
Freescale Semiconductor
Application Note

APR39
Rev. 1, 8/2005

CONTENTS

1 EFCOP Programming Model2
1.1 EFCOP Description ...2
1.2 EFCOP Registers .. 3
2 IIR Filter Example ..7
2.1 IIR Filter Theory ...7
2.2 IIR Filter Design ... 8
2.3 IIR Filter Example Code ...9
2.4 Filter Results ...16
3 Echo Canceller Example17
3.1 Echo Canceller Theory ..17
3.2 Echo Canceller Design ..18
3.3 Example Code ...19
3.4 Echo Canceller Results ... 23
4 Correlation Notes ..25
5 Programmer’s Reference26

Programming the DSP56300
Enhanced Filter Coprocessor
(EFCOP)
Tina M. Redheendran
The enhanced filter coprocessor (EFCOP) is a is a fully
programmable complex filter that functions as a general-
purpose peripheral module of the DSP56307, DSP56311,
DSP56321, and DSP56L307 devices. The EFCOP optimized
modes of operation perform complex finite impulse response
(FIR) filtering, infinite impulse response (IIR) filtering,
adaptive FIR filtering, and multichannel FIR filtering. The
EFCOP filter operations are completed concurrently with the
DSP56300 core operations with minimal CPU intervention.

The EFCOP has dedicated modes of operation optimized for
cellular basestation applications. In a transceiver basestation,
the EFCOP can perform complex matched filtering to maximize
the signal-to-noise ratio (SNR) within an equalization process.
In a transcoder basestation or a mobile switching center, the
EFCOP can perform all types of FIR and IIR filtering within a
vocoder, as well as LMS-type echo cancellation.

This document describes the EFCOP programming model and
presents two application examples:

• A complete IIR filter

• An LMS echo canceller

It is assumed that you have access to the available
documentation for your DSP56300 device, which is located on
the website listed on the back cover of this document. You can
download the example EFCOP code presented in this
application report from the same web site.
© Freescale Semiconductor, Inc., 1998, 2005. All rights reserved.

EFCOP Programming Model
1 EFCOP Programming Model
This section describes the registers for configuring and operating the EFCOP. The DSP56307 User’s Manual
discusses EFCOP programming in detail, including the basic types of filter algorithms that can be processed.

1.1 EFCOP Description
As Figure 1 shows, the EFCOP comprises the following main functional blocks:

• Peripheral module bus (PMB) interface, including:

— Data input buffer

— Constant input buffer

— Output buffer

— Filter counter

• Filter data memory (FDM) bank

• Filter coefficient memory (FCM) bank

• Filter multiplier-accumulator (FMAC) machine

• Address generator

• Control logic

Figure 1. EFCOP Block Diagram

Filter Count

Address
Generator

Control

4-Word

DATA

Memory Bank

24-bit

COEFFICIENT
Memory Bank

24-bit

FMAC
24 × 24 → 56-bit

Output Buffer

Rounding and Limiting

DMA Bus

GDB BusPMB

Interface

Logic

Data Input Buffer
FDIR

FDM

FCM

FDOR

FCNT

Filter Constant
FKIR

X Memory
Shared
RAM

Y Memory
Shared
RAM

Coeff. Base Ad.
FCBA

Data Base Ad.
FDBA
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

2 Freescale Semiconductor

EFCOP Programming Model
1.2 EFCOP Registers
Table 1 lists the EFCOP registers available to the digital signal processing programmer. The next subsections
describe these registers in detail.

1.2.1 Filter Data Input Register (FDIR)
The FDIR is a 24-bit 4-word-deep FIFO for DSP-to-EFCOP data transfers. Up to four data samples can be written
into the FDIR using the same address. Data from the FDIR is transferred to the FDM for filter processing. For
proper operation, write data to the FDIR only if the FDIBE status bit is set, indicating that the FIFO is empty.
Writing to the FDIR clears the FDIBE bit. Data transfers can be triggered by an interrupt request (for core
transfers) or a DMA request (for DMA transfers). Both the DSP56300 core and the DMA controller can access the
FDIR for writes.

1.2.2 Filter Data Output Register (FDOR)
The FDOR is a 24-bit read-only register for EFCOP-to-DSP data transfers. The result of the filter processing is
transferred from the FMAC to the FDOR. For proper operation, read data from the FDOR only if the FDOBF
status bit is set, indicating that the FDOR contains data. Reading from the FDOR clears the FDOBF bit. Data
transfers can be triggered by an interrupt request (for core transfers) or a DMA request (for DMA transfers). The
FDOR is accessible for reads by the DSP56300 core and the DMA controller.

1.2.3 Filter K-Constant Input Register (FKIR)
The FKIR is a 24-bit write-only register for DSP-to-EFCOP constant transfers. The filter constants are written to
the FKIR before echo cancellation processing and transferred to the FMAC adder. The FKIR is accessible for reads
or writes only by the DSP56300 core.

1.2.4 Filter Count Register (FCNT)
The FCNT register is a 24-bit read/write register for selecting the filter length (number of filter taps). Always write
the initial count into the FCNT register before enabling the EFCOP—that is, setting the FEN bit (bit 0 of the
FCSR). Do not change the contents of the FCNT register unless the EFCOP is in the individual reset state (FEN =
0). In the individual reset state, the EFCOP module is inactive, but the contents of the FCNT register are preserved.
Table 2 describes the FCNT register bits.

Table 1. EFCOP Registers and Base Addresses

Address EFCOP Register Name

$FFFFB0 Filter data input register (FDIR)

$FFFFB1 Filter data output register (FDOR)

$FFFFB2 Filter K-constant register (FKIR)

$FFFFB3 Filter count register (FCNT)

$FFFFB4 Filter control status register (FCSR)

$FFFFB5 Filter ALU control register (FACR)

$FFFFB6 Filter data buffer base address (FDBA)

$FFFFB7 Filter coefficient base address (FCBA)

$FFFFB8 Filter decimation/channel register (FDCH)
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

Freescale Semiconductor 3

EFCOP Programming Model
1.2.5 EFCOP Control Status Register (FCSR)
The FCSR is a 24-bit read/write register by which the DSP56300 core controls the main operation modes of the
EFCOP and monitors the EFCOP status. All FCSR bits are cleared after hardware and software reset. To ensure
proper operation, do not change the FCSR bits unless the EFCOP is in individual reset state (i.e., FEN = 0) except
FEN, FDIOE, FDIIE, FUPD, and FADP. Table 3 describes the FCSR bits.

Table 2. FCNT Register Bits

Bit Number Mnemonic Value Function

23–12 — These bits are reserved and should be written with 0

11–0 FCNT Filter Count

— These bits should be written with the number of coefficient values
minus one

Table 3. FCSR Bits

Bit Number Mnemonic Value Function

23–16 — These bits are reserved and should be written with 0

15 FDOBF Filter Data Output Buffer Full - status bit

0 FDOR is empty

1 FDOR is full and ready to be read by the Core or DMA

14 FDIBE Filter Data Input Buffer Empty - status bit

0 FDIR is full

1 FDIR is empty and ready to be written to by the Core or DMA

13 FCONT Filter Contention - sticky status bit

0 Memory contention has not occurred

1 Memory contention occurred between the Core and the EFCOP

12 FSAT Filter Saturation - sticky status bit

0 Overflow or underflow has not occurred

1 Overflow or underflow occurred

11 FDOIE Filter Data Output Interrupt Enable

0 Interrupt disabled

1 Interrupt enabled

10 FDIIE Filter Data Input Interrupt Enable

0 Interrupt disabled

1 Interrupt enabled

9 — This bit is reserved and should be written with 0

8 FSCO Filter Shared Coefficients mode -valid only in multichannel mode
(FMLC bit in FCSR = 1)

0 Sequential coefficients

1 Shared coefficients

7 FPRC Filter Processing State Initialization mode - valid only with FIR filter
type (FLT bit in FCSR = 0)

0 Initialization enabled

1 Initialization disabled
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

4 Freescale Semiconductor

EFCOP Programming Model
1.2.6 EFCOP ALU Control Register (FACR)
The FACR is a 24-bit read/write register by which the DSP56300 core controls the main operation modes of the
EFCOP arithmetic logic unit (ALU). All FACR bits are cleared after hardware and software reset. Table 4
describes the FACR bits.

6 FMLC Filter Multichannel mode

0 Multichannel mode disabled

1 Multichannel mode enabled

5–4 FOM Filter Operation mode - valid only with FIR filter type (FLT bit in FCSR
= 0)

00 Mode 0: Real FIR filter

01 Mode 1: Full complex FIR filter

10 Mode 2: Complex FIR filter with alternate real and imaginary outputs

11 Mode 3: Magnitude

3 FUPD Filter Update - valid only with FIR filter type (FLT bit in FCSR = 0),
automatically cleared by the EFCOP and automatically set in adaptive
mode (FADP bit in FCSR = 1)

0 Coefficient update is complete

1 Begin coefficient update

2 FADP Filter Adaptive mode - valid only with FIR filter type (FLT bit in FCSR
= 0)

0 Adaptive mode disabled

1 Adaptive mode enabled

1 FLT Filter Type

0 FIR filter

1 IIR filter

0 FEN Filter Enable

0 EFCOP disabled and in the individual reset state

1 EFCOP enabled

Table 4. FACR Bits

Bit Number Abbrev. Value Function

23–7 — These bits are reserved and should be written with 0

6 FISL Filter Input Scale - scaling in each case is determined by the
FSCL[1:0] bits in the FCSR

0 Scale both the IIR feedback terms and the IIR input

1 Scale only the IIR feedback terms

5 FSA Filter Sixteen-bit Arithmetic mode

0 Disables sixteen-bit arithmetic mode

1 Enables sixteen-bit arithmetic mode

4 FSM Filter Saturation mode

0 Disables saturation mode

Table 3. FCSR Bits (Continued)

Bit Number Mnemonic Value Function
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

Freescale Semiconductor 5

EFCOP Programming Model
1.2.7 EFCOP Data Base Address (FDBA)
The FDBA is a 16-bit read/write counter register used as an address pointer to the EFCOP FDM bank. The FDBA
points to the location to write the next data sample. The FDBA points to a modulo delay buffer of size M, defined
by the filter length (M = FCNT[11:0] + 1). The address range of this modulo delay buffer is defined by lower and
upper address boundaries. The lower address boundary is the FDBA value with 0s in the k LSBs, where 2k ≥ M ≥
2k-1, and therefore must be a multiple of 2k. The upper boundary is equal to the lower boundary plus (M – 1). Since
M ≤ 2k once M is chosen (FCNT is assigned), the sequential series of data memory blocks (each of length 2 k) is
created where multiple circular buffers for multichannel filtering can be located. If M < 2k, there is a space between
sequential circular buffers of 2k - M. The address pointer is not required to start at the lower address boundary or to
end on the upper address boundary. It can point anywhere within the defined modulo address range. If the data
address pointer (FDBA) increments and reaches the upper boundary of the modulo buffer, it wraps around to the
lower boundary.

1.2.8 EFCOP Coefficient Base Address (FCBA)
The FCBA is a 16-bit read/write counter register used as an address pointer to the EFCOP FCM bank. The FCBA
points to the first location of the coefficient table. The FCBA points to a modulo buffer of size M, defined by the
filter length (M = FCNT[11:0] + 1). The address range of this modulo buffer is defined by lower and upper address
boundaries. The lower address boundary is the FCBA value with 0s in the k LSBs, where 2k ≥ M ≥ 2k-1, and
therefore must be a multiple of 2k. The upper boundary is equal to the lower boundary plus (M – 1). Since M ≤ 2k
once M is chosen (FCNT is assigned), the sequential series of coefficient memory blocks (each of length 2k) is
created where multiple circular buffers for multichannel filtering can be located. If M < 2k, there is a space between
sequential circular buffers of 2k - M. The FCBA address pointer must be assigned to the lower address boundary
(must have k 0s in its LSBs). In a compute session, the coefficient address pointer always starts at the lower
boundary and ends at the upper address boundary. Therefore, reading FCBA always gives the value of the lower
address boundary.

1 Enables saturation mode

3–2 FRM Filter Rounding mode

00 Convergent rounding

01 Twos complement rounding

10 Truncation (no rounding)

11 Reserved

1–0 FSCL Filter Scaling

00 Scaling factor = 1 (no shift)

01 Scaling factor = 8 (3-bit arithmetic left shift)

10 Scaling factor = 16 (4-bit arithmetic left shift)

11 Reserved

Table 4. FACR Bits (Continued)

Bit Number Abbrev. Value Function
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

6 Freescale Semiconductor

IIR Filter Example
1.2.9 Decimation/Channel Count Register (FDCH)
The FDCH is a 24-bit read/write register for setting the number of channels used in multichannel mode and setting
the decimation ratio in FIR filter mode. FDCH should be written before the EFCOP is enabled—that is, setting the
FEN bit (bit 0 of the FCSR). FDCH should be changed only when the EFCOP is in the individual reset state (FEN
= 0). Otherwise, improper operation may result. In the individual reset state, the EFCOP module is inactive, but the
contents of the FDCH register are preserved. Table 5 describes the FDCH bits.

2 IIR Filter Example
This section describes how to implement a complete infinite impulse response (IIR) filter using the EFCOP. It
gives the theoretical background, the filter design, the example code, and the results of the example filter.

2.1 IIR Filter Theory
The difference equation for an IIR filter is:

 Equation 1

where x(n) is the filter input at time n, y(n) is the filter output at time n, N is the number of feed-forward filter
coefficients minus one, B i are the feed-forward filter coefficients, M is the number of feed-back filter coefficients,
and A j are the feed-back filter coefficients.

Equation 1 can be rewritten as:

 Equation 2

Table 5. FDCH Register Bits

Bit Number Abbrev. Value Function

23–12 — These bits are reserved and should be written with 0

11–8 FDCM Filter Decimation

These bits should be written with the decimation factor minus one

7–6 — These bits are reserved and should be written with 0

5–0 FCHL Filter Channels - valid only in multichannel mode (FMLC bit of FCSR = 1)

These bits should be written with the number of channels minus one

y n() Bix(n - i) + Ajy(n - j)

j 1=

M

∑
i 0=

N

∑=

w(n) = Bix n i–()

i 0=

N

∑

Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

Freescale Semiconductor 7

IIR Filter Example
and

 Equation 3

where all the coefficients are scaled down by S. The block diagram of Equation 2 and Equation 3 is shown in
Figure 2.

The EFCOP implements an IIR filter using the logic of Figure 2. First, an FIR mode session calculates w(n) using
Equation 2 and x(n) as the input. Then, an IIR mode session calculates y(n) using Equation 3 and w(n) as the input.

Figure 2. General IIR Block Diagram

2.2 IIR Filter Design
This example implements a butterworth lowpass filter with M = N = 3 and a cut-off frequency of 0.8Wn, where Wn
is half the sampling rate. The filter coefficients for these design parameters (determined using Matlab) are shown in
Table 6.

Table 6. Example Filter Coefficients

B0 = 0.5276 —

B1 = 1.5829 A1 = -1.7600

B2 = 1.5829 A2 = -1.1829

B3 = 0.5276 A3 = -0.2781

y(n) = S w(n) + Ajy n j–()
j 1=

M

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

x(n)

Z-1

Z-1

Z-1

Z-1

y(n)

Z-1

Z-1

Z-1

Z-1

B0

B1

B2

B3

BN

A1

A2

A3

AM

w(n)

x(n-1)

x(n-2)

x(n-N+1)

x(n-N)

y(n-1)

y(n-2)

y(n-3)

y(n-M)

FIR Session IIR Session

S

x(n-3)

y(n-M+1)
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

8 Freescale Semiconductor

IIR Filter Example
Many of these coefficients have magnitudes greater than 1, which cannot be expressed in the DSP’s fixed point
numerical representation. Thus, the coefficients are scaled down by eight before they are used with the EFCOP and
the EFCOP scaling factor bits are set to scale up the output of the IIR filter by eight. Table 7 shows the scaled
coefficients.

Figure 3 shows the block diagram for this example.

Figure 3. IIR Block Diagram

2.3 IIR Filter Example Code
The IIR filter example code is divided into four sections:

• Initialize the constants

• Implement the FIR filter session

• Implement the IIR filter session

• Initialize the filter input, coefficients, and taps

2.3.1 Initialization of Constants
The first section of the code, shown in Example 1, initializes the filter constants and defines the constants to
control the EFCOP and DMA data transfers. The input/output equate and interrupt equate files are included. The
following memory address locations are initialized:

START Start of the program.

INPUT Input data x(n).

FIR_OUT Output of the FIR session and input of the IIR session w(n).

Table 7. Scaled Example Coefficients

B0 = 0.0660 —

B1 = 0.1979 A1 = -0.2200

B2 = 0.1979 A2 = -0.1479

B3 = 0.0660 A3 = -0.0348

x(n)

Z–1

Z–1

Z–1

y(n)

Z–1

Z–1

Z–1

B0 = 0.0660

B1 = 0.1979

B2 = 0.1979

B3= 0.0660

A1 = –0.2200

A2 = –0.1479

A3 = –0.0348

y(n–1)

y(n–2)

y(n–3)

FIR Session IIR Session

S=8

x(n–1)

x(n–2)

x(n–3)

w(n)
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

Freescale Semiconductor 9

IIR Filter Example
OUTPUT Output of the IIR session y(n).

FIR_FDBA Memory address pointers for the FIR and IIR filter data and coefficient buffers.
IIR_FDBA These constants are written to the EFCOP data buffer base address (FDBA) and
FIR_FCBA the EFCOP coefficient buffer base address (FCBA). The EFCOP shares the
IIR_FCBA lowest 4K memory locations of X and Y memory with the DSP core for the data and

coefficient buffers, respectively.

The constant initialization section defines the following constants to control the EFCOP:

FIR_FCSR Written to the EFCOP control status register (FCSR) to control the main operation modes
of the EFCOP. This constant configures the EFCOP in real FIR filter mode with
processing initialization disabled, and it sets the EFCOP enable bit for the FIR filter
session.

IIR_FCSR Written to the EFCOP control status register (FCSR) to control the main operation modes
of the EFCOP. This constant configures the EFCOP in IIR filter mode, and it sets the
EFCOP enable bit for the IIR filter session.

IIR_FACR Written to the EFCOP ALU control register (FACR) to control the main operation of the
EFCOP ALU for the IIR filter session. The IIR_FACR constant sets the scaling factor of
the IIR filter output to eight.

FIR_LEN Defines the filter length. FIR_LEN is set to four because there are four FIR (feed-
forward) filter coefficients, B i, i=0...3 for this example. FIR_LEN – 1 is written to the
EFCOP filter count register (FCNT) for the FIR filter session.

IIR_LEN Defines the filter length. IIR_LEN is set to three because there are three IIR (feed-back)
filter coefficients, A j, j=1...3 for this example. IIR_LEN – 1 is written to the FCNT
register for the IIR filter session.

The constant initialization section also defines constants to control the DMA transfers. The code uses two DMA
channels, channel 0 to transfer the input data to EFCOP data input register (FDIR) and channel 1 to transfer the
output data from the EFCOP data output register (FDOR).

FIR_NUMIN Written to DMA counter register 0 (DCO0) to set the number of DMA transfers to FDIR
for the FIR session.

IIR_NUMIN Written to DMA counter register 0 (DCO0) to set the number of DMA transfers to FDIR
for the IIR session.

Because FDIR is a 4-word-deep register, mode B of the DMA transfers four input words at a time to FDIR. With
mode B, DOC0 is separated into two sections: DCOL (bits 0–11) and DCOH (bits 12–23). DCOH is set to the
number of transfers minus one. DCOL is set to the number of words in each transfer minus one. The input file for
this example has 1024 points. Thus, DOCH is set to 255 (or $0FF) and DCOL is set to 3. The total number of
words transferred is equal to (255 + 1) ∗ (3 + 1) = 1024.

FIR_NUMOUT Written to DCO1 to set the number of DMA transfers from FDOR for the FIR session.

IIR_NUMOUT Written to DCO1 to set the number of DMA transfers from FDOR for the IIR filter
session.

Because FDOR is one word deep, mode A of the DMA transfers one output word at a time from FDOR. With mode
A, DCO1 is set to the number of DMA transfers minus one. Thus, FIR_NUMOUT and IIR_NUMOUT are set to the
number of output values minus one, or 1023 (or $3FF).
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

10 Freescale Semiconductor

IIR Filter Example
Example 1. IIR Filter Constant Initialization

;***

nolist

INCLUDE "ioequ.asm"

INCLUDE "intequ.asm"

list

;***

; CONSTANTS

;***

START equ $100 ; Main program starting address

INPUT equ $2000 ; FIR session source address

FIR_OUT equ $1000 ; FIR session destination address

OUTPUT equ $3000 ; IIR session destination address

FIR_FDBA equ 0 ; FIR Data Start Address x:$0

IIR_FDBA equ 100 ; IIR Data Start Address x:$100

FIR_FCBA equ 0 ; FIR Coeff Start Address y:$0

IIR_FCBA equ 100 ; IIR Coeff Start Address y:$100

FIR_FCSR equ $081 ; Enable EFCOP FIR Mode 0

IIR_FCSR equ $003 ; Enable EFCOP IIR Mode 0

IIR_FACR equ $001 ; Enable EFCOP IIR Scale by 8 Mode

FIR_LEN equ 4 ; EFCOP FIR length

IIR_LEN equ 3 ; EFCOP IIR length

FIR_NUMIN equ $0FF003 ; DMA0 Count (256*4=1024 word xfers) FIR inputs

FIR_NUMOUT equ $3FF ; DMA1 Count (1024 word xfers) FIR outputs

IIR_NUMIN equ $0FF003 ; DMA0 Count (256*4=1024 word xfers) IIR inputs

IIR_NUMOUT equ $3FF ; DMA1 Count (1024 word xfers) IIR outputs

2.3.2 FIR Filter Session
The second part of the code, shown in Example 2, implements the FIR filter session and calculates w(n) from
Equation 2. The reset vector is set to the beginning of the program. The FIR_LEN, FIR_FDBA, and FIR_FCBA
constants are written to the appropriate EFCOP registers, as described in Section 2.3.1, “Initialization of
Constants.” FIR_FCSR is written to the FCSR to enable the EFCOP.

Channel 0 of the DMA transfers the input data from memory to the FDIR four words at a time. Figure 4 shows
how the DMA transfer is completed. The DMA is initialized to complete this transfer as follows:

• Identify the source of the data transfer. The memory address location of the input data, INPUT, is
written to the DMA source address register for channel 0 (DSR0).

• Identify the destination of the data transfers. The memory-mapped address location of the FDIR is
written to the DMA destination address register for channel 0 (DDR0).

• Specify the number of data transfers. FIR_NUMIN, which is described in Section 2.3.1, “Initialization
of Constants.” is written to DCO0.

• Designate the offset increment. The DMA offset register 0 (DOR0) is used with mode B to increment
the DMA source address register after each transfer. For this example, the input data is stored
sequentially in memory. Therefore, DOR0 is written with the number 1 to increment the DMA source
address register by one after each transfer.

• Specify the transfer properties. The DMA control register for channel 0 (DCR0) controls the DMA
channel 0 operation. The value written to DCR0 sets the transfer to trigger from the EFCOP input
buffer empty request. This value also sets the source transfer to mode to B using the offset register
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

Freescale Semiconductor 11

IIR Filter Example
DOR0. The destination transfer mode is set to A with no updating of the destination register because
the input data should always be transferred to the FDIR. The source memory space is set to X memory
because the input data is stored in X memory, as discussed in Section 2.3.4, “Coefficients, Taps, and
Input.” The destination memory space is set to Y memory because all EFCOP registers including
FDIR are mapped to internal Y I/O memory. Finally, DMA channel 0 is enabled.

Figure 4. DMA Channel 0 Transfer

Channel 1 of the DMA transfers the output data from the FDOR to memory. Figure 5 shows how the DMA
transfer is completed. The DMA is initialized to complete this transfer as follows:

• Identify the source of the data transfer. The memory-mapped address location of the FDOR is written
to the DMA source address register for channel 1 (DSR1).

• Identify the destination of the data transfer. The memory address location of the FIR output data,
FIR_OUT, is written to the DMA destination address register for channel 1 (DDR1).

• Specify the number of data transfers. FIR_NUMOUT, which is described in Section 2.3.1,
“Initialization of Constants.” is written to DCO1.

• Specify the transfer properties. The DMA control register for channel 1 (DCR1) controls the DMA
channel 1 operation. The value written to DCR1 sets the transfer to trigger from the EFCOP output
buffer full request. This value also sets the source transfer to mode to A with no updating of the source
register because the output data should always be transferred from FDOR. The destination transfer
mode is set to A with post increment by one because the output data is stored sequentially to memory.
The source memory space is set to Y memory because all EFCOP registers including FDOR are
mapped to internal Y I/O memory. The destination memory space is set to X memory because the FIR
output data is stored in X memory. Finally, DMA channel 1 is enabled.

Bits 0 and 1 of the DMA status register (DSTR) are set when the last word is stored in the destination and channel
operation completes for channels 0 and 1, respectively. The program polls these bits and waits until the DMA
transfers complete before continuing. Finally, the EFCOP is put into personal reset mode by clearing FCSR so that
the EFCOP can be programmed for the IIR filter session.

INPUT

FDIR

}

}

}

}

}

Transfer 1

Transfer 2

Transfer 3

tra
ns

fe
r 2

56

increment by 1
(DOR0)

 SOURCE DESTINATION
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

12 Freescale Semiconductor

IIR Filter Example
Figure 5. DMA Channel 1 Transfer

Example 2. FIR Filter Session Code

;**

;* FIR Filter Section

;**

org P:0

jmp START

org P:START

movep #FIR_LEN-1,y:M_FCNT ; FIR length

movep #FIR_FDBA,y:M_FDBA ; FIR Data Start Address

movep #FIR_FCBA,y:M_FCBA ; FIR Coeff Start Address

movep #FIR_FCSR,y:M_FCSR ; Enable EFCOP

; DMA 0 init to input DATA to EFCOP

movep #INPUT,x:M_DSR0 ; DMA source is the INPUT data buffer

movep #M_FDIR,x:M_DDR0 ; DMA destination is the EFCOP input register

movep #FIR_NUMIN,x:M_DCO0 ; DMA count in mode B

movep #$1,x:M_DOR0 ; DMA offset is 1

movep #$94AA04,x:M_DCR0 ; DMA control reg with line mode FDIBE request

; DMA 1 init to output DATA from EFCOP

movep #M_FDOR,x:M_DSR1 ; DMA source is the EFCOP output register

movep #FIR_OUT,x:M_DDR1 ; DMA destination is the FIR_OUT data buffer

movep #FIR_NUMOUT,x:M_DCO1 ; DMA count

movep #$8EB2C1,x:M_DCR1 ; DMA control register with FDOBF request

jclr #0,x:M_DSTR,* ; Wait till DMA 0 ends

jclr #1,x:M_DSTR,* ; Wait till DMA 1 ends

movep #$000,y:M_FCSR ; Reset EFCOP

FIR_OUT
FDOR

Transfer 1

Transfer 2

Transfer 1024

post-increment
by 1

SOURCE
 DESTINATION
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

Freescale Semiconductor 13

IIR Filter Example
2.3.3 IIR Filter Session
The third part of the code, shown in Example 3, implements the IIR filter session and calculates y(n) from
Equation 3. The IIR_LEN, IIR_FDBA, IIR_FCBA, and IIR_FACR constants are written to the
appropriate EFCOP registers, as described in Section 2.3.1, “Initialization of Constants.” IIR_FCSR is written to
the FCSR to enable the EFCOP.

Channel 0 of the DMA transfers the input data from memory to the FDIR, four words at a time. Figure 4 shows
how the DMA transfer is completed except that the source data is located at FIR_OUT instead of INPUT. The
DMA is initialized to complete this transfer as follows:

• Identify the source of the data transfer. The memory address location of the input data, in this case
FIR_OUT, is written to DSR0.

• Identify the destination of the data transfer. The memory-mapped address location of the FDIR is
written to DDR0.

• Specify the number of data transfers. IIR_NUMIN, which is described in Section 2.3.1,
“Initialization of Constants.” is written to DCO0.

• Designate the offset increment. DOR0 is used with mode B to increment the DMA source address
register after each transfer. For this example, the input data is stored sequentially in memory.
Therefore, DOR0 is written with the number 1 to increment the DMA source address register by one
after each transfer.

• Specify the transfer properties. DCR0 controls the DMA channel 0 operation. The value written to
DCR0 sets the transfer to trigger from the EFCOP input buffer empty request. This value also sets the
source transfer to mode B using the offset register DOR0. The destination transfer mode is set to A
with no updating of the destination register because the input data should always be transferred to
FDIR. The source memory space is set to X memory because the input data is stored in X memory.
The destination memory space is set to Y memory because all EFCOP registers including the FDIR are
mapped to internal Y I/O memory. Finally, DMA channel 0 is enabled.

Channel 1 of the DMA transfers the output data from FDOR to memory. Figure 5 shows how the DMA transfer is
completed except that the destination data is located at OUTPUT instead of FIR_OUT. The DMA is initialized to
complete this transfer as follows:

• Identify the source of the data transfer. The memory-mapped address location of FDOR is written to
the DMA source address register for channel 1 (DSR1).

• Identify the destination of the data transfer. The memory address location of the IIR output data,
OUTPUT, is written to the DMA destination address register for channel 1 (DDR1).

• Specify the number of data transfers. IIR_NUMOUT, which is described in Section 2.3.1,
“Initialization of Constants.” is written to DCO1.

• Specify the transfer properties. The DMA control register for channel 1 (DCR1) controls the DMA
channel 1 operation. The value written to DCR1 sets the transfer to trigger from the EFCOP output
buffer full request. This value also sets the source transfer to mode to A with no updating of the source
register because the output data should always be transferred from FDOR. The destination transfer
mode is set to A with post increment by one because the output data is stored sequentially to memory.
The source memory space is set to Y memory because all EFCOP registers including FDOR are
mapped to internal Y I/O memory. The destination memory space is set to X memory because the IIR
output data is stored in X memory. Finally, DMA channel 1 is enabled.
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

14 Freescale Semiconductor

IIR Filter Example
Bits 0 and 1 of the DMA status register (DSTR) are set when the last word is stored in the destination and channel
operation completes for channels 0 and 1, respectively. The program polls these bits, and when the DMA transfers
complete the program is finished.

Example 3. IIR Filter Session Code

;**

;* IIR Filter Section

;**

movep #IIR_LEN-1,y:M_FCNT ; IIR length

movep #IIR_FDBA,y:M_FDBA ; IIR Data Start Address

movep #IIR_FCBA,y:M_FCBA ; IIR Coeff. Start Address

movep #IIR_FACR,y:M_FACR ; IIR Control Register

movep #IIR_FCSR,y:M_FCSR ; Enable EFCOP

; DMA 0 init to input DATA to EFCOP

movep #FIR_OUT,x:M_DSR0 ; DMA source is the FIR_OUT data buffer

movep #M_FDIR,x:M_DDR0 ; DMA destination is the EFCOP input buffer

movep #IIR_NUMIN,x:M_DCO0 ; DMA count in mode B

movep #$1,x:M_DOR0 ; DMA offset is 1

movep #$94AA04,x:M_DCR0 ; DMA control reg with line mode FDIBE request

; DMA 1 init to output DATA from EFCOP

movep #M_FDOR,x:M_DSR1 ; DMA source is the EFCOP out register

movep #OUTPUT,x:M_DDR1 ; DMA destination is the OUTPUT data buffer

movep #IIR_NUMOUT,x:M_DCO1 ; DMA count

movep #$8EB2C1,x:M_DCR1 ; DMA control reg with FDOBF request

jclr #0,x:M_DSTR,* ; Wait till DMA 0 ends

jclr #1,x:M_DSTR,* ; Wait till DMA 1 ends

stop_label

stop

2.3.4 Coefficients, Taps, and Input
The final part of the code, shown in Example 3-4, initializes the coefficients, taps, and input for the filter. The
coefficient values are described in Section 2.2, “IIR Filter Design.” The memory address pointers for the
coefficients, FIR_FCBA and IIR_FCBA, are defined in Section 2.3.1, “Initialization of Constants.” The EFCOP
shares the lowest 4K memory locations of Y memory with the DSP core for the coefficient buffers. Thus, the
coefficients are stored in Y memory. Notice that the coefficients are stored in reverse order such that the coefficient
with the largest index is stored first and the coefficient with the smallest index is stored last.

The FIR filter taps must be initialized because processing state initialization mode is disabled for the FIR filter in
the FIR_FCSR constant. Also, the IIR filter taps must be initialized because the EFCOP assumes that the data taps
are initialized before the EFCOP is enabled and therefore does not initialize the taps for IIR filter mode. The filter
taps are all initialized to zero. This tells the EFCOP that the values of the FIR input x(n) and the IIR output y(n) are
zero for n < 0. The number of taps needed for each filter is equal to the number of filter coefficients. The memory
address pointers for the taps, FIR_FDBA and IIR_FDBA,are defined in Section 2.3.1, “Initialization of
Constants.” The EFCOP shares the lowest 4K memory locations of X memory with the DSP core for the filter tap
buffers. Thus, the filter taps are stored in X memory.
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

Freescale Semiconductor 15

IIR Filter Example
The last lines of the code specify the input data. The memory address pointer for the input data, INPUT, is defined
in Section 2.3.1, “Initialization of Constants.” The file input.dat, which contains the input data, is included at
this memory location. For more information on the input.dat file, consult the next section.

Example 4. Coefficients, Inputs, and Taps Code

;**

;* COEFFICIENTS, INPUTS, & TAPS

;**

org y:FIR_FCBA

dc 0.06595304781274 ; b(3)/8

dc 0.19785914343823 ; b(2)/8

dc 0.19785914343823 ; b(1)/8

dc 0.06595304781274 ; b(0)/8

org y:IIR_FCBA

dc -0.03475748970432 ; a(3)/8

dc -0.14786165775473 ; a(2)/8

dc -0.22000523504290 ; a(1)/8

org x:FIR_FDBA

dc $000000

dc $000000

dc $000000

dc $000000

org x:IIR_FDBA

dc $000000

dc $000000

dc $000000

org x:INPUT

INCLUDE "input.dat"

2.4 Filter Results
This section describes the results for this filter example by presenting the input and the output data. The filter input
data (calculated using Matlab) is gaussian random noise with a mean of 0.0 and a variance of 1.0. The data is then
scaled so that the magnitudes of all of the values are less than 1. The filter output data is stored in X memory
beginning at the memory address pointer, OUTPUT, that is defined in Section 2.3.1, “Initialization of Constants.”

To show the effect of the filter, the frequency spectrum of the input and output is plotted (using Matlab) in Figure
6. As Figure 6 shows, the frequency spectrum of the output is the same as the frequency spectrum of the input for
all frequency values less than 0.8Wn, where Wn is half the sampling rate. However, since the output is processed
through the lowpass IIR filter, the frequency spectrum of the output is greatly attenuated for frequency values
greater than 0.8Wn. Thus, the IIR filter is working properly and filtering the input signal as expected.
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

16 Freescale Semiconductor

Echo Canceller Example
Figure 6. Frequency Spectrum of Input and Output

3 Echo Canceller Example
This section describes how to implement a complete LMS electrical echo canceller using the EFCOP. It gives the
theoretical background, the filter design, the example code, and the results of the echo canceller.

3.1 Echo Canceller Theory
Figure 7 shows the block diagram for the echo canceller in this example. This figure depicts a near-end electrical
echo canceller. At the near-end is a four-wire system with separate signal paths for the transmit signal and receive
signal. The transmit and receive signals are combined via a hybrid into a single two-wire signal for connection to
the public phone network at the far-end. The hybrid also introduces an unwanted echo of the near-end signal x(n)
into the receive path. The adaptive filter determines the delay and attenuation of the echo introduced by the hybrid
and generates an estimate of the echo, y(n), that can be subtracted from the received signal + the echo, s(n). The
result is a cancellation of most of the echo, leaving only the desired received signal e(n). The adaptive filter also
uses the received signal e(n) to help track the delay and attenuation of the echo.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20
Frequency Spectrum of Input

Frequency/Wn

M
ag

ni
tu

de
 (

dB
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20
Frequency Spectrum of Output

Frequency/Wn

M
ag

ni
tu

de
 (

dB
)

Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

Freescale Semiconductor 17

Echo Canceller Example
Figure 7. Echo Canceller Block Diagram

The output of the adaptive filter is calculated as follows:

 Equation 4

where y(n) is the estimated echo of the near-end signal at time n, x(n) is the near-end signal at time n, L is the
number of filter coefficients, and h n (i) are the filter coefficients for time n. After the output signal is calculated, the
filter coefficients are updated. First, the error signal is calculated by

 Equation 5

where e(n) is the error signal or the far-end signal plus the residual echo of the near-end signal at time n, and s(n) is
the far-end signal plus the echo of the near-end signal at time n.

Next, the coefficient update step is calculated as follows:

 Equation 6

where K e (n) is the coefficient update step at time n and K(n) is the step size at time n. Finally, the filter coefficients
are updated for the next time period using the following equation:

 Equation 7

The EFCOP implements Equation 4 using a FIR filter session. The EFCOP also implements a coefficient update
session to calculate the new filter coefficients using Equation 7.

3.2 Echo Canceller Design
The example discussed in this section implements an echo canceller using an adaptive filter as previously
described. Recall that the purpose of the adaptive filter is to generate an estimate of the near-end echo that can be
subtracted from the far-end signal + the echo, s(n). However, the adaptive filter interprets the far-end signal as
noise. Thus, it is difficult for the adaptive filter to estimate the echo when the far-end signal is present. It is much

Hybrid
Echo Adaptive

Filter

Σ
+

-

Far-end

s(n)

y(n)

e(n)

x(n)

Near-end

Transmit signal

Receive signal

y(n) = hn i()x n i–()

i 0=

L 1–

∑

e n() s n() y n()–=

Ke(n) = K(n)e(n)

hn 1+ (i) = hn(i) + Ke(n)x n i–()
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

18 Freescale Semiconductor

Echo Canceller Example
easier for the adaptive filter to estimate the echo when s(n) contains only the near-end echo. Therefore, some echo
cancellers are designed to detect when the far-end signal is absent and update the filter coefficients only during
these times. When the far-end signal is present, these echo cancellers set the step size, K, to zero so that the filter
coefficients are not changed. In other applications, these echo cancellers might reduce the step size significantly so
that the filter coefficients are changed only a small amount when the far-end signal is present.

The echo canceller in this example reduces the step size when the far-end signal is present. For an LMS echo
canceller, the step size K(n) = K, a constant that does not vary with time. This example uses K = 0.4 when the far-
end signal is absent and K = 0.004 when the far-end signal is present.

Detecting the presence of a far-end signal must be done by DSP core and not the EFCOP. Therefore, this example
does not address how to detect the presence of the far-end signal. Instead, the input file containing the far-end
signal + the echo, s(n), is created so that the far-end signal is absent for 300 samples and then present for 100
samples, and the example code automatically reduces the step size after 300 samples This input file is named
far.dat.

Both the far-end and the near-end signals are gaussian random noise (generated with Matlab) with a mean of 0.0
and a variance of 1.0. The near-end signal input file is 400 samples long and the near-end signal is uncorrelated
with the far-end signal. The near-end signal input file is named near.dat. The near-end signal is delayed by
three samples and attenuated by to create the near-end echo. Then the near-end echo is added to the
far-end signal to create the far.dat input file. Both input signals are scaled so that the magnitudes of all of the
values are less than 1.

For example, the filter coefficients are set to zero before the processing starts. With no a priori knowledge about
the echo, this is as good a starting point as any. The filter coefficients change and become non-zero when the
processing begins and the coefficients are updated.

3.3 Example Code
A real-life LMS electrical echo canceller requires 48 coefficients to cancel 6 ms of echo with a sampling rate of
8KHz (8000 samples/sec ∗ 0.006 seconds = 48). A real echo canceller also requires thousands of samples to
converge. This example is scaled down to simplify the explanations and shorten the running time and input files.

The echo canceller example code is divided into four sections:

• Declare the necessary constants.

• Initialize the EFCOP.

• Implement the coefficient update with an interrupt service routine.

• Initialize the filter inputs and coefficients.

3.3.1 Declaration of Constants
The first part of the code, shown in Example 5, defines the constants for the echo canceller and defines a constant
to control the EFCOP. The input/output equate and interrupt equate files are included. The following memory
address locations are initialized:

START Start of the program.

NEAR_SIG Near-end signal data x(n).

FAR_SIG Far-end signal plus the echo of the near-end signal data s(n).

0.1 0.316=
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

Freescale Semiconductor 19

Echo Canceller Example
ECHO Estimated echo of the near-end signal data y(n).

FDBA_ADDRS Memory address pointers for the filter data and coefficient buffers.
FCBA_ADDRS These constants are written to FDBA and FCBA. The EFCOP shares the lowest 4K

memory locations of X and Y memory with the DSP core for the data and coefficient
buffers, respectively.

The constant initialization section also defines the following constants to control the EFCOP:

FCSR Written to FCSR to control the main operation modes of the EFCOP. It configures the
EFCOP in real FIR filter mode with adaptive filter mode enabled. FCSR also enables the
data output buffer full interrupt. Finally, FCSR sets the EFCOP enable bit.

FIR_LEN Defines the filter length. FIR_LEN is set to ten because there are ten filter coefficients, h n
(i), i=0...9 for this example. FIR_LEN – 1 is written to FCNT.

K1 and K2 Set to the step sizes that update the filer coefficients. K1 is used when the far-end signal is
absent, and K2 is used when the far-end signal is present.

COUNT and Defines the number of data samples to process. For this example, there are 400
COUNTK input data samples. FIR_LEN – 1, or 9, of these samples initialize the filter. Thus, 400 – 9

= 391 data samples are processed. The constant determines when the program is to change
the step size. When there are COUNTK - 1, or 100 samples left to process, the program
changes K from K1 to K2.

Example 5. Constant Definition Code

;***

nolist

INCLUDE "ioequ.asm"

INCLUDE "intequ.asm"

list

;***

; CONSTANTS

;***

START equ $100 ; Main program starting address

NEAR_SIG equ $3000 ; Points to the Near-end data, x(n)

FAR_SIG equ $2000 ; Points to the Far_end data, s(n)

ECHO equ $1000 ; Points to the Echo data, y(n)

FDBA_ADDRS equ 0 ; Data Start Address x:$0

FCBA_ADDRS equ 0 ; Coeff Start Address y:$0

FCSR equ $805 ; Enable EFCOP ADP FIR Mode 0 with DOBF interrupt

FIR_LEN equ 10 ; Filter Length

K1 equ 0.4 ; Step size-Coef Update Constant-No Noise

K2 equ 0.004 ; Step size-Coef Update Constant-Noise

COUNT equ 391 ; Data Count-390 total data samples

COUNTK equ 101 ; Data Count to change K after 300 samples

3.3.2 EFCOP Initialization
The second part of the code, shown in Example 6, initializes the EFCOP for the echo canceller. The reset vector is
set to the beginning of the program. The command to jump to the interrupt code is placed at the EFCOP output
buffer full interrupt starting address. EFCOP interrupts are enabled at an interrupt priority level of 2 by setting the
appropriate bits in the interrupt priority register peripherals (IPRP). The interrupt mask bits 0 and 1, bits 8 and 9 in
the status register (SR), are cleared to permit interrupts at all priority levels. The following registers are initialized:
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

20 Freescale Semiconductor

Echo Canceller Example
• Register b0 is initialized with COUNT to control the number of data samples to process, as described in
Section 3.3.1, “Declaration of Constants.”

• Address registers r2 and r0 are initialized to the beginning of the near-end signal data, x(n)
(NEAR_SIG), and the echo signal data, y(n) (ECHO).

• Address register r3 is initialized for the far-end signal plus the echo of the near-end signal data buffer,
s(n) (FAR_SIG). This buffer is incremented by FIR_LEN - 1 because the first FIR_LEN - 1 data
samples of x(n) are used to initialize the filter and the x(n) and s(n) data buffers should be aligned after
the filter initialization.

• The y0 register is initialized with the first value for the step size, K.

The FIR_LEN, FDBA_ADDRS, and FCBA_ADDRS constants are written to the appropriate EFCOP registers, as
described in Section 3.3.1, “Declaration of Constants.” FCSR is written to FCSR to enable the EFCOP. The first
FIR_LEN samples of the near-end signal are written to the EFCOP data input register, FDIR: FIR_LEN - 1
samples to initialize the filter and one more sample to begin the first filter session. In the adaptive filter mode the
EFCOP filters one sample of data and then waits until a value for Ke(n) is written to the FKIR. Once a value is
written to FKIR, the EFCOP performs a coefficient update session. When the output buffer is full, the EFCOP
requests interrupt service from the core, and the interrupt code updates the filter coefficients. At this point, the
program waits until the EFCOP data output interrupt enable bit is cleared. The interrupt code clears this bit when
all data samples are processed. The program waits until the final filter update session is finished, and then the
program is complete.

Example 6. EFCOP Initialization Code

;***

;* Initialization

;***

org P:0

jmp START

org p:(I_FDOBF) ; EFCOP Output Buffer Full Interrupt

; Starting Address

jsr >kdo ; Jump to Interrupt Code

org p:START

movep #$c00,x:M_IPRP ; Enable interrupts in IPR

bclr #8,SR ; Enable interrupts in SR

bclr #9,SR

move #0,b ; Init Counter

move #COUNT,b0

move #NEAR_SIG,r2 ; Init Pointer to Near-end Data, x(n)

move #ECHO,r0 ; Init Pointer to Echo Data, y(n)

move #FAR_SIG+FIR_LEN-1,r3 ; Init Pointer to Far-end Data, s(n)

move #K1,y0 ; Init K

movep #FIR_LEN-1,y:M_FCNT ; Filter Length

movep #FDBA_ADDRS,y:M_FDBA ; Data Start Address

movep #FCBA_ADDRS,y:M_FCBA ; Coeff Start Address

movep #FCSR,y:M_FCSR ; Enable EFCOP

rep #FIR_LEN ; Init Filter

movep x:(r2)+,y:M_FDIR
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

Freescale Semiconductor 21

Echo Canceller Example
jset #11,y:M_FCSR,* ; Wait till FDOIE is cleared

jset #3,y:M_FCSR,* ; Wait until last update is complete

stop_label

stop

3.3.3 Interrupt Code to Implement the Coefficient Update
The third part of the code, shown in Example 7, calculates Equation 5 and Equation 6 and then starts the filter
coefficient update session by writing the step parameter to FKIR. When the program reaches this point, the EFCOP
has just completed a FIR filter session and placed the output into FDOR, causing a EFCOP output buffer full
interrupt request. Updating of the coefficients proceeds in the following steps:

1. The interrupt code moves the filter output, y(n), from FDOR to the ECHO data buffer and increments
the ECHO data buffer pointer.

2. The ECHO data and the current FAR_SIG data, s(n), are moved to data registers, incrementing the
FAR_SIG data buffer pointer.

3. The current error signal, e(n) is calculated as in Equation 5.

4. The step size, located in register y0, is multiplied by the error signal to calculate the coefficient update
step parameter as in Equation 6.

5. The step parameter is loaded into FKIR.

6. The EFCOP performs the coefficient update session, as in Equation 7, and replaces the filter coeffi-
cients with the updated coefficients.

7. The next input sample is written from the NEAR_SIG data buffer to the input register, FDIR, incre-
menting the NEAR_SIG data buffer pointer.

8. The program determines if step size needs to be changed by comparing the counter in register b0 to
the value from COUNTK. If these values are equal, the step size is changed by writing K2 to the y0 reg-
ister. Otherwise the step size is not changed.

9. The counter is decremented and as long as the counter is not equal to zero the interrupt exits.

The process repeats when the EFCOP places the next output into FDOR. When the counter is equal to zero, the
EFCOP output buffer full interrupt is disabled and the processing stops.

Example 7. Interrupt Code

;**

;* Interrupt Code

;**

kdo

movep y:M_FDOR,x:(r0)+ ; Move y(n) to memory buffer

move y:M_FDOR,x1 ; Move y(n) to x1

move x:(r3)+,a ; Move s(n) to a

sub x1,a ; a = e(n) = s(n) - y(n)

move a,x0 ; x0 = e(n)

mpy x0,y0,a ; a = Ke = K*e(n)

movep a,y:M_FKIR ; Move Ke to FKIR

movep x:(r2)+,y:M_FDIR ; Move x(n) to FDIR

clr a ; Check if K needs to be changed

move #COUNTK,a0

cmp a,b

jne samek ; Change K to K2 if
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

22 Freescale Semiconductor

Echo Canceller Example
move #K2,y0 ; there are 100 samples left

samek dec b ; Decrement the counter

jne cont ; Jump to cont if counter is not zero

nop

bclr #11,y:M_FCSR ; Disable interrupt

cont

rti

3.3.4 Initialization of Coefficients and Input
The final part of the code, shown in Example 8, initializes the coefficients and inputs for the echo canceller. The
coefficient values are initialized to zero as described in Section 3.2, “Echo Canceller Design.” The memory
address pointer for the coefficients, FCBA_ADDRS, is defined in Section 3.3.1, “Declaration of Constants.” The
EFCOP shares the lowest 4K memory locations of Y memory with the DSP core for the coefficient buffers. Thus,
the coefficients are stored in Y memory. The filter taps do not need to be initialized for this example because
processing state initialization mode is enabled in the FCSR constant.

The last lines of the code specify the input data. The input data includes the near-end signal data x(n) (NEAR_SIG)
and the far-end signal plus the echo of the near-end signal data s(n) (FAR_SIG). The input files that contain these
signals, near.dat and far.dat, are described in Section 3.2, “Echo Canceller Design.” The memory address
pointers for the input data, FAR_SIG and NEAR_SIG, are defined in Section 3.3.1, “Declaration of Constants.”
The far.dat and near.dat files are included at these memory locations.

Example 8. Coefficient and Input Code

org y:FCBA_ADDRS

dc $000000

dc $000000

dc $000000

dc $000000

dc $000000

dc $000000

dc $000000

dc $000000

dc $000000

dc $000000

org x:FAR_SIG

INCLUDE "far.dat"

org x:NEAR_SIG

INCLUDE "near.dat"

3.4 Echo Canceller Results
This section describes the results for the echo canceller example, presenting the filter coefficients and the received
signal, e(n). If the filter is working properly, the filter coefficients show the delay and the attenuation of the echo.
Table 8 shows the filter coefficients after 100, 200, 300, and 400 samples. Notice that the coefficients are stored in
reverse order so that the coefficient with the largest index is stored first and the coefficient with the smallest index
is stored last as they are stored in the DSP memory.
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

Freescale Semiconductor 23

Echo Canceller Example
Recall that the far-end signal is absent for the first 300 samples. During this time the filter is adapting only to the
near-end echo. The third coefficient from the bottom becomes more dominant as the number of samples increases.
This signifies that the near-end echo is delayed three samples as described in Section 3.2, “Echo Canceller
Design.” The magnitude of the third coefficient approaches the attenuation factor of the near-end
echo as the number of samples increases. Thus, the adaptive filter coefficients show the delay and
attenuation of the echo properly and the filter is working as expected.

The filter coefficients for n = 400 show the effect of the far-end signal on the adaptive filter. Recall that the far-end
signal is present for the last 100 samples and that the adaptive filter interprets the far-end signal as noise. Thus, the
filter coefficients degrade when n = 400. The third coefficient is not as dominant as it is when n = 300. However,
the step size is reduced for the last 100 samples. Thus, the coefficients are not significantly affected and the
adaptive filter still does an acceptable job of cancelling the near-end echo, as indicated by the received signal, e(n).

Table 9 shows the received signal, e(n), the far-end signal, and the error between these two signals for the last 20
samples. The received signal is calculated in the interrupt code. The far-end signal is obtained from Matlab before
the near-end echo is added to create the far-end plus the echo of the near-end signal, s(n). The error is the far-end
signal minus the received signal. The table shows that the error between the two signals is very small. Thus, the
adaptive filter works properly and generates an acceptable estimate of the echo, even when the far-end signal is
present.

Table 8. Filter Coefficients

n = 100 n = 200 n = 300 n = 400

h(9) = –0.0052 –0.0003 –0.0000 –0.0047

h(8) = –0.0062 –0.0010 0.0000 –0.0008

h(7) = 0.0014 –0.0005 0.0000 0.0027

h(6) = 0.0020 0.0005 –0.0000 0.0015

h(5) = 0.0045 0.0008 0.0000 0.0029

h(4) = 0.0049 0.0004 0.0000 0.0002

h(3) = –0.0068 –0.0007 0.0000 0.0035

h(2) = 0.2999 0.3150 0.3162 0.3197

h(1) = –0.0034 –0.0003 0.0000 0.0046

h(0) = 0.0026 0.0008 0.0000 –0.0049

Table 9. Received/Far-End Signal Error

n e(n) Far-End (n) Error

381 –0.2092 –0.2063 0.0029

382 –0.3894 –0.3895 –0.0001

383 0.3776 0.3781 0.0005

384 0.1931 0.1964 0.0033

385 0.3200 0.3245 0.0045

386 0.1265 0.1301 0.0036

387 –0.2400 –0.2394 0.0006

388 0.1939 0.1953 0.0014

389 –0.0094 –0.0078 0.0016

390 –0.5286 –0.5289 –0.0003

0.1 0.316=
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

24 Freescale Semiconductor

Correlation Notes
4 Correlation Notes
This section gives a few notes on how to implement correlations using the EFCOP. The general correlation
equation for real valued signals is:

 Equation 8

where r ab (k) is the cross-correlation between signals a(n) and b(n). If a(n) = b(n), then Equation 8 is the auto-
correlation.

Equation 8 is similar to the general convolution equation implemented by the EFCOP:

 Equation 9

where y(n) is the result of filtering the signal x(n) with the filter coefficients h(n).

Equation 8 converts into the second part ofEquation 9 if the filter input signal, x(n), is replaced with the a(n)
signal and the filter coefficients are replaced with the b(n) signal values in reverse order. However, the EFCOP
filter coefficients are stored in memory in reverse order. Thus, implementing a cross-correlation using the EFCOP
is as simple as using the first signal as the input signal and the second signal as the filter coefficients, making sure
that the second signal is stored in memory in the proper non-reversed order.

391 –0.1407 –0.1391 0.0016

392 0.4876 0.4880 0.004

393 –0.2476 –0.2458 0.0018

394 –0.3945 –0.3958 –0.0013

395 0.0678 0.0714 0.0036

396 0.2297 0.2308 0.0011

397 –0.1418 –0.1407 0.0011

398 0.1386 0.1342 –0.0044

399 –0.5797 –0.5796 0.0001

400 0.0654 0.0665 0.0011

Table 9. Received/Far-End Signal Error (Continued)

n e(n) Far-End (n) Error

rab(k) = a(n)b(k + n)

n

∑

y(k) = h(n)x(k - n) = x(n)h(k - n)

n

∑
n

∑

Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

Freescale Semiconductor 25

Programmer’s Reference
5 Programmer’s Reference

Figure 8. EFCOP Counter and Control Status Registers (FCNT and FCSR)

EFCOP

Filter Count Register (FCNT)
Y:$FFFFB3 Read/Write
Reset = $000000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 019 18 17 1623 22 21 20

Filter Count Value*0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0

* = Reserved, Program as 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FPCR FOM1FOM0 FADP FLT FEN

19 18 17 1623 22 21 20
FMLCFD FSAT FDOE FSCO*0 *0*0 *0*0 *0 *0

EFCOP Control Status Register (FCSR)
Y:$FFFFB4 Read/Write
Reset = $000000

* = Reserved, Program as 0

*0 *0
FD F FDIE

OBF IBE CONT
FUPD

Filter Data Output Buffer Full Bit 15

0 = FDOR is not full
1 = FDOR is full

(Read only status bit)

Filter Data Input Buffer Empty Bit 14

0 = FDIR is not empty
1 = FDIR is empty

(Read only status bit)

FilterContention Bit 13

0 = No dual access occurred
1 = Core and EFCOP tried to access

(Read only status bit)

the same bank in FDM or FCM

FilterSaturation Bit 12

0 = No FMAC underflow/overflow
1 = FMAC underflow/overflow occurred

(Read only status bit)

FilterData Output Interrupt Enable Bit 11

0 = Interrupt disabled
1 = Interrupt enabled

(Read/write control bit)

FilterData Input Interrupt Enable Bit 10

0 = Interrupt disabled
1 = Interrupt enabled

(Read/write control bit)

Filter Enable Bit 0
0 = EFCOP Disabled
1 = EFCOP Enabled

Filter Type Bit 1
0 = FIR
1 = IIR

Adaptive Mode Enable Bit 2
0 = Adaptive Mode Disabled
1 = Adaptive Mode Enabled

Update Mode Enable Bit 3
0 = Update Mode Disabled
1 = Update Mode Enabled

Filter Operating ModeBits 5–4
00 = Real 10 = Alt. Complex
01 = Complex 11 = Magnitude

Channels Bit 6
0 = Single channel
1 = Multichannel

Coefficients Bit 8
0 = Not shared
1 = Shared

Initialization Bit 7
0 = Preprocess initialization
1 = No initialization
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

26 Freescale Semiconductor

Programmer’s Reference
Figure 9. EFCOP FACR, FDBA, FCBA, and FDCH Registers

EFCOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FSA FSM

Filter

19 18 17 1623 22 21 20
FISL*0 *0*0 *0*0 *0 *0

EFCOP ALU Control Register (FACR)
Y:$FFFFB5 Read/Write
Reset = $000000

* = Reserved, Program as 0

*0 *0 Rounding

Saturation Mode Bit 4
0 = Disabled 1 = Enabled

Sixteen-bit Arithmetic Mode Bit 5
0 = Disabled 1 = Enabled

Filter Rounding Mode Bits 3–2
00 = Convergent

10 = Truncation

Filter Input Scaling Bit 6
0 = Not used 1 = Used

*0 *0 *0 *0 *0 *0 *0 *0 Mode Scaling

Filter Scaling Bits 1–0
00 = × 1 10 = × 16
01 = × 8 11 = Reserved

01 = Two’s complement

11 = Reserved

EFCOP Data Base Address (FDBA)
Y:$FFFFB6 Read/Write
Reset = $000000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Base Address (FDM Pointer)

EFCOP Coefficient Base Address (FCBA)
Y:$FFFFB7 Read/Write
Reset = $000000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coefficient Base Address (FDM Pointer)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 019 18 17 1623 22 21 20

*0 *0*0 *0*0 *0

EFCOP Decimation/Channel Count Register (FDCH)
Y:$FFFFB8 Read/Write
Reset = $000000

* = Reserved, Program as 0

*0 *0 *0 *0 *0 *0 Filter Deci-
mation Value *0 *0 Filter Channels Value
Programming the DSP56300 Enhanced Filter Coprocessor (EFCOP), Rev. 1

Freescale Semiconductor 27

Document Order No.: APR39

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore
is a licensed trademark of StarCore LLC. All other product or service names are the property
of their respective owners.

© Freescale Semiconductor, Inc. 1998, 2005.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Rev. 1
8/2005

	1 EFCOP Programming Model
	1.1 EFCOP Description
	1.2 EFCOP Registers

	2 IIR Filter Example
	2.1 IIR Filter Theory
	2.2 IIR Filter Design
	2.3 IIR Filter Example Code
	2.4 Filter Results

	3 Echo Canceller Example
	3.1 Echo Canceller Theory
	3.2 Echo Canceller Design
	3.3 Example Code
	3.4 Echo Canceller Results

	4 Correlation Notes
	5 Programmer’s Reference

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

