ANS5317

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-
Processing Application Processors
Rev. 3.0 — 7 October 2024

Application note

Document information
Information Content

Keywords AN5317, Cortex-M, U-Boot, Linux, i.MX Asymmetric Multi-Processing Application

Abstract

This application note shows how to load code into Cortex-M from the software running on Cortex-
A cores.

https://www.nxp.com

NXP Semiconductors AN 531 7

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

1 Introduction

There is a growing number of embedded use cases that require concurrent execution of isolated and secure
software environments. Multiple software execution environments are useful for:

» Off-loading tasks and improving real-time performance

* Increasing system integrity and security

* Optimizing power consumption

The i.MX 8M, i.MX 8, i.MX 8X, i.MX 7D/S/UL, and i.MX 6SoloX SoC families offer Asymmetric Multi-Processing
(AMP) solutions with both Arm Cortex-A processors and Cortex-M4 microcontroller on a single SoC. The cores

can be partitioned into two respective processing domains that can be programmed to run a different OS to
cater for the real-time latency and application processing requirements.

In some applications, it is very useful to have the Arm Cortex-A processors reload code into the Cortex-M4
microcontroller. This application note shows how to reload code on Cortex-M from the Linux shell/U-Boot using
the Arm Cortex-A processor. The same method can be used for any other OS or bare metal implementation.

This application note shows how to load code into Cortex-M from the software running on Cortex-A cores.

The following table lists some NXP SoCs that can be used in the AMP configuration and the software support
for Cortex-M loading from a side in U-Boot and Linux starting with NXP Linux BSP versions 2If-6.6.23-2.0.0.

Table 1. Examples of NXP SoCs that can be used in AMP configuration

SoC name U-Boot - Cortex-M load support RemoteProc support
i.MX 8QM v
i.MX 8QXP
i.MX 8MP
i.MX 8MQ
i.MX 8MM
i.MX 8MN
i.MX 7D/S
i.MX 6SoloX

2L | 2| 2| 2| 2| 2| <
2L | 2] 2| 2| 2| 2| 2| <&

2 Overview of i.MX 8QM/QXP implementations

The i.MX 8QM application processor provides a powerful fully coherent core complex based on a dual (2x)
Cortex-A72 cluster for use cases requiring high computing performances, a quad (4x) Cortex-A53 cluster
running most of the use cases at a lower power consumption and two clusters, each with one Cortex-M4 for
real-time performance.

The i.MX 8QXP application processor provides a quad Arm Cortex-A35 cluster providing full 64-bit ARMv8-A
support while maintaining seamless backward compatibility with 32-bit ARMv7-A software and a single Arm
Cortex-M4.

The current U-Boot source code for both i.MX 8QM and i.MX 8QXP application processors provides a

bootaux and a loadm4image _<coreid> command that helps with loading the code to the Cortex-M4 core and
bringing it up. For example, loading the sensor_demo.bin file to location 0x80280000 and booting the Cortex-
M4_0 core with the image loaded can be done by running the following command: “run m4boot_0” whose
implementation is “run loadm4image_0; dcache flush; bootaux ${loadaddr} 0”, where loadm4image 0 is “fatload
mmc ${mmcdev}:${mmcpart} ${loadaddr} ${m4_0_image}” with loadaddr=0x80280000 and m4_0_image=
sensor_demo.bin.

AN5317 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 3.0 — 7 October 2024 Document feedback
2/20

https://github.com/nxp-imx/linux-imx/tree/lf-6.6.23-2.0.0
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN 531 7

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

This U-Boot feature is useful to bring the Cortex-M4 core up as soon as possible after the boot up or power-on

reset, every time a user wants to modify the application. i.MX 8QM/iMX 8QXP introduces the System Controller
Firmware (SCFW) for interaction with hardware. Controlling the Cortex-M4 from Linux is easier, enabling users

to start, stop, and reload it. This implementation does not allow users to reload another application while a task
is already running on the Cortex-M4 core. This application note describes the interaction with Cortex-M4 cores

from the Linux shell via SCFW API.

3 Overview of i.MX 8M family implementations

The i.MX 8MQ/i.MX 8MM application processors offer a quad Arm Cortex-A53 cluster providing full 64-bit
ARMvV8-A support and also a single Arm Cortex-M4 processor.

The i.MX 8MP/i.MX 8MN application processors provide a quad Arm Cortex-A53 cluster and a single Arm
Cortex-M7 processor.

The current U-Boot source code for both i.MX 8MM and i.MX 8MN application processors provides bootaux
and fatload commands that help users with loading the code into the Cortex-M4/Cortex-M7 core and
bringing it up. For example, “fatload mmc 0:1 0x7e0000 sensor_demo.bin” loads the sensor_demo.bin file to
location 0x7e0000 and “bootaux 0x7e00000” boots the Cortex-M4/Cortex-M7 core with the image loaded at
0x007e_0000.

4 Overview of i.MX 7Dual/7Solo and i.MX 6SoloX implementations

There are many similarities between the i.MX 7Dual/7Solo and i.MX 6SoloX application processors in terms

of where the TCM_U and TCM_L (Tightly Coupled Memory - Upper/Lower) memories are located. However,
the boot vector and the specific register to issue the platform reset and reset the Cortex-M4 are different on the
two application processors. The bit locations inside the registers for both i.MX 7Dual/7Solo and i.MX 6SoloX
application processors are also different.

The i.MX 7Dual/7Solo application processor provides a multicore solution of Arm Cortex-A7 cores (dual or
single) and a single Arm Cortex-M4 core.

The i.MX 6SoloX application processor provides a single Arm Cortex-A9 and a single Arm Cortex-M4. The
Arm Cortex-A7 on i.MX 7Dual/7Solo and the Arm Cortex-A9 on i.MX 6SoloX are both capable of booting
using different interfaces and they are also responsible for bringing up the different interfaces of the chip. It
is the responsibility of Cortex-A7 on i.MX 7Dual/7Solo application processors and Cortex-A9 on i.MX 6SoloX
application processors to enable the Cortex-M4 core.

The current U-Boot source code for both i.MX 7Dual/7Solo and i.MX 6SoloX application processors provides
bootaux and fatload commands that help users with loading the code to the Cortex-M4 core and bringing it up.
For example, “fatload mmc 0:1 0x7f8000 sensor_demo.bin” loads the sensor_demo.bin file to location 0x7f8000
and “bootaux 0x7f80000” boots the Cortex-M4 core with the image loaded at 0x007f_8000.

Although this feature is useful to bring the Cortex-M4 core up as soon as possible after the boot up or power-
on reset (with the existing implementation every time a user wants to modify the application), the U-Boot
must be reconfigured. This implementation does not allow users to reload another application while a task is
already running on the Cortex-M4 core. This application note describes the registers that are required to be
programmed to reload the application from the Linux shell.

For this application note, we assume that the Cortex-M4 core is compiled to execute from the TCM_L and
TCM_U on the chip memories. We also assume that the Cortex-M4 clock is enabled. Users using U-Boot can
enable the clock with the bootaux command by loading a primary image, which, on the Cortex-M4 side, tells the
Linux kernel not to disable the Cortex-M4 clock when the Linux kernel takes over. If you do not run the U-Boot
and want to enable the clock of the Cortex-M4, see the respective clock chapters in the i.MX 7Dual Applications
Processor Reference Manual (document IMX7DRM) and the i.MX 6SoloX Applications Processor Reference
Manual (document IMX6SXRM).

AN5317 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 3.0 — 7 October 2024 Document feedback
3/20

http://www.nxp.com/doc/IMX7DRM
http://www.nxp.com/doc/IMX6SXRM
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

ANS317

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

5 Reloading code on i.MX 8QM/QXP

This section describes how to reload code on i.MX 8QM/QXP.

5.1 On-chip memory view from each Arm core on i.MX 8QM/8QXP

The memory view of different peripherals is different between the Cortex-A and Cortex-M4 sides. Table 2 shows
only the memory areas relevant for this application note. For more details, see the Memory Map chapter in the
i.MX 8QM/QXP Applications Processor Reference Manual.

Note: The TCM memory can be accessed from the A cores using the Cortex M4 platform-specific areas from
the system memory map. The TCM memory is mapped in the same address ranges as those that Cortex-M4
cores see as their TCM memory.

i.MX 8QM has two Cortex-M4 cores, each with their own cluster. i.MX 8QXP has one Cortex-M4 core. The
Cortex-M4_0 from both platforms has the memory map even for the TCM memory.

Table 2. Start and end addresses of different memories from Cortex-M4 side on i.MX

Peripheral Start address End address Start address End address Size
Cortex-M4_0 Cortex-M4_0 Cortex-M4_1 Cortex-M4_1

TCM_L 0x34FE_0000 0x34FF_FFFF 0x38FE_0000 0x38FF_FFFF 128 kB

TCM_H 0x3500_0000 0x3501_FFFF 0x3900_0000 0x3901_FFFF 128 kB

5.2 Detailed procedure

To reload the code on the Cortex-M4 core using the Cortex-A processor on i.MX 8QM/QXP, follow the steps
below if M4 resources belong to the Cortex-A partition:

1. Open an IPC channel to communicate with the SCFW that runs on the SCU using the sc_ipc_open
(sc_ipc_t _ipc, sc_ipc_id_t id) function.

2. Issue a software platform stop for the Cortex-M4 core using the sc_pm_cpu_start (sc_ipc_t ipc, sc_rsrc_t
resource, bool enable, sc_faddr_t address) function.

3. Issue a software platform power off for the Cortex-M4 core using the sc_pm_set_resource_power_mode
(sc_ipc_t ipc, sc_rsrc_t resource, sc_pm_power_mode_t mode) function. Power on the Cortex-M4 core
using the above function. This step ensures that the TCM_L memory is reset.

4. Load the code for the Cortex-M4 processor into the TCM_L memory. For this application, we assume that
the Cortex-M4 code is linked to the TCM_L memory. Program the FreeRTOS binary file to the TCM_L
address.

5. When the image is loaded, start the Cortex-M4 core using the sc_pm_cpu_start (sc_ipc_t ipc, sc_rsrc_t
resource, bool enable, sc_faddr_t address) function.

6 Reloading code on i.MX 8M family

This section describes how to reload code on the i.MX 8M family.

6.1 On-chip memory view from each Arm core on i.MX 8M SoC

The memory view of different peripherals is different between the Cortex-A53 and Cortex-M4/M7 sides. Table 3
and Table 4 show only the memory areas relevant for this application note. For more details, see the Memory
Map chapter in the i. MX 8MM/8MN Applications Processor Reference Manual.

© 2024 NXP B.V. All rights reserved.
Document feedback
4/20

AN5317 All information provided in this document is subject to legal disclaimers.

Application note Rev. 3.0 — 7 October 2024

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

ANS317

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

Note: The TCM memory can be accessed from the A cores using the Cortex-M platform-specific areas from
the system memory map. The TCM memory is mapped in the same address ranges as those that Cortex-M
cores see as their TCM memory.

Table 3. Start and end addresses of different memories from Cortex-M4 side on i.MX8MQ and i.MX8MM

Peripheral Start address End address Start address End address Size
Cortex-A53 Cortex-A53 Cortex-M4 Cortex-M4

TCM_L 0x007E_0000 0x007F_FFFF Ox1FFE_0000 Ox1FFF_FFFF 128 kB

TCM_H 0x0080_0000 0x0081_FFFF 0x2000_0000 0x2001_FFFF 128 kB

Table 4. Start and end addresses of different memories from Cortex-M7 side on i.MX 8MN and i.MX 8MP

Peripheral Start address End address Start address End address Size
Cortex-A53 Cortex-A53 Cortex-M7 Cortex-M7

ITCM 0x007E_0000 0x007F_FFFF 0x0000_0000 0x0001_FFFF 128 kB

DTCM 0x0080_0000 0x0081_FFFF 0x2000_0000 0x2001_FFFF 128 kB

6.2 Detailed procedure

To reload the code on the Cortex-M4 core using the Cortex-A53 processor on i.MX 8MM, follow the steps
below:

1. Issue a software platform reset by setting up SW_M4P_RST (Bit 2) in the SRC_M4RCR (SRC_M4RCR[2])
register. Issuing a platform reset resets the Cortex-M4 cores and their associated memories. The address of
the SRC_M4RCR register is 0x3039_000C for the i.MX 8MM SoC.

2. Load the code for the Cortex-M4 processor into the TCM_L memory. For this application, we assume that
the Cortex-M4 code is compiled to execute from the TCM_L memory. In Table 3, the TCM_L address for the
Cortex-A53 side is 0x007E_0000. Program the FreeRTOS binary file to that address.

3. When the file is loaded, the next step is to set ENABLE_M4 (Bit 3) in the SRC_M4RCR (SRC_M4RCR[3])
register. Because bootaux already booted a primary image, this bit should be 1. Performing a platform reset
using SW_M4P_RST (Bit 2) in the SRC_M4RCR (SRC_M4RCR][2]) register does not clear this bit. The last
step is to set the SW_M4C_RST (Bit 1) in the SRC_M4RCR (SRC_M4RCR[1]) register, which boots the
new code in the Cortex-M4 processor.

To reload the code on the Cortex-M7 core using the Cortex-A53 processor on i.MX 8MN, follow the steps below:

1. Issue a software core reset by setting up SW_M7C_RST (Bit 1) in the SRC_M7RCR (SRC_M7RCRJ[2])
register. Issuing a core reset resets the Cortex-M7 core and the associated memories. The address of the
SRC_MT7RCR register is 0x3039_000C for the i.MX 8MN SoC.

2. Load the code for the Cortex-M7 processor into the ITCM memory. For this application, we assume that the
Cortex-M7 code is compiled to execute from the ITCM memory. In Table 4, the ITCM address for the Cortex-
A53 side is 0x007E_0000. Program the binary file generated by FreeRTOS to that address.

3. When the file is loaded, the next step is to set the ENABLE_M7 (Bit 3) in the SRC_M7RCR
(SRC_M7RCRJ3]) register. Because bootaux already booted a primary image, this bit should be 1.
Performing a core reset using SW_M7C_RST (Bit 1) in the SRC_M7RCR (SRC_M7RCR][1]) register does
not clear this bit. The last step is to set the SW_M7C_RST (Bit 1) in the SRC_M7RCR (SRC_M7RCR[1])
register, which boots the new code in the Cortex-M4 processor.

7 Reloading code on i.MX 7Dual/7Solo

This section describes how to reload code on i.MX 7Dual/7Solo.

© 2024 NXP B.V. All rights reserved.
Document feedback
5/20

AN5317 All information provided in this document is subject to legal disclaimers.

Rev. 3.0 — 7 October 2024

Application note

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

ANS317

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

7.1 On-chip memory view from each Arm core on i.MX 7Dual/7Solo

The memory view of different peripherals is different between the Cortex-A7 and Cortex-M4 sides. Table 5
shows only the memory areas relevant for this application note. For more details, see the Memory Map chapter
in the i.MX 7Dual Applications Processor Reference Manual (document IMX7DRM).

Note: On i.MX 7Dual/7Solo, the boot vector for the Cortex-M4 core is located at the start of the OCRAM_S
(On-Chip RAM - Secure), whose address is 0x0018_0000 for Cortex-A7.

Table 5. Start and end addresses of different memories for Cortex-A7 and Cortex-M4 sides

Peripheral Start address End address Start address End address Size
Cortex-A7 Cortex-A7 Cortex-M4 side Cortex-M4 side

OCRAM_S 0x0018_0000 0x0018_7FFF 0x2018_0000 0x2018_7FFF 32 kB

TCM_L 0x007F_8000 0x007F_7FFF Ox1FFF_8000 Ox1FFF_FFFF 32 kB

TCM_H 0x0080_0000 0x0080_7FFF 0x2000_0000 0x2000_7FFF 32 kB

7.2 Detailed procedure

To reload the code on the Cortex-M4 core using the Cortex-A7 processor on i.MX 7Dual/7Solo, follow the steps
below:

1. Issue a software platform reset by setting up SW_M4P_RST (Bit 2) in the SRC_M4RCR (SRC_M4RCR[2])
register. Issuing a platform reset resets the Cortex-M4 cores and associated memories. The address of the
SRC_M4RCR register is 0x3039_000C for i.MX 7Dual/7Solo SoC.

2. Load the code for the Cortex-M4 processor into the TCM_L memory. For this application, we assume that
the Cortex-M4 code is compiled to execute from the TCM_L memory. In Table 5, the TCM_L address from
the Cortex-A7 side is 0x007F_8000. Program the FreeRTOS binary file to that address.

3. When the file is loaded, set up the Stack and PC pointer in the OCRAM_S memory. After reset, the
processor uses the OCRAM_S start address (0x0018_0000) as the first instruction. For this implementation,
the stack value is the first four bytes found in the binary file generated for the Cortex-M4 processor using
FreeRTOS source. The PC value is also 4 bytes long and located at an offset of 0x4 in the binary file. This
PC value is written to the OCRAM _S base address plus 4, which is (0x0018_0004) for this platform. Table 6
further clarifies the Stack and PC addresses.

Table 6. Boot vectors' location for Cortex-M4 core

OCRAM_S location for boot vectors

0x0018_0000

Program counter 0x0018_0004

4. When the start-up address in the OCRAM_S is adjusted according to the binary file, the file is loaded into
the memory. The next step is to set the ENABLE_M4 (Bit 3) in the SRC_M4RCR (SRC_M4RCR[3]) register.
Because bootaux already booted a primary image, this bit should be 1. Performing a platform reset using
SW_M4P_RST (Bit 2) in the SRC_M4RCR (SRC_M4RCR][2]) register does not clear this bit. The last step is
to set the SW_M4C_RST (Bit 1) in the SRC_M4RCR (SRC_M4RCR([1]) register, which boots the new code
on the Cortex-M4 processor.

5. Repeat steps 1-3 to reload a new image. More details about the SRC_M4RCR register are shown in
Figure 1.

Location of boot vectors in binary file

First 4 bytes

Boot vectors

Stack pointer

4 bytes after first 4 bytes

© 2024 NXP B.V. All rights reserved.
Document feedback
6/20

AN5317 All information provided in this document is subject to legal disclaimers.

Application note Rev. 3.0 — 7 October 2024

http://www.nxp.com/doc/IMX7DRM
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

ANS317

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

Address: 3039_0000h base + Ch offset = 3039_000Ch

Bt 30 29 28 27 26 25 24

LOCK
DOMAIN1
DOMAIND

DOM_EM
DOMAINS
DOMAIN2

(=]
[=]
L=}
=

Reset 0 0

Bit a B T L 5 4 3 2 1 (1]
=
S |8

R e = =
o
S |5 2|52
5 |x'2 | mask WDOGa RST u e | g
73] |
T (2= - - @ §I %I
0 |- =

w 2 o w % %
2 |a
= =

Reset 0 ©0 ©0 ©o o0 o0 ©0 o0 |1 ©0o 1 o 1 @ o o0

Figure 1. Cortex-M4 reset control register (SRC_M4RCR)

7.3 Steps for reloading code on i.MX 7Dual/7Solo

The steps to reload code on i.MX 7Dual/7Solo are as follows:

Issue a platform reset by setting the SRC_M4RCR][2] bit in the SRC_MRCR register.

Wait for SRC_M4RCR[2] to be cleared.

Set the stack pointer to the first 4 bytes of the binary file.

Set the PC pointer to the next 4 bytes after the first 4 bytes of the binary file.

Load the binary file starting at address 0x007F_8000.

Reset the Cortex-M4 microcontroller by setting the SRC_M4RCR[1] bit in the SRC_M4RCR register.

ook w2

8 Reloading code on i.MX 6SoloX

This section describes how to reload code on i.MX 6SoloX.

8.1 On-chip memory view from each Arm core on the i.MX 6SoloX

The memory view of different peripherals is different between the Cortex-A9 and Cortex-M4 sides. Table 7
shows only the memory areas relevant for this application note. For more details, see the Memory Map chapter
in the i.MX 6SoloX Applications Processor Reference Manual (document IMX6SXRM).

Table 7. Start and end addresses of different memories from Cortex-A9 and Cortex-M4 side

Peripheral Start address End address Start address End address Size
Cortex-A9 Cortex-A9 Cortex-M4 side Cortex-M4 side

TCM_L 0x007F_8000 0x007F_7FFF Ox1FFF_8000 Ox1FFF_FFFF 32 kB

TCM_U 0x0080_0000 0x0080_7FFF 0x2000_0000 0x2000_7FFF 32 kB

© 2024 NXP B.V. Al rights reserved.

Document feedback
7120

AN5317 All information provided in this document is subject to legal disclaimers.

Rev. 3.0 — 7 October 2024

Application note

http://www.nxp.com/doc/IMX6SXRM
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN 531 7

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

Note: The boot vector for the Cortex-M4 core is located at the start of the TCM_L, whose address is
0x007F _8000 from the Cortex-A9 core. This is a location different from that on the i.MX 7Dual/7Solo.

8.2 Detailed procedure

To reload the code on the Cortex-M4 core using the Cortex-A9 processor on i.MX 6SoloX, follow the steps listed
below:

1.

Issue a software platform reset by setting up M4P_RST (Bit 12) in the SRC_SCR (SRC_M4RCR[12])
register. Issuing a platform reset resets the Cortex-M4 cores and associated memories. The address of the
SRC_SCR register is 0x020D_8000 for i.MX 6SoloX.

Load the code for the Cortex-M4 processor into the TCM_L memory. For this application, we assume

that the M4 code is compiled to execute from the TCM_L memory. Program the binary file generated by
FreeRTOS to the TCM_L address from the Cortex-A9 side, which is 0x007F_8000, as listed in Table 7.
When the file is loaded, set up the stack and PC pointers in the TCM_L memory. After a reset, the processor
uses the TCM_L start address (0x007F_8000) as the first instruction. For this implementation, the stack
value is the first 4 bytes found in the binary file generated for the Cortex-M4 processor using the FreeRTOS
source. The PC value is also 4 bytes long and located at an offset of 0x4 in the binary file. This PC value

is written to the TCM_L base address plus four, which is (0x007F_8004). Table 8 shows the stack and PC
addresses.

Table 8. Boot vectors location for Cortex-M4 core

Boot vectors TCM_L location for boot vectors Location of boot vectors in binary file
Stack pointer 0x007F_8000 First 4 bytes
Program counter 0x007F_8004 4 bytes after first 4 bytes

. When the startup address in the TCM_L is modified according to the binary file and loaded into the memory,

ensure that the ENABLE_M4 (Bit 22) in the SRC_SCR (SRC_SCR[22]) register is set to 1. Because

the bootaux already booted a primary image, this bit should be 1. Performing a platform reset using
M4P_RST (Bit 12) in the SRC_SCR (SRC_SCR][12]) register does not clear this bit. The last step is to set
the M4C_RST (Bit 3) in the SRC_SCR (SRC_SCR[3]) register, which boots the new code on the Cortex-M4
processor.

. Repeat steps 1-3 to reload a new image. More details about the SRC_SCR register are in Figure 2.

AN5317 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 3.0 — 7 October 2024 Document feedback

8/20

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN 531 7

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

The Reset control register (SCR), contains bits that control operation of the reset
controller.
Jaddress: 20D_8000h base + Oh offset = 20D_8000h
Bit el 30 20 28 a7 26 2% 24 =] 22 21 20 19 18 17 16
-
R @ E g . 0
S8 ||| ® 9 2
[| [y 3 o =
- £ i | = A & a
mask_wdog3_rst mix_rst_strch| i = - g = @ b=
Ela |8 4| 3 E g
| £
2 D S o by
w g H 8 o x E
* g
Rest { o0 1 0 © o0 O ©O0]J]0O ©0 ©0 O 1 D0 0 0O
Bit 15 14 13 12 11 10 a9 8 T & 5 4 a 2 1
B 3
R| O 0 o ©
- o c
EEI w B warm_rst_ g B SW_ %
=1 ! | k_wdog_rst bypass ! ! u
D o £ mask_wdog_| ypass_ < Q gpu_
3 z s count EI z rst 2
i g
E 2
Reset ¢ 0 o 1 o 1t 0 1[0 o0 1 Tt 1 o0 o 1
Figure 2. SRC control register (SRC_SCR)

8.3 Steps for reloading code on i.MX 6SoloX

The steps to reload code on i.MX 6SoloX are as follows:

Issue a platform reset by setting the SRC_SCR[12] bit in the SRC_SCR register.
Wait for the SRC_SCR[12] bit to be cleared by the hardware.

Set the stack pointer to the first 4 bytes of the binary file.

Set the PC pointer to the next 4 bytes after the first 4 bytes of the binary file.
Load the binary file starting at address 0x007F_8000.

Reset the Cortex-M4 by setting the SRC_SCR[3] bit in the SRC_SCR register.

ok wN =~

9 Linux Remote Processor (rproc) framework

Most modern SoCs are heterogenous platforms presenting Asymmetric Multiprocessing (AMP) configuration
with different types of processors, which allows to run various instances of operating system (like Linux) in
parallel with a real-time OS.

For example, i.MX 8MP presents a cluster of quad Cortex-A53 cores and a cluster with a Cortex-M7 core. The
quad Cortex-A53 cluster usually runs Linux in SMP configuration and the Cortex-M7 core may run an RTOS.

The Remote Processor (rproc) framework is a Linux community effort to introduce the possibility to control
(power on, load firmware, power off) the remote processors abstracting the hardware differences in the same
time on AMP SoCs. It offers monitoring and debug services for the remote coprocessor.

Later versions of the Linux kernel (= 5.x) implement the rproc framework in the "remote proc" section of

the Linux kernel repository drivers/remoteproc. The Linux kernel community implemented the framework
abstractization between the user interaction (other Linux kernel modules, sysfs, user space) and the hardware
to provide a uniform API, which can be used in a similar way for all platforms that support Linux rproc.

AN5317 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 3.0 — 7 October 2024 Document feedback
9/20

https://github.com/nxp-imx/linux-imx/tree/lf-6.6.23-2.0.0/drivers/remoteproc
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN 531 7

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

For the interaction with hardware, each SoC support must implement rproc_ops callbacks. The following code
snippet shows the operations from rproc_ops.

"/**

* struct rproc ops - platform-specific device handlers
@prepare: prepare device for code loading
@unprepare: unprepare device after stop
@start: power on the device and boot it
@stop: power off the device
@attach: attach to a device that his already powered up
@detach: detach from a device, leaving it powered up
@kick: kick a virtqueue (virtqueue id given as a parameter)
@da to va: optional platform hook to perform address translations
@parse fw: parse firmware to extract information (e.g. resource table)
@handle rsc: optional platform hook to handle vendor resources. Should return
RSC_HANDLED if resource was handled, RSC IGNORED if not handled

and a negative value on error
@find loaded rsc table: find the loaded resource table from firmware image
@get loaded rsc table: get resource table installed in memory

by external entity

@load: load firmware to memory, where the remote processor

expects to find it
@sanity check: sanity check the fw image
@get boot addr: get boot address to entry point specified in firmware
@panic: optional callback to react to system panic, core will delay
panic at least the returned number of milliseconds
@coredump: collect firmware dump after the subsystem is shutdown

/

Xk 3 ok o oF o o o X X o X ok X X o X X X X

struct rproc ops {
int (*prepare) (struct rproc *rproc);

int (*unprepare) (struct rproc *rproc);
int (*start) (struct rproc *rproc);

int (*stop) (struct rproc *rproc);

int (*attach) (struct rproc *rproc);
int (*detach) (struct rproc *rproc);

void (*kick) (struct rproc *rproc, int vgid);
void * (*da to va) (struct rproc *rproc, u64 da, size t len, bool *is iomem);
int (*parse fw) (struct rproc *rproc, const struct firmware *fw);
int (*handle rsc) (struct rproc *rproc, u32 rsc_type, void *rsc,
int offset, int avail);
struct resource table * (*find loaded rsc table) (
struct rproc *rproc, const struct firmware *fw);
struct resource table *(*get loaded rsc table) (
struct rproc *rproc, size t *size);
int (*load) (struct rproc *rproc, const struct firmware *fw);
int (*sanity check) (struct rproc *rproc, const struct firmware *fw);
u64 (*get boot addr) (struct rproc *rproc, const struct firmware *fw);
unsigned long (*panic) (struct rproc *rproc);
void (*coredump) (struct rproc *rproc);
"

rproc Linux Documentation describes each API and their main functionality, which can be a useful resource
when you start implementing the SoC support from scratch.

AN5317 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 3.0 — 7 October 2024 Document feedback
10/20

https://github.com/nxp-imx/linux-imx/blob/lf-6.6.23-2.0.0/Documentation/staging/remoteproc.rst
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN 531 7

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

9.1 i.MX Linux rproc support

NXP Linux BSP provides support for i.MX Linux rproc on the following platforms: i.MX 8MP, i.MX 8MQ, i.MX
8MM, i.MX 8MN, i.MX 8QM, i.MX 8QXP, i.MX 7D, i.MX 7UL, and i.MX 6SX. The implementation is realized in
imx_rproc.c. The supported platforms can be also identified in the code by checking compatible strings from the
imx_rproc_of _match structure.

Rproc implements the callback from rproc_ops, following the recommendations listed in previous chapters. For
example, the i.MX 8/i.MX 8X rproc uses the SCFW API to start/stop the M4 core. The i.MX 8M rproc programs
the SRC registers directly or via ATF to start/stop the M4/M7 cores.

The imx_rproc implementation sets the memory map for each supported platform inside to know which memory
areas are allowed for the Cortex-M to contain code and data and those limits are checked at runtime when the
ELF is parsed and its sections will be copied into the targeted memories.

For instance, Figure 3 shows how the memory map for i.MX 8MN / i.MX 8MP is defined in "imx_rproc":

static const struct imx rproc att imx rproc att imx8mn[] = {
/* dev addr , sys addr , size , flags */
/* ITCM */
{ 0x00000000, 0x007E0000, 0x00020000, ATT OWN | ATT IOMEM },
/* OCRAM S */
{ 0x00180000, 0x00180000, 0x00009000, O 1},
/* OCRAM */
{ 0x00900000, 0x00900000, 0x00020000, O 1},
/* OCRAM */
{ 0x00920000, 0x00920000, 0x00020000, O 1},
/* OCRAM */
{ 0x00940000, 0x00940000, 0x00050000, O 1},
/* QSPI Code - alias */
{ 0x08000000, 0x08000000, 0x08000000, O 1},
/* DDR (Code) - alias */
{ 0x10000000, 0x40000000, OxOFFEOOQOO, O 1},
/* DTCM */
{ 0x20000000, 0x00800000, 0x00020000, ATT OWN | ATT IOMEM },
/* OCRAM S - alias */
{ 0x20180000, 0x00180000, 0x00008000, ATT OWN },
/* OCRAM */
{ 0x20200000, 0x00900000, 0x00020000, ATT OWN },
/* OCRAM */
{ 0x20220000, 0x00920000, 0x00020000, ATT OWN },
/* OCRAM */
{ 0x20240000, 0x00940000, 0x00040000, ATT OWN },
/* DDR (Data) */
{ 0x40000000, 0x40000000, 0x80000000, O 1},

|

1. The rproc framework must be activated in the kernel configuration if it is not enabled by default.

AN5317 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 3.0 — 7 October 2024 Document feedback
11/20

https://github.com/nxp-imx/linux-imx/blob/lf-6.6.23-2.0.0/drivers/remoteproc/imx_rproc.c
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN 531 7

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

> Device Drivers > Remoteproc drivers
Remoteproc drivers
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted
letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to

exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module < > module capable

[*] Support for Remote Processor subsystem
[1] FRemoteproc character device interface
<4 1.MX remoteproc support
<]

..MX DSP remoteproc support

<Select < Exit > < Help > < Save >

Figure 3. Memory map for i.MX 8MN / i.MX 8MP defined in "imx_rproc"

2. The rproc framework is enabled in device tree using a dedicated DTS node. This required node is usually
provided in "imx-*-rpmsg.dts" by default in NXP Linux BSP. For example, i.MX 8MP uses the following DTS
node, which specifies what mailboxes are needed for the communication between Linux and the M7 SDK
app.

imx8mp-cm7 {
compatible = "fsl, imx8mn-cm7";
rsc-da = <0x55000000>;
clocks = <&clk IMX8MP CLK M7 DIV>;

mbox-names = "tx", "rx", "rxdb";
mboxes = <&mu 0 1

&mu 1 1

&mu 3 1>;

memory-region
<&rsc_table>;
status = "okay";

};

<&vdevbuffer>, <&vdevOvring0>, <&vdevOvringl>,

The "memory-region” attribute must contain the memory sections that are used by the firmware ELF to allow
reloading from sysfs.

For example, for i.MX 8MP, the following sections can be added:

* Memory regions definitions from the reserved-memory node:

m4 reserved: m4@0x80000000 {

no-map,

reg = <0 0x80000000 0 0x1000000>;

}i

m7 ddr alias: m4@0x10000000 {

no-map,

reg = <0 0x10000000 0 0x1000000>;

}i
AN5317 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 3.0 — 7 October 2024 Document feedback

12/20

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN 531 7

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

m7 itcm: m4C@0x7E0000 {
no-map;
reg = <0 0x7E0000 0 0x20000>;
};
m7 dtcm: m4@0x800000 {
no-map;
reg = <0 0x800000 0 0x20000>;
};

 rproc DTS node referring to used memory nodes:

imx8mp-cm7 {
compatible = "fsl, imx8mn-cm7";
rsc-da = <0x55000000>;
clocks = <&clk IMX8MP CLK M7 DIV>;

mbox-names = "tx", "rx", "rxdb";
mboxes = <&mu 0 1

&mu 1 1

&mu 3 1>;

memory-region = <&vdevOvring0>, <&vdevOvringl>, <&vdevbuffer>,
<&m4 reserved>, <&m7 ddr alias>, <&m7 itcm>, <&m7_ dtcm>;
status = "okay";

};

9.1.1 How to use rproc on i.MX platforms

This subsection shows the usage of rproc on i.MX platforms using the i.MX 8MP platform as a reference.
There are three possibilities to load and start the remote processor firmware:

* The firmware can be started via the sysfs interface.
» The firmware can be started automatically by the remoteproc driver at the probing stage.
* Boot the firmware early using U-Boot and control the firmware using the sysfs interface.

Note: Fori.MX 8M platforms, the root clock for M7/M4 must be kept always enabled by Linux to load the
firmware code and start Cortex M7/M4. By default, NXP Linux BSP keeps the root clock enabled for the M core
when it is started from U-Boot. Otherwise, if you must firstly start the M core from the Linux booting phase, the
clock driver (drivers/clk/imx/clk-composite-8m.c) must be updated to always skip the gate registration to keep
the root clock always enabled for the M core.

9.1.1.1 Starting firmware using sysfs interface

1. Power up the board and stop in U-Boot and run the following command:

u-boot=> run prepare mcore
u-boot=> boot

2. rproc exports the rproc functionalities to UserSpace using sysfs.

$ 1s /sys/class/remoteproc/remoteprocO/
consumers device name recovery subsystem uevent
coredump firmware power state suppliers

Note: If /sys/class/remoteproc/remoteproc®/ is empty, the rproc framework is not enabled in the device tree.
The previous section describes how to enable rproc. When the default NXP image is used, the rproc can be
enabled by setting the device tree to imx8mp-evk-romsg.dtb.

3. If the ELF is not stored in /lib/firmware, set the new path.

echo -n <firmware path> > /sys/module/firmware class/parameters/path

AN5317 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 3.0 — 7 October 2024 Document feedback
13/20

https://github.com/nxp-imx/linux-imx/blob/lf-6.6.23-2.0.0/drivers/clk/imx/clk-composite-8m.c
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN 531 7

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

$ echo -n /run/media/mmcblklpl/ > /sys/module/firmware class/parameters/path

4. If the filename of the firmware ELF is different from the default one, set it to the new one.

echo -n <firmware name.elf> > /sys/class/remoteproc/remoteproc<N>/firmware
$ echo -n imx8mp m7 TCM hello world.elf > /sys/class/remoteproc/remoteproc0/
firmware

5. Check the state of the remote processor before starting it with a new firmware. If it is online, it should be
stopped.

cat /sys/class/remoteproc/remoteproc<N>/state
S cat /sys/class/remoteproc/remoteprocO/state
offline

6. Start the remote processor with the new firmware.

echo start > /sys/class/remoteproc/remoteproc<N>/state
S echo start > /sys/class/remoteproc/remoteproc(O/state

$ cat /sys/class/remoteproc/remoteproc(O/state

running

7. Stop the remote processor.

echo stop > /sys/class/remoteproc/remoteproc<N>/state
S echo stop > /sys/class/remoteproc/remoteprocO/state

$ cat /sys/class/remoteproc/remoteproc(O/state

offline

Important: On i.MX 8M platforms, "remoteproc” stops only the Cortex-M CPU, not the Cortex-M system.
Therefore, any in-flight Cortex-M bus transactions would hang after the CPU is halted and this can only be
resolved with a full SoC reset. It is not recommended to stop the Cortex-M7 CPU in a production system. If
the system must stop the Cortex-M7 CPU, reload the image and restart it. Then, the Cortex-M7 CPU must be
in the WFI state and have no external access to the Cortex-M7 TCM memory through eDMA or other similar
transactions. A possible solution is to implement a handshake between the Cortex-M and Cortex-A CPUs to
confirm that the Cortex-M CPU is safe to stop or reset.

9.1.1.2 Starting firmware automatically by remote PROC driver during Linux kernel boot time

Starting the firmware automatically by a remote PROC and not from U-Boot or Linux console is possible if the
"fsl,auto-boot" property is set to 1 in the "imx8xx-evk-rpmsg.dts" file:

imx8mp-cm7 {
compatible = "fsl, imx8mn-cm7";
rsc—-da = <0x55000000>;
clocks = <&clk IMX8MP CLK M7 DIV>,
<&audio_blk_ctrl IMXSMP_CLK_AUDIOMIX_AUDPLL_ROOT>;

clock-names = "core", "audio";
mbox-names = "tx", "rx", "rxdb";
mboxes = <&mu 0 1
gmu 1 1
gmu 3 1>;
memory-region = <&vdevbuffer>, <&vdevOvring0>, <&vdevOvringl>, <&rsc_table>;
status = "okay";
fsl,startup-delay-ms = <500>;
fsl,auto-boot = <1>;
}i
AN5317 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 3.0 — 7 October 2024 Document feedback

14720

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN 531 7

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

To apply the changes, recompile the "imx8xx-evk-rpmsg.dtb" and set it as the device tree when U-Boot is
paused. As an alternative, the default "imx8mx-evk-rpmsg.dtb" can be configured directly from U-Boot using
"fdt" (this example is for "imx8mp-evk-rpmsg.dtb"):

u-boot=> setenv fdtpatch 'fdt addr $fdt addr; fdt resize; fdt set /imx8mp-cm7
"fsl,auto-boot" "<1>"; fdt print /imx8mp-cm7'

u-boot=> editenv loadfdt

edit: fatload mmc ${mmcdev}:S{mmcpart} ${fdt addr r} ${fdtfile}; run fdtpatch

u-boot=> run prepare mcore

u-boot=> boot

To select an ELF firmware file to be auto-booted, store the file in the "/lib/firmware" folder and rename it to
"rproc-imx-rproc-fw" without specifying the ELF extension at the end of the filename. For example, if the ELF file
is named "hello_world.elf", then it should be renamed to "rproc-imx-rproc-fw".

Note: To find out how the ELF file should be named, use the following command (this is useful to check when
the name is changed in a future version of the BSP):

The firmware name is stored in /sys/class/remoteproc/remoteproc(/firmware
S cat /sys/class/remoteproc/remoteproc0/firmware
rproc-imx-rproc—fw

9.1.1.3 Booting firmware early using U-Boot and controlling firmware using sysfs interface

i.MX U-Boot can start Cortex-M from the U-Boot console level using the bootaux command. Depending on the
used i.MX 8M, i.MX 8, or i.MX 8X platforms, some of them have already defined Cortex-M booting commands.

To define a booting command for the Cortex-M7 CPU on i.MX 8MP, use the following commands in U-Boot:

@ M7 Bin Filename - stored on 1lst partition

u-boot=> setenv m7image imx8mp m7 TCM hello world.bin

M7 Load command

u-boot=> setenv load m7image 'fatload mmc 1:1 0x48000000 ${m7image}; cp.b
0x48000000 0x7e0000 0x20000; "

M7 Start Command

u-boot=> setenv m7boot 'run load m7image; bootaux 0x7e0000'

Start M7

u-boot=> run m7boot

13062 bytes read in 28 ms (455.1 KiB/s)

Starting auxiliary core stack = 0x20020000, pc = 0x00002BOD...

u-boot=> run prepare mcore; boot

After the Cortex-M CPU is started from U-Boot, Linux can be started using the “boot” command. To stop and
reload the Cortex-M CPU, perform the following steps:

1. Stop the remote processor before deploying new firmware.

echo stop > /sys/class/remoteproc/remoteproc<N>/state
$ echo stop > /sys/class/remoteproc/remoteproc(O/state

2. If ELF is not stored in /lib/firmware, set a new path.

echo -n <firmware path> > /sys/module/firmware class/parameters/path
$ echo -n “/run/media/mmcblklpl/” > /sys/module/firmware class/parameters/
path

3. If the filename of the firmware ELF is different from the default one, set it to a new one.

echo -n <firmware name.elf> > /sys/class/remoteproc/remoteproc<N>/firmware

AN5317 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 3.0 — 7 October 2024 Document feedback
15/20

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN 531 7

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

$ echo -n imx8mp m7 TCM hello world.elf > /sys/class/remoteproc/remoteproc0/
firmware

4. Start the remote processor with the new firmware.

echo start > /sys/class/remoteproc/remoteproc<N>/state
$ echo start > /sys/class/remoteproc/remoteprocO/state

10 References

i.MX 8MP Applications Processor Reference Manual (document IMX8MP)

i.MX 8MQ Applications Processor Reference Manual (document IMX8MDQLQRM)
i.MX 8MM Applications Processor Reference Manual (document IMX8MMRM)
i.MX 8MN Applications Processor Reference Manual (document IMX8MNRM)
i.MX 8QM Applications Processor Reference Manual (document IMX8QMRM)
i.MX 8QXP Applications Processor Reference Manual (documentIMX8DQXPRM)
i.MX 7Dual Applications Processor Reference Manual (document IMX7DRM)

i.MX 6SoloX Applications Processor Reference Manual (document IMX6SXRM)
Linux Remote Processor Framework documentation

© o N>R WD =

11 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

12 Revision history

Table 9. Revision history

Document ID Release date Description

AN5317 v.3.0 07 October 2024 Information related to the i.MX 8M family has been updated

2 18 November 2021 | Introduced rproc and updated the look and feel of the document
AN5317 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 3.0 — 7 October 2024 Document feedback

16/20

https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true
http://www.nxp.com/doc/IMX8MDQLQRM
http://www.nxp.com/doc/IMX8MMRM
http://www.nxp.com/doc/IMX8MNRM
http://www.nxp.com/doc/IMX8QMRM
http://www.nxp.com/doc/IMX8DQXPRM
http://www.nxp.com/doc/IMX7DRM
http://www.nxp.com/doc/IMX6SXRM
https://github.com/nxp-imx/linux-imx/tree/lf-6.6.23-2.0.0/drivers/remoteproc
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

ANS317

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing

Table 9. Revision history...continued

Application Processors

Document ID

Release date

Description

1

08/2019

Introduced i.MX 8M support

0

08/2016

Initial release

AN5317

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 3.0 — 7 October 2024

Document feedback
17120

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

ANS317

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing

Legal information

Application Processors

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

AN5317 All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and

trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 3.0 — 7 October 2024

Document feedback
18/20

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN 531 7

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing
Application Processors

Amazon Web Services, AWS, the Powered by AWS logo, and FreeRTOS AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,

— are trademarks of Amazon.com, Inc. or its affiliates. Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, pVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

AN5317 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 3.0 — 7 October 2024 Document feedback
19/20

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

ANS317

Loading Code on Cortex-M from U-Boot/Linux for the i.MX Asymmetric Multi-Processing

Application Processors

Contents
1 Introduction ..o 2
2 Overview of i.MX 8QM/QXP

implementationsccccceririiiiiencccce 2
3 Overview of i.MX 8M family

implementationscccccieiiiiiiiniccccccccee 3
4 Overview of i.MX 7Dual/7Solo and i.MX

6SoloX implementationscccccceeeeeieiccccnnnees 3
5 Reloading code on i.MX 8QM/QXP 4
51 On-chip memory view from each Arm core

on i.MX 8QM/BQXPccooiiiiiiiiiiiieiee e 4
5.2 Detailed procedureccccociiiiiiiieeeiieeeeeeee, 4
6 Reloading code on i.MX 8M family 4
6.1 On-chip memory view from each Arm core

oN i.MX 8M SOCcocviiiiiiinieeeeee e 4
6.2 Detailed procedureccccooviiiiiiiieeeiieeeeeeee, 5
7 Reloading code on i.MX 7Dual/7Solo 5
71 On-chip memory view from each Arm core

on i.MX 7Dual/7S0l0ccoecvvireiiieceiec e 6
7.2 Detailed procedurecccccciiiiiiieieiiieeeeeeee, 6
7.3 Steps for reloading code on i.MX

TDUAITSOIO ..o 7
8 Reloading code on i.MX 6SoloX 7
8.1 On-chip memory view from each Arm core

on the i.MX BS0loXccceriiiiiiiieiee e 7
8.2 Detailed procedurecccccciiiiiiiieiiiieeeeeee, 8
8.3 Steps for reloading code on i.MX 6SoloX 9
9 Linux Remote Processor (rproc)

frameworkcccciviiminn 9
9.1 i.MX Linux rproc supportccccceeeeeeeeeeeeenennn. 11
9.1.1 How to use rproc on i.MX platforms 13
9.1.1.1 Starting firmware using sysfs interface 13
9.1.1.2 Starting firmware automatically by remote

PROC driver during Linux kernel boot time 14
9.1.1.3 Booting firmware early using U-Boot and

controlling firmware using sysfs interface 15
10 References ..o 16
1" Note about the source code in the

document ..o ——— 16
12 Revision historycociiiiioioiiicciereces 16

Legal information ..o 18

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.

For more information, please visit: https://www.nxp.com Document feedback

Date of release: 7 October 2024
Document identifier: AN5317

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

	1 Introduction
	2 Overview of i.MX 8QM/QXP implementations
	3 Overview of i.MX 8M family implementations
	4 Overview of i.MX 7Dual/7Solo and i.MX 6SoloX implementations
	5 Reloading code on i.MX 8QM/QXP
	5.1 On-chip memory view from each Arm core on i.MX 8QM/8QXP
	5.2 Detailed procedure

	6 Reloading code on i.MX 8M family
	6.1 On-chip memory view from each Arm core on i.MX 8M SoC
	6.2 Detailed procedure

	7 Reloading code on i.MX 7Dual/7Solo
	7.1 On-chip memory view from each Arm core on i.MX 7Dual/7Solo
	7.2 Detailed procedure
	7.3 Steps for reloading code on i.MX 7Dual/7Solo

	8 Reloading code on i.MX 6SoloX
	8.1 On-chip memory view from each Arm core on the i.MX 6SoloX
	8.2 Detailed procedure
	8.3 Steps for reloading code on i.MX 6SoloX

	9 Linux Remote Processor (rproc) framework
	9.1 i.MX Linux rproc support
	9.1.1 How to use rproc on i.MX platforms
	9.1.1.1 Starting firmware using sysfs interface
	9.1.1.2 Starting firmware automatically by remote PROC driver during Linux kernel boot time
	9.1.1.3 Booting firmware early using U-Boot and controlling firmware using sysfs interface

	10 References
	11 Note about the source code in the document
	12 Revision history
	Legal information
	Contents

