

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 1

Application Note: JN-AN-1218

ZigBee 3.0 Light Bulbs

This Application Note provides example applications for light bulbs in a ZigBee 3.0
network that employs the NXP JN516x and/or JN517x wireless microcontrollers. An
example application can be employed as:

• A demonstration using the supplied pre-built binaries that can be run on
nodes of the JN516x/7x hardware kits

• A starting point for custom application development using the supplied C
source files and associated project files

The light bulbs described in this Application Note are based on ZigBee device types
from the ZigBee Lighting & Occupancy (ZLO) Device Specification.

The Application Note also includes a demonstration of a typical ZigBee 3.0 network
with Green Power (GP) support. This solution employs GP devices from the ZigBee
PRO Green Power Specification version 1.0, along with ZLO devices.

The ZigBee 3.0 nodes of this Application Note can be used in conjunction with nodes
of other ZigBee 3.0 Application Notes, available from the NXP web site.

1 Introduction
A ZigBee 3.0 wireless network comprises a number of ZigBee software devices that are
implemented on hardware platforms to form nodes. This Application Note is concerned with
implementing the device types for light bulbs on the NXP JN516x and JN517x platforms.

This Application Note provides example implementations of light bulbs that use one of the
following device types from the ZigBee Lighting & Occupancy (ZLO) Device Specification:

• Dimmable Light

• Extended Colour Light

• Colour Temperature Light

The above device types are detailed in the ZigBee 3.0 Devices User Guide [JN-UG-3114]
and the clusters used by the devices are detailed in the ZigBee Cluster Library (for ZigBee
3.0) User Guide [JN-UG-3115].

 Note: If you are not familiar with ZigBee 3.0, you are advised to refer the
ZigBee 3.0 Stack User Guide [JN-UG-3113] for a general introduction.

For information on the ZigBee Green Power (GP) support provided in this Application Note,
refer to Section 7.

The software and documentation resources referenced in this Application Note are available
free-of-charge via the ZigBee 3.0 page of the NXP web site.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/zigbee/zigbee-3.0:ZIGBEE-3-0

 ZigBee 3.0 Light Bulbs

2 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

2 Development Environment

2.1 Software

In order to use this Application Note, you need to install the Eclipse-based Integrated
Development Environment (IDE) and Software Developer’s Kit (SDK) that are appropriate for
the chip family which you are using - either JN516x or JN517x:

• JN516x: If developing for the JN516x microprocessors, you will need:

• ‘BeyondStudio for NXP’ IDE [JN-SW-4141]

• JN516x ZigBee 3.0 SDK [JN-SW-4170]

 For installation instructions, refer to the BeyondStudio for NXP Installation and User
Guide (JN-UG-3098).

• JN517x: If developing for the JN517x microprocessors, you will need:

• LPCXpresso IDE

• JN517x ZigBee 3.0 SDK [JN-SW-4270]

For installation instructions, refer to the JN517x LPCXpresso Installation and User
Guide (JN-UG-3109).

The LPCXpresso software can be obtained as described in the JN517x ZigBee 3.0 SDK
Release Notes, which indicate the version that you will need.

All other resources are available via the ZigBee 3.0 page of the NXP web site.

 Note: The code in this Application Note can be used in either
BeyondStudio or LPCXpresso and the process for importing the
application into the development workspace is the same for both.

 Note: Prebuilt JN5169 and JN5179 application binaries are supplied in
this Application Note package, but the applications can be rebuilt for other
devices in the JN516x and JN517x families (see Section 8.8).

2.2 Hardware

Hardware kits are available from NXP to support the development of ZigBee 3.0
applications. The following kits respectively provide JN516x-based and JN517x-based
platforms for running these applications:

• JN516x-EK004 Evaluation Kit, which features JN5169 devices

• JN517x-DK005 Development Kit, which features JN5179 devices

Both of these kits support the NFC commissioning of network nodes (see Section 3.1).

It is also possible to develop ZigBee 3.0 applications to run on the components of the earlier
JN516x-EK001 Evaluation Kit, which features JN5168 devices, but this kit does not support
NFC commissioning.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/zigbee/zigbee-3.0:ZIGBEE-3-0

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 3

3 Application Note Overview
The example applications provided in this Application Note are listed in the table below with
the lighting device types that they support (for device type descriptions, refer to Section 4).

Application Name Device Type

DimmableLight_GpProxy_JN5169_DR1175.bin

DimmableLight_GpCombo_Ota_JN5169_DR1175.bin

DimmableLight_GpCombo_JN5179_DR1175.bin

Dimmable Light

ExtendedColorLight_GpProxy_JN5169_DR1175.bin

ExtendedColorLight_GpCombo_Ota_JN5169_DR1175.bin

ExtendedColorLight_GpCombo_OtaEnc_JN5169_DR1175_ENC.bin

ExtendedColorLight_GpCombo_JN5179_DR1175.bin

Extended Colour Light

ColorTemperatureLight_GpProxy_JN5169_DR1175.bin

ColorTemperatureLight_GpCombo_Ota_JN5169_DR1175.bin

ColorTemperatureLight_GpCombo_JN5179_DR1175.bin

Colour Temperature Light

Table 1: Example Applications

For each application, source files and pre-built binary files are provided in the Application
Note ZIP package. The pre-built binaries can be run on components of the JN516x/7x
hardware kits.

• To load the pre-built binaries into the evaluation kit components and run the
demonstration application, refer to Section 4.

• To start developing you own applications based on the supplied source files, refer to
Section 7.

3.1 NFC Hardware Support

Some NXP hardware kits for the development of ZigBee 3.0 applications provide the
possibility of network commissioning through Near Field Communication (NFC). The kits and
components that provide NFC support are indicated in the table below.

Hardware Kit Hardware Components for NFC Field Detect Connection

JN517x-DK005 NFC is built into the OM15028 Carrier Board GPIO 17

JN516x-EK004 DR1174 Carrier Board plus OM15044 and either
OM55679/NT3120 or OM5569/NT322E

Note: A 4K7 resistor should be fitted to the R1 pads on the
OM15044 board to avoid unnecessary reads of the NTAG
due to the FD line floating.

DIO 0

Table 2: NFC Support in JN516x/7x Hardware Kits

The Field Detect of the NFC chip needs to be connected to an IO line of the JN516x/7x
module so that an interrupt can be generated as the device is moved in or out of the field.
This is achieved by fitting a jumper to the pin specified in the above table.

 Note: Early samples of the JN516x-EK004 kit used a yellow wire rather
than a jumper for the Field Detect connection, but the pin is the same.

 ZigBee 3.0 Light Bulbs

4 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

3.2 NFC Data Formats

Two different NFC data formats are supported for commissioning. The Router and End
Device applications can be built to support only one (or none) of these:

• ZigBee Installation Code Format: This is a newer format introduced with v1003 of
this Application Note. The applications are built to use this format by default. This
format uses a key derived from the device’s ZigBee Installation Code to encrypt data in
the NTAG.

• AES Encryption Format: This older format uses an AES key to encrypt data in the
NTAG.

The selection of the data format can be made at compile-time by using makefile variables
described in the Router Command Line Build Options or End Device Command Line Build
Options.

 Note: The Application Note JN-AN-1222, IoT Gateway Host With NFC,
versions v2007 and later is able to commission either of these formats
depending upon the data in the presented NTAG. Earlier versions support
only AES Encryption Format.

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 5

4 Supported Device Types
As indicated in Section 3, the supported ZLO device types in this Application Note are:

• Dimmable Light

• Extended Colour Light

• Colour Temperature Light

The above devices types are introduced in Sections 4.1, 4.2 and 4.3 respectively.

These lighting devices types must be paired for operation with switch/controller device types.
Example applications for the paired device types are provided in the Application Note ZigBee
3.0 Controller and Switch [JN-AN-1219]. Two device types can be paired if they support the
same cluster (Colour Control, Level Control or On/Off cluster) such that the cluster client on
the switch/controller device type can access/control attributes of the cluster server on the
lighting device type.

The table below lists the lighting device types (as well as the ZigBee Base Device) and, for
each device type, indicates which types of cluster attributes can potentially be written/read.

Device Type Attribute Types

OnOff Level X & Y
Colour

Hue &
Saturation

Colour
Temperature

Colour
Loop

Dimmable
Light

Yes Yes No No No No

Extended
Colour Light

Yes Yes Yes Yes Yes Yes

Colour
Temperature
Light

Yes Yes No No Yes No

Base Device
Router

Yes No No No No No

Table 3: Lighting Device Types and Accessible Attributes

The table below lists the switch/controller device types (as well as the ZigBee Base Device)
and, for each device type, indicates which types of cluster attributes can potentially be
controlled (on the lighting device).

Device Type Attribute Types

OnOff Level X & Y
Colour

Hue &
Saturation

Colour
Temperature

Colour
Loop

Dimmer
Switch

Yes Yes No No No No

Colour
Scene
Controller

Yes Yes Yes Yes Yes Yes

Control
Bridge

Yes Yes Yes Yes Yes Yes

Base Device
Coordinator

Yes No No No No No

Base Device
End Device

Yes No No No No No

Table 4: Switch/Controller Device Types and Controllable Attributes

The ZLO device types used in this Application Note are outlined below.

 ZigBee 3.0 Light Bulbs

6 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

4.1 ZLO Dimmable Light

The Dimmable Light is a lighting device that can be switched on or off and the brightness of
the light output varied. The device can be controlled by a bound controller device such as a
dimmer switch. The complete lists of supported clusters, attributes and commands can be
found in the ZigBee Lighting & Occupancy Devices Specification.

4.2 ZLO Extended Colour Light

The Extended Colour Light is a lighting device that can be switched on or off and the
brightness of the light output varied. The colour of the light can also be adjusted via the
colour commands. The full range of colour control is supported by the Extended Colour
Light, XY, Hue and Saturation, Extended Hue and Saturation, Colour Temperature and
Colour Loop commands. The device can be controlled by a bound controller device such as
a colour controller. The complete lists of supported clusters, attributes and commands can
be found in the ZigBee Lighting & Occupancy Devices Specification.

4.3 ZLO Colour Temperature Light

The Colour Temperature Light is a lighting device that can be switched on or off and the
brightness of the light output varied. The colour of the light can also be adjusted via the
colour temperature commands. The device can be controlled by a bound controller device
such as a Colour Controller. The complete lists of supported clusters, attributes and
commands can be found in the ZigBee Lighting & Occupancy Devices Specification.

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 7

5 Running the Demonstration Application
This section describes how to use the supplied pre-built binaries to run the example
applications on components of the JN516x-EK004 or JN517x-DK005 kit. All the applications
run on a JN5169 module on a DR1174 Carrier Board or a JN5179 module on an OM15028
Carrier Board, fitted with a specific expansion board.

5.1 Loading the Applications

The table below lists the application binary files supplied with this Application Note and
indicates the JN516x/7x hardware kit components with which the binaries can be used.
These files are located in the Build directories for the relevant applications.

Application JN5169 Binary File JN516x-EK004

DimmableLight DimmableLight_GpProxy_JN5169_DR1175.bin

DimmableLight_GpCombo_Ota_JN5169_DR1175.bin

DR1174 Carrier
Board with
JN5169 module
DR1175
Lighting/Sensor
Expansion Board
OM15044 NTAG
Adaptor Board
OM5569/NT322E
NTAG Board

ExtendedColorLight ExtendedColorLight_GpProxy_JN5169_DR1175.bin
ExtendedColorLight_GpCombo_Ota_JN5169_DR1175.bin

ExtendedColorLight_GpCombo_OtaEnc_JN5169_DR1175_ENC.bin

ColorTemperatureLight ColorTemperatureLight_GpProxy_JN5169_DR1175.bin

ColorTemperatureLight_GpCombo_Ota_JN5169_DR1175.bin

Application JN5179 Binary File JN517x-DK005

DimmableLight DimmableLight_GpCombo_JN5179_DR1175.bin OM15028 Carrier
Board with
JN5179 module
DR1175
Lighting/Sensor
Expansion Board

ExtendedColorLight ExtendedColorLight_GpCombo_JN5179_DR1175.bin

ColorTemperatureLight ColorTemperatureLight_GpCombo_JN5179_DR1175.bin

Table 5: Application Binaries and Hardware Components

A binary file can be loaded into the Flash memory of a JN516x/7x device using the JN51xx
Flash Programmer [JN-SW-4107], available via the NXP web site. This software tool is
described in the JN51xx Production Flash Programmer User Guide [JN-UG-3099].

 Note: You can alternatively load a binary file into a JN516x/7x device
using the Flash programmer built into the relevant IDE.

To load an application binary file into a JN516x/7x module on a Carrier Board of a kit, follow
the instructions below:

1. Connect a USB port of your PC to the USB Mini B port on the Carrier Board using a
‘USB A to Mini B’ cable. At this point, you may be prompted to install the driver for the
cable.

2. Determine which serial communications port on your PC has been allocated to the USB
connection.

3. On your PC, open a command window.

4. In the command window, navigate to the Flash Programmer directory:

C:\NXP\ProductionFlashProgrammer

 ZigBee 3.0 Light Bulbs

8 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

5. Run the Flash programmer to download your binary file to JN516x/7x Flash memory by
entering a command with the following format at the command prompt:

JN51xxProgrammer.exe –s <comport> -f <path to .bin file>

 where <comport> is the number of the serial communications port.

6. Once the download has successfully completed, disconnect the USB cable and, if
required, reset the board or module to run the application.

Operating instructions for the different applications are provided in the sections below.

5.2 Commissioning the Network

Before one of the application devices can be used, it must first be commissioned into a
network. This is a two-stage process:

1. First the device forms or joins a network, exchanging network parameters and security
keys etc. This is called ‘Network Steering for a device not on a network’.

2. Then the process of service discovery is performed, in which controller type devices are
bound to the light type devices they are to control. This is called ‘Finding and Binding’.

There is a further part to Network Steering for a device that is part of the network. This
process ‘opens’ the network for new joiners for 180 seconds. This is initiated by one of the
nodes in the network prior to the new device attempting to join the network.

The devices in this Application Note can be commissioned into either a Centralised Trust
Centre network or a Distributed network (a network without a Trust Centre).

• In a Centralised network, the Trust Centre is responsible for deciding which devices
are allowed onto the network and for provisioning the permitted devices with the
appropriate network keys and application-level link keys. This decision is made by the
Trust Centre according to its local security policies.

• In a Distributed network, there is no Trust Centre to manage which devices are
allowed onto the network. The network key is passed from the parent node to the child
node encrypted with the distribute link key.

Commissioning into a network is identical for all device types in this Application Note and is
described in the following sections.

5.2.1 Joining a Centralised Network

In order for the devices in this Application Note to join a Centralised network, there must first
be an existing network with a Trust Centre in place, and this network must be open for new
devices to join. A suitable Coordinator/Trust Centre can be found in either the Application
Note ZigBee 3.0 IoT Control Bridge (JN-AN-1216) or the Application Note ZigBee 3.0 Base
Device Template (JN-AN-1217).

1. If there is no existing network then start a network using a Coordinator device from one
of the above two Application Notes.

2. Once there is a Coordinator running, trigger ‘Network Steering for a device on a
network’ in order to open the network for joiners. Depending on the Trust Centre device
being used, this is achieved as follows:

• On a Control Bridge, configure the device as a Router, set up the channel mask and
run the E_FL_MSG_START_SCAN (0x25) command.

• On a Coordinator board from the ZigBee 3.0 Base Device Template Application
Note, press the SW2 button on the DR1199 Generic Expansion Board.

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 9

• For a Coordinator dongle from the ZigBee 3.0 Base Device Template Application
Note, enter ‘steer’ into the serial interface to send a command from the PC to the
dongle.

• On a light device (from this Application Note) that is already part of this network,
press the DIO8/GPIO4 button once or press the RST/RESET button 3 times at one-
second intervals (both buttons are on the DR1174/OM15028 Carrier Board).

• On a Colour Scene Controller (from the ZigBee 3.0 Controller and Switch
Application Note), press * * C.

• On a Dimmer Switch (from the ZigBee 3.0 Controller and Switch Application Note),
hold down the DIO8/GPIO4 button on the DR1174/OM15028 Carrier Board and
press the SW1 button on the DR1199 Generic Expansion Board.

 This will cause a Management Permit Join Request to be broadcast to the network to
open the Permit Join status for a period of 180 seconds.

3. Now start the device that is to be joined to the network. The device will perform network
discovery across the primary and secondary channels, and attempt to associate with
any open networks that are discovered. Once associated, the joining device will receive
a network key from the Trust Centre via the parent device. After this, the joining device
will attempt to update its link key – the new key will be issued by the Trust Centre and
sent to the new device via the parent device. If the association or exchange of security
keys fail then the new device will resume network discovery on any un-scanned
channels to look for other networks to join.

Once this process has successfully completed, the light will be part of the network but not
fully commissioned, as it has not been bound to any controlling devices. This is described in
Section 5.2.3.

 ZigBee 3.0 Light Bulbs

10 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

5.2.2 Forming or Joining a Distributed Network

The devices in this Application Note are capable of joining a Distributed network. This can be
done either by classical ‘discovery and association’ or by Touchlink. Light devices in this
Application Note support Touchlink as a Target only - this means that they are not capable of
initiating Touchlink and bringing other devices into the network.

5.2.2.1 Discovering and Joining an Existing Distributed Network

A device may join an existing network in the same way in which it would join a Centralised
network, the only difference being how the security key is exchanged after the association.

1. On one of the devices already on the network, trigger Network Steering as follows:

• On a Router board from the ZigBee 3.0 Base Device Template Application Note,
press the DIO8 button on the DR1174 Carrier Board or GPIO4 on the OM15028
Carrier Board.

• On an End Device board from the ZigBee 3.0 Base Device Template Application
Note, press the SW2 button on the DR1199 Generic Expansion Board.

• On a light device (from this Application Note) that is already part of this network,
press the RST/RESET button 3 times at one-second intervals, or press
DIO8/GPIO4 once.

• On a Colour Scene Controller (from the ZigBee 3.0 Controller and Switch
Application Note), press * * C.

• On a Dimmer Switch (from the ZigBee 3.0 Controller and Switch Application Note),
hold down the DIO8/GPIO4 button on the Carrier Board and press the SW1 button
on the DR1199 Generic Expansion Board.

 This will cause a Management Permit Join Request to be broadcast to the network to
open the Permit Join status for a period of 180 seconds.

2. Now start the device that is to be joined to the network. The device will perform network
discovery across the primary and secondary channels, and attempt to associate with
any open networks that are discovered. Once associated, the joining device will receive
a network key from the parent device encrypted with the distributed link key. If the
association or exchange of security keys fail then the new device will resume network
discovery on any un-scanned channels to look for other networks to join.

Once this process has successfully completed, the light will be part of the network but not
fully commissioned, as it has not been bound to any controlling devices. This is described in
Section 5.2.3.

5.2.2.2 Forming or Joining a Distributed Network using Touchlink

Touchlink is a procedure for forming, adding to and maintaining a Distributed network. It is
based on the proximity of the devices involved and is performed at low power to limit range.
There are two type of Touchlink device: Initiator and Target. The devices in this Application
Note are all Targets and need to be interrogated by Initiator devices in order to complete a
Touchlink exchange. For an example of a Touchlink Initiator, refer to the Colour Scene
Controller in the Application Note ZigBee 3.0 Controller and Switch (JN-AN-1219).

Touchlink can be used to form a new Distributed network, if the Initiator is factory-new and at
least one of the Initiator and Target is a ZigBee Router device. If the Initiator is not factory-
new then the Initiator will use a Join command to add the Target to the network, passing its
network parameters and network key to the new device.

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 11

The Touchlink process is as follows:

1. To add one of the light devices into a network or form a new network, bring the chosen
Initiator device into close proximity (approximately 10cm) of the Target device, then
trigger the Touchlink process on the Initiator. For the Target devices in this application,
there is no need to take any action to be a Touchlink Target other than being in close
proximity of the Initiator.

2. The Initiator will then send a series of Touchlink Scan requests across the primary
channels. If no Target is found on the primaries, it will then send the requests on the
secondary channels. After receiving a Scan request, the light device will reply with a
Touchlink Scan response. Once the Initiator has completed scanning on the primary
and secondary channels, for further processing it will select the responding Target
device that it considers to be the closest.

3. The Initiator may then send a Touchlink Identify command to the Target, in order to
visually confirm which device was selected as the Target, as well as device information
requests to further interrogate the Target regarding its supported endpoints.

4. The Initiator will then send either a Touchlink Network Start command or a Touchlink
Router Join Request to the Target. These commands will contain the network
parameters and network key of the network to be joined or formed. The light device will
then start as a Router on the network.

Following the successful completion of Touchlink, unlike the ‘discovery and associate’ joining
process previously described, the target light will be bound to any matching operational
clusters on the initiating device. The Initiator will have created entries in its Binding table for
the matching clusters and will be able to control the light through these bindings. However,
the light will only be bound to the one Initiator that performed the Touchlink process. If the
light is also to be controlled by another controller type device then either a further round of
Touchlinking with that controller will be necessary, or ‘Finding and Binding’ will be required
(as described in Section 5.2.3).

5.2.2.3 Joining an Existing Network using NFC

A light node can join or move to an existing network by exchanging NFC data with a ZigBee
IoT Gateway Host, described in the Application Note ZigBee IoT Gateway Host with NFC
(JN-AN-1222). This provides a fast and convenient method to introduce new devices into
such a network.

Ensure the hardware is set up for NFC as described in Section 3.1.

Instructions for this process are included in the above Application Note (JN-AN-1222).

5.2.3 Finding and Binding

‘Finding and Binding’ is the process in which ‘controller’ type devices (e.g. switches) are
bound to ‘controlled’ type devices (e.g. lights). Bindings are created in the Binding table of
the controller device for any matching operational clusters of the controlled device. An
operational cluster is a cluster that directly controls the output of a device – for example,
On/Off, Level Control and Colour Control are operational clusters. Support clusters, such as
Groups, Identify and Commissioning, are not operational clusters.

As controlled devices, those in this Application Note implement the Finding and Binding
process as targets.

 ZigBee 3.0 Light Bulbs

12 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

The Finding and Binding process is as follows:

1. Trigger Finding and Binding as a target on a light of this Application Note by doing
either one of the following on the DR1174/OM15028 Carrier Board:

• Press the DIO8/GPIO4 button

• Press the RST/RESET button 3 times at one-second intervals

 This will cause the device to identify itself for 180 seconds.

2. Once all the target devices are identifying, trigger Finding and Binding as an initiator on
the controller device that you wish to bind to the target controlled devices.

3. The initiator will then send out an Identify Query Request in order to use the responses
to create a list of devices that are currently identifying. Each device in this list will be
sent a Simple Descriptor Request to determine the supported clusters on the target
device.

4. For any matching operational clusters, bindings will be created in the initiator’s Binding
table. Depending on the type of binding being created, an Add Group Command may
be sent to the target.

5. Once a binding has been created, the initiator may send an Identify command with time
of zero to the target to take it out of identify mode and stop it responding to any further
Identify Query Requests.

5.2.4 Network Steering for a Device on a Network

Network Steering for a device already on a network is the process whereby a device opens
up the network for other devices to join the network through discovery and association. It
does not affect the ability of devices to join through Touchlink.

For the devices in this Application Note, Network Steering for a device on the network can
be triggered in either one of the following ways on the DR1174/OM15028 Carrier Board:

• Pressing the DIO8/GPIO4 button

• Pressing the RST/RESET button 3 times at one-second intervals

This will cause the device to broadcast to the network a Management Permit Joining
Request with the joining time set to 180 seconds. This will cause the Routers and
Coordinator in the network to set their Permit Join bit in their beacons, advertising the
network as open to joiners. After the expiry of the 180-second time window, the Permit Join
bit will be cleared and the network will close to joiners.

5.2.5 Touchlink Stealing a Device from a Network

The Touchlink process allows the possibility of a Target device on one network being asked
to leave that network and to either join or form a network with the new Touchlink Initiator.
The application implemented on the Target device determines whether it will comply with
such requests. The light devices in this Application Note have been implemented such that
once part of a network, they will refuse such ‘network stealing’ attempts unless the device
has first been put into Finding and Binding mode as a target.

Therefore, to allow these Touchlink stealing attempts, put the light device into Finding and
Binding mode as described in Step 1 of Section 5.2.3. The device will then self-identity for
180 seconds and will accept Touchlink stealing until this period expires, after which stealing
will not be allowed again.

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 13

5.2.6 Start-up Behaviour

All light devices in this Application Note are ZigBee Router devices. On start-up, if a device
is factory-new, it will attempt to discover and join any open networks, either centralised or
distributed. If this fails, the device will remain with its radio receiver ready to become a
Touchlink Target. If a further attempt at discovery is required then this can be done by
pressing the RST/RESET button on the Carrier Board.

If the light device is already part of a network, it just restarts using the stored network
parameters and continues on the operational channel.

5.2.7 Performing a Factory Reset

The ZigBee 3.0 specification provides a variety of methods for resetting a device with
impacts ranging from resetting application clusters but leaving network parameters intact to
a full factory reset causing the device to leave the network and removing all persistent data,
network parameters, keys, bindings etc.

All reset methods maintain the value of the outgoing network frame counter across the reset.
This parameter is never cleared out by a reset.

5.2.7.1 Factory Reset by Local Means

Either one of the following methods can be used to factory reset a device in this Application
Note using buttons on the Carrier Board:

• Hold down the DIO8/GPIO4 button and press the RST/RESET button

• Press the RST/RESET button 7 times at one-second intervals

Following either of these stimuli, the device will send a self-leave indication to the network
and perform the ‘leave without rejoin’ procedure. This will clear all network parameters and
keys, and reset the ZigBee stack to the factory-new state. In addition, the application will
clear out all persisted application data and states, returning them to factory-new values,
removing any stored scenes, reporting configurations and light start-up parameters.

There will then be a software reset, causing the device to re-boot. This will trigger an attempt
at discovery and association, in line with the factory-new start-up behaviour.

 ZigBee 3.0 Light Bulbs

14 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

5.2.7.2 Factory Reset by Touchlink

A device that is part of a Distributed network (that is, not a Centralised Trust Centre network)
can be requested to perform a factory reset via the Touchlink mechanism. It is the
application’s responsibility to determine whether or not to comply with this factory reset
request. The devices in this Application Note will comply with such requests.

To perform a Touchlink factory reset of a device in this Application Note, bring the Target
device into close proximity of a Touchlink Initiator and trigger a ‘Touchlink with factory reset’
in line with the application methods of the Initiator.

Following the exchange of Touchlink Scan requests and responses, and the receipt of a
valid Touchlink factory reset command, the Target device will send a self-leave indication to
the network and perform the ‘leave without rejoin’ procedure. This will clear all network
parameters and keys, and reset the ZigBee stack to the factory-new state. In addition, the
application will clear out all persisted application data and states, returning them to factory-
new values, removing any stored scenes, reporting configurations and light start-up
parameters.

There will then be a software reset, causing the device to re-boot. This will trigger an attempt
at discovery and association, in line with the factory-new start-up behaviour.

5.2.7.3 Factory Reset by Network Leave Command

Following the receipt of a valid ‘network leave without rejoin’ request, a device will remove all
ZigBee persistent data and keys, then the application data will be returned to a factory-new
state, and a software reset will trigger the device to re-boot.

5.2.7.4 Factory Reset by Mgmt Leave Request ZDO Command

Following receipt of a valid ‘management leave request ZDO’ command, a device will
remove all ZigBee persistent data and keys, then the application data will be returned to a
factory-new state, and a software reset will trigger the device to re-boot.

5.2.7.5 Reset by Basic Cluster

The ‘Reset to Factory Defaults’ command of the Basic cluster provides a method of resetting
the attributes of all ZCL clusters to their default values. All ZigBee network parameters,
bindings and groups will remain intact, and the device will continue to operate on the
network.

The Scenes table will be cleared out, any configured reports will be replaced by the default
reporting configuration, and the start-up OnOff Level and Colour Temperature values will be
returned to their default values.

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 15

5.3 Configurations Parameters

There are several attributes that control the start-up state of a light and whether or not
commands that alter the operational attributes of the light are obeyed if the light is in the Off
state (these attributes are new for Zigbee 3.0 and the ZLO Devices specification).

Cluster Attribute Function Defined Behaviour

OnOff 0x4003 Determines the OnOff attribute at
power-up.

Restore to the status from before
power was removed.

Level Control 0x000F Determines whether level can be
changed if light is Off.
Determines whether level is coupled
to colour temperature.

Level will not change when Off.
Colour temperature and level are
coupled.

Level Control 0x4000 Determines the light brightness at
power-up.

Restore the previous brightness.

Colour Control 0x000F Determines whether the colour can be
changed if the light is Off.

Colour cannot be changed when
Off.

Colour Control 0x4010 Determines the colour temperature at
start-up.

Restore the previous colour
temperature.

 Note: These default behaviours are defined in the zcl options.h file and
can be changed at compile-time, if required. For full details of the
available options, refer to the ZigBee Lighting & Occupancy Devices
Specification.

The attributes are writeable and persisted in non-volatile memory, so they can be changed at
run-time to suit the installed application.

The options that control whether the level or colour can be changed when the light is Off
allow the lights to be configured to match the behaviour of either the previous ZigBee Light
Link Specification (no change if Off) or ZigBee Home Automation Specification (change if
Off). In addition, all cluster commands in the Level Control and Colour Control clusters that
change the level or colour now carry optional parameters that define whether the local
operational mode should be over-ridden by this command.

5.4 Attribute Reporting Configurations

The ZigBee Lighting & Occupancy Devices Specification mandates that some attributes are
reportable - that is, once bound to a device to receive these reports, the attributes will
periodically report their status and also report changes to their status. To this end, each
reportable attribute has a default configuration to determine this schedule. This default
configuration can be altered by the report receiving device at run-time, as required. The
report configuration is stored in persistent memory.

Cluster Attribute Attribute ID

OnOff OnOff 0x0000

Level Control Current Level 0x0000

Colour Control Current Hue 0x0000

Colour Control Current Saturation 0x0001

Colour Control Current X 0x0003

Colour Control Current Y 0x0004

Colour Control Colour Temperature 0x0007

 ZigBee 3.0 Light Bulbs

16 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

6 Over-The-Air (OTA) Upgrade
Over-The-Air (OTA) Upgrade is the method by which a new firmware image is transferred to
a device that is already installed and running as part of a network. This functionality is
provided by the OTA Upgrade cluster. In order to upgrade the devices in a network, two
functional elements are required.

• OTA Server: First the network must host an OTA server, which will receive new OTA
images from manufacturers, advertise the OTA image details to the network, and then
deliver the new image to those devices that request it.

• OTA Clients: The second requirement is for OTA clients, which are located on the
network devices that may need to be updated. These devices periodically interrogate
the OTA server for details of the firmware images that it has available. If a client finds a
suitable upgrade image on the server, it will start to request this image, storing each
part as it is received. Once the full image has been received, it will be validated and
the device will boot to run the new image.

New images are always pulled down by the clients, requesting each block in turn and filling
in gaps. The server never pushes the images onto the network.

6.1 Overview

Support for the OTA Upgrade cluster as a client has been included for the Extender Colour
Light, Colour Temperature Light and Dimmable Light devices. In order to build with these
options, add OTA=1 to the command line before building. This will add the relevant

functionality to the lights and invoke post-build processing to create a bootable image and
two upgrade images. The produced binaries will be stored in the OTA_build directory. By
default, unencrypted binaries will be produced. In order to build encrypted binaries, add the
OTA_ENCRYPTED=1 option to the command line before building.

• If built for the JN5168 device then external Flash memory will be used to store the
upgrade image before replacing the old one.

• If built for the JN5169 or JN5179 device then the internal Flash memory will be used to
store the upgrade image by default. External Flash memory could be used if desired.

The Application Note ZigBee 3.0 IoT Control Bridge (JN-AN-1216) has OTA server
functionality built into it. A device called OTA_server is provided to host the upgrade images
that the clients will request.

6.2 OTA Upgrade Operation

To implement an OTA upgrade:

1. Build the light application with OTA=1 in the makefile to enable OTA upgrade (this option

is not enabled by default). There is an OTA debug flag defined in the makefile:
CFLAGS += -DDEBUG_APP_OTA. Uncomment this line if the OTA debug is required.

 The binary files for the light are created in the OTABuild folder – bootable binaries have
the extension .bin and no version suffix, and upgrade binaries have the extension .ota
or .bin and a version suffix. The upgrade image is intended to be loaded into external
Flash memory of the OTA server using the JN51xx Production Flash Programmer
(JN-SW-4107), as described in Step 4 below. Encrypted upgrade binary images will
have a _ENC suffix. There are three binaries in a set, with the files having different
versions with different headers so that the upgrading of the light can be tested - a
bootable image, version 1 (v1), and two upgrade images, versions 2 and 3 (v1 and v2).

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 17

2. Program one of the bootable binary files from the OTABuild folder into the internal
Flash memory of the JN516x/7x device on the Carrier Board of the light node - for
example, ExtendedColorLight_GpCombo_Ota_JN5169_DR1175.bin. You can do
this using the JN51xx Flash Programmer within the relevant IDE. Alternatively, you can
use the JN51xx Production Flash Programmer (JN-SW-4107) described in the JN51xx
Production Flash Programmer User Guide (JN-UG-3099).

3. Form a network with a light node and the Control Bridge in the normal way using
Touchlink.

4. Load a .ota upgrade image (v2 or v3) into the external Flash memory of the Control
Bridge using the JN51xx Production Flash Programmer (JN-SW-4107) - the required
command line will be similar to the following:

Jn51xxProgrammer –S external –s COM<port> -f <filename>

5. When viewing the UART output from the light node, the upgraded image should be
found and the light node upgraded.

Any devices with OTA clients in the network will periodically send Match Descriptor
Requests in order to find an OTA server. Once a server responds, it will then be sent an
IEEE Address Request in order to confirm its address details. After this, the clients will
periodically send OTA Image Requests to determine whether the server is hosting an image
for that client device. In response to the Image Request, the server will return details of the
image that it is currently hosting - Manufacturer Code, Image Tag and Version Number. The
client will check these credentials and decide whether it requires this image. If it does not, it
will query the server again at the next query interval. If the client does require the image, it
will start to issue Block Requests to the server to get the new image. Once all blocks of the
new image have been requested and received, the new image will be verified, the old one
invalidated, and the device will reboot and run the new image. The client will resume
periodically querying the server for new images

6.3 Image Credentials

There are four main elements of the OTA header that are used to identify the image, so that
the OTA client is able to decide whether it should download the image. These are
Manufacturer Code, Image Type, File Version and OTA Header String:

• Manufacturer Code: This is a 16-bit number that is a ZigBee-assigned identifier for
each member company. In this application, this number has been set to 0x1037, which
is the identifier for NXP. In the final product, this should be changed to the identifier of
the manufacturer. The OTA client will compare the Manufacturer Code in the
advertised image with its own and the image will be downloaded only if they match.

• Image Type: This is a manufacturer-specific 16-bit number in the range 0x000 to
0xFFBF. Its use is for the manufacturer to distinguish between devices. In this
application, the Image Type is set to the ZigBee Device Type of the bulb - for example,
0x010D for an Extended Colour Light or 0x110D if the image is transferred in an
encrypted format. The OTA client will compare the advertised Image Type with its own
and only download the image if they match. The product designer is entirely free to
implement an identification scheme of their own.

• File Version: This is a 32-bit number representing the version of the image. The OTA
client will compare the advertised version with its current version before deciding
whether to download the image.

 ZigBee 3.0 Light Bulbs

18 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

• OTA Header String: This is a 32-byte character string and its use is manufacturer-
specific. In this application, the OTA client will compare the string in the advertised
image with its own string before accepting an image for download. If the strings match
then the image will be accepted. In this way, the string can be used to provide extra
detail for identifying images, such as hardware sub-types.

6.4 Encrypted and Unencrypted Images

OTA images can be provided to the OTA server in either encrypted or unencrypted form.
Encrypting the image will protect sensitive data in the image while it is being transferred from
the manufacturer to the OTA server. Regardless of whether the image itself is encrypted, the
actual transfer over-air will always be encrypted in the same way as any other on-air
message. The encryption key is stored in protected e-fuse and is set by the manufacturer.

For JN5169 and JN517x builds, to use encrypted images the following define must be
included as a build option in the zcl_options.h file:

#define INTERNAL_ENCRYPTED

6.5 Upgrade and Downgrade

The decision to accept an image following a query response is under the control of the
application. The code, as supplied, will accept an upgrade or a downgrade. As long as the
notified image has the right credentials and a version number which is different from the
current version number, the image will be downloaded. For example, if a client is running a
v3 image and a server is loaded with a v2 image then the v2 image will be downloaded. If it
is required that the client should only accept upgrade images (v2 -> v3 -> v5), or only accept
sequential upgrade images (v2 -> v3 -> v4 -> v5) then the application callback function that
handles the Image Notifications in the OTA client will need to be modified.

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 19

7 ZigBee Green Power (GP) Support
This section describes the provision for the addition of ZigBee Green Power (GP) devices to
the network. To support GP devices, the ZigBee devices in the network must also act as GP
‘infrastructure devices’ to facilitate the reception, routing and handling of GP frames from GP
devices. The following GP infrastructure devices are available in this Application Note:

• GP Combo Basic support is provided for the Extender Colour Light, Colour
Temperature Light, and Dimmable Light device types. Lights with GP Combo Basic
support act as GP sink nodes that can be controlled by both GP switches and ZLO
switches, after successful commissioning. These lights support the following GP
commands: On, Off, Identify, Move Up with On/Off, Move Down with On/Off, Level
Control/Stop. The commands are detailed the in ZigBee Green Power Specification. A
Combo Basic device also provides the proxy functionality described below.

• GP Proxy Basic support is provided for the Dimmable Light device type. Lights with
GP Proxy Basic support act as GP proxy nodes that can forward GP frames to Combo
Basic devices and help to extend the range of the network.

ZigBee Green Power is described in the ZigBee Green Power User Guide (JN-UG-3119).

The applications in this Application Note are supplied pre-built with GP support as follows
(and can be re-built as described in Section 8.8):

• Dimmable light with GP Combo Basic functionality

• Extended Colour Light with Combo Basic functionality

• Colour Temperature Light Combo Basic functionality

• Dimmable light with GP Proxy Basic functionality

Each GP binary file is located in the Build directory of relevant application and indicated by
GpCombo or GpProxy in the filename, as appropriate. The table below lists the GP binary
files, where xx indicates the chip number (69 or 79).

Application JN5169 Binary File JN516x-EK004

DimmableLight DimmableLight_GpProxy_JN5169_DR1175.bin

DimmableLight_GpCombo_JN5169_DR1175.bin

DR1174 Carrier
Board with
JN5169 module
DR1175
Lighting/Sensor
Expansion Board
OM15044 NTAG
Adaptor Board
OM5569/NT322E
NTAG Board

ExtendedColorLight ExtendedColorLight_GpProxy_JN5169_DR1175.bin

ExtendedColorLight_GpCombo_JN5169_DR1175.bin

ExtendedColorLight_GpCombo_OtaEnc_JN5169_DR1175_ENC.bin

ColorTemperatureLight ColorTemperatureLight_GpProxy_JN5169_DR1175.bin

ColorTemperatureLight_GpCombo_JN5169_DR1175.bin

Application JN5179 Binary File JN517x-DK005

DimmableLight DimmableLight_GpCombo_JN5179_DR1175.bin OM15028 Carrier
Board with
JN5179 module
DR1175
Lighting/Sensor
Expansion Board

ExtendedColorLight ExtendedColorLight_GpCombo_JN5179_DR1175.bin

ColorTemperatureLight ColorTemperatureLight_GpCombo_JN5179_DR1175.bin

 ZigBee 3.0 Light Bulbs

20 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

7.1 Commissioning Combo Basic Lights and GP Switches

The lights with GP Combo Basic support, which act as GP sink nodes, must be
commissioned to operate with the GP source devices (switches). This commissioning can be
performed as follows:

1. Put the light into commissioning mode by pressing the RST/RESET button on the
DR1174/OM15028 Carrier Board 3 times at one-second intervals. The light will then
enter commissioning mode and indicate this by flashing.

2. While the light is in commissioning mode, send a Commissioning command from the
GP switch that is to control the light (this step is switch-specific).

 The light comes out of commissioning mode after successful commissioning or after a
timeout period of 3 minutes. The light stops flashing once it has exited commissioning
mode.

Once the light is successfully commissioned (paired), the light can be controlled by the GP
switch.

 Note: During commissioning, no user action is required on the lights with
Proxy Basic support. These devices create tables internally when a
pairing is created between Combo Basic device and GP switch, to allow
the forwarding of GP messages.

 Note: Commissioning mode can be toggled on a light using the DIO8
button on the DR1174 Carrier Board or the GPIO4 button on the
OM15028 Carrier Board. If the light is in operating mode, pressing this
button causes the light to enter commissioning mode. If the light is in
commissioning mode, pressing of this button causes the light to exit
commissioning mode.

Once a GP switch is commissioned, the switch can be de-commissioned by sending out an
encrypted Decommissioning command. The light accepts a Decommissioning command in
both commissioning mode and in decommissioning mode.

7.2 Removing Sink /Proxy Table Entries

On a Combo Basic or Proxy Basic device, the Sink table/Proxy table can be removed by
pressing the RST/RESET button on the Carrier Board twice at one-second intervals. This will
erase the Sink table/Proxy table and remove all commissioned GP devices.

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 21

7.3 Green Power Configuration Settings

The security keys to be used by the Combo Basic and Proxy Basic devices must be
configured in the zcl_options.h file on the devices, as described below.

To set the security key type to be used, add the following line to the above file:

#define GP_KEYTPE <key_type>

where <key_type> is any one of the following enumerated values:

typedef enum

{

 E_GP_NO_KEY = 0x00,

 E_GP_ZIGBEE_NWK_KEY,

 E_GP_ZGPD_GROUP_KEY,

 E_GP_NWK_KEY_DERIVED_ZGPD_GROUP_KEY,

 E_GP_OUT_OF_THE_BOX_ZGPD_KEY,

 E_GP_DERIVED_INDIVIDUAL_ZGPD_KEY = 0x07

}teGP_GreenPowerSecKeyType;

The key will be derived from the ZigBee network key or from a key sent by the GP device,
except for a group key. When the key type is set to E_GP_ZGPD_GROUP_KEY, a shared
group key must be specified using the GP_SHARED_KEY macro, as follows:

#define GP_SHARED_KEY <key>

where <key> is the value of the key.

 ZigBee 3.0 Light Bulbs

22 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

8 Developing with the Application Note
The example applications provided in this Application Note were developed using the:

• JN516x ZigBee 3.0 SDK [JN-SW-4170] and the ‘BeyondStudio for NXP’ IDE
[JN-SW-4141]

• JN517x ZigBee 3.0 SDK [JN-SW-4270] and the LPCXpresso IDE

These are the resources that you should use to develop JN516x and JN517x ZigBee 3.0
applications, respectively. They are available free-of-charge via the ZigBee 3.0 page of the
NXP web site.

Throughout your ZigBee 3.0 application development, you should refer to the documentation
listed in Section 9.

8.1 Touchlink Preconfigured Link Key

The Touchlink Preconfigured Link Key is used to encrypt the network key when passed to
joining devices as part of Touchlink operations. The key that should be used in real world
applications is a secret key and is supplied by the ZigBee organisation upon application after
successfully completing the ZLO Certification process. This key is not supplied in this
Application Note.

The supplied applications have been set up to use the Certification Key as defined in the
Base Device Behavior (BDB) Specification. Once in possession of the real Touchlink
Preconfigured Link Key, the following changes need to be made in order to use this key
rather than the Certification Key:

1. In the zcl_options.h file, add the following definition:

#define TL_SUPPORTED_KEYS (TL_MASTER_KEY_MASK)

2. Copy the ZigBee-supplied key into the definition of sTLMasterKey in the file
bdb_link_keys.c (located in BDB\Source\Common). This will make the key available
to all applications built using the BDB component.

 Alternatively, you can over-ride the definition in the BDB component by including a
definition in the individual device applications (e.g. in App_DimmableLight.c) and then
including the following definition in bdb_options.h:

#define BDB_APPLICATION_DEFINED_TL_MASTER_KEY

8.2 App_DimmableLight Application Code

This section describes the application code for App_DimmableLight, which is provided in the
Source directory for the application. You may wish to use this code as a basis for your own
application development. You can rebuild your customised application as described in
Section 8.8.

App_DimmableLight.c is specific to the Dimmable Light. It includes endpoint registration
and constructor, reporting configuration, Basic cluster attribute initialisation, and Identify
handler.

bdb_options.h defines the parameters used by the ZigBee Base Device, such as primary
and secondary channel masks.

zcl_options.h defines the ZCL options, such as which clusters are supported, whether a
client and or a server, and which optional commands and attributes are supported.
Mandatory commands and attributes of the selected cluster will be automatically included.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/zigbee/zigbee-3.0:ZIGBEE-3-0

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 23

8.3 App_ExtendedColorLight Application Code

This section describes the application code for App_ExtendedColorLight, which is provided
in the Source directory for the application. You may wish to use this code as a basis for your
own application development. You can rebuild your customised application as described in
Section 8.8.

App_ExtendedColorLight.c is specific to the Extended Colour Light. It includes endpoint
registration and constructor, reporting configuration, Basic cluster attribute initialisation, and
Identify handler.

bdb_options.h defines the parameters used by the ZigBee Base Device, such as primary
and secondary channel masks.

zcl_options.h defines the ZCL options, such as which clusters are supported, whether a
client and or a server, and which optional commands and attributes are supported.
Mandatory commands and attributes of the selected cluster will be automatically included.

8.4 App_ColorTemperatureLight Application Code

This section describes the application code for App_ColorTemperatureLight, which is
provided in the Source directory for the application. You may wish to use this code as a
basis for your own application development. You can rebuild your customised application as
described in Section 8.8.

App_ColorTemperatureLight.c is specific to the Colour Temperature Light. It includes
endpoint registration and constructor, reporting configuration, Basic cluster attribute
initialisation, and Identify handler.

bdb_options.h defines the parameters used by the ZigBee Base Device, such as primary
and secondary channel masks.

zcl_options.h defines the ZCL options, such as which clusters are supported, whether a
client and or a server, and which optional commands and attributes are supported.
Mandatory commands and attributes of the selected cluster will be automatically included.

8.5 Common Code

Code common to all light device types is held in the Common_Light\Source directory. This
code contains the main application event handlers, as well as chip and stack initialisation.

app_start_light.c manages the chip start-up, calls the initialisation functions and launches
the main program loop.

app_main.c hosts the main program loop, and defines and initialises system resources,
queues, timers etc.

app_zlo_light_node.c hosts the event handlers for the application and the ZigBee Base
Device callback. This callback receives ZigBee Base Device events and AF Stack events
after the Base Device has completed any processing that it requires. These events can then
be further processed by the application. These events include data indications that are
passed to the ZCL for processing, and network management events, such as Joined or
Failed to Join events, in order to keep the application informed of the network state. The
application event queue is processed to receive button-press events. Sleep scheduling and
polling for data are also handled here.

app_zcl_light_task.c hosts the ZCL initialisation and the ZCL callback functions. The
callbacks notify the application of the results of any received ZCL commands or responses,
so that the application can take the appropriate action. The ZCL tick timer is used to provide
a ticks for the ZCL to manage timer-dependent events or state transitions.

 ZigBee 3.0 Light Bulbs

24 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

app_ntag_aes.c contains the code that drives the NFC commissioning data exchange and
initiates the joining process when valid data is read from the NTAG. This code uses the older
NTAG data format that employs AES encryption and is not used in the default builds.

app_ntag_icode.c contains the code that drives the NFC commissioning data exchange
and initiates the joining process when valid data is read from the NTAG. This code uses the
newer NTAG data format that employs ZigBee Installation Code encryption and is used in
the default builds.

app.zpscfg provides the configuration data to initialise the ZigBee stack. It sets the sizes of
the various stack tables, such Neighbour, Routing and Key tables.

DriverBulb is the source for various light-bulb hardware interfaces.

app_buttons.c is the driver software to read the switches on the hardware kit boards and
present events to the application.

Irq_JN516x.s defines which of the hardware interrupts are supported, serviced and at which
priority. This is defined by two tables - an interrupt priority table and a table of handler
functions.

app_light_interpolation.c smooths out the updates to the LED outputs to remove flicker.
The ZCL updates the light at 10Hz. This code will further divide the update into 10 steps,
updating the bulb at 100Hz.

app_manage_temperature.c manages the chip for changes in temperature to maintain
accuracy.

app_ota_client.c provides the application part of the OTA client. This manages finding the
OTA server, polling it for new images, downloading the image and invalidating the old image
and booting on the new image.

app_power_on_counter.c counts how many times the device is switched on within a short
period, generates application events to trigger Network Steering or a factory-reset depending
on how many.

app_reporting.c manages the setting up of the default reporting configuration, updates and
saves the configuration if it is changed remotely. The actual sending of reports is managed
by the ZCL itself.

app_scenes.c provides the application interface between the ZCL and Persistent Data
Manager (PDM). It contains a routine to save and restore scene cluster data to the PDM.
The actual handling of scenes and sending scene data to the light-bulb hardware is
managed by the ZCL.

PDM_IDs.h provides unique identifiers for all persistent data records used by the PDM

app_green_power.c manages the ZigBee Green Power features of the light-bulbs.

8.6 NTAG Folder (AES Format)

The NTAG library and header files containing the public APIs for NFC are held in the NTAG
directory. This code uses the older NTAG data format that employs AES encryption and is
not used in the default builds.

8.7 NFC Folder (ZigBee Installation Code Format)

The NFC libraries and header files containing the public APIs for NFC are held in the NFC
directory. This code uses the newer NTAG data format that employs ZigBee Installation
Code encryption and is used in the default builds.

Documentation for these APIs and the app_ntag_icode.c/h APIs can be found in the
NFC.chm help file in the Doc directory of this Application Note.

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 25

8.8 Rebuilding the Applications

This section describes how to rebuild the supplied applications, which you will need to do if
you customise the applications for your own use.

8.8.1 Pre-requisites

It is assumed that you have installed the relevant NXP development software on your PC, as
detailed in Section 2.

In order to build the application, this Application Note [JN-AN-1218] must be unzipped into
the directory:

<IDE installation root>\workspace

where <IDE Installation root> is the path in which the IDE was installed. By default, this is:

• C:\NXP\bstudio_nxp for BeyondStudio

• C:\NXP\LPCXpresso_<version>_<build>\lpcxpresso for LPCXpresso

The workspace directory is automatically created when you start the IDE.

All files should then be located in the directory:

…\workspace\ JN-AN-1218-Zigbee-3-0-Light-Bulb

There is a sub-directory for each application, each having Source and Build sub-directories.

There will also be sub-directories JN516x and JN517x containing the project definition files.

8.8.2 Build Instructions

The applications provided in this Application Note can be built for both JN516x and JN517x.

The applications can be built from the command line using the makefiles or from the IDE –
makefiles and Eclipse-based project files are supplied.

• To build using makefiles, refer to Section 8.8.2.1.

• To build using the IDE, refer to Section 8.8.2.2.

8.8.2.1 Using Makefiles

This section describes how to use the supplied makefiles to build the applications. Each
application has its own Build directory, which contains the makefiles for the application.

The following command line options can be used to configure the built devices:

• JENNIC_CHIP_FAMILY=JN516x to build for a JN516x microcontrollers

• JENNIC_CHIP_FAMILY=JN517x to build for a JN517x microcontrollers

• JENNIC_CHIP=JN5169 to build for a JN5169 microcontroller

• JENNIC_CHIP=JN5168 to build for a JN5168 microcontroller

• JENNIC_CHIP=JN5164 to build for a JN5164 microcontroller

• JENNIC_CHIP=JN5179 to build for a JN5179 microcontroller

• JENNIC_CHIP=JN5178 to build for a JN5178 microcontroller

• JENNIC_CHIP=JN5174 to build for a JN5174 microcontroller

• OTA=0 to build without OTA client

• OTA=1 to build with OTA client

 ZigBee 3.0 Light Bulbs

26 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

• OTA_ENCRYPTED=0 to build OTA images without encryption

• OTA_ENCRYPTED=1 to build OTA images with encryption

• APP_NTAG_ICODE=0 to build without NTAG/NFC (ZigBee Installation Code format)

support

• APP_NTAG_ICODE=1 to build with NTAG/NFC (ZigBee Installation Code format)

support (this is the default option)

• APP_NTAG_AES=0 to build without NTAG/NFC (AES Encryption format) support (this

is the default option)

• APP_NTAG_AES=1 to build with NTAG/NFC (AES Encryption format) support

• GP_SUPPORT=1 to build with Green Power Combo

• GP_SUPPORT=1 GP_DEVICE=PROXY_BASIC to build with Green Power Proxy Basic

To build an application and load it into a JN516x/7x board, follow the instructions below:

1. Ensure that the project directory is located in

<IDE installation root>\workspace

2. Start an MSYS shell by following the Windows Start menu path:
All Programs > NXP > MSYS Shell

3. Navigate to the Build directory for the application to be built and at the command
prompt enter an appropriate make command for your chip type, as illustrated below.

 For example, for JN5169:

 make JENNIC_CHIP_FAMILY=JN516x JENNIC_CHIP=JN5169 clean all

For example, for JN5179:

 make JENNIC_CHIP_FAMILY=JN517x JENNIC_CHIP=JN5179 clean all

 The binary file will be created in the Build directory, the resulting filename indicating the
chip type (e.g. 5169) for which the application was built.

4. Load the resulting binary file into the board. You can do this from the command line
using the JN51xx Production Flash Programmer, as described in Section 5.1.

8.8.2.2 Using the IDE (BeyondStudio for NXP or LPCXpresso)

This section describes how to use the IDE to build the demonstration application.

To build the application and load it into JN516x/7x boards, follow the instructions below:

1. Ensure that the project directory is located in

<IDE installation root>\workspace

2. Start the IDE and import the relevant project as follows:

a) In the IDE, follow the menu path File>Import to display the Import dialogue box.

b) In the dialogue box, expand General, select Existing Projects into Workspace
and click Next.

c) Enable Select root directory and browse to the workspace directory.

d) In the Projects box, select the project to be imported, only select the project file
appropriate for the chip family and IDE that you are using, and click Finish.

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 27

3. Build an application. To do this, ensure that the project is highlighted in the left panel of

the IDE and use the drop-down list associated with the hammer icon in the toolbar
to select the relevant build configuration – once selected, the application will
automatically build. Repeat this to build the other applications.

 The binary files will be created in the relevant Build directories for the applications.

4. Load the resulting binary files into the board. You can do this using the integrated Flash
programmer, as described in the User Guide for the IDE that you are using.

 ZigBee 3.0 Light Bulbs

28 © NXP Semiconductors 2018 JN-AN-1218 (v1008) 5-Sep-2018

9 Related Documents
The following manuals will be useful in developing custom applications based on this
Application Note:

• ZigBee 3.0 Stack User Guide [JN-UG-3113]

• ZigBee Device User Guide [JN-UG-3114]

• ZigBee Cluster Library (for ZigBee 3.0) User Guide [JN-UG-3115]

• ZigBee Green Power User Guide [JN-UG-3119]

• JN51xx Core Utilities User Guide [JN-UG-3116]

• BeyondStudio for NXP Installation and User Guide [JN-UG-3098]

• JN517x LPCXpresso User Guide [JN-UG-3109]

• JN51xx Production Flash Programmer User Guide [JN-UG-3099]

All the above manuals are available as PDF documents from the ZigBee 3.0 page of the
NXP web site.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity/2.4-ghz-wireless-solutions/zigbee/zigbee-3.0:ZIGBEE-3-0

ZigBee 3.0 Light Bulbs

JN-AN-1218 (v1008) 5-Sep-2018 © NXP Semiconductors 2018 29

Important Notice

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including
- without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products
or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any
other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

	1 Introduction
	2 Development Environment
	2.1 Software
	2.2 Hardware

	3 Application Note Overview
	3.1 NFC Hardware Support
	3.2 NFC Data Formats

	4 Supported Device Types
	4.1 ZLO Dimmable Light
	4.2 ZLO Extended Colour Light
	4.3 ZLO Colour Temperature Light

	5 Running the Demonstration Application
	5.1 Loading the Applications
	5.2 Commissioning the Network
	5.2.1 Joining a Centralised Network
	5.2.2 Forming or Joining a Distributed Network
	5.2.2.1 Discovering and Joining an Existing Distributed Network
	5.2.2.2 Forming or Joining a Distributed Network using Touchlink
	5.2.2.3 Joining an Existing Network using NFC

	5.2.3 Finding and Binding
	5.2.4 Network Steering for a Device on a Network
	5.2.5 Touchlink Stealing a Device from a Network
	5.2.6 Start-up Behaviour
	5.2.7 Performing a Factory Reset
	5.2.7.1 Factory Reset by Local Means
	5.2.7.2 Factory Reset by Touchlink
	5.2.7.3 Factory Reset by Network Leave Command
	5.2.7.4 Factory Reset by Mgmt Leave Request ZDO Command
	5.2.7.5 Reset by Basic Cluster

	5.3 Configurations Parameters
	5.4 Attribute Reporting Configurations

	6 Over-The-Air (OTA) Upgrade
	6.1 Overview
	6.2 OTA Upgrade Operation
	6.3 Image Credentials
	6.4 Encrypted and Unencrypted Images
	6.5 Upgrade and Downgrade

	7 ZigBee Green Power (GP) Support
	7.1 Commissioning Combo Basic Lights and GP Switches
	7.2 Removing Sink /Proxy Table Entries
	7.3 Green Power Configuration Settings

	8 Developing with the Application Note
	8.1 Touchlink Preconfigured Link Key
	8.2 App_DimmableLight Application Code
	8.3 App_ExtendedColorLight Application Code
	8.4 App_ColorTemperatureLight Application Code
	8.5 Common Code
	8.6 NTAG Folder (AES Format)
	8.7 NFC Folder (ZigBee Installation Code Format)
	8.8 Rebuilding the Applications
	8.8.1 Pre-requisites
	8.8.2 Build Instructions
	8.8.2.1 Using Makefiles
	8.8.2.2 Using the IDE (BeyondStudio for NXP or LPCXpresso)

	9 Related Documents

