
1 Introduction
The MPC574xP is a Power Architecture®-based MCU for 
Automotive and Industrial Applications.

This document details the MPC574xP specific PLL and clock 
divider settings to achieve 200 MHz Core. In addition, the 
document describes the Progressive Clock Switching feature, 
which supports a smooth ramp-up and ramp-down of device 
system clocks, for a 200 MHz clock example. The calculations 
for this example can be used for any source clock application 
by simply changing the inputs to the formulas.

2 Clock initialization
At Power on Reset the MCU is clocked from the on chip 16 
MHz Internal RC Oscillator (IRCOSC). This section describes 
how to configure the clock related modules to run the MCU 
from the configurable and higher speed PLL's. It will also 
cover the setup of the clock trees to distribute and divide the 
clock sources to to the buses and peripherals on the MCU.

NXP Semiconductors Document Number: AN5304

Application Note Rev. 2, 11/2017

Initializing the MPC574xP Clock
Generation Module and
Progressive Clock Switching
Feature
by: NXP Semiconductors

Contents

1 Introduction................................................................1

2 Clock initialization........................... .........................1

2.1 Clock tree ............................. .........................1

3 Introduction to Progressive Clock
Switching (PCS) ..................................... ..................3

3.1 PCS operation....................... ..........................3

3.2 PCS control of current............... .....................4

3.3 PCS registers........................ .......................... 4

3.4 PCS calculation example.......... ..................... 5

3.5 PCS calculator................................................ 6

3.6 PCS sample oscilloscope plots.... ................ 10

4 Appendix A................................. ............................11

4.1 C code listing................................................11

5 Revision history.......................... ............................ 14

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc57xx-mcus/ultra-reliable-mpc574xp-mcu-for-automotive-industrial-safety-applications:MPC574xP?utm_medium=AN-2021


2.1 Clock tree
The following diagram shows the clock tree configuration for the MPC574xP. In the software example used in this
application note, PLL0 is configured to output a 160 MHz clock and PLL1 is configured to output a 200 MHz clock.
Software configures both PLL0 and PLL1 to use the external oscillator (40 MHz) as an input.

PLL0 

PLL1
HALFSYS_CLK

16MHz RC

(XOSC)

MOTC_CLK

FlexRay (FRAY_CLK) 

SENT (SENT_CLK)

PBRIDGE0_CLK

(IRCOSC)

8 - 44 MHz

Oscillator

Ext Oscillator

AUX Clock 
Selector 4

S
ys

te
m

 C
lo

ck
 

S
el

ec
to

rXOSC

AUX Clock 
Selector 3 IRCOSC

XOSC

PHI 

PHI1 

PHI
SGEN_CLK

ext clock

PBRIDGE1_CLK

A
U

X
 C

lo
ck

 
S

el
ec

to
r 

0
A

U
X

 C
lo

ck
 

S
el

ec
to

r 
6

P
C

F
S

XOSC

A
U

X
 C

lo
ck

 
S

el
ec

to
r 

1

CLKOUT0

IRCOSC
XOSC

SYS_CLK 

CHKR_CLK

IRCOSC

CMU_0

XOSC 

CGL

0

0 

0 

1 

2 

0 

1

CMU_2

CMU_1

CMU_3

CMU_4

Note: All dividers shown in the diagram (FCD not included) are 
integer dividers with a range of 1, 2, 3,...., n.

FRAY_PLL_CLK
÷ 1…32

÷ 1…64

÷ 1…16

÷ 1…32

÷ 1…32

÷ 1…128

All clock dividers are 50% duty cycle.

÷ 2

÷ 1…64

CAN_CLK

A
U

X
 C

lo
ck

 
S

el
ec

to
r 

2XOSC

÷ 1…16

LFAST PLL

A
U

X
 C

lo
ck

 
S

el
ec

to
r 

5XOSC
(RF_REF)

LFAST_REF_CLK

LFAST_REF_CLK
(ext sig name)

÷ 1…32

MOTC_CLK

SSCG

(XBAR,NPC,NAL,MEMU)

CGL

0

CAN_PLL_CLK

0

IRCOSC

ENET_CLK

A
U

X
 C

lo
ck

 
S

el
ec

to
r 

10XOSC

RMII_CLK
RMII_CLK

(ext sig name)

÷ 1…16
0

ENET_TIME_CLK

A
U

X
 C

lo
ck

 
S

el
ec

to
r 

11XOSC

RMII_CLK
(ext sig name)

÷ 1…16
0

IRCOSC

IRCOSC

ADC_CLK

÷2

Figure 1. Block diagram of MPC574xP clock tree

A summary of the clock tree settings that are configured in the example software is shown in the following table.

Clock initialization

Initializing the MPC574xP Clock Generation Module and Progressive Clock Switching Feature, Rev. 2,
11/2017

2 NXP Semiconductors



Table 1. Example of clock settings

Clock(s) Aux Selector and
Divider

Source Clock Divide/Multiply
Factor

Frequency

XOSC N/A N/A N/A 40 MHz

PLL0 Aux 3 XOSC 4 160 MHz

PLL1 Aux 4 XOSC 5 200 MHz

CHKR_CORE
SYS_CLOCK

System PLL1 1 200 MHz

PBRIDGE_0_CLK
PBRIDGE_1_CLK

System PLL1 4 50 MHz

HALF_SYS_CLOCK System PLL1 2 100 MHz

MOTC_CLK Aux 0-0 PLL0 1 160 MHz

SGEN_CLK Aux 0–1 PLL0 8 20 MHz

ADC_CLK Aux 0–2 PLL0 2 80 MHz

CLKOUT0 Aux 6-0 PLL1 10 20 MHz

LFAST_PLL Aux 5-0 PLL0 16 10 MHz

FRAY_CLK Aux 1-0 PLL0 2 80 MHz

SENT_CLK Aux 1-1 PLL0 4 40 MHz

CAN_CLK Aux 2–0 PLL0 4 40 MHz

ENET_CLK Aux 10-0 PLL1 4 50 MHz

ENET_TIME_CLK Aux 11-0 PLL1 4 50 MHz

3 Introduction to Progressive Clock Switching (PCS)
Changing device operating modes and/or clock frequency in the MPC574xP typically results in instantaneous changes in
current (IDD). These changes in current can cause undesired fluctuations in power supply voltage, causing the supply voltage
at the device to operate at a higher or lower voltage than desired and causing possible triggering of a Low Voltage Detect
(LVD) or High Voltage Detect (HVD). The PCS feature supports smooth transitions for frequency and mode changes, greatly
reducing voltage overshoot, undershoot, and undesired LVDs / HVDs due to rapidly changing power supply load.

3.1 PCS operation
PCS is a feature of the clock generation module (MC_CGM) and is triggered by the mode entry module (MC_ME). To
change the system clock frequency, a mode entry change must occur by writing the MC_ME mode control register
(MC_ME_MCTL). If the power level (PWRLVL field within the various mode configuration registers) is different between
the current and target modes, the PCS mechanism is enabled causing the system clock frequency to ramp down and/or up in
multiple steps. For example, consider two modes with two different PWRLVL settings in respective Mode Configuration
Register: MC_ME_RUN0_MC[PWRLVL] = 1, and MC_ME_RUN1_MC[PWRLVL] = 2. If RUN0 is the current mode, and
a mode change occurs to switch to mode RUN1, then PCS will be invoked since the PWRLVL settings are different between
RUN0 and RUN1. PCS may also be activated by doing a mode entry change that remains in the same mode (e.g. DRUN ->
DRUN) so long as the PWRLVL field is changed before the mode change.

In order to prevent sudden voltage drops and overshoots due to frequency and load changes, the MC_ME requests the
MC_CGM to ramp the system clock frequency down and/or up based on the power level values of the current and target
modes. During ramp-down, the rate of the frequency change is based on the PCS Switch Duration Register

Introduction to Progressive Clock Switching (PCS)

Initializing the MPC574xP Clock Generation Module and Progressive Clock Switching Feature, Rev. 2,
11/2017

NXP Semiconductors 3



(MC_CGM_PCS_SDUR), PCS Divider Change Rate (MC_CGM_PCS_DIVCn), and PCS Divider End Value
(MC_CGM_PCS_DIVEn) registers, where n corresponds to the current system clock source selection. During ramp-up, the
rate of the frequency change is based on the MC_CGM_PCS_SDUR, MC_CGM_PCS_DIVCn, and PCS Divider Start Value
(MC_CGM_PCS_DIVSn) registers, where n corresponds to the target system clock source selection.

3.2 PCS control of current
The following paragraphs describe the control of major components (CPU Cores, Cache, Peripherals). Components
consuming larger amounts of power such as CPUs and cache, should be turned on at lower clock frequencies as detailed
below.

Initializing Core e200z CPU – This can either be done at the low frequency (before ramp up or after ramp down) or it can
be done during the same mode entry change along with PCS. The NXP example initialization software included in this
application note contains CPU initialization as part of the same mode entry change where System Clock Dividers, Auxiliary
Clock Dividers, PLL0, PLL1, and PCS are configured. The Mode Entry (MC_ME) technology manages all clock dividers,
PCS, and CPU core initialization for the user. The MC_ME module, turns on the Core and Checker Core at the lower PCS
frequency and then progressively switches clocks faster and faster, thereby minimizing any sharp changes in current
consumption.

Enabling cache – Do at low frequencies before ramp up. Caches should be enabled as part of the start_core<n>.s code which
executes during CPU core initialization.

Enabling Peripherals – Device peripherals consume a smaller fraction of overall device current. Peripherals can be
initialized after the PCS completes when system clocks and peripheral clocks are running at their full application speed.

3.3 PCS registers
PCS is achieved by programming registers in the Clock Generation Module (MC_CGM). The user programs values for initial
divider change, divider start (for ramp-up from slow to fast), divider end (for ramp-down from fast clock to slow clock), and
the switch RATE. The following table lists the required configuration steps and associated registers for PCS.

Table 2. PCS registers

Step Procedure description Register : Comments

1 Configure Switch Duration MC_CGM.PCS_SDUR: Defines the duration of one
system clock switch step. Switch Duration = Number
of 16 MHz clocks * SDUR * k1 steps

2 Configure DRUN power level MC_ME.DRUN_MC[PWRLVL] : Power level must be
set to different value than the power level setting for
the mode currently in operation

3 Set the Divider Change Initial Value MC_CGM.PCS_DIVCn.B.INIT : Defines the initial
clock divider value.

4 Set the Divider Change Rate MC_CGM.PCS_DIVCn.B.RATE : PCS Rate. See
details in the PCS calculation example in this
application note

5 Set the Divider Start Value (for clock ramp-up from
slow to fast)

MC_CGM.PCS_DIVSn : Clock ramp-up start divider
value. DIVSn is used for switching from slow clock to
fast clock.

6 Set the Divider End Value (for clock ramp-down from
fast to slow)

MC_CGM_PCS_DIVEn : Clock ramp-down end
divider value. DIVEn is used for switching from fast
clock to slow clock.

Introduction to Progressive Clock Switching (PCS)

Initializing the MPC574xP Clock Generation Module and Progressive Clock Switching Feature, Rev. 2,
11/2017

4 NXP Semiconductors



1. See PCS calculation example in this application note

It is important that the MC_CGM.PCS_SDUR, MC_CGM.PCS_DIVCn, MC_CGM.DIVSn, and MC_CGM.PCS_DIVEn
registers are programmed while the IRCOSC is still selected as the system clock source. Once the these registers have been
programmed and the system clock source is operating off any clock other than the IRCOSC if there is any reset issued other
than a POR the MPC574xP will automatically trigger a PCS sequence as it transitons to the IRCOSC as part of the reset
sequence. So if the system clock frequency was PLL1_PHI and these PCS registers were being programmed for a future PCS
sequence and a reset occured before the register writes finished the MPC574xP would attempt a PCS sequence with possible
invalid values in these registers which could result in the part getting stuck in reset.

3.4 PCS calculation example
The application designer can determine the register settings required for PCS, by first defining the following system design
parameters:

• Normal Operating frequency (fsrc)
• Low Current Operating frequency, typically 16 MHz (ftgt)
• Maximum allowable IDD change in mA (assume 1 μs PCS step duration)

To determine the maximum frequency change allowed, the change in current due to the change in device operating frequency
must be known. For the MPC574xP, bench testing shows the device dynamic IDD change is 1.39 mA/MHz. Using this
number, we can determine the maximum frequency change allowed, fchg, using the following equation:

where max allowable IDD change is determined by the user's power supply design.

The example below shows the steps required to calculate the needed register settings based on the Reference Manual
formulas:

Given:

Normal operating frequency (fsrc) = 200 MHz
Low current operating frequency (ftgt) = 16 MHz
Maximum allowable IDD change in mA (assume 1 μs PCS step duration) = 50 mA
Maximum frequency change (fchg) = 36.0. MHz (calculated in steps above)

It is first necessary to determine the rate of frequency change. This is done by calculating:

Next, based on amax = 0.15, determine MC_CGM_PCS_DIVCn[RATE] (also called 'd') by looking up amax in the MC_CGM
MC_CGM_PCS_DIVCn[RATE] values table in the Reference Manual. From this table, we find the RATE is 0.112 for amax
= 0.15.

RATE = d = 0.112

Introduction to Progressive Clock Switching (PCS)

Initializing the MPC574xP Clock Generation Module and Progressive Clock Switching Feature, Rev. 2,
11/2017

NXP Semiconductors 5



To calculate k, number of steps, use the following equation:

Given the number of steps and the Switch Duration Register (SDUR) setting, the user can calculate the duration, tpcs, of the
PCS switching. In this formula, we shall round k up to the nearest whole number. 14.8 rounds up to the next nearest whole
number of 15.

At this point, we can calculate the initial divider increment change value, MC_CGM_PCS_DIVCn[INIT], by using the
following equation:

Next, let's calculate the divider start value (DIVSn) that determines the divide value required for the start of PCS switching.
The following equation is used:

Finally, to determine DIVEn, the following equation applies:

As a result of these calculations, we now have the final list of values to be programmed into the PCS registers. To
summarize:

MC_CGM.PCS_SDUR.R = 16;
MC_CGM.PCS_DIVCn.B.INIT = 1680;
MC_CGM.PCS_DIVCn.B.RATE = 112;
MC_CGM.PCS_DIVSn.R = 14439;
MC_CGM.PCS_DIVEn.R = 12499;

Introduction to Progressive Clock Switching (PCS)

Initializing the MPC574xP Clock Generation Module and Progressive Clock Switching Feature, Rev. 2,
11/2017

6 NXP Semiconductors



3.5 PCS calculator
To ease the process of determining PCS register settings, NXP provides an Excel based calculator. The steps shown below
detail how the user can enter their application parameters into the calculator and receive a set of register settings as a result.
The following five diagrams illustrate each step in the process:

• Step 1: enter the source frequency (for example, 180 MHz)
• Step 2: enter IDD change per MHz for the MCU
• Step 3: enter max allowable IDD change for the application
• Step 4: round down the calculated amax to the nearest 0.05
• Step 5: enter PCS step duration in microseconds

Figure 2. Enter source frequency into the calculator

Introduction to Progressive Clock Switching (PCS)

Initializing the MPC574xP Clock Generation Module and Progressive Clock Switching Feature, Rev. 2,
11/2017

NXP Semiconductors 7



Figure 3. Enter IDD change per MHz for the MCU

Figure 4. Enter maximum allowable IDD change

Introduction to Progressive Clock Switching (PCS)

Initializing the MPC574xP Clock Generation Module and Progressive Clock Switching Feature, Rev. 2,
11/2017

8 NXP Semiconductors



Figure 5. Round down the result to nearest 0.05

Figure 6. Enter PCS step duration (number of microseconds)

At the end of these steps, the PCS Calculator produces all register values.

Introduction to Progressive Clock Switching (PCS)

Initializing the MPC574xP Clock Generation Module and Progressive Clock Switching Feature, Rev. 2,
11/2017

NXP Semiconductors 9



3.6 PCS sample oscilloscope plots
The plots below show an MPC574xP device in a non-PCS operation and PCS enabled operation. IDD_LV current is initially
around 60 mA running from 16 MHz IRCOSC. When the Mode Entry switch occurs, the system clock is switched to run at
full speed using PLL1 at 200 MHz which brings the current up to approximately 300 mA.

In the following figure, PCS is not enabled. The current changes by approximately 240 mA in 34 microseconds and the mode
switch is brief as indicated by a single high speed toggle of the port pin.

The oscilloscope channel definition is:

YELLOW ch1 – IDD_LV current at 100 mA/div.
BLUE ch2 – VDD_LV at 200 mV/div.
PURPLE ch3 – software controlled toggling pin. Toggle rate is proportional to system clock frequency and pin toggles
only during the mode transition.

Figure 7. IDD_LV, VDD_LV, and I/O toggle rate with PCS disabled

In the next figure, PCS has been enabled with a rate equal to 0.15 as per the software example listed in this document. The
MC_CGM.PCS_SDUR value was increased to 240 to make the change easier to see on the scope plots. PCS causes the
system clock frequency to ramp up over a longer time period as can be seen by the increasing toggling pin rate. Now the
current ramp time is around 225 μs.

Introduction to Progressive Clock Switching (PCS)

Initializing the MPC574xP Clock Generation Module and Progressive Clock Switching Feature, Rev. 2,
11/2017

10 NXP Semiconductors



YELLOW ch1 – IDD_LV current at 100 mA/div.
BLUE ch2 – VDD_LV at 200 mV/div.
PURPLE ch3 – software controlled toggling pin. Toggle rate is proportional to system clock frequency and pin toggles
only during the mode transition.

Figure 8. IDD_LV, VDD_LV, and I/O toggle rate with PCS enabled

4 Appendix A
This appendix contains sample software for Run Mode, Clocks, and PCS initialization.

4.1 C code listing
For the purposes of this document, we shall consider a typical application consisting of a main function and a function call to
MC_MODE_INIT( ).

Sample software is shown below for main( ). The main( ) function shall be target to run either from SRAM (0x4000_0000) or
Flash (see MPC574xP RM for possible Flash target addresses).

Appendix A

Initializing the MPC574xP Clock Generation Module and Progressive Clock Switching Feature, Rev. 2,
11/2017

NXP Semiconductors 11



 *=============================================================================*
 * COPYRIGHT:                                                                  *
 *  NXP Semiconductor, INC. All Rights Reserved. You are hereby                *
 *  granted a copyright license to use, modify, and distribute the             *
 *  SOFTWARE so long as this entire notice is retained without alteration      *
 *  in any modified and/or redistributed versions, and that such modified      *
 *  versions are clearly identified as such. No licenses are granted by        *
 *  implication, estoppel or otherwise under any patents or trademarks         *
 *  of NXP Semiconductor, Inc. This software is provided on an                 *
 *  "AS IS" basis and without warranty.                                        *
 *                                                                             *
 *  To the maximum extent permitted by applicable law, NXP                     *
 *  Semiconductor DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,         *
 *  INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A           *
 *  PARTICULAR PURPOSE AND ANY WARRANTY AGAINST INFRINGEMENT WITH REGARD       *
 *  TO THE SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) AND ANY          *
 *  ACCOMPANYING WRITTEN MATERIALS.                                            *
 *                                                                             *
 *  To the maximum extent permitted by applicable law, IN NO EVENT             *
 *  SHALL NXP Semiconductor BE LIABLE FOR ANY DAMAGES WHATSOEVER               *
 *  (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,       *
 *  BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER              *
 *  PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.       *
 *                                                                             *
 *  NXP Semiconductor assumes no responsibility for the                        *
 *  maintenance and support of this software                                   *
 *                                                                             *
 *******************************************************************************/

/*******************************************************************************/
/* FILE NAME: main.c                           COPYRIGHT (c) NXP       2016    */
/*                                                      All Rights Reserved    */
/* DESCRIPTION: Main C program                                                 */
/*                                                                             */
/*******************************************************************************/
/* REV      AUTHOR        DATE        DESCRIPTION OF CHANGE                    */
/* ---   -----------    ----------    ---------------------                    */
/* 1.0  D.McMenamin    Sep 13, 2012   Initial Public Release                   */
/* 1.1  J.Fraser       Jun 08, 2016   Adapted for Panther                      */
/*******************************************************************************/
#include "../headers/project.h"
extern void MC_MODE_INIT(void);

/************************************ Main *************************************/
int main(){

 MC_MODE_INIT( );            // Setup the MCU clocks and modes
 /* Insert User code here */

}
 

MC_MODE_INIT( ) sample code is shown below.

 *=============================================================================*
 * COPYRIGHT:                                                                  *
 *  NXP Semiconductor, INC. All Rights Reserved. You are hereby                *
 *  granted a copyright license to use, modify, and distribute the             *
 *  SOFTWARE so long as this entire notice is retained without alteration      *
 *  in any modified and/or redistributed versions, and that such modified      *
 *  versions are clearly identified as such. No licenses are granted by        *
 *  implication, estoppel or otherwise under any patents or trademarks         *
 *  of NXP Semiconductor, Inc. This software is provided on an                 *
 *  "AS IS" basis and without warranty.                                        *
 *                                                                             *
 *  To the maximum extent permitted by applicable law, NXP                     *
 *  Semiconductor DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,         *
 *  INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A           *
 *  PARTICULAR PURPOSE AND ANY WARRANTY AGAINST INFRINGEMENT WITH REGARD       *

Appendix A

Initializing the MPC574xP Clock Generation Module and Progressive Clock Switching Feature, Rev. 2,
11/2017

12 NXP Semiconductors



 *  TO THE SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) AND ANY          *
 *  ACCOMPANYING WRITTEN MATERIALS.                                            *
 *                                                                             *
 *  To the maximum extent permitted by applicable law, IN NO EVENT             *
 *  SHALL NXP Semiconductor BE LIABLE FOR ANY DAMAGES WHATSOEVER               *
 *  (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,       *
 *  BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER              *
 *  PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.       *
 *                                                                             *
 *  NXP Semiconductor assumes no responsibility for the                        *
 *  maintenance and support of this software                                   *
 *                                                                             *
 *******************************************************************************/

/*******************************************************************************/
/* FILE NAME: mcu_init.c                       COPYRIGHT (c) NXP       2016    */
/*                                                      All Rights Reserved    */
/* DESCRIPTION: Provides functions to Initialize MPC5777M MCU                  */
/*                                                                             */
/*!*****************************************************************************/ 
/*! REV      AUTHOR        DATE        DESCRIPTION OF CHANGE                   */
/*! ---   -----------    ----------    ---------------------                   */
/*! 1.0   C.Hillier      May 17, 2013  Initial Public Release                  */
/*! 2.0   J.Fraser       Jun 08, 2016  Updated for MPC574xP                    */
/*!*****************************************************************************/

#include "project.h"

void MC_MODE_INIT(void)
{
    /* Enable All Modes */
    MC_ME.ME.R = 0x000005E2;                        

    /* Peripheral ON in every run mode */
    MC_ME.RUN_PC[0].R = 0x000000FE; 
    
    /* Enable EXT OSC First */
    XOSC.CTL.B.OSCM = 0x1;        /* Change OSC mode to LCP (Loop Controlled Pierce Mode) */
    XOSC.CTL.B.EOCV = 0x80;       /* Set the End of Count Value for when to check
                                     stabilization. */
  
    /******************** PLL0, PLL1 **********************/
  
    /* Route XOSC to PLL1 */
    MC_CGM.AC4_SC.B.SELCTL = 1;
    
    /* Route XOSC PLL0 */
    MC_CGM.AC3_SC.B.SELCTL = 1;
    
    /*
    Configure PLL0 Dividers for 160 MHz
    fPLL0_VCO = (fPLL0_ref x PLL0DV[MFD] x 2)/PLL0DV[PREDIV]
              = 40MHz x 8 x 2 / 1 =  640 MHz    
                  
    fPLL0_PHI  = fPLL0_ref x PLL0DV[MFD] / (PLL0DV[PREDIV] x PLL0DV[RFDPHI]
               = 40MHz x 8 / (1 x 2) = 160 MHz

    fPLL0_PHI1 = fPLL0_ref x PLL0DV[MFD] / (PLL0DV[PREDIV] x PLL0DV[RFDPHI1])
               = 40MHz x 8 / (1 x 8) = 40 MHz                   
    */
    PLLDIG.PLL0DV.B.RFDPHI1 = 8; 
    PLLDIG.PLL0DV.B.RFDPHI = 2;
    PLLDIG.PLL0DV.B.PREDIV = 1;
    PLLDIG.PLL0DV.B.MFD = 8;

    /*
    Configure PLL1 Dividers for 200 MHz
    fPLL1_VCO = fPLL1_REF x (PLL1DV[MFD] + PLL1FD[FRCDIV]/2^12)
              = 40MHz x 20 + 0 = 800 MHz
                  

Appendix A

Initializing the MPC574xP Clock Generation Module and Progressive Clock Switching Feature, Rev. 2,
11/2017

NXP Semiconductors 13



    fPLL1_PHI = fPLL1_REF * ( (PLL1DV[MFD] + PLL1FD[FRCDIV]/2^12) / (2 x PLL1DV[RFDPHI]) )
              = 40MHz x (20 + 0) / (2 x 2) = 200 MHz
    */    
    PLLDIG.PLL1DV.B.RFDPHI = 2;                     
    PLLDIG.PLL1DV.B.MFD = 20;    

    /********* Configure Progresive Clock Switching ************/   
    MC_CGM.PCS_SDUR.R = 240;              /* set Switch Duration */

    /* Configure PLL1 PCS switch */
    MC_CGM.PCS_DIVC4.B.INIT = 1680;       /*! Set the Divider Change Initial Value */
    MC_CGM.PCS_DIVC4.B.RATE = 112;        /*! Set the Divider Change Rate */
    MC_CGM.PCS_DIVS4.R = 14439;           /*! Set the Divider Start Value */
    MC_CGM.PCS_DIVE4.R = 12499;           /*! Set the Divider End Value */
        
    /* Enable PLL0/PLL1 in DRUN mode, change PWRLVL to 1, and set PLL1 as SYS_CLK */
    MC_ME.DRUN_MC.R = 0x101300F4;
        
    /******************** Configure Clock Dividers **********************/  
    SIUL2.MSCR[22].R = 0x22800001;        /* Configure CLK_OUT (B6) */
    MC_CGM.AC6_SC.B.SELCTL = 4;           /* source AC6 is PLL1 PHI */    
    MC_CGM.AC6_DC0.R = 0x80090000;        /* AC6 divider 0 --> div by 10 (CLK_OUT) */    
    
    MC_CGM.AC0_SC.B.SELCTL = 2;           /* source AC0 is PLL0 PHI */
    MC_CGM.AC0_DC0.R = 0x80000000;        /* AC0 divider 0 --> div by 1 (MOTC_CLK) */
    MC_CGM.AC0_DC1.R = 0x80070000;        /* AC0 divider 1 --> div by 8 (SWG_CLK) */
    MC_CGM.AC0_DC2.R = 0x80010000;        /* AC0 divider 2 --> div by 2 (ADC_CLK) */

    MC_CGM.AC1_DC0.R = 0x80010000;        /* AC1 divider 0 --> div by 2 (FRAY_PLL_CLK) */
    MC_CGM.AC1_DC1.R = 0x80030000;        /* AC1 divider 1 --> div by 4 (SENT_CLK) */

    MC_CGM.AC2_DC0.R = 0x80030000;        /* AC2 divider 0 --> div by 4 (CAN_PLL_CLK) */
    
    MC_CGM.SC_DC0.R = 0x80030000;         /* SC divider 0 --> div by 4 (PBRIDGEx_CLK) */
    
    /******************** Start the core **********************/
    /* Main and checker cores running in RUN3:0, DRUN, SAFE, TEST modes */
    MC_ME.CCTL0.R = 0x00FE;
    
    /******************** Perform mode change **********************/    
    /* Mode change re-enter the DRUN mode, to start cores, clock tree & PLL1 */
    MC_ME.MCTL.R = 0x30005AF0;                /* Mode & Key */
    MC_ME.MCTL.R = 0x3000A50F;                /* Mode & Key inverted */

    while(MC_ME.GS.B.S_MTRANS == 1);          /* Wait for mode entry complete */
    while(MC_ME.GS.B.S_CURRENT_MODE != 0x3);  /* Check DRUN mode entered */

}

5 Revision history

Table 3. Revision history table

Rev. No. Date Substantive Change(s)

0 June 2016 Initial release

1 November 2017 Editorial updates.

2 November 2017 Added PCS Calculator sheet in pdf attachment.

Revision history

Initializing the MPC574xP Clock Generation Module and Progressive Clock Switching Feature, Rev. 2,
11/2017

14 NXP Semiconductors



How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based

on the information in this document. NXP reserves the right to make changes

without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of

its products for any particular purpose, nor does NXP assume any liability arising

out of the application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in NXP data sheets and/or

specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customerʼs technical experts. NXP

does not convey any license under its patent rights nor the rights of others. NXP

sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER

WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,

JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE

PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,

MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest,

CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo,

Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo,

StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. ARM, AMBA, ARM Powered,

Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are

registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight,

DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and

Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks

and the Power and Power.org logos and related marks are trademarks and

service marks licensed by Power.org.

© 2017 NXP B.V.

Document Number AN5304
Revision 2, 11/2017

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Introduction
	Clock initialization
	Clock tree

	Introduction to Progressive Clock Switching (PCS)
	PCS operation
	PCS control of current
	PCS registers
	PCS calculation example
	PCS calculator
	PCS sample oscilloscope plots

	Appendix A
	C code listing

	Revision history


Calculator

				CALCULATOR:

				ftarget = 16MHz, register settings are in Bold text																amax to CGM_PCS_DIVCn[RATE] mapping

						Parameter / Register		Example 
1		Example 
2		User								amax		d = CGM_PCS_DIVCn[RATE]

						source (MHz)		120		200		200				Step 1: enter source frequency				0.05		12

						dynamic IDD change (mA/MHz)		2.36		2.36		2.36				Step 2: enter IDD change per MHz				0.1		48

						max allowable IDD change (mA/usec)		50.0		50.0		50.0				Step 3: enter max allowable IDD change				0.15		112

						max Frequency step (MHz)		21.2		21.2		21.2								0.2		184

						calculated amax (fchg / fsrc)		0.177		0.106		0.106

						rounded amax (fchg / fsrc) [1]		0.05		0.1		0.1				Step 4: Round down to nearest 0.05

						step duration (msec)		5		1		1				Step 5: enter PCS step duration

						k steps		34.00		23.00		23.00

						duration (msec)		170		23		23

						PCS_SDUR[SDUR]		80		16		16				50

						PCS_DIVC1[RATE]		12		48		48				C

						PCS_DIVCn[INIT]		407		1103		1103				197

						PCS_DIVEn[DIVE]		7499		12499		12499				1D4B

						PCS_DIVSn[DIVS]		8139		14247		14247				1FCB



						[1] Round calculated amax down to nearsest 0.05.





				BACKGROUND:





































						To calculate current (IDD) change per frequency change for a device, given:

						IDDstart		30		mA				Matterhorn MPC5777M measured after device reset, no code running, 16MHz clock

						IDDrun		700		mA				Matterhorn MPC5777M measured after clocks configured at full speed, 300MHz core clock

						fstart		16		MHz

						frun		300		MHz



						Dynamic IDD change mA / MHz		2.36









The application designer can determine the register settings required for Progressive Clock Switching, by first determine the following system design parameters:
 -- Normal Operating frequency  (fsrc)
 -- Low Current Operating frequency (typically 16MHz)
 -- Maximum allowable IDD change in mA  (assume 1usec PCS step duration)

To determine the maximum frequency change allowed, the change in current based on a change in device operating frequecy must be known.  For the MPC5777M, bench testing shows this value to be 2.36mA/MHz.  Using this number, we can determine the maximum frequency change allowed, fchg, using the following equation:

fchg= max allowable IDD change / device dynamic IDD change
fchg = 50 mA / (2.36 mA / MHz)
fchg = 21.2 MHz




