tmp for the update mechanism

36 # ---

37 echo "Init 3: Make /tmp writable for Apache" >> /tmp/su.log

38 chmod o+w /tmp

39 # ---

40 # Create automatic startup scripts for our new IoT programs/daemons

41 # The test is there to allow multiple calls of this script

42 # ---

43 echo "Init 4: Install startup scripts" >> /tmp/su.log

44 if [! -f /etc/rc.d/S99iot_zb_initd];

45 then

46 /etc/init.d/iot_zb_initd enable

47 fi

48 if [! -f /etc/rc.d/S99iot_dp_initd];

49 then

50 /etc/init.d/iot_dp_initd enable

 ZigBee IoT Gateway with NFC

20 © NXP Semiconductors 2017 JN-AN-1222 (v2.6) 24-Mar-2017

51 fi

52 if [! -f /etc/rc.d/S99iot_sj_initd];

53 then

54 /etc/init.d/iot_sj_initd enable

55 fi

56 if [! -f /etc/rc.d/S99iot_ci_initd];

57 then

58 /etc/init.d/iot_ci_initd enable

59 fi

60 if [! -f /etc/rc.d/S99iot_nd_initd];

61 then

62 /etc/init.d/iot_nd_initd enable

63 fi

64 if [! -f /etc/rc.d/S99iot_gd_initd];

65 then

66 /etc/init.d/iot_gd_initd enable

67 fi

68 if [! -f /etc/rc.d/S99iot_dbp_initd];

69 then

70 /etc/init.d/iot_dbp_initd enable

71 fi

72 if [! -f /etc/rc.d/S99iot_su_initd];

73 then

74 /etc/init.d/iot_su_initd enable

75 fi

ZigBee IoT Gateway with NFC

JN-AN-1222 (v2.6) 24-Mar-2017 © NXP Semiconductors 2017 21

Init Script

1 #!/bin/sh

2 # --

3 # Author: nlv10677

4 # Copyright: NXP B.V. 2015. All rights reserved

5 # --

6 # ---

7 # Create some directories if they not already exists

8 # ---

9 echo "+++++++++ Init start +++++++" >> /tmp/su.log

10 echo "Init 1: Make IoT directories" >> /tmp/su.log

11 if [! -d /usr/share/iot]; then

12 mkdir /usr/share/iot

13 fi

14 if [! -d /www/img]; then

15 mkdir /www/img

16 fi

17 if [! -d /www/js]; then

18 mkdir /www/js

19 fi

20 if [! -d /www/css]; then

21 mkdir /www/css

22 fi

23 if [! -d /www/cgi-bin]; then

24 mkdir /www/cgi-bin

25 fi

26 # ---

27 # Set the persmissions right of our uploaded images

28 # ---

29 echo "Init 2: Set permissions right" >> /tmp/su.log

30 chmod +x /etc/init.d/iot_*

31 chmod +x /usr/bin/iot_*

32 chmod +x /usr/bin/killbyname

33 chmod +x /www/cgi-bin/iot_*

34 # ---

35 # Set the write persmissions on /tmp for the update mechanism

36 # ---

37 echo "Init 3: Make /tmp writable for Apache" >> /tmp/su.log

38 chmod o+w /tmp

39 # ---

40 # Create automatic startup scripts for our new IoT programs/daemons

41 # The test is there to allow multiple calls of this script

42 # ---

43 echo "Init 4: Install startup scripts" >> /tmp/su.log

44 if [! -f /etc/rc.d/S99iot_zb_initd];

45 then

46 /etc/init.d/iot_zb_initd enable

47 fi

48 if [! -f /etc/rc.d/S99iot_dp_initd];

49 then

50 /etc/init.d/iot_dp_initd enable

51 fi

52 if [! -f /etc/rc.d/S99iot_sj_initd];

53 then

54 /etc/init.d/iot_sj_initd enable

 ZigBee IoT Gateway with NFC

22 © NXP Semiconductors 2017 JN-AN-1222 (v2.6) 24-Mar-2017

55 fi

56 if [! -f /etc/rc.d/S99iot_ci_initd];

57 then

58 /etc/init.d/iot_ci_initd enable

59 fi

60 if [! -f /etc/rc.d/S99iot_nd_initd];

61 then

62 /etc/init.d/iot_nd_initd enable

63 fi

64 if [! -f /etc/rc.d/S99iot_gd_initd];

65 then

66 /etc/init.d/iot_gd_initd enable

67 fi

68 if [! -f /etc/rc.d/S99iot_dbp_initd];

69 then

70 /etc/init.d/iot_dbp_initd enable

71 fi

72 if [! -f /etc/rc.d/S99iot_su_initd];

73 then

74 /etc/init.d/iot_su_initd enable

75 fi

76 # ---

77 # Upgrade the new Coordinator image

78 # ---

79 echo "Init 5: Check for Coordinator image" >> /tmp/su.log

80 if [-f /tmp/ZigbeeNodeControlBridge_JN5169.bin];

81 then

82 echo "Init 6: Upgrade Coordinator image" >> /tmp/su.log

83 JennicModuleProgram.sh /tmp/ZigbeeNodeControlBridge_JN5169.bin

84 # Remove it to save space on /tmp

85 rm /tmp/ZigbeeNodeControlBridge_JN5169.bin

86 fi

87 echo "+++++++++ Init 7: end +++++++" >> /tmp/su.log

ZigBee IoT Gateway with NFC

JN-AN-1222 (v2.6) 24-Mar-2017 © NXP Semiconductors 2017 23

References

1. OpenWrt : buildroot exigence, install procedure on linux. OpenWrt.org. [Online]
http://wiki.openwrt.org/doc/howto/buildroot.exigence#install_procedure_on_linux.
2. OpenWrt : Build with VM. OpenWrt.org. [Online]
http://wiki.openwrt.org/doc/howto/buildvm.
3. installing-images. Raspberry Pi. [Online]
https://www.raspberrypi.org/documentation/installation/installing-images.
4. BusyBox. [Online] http://www.busybox.net/.
5. Teraterm. [Online] http://ttssh2.osdn.jp/.
6. PuTTY. [Online] http://www.putty.org/.
7. Secure Shell. Wikipedia. [Online] https://en.wikipedia.org/wiki/Secure_Shell.
8. NFC commissioning.
9. JN-AN-1222 Zigbee IoT Gateway with NFC - User guide.
10. JN-AN-1223 Application Note - ZigBee IoT Control Bridge.
11. JN-AN-1216 Application Note - ZigBee 3.0 IoT Control Bridge.

 ZigBee IoT Gateway with NFC

24 © NXP Semiconductors 2017 JN-AN-1222 (v2.6) 24-Mar-2017

Revision History

Version Release/Tag Notes

1.0 First release

1.1 Added support for Raspberry Pi 2, fixed typo errors

2.0 Added support for ZigBee 3.0

2.1 Added support for JN517x-DK005 (JN5179 Control Bridge)

2.2 Editorial updates made

2.3 Mark Raspberry Pi Model B+ as obsolete (unsupported)

2.4 Add reference to JN-AN-1216 (ZCB ZigBee 3.0)

2.5 v2006 Update ZCB ZigBee 3.0 binary files from JN-AN-1216 (1004)

2.6 v2007 Support of Installation Code NFC commissioning

Important Notice

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including
- without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products
or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

ZigBee IoT Gateway with NFC

JN-AN-1222 (v2.6) 24-Mar-2017 © NXP Semiconductors 2017 25

 www.nxp.com

http://www.nxp.com/

