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Interleaved PFC Average Current Control  
Implementation using MKV46F256VLx16 on High Voltage 
Motor Control Platform 

1. Introduction 
This application note describes the implementation of 
the interleaved Power Factor Correction (PFC) 
operating in the Continuous Conduction Mode (CCM) 
on the MKV46F256VLx16 ARM® Cortex®-M4 MCU. 
The MKV46F256VLx16 is a member of the Kinetis 
KV4x MCU family. The peripherals available on this 
MCU are dedicated for an easy implementation of the 
power conversion applications. 

A two-channel interleaved PFC operating in the CCM 
mode is used for the AC/DC conversion while 
compensating the Power Factor (PF). This application 
note includes the system design concept, the software 
design, and the control loops design. The detailed 
system operation, the PFC control theory, and the 
control loops design is described in Average Current 
Mode Interleaved PFC Control (document AN5257). 
All equations mentioned in this application note refer to 
AN5257. 

The hardware used for the PFC application development 
is the High Voltage Motor Control Platform 
(HVP-MC3PH) together with the MKV46F150M 
Controller Card (HVP-KV46F150M). Both boards are a 
part of the NXP High Voltage Development Platform. 
All information about this development platform are 
available at nxp.com/hvp.  

 

NXP Semiconductors Document Number: AN5355  

Application Note Rev. 0 , 11/2016 

Contents 

1. Introduction ........................................................................ 1 
2. System design concept ....................................................... 2 

2.1. System architecture ................................................. 2 
2.2. System specification................................................ 3 
2.3. PFC control process implementation on KV46 ....... 3 

3. Software design .................................................................. 4 
3.1. Project files structure............................................... 4 
3.2. Scaling of analog quantities .................................... 6 
3.3. Application overview .............................................. 7 
3.4. PWM reload interrupt ........................................... 12 
3.5. PIT timeout interrupt ............................................. 14 
3.6. Peripheral configuration ........................................ 14 
3.7. PFC Control Peripheral Drivers (PFCDRV) ......... 16 
3.8. Application timing ................................................ 18 

4. Control loops design ........................................................ 20 
4.1. Current controller design ....................................... 20 
4.2. Voltage controller design ...................................... 23 
4.3. Low-pass filter design ........................................... 25 

5. Application setup and control ........................................... 27 
5.1. Hardware setup ..................................................... 27 
5.2. Building and debugging application ...................... 27 
5.3. Application control ............................................... 30 

6. PFC integration ................................................................ 31 
6.1. PFC application control structures description ...... 31 

7. Efficiency measurement ................................................... 32 
8. Conclusion ....................................................................... 32 
9. References ........................................................................ 33 
10. Revision history ............................................................... 33 

http://www.nxp.com/doc/AN5257
http://www.nxp.com/doc/AN5257
http://www.nxp.com/hvp


System design concept 

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016 
2  NXP Semiconductors 
   

2. System design concept 
This chapter describes the hardware used for the PFC application implementation and the application 
control process implementation on the MKV46F150M controller. 

2.1. System architecture 
The application is developed on the High Voltage Motor Control Platform (high-voltage power stage 
HVP-MC3PH) and the KV46F150M Controller Card (HVP-MKV46F150M). The system design 
architecture is shown in this figure:  

 
Figure 1. System design architecture 

The high-voltage power stage contains the whole power circuitry and the signal conditioning stage for 
the adaptation of the sensing signals for the controller card. The high-voltage power stage and the 
controller card are described in detail in the Freescale High-Voltage Motor Control Platform User's 
Guide (document HVPMC3PHUG) and the HVP-KV46F150M User’s Guide (document 
HVPKV46F150MUG). 

http://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com/doc/HVPKV46F150MUG
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CAUTION 
Before you run the application, check the revision of your HVP-MC3PH 
board. If your board revision is 1, please replace the operation amplifier 
U2 by MAX4477ASA+. Otherwise, the PFC application is not going to 
run properly. 

2.2. System specification 
The application has these performance features: 

1. Hardware topology used: 
— Interleaved boost converter. 

2. Control technique incorporated: 
— Average current mode control with a constant switching frequency of 100 kHz. 
— 20-µs current loop.  
— 1-ms voltage loop. 
— Soft start. 

3. Fault protection: 
— Input under-voltage and over-voltage. 
— DC-Bus under-voltage and over-voltage. 
— Over-current. 
— Start-up fault. 

2.3. PFC control process implementation on KV46 
The PFC control process consists of the implementation of two control loops, as shown in Figure 2: the 
fast current control loop and the slow voltage control loop. The output DC-Bus voltage (Vout) is 
compared with the reference voltage (Vout reference). The voltage difference (Vout_error) is fed to the voltage 
controller. The voltage controller output is multiplied by the input voltage (Vin) and the feed-forward 
factor, which is derived from the RMS value of the input voltage. The result of the multiplication is the 
current reference (Iref) for both current loops. Two boost converters operate independently and therefore 
two current control loops are implemented. The output current errors (I1err and I2err) are then processed 
in the current controllers. The outputs from the current controllers are the duty cycles for the boost 
converters. The interleaved PFC topology enables the operation of two converters in parallel, sharing the 
converter load by a half. 

The key peripherals for the PFC application implementations are the Analog-to-Digital Converter 
(ADC), the Pulse Width Modulator (eFlexPWM), the Periodic Interrupt Timer (PIT), the 
Inter-Peripheral Crossbar Switch (XBAR) and the And/Or/Invert logic module. The PWM submodule 3 
generates the driving signals for two MOSFET transistors and the PWM is configured to generate 
center-aligned PWM signals. The PWM reload interrupt is generated every second switching period 
(20 µs). This fast interrupt processes both current control loops. The generated PWM signals are shifted 
by a half of the switching period. The ADC senses the analog quantities in the middle of each PWM 
period and each phase. The sensed quantities are the input voltage, the boost converter currents, and the 
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output DC-Bus voltage. The measurement is synchronized with the PWM generation due to the 
measurement of the average values of the boost currents. The PIT timer 0 is used to generate the 1-ms 
periodical interrupt for the voltage control loop processing. Two trigger signals (one for each phase) are 
generated by the eFlexPWM module in the middle of each PWM period and linked to the ADC via the 
XBAR module. The XBAR module serves to interconnect the control signals between the peripherals. 
The communication with FreeMASTER is done via the UART serial interface module.  

FreeMASTER is a run-time debugging/tuning tool for application development and information 
management. The peripheral configurations are described in detail in Section 3.7, “PFC Control 
Peripheral Drivers”. 

 
Figure 2. System control scheme 

3. Software design 
This chapter describes the software design of the interleaved PFC application. The project was 
developed in the IAR Embedded Workbench® IDE using the Kinetis SDK IDE and the Real-Time 
Control Embedded Libraries (RTCESL).  

3.1. Project files structure 
The project is located in three sub-directories and consists of these files: 

1. ..\build\iar\hvp_kv46_pfc_ccm_interleaved.eww—the workspace data file for the IAR Embedded 
Workbench IDE, double-click the file to launch the IAR IDE. 
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2. ..\build\iar\hvp_kv46_pfc_ccm_interleaved.ewp—the project file for the IAR Embedded 
Workbench IDE. 

3. ..\build\iar\hvp_kv46_pfc_ccm_interleaved.ewd—the debugger data file for the IAR Embedded 
Workbench IDE. 

4. build\iar\pfc_interleaved_ccm_kv4x_iar.pmp—the FreeMASTER project file for the application 
demonstration. 

5. ..\src\common\rtcesl\—this directory contains the RTCESL embedded libraries. 
6. ..\src\common\sdk\—this directory contains startup routines, linker files, header files, 

core-specific functions, and core-clock settings. These files are taken from the Kinetis SDK IDE. 
See www.nxp.com/KSDK for more information. 

7. ..\src\projects\board\app_init.c—the application peripheral initialization C source file. 
8. ..\src\projects\board\app_init.h—the application initialization header file. 
9. ..\src\projects\board\clock_config.c—the clock configuration C source file. 
10. ..\src\projects\board\clock_config.h—the clock configuration header file. 
11. ..\src\projects\board\pfcdrv_hvp-kv46f.c—the application peripheral initialization C source file 

for the specific board and MCU used. 
12. ..\src\projects\board\pfcdrv_hvp-kv46f.h—the application peripheral initialization header file. 
13. ..\src\common\pfc_algorithms\pfc_control.c—the PFC control algorithm C source file. 
14. ..\src\common\pfc_algorithms\pfc_control.h—the PFC control algorithm header file. 
15. ..\src\common\pfc_drivers\pfcdrv_adc_adc12.c—the PFC ADC driver C source file. 
16. ..\src\common\pfc_drivers\pfcdrv_adc_adc12.h—the PFC ADC driver header file. 
17. ..\src\common\pfc_drivers\pfcdrv_pwma_pwm1ph.c—the PFC PWM driver C source file. 
18. ..\src\common\pfc_drivers\pfcdrv_pwma_pwm1ph.h—the PFC PWM driver header file. 
19. ..\src\projects\main.c—the main C source file. 
20. ..\src\projects\main.h—the main header file. 
21. ..\src\projects\pfc_appconfig.h—the PFC configuration header file contains the definition of the 

constants for the application control, such as the parameters of the power stage, the PI 
controllers’ parameters, the filters’ parameters, and others. 

NOTE 
The software package is distributed as a stand-alone installation and all 
components are included in the project directory, so it is not needed to 
install any other components. 

3.1.1. Data types 
This application uses several data types: (un)signed integer, fractional, and accumulator. The integer 
data types are useful for general-purpose computation; they are familiar to the MPU and MCU 
programmers. The fractional data types enable the implementation of numeric and digital signal 
processing algorithms. The accumulator data type is a combination of both; that means it has the integer 
and fractional portions. 

The following list shows the integer types defined in the libraries: 

http://www.nxp.com/KSDK
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• Unsigned 16-bit integer—<0 ; 65535> with a minimum resolution of 1. 
• Signed 16-bit integer—<-32768 ; 32767> with a minimum resolution of 1. 
• Unsigned 32-bit integer—<0 ; 4294967295> with a minimum resolution of 1. 
• Signed 32-bit integer—<-2147483648 ; 2147483647> with a minimum resolution of 1. 

This list shows the fractional types defined in the libraries: 
• Fixed-point 16-bit fractional—<-1 ; 1 - 2-15> with a minimum resolution of 2-15. 
• Fixed-point 32-bit fractional—<-1 ; 1 - 2-31> with a minimum resolution of 2-31. 

This list shows the accumulator types defined in the libraries: 
• Fixed-point 16-bit accumulator—<-256.0 ; 256.0 - 2-7> with a minimum resolution of 2-7. 
• Fixed-point 32-bit accumulator—<-65536.0 ; 65536.0 - 2-15> with a minimum resolution of 2-15. 

3.2. Scaling of analog quantities 
This equation shows the relationship between the real and fractional representations: 

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 =
𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓
   

where: 
• Fractional Value = the fractional representation of quantities [–] 
• Real Value = the real quantity in physical units [..] 
• Real Quantity Range = the maximum defined quantity value used for scaling in physical units [..] 

Some examples of the quantities’ scaling are provided in the following sub-sections. 

3.2.1. Voltage scale 
The voltage is generally measured on the voltage resistor divider by the ADC. Therefore, the maximum 
voltage scale is proportional to the maximum ADC input voltage range, and it is 443 V for the 
high-voltage power stage. The following equation shows how the fractional voltage variable is used: 
Voltage scale: Vmax = 443 V 

Measured voltage: Vmeasured = 390 V 

(𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭)𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒆𝒆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 =
𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎

= 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑
𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 = 𝟎𝟎.𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖   

This 16-bit fractional variable is stored internally as a 16-bit integer variable: 

(𝑰𝑰𝑰𝑰𝑰𝑰𝟏𝟏𝟏𝟏)𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒆𝒆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 = (𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭)𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒆𝒆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗. 𝟐𝟐𝟏𝟏𝟏𝟏 = 𝟎𝟎. 𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖. 𝟐𝟐𝟏𝟏𝟏𝟏 = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐   

Figure 3 illustrates the previous equations of the voltage scaling into a fractional number, the voltage 
value is read by the ADC as 12-bit signed number with a left justification for the 16-bit number. 
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In case the floating-point number representation of this value is needed, the fractional number is 
converted to the float number as: 

(𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇)𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒆𝒆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 =
𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎
𝟐𝟐𝟏𝟏𝟏𝟏

(𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭)𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒆𝒆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗   

 

 
Figure 3. Voltage measurement 

3.2.2. Current scale 
The current is generally measured as a voltage drop on the PFC shunt resistors, which is amplified by an 
operational amplifier. Only the positive currents are measured on the shunt resistors. The amplified 
signal has an 82-mV offset due to the non-linearity of the operation amplifier. The maximum current 
scale is proportional to the maximum ADC input voltage range plus the offset (see Figure 4). The 
manipulation with the current variable is similar to the voltage variable manipulation. 

 
Figure 4. Current measurement 

3.3. Application overview 
The PFC software is interrupt-driven, with two PFC state machines running in two periodical interrupts. 
Besides the PFC state machines, there is the main application state machine running on the background 
in the main endless loop. The PFC control algorithm is designed to create one compact unit and can be 
easily incorporated into any target application. The entire PFC control algorithm is implemented in two 
Interrupt Service Routines (ISR). The two current loops are executed in the fast interrupt every 20 µs 
and the voltage loop is executed in the slow interrupt with a 1-ms period of execution. The ISR routines 
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are described in detail in Section 3.5, “PIT timeout interrupt” and Section 3.6, “Peripheral 
configuration”. 

After an MCU reset, the application performs the clock and GPIO port peripheral initialization followed 
by the PFC peripheral drives initializion and the FreeMASTER embedded driver initialization. After a 
complete initialization, the global interrupt is enabled and the application jumps to the endless main 
loop. The background loop handles the time non-critical tasks, such as the application state machine and 
FreeMASTER communication. The flowchart of the main loop is shown in the following figure. 

 
Figure 5. The main loop flowchart  

The PFC control algorithm itself is driven by two PFC state machines called in the fast and slow control 
loops. The state of the fast PFC state machine is determined by the actual operational state of the PFC, 
while the slow state machine simply follows the fast one. 

3.3.1. Application state machine 
The PFC control algorithms can be easily integrated into other software. This reference code 
demonstrates the usage of the PFC control algorithm in a standalone PFC application. The application 
state machine controls the whole execution of the reference application. The application machine is 
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responsible for the proper PFC algorithm variables initialization and the control of the PFC algorithm 
according to the commands from the master system. In this reference application, the master system is 
represented by FreeMASTER, which enables you to control the PFC from a PC. 

The application state machine consists of these four main states (see Figure 6): 
• Fault—the application detects a fault condition and waits until the user clears the fault in 

FreeMASTER. 
• Init—the application control variables initialization—the control and status words initialization. 
• Stop—the application is initialized and waiting for the Run command from FreeMASTER. It can 

pass to the Fault state when a fault is detected. 
• Run—the application is running. It may be stopped by the Stop command from FreeMASTER or 

pass to the Fault state when a fault is detected. 

 
Figure 6. Application state machine  

Each state in the state machine is represented by a particular function, which is executed periodically 
when the state machine is in the appropriate state. If the condition for a transition from one state to 
another is met, the transition function is called once during the transition. The transition function has a 
name of xxToyy, where xx stands for the initial state and yy stands for the target state. For example, 
during a transition from the Init state to the Stop state, the InitToStop() function is executed. 
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3.3.2. Fast PFC state machine 
The fast PFC state machine PFC_StateMachineFast is shown in Figure 7. It is executed in the PWM 
ISR interrupt and incorporates these five states: 

• PfcFaultStateFast—the PFC state machine stays in this state until a fault condition becomes 
valid. All faults are cleared after the preset time. If no fault condition persists, the state machine 
jumps to the Stop state. 

• PfcInitStateFast—the PFC variables’ initialization. When the initialization is done, the state 
machine jumps to the Stop state. 

• PfcStopStateFast—the PFC is initialized and waiting for the Run command. It can pass to the 
Fault state when a fault is detected. The input voltage must be above the minimum value to stay 
in the Stop state and to not enter the Fault state. 

• PfcSoftStartStateFast—the PFC soft start fast loop execution. It can be interrupted by the Stop 
command or pass to the Fault state when a fault is detected. When the nominal DC-Bus voltage 
is reached within a preset time, the state machine jumps to the Run state. Otherwise, it goes to 
the fault state. 

• PfcRunStateFast—the PFC is running. It can be stopped by the Stop command or pass to the 
Fault state when a fault is detected. 
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Figure 7. Fast PFC state machine  

The transition functions are defined in the same way as for the application state machine. 

3.3.3. Slow PFC state machine 
The slow PFC state machine (shown in Figure 8) is executed in the PIT0 ISR and incorporates the same 
five states as the fast PFC state machine: 

• PfcFaultStateSlow—an empty state. 
• PfcInitStateSlow—an empty state. 
• PfcStopStateSlow—an empty state. 
• PfcSoftStartStateSlow—the PFC soft start slow loop execution. The DC-Bus voltage reference 

voltage is ramped up to the required DC-Bus voltage level. 
• PfcRunStateSlow—the PFC run slow loop execution. The voltage controller keeps the DC-Bus 

voltage at the required level. 
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Figure 8. Slow PFC state machine  

The transition functions are defined in the same way as for the application state machine.  

 

3.4. PWM reload interrupt 
The time-critical algorithms and the fast PFC state machine PFC_StateMachineFast are performed in 
the fast PWM interrupt service routine. The control algorithms implemented in the PWM ISR are: 

• Fast PFC state machine. 
• Read ADC quantities. 
• Input voltage filter. 
• DC-Bus voltage filter. 
• PFC current filters. 
• Current reference calculation—fast part. 
• Current controllers. 
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The PWM ISR is executed regularly every 20 µs with the highest interrupt priority. The ADC 
conversion is synchronized with the PWM period and the conversion is started by two trigger signals. 
The trigger signal is always in the middle of the switching period for each phase. The complete 
application timing is described in Section 3.8, “Application timing”. The ADC conversion runs in the 
background. The control algorithm execution depends on the actual state. The control algorithms 
executed in the particular states only are marked by a superscripted star (see Figure 9). 

 

  
Figure 9. PWM ISR flow chart 
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3.5. PIT timeout interrupt 
The PIT timeout interrupt is executed every 1 ms and has a lower priority level than the PWM interrupt. 
The slow PFC state machine PFC_StateMachineSlow is executed in this ISR. The control algorithms 
implemented in this interrupt are: 

• Slow PFC state machine. 
• Voltage controller. 
• Current reference calculation—slow part. 
• Power calculation. 

 

  
Figure 10. PIT0 ISR flow chart 

3.6. Peripheral configuration 
The application uses the dedicated peripherals for the PFC algorithm implementation and 
communication with FreeMASTER. The peripherals used in the application are: ADC, eFlexPWM, 
XBAR, PIT, and SCI. The other unused peripherals are disabled and not powered. The peripheral’s 
initialization is described in the following subsections. 

3.6.1. ADC (Analog to Digital Converter) 
The ADC consists of two separate 12-bit ADCs with many analog inputs and its own S/H circuit that 
enable a fast conversion. 

The ADC module is configured as follows: 
• The IPBus clock/5 is the clock source—20 MHz. 
• Single-ended channels configuration. 
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• Simultaneous parallel scanning. 
• Trigger source from the eFlexPWM module (logic OR above Trigger 0 and Trigger 1).  

3.6.2. eFlexPWM (Enhanced Flex Pulse Width Modulator) 
The eFlexPWM is a dedicated peripheral that enables the generation of the control PWM signals. The 
PWM submodule 3 is used to generate two control signals for the boost converter MOSFET transistors. 
The PWM signal generation is shown in Figure 7. 

 

The PWM submodule 3 is configured as follows: 
• The IPBus clock is the clock source—100 MHz. 
• Nano-edge PWM generation enabled. 
• Independent, center-aligned operation mode. 
• Modulo value 1000 ~ 100 kHz switching frequency. 
• INIT value = - modulo value/2. 
• VAL0, VAL2, VAL3 = 0. 
• VAL1 = modulo value/2. 
• VAL4 = - modulo value/2. 
• VAL5 = modulo value/2. 
• PWMA positive output polarity. 
• PWMB negative output polarity. 
• Full cycle reload and interrupt on every second PWM period (20 µs). 
• Triggers 0 and 1 provide the synchronization signal to start the ADC conversion. 

PWM Fault 0: 
• The high-level detection indicates the over-current fault on the IPM module. 
• Manual fault clearing. 
• Fault input filter enabled. 

3.6.3. XBAR A (crossbar switch module A) 
The crossbar switch module A implements an array of 32 inputs and 40 outputs of the combinational 
digital multiplexes. This module provides a flexible connection from any input to any output under the 
user’s control. 

The application configuration is as follows: 
• Channel 12, ADC Trigger: 

— The AOI EVENT0 signal is used for the ADC synchronization. 
• Channel 14, PWM module Fault0: 

— The XBARIN7 (GPIOE.1) signal is routed to the PWM Fault 0 input. 
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3.6.4. XBAR B (crossbar switch module B) 
The crossbar switch module B implements an array of 26 inputs and 16 outputs of the combinational 
digital multiplexes. This module provides a flexible connection from any input to any input of the 
And/Or/Inverter (AOI) module under the user’s control. 

The application configuration is as follows: 
• The AOI EVENT0 input A is linked to Trigger 0 from the PWM submodule 3. 
• The AOI EVENT0 input B is linked to Trigger 1 from the PWM submodule 3. 

3.6.5. And/Or/Invert (AOI) module 
The AOI module provides the boolean logic function operation among the on-chip peripheral control 
signals. The inputs’ signals are linked over the XBAR B module. The logic OR function in the AOI 
EVENT 0 over the Trigger 0 and 1 signals from the PWM submodule 3 is used to generate the 
synchronization signal for the ADC module. 

3.6.6. PIT timers 
The PIT timers can generate trigger pulses and interrupts. Timer 0 is used to generate a periodic 
interrupt every 1 ms. The interrupt is used to execute the voltage control loop and calculate a part of the 
current reference. The PIT Timer 0 configuration is as follows: 

• The IPBus clock is the clock source—25 MHz. 
• The modulo value is set to 25000. 
• The timeout interrupt is enabled. 

3.6.7. SCI module 
The SCI module is configured to communicate with the FreeMASTER application. The module is set to 
receive/transmit 8-bit data with a baud rate of 19200 and no parity. 

3.7. PFC Control Peripheral Drivers (PFCDRV) 
The PFCDRV provides a simple way of peripheral initialization and access for the PFC control. The 
features of the PFCDRV library include 2-phase PWM generation and 2-phase current measurement, as 
well as the measurement of the Input voltage, the DC-Bus voltage, and the IPM temperature (or one 
general user-defined auxiliary quantity). 

The PFCDRV consists of these two parts: 
• The first part is the peripheral initialization module consisting of the pfcdrv_hvp-kv46f.c and 

pfcdrv_hvp-kv46f.h files. These files are unique for each supported device. The header file 
includes all PFCDRV setup options, including the ADC channel assignment. The source file 
contains the functions to initialize all peripherals used for the PFC control. This module is 
described in Section 3.7.1, “PFCDRV initialization”. 

• The second part consists of the peripheral driver library modules for each supported periphery. 
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All ADC and PWM periphery drivers share the same API within their class. This enables the 
higher-level code to be platform-independent, because the peripheral driver function calls are 
replaced by the universally-named macros. The list of the supported peripherals and the APIs of 
their drivers are provided in Section 3.7.2, “PFCDRV API”. 

3.7.1. PFCDRV initialization 
The PFCDRV initialization module consists of the MCU peripheral-initialization functions and all 
definitions. The functions are contained in the device-specific pfcdrv_hvp-kv46f.c source and 
pfcdrv_hvp-kv46f.h header files. From all the functions in the PFCDRV initialization module, it is only 
necessary to call the PFCDRV_Init() function during the MCU startup, before calling any other 
PFCDRV functions. All the peripherals used by the given device for the PFC control purposes are 
initialized within this function. 

The pfcdrv_hvp-kv46.h header file provides several macros that you may define: 
• PFCDRV_ADC—this macro specifies the ADC peripheral used. The KV4x family has a cyclic 

12-bit ADC. 
• PFCDRV_PWM1PH—this macro specifies the PWM peripheral used. The Pulse Width 

Modulator (PWM) A or the FlexTimer module can be selected. The PWM A was selected 
because it enables a high PWM generation with a 260-ps resolution. 

• PFCDRV_TMR_SLOWLOOP—this macro specifies the timer used for the periodical slow loop 
execution. The PIT Timer 0 is selected. 

• PFC_PWM_FREQ—the value of this definition sets the PWM frequency. Its value is used to 
calculate the modulo value. 

• PFC_FREQ_VS_PWM_FREQ—the value of this definition represents the n-th PWM period, 
causing the PWM reload interrupt. 

• PFC_SLOW_LOOP_FREQ—the value of this definition sets the slow loop execution period. 
• PFC_PWM_PAIR—the value of this definition sets the PWM submodule to be used. 

3.7.2. PFCDRV API 
The ADC and PWM PFCDRV share the same API within their class. To ensure the device 
independency on the PFCDRV API, all driver functions are accessible through the universally-named 
macros in the pfcdrv_hvp-kv46f.h file. The available API of the ADC PFCDRV is: 

• PFCDRV_ADC_T—PFCDRV ADC structure data type. The structure contains pointers that 
serve as a communication layer with the higher-level software. These variables are initialized by 
default in the pfcdrv_hvp-kv46f.c file in the initialization function of the selected ADC 
peripheral. The I/O layer variables are: 

— pf16UDcBus—pointer to a 16-bit fractional variable in which you want to store the 
measured DC-Bus voltage sample. 

— pf16UInput—pointer to a 16-bit fractional variable in which you want to store the 
measured input voltage sample. 

— pf16I1ph—pointer to a 16-bit fractional variable in which you want to store the measured 
boost current 1 sample. 
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— pf16I2ph—pointer to a 16-bit fractional variable in which you want to store the measured 
boost current 2 sample. 

• bool_t PFCDRV_ADC_PERIPH_INIT()—this function is by default called during the ADC 
peripheral initialization procedure triggered by the PFCDRV_Init() function, and it must not be 
called again after the peripheral initialization is done. 

• bool_t PFCDRV_ADC_GET(PFCDRV_ADC_T*)—this function reads the measured quantities 
and stores their values in the related variables. This function always returns true. 

• bool_t PFCDRV_CURR_1PH_CALIB_INIT(PFCDRV_ADC_T*)—this function initializes the 
boost current channel offset measurement. This function always returns true. 

• bool_t PFCDRV_CURR_1PH_CALIB(PFCDRV_ADC_T*)—this function reads the current 
value from the unpowered boost converters and filters them using the moving average filters. 
The goal is to obtain the value of the measurement offset. The length of the window for the 
moving average filters is set by the ui16TimeCalibration variable. This function always returns 
true. 

• bool_t PFCDRV_CURR_1PH_CALIB_SET(PFCDRV_ADC_T*)—this function asserts the boost 
current measurement offset values to the internal registers. Call it after the calibration time 
expires. This function always returns true. 

The API for the PWM PFC-Control Peripheral Drivers is: 
• PFCDRV_PWM1PH_T—PFCDRV PWM structure data type. The structure contains the I/O 

layer variable, which is initialized by default in the pfcdrv_hvp-kv46f.c file in the initialization 
function of the selected PWM periphery. The I/O layer variables are: 

— pf16Duty1—pointer to a 16-bit fractional variable in which the duty cycle for the boost 
converter 1 is stored. 

— pf16Duty2—pointer to a 16-bit fractional variable in which the duty cycle for the boost 
converter 2 is stored. 

• bool_t PFCDRV_PWM_PERIPH_INIT(PFCDRV_PWM1PH_T *)—this function is called by 
default during the PWM periphery-initialization procedure triggered by the PFCDRV_Init() 
function. This function always returns true. 

• bool_t PFCDRV_PWM1PH_SET(PFCDRV_PWM1PH_T *)—this function updates the PWM 
duty cycles based on the values stored in the f16Duty1 and f16Duty2 variables. This function 
always returns true. 

• bool_t PFCDRV_PWM1PH_EN(PFCDRV_PWM1PH_T*)—calling this function enables all 
PWM channels. This function always returns true. 

• bool_t PFCDRV_PWM1PH_DIS(PFCDRV_PWM1PH_T *)—calling this function disables all 
PWM channels. This function always returns true. 

• bool_t PFCDRV_PWM1PH_FLT_GET(PFCDRV_PWM1PH_T *)—this function returns the 
state of the over-current fault flag and automatically clears the flags (if set). This function returns 
true when the over-current events occur. Otherwise, it returns false.  

3.8. Application timing 
This section describes the PFC control application timing. The graphical representation of the 
application timing is shown in Figure 11. All the tasks are handled in the interrupt service routines or 
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within the main loop. The fast control loop is executed in the PWMA_RELOAD3_IRQHander() 
interrupt. The slow control loop is executed in the PIT0_IRQHander() interrupt. The FreeMASTER pool 
function FMSTR_Pool() is handled in the infinite main loop.  

The application timing is based on the PWM generation with a timebase of 10 µs. The fastest interrupt is 
executed regularly every second PWM period (20 µs) within the highest interrupt priority. The slower 
interrupt is executed regularly every 1 ms with a lower interrupt priority. The remaining time is filled by 
the FreeMASTER communication with the host PC and the application state machine. The ADC 
conversion is synchronized with the PWM period and the conversion is started by two trigger signals. 
One trigger signal is in the middle of the switching period defined by the VAL0 register. The analog 
quantities are sampled in this order: the input voltage, the DC-Bus voltage, and the boost current 1. The 
second trigger signal is at the end of the switching period (the middle of the second phase) defined by 
the VAL1 register. At this moment, the boost current 2 and the IPM module temperature are sampled. 
Because the boost currents are measured in the middle of the switching periods, the current samples 
represent the average currents of each boost converter leg. The ADC conversion takes up to 780 ns. 
The ADC conversion time is considered during the fast interrupt execution. The ADC conversion must 
be finished before the current controllers are calculated. 

 
Figure 11. Application timing  
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4. Control loops design 
The control loops design comes from the small signal model of the boost converter. The mathematical 
model of this converter and the control theory is described in the Average Current Mode Interleaved 
PFC Control (document AN5257). All equations references mentioned in this section correspond to the 
equations references in the Average Current Mode Interleaved PFC Control (document AN5257). The 
average current control mode of the boost converter control is implemented using three control 
loops/blocks: the current loop, the voltage loop, and the feed-forward block. The current controller, the 
voltage controller, and the low-pass filter for the feed-forward block are described in this section. The 
parameters of the boost converter for the control loops design are summarized in the following table.  

Table 1. Boost converter parameters 

Parameter Value 
Output power per leg 400 W 

Boost inductor 650 µH 
DC-Bus capacitor 660 µF 

Switching frequency 100 kHz 
DC-Bus voltage 400 V 

Input voltage 230 VAC 
Sampling frequency 50 kHz 

4.1. Current controller design 
The transfer function of the power stage in the current loop with the parameters from Table 1 is given by 
this equation: 
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TD represents the system delay caused by the digital control. The delay is the sum of the sampling delay 
and the digital PWM modulator delay calculated according to Eq. 7. The total delay is 15 µs. The delay 
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The bode plot of the power stage transfer function (including the digital delay) is shown in the following 
figure.  

http://www.nxp.com/doc/AN5257
http://www.nxp.com/doc/AN5257
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Figure 12. Bode plot of power stage including digital delay 

The block diagram of the inner current control loop is shown in this figure:  

 
Figure 13. Current loop 

GPI(s) represents the transfer function of the PI controller. Gid(s) represents the transfer function of the 
current-control loop. For the current loop controller design, the bandwidth of the control loop is set to 
4 kHz and the phase margin is set to 65°. To meet the accurate tracking of the current reference signal 
and achieve a good dynamic performance, the current controller must have a wide bandwidth and high 
gain at low frequencies and a good phase margin. The open loop transfer function of the current loop is 
shown in this equation: 
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Firstly, the controller design is started by the calculation of the controller zero from the phase 
characteristics. The phase margin is defined at a cross-over frequency and the controller zero is 
calculated from the phase characteristics using the following equation. 
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The controller integral gain is calculated in the second step. The integral gain is calculated from the gain 
characteristic at a cross-over frequency using this equation: 
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Finally, the proportional gain of the controller is calculated using this equation: 
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The bode plot of the open control loop in the following figure shows that the control system has the 
required control-loop bandwidth of 4 kHz and the phase margin of 65°. 

 
Figure 14. Open current loop bode plot 

The proportional and integral gains of the PI controller are scaled to the ACC32 format using Eq. 12 for 
the proportional gain and Eq. 13 for the integral gain. 
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The scaled current controller parameters are GP_scaled = 0.326 and GI_scaled = 0.0105. The calculated 
constants are defined in the pfc_appconfig.h file as follows:  
//Current Controller - Parallel type      
#define I_KP_GAIN                       ACC32(0.326) 
#define I_KI_GAIN                       ACC32(0.0105) 

4.2. Voltage controller design 
The transfer function of the power stage in the voltage loop is given by the following equation from 
Average Current Mode Interleaved PFC Control (document AN5257) using the design parameters from 
Table 1. The processing delay is ignored due to the oversampling. 
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The outer voltage control loop is described in the following figure. GPI represents the gain of the PI 
controller and Gvi represents the power stage transfer function with the closed current loop gain.  

 
Figure 15. Voltage loop 

The transfer function of the voltage open loop is described by this equation: 
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The design of the voltage controller is calculated according to the required bandwidth ωc and the phase 
margin ϕpm of the voltage control loop. Because the bandwidth of the voltage control loop is 
significantly smaller than the bandwith of the current control loop, the current control loop is replaced 
by the unity gain in the voltage open loop transfer function. The phase margin is set to 90° because the 
voltage overshoot is not wanted and the bandwidth of the control loop must be set between 1/10 to 2/10 
of 2ωs to sufficiently filter the double grid frequency (2ωs). The bode plot of the voltage open loop is 
shown in the following figure. 

http://www.nxp.com/doc/AN5257


Control loops design 

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016 
24  NXP Semiconductors 
   

 
Figure 16. Voltage loop system bode plot 

The voltage controller parameters are calculated in the same two steps as the current controller. Firstly, 
the controller zero from the phase characteristics must be calculated. The phase margin is defined at the 
cross-over frequency and the controller zero is calculated using this equation:  
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The integral gain of the controller is calculated in the second step. The integral gain is calculated from 
the gain characteristic at the cross-over frequency using this equation: 
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Finally, the proportional gain of the controller is calculated using this equation: 

102.0
576.7

7727.0
==PK

 
  

The bode plot of the open control loop in the following figure shows that the control system has the 
required control loop bandwidth of 10 Hz and the phase margin of 90°. The proportional and integral 
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controller gains are further scaled to the ACC32 digital format using Eq. 12 for the proportional gain and 
Eq. 13 for the integral gain. 

 
Figure 17. Open voltage loop bode plot 

The scaled voltage controller parameters are GP_scaled = 5.648 and GI_scaled = 0.0428. The calculated 
constants are defined in the pfc_appconfig.h file as follows:  
//Voltage Controller - Parallel type      
#define U_KP_GAIN                       ACC32(5.648) 
#define U_KI_GAIN                       ACC32(0.0428) 

4.3. Low-pass filter design 
The input voltage RMS value is needed for the voltage feed-forward block. The RMS value is obtained 
by filtering the input voltage using the second-order (n=2) Butterworth filter. This is realized by the 
second-order IIR filter GDFLIB_FilterIIR2, taken from the RTCESL general digital function library 
(see the Set of General Digital Filters for Cortex M4 Core User’s Guide (document CM4GDFLIBUG)). 
The transfer function for the second-order Butterworth filter in the analog domain is shown in this 
equation:  
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http://www.nxp.com/doc/CM4GDFLIBUG
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The stop frequency filter fs is set to 100 Hz. The maximum ripple of the filtered voltage is calculated 
from the required THD (Total Harmonic Distortion). If the THD is set to 1.5 %, calculate the gain using 
this equation: 

dBGS 48.36)015.0log(20 −==    

The cut-off frequency is calculated using this equation:  
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The filter coefficients of the Butterworth filter (a1, a2, b0, b1, and b2) are calculated using the following 
equations, where T is the execution period of 20 µs (50 kHz). 
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Because the second-order filter returns the average value of the input signal, all the b-coefficients of the 
filter are multiplied by 1.110721 (𝜋𝜋/2√2) to obtain the RMS value. The calculated constants are defined 
in the pfc_appconfig.h file as follows: 
// Input Voltage 2nd order LP filter constants 
#define UIN_IIR_B0                      FRAC32(0.000000657101/2) 
#define UIN_IIR_B1                      FRAC32(0.0000013142/2) 
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#define UIN_IIR_B2                      FRAC32(0.000000657101/2) 
#define UIN_IIR_A1                      FRAC32(-1.99782332/-2) 
#define UIN_IIR_A2                      FRAC32(0.997825686/-2) 

All the filter constants in the algorithm are divided by two, as described in the Set of General Digital 
Filters for Cortex M4 Core User’s Guide (document CM4GDFLIBUG). 

5. Application setup and control 
This chapter describes the setup of the demo application, building and loading the demo code into the 
MCU, and the user control of the PFC using FreeMASTER. 

5.1. Hardware setup 
The PFC application is built using the High Voltage Motor Control Platform (HVP-MC3PH) with the 
MKV46F150M MCU. The complete hardware setup is shown in this figure: 

 

 
Figure 18. Hardware setup 

Both boards are ready for the PFC development in their default configuration, so no jumper setting is 
needed before running the application. The load is connected through the brake resistor connector J12. 
The high-voltage electronic load in the constant resistance mode is preffered. However, any 200 Ω (or 
larger) resistor can be used. The power rating of the resistor must be higher than 800 W. The 
high-voltage power stage can be supplied directly from the mains. The supply voltage range is 
90-240 VAC. 

5.2. Building and debugging application 
The software package contains the project files for the IAR Embedded Workbench IDE. The software 
package is distributed as a standalone installation, so all the components are included in the project 
directory and it is not needed to install any other components. 

The project can be opened by double-clicking the workspace data file 
hvp_kv46_pfc_ccm_interleaved.eww. The point number 1 in Figure 19 shows the IAR workspace with 

http://www.nxp.com/doc/CM4GDFLIBUG
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an opened project. The project opened in the IAR Embedded Workbench IDE is fully configured and 
includes all the source and header files required by the application, such as startup code, clock 
configuration, and peripheral configuration. Choose one of the two compiling conditions (“debug” or 
“release”) shown in Figure 19, point 2. Each of the two conditions has its own setting: 

• Debug—used for debugging, the optimization has the “None—turned off” flag. 
• Release—used for releasing, the optimization has the “High—highest optimization for speed” 

flag. 

The source code shown in Figure 19 includes these source files and folders: 
• Point 3—the RTCESL library source folder contains the header files for the mathematical and 

control functions used in the project. The theory of using and applying these functions is 
described in the user’s guides specific for each library. Download the user’s guides from 
www.nxp.com/rtcesl. 

• Point 4—the sdk folder contains the startup routines, the system initialization and clock 
definition, the linker file, and the header file for the MCU. It also contains the basic CMSIS 
routines for the interrupt handling. 

• Point 5—the src folder contains the application source code. 
• Point 6—the output file generated by the compiler, ready to use with the default debugger (P&E 

Micro—OpenSDA). This debugger provides a virtual serial port on the host computer. Plug the 
cable’s USB mini-B connector to the J2 connector on the controller card and the USB type A 
connector to the computer before debugging. The debugger can be changed to another one in the 
project options by right-clicking Point 1, selecting “Options” and clicking “Debugger”. Start the 
project debugging by clicking Point 7 (Figure 19). 

http://www.nxp.com/rtcesl
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Figure 19. Hardware setup 

5.2.1. Application upload without IDE 
To load the generated application directly to the target MCU without the IAR Embedded Workbench 
IDE installation, perform these steps (applicable for Windows® OS): 

1. Open Windows OS Explorer. 
2. Locate the generated S-record file hvp_kv46_pfc_ccm_interleaved.srec. 
3. Drag and drop or copy and paste the selected S-record file to the MSD removable drive with the 

volume labelled as the target hardware (HVP-KV46F15). 
4. After a successful programming, the embedded application executes automatically. 
5. Reconnect the target device. 
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5.3. Application control 
The application can be controlled remotely from a computer using FreeMASTER. The computer is 
connected to the controller through a standard A-B USB cable. The USB connector on the main board 
(J4) is galvanically isolated from the high voltage and no additional isolation is required. 

Open the FreeMASTER project file pfc_interleaved_ccm_kv4x.pmp located in the build/iar project 
folder. After the project opens, the control page shows up, as shown in this figure: 

 
Figure 20. FreeMASTER control page 

A proper communication port must be set in the “Project, Options, Comm” menu. The assigned virtual 
COM port can be checked in the “Devices and Printers” menu in Windows OS. The driver for the virtual 
COM port must be installed before connecting the USB cable to the controller card for the first time. 
The controller card contains the CP2102 USB-to-COM port converter from Silicon Labs®. The driver 
can be downloaded from www.silabs.com.  

The communication with FreeMASTER can be started from the “File, Start Communication” menu, by 
pressing CTRL + K, or pressing the “Stop” button in the main menu. If the host PC is successfully 
connected to the controller card, the COM port and the communication speed is displayed in the bottom 
right corner of FreeMASTER. Everything is now prepared for the application demonstration. 

The PFC operation is started by pressing the “Run” button on the control page. The load is connected 
after pressing the “Connect” button. The key application parameters are displayed on the control page 
and you may easily verify the performance of the PFC algorithm. The PFC operation is stopped by 
pressing the “Stop” button on the control page. 

http://www.silabs.com/
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6. PFC integration 
The stand-alone reference software is developed using the High Voltage Motor Control Platform 
(HVP-MC3PH). However, the integration of the PFC algorithm into any other applications (motor 
control, switch mode, power supply) is straightforward. 

The access to the PFC application is done using the global PFC operation control structure gsPFCDrive. 
This structure contains the main PFC control structure sInterleavedPFC, the PFC application control 
structure ui16PfcControl, the PFC application status structure ui16PfcStatus, and the fault identification 
structure sFaultId. All PFC application control structures are described in detail in the following section. 

6.1. PFC application control structures description 
The gsPFCDrive structure contains the variables and constants used for the PFC application control, 
such as the control structure of the voltage controller, the current controllers, the control structure for the 
average filters of the input voltage, two boost currents, and the DC-Bus voltage. It also contains the 
variables necessary for the PFC application control, such as the duty cycles, the measured quantities, its 
filtered values, and other. The parameters of the PI controllers and the average filters are calculated 
according to the Average Current Mode Interleaved PFC Control (document AN5257) and set in the 
pfc_appconfig.h file. 
 
typedef struct 
  { 
     bool_t     bRunStop; 
     bool_t     bBrakeRes; 
  } PFC_CONTROL_T; 
 
The code above defines the control bits for the PFC control from the application state machine. The 
meaning of each bit is as follows: 

• bRunStop—PFC application control bit, 0—stop the PFC operation, 1—start the PFC operation. 
• bBrakeRes—brake resistor control bit, 0—resistor disconnected, 1—resistor connected. 

 
typedef struct 
{ 

bool_t  bRunStop;  
bool_t  bSoftStart;     
bool_t  bFault; 

} PFC_STATUS_T; 
 
The code above defines the status bits to inform the application state machine about the PFC application 
status. The meaning of each bit is as follows: 

• bRunStop—PFC application status bit, 0—stop state is in progress, 1—run state is in progress. 
• bSoftStart—soft start status bit, 0—soft start state not active, 1—soft start state is in progress. 
• bFault—fault status flag, 0—PFC application is not in fault state, 1—PFC application is in the 

fault state. 

 
typedef uint16_t PFCDEF_FAULT_T; 
 

http://www.nxp.com/doc/AN5257
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The code above defines the status bits to identify the fault that causes the fault state. The meaning of 
each bit is defined using these constants: 
 
#define PFC_FAULT_I_PFC_OVER     0   /* OverCurrent fault flag */ 
#define PFC_FAULT_U_IN_UNDER     1   /* Input undervoltage fault flag */ 
#define PFC_FAULT_U_IN_OVER      2   /* Input overvoltage fault flag */ 
#define PFC_FAULT_U_DCBUS_UNDER  3   /* dc-bus undervoltage fault flag */ 
#define PFC_FAULT_U_DCBUS_OVER   4   /* dc-bus overvoltage fault flag */ 
#define PFC_SS_FAULT             5   /* Soft start fault flag */ 

7. Efficiency measurement 
The Total Harmonic Distortion (THD) was measured at 115 VAC and 230 VAC. The measurement is 
summarized in the following tables. An electronic load in the constant resistance mode was used for the 
measurements. The power limits vary with the input voltage. The power limits of the power stage are 
shown in Figure 4 in the Freescale High-Voltage Motor Control Platform User's Guide (document 
HVPMC3PHUG).  

Table 2. Measurement at 115 V/60 Hz 

Output power [W] Efficiency [%] Power factor [-] THD [%] 
100 91.5 0.97 19.5 
200 93.4 0.98 9.9 
400 93.5 0.99 4.5 
600 93.4 1 3.5 
750 92.5 1 2.7 

 
Table 3. Measurement at 230 V/50 Hz 

Output power [W] Efficiency [%] Power factor [-] THD [%] 
100 92.3 0.93 33 
200 95.2 0.95 29.6 
400 96.4 0.97 18.4 
600 96.7 0.98 7 
800 96.4 0.99 5.5 

8. Conclusion 
This application note describes the implementation of the average current control mode PFC on the 
KV46xx MCU. The ARM-based KV-series MCUs are targeted for the power management and motor 
control applications due to the dedicated peripherals. Even if the application code demonstrates a 
stand-alone PFC operation, the code is written with an intention to be easily integrated into other 
applications. The design of the control loops is explained with a full theory and a practical example. The 
application source code is provided together with the application note. 

 

 

 

 

http://www.nxp.com/doc/HVPMC3PHUG


Revision history 

Interleaved PFC Average Current Control, Application Note, Rev. 0, 11/2016 
NXP Semiconductors  33 
  

9. References 
• Average Current Mode Interleaved PFC Control (document AN5257) 
• Freescale High-Voltage Motor Control Platform User's Guide (document HVPMC3PHUG) 
• HVP-KV46F150M User’s Guide (document HVPKV46F150MUG) 

The Real-Time Embedded Software Libraries are located at www.nxp.com/rtcesl. See these documents 
for a specific reference when using this application note: 

• Set of General Digital Filters for Cortex M4 Core User’s Guide (document CM4GDFLIBUG) 
• Set of Math Functions for Cortex M4 Core User’s Guide (document CM4MLIBUG) 
• Set of General Functions for Cortex M4 Core User’s Guide (document CM4GFLIBUG) 

For a current list of all documentation, visit www.nxp.com. 

10. Revision history 
The following table summarizes the changes done to this document since the initial release. 

Table 4. Revision history 

Revision number Date Substantive changes 

0 11/2016 Initial release. 

 
 

 

 

http://www.nxp.com/doc/AN5257
http://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com/doc/HVPKV46F150MUG
http://www.nxp.com/rtcesl
http://www.nxp.com/doc/CM4GDFLIBUG
http://www.nxp.com/doc/CM4MLIBUG
http://www.nxp.com/doc/CM4GFLIBUG
http://www.nxp.com/


 
 
 

 

 

 

Document Number: AN5355 
Rev. 0 

11/2016 

   

 

How to Reach Us: 

Home Page: 
nxp.com 

Web Support: 
nxp.com/support 
 

Information in this document is provided solely to enable system and software 
implementers to use NXP products. There are no express or implied copyright licenses 
granted hereunder to design or fabricate any integrated circuits based on the 
information in this document. NXP reserves the right to make changes without further 
notice to any products herein. 

NXP makes no warranty, representation, or guarantee regarding the suitability of its 
products for any particular purpose, nor does NXP assume any liability arising out of the 
application or use of any product or circuit, and specifically disclaims any and all 
liability, including without limitation consequential or incidental damages. “Typical” 
parameters that may be provided in NXP data sheets and/or specifications can and do 
vary in different applications, and actual performance may vary over time. All operating 
parameters, including “typicals,” must be validated for each customer application by 
customer’s technical experts. NXP does not convey any license under its patent rights 
nor the rights of others. NXP sells products pursuant to standard terms and conditions 
of sale, which can be found at the following address: 
nxp.com/SalesTermsandConditions. 

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, 
Kinetis are trademarks of NXP B.V. Silicon Labs is a registered trademark of Silicon 
Laboratories Inc. in the United States and other countries. Windows is a registered 
trademark of Microsoft Corporation in the United States and/or other countries. IAR 
Embedded Workbench is a registered trademark owned by IAR Systems AB. All other 
product or service names are the property of their respective owners. 

ARM, the ARM Powered logo, and Cortex are registered trademarks of ARM Limited (or 
its subsidiaries) in the EU and/or elsewhere. All rights reserved. 

© 2016 NXP B.V. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Interleaved PFC Average Current Control
	1. Introduction
	2. System design concept
	2.1. System architecture
	2.2. System specification
	2.3. PFC control process implementation on KV46

	3. Software design
	3.1. Project files structure
	3.1.1. Data types

	3.2. Scaling of analog quantities
	3.2.1. Voltage scale
	3.2.2. Current scale

	3.3. Application overview
	3.3.1. Application state machine
	3.3.2. Fast PFC state machine
	3.3.3. Slow PFC state machine

	3.4. PWM reload interrupt
	3.5. PIT timeout interrupt
	3.6. Peripheral configuration
	3.6.1. ADC (Analog to Digital Converter)
	3.6.2. eFlexPWM (Enhanced Flex Pulse Width Modulator)
	3.6.3. XBAR A (crossbar switch module A)
	3.6.4. XBAR B (crossbar switch module B)
	3.6.5. And/Or/Invert (AOI) module
	3.6.6. PIT timers
	3.6.7. SCI module

	3.7. PFC Control Peripheral Drivers (PFCDRV)
	3.7.1. PFCDRV initialization
	3.7.2. PFCDRV API

	3.8. Application timing

	4. Control loops design
	4.1. Current controller design
	4.2. Voltage controller design
	4.3. Low-pass filter design

	5. Application setup and control
	5.1. Hardware setup
	5.2. Building and debugging application
	5.2.1. Application upload without IDE

	5.3. Application control

	6. PFC integration
	6.1. PFC application control structures description

	7. Efficiency measurement
	8. Conclusion
	9. References
	10. Revision history


