

© 2016 NXP B.V.

Interleaved PFC Average Current Control
Implementation using MKV46F256VLx16 on High Voltage
Motor Control Platform

1. Introduction
This application note describes the implementation of
the interleaved Power Factor Correction (PFC)
operating in the Continuous Conduction Mode (CCM)
on the MKV46F256VLx16 ARM® Cortex®-M4 MCU.
The MKV46F256VLx16 is a member of the Kinetis
KV4x MCU family. The peripherals available on this
MCU are dedicated for an easy implementation of the
power conversion applications.

A two-channel interleaved PFC operating in the CCM
mode is used for the AC/DC conversion while
compensating the Power Factor (PF). This application
note includes the system design concept, the software
design, and the control loops design. The detailed
system operation, the PFC control theory, and the
control loops design is described in Average Current
Mode Interleaved PFC Control (document AN5257).
All equations mentioned in this application note refer to
AN5257.

The hardware used for the PFC application development
is the High Voltage Motor Control Platform
(HVP-MC3PH) together with the MKV46F150M
Controller Card (HVP-KV46F150M). Both boards are a
part of the NXP High Voltage Development Platform.
All information about this development platform are
available at nxp.com/hvp.

NXP Semiconductors Document Number: AN5355

Application Note Rev. 0 , 11/2016

Contents

1. Introduction .. 1
2. System design concept ... 2

2.1. System architecture ... 2
2.2. System specification.. 3
2.3. PFC control process implementation on KV46 3

3. Software design .. 4
3.1. Project files structure... 4
3.2. Scaling of analog quantities 6
3.3. Application overview .. 7
3.4. PWM reload interrupt ... 12
3.5. PIT timeout interrupt ... 14
3.6. Peripheral configuration .. 14
3.7. PFC Control Peripheral Drivers (PFCDRV) 16
3.8. Application timing .. 18

4. Control loops design .. 20
4.1. Current controller design 20
4.2. Voltage controller design 23
4.3. Low-pass filter design ... 25

5. Application setup and control ... 27
5.1. Hardware setup ... 27
5.2. Building and debugging application 27
5.3. Application control ... 30

6. PFC integration .. 31
6.1. PFC application control structures description 31

7. Efficiency measurement ... 32
8. Conclusion ... 32
9. References .. 33
10. Revision history ... 33

http://www.nxp.com/doc/AN5257
http://www.nxp.com/doc/AN5257
http://www.nxp.com/hvp

System design concept

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
2 NXP Semiconductors

2. System design concept
This chapter describes the hardware used for the PFC application implementation and the application
control process implementation on the MKV46F150M controller.

2.1. System architecture
The application is developed on the High Voltage Motor Control Platform (high-voltage power stage
HVP-MC3PH) and the KV46F150M Controller Card (HVP-MKV46F150M). The system design
architecture is shown in this figure:

Figure 1. System design architecture

The high-voltage power stage contains the whole power circuitry and the signal conditioning stage for
the adaptation of the sensing signals for the controller card. The high-voltage power stage and the
controller card are described in detail in the Freescale High-Voltage Motor Control Platform User's
Guide (document HVPMC3PHUG) and the HVP-KV46F150M User’s Guide (document
HVPKV46F150MUG).

http://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com/doc/HVPKV46F150MUG

System design concept

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 3

CAUTION
Before you run the application, check the revision of your HVP-MC3PH
board. If your board revision is 1, please replace the operation amplifier
U2 by MAX4477ASA+. Otherwise, the PFC application is not going to
run properly.

2.2. System specification
The application has these performance features:

1. Hardware topology used:
— Interleaved boost converter.

2. Control technique incorporated:
— Average current mode control with a constant switching frequency of 100 kHz.
— 20-µs current loop.
— 1-ms voltage loop.
— Soft start.

3. Fault protection:
— Input under-voltage and over-voltage.
— DC-Bus under-voltage and over-voltage.
— Over-current.
— Start-up fault.

2.3. PFC control process implementation on KV46
The PFC control process consists of the implementation of two control loops, as shown in Figure 2: the
fast current control loop and the slow voltage control loop. The output DC-Bus voltage (Vout) is
compared with the reference voltage (Vout reference). The voltage difference (Vout_error) is fed to the voltage
controller. The voltage controller output is multiplied by the input voltage (Vin) and the feed-forward
factor, which is derived from the RMS value of the input voltage. The result of the multiplication is the
current reference (Iref) for both current loops. Two boost converters operate independently and therefore
two current control loops are implemented. The output current errors (I1err and I2err) are then processed
in the current controllers. The outputs from the current controllers are the duty cycles for the boost
converters. The interleaved PFC topology enables the operation of two converters in parallel, sharing the
converter load by a half.

The key peripherals for the PFC application implementations are the Analog-to-Digital Converter
(ADC), the Pulse Width Modulator (eFlexPWM), the Periodic Interrupt Timer (PIT), the
Inter-Peripheral Crossbar Switch (XBAR) and the And/Or/Invert logic module. The PWM submodule 3
generates the driving signals for two MOSFET transistors and the PWM is configured to generate
center-aligned PWM signals. The PWM reload interrupt is generated every second switching period
(20 µs). This fast interrupt processes both current control loops. The generated PWM signals are shifted
by a half of the switching period. The ADC senses the analog quantities in the middle of each PWM
period and each phase. The sensed quantities are the input voltage, the boost converter currents, and the

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
4 NXP Semiconductors

output DC-Bus voltage. The measurement is synchronized with the PWM generation due to the
measurement of the average values of the boost currents. The PIT timer 0 is used to generate the 1-ms
periodical interrupt for the voltage control loop processing. Two trigger signals (one for each phase) are
generated by the eFlexPWM module in the middle of each PWM period and linked to the ADC via the
XBAR module. The XBAR module serves to interconnect the control signals between the peripherals.
The communication with FreeMASTER is done via the UART serial interface module.

FreeMASTER is a run-time debugging/tuning tool for application development and information
management. The peripheral configurations are described in detail in Section 3.7, “PFC Control
Peripheral Drivers”.

Figure 2. System control scheme

3. Software design
This chapter describes the software design of the interleaved PFC application. The project was
developed in the IAR Embedded Workbench® IDE using the Kinetis SDK IDE and the Real-Time
Control Embedded Libraries (RTCESL).

3.1. Project files structure
The project is located in three sub-directories and consists of these files:

1. ..\build\iar\hvp_kv46_pfc_ccm_interleaved.eww—the workspace data file for the IAR Embedded
Workbench IDE, double-click the file to launch the IAR IDE.

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 5

2. ..\build\iar\hvp_kv46_pfc_ccm_interleaved.ewp—the project file for the IAR Embedded
Workbench IDE.

3. ..\build\iar\hvp_kv46_pfc_ccm_interleaved.ewd—the debugger data file for the IAR Embedded
Workbench IDE.

4. build\iar\pfc_interleaved_ccm_kv4x_iar.pmp—the FreeMASTER project file for the application
demonstration.

5. ..\src\common\rtcesl\—this directory contains the RTCESL embedded libraries.
6. ..\src\common\sdk\—this directory contains startup routines, linker files, header files,

core-specific functions, and core-clock settings. These files are taken from the Kinetis SDK IDE.
See www.nxp.com/KSDK for more information.

7. ..\src\projects\board\app_init.c—the application peripheral initialization C source file.
8. ..\src\projects\board\app_init.h—the application initialization header file.
9. ..\src\projects\board\clock_config.c—the clock configuration C source file.
10. ..\src\projects\board\clock_config.h—the clock configuration header file.
11. ..\src\projects\board\pfcdrv_hvp-kv46f.c—the application peripheral initialization C source file

for the specific board and MCU used.
12. ..\src\projects\board\pfcdrv_hvp-kv46f.h—the application peripheral initialization header file.
13. ..\src\common\pfc_algorithms\pfc_control.c—the PFC control algorithm C source file.
14. ..\src\common\pfc_algorithms\pfc_control.h—the PFC control algorithm header file.
15. ..\src\common\pfc_drivers\pfcdrv_adc_adc12.c—the PFC ADC driver C source file.
16. ..\src\common\pfc_drivers\pfcdrv_adc_adc12.h—the PFC ADC driver header file.
17. ..\src\common\pfc_drivers\pfcdrv_pwma_pwm1ph.c—the PFC PWM driver C source file.
18. ..\src\common\pfc_drivers\pfcdrv_pwma_pwm1ph.h—the PFC PWM driver header file.
19. ..\src\projects\main.c—the main C source file.
20. ..\src\projects\main.h—the main header file.
21. ..\src\projects\pfc_appconfig.h—the PFC configuration header file contains the definition of the

constants for the application control, such as the parameters of the power stage, the PI
controllers’ parameters, the filters’ parameters, and others.

NOTE
The software package is distributed as a stand-alone installation and all
components are included in the project directory, so it is not needed to
install any other components.

3.1.1. Data types
This application uses several data types: (un)signed integer, fractional, and accumulator. The integer
data types are useful for general-purpose computation; they are familiar to the MPU and MCU
programmers. The fractional data types enable the implementation of numeric and digital signal
processing algorithms. The accumulator data type is a combination of both; that means it has the integer
and fractional portions.

The following list shows the integer types defined in the libraries:

http://www.nxp.com/KSDK

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
6 NXP Semiconductors

• Unsigned 16-bit integer—<0 ; 65535> with a minimum resolution of 1.
• Signed 16-bit integer—<-32768 ; 32767> with a minimum resolution of 1.
• Unsigned 32-bit integer—<0 ; 4294967295> with a minimum resolution of 1.
• Signed 32-bit integer—<-2147483648 ; 2147483647> with a minimum resolution of 1.

This list shows the fractional types defined in the libraries:
• Fixed-point 16-bit fractional—<-1 ; 1 - 2-15> with a minimum resolution of 2-15.
• Fixed-point 32-bit fractional—<-1 ; 1 - 2-31> with a minimum resolution of 2-31.

This list shows the accumulator types defined in the libraries:
• Fixed-point 16-bit accumulator—<-256.0 ; 256.0 - 2-7> with a minimum resolution of 2-7.
• Fixed-point 32-bit accumulator—<-65536.0 ; 65536.0 - 2-15> with a minimum resolution of 2-15.

3.2. Scaling of analog quantities
This equation shows the relationship between the real and fractional representations:

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 =
𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓

where:
• Fractional Value = the fractional representation of quantities [–]
• Real Value = the real quantity in physical units [..]
• Real Quantity Range = the maximum defined quantity value used for scaling in physical units [..]

Some examples of the quantities’ scaling are provided in the following sub-sections.

3.2.1. Voltage scale
The voltage is generally measured on the voltage resistor divider by the ADC. Therefore, the maximum
voltage scale is proportional to the maximum ADC input voltage range, and it is 443 V for the
high-voltage power stage. The following equation shows how the fractional voltage variable is used:
Voltage scale: Vmax = 443 V

Measured voltage: Vmeasured = 390 V

(𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭)𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒆𝒆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 =
𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎

= 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑
𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 = 𝟎𝟎.𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖

This 16-bit fractional variable is stored internally as a 16-bit integer variable:

(𝑰𝑰𝑰𝑰𝑰𝑰𝟏𝟏𝟏𝟏)𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒆𝒆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 = (𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭)𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒆𝒆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗. 𝟐𝟐𝟏𝟏𝟏𝟏 = 𝟎𝟎. 𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖. 𝟐𝟐𝟏𝟏𝟏𝟏 = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐

Figure 3 illustrates the previous equations of the voltage scaling into a fractional number, the voltage
value is read by the ADC as 12-bit signed number with a left justification for the 16-bit number.

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 7

In case the floating-point number representation of this value is needed, the fractional number is
converted to the float number as:

(𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇)𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒆𝒆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 =
𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎
𝟐𝟐𝟏𝟏𝟏𝟏

(𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭)𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒆𝒆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗

Figure 3. Voltage measurement

3.2.2. Current scale
The current is generally measured as a voltage drop on the PFC shunt resistors, which is amplified by an
operational amplifier. Only the positive currents are measured on the shunt resistors. The amplified
signal has an 82-mV offset due to the non-linearity of the operation amplifier. The maximum current
scale is proportional to the maximum ADC input voltage range plus the offset (see Figure 4). The
manipulation with the current variable is similar to the voltage variable manipulation.

Figure 4. Current measurement

3.3. Application overview
The PFC software is interrupt-driven, with two PFC state machines running in two periodical interrupts.
Besides the PFC state machines, there is the main application state machine running on the background
in the main endless loop. The PFC control algorithm is designed to create one compact unit and can be
easily incorporated into any target application. The entire PFC control algorithm is implemented in two
Interrupt Service Routines (ISR). The two current loops are executed in the fast interrupt every 20 µs
and the voltage loop is executed in the slow interrupt with a 1-ms period of execution. The ISR routines

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
8 NXP Semiconductors

are described in detail in Section 3.5, “PIT timeout interrupt” and Section 3.6, “Peripheral
configuration”.

After an MCU reset, the application performs the clock and GPIO port peripheral initialization followed
by the PFC peripheral drives initializion and the FreeMASTER embedded driver initialization. After a
complete initialization, the global interrupt is enabled and the application jumps to the endless main
loop. The background loop handles the time non-critical tasks, such as the application state machine and
FreeMASTER communication. The flowchart of the main loop is shown in the following figure.

Figure 5. The main loop flowchart

The PFC control algorithm itself is driven by two PFC state machines called in the fast and slow control
loops. The state of the fast PFC state machine is determined by the actual operational state of the PFC,
while the slow state machine simply follows the fast one.

3.3.1. Application state machine
The PFC control algorithms can be easily integrated into other software. This reference code
demonstrates the usage of the PFC control algorithm in a standalone PFC application. The application
state machine controls the whole execution of the reference application. The application machine is

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 9

responsible for the proper PFC algorithm variables initialization and the control of the PFC algorithm
according to the commands from the master system. In this reference application, the master system is
represented by FreeMASTER, which enables you to control the PFC from a PC.

The application state machine consists of these four main states (see Figure 6):
• Fault—the application detects a fault condition and waits until the user clears the fault in

FreeMASTER.
• Init—the application control variables initialization—the control and status words initialization.
• Stop—the application is initialized and waiting for the Run command from FreeMASTER. It can

pass to the Fault state when a fault is detected.
• Run—the application is running. It may be stopped by the Stop command from FreeMASTER or

pass to the Fault state when a fault is detected.

Figure 6. Application state machine

Each state in the state machine is represented by a particular function, which is executed periodically
when the state machine is in the appropriate state. If the condition for a transition from one state to
another is met, the transition function is called once during the transition. The transition function has a
name of xxToyy, where xx stands for the initial state and yy stands for the target state. For example,
during a transition from the Init state to the Stop state, the InitToStop() function is executed.

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
10 NXP Semiconductors

3.3.2. Fast PFC state machine
The fast PFC state machine PFC_StateMachineFast is shown in Figure 7. It is executed in the PWM
ISR interrupt and incorporates these five states:

• PfcFaultStateFast—the PFC state machine stays in this state until a fault condition becomes
valid. All faults are cleared after the preset time. If no fault condition persists, the state machine
jumps to the Stop state.

• PfcInitStateFast—the PFC variables’ initialization. When the initialization is done, the state
machine jumps to the Stop state.

• PfcStopStateFast—the PFC is initialized and waiting for the Run command. It can pass to the
Fault state when a fault is detected. The input voltage must be above the minimum value to stay
in the Stop state and to not enter the Fault state.

• PfcSoftStartStateFast—the PFC soft start fast loop execution. It can be interrupted by the Stop
command or pass to the Fault state when a fault is detected. When the nominal DC-Bus voltage
is reached within a preset time, the state machine jumps to the Run state. Otherwise, it goes to
the fault state.

• PfcRunStateFast—the PFC is running. It can be stopped by the Stop command or pass to the
Fault state when a fault is detected.

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 11

Figure 7. Fast PFC state machine

The transition functions are defined in the same way as for the application state machine.

3.3.3. Slow PFC state machine
The slow PFC state machine (shown in Figure 8) is executed in the PIT0 ISR and incorporates the same
five states as the fast PFC state machine:

• PfcFaultStateSlow—an empty state.
• PfcInitStateSlow—an empty state.
• PfcStopStateSlow—an empty state.
• PfcSoftStartStateSlow—the PFC soft start slow loop execution. The DC-Bus voltage reference

voltage is ramped up to the required DC-Bus voltage level.
• PfcRunStateSlow—the PFC run slow loop execution. The voltage controller keeps the DC-Bus

voltage at the required level.

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
12 NXP Semiconductors

Figure 8. Slow PFC state machine

The transition functions are defined in the same way as for the application state machine.

3.4. PWM reload interrupt
The time-critical algorithms and the fast PFC state machine PFC_StateMachineFast are performed in
the fast PWM interrupt service routine. The control algorithms implemented in the PWM ISR are:

• Fast PFC state machine.
• Read ADC quantities.
• Input voltage filter.
• DC-Bus voltage filter.
• PFC current filters.
• Current reference calculation—fast part.
• Current controllers.

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 13

The PWM ISR is executed regularly every 20 µs with the highest interrupt priority. The ADC
conversion is synchronized with the PWM period and the conversion is started by two trigger signals.
The trigger signal is always in the middle of the switching period for each phase. The complete
application timing is described in Section 3.8, “Application timing”. The ADC conversion runs in the
background. The control algorithm execution depends on the actual state. The control algorithms
executed in the particular states only are marked by a superscripted star (see Figure 9).

Figure 9. PWM ISR flow chart

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
14 NXP Semiconductors

3.5. PIT timeout interrupt
The PIT timeout interrupt is executed every 1 ms and has a lower priority level than the PWM interrupt.
The slow PFC state machine PFC_StateMachineSlow is executed in this ISR. The control algorithms
implemented in this interrupt are:

• Slow PFC state machine.
• Voltage controller.
• Current reference calculation—slow part.
• Power calculation.

Figure 10. PIT0 ISR flow chart

3.6. Peripheral configuration
The application uses the dedicated peripherals for the PFC algorithm implementation and
communication with FreeMASTER. The peripherals used in the application are: ADC, eFlexPWM,
XBAR, PIT, and SCI. The other unused peripherals are disabled and not powered. The peripheral’s
initialization is described in the following subsections.

3.6.1. ADC (Analog to Digital Converter)
The ADC consists of two separate 12-bit ADCs with many analog inputs and its own S/H circuit that
enable a fast conversion.

The ADC module is configured as follows:
• The IPBus clock/5 is the clock source—20 MHz.
• Single-ended channels configuration.

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 15

• Simultaneous parallel scanning.
• Trigger source from the eFlexPWM module (logic OR above Trigger 0 and Trigger 1).

3.6.2. eFlexPWM (Enhanced Flex Pulse Width Modulator)
The eFlexPWM is a dedicated peripheral that enables the generation of the control PWM signals. The
PWM submodule 3 is used to generate two control signals for the boost converter MOSFET transistors.
The PWM signal generation is shown in Figure 7.

The PWM submodule 3 is configured as follows:
• The IPBus clock is the clock source—100 MHz.
• Nano-edge PWM generation enabled.
• Independent, center-aligned operation mode.
• Modulo value 1000 ~ 100 kHz switching frequency.
• INIT value = - modulo value/2.
• VAL0, VAL2, VAL3 = 0.
• VAL1 = modulo value/2.
• VAL4 = - modulo value/2.
• VAL5 = modulo value/2.
• PWMA positive output polarity.
• PWMB negative output polarity.
• Full cycle reload and interrupt on every second PWM period (20 µs).
• Triggers 0 and 1 provide the synchronization signal to start the ADC conversion.

PWM Fault 0:
• The high-level detection indicates the over-current fault on the IPM module.
• Manual fault clearing.
• Fault input filter enabled.

3.6.3. XBAR A (crossbar switch module A)
The crossbar switch module A implements an array of 32 inputs and 40 outputs of the combinational
digital multiplexes. This module provides a flexible connection from any input to any output under the
user’s control.

The application configuration is as follows:
• Channel 12, ADC Trigger:

— The AOI EVENT0 signal is used for the ADC synchronization.
• Channel 14, PWM module Fault0:

— The XBARIN7 (GPIOE.1) signal is routed to the PWM Fault 0 input.

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
16 NXP Semiconductors

3.6.4. XBAR B (crossbar switch module B)
The crossbar switch module B implements an array of 26 inputs and 16 outputs of the combinational
digital multiplexes. This module provides a flexible connection from any input to any input of the
And/Or/Inverter (AOI) module under the user’s control.

The application configuration is as follows:
• The AOI EVENT0 input A is linked to Trigger 0 from the PWM submodule 3.
• The AOI EVENT0 input B is linked to Trigger 1 from the PWM submodule 3.

3.6.5. And/Or/Invert (AOI) module
The AOI module provides the boolean logic function operation among the on-chip peripheral control
signals. The inputs’ signals are linked over the XBAR B module. The logic OR function in the AOI
EVENT 0 over the Trigger 0 and 1 signals from the PWM submodule 3 is used to generate the
synchronization signal for the ADC module.

3.6.6. PIT timers
The PIT timers can generate trigger pulses and interrupts. Timer 0 is used to generate a periodic
interrupt every 1 ms. The interrupt is used to execute the voltage control loop and calculate a part of the
current reference. The PIT Timer 0 configuration is as follows:

• The IPBus clock is the clock source—25 MHz.
• The modulo value is set to 25000.
• The timeout interrupt is enabled.

3.6.7. SCI module
The SCI module is configured to communicate with the FreeMASTER application. The module is set to
receive/transmit 8-bit data with a baud rate of 19200 and no parity.

3.7. PFC Control Peripheral Drivers (PFCDRV)
The PFCDRV provides a simple way of peripheral initialization and access for the PFC control. The
features of the PFCDRV library include 2-phase PWM generation and 2-phase current measurement, as
well as the measurement of the Input voltage, the DC-Bus voltage, and the IPM temperature (or one
general user-defined auxiliary quantity).

The PFCDRV consists of these two parts:
• The first part is the peripheral initialization module consisting of the pfcdrv_hvp-kv46f.c and

pfcdrv_hvp-kv46f.h files. These files are unique for each supported device. The header file
includes all PFCDRV setup options, including the ADC channel assignment. The source file
contains the functions to initialize all peripherals used for the PFC control. This module is
described in Section 3.7.1, “PFCDRV initialization”.

• The second part consists of the peripheral driver library modules for each supported periphery.

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 17

All ADC and PWM periphery drivers share the same API within their class. This enables the
higher-level code to be platform-independent, because the peripheral driver function calls are
replaced by the universally-named macros. The list of the supported peripherals and the APIs of
their drivers are provided in Section 3.7.2, “PFCDRV API”.

3.7.1. PFCDRV initialization
The PFCDRV initialization module consists of the MCU peripheral-initialization functions and all
definitions. The functions are contained in the device-specific pfcdrv_hvp-kv46f.c source and
pfcdrv_hvp-kv46f.h header files. From all the functions in the PFCDRV initialization module, it is only
necessary to call the PFCDRV_Init() function during the MCU startup, before calling any other
PFCDRV functions. All the peripherals used by the given device for the PFC control purposes are
initialized within this function.

The pfcdrv_hvp-kv46.h header file provides several macros that you may define:
• PFCDRV_ADC—this macro specifies the ADC peripheral used. The KV4x family has a cyclic

12-bit ADC.
• PFCDRV_PWM1PH—this macro specifies the PWM peripheral used. The Pulse Width

Modulator (PWM) A or the FlexTimer module can be selected. The PWM A was selected
because it enables a high PWM generation with a 260-ps resolution.

• PFCDRV_TMR_SLOWLOOP—this macro specifies the timer used for the periodical slow loop
execution. The PIT Timer 0 is selected.

• PFC_PWM_FREQ—the value of this definition sets the PWM frequency. Its value is used to
calculate the modulo value.

• PFC_FREQ_VS_PWM_FREQ—the value of this definition represents the n-th PWM period,
causing the PWM reload interrupt.

• PFC_SLOW_LOOP_FREQ—the value of this definition sets the slow loop execution period.
• PFC_PWM_PAIR—the value of this definition sets the PWM submodule to be used.

3.7.2. PFCDRV API
The ADC and PWM PFCDRV share the same API within their class. To ensure the device
independency on the PFCDRV API, all driver functions are accessible through the universally-named
macros in the pfcdrv_hvp-kv46f.h file. The available API of the ADC PFCDRV is:

• PFCDRV_ADC_T—PFCDRV ADC structure data type. The structure contains pointers that
serve as a communication layer with the higher-level software. These variables are initialized by
default in the pfcdrv_hvp-kv46f.c file in the initialization function of the selected ADC
peripheral. The I/O layer variables are:

— pf16UDcBus—pointer to a 16-bit fractional variable in which you want to store the
measured DC-Bus voltage sample.

— pf16UInput—pointer to a 16-bit fractional variable in which you want to store the
measured input voltage sample.

— pf16I1ph—pointer to a 16-bit fractional variable in which you want to store the measured
boost current 1 sample.

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
18 NXP Semiconductors

— pf16I2ph—pointer to a 16-bit fractional variable in which you want to store the measured
boost current 2 sample.

• bool_t PFCDRV_ADC_PERIPH_INIT()—this function is by default called during the ADC
peripheral initialization procedure triggered by the PFCDRV_Init() function, and it must not be
called again after the peripheral initialization is done.

• bool_t PFCDRV_ADC_GET(PFCDRV_ADC_T*)—this function reads the measured quantities
and stores their values in the related variables. This function always returns true.

• bool_t PFCDRV_CURR_1PH_CALIB_INIT(PFCDRV_ADC_T*)—this function initializes the
boost current channel offset measurement. This function always returns true.

• bool_t PFCDRV_CURR_1PH_CALIB(PFCDRV_ADC_T*)—this function reads the current
value from the unpowered boost converters and filters them using the moving average filters.
The goal is to obtain the value of the measurement offset. The length of the window for the
moving average filters is set by the ui16TimeCalibration variable. This function always returns
true.

• bool_t PFCDRV_CURR_1PH_CALIB_SET(PFCDRV_ADC_T*)—this function asserts the boost
current measurement offset values to the internal registers. Call it after the calibration time
expires. This function always returns true.

The API for the PWM PFC-Control Peripheral Drivers is:
• PFCDRV_PWM1PH_T—PFCDRV PWM structure data type. The structure contains the I/O

layer variable, which is initialized by default in the pfcdrv_hvp-kv46f.c file in the initialization
function of the selected PWM periphery. The I/O layer variables are:

— pf16Duty1—pointer to a 16-bit fractional variable in which the duty cycle for the boost
converter 1 is stored.

— pf16Duty2—pointer to a 16-bit fractional variable in which the duty cycle for the boost
converter 2 is stored.

• bool_t PFCDRV_PWM_PERIPH_INIT(PFCDRV_PWM1PH_T *)—this function is called by
default during the PWM periphery-initialization procedure triggered by the PFCDRV_Init()
function. This function always returns true.

• bool_t PFCDRV_PWM1PH_SET(PFCDRV_PWM1PH_T *)—this function updates the PWM
duty cycles based on the values stored in the f16Duty1 and f16Duty2 variables. This function
always returns true.

• bool_t PFCDRV_PWM1PH_EN(PFCDRV_PWM1PH_T*)—calling this function enables all
PWM channels. This function always returns true.

• bool_t PFCDRV_PWM1PH_DIS(PFCDRV_PWM1PH_T *)—calling this function disables all
PWM channels. This function always returns true.

• bool_t PFCDRV_PWM1PH_FLT_GET(PFCDRV_PWM1PH_T *)—this function returns the
state of the over-current fault flag and automatically clears the flags (if set). This function returns
true when the over-current events occur. Otherwise, it returns false.

3.8. Application timing
This section describes the PFC control application timing. The graphical representation of the
application timing is shown in Figure 11. All the tasks are handled in the interrupt service routines or

Software design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 19

within the main loop. The fast control loop is executed in the PWMA_RELOAD3_IRQHander()
interrupt. The slow control loop is executed in the PIT0_IRQHander() interrupt. The FreeMASTER pool
function FMSTR_Pool() is handled in the infinite main loop.

The application timing is based on the PWM generation with a timebase of 10 µs. The fastest interrupt is
executed regularly every second PWM period (20 µs) within the highest interrupt priority. The slower
interrupt is executed regularly every 1 ms with a lower interrupt priority. The remaining time is filled by
the FreeMASTER communication with the host PC and the application state machine. The ADC
conversion is synchronized with the PWM period and the conversion is started by two trigger signals.
One trigger signal is in the middle of the switching period defined by the VAL0 register. The analog
quantities are sampled in this order: the input voltage, the DC-Bus voltage, and the boost current 1. The
second trigger signal is at the end of the switching period (the middle of the second phase) defined by
the VAL1 register. At this moment, the boost current 2 and the IPM module temperature are sampled.
Because the boost currents are measured in the middle of the switching periods, the current samples
represent the average currents of each boost converter leg. The ADC conversion takes up to 780 ns.
The ADC conversion time is considered during the fast interrupt execution. The ADC conversion must
be finished before the current controllers are calculated.

Figure 11. Application timing

Control loops design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
20 NXP Semiconductors

4. Control loops design
The control loops design comes from the small signal model of the boost converter. The mathematical
model of this converter and the control theory is described in the Average Current Mode Interleaved
PFC Control (document AN5257). All equations references mentioned in this section correspond to the
equations references in the Average Current Mode Interleaved PFC Control (document AN5257). The
average current control mode of the boost converter control is implemented using three control
loops/blocks: the current loop, the voltage loop, and the feed-forward block. The current controller, the
voltage controller, and the low-pass filter for the feed-forward block are described in this section. The
parameters of the boost converter for the control loops design are summarized in the following table.

Table 1. Boost converter parameters

Parameter Value
Output power per leg 400 W

Boost inductor 650 µH
DC-Bus capacitor 660 µF

Switching frequency 100 kHz
DC-Bus voltage 400 V

Input voltage 230 VAC
Sampling frequency 50 kHz

4.1. Current controller design
The transfer function of the power stage in the current loop with the parameters from Table 1 is given by
this equation:

sssL
VsG out

id

5

4
101538.6

105.6
400)(⋅

=
⋅⋅

== −

TD represents the system delay caused by the digital control. The delay is the sum of the sampling delay
and the digital PWM modulator delay calculated according to Eq. 7. The total delay is 15 µs. The delay
in the system is represented by the first-order Pade approximation given by Eq. 6.

6

6

5

5

105.71
105.71

2
105.11

2
105.11

)(−

−

−

−

⋅⋅+
⋅⋅−

=
⋅⋅

+

⋅⋅
−

==
s
s

s

s

sGTD

5
66

105.1
2
1010

2
1020 −

−−

⋅=
⋅

+
⋅

=DT

The bode plot of the power stage transfer function (including the digital delay) is shown in the following
figure.

http://www.nxp.com/doc/AN5257
http://www.nxp.com/doc/AN5257

Control loops design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 21

Figure 12. Bode plot of power stage including digital delay

The block diagram of the inner current control loop is shown in this figure:

Figure 13. Current loop

GPI(s) represents the transfer function of the PI controller. Gid(s) represents the transfer function of the
current-control loop. For the current loop controller design, the bandwidth of the control loop is set to
4 kHz and the phase margin is set to 65°. To meet the accurate tracking of the current reference signal
and achieve a good dynamic performance, the current controller must have a wide bandwidth and high
gain at low frequencies and a good phase margin. The open loop transfer function of the current loop is
shown in this equation:

)10333.1(
)1603()10333.1(1008.25101538.6

105.71
105.71106035.1

1
3535.65)(52

535

6

63

⋅+⋅
+⋅⋅−⋅⋅−

=
⋅

⋅
⋅⋅+
⋅⋅−

⋅















⋅

+
⋅= −

−

ss
ss

ss
s

s

s

sGOpen

Firstly, the controller design is started by the calculation of the controller zero from the phase
characteristics. The phase margin is defined at a cross-over frequency and the controller zero is
calculated from the phase characteristics using the following equation.

Control loops design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
22 NXP Semiconductors

sradz /106035.1
)1042

2
105.1arctan(265tan(

1042 3

3
5

3

⋅=
⋅⋅⋅⋅

⋅
+°

⋅⋅⋅
= −

π

πω

The controller integral gain is calculated in the second step. The integral gain is calculated from the gain
characteristic at a cross-over frequency using this equation:

3535.65
)

106035.1
1042(1

)1042(
400

105.6

2
3

3

234

=

⋅
⋅⋅⋅

+

⋅⋅⋅
⋅

⋅
=

−

π
π

IK

Finally, the proportional gain of the controller is calculated using this equation:

0408.0
106035.1

3535.65
3 =⋅

=PK

The bode plot of the open control loop in the following figure shows that the control system has the
required control-loop bandwidth of 4 kHz and the phase margin of 65°.

Figure 14. Open current loop bode plot

The proportional and integral gains of the PI controller are scaled to the ACC32 format using Eq. 12 for
the proportional gain and Eq. 13 for the integral gain.

Control loops design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 23

326.0
0.1
0.80.0408_ =⋅=scaledPG

0105.0
0.1
0.8102024.65 5

_ =⋅⋅⋅⋅= −
scaledIG

The scaled current controller parameters are GP_scaled = 0.326 and GI_scaled = 0.0105. The calculated
constants are defined in the pfc_appconfig.h file as follows:
//Current Controller - Parallel type
#define I_KP_GAIN ACC32(0.326)
#define I_KI_GAIN ACC32(0.0105)

4.2. Voltage controller design
The transfer function of the power stage in the voltage loop is given by the following equation from
Average Current Mode Interleaved PFC Control (document AN5257) using the design parameters from
Table 1. The processing delay is ignored due to the oversampling.

576.7
04.616

1106.6
2

4004002

2
4002302

)(
4 +

=






 +⋅⋅⋅⋅

⋅⋅
=

− ss
sGvi

The outer voltage control loop is described in the following figure. GPI represents the gain of the PI
controller and Gvi represents the power stage transfer function with the closed current loop gain.

Figure 15. Voltage loop

The transfer function of the voltage open loop is described by this equation:

()
()576.7

576.7832.62
576.7
04.616)576.7

1
(7727.0)(

+⋅
+⋅

=
+

⋅
+

⋅=
ss

s
ss

s

sGOpen

The design of the voltage controller is calculated according to the required bandwidth ωc and the phase
margin ϕpm of the voltage control loop. Because the bandwidth of the voltage control loop is
significantly smaller than the bandwith of the current control loop, the current control loop is replaced
by the unity gain in the voltage open loop transfer function. The phase margin is set to 90° because the
voltage overshoot is not wanted and the bandwidth of the control loop must be set between 1/10 to 2/10
of 2ωs to sufficiently filter the double grid frequency (2ωs). The bode plot of the voltage open loop is
shown in the following figure.

http://www.nxp.com/doc/AN5257

Control loops design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
24 NXP Semiconductors

Figure 16. Voltage loop system bode plot

The voltage controller parameters are calculated in the same two steps as the current controller. Firstly,
the controller zero from the phase characteristics must be calculated. The phase margin is defined at the
cross-over frequency and the controller zero is calculated using this equation:

sradz /576.7
))

2
400106.6102arctan(90

2
tan(

102
4

=
⋅⋅⋅⋅⋅+°+−

⋅⋅
=

−ππ
πω

The integral gain of the controller is calculated in the second step. The integral gain is calculated from
the gain characteristic at the cross-over frequency using this equation:

7727.0
)

095.50
102(1

)
2

400106.6102(1102

2302400
4004

)(1

)
2

(14

2

24

2

2

=
⋅⋅

+

⋅⋅⋅⋅+⋅⋅⋅

⋅⋅
⋅

=
+

+
=

−

π

ππ

ω
ω

ωω

z

c

cc

IN

OUT
I

RC

VR
VK

Finally, the proportional gain of the controller is calculated using this equation:

102.0
576.7

7727.0
==PK

The bode plot of the open control loop in the following figure shows that the control system has the
required control loop bandwidth of 10 Hz and the phase margin of 90°. The proportional and integral

Control loops design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 25

controller gains are further scaled to the ACC32 digital format using Eq. 12 for the proportional gain and
Eq. 13 for the integral gain.

Figure 17. Open voltage loop bode plot

The scaled voltage controller parameters are GP_scaled = 5.648 and GI_scaled = 0.0428. The calculated
constants are defined in the pfc_appconfig.h file as follows:
//Voltage Controller - Parallel type
#define U_KP_GAIN ACC32(5.648)
#define U_KI_GAIN ACC32(0.0428)

4.3. Low-pass filter design
The input voltage RMS value is needed for the voltage feed-forward block. The RMS value is obtained
by filtering the input voltage using the second-order (n=2) Butterworth filter. This is realized by the
second-order IIR filter GDFLIB_FilterIIR2, taken from the RTCESL general digital function library
(see the Set of General Digital Filters for Cortex M4 Core User’s Guide (document CM4GDFLIBUG)).
The transfer function for the second-order Butterworth filter in the analog domain is shown in this
equation:

22

2

2
)(

cc

c

ss
sH

ωω
ω

++
=

http://www.nxp.com/doc/CM4GDFLIBUG

Control loops design

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
26 NXP Semiconductors

The stop frequency filter fs is set to 100 Hz. The maximum ripple of the filtered voltage is calculated
from the required THD (Total Harmonic Distortion). If the THD is set to 1.5 %, calculate the gain using
this equation:

dBGS 48.36)015.0log(20 −==

The cut-off frequency is calculated using this equation:

1

4 648.310/
95.76

110
1002

110
2

−

−
⋅=

−
=

−
= srad

n G
STOP

c
s

πω
ω

The filter coefficients of the Butterworth filter (a1, a2, b0, b1, and b2) are calculated using the following
equations, where T is the execution period of 20 µs (50 kHz).

7

2
525

2

2
2

2

0 1057101.6
95.7695.76

102
22

)102(
4

95.76
224

−

−−

⋅=
+⋅

⋅
+

⋅

=
++

=

cc

c

TT

b
ωω

ω

6

2
525

2

2
2

2

1 103142.1
95.7695.76

102
22

)102(
4

95.762
224

2 −

−−

⋅=
+⋅

⋅
+

⋅

⋅
=

++
=

cc

c

TT

b
ωω

ω

7

2
525

2

2
2

2

2 1057101.6
95.7695.76

102
22

)102(
4

95.76
224

−

−−

⋅=
+⋅

⋅
+

⋅

=
++

=

cc

c

TT

b
ωω

ω

2-1.9978233
95.7695.76

102
22

)102(
4

)102(
895.762

224

82

2
525

25
2

2
2

2
2

1 =
+⋅

⋅
+

⋅

⋅
−⋅

=
++

−
=

−−

−

cc

c

TT

Ta
ωω

ω

60.99782568
95.7695.76

102
22

)102(
4

95.7695.76
102

22
)102(

4

224

224

2
525

2
525

2
2

2
2

2 =
+⋅

⋅
+

⋅

+⋅
⋅

−
⋅

=
++

+−
=

−−

−−

cc

cc

TT

TTa
ωω

ωω

Because the second-order filter returns the average value of the input signal, all the b-coefficients of the
filter are multiplied by 1.110721 (𝜋𝜋/2√2) to obtain the RMS value. The calculated constants are defined
in the pfc_appconfig.h file as follows:
// Input Voltage 2nd order LP filter constants
#define UIN_IIR_B0 FRAC32(0.000000657101/2)
#define UIN_IIR_B1 FRAC32(0.0000013142/2)

Application setup and control

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 27

#define UIN_IIR_B2 FRAC32(0.000000657101/2)
#define UIN_IIR_A1 FRAC32(-1.99782332/-2)
#define UIN_IIR_A2 FRAC32(0.997825686/-2)

All the filter constants in the algorithm are divided by two, as described in the Set of General Digital
Filters for Cortex M4 Core User’s Guide (document CM4GDFLIBUG).

5. Application setup and control
This chapter describes the setup of the demo application, building and loading the demo code into the
MCU, and the user control of the PFC using FreeMASTER.

5.1. Hardware setup
The PFC application is built using the High Voltage Motor Control Platform (HVP-MC3PH) with the
MKV46F150M MCU. The complete hardware setup is shown in this figure:

Figure 18. Hardware setup

Both boards are ready for the PFC development in their default configuration, so no jumper setting is
needed before running the application. The load is connected through the brake resistor connector J12.
The high-voltage electronic load in the constant resistance mode is preffered. However, any 200 Ω (or
larger) resistor can be used. The power rating of the resistor must be higher than 800 W. The
high-voltage power stage can be supplied directly from the mains. The supply voltage range is
90-240 VAC.

5.2. Building and debugging application
The software package contains the project files for the IAR Embedded Workbench IDE. The software
package is distributed as a standalone installation, so all the components are included in the project
directory and it is not needed to install any other components.

The project can be opened by double-clicking the workspace data file
hvp_kv46_pfc_ccm_interleaved.eww. The point number 1 in Figure 19 shows the IAR workspace with

http://www.nxp.com/doc/CM4GDFLIBUG

Application setup and control

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
28 NXP Semiconductors

an opened project. The project opened in the IAR Embedded Workbench IDE is fully configured and
includes all the source and header files required by the application, such as startup code, clock
configuration, and peripheral configuration. Choose one of the two compiling conditions (“debug” or
“release”) shown in Figure 19, point 2. Each of the two conditions has its own setting:

• Debug—used for debugging, the optimization has the “None—turned off” flag.
• Release—used for releasing, the optimization has the “High—highest optimization for speed”

flag.

The source code shown in Figure 19 includes these source files and folders:
• Point 3—the RTCESL library source folder contains the header files for the mathematical and

control functions used in the project. The theory of using and applying these functions is
described in the user’s guides specific for each library. Download the user’s guides from
www.nxp.com/rtcesl.

• Point 4—the sdk folder contains the startup routines, the system initialization and clock
definition, the linker file, and the header file for the MCU. It also contains the basic CMSIS
routines for the interrupt handling.

• Point 5—the src folder contains the application source code.
• Point 6—the output file generated by the compiler, ready to use with the default debugger (P&E

Micro—OpenSDA). This debugger provides a virtual serial port on the host computer. Plug the
cable’s USB mini-B connector to the J2 connector on the controller card and the USB type A
connector to the computer before debugging. The debugger can be changed to another one in the
project options by right-clicking Point 1, selecting “Options” and clicking “Debugger”. Start the
project debugging by clicking Point 7 (Figure 19).

http://www.nxp.com/rtcesl

Application setup and control

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 29

Figure 19. Hardware setup

5.2.1. Application upload without IDE
To load the generated application directly to the target MCU without the IAR Embedded Workbench
IDE installation, perform these steps (applicable for Windows® OS):

1. Open Windows OS Explorer.
2. Locate the generated S-record file hvp_kv46_pfc_ccm_interleaved.srec.
3. Drag and drop or copy and paste the selected S-record file to the MSD removable drive with the

volume labelled as the target hardware (HVP-KV46F15).
4. After a successful programming, the embedded application executes automatically.
5. Reconnect the target device.

Application setup and control

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
30 NXP Semiconductors

5.3. Application control
The application can be controlled remotely from a computer using FreeMASTER. The computer is
connected to the controller through a standard A-B USB cable. The USB connector on the main board
(J4) is galvanically isolated from the high voltage and no additional isolation is required.

Open the FreeMASTER project file pfc_interleaved_ccm_kv4x.pmp located in the build/iar project
folder. After the project opens, the control page shows up, as shown in this figure:

Figure 20. FreeMASTER control page

A proper communication port must be set in the “Project, Options, Comm” menu. The assigned virtual
COM port can be checked in the “Devices and Printers” menu in Windows OS. The driver for the virtual
COM port must be installed before connecting the USB cable to the controller card for the first time.
The controller card contains the CP2102 USB-to-COM port converter from Silicon Labs®. The driver
can be downloaded from www.silabs.com.

The communication with FreeMASTER can be started from the “File, Start Communication” menu, by
pressing CTRL + K, or pressing the “Stop” button in the main menu. If the host PC is successfully
connected to the controller card, the COM port and the communication speed is displayed in the bottom
right corner of FreeMASTER. Everything is now prepared for the application demonstration.

The PFC operation is started by pressing the “Run” button on the control page. The load is connected
after pressing the “Connect” button. The key application parameters are displayed on the control page
and you may easily verify the performance of the PFC algorithm. The PFC operation is stopped by
pressing the “Stop” button on the control page.

http://www.silabs.com/

PFC integration

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 31

6. PFC integration
The stand-alone reference software is developed using the High Voltage Motor Control Platform
(HVP-MC3PH). However, the integration of the PFC algorithm into any other applications (motor
control, switch mode, power supply) is straightforward.

The access to the PFC application is done using the global PFC operation control structure gsPFCDrive.
This structure contains the main PFC control structure sInterleavedPFC, the PFC application control
structure ui16PfcControl, the PFC application status structure ui16PfcStatus, and the fault identification
structure sFaultId. All PFC application control structures are described in detail in the following section.

6.1. PFC application control structures description
The gsPFCDrive structure contains the variables and constants used for the PFC application control,
such as the control structure of the voltage controller, the current controllers, the control structure for the
average filters of the input voltage, two boost currents, and the DC-Bus voltage. It also contains the
variables necessary for the PFC application control, such as the duty cycles, the measured quantities, its
filtered values, and other. The parameters of the PI controllers and the average filters are calculated
according to the Average Current Mode Interleaved PFC Control (document AN5257) and set in the
pfc_appconfig.h file.

typedef struct
 {
 bool_t bRunStop;
 bool_t bBrakeRes;
 } PFC_CONTROL_T;

The code above defines the control bits for the PFC control from the application state machine. The
meaning of each bit is as follows:

• bRunStop—PFC application control bit, 0—stop the PFC operation, 1—start the PFC operation.
• bBrakeRes—brake resistor control bit, 0—resistor disconnected, 1—resistor connected.

typedef struct
{

bool_t bRunStop;
bool_t bSoftStart;
bool_t bFault;

} PFC_STATUS_T;

The code above defines the status bits to inform the application state machine about the PFC application
status. The meaning of each bit is as follows:

• bRunStop—PFC application status bit, 0—stop state is in progress, 1—run state is in progress.
• bSoftStart—soft start status bit, 0—soft start state not active, 1—soft start state is in progress.
• bFault—fault status flag, 0—PFC application is not in fault state, 1—PFC application is in the

fault state.

typedef uint16_t PFCDEF_FAULT_T;

http://www.nxp.com/doc/AN5257

Conclusion

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
32 NXP Semiconductors

The code above defines the status bits to identify the fault that causes the fault state. The meaning of
each bit is defined using these constants:

#define PFC_FAULT_I_PFC_OVER 0 /* OverCurrent fault flag */
#define PFC_FAULT_U_IN_UNDER 1 /* Input undervoltage fault flag */
#define PFC_FAULT_U_IN_OVER 2 /* Input overvoltage fault flag */
#define PFC_FAULT_U_DCBUS_UNDER 3 /* dc-bus undervoltage fault flag */
#define PFC_FAULT_U_DCBUS_OVER 4 /* dc-bus overvoltage fault flag */
#define PFC_SS_FAULT 5 /* Soft start fault flag */

7. Efficiency measurement
The Total Harmonic Distortion (THD) was measured at 115 VAC and 230 VAC. The measurement is
summarized in the following tables. An electronic load in the constant resistance mode was used for the
measurements. The power limits vary with the input voltage. The power limits of the power stage are
shown in Figure 4 in the Freescale High-Voltage Motor Control Platform User's Guide (document
HVPMC3PHUG).

Table 2. Measurement at 115 V/60 Hz

Output power [W] Efficiency [%] Power factor [-] THD [%]
100 91.5 0.97 19.5
200 93.4 0.98 9.9
400 93.5 0.99 4.5
600 93.4 1 3.5
750 92.5 1 2.7

Table 3. Measurement at 230 V/50 Hz

Output power [W] Efficiency [%] Power factor [-] THD [%]
100 92.3 0.93 33
200 95.2 0.95 29.6
400 96.4 0.97 18.4
600 96.7 0.98 7
800 96.4 0.99 5.5

8. Conclusion
This application note describes the implementation of the average current control mode PFC on the
KV46xx MCU. The ARM-based KV-series MCUs are targeted for the power management and motor
control applications due to the dedicated peripherals. Even if the application code demonstrates a
stand-alone PFC operation, the code is written with an intention to be easily integrated into other
applications. The design of the control loops is explained with a full theory and a practical example. The
application source code is provided together with the application note.

http://www.nxp.com/doc/HVPMC3PHUG

Revision history

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016
NXP Semiconductors 33

9. References
• Average Current Mode Interleaved PFC Control (document AN5257)
• Freescale High-Voltage Motor Control Platform User's Guide (document HVPMC3PHUG)
• HVP-KV46F150M User’s Guide (document HVPKV46F150MUG)

The Real-Time Embedded Software Libraries are located at www.nxp.com/rtcesl. See these documents
for a specific reference when using this application note:

• Set of General Digital Filters for Cortex M4 Core User’s Guide (document CM4GDFLIBUG)
• Set of Math Functions for Cortex M4 Core User’s Guide (document CM4MLIBUG)
• Set of General Functions for Cortex M4 Core User’s Guide (document CM4GFLIBUG)

For a current list of all documentation, visit www.nxp.com.

10. Revision history
The following table summarizes the changes done to this document since the initial release.

Table 4. Revision history

Revision number Date Substantive changes

0 11/2016 Initial release.

http://www.nxp.com/doc/AN5257
http://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com/doc/HVPKV46F150MUG
http://www.nxp.com/rtcesl
http://www.nxp.com/doc/CM4GDFLIBUG
http://www.nxp.com/doc/CM4MLIBUG
http://www.nxp.com/doc/CM4GFLIBUG
http://www.nxp.com/

Document Number: AN5355
Rev. 0

11/2016

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further
notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does NXP assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in NXP data sheets and/or specifications can and do
vary in different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. NXP does not convey any license under its patent rights
nor the rights of others. NXP sells products pursuant to standard terms and conditions
of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
Kinetis are trademarks of NXP B.V. Silicon Labs is a registered trademark of Silicon
Laboratories Inc. in the United States and other countries. Windows is a registered
trademark of Microsoft Corporation in the United States and/or other countries. IAR
Embedded Workbench is a registered trademark owned by IAR Systems AB. All other
product or service names are the property of their respective owners.

ARM, the ARM Powered logo, and Cortex are registered trademarks of ARM Limited (or
its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2016 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Interleaved PFC Average Current Control
	1. Introduction
	2. System design concept
	2.1. System architecture
	2.2. System specification
	2.3. PFC control process implementation on KV46

	3. Software design
	3.1. Project files structure
	3.1.1. Data types

	3.2. Scaling of analog quantities
	3.2.1. Voltage scale
	3.2.2. Current scale

	3.3. Application overview
	3.3.1. Application state machine
	3.3.2. Fast PFC state machine
	3.3.3. Slow PFC state machine

	3.4. PWM reload interrupt
	3.5. PIT timeout interrupt
	3.6. Peripheral configuration
	3.6.1. ADC (Analog to Digital Converter)
	3.6.2. eFlexPWM (Enhanced Flex Pulse Width Modulator)
	3.6.3. XBAR A (crossbar switch module A)
	3.6.4. XBAR B (crossbar switch module B)
	3.6.5. And/Or/Invert (AOI) module
	3.6.6. PIT timers
	3.6.7. SCI module

	3.7. PFC Control Peripheral Drivers (PFCDRV)
	3.7.1. PFCDRV initialization
	3.7.2. PFCDRV API

	3.8. Application timing

	4. Control loops design
	4.1. Current controller design
	4.2. Voltage controller design
	4.3. Low-pass filter design

	5. Application setup and control
	5.1. Hardware setup
	5.2. Building and debugging application
	5.2.1. Application upload without IDE

	5.3. Application control

	6. PFC integration
	6.1. PFC application control structures description

	7. Efficiency measurement
	8. Conclusion
	9. References
	10. Revision history

