

© 2016 NXP B.V.

Sensorless BLDC Control on Kinetis KV
and KE
By: Martin Sebest

1. Introduction
This application note describes the implementation of
the sensorless Motor Control Reference Solution
Package (MCRSP) software for a 3-phase Brushless
DC motor (BLDC), running on 32-bit Kinetis V and E
series MCUs. The sensorless control software itself and
the BLDC control theory in general is described in 3-
Phase BLDC Sensorless Motor Control Application
(document DRM144). The NXP Freedom board
(FRDM-MC-LVPMSM), Tower System modular
development platform module (TWR-MC-LV3PH),
and High-Voltage Platform power stages
(HVP-MC3PH) are used as hardware platforms for the
BLDC control reference solution.
The hardware-dependent part of the sensorless control
software is addressed as well, including detailed
peripheral setup and the Motor Control Peripheral
Drivers (MCDRV). The last part of this document
introduces and explains the user interface represented
by the Motor Control Application Tuning (MCAT) tool
page based on FreeMASTER run-time debugging tool.
These tools represent a simple and user-friendly way of
algorithm tuning, software control, debugging, and
diagnostics.

NXP Semiconductors Document Number: AN5263

Application Note Rev. 2 , 10/2016

Contents

1. Introduction .. 1
2. Development Platforms .. 2

2.1. FRDM-MC-LVBLDC ... 2
2.2. TWR-MC-LV3PH ... 3
2.3. HVP-MC3PH .. 3

3. MCU Features and Peripheral Settings 4
3.1. KV1x family .. 4
3.2. KV3x family .. 8
3.3. KV4x family .. 12
3.4. KV5x family .. 15
3.5. KE1xZ family .. 18
3.6. KE1xF family .. 22

4. Motor Control Peripheral Drivers 25
4.1. Motor Control Peripheral Drivers initialization 25
4.2. Motor Control Peripheral Drivers API 26

5. Tuning and Controlling the Application 27
5.1. BLDC sensorless application control and tuning
using MCAT tool ... 29

6. Conclusion .. 41
7. Acronyms and Abbreviations ... 41
8. References .. 41
9. Revision History ... 42

http://www.nxp.com/doc/DRM144

Development Platforms

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
2 NXP Semiconductors

2. Development Platforms
There are these three standard NXP power stages:

• FRDM-MC-LVBLDC
• TWR-MC-LV3PH
• HVP-MC3PH

2.1. FRDM-MC-LVBLDC
This evaluation board (in a shield form factor) effectively turns a Freedom development board into a
complete motor-control reference design, compatible with the existing Freedom development boards—
FRDM-KV31F, FRDM-KV10Z and FRDM-KE15Z. The Freedom motor-control headers are
compatible with Arduino™ R3 pin layout.

The FRDM-MC-LVBLDC board has a power-supply input voltage of 9–15 V DC with a reverse
polarity protection circuitry. An auxiliary power supply of 5.5 V DC is available to provide power to
the FRDM MCU boards. The output current reaches up to 5 A RMS. The inverter is realized by the
3-phase bridge inverter (six MOSFETs) and the 3-phase MOSFET gate driver. Analog quantities (such
as 3-phase motor back-EMF voltage, DC-Bus voltage, and DC-Bus current) are measured on this board.
There is also an interface for speed/position sensors (Encoder Hall). The block diagram of a complete
Freedom motor-control development kit is shown in this figure:

Figure 1. Freedom motor-control development platform block diagram

The FRDM-MC-LVBLDC board does not require a complicated setup and there is only one way to
connect this shield board to the Freedom MCU board. See the user’s guide for your version of MCRSP
(document BLDCMCRSPUG). For more information about the Freedom development platform,
visit www.nxp.com/freedom.

http://www.nxp.com/doc/BLDCMCRSPUG
http://www.nxp.com/freedom

Development Platforms

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 3

2.2. TWR-MC-LV3PH
This module effectively turns a Tower System development module into a complete motor-control
reference design, compatible with the existing Tower System Kinetis V and Kinetis E modules.
This module provides all necessary feedback signals to drive PMSM and BLDC motors.
The TWR-MC-LV3PH module has the power-supply input voltage of 12–24 V DC, extendable up to
50 V DC, with reverse polarity protection circuitry. An auxiliary power supply of 5 V DC and 3.3 V DC
provides power supply for the Tower System MCU modules. The output current reaches up to 5 A
RMS. The inverter is realized by the 3-phase bridge inverter (six MOSFETs) and the 3-phase MOSFET
gate driver. Analog quantities (such as 3-phase motor currents, 3-phase motor back-EMF voltage, DC-
bus voltage, and DC-bus current) are measured on this board. There is an interface for speed/position
sensors (Encoder Hall) and a connector for a braking resistor. There is also a user LED, a power-on
LED, and six PWM LED diodes for diagnostics. The block diagram of a complete Tower System motor-
control development kit is shown in this figure:

Figure 2. Tower System motor-control development platform block diagram

The TWR-MC-LV3PH module does not require any complicated setup, keep in mind that the side with
the white stripe must be connected to the primary (white) elevator. See the user’s guides for the
TWR-MC-LV3PH (document TWRMCLV3PHUG) and for your version of MCRSP
(document BLDCMCRSPUG). For more information about the Tower System,
visit www.nxp.com/tower.

2.3. HVP-MC3PH
The 3-phase High-Voltage Development Platform (HVP) is a 115/230 V, 1 kW power stage that is an
integral part of the embedded motion-control series of development tools. It is supplied in the
HVP-MC3PH kit. Combined with the HVP daughter board, it provides a ready-made software
development platform for more than one-horsepower motors. The block diagram of a complete
highvoltage- motor-control development kit is shown in the following figure.

http://www.nxp.com/doc/TWRMCLV3PHUG
http://www.nxp.com/doc/BLDCMCRSPUG
http://www.nxp.com/tower

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
4 NXP Semiconductors

Figure 3. High-Voltage Development Platform block diagram

The HVP-MC3PH power stage does not require any complicated setup and there is only one way to
connect a daughter board to the HVP. See the user’s guides for the HVP power stage
(document HVPMC3PHUG) and for your version of MCRSP (document BLDCMCRSPUG).

NOTE
Due to high voltage, the HVP platform can represent a safety risk when
not handled properly. For more information about the High-Voltage
Development Platform, visit www.nxp.com/hvp.

3. MCU Features and Peripheral Settings
The peripherals used for motor control vary among different Kinetis V MCUs. The following sections
describe the peripheral settings and application timing for each MCU. There are also differences among
the MC platforms for different MCUs. These differences are summarized in tables.

3.1. KV1x family
The KV10Z and KV11Z MCU families are highly scalable members of the Kinetis V series and provide
a cost-competitive motor-control solution. Built upon the ARM® Cortex®-M0 core running at 75 MHz
with up to 128 KB of flash and up to 16 KB of RAM, the MCUs deliver a platform that enables the
customers to build a scalable solution portfolio. The additional features include dual 16-bit ADCs
sampling at up to 1.2 MS/s in 12-bit mode and 20 channels of flexible motor-control timers (PWMs)
across six independent time bases. For more information, see KV11F Sub-Family Reference Manual
(document KV11P64M75RM).

http://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com/doc/PMSMCRSPUG
http://www.nxp.com/hvp
http://www.nxp.com/doc/KV11P64M75RM

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 5

3.1.1. Hardware timing and synchronization
A correct and precise timing is crucial in motor-control applications. The motor-control dedicated
peripherals handle the timing and synchronization on the hardware layer. The timing diagram is shown
in this figure:

Figure 4. Hardware timing and synchronization on KV11Z and KV10Z

• The top signal (PWM counter) shows the FTM counter reloads. The dead time is emphasized
at the PWM top and PWM bottom signals. The FTM_TRIG is generated on the PWM reload
event, which triggers the PDB (resets the PDB counter).

• The PDB generates the first pre-trigger for the first ADC sample with a delay of approximately
TPWM / 2. This delay ensures correct DC-bus current sampling.

• When the conversion of the first ADC sample is completed, the ADC ISR is entered and fast
loop control function is calculated.

• The PDB uses the back-to-back mode to automatically generate the pre-trig 1 (for next quantity
measurement) immediately after the first conversion is completed.

3.1.2. Peripheral settings
The peripherals used for motor control are described in this section. On KV10Z and KV11Z, a 6-channel
FlexTimer (FTM) is used for 6-channel PWM generation, and two 16-bit SAR ADCs are used for back-
EMF voltage, DC-bus current and DC-bus voltage measurement. The FTM and ADC are synchronized
by the Programmable Delay Block (PDB). One channel from another independent FTM is used for slow
loop interrupt generation.

3.1.2.1. PWM generation—FTM0

• The FTM is clocked from the 75-MHz System clock.

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
6 NXP Semiconductors

• Only six channels are used, the other two are masked in the OUTMASK register.
• The channels (0+1, 2+3, and 4+5) are combined into pairs, with each pair running in a

complementary mode.
• The Fault mode is enabled for each combined pair with automatic fault clearing (the PWM

outputs are re-enabled at the first PWM reload after the fault input returns to zero).
• The PWM period (frequency) is determined as a time needed for the FTM to count from CNTIN

to MOD. By default, CNTIN = -MODULO / 2 = -1875 and MOD = MODULO / 2 - 1 = 1874.
Because the FTM is clocked from the 75 MHz System clock, it takes 0.00005 s (20 kHz).

• Inserting dead time is enabled for each combined pair. The dead time length is calculated as
System clock 75 MHz × Tdeadtime. The dead time varies among platforms.

• The FTM generates a trigger to PDB at counter initialization.
• The FTM fault input is enabled, but its polarity and source vary among platforms.

3.1.2.2. Analog sensing—ADC0, ADC1
• The ADCs operate as 12-bit, single-ended converters.
• The clock source for both ADCs is the 25 MHz Bus clock divided by 1 = 25 MHz.
• For ADC calibration purposes, the ADC clock is set to 3.125 MHz. Continuous conversion and

averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the SC
register is filled with its default values and the clock is set back to 12.5 MHz.

• Both ADCs are triggered from the PDB pre-triggers.
• An interrupt that serves for fast-loop algorithm calculation is generated after the first conversion

is completed.

3.1.2.3. PWM and ADC synchronization—PDB0
• Unlike FTM, the PDB is clocked from the Bus clock, which is 3× slower than the System clock

(used for FTM). Therefore the modulo value at PDB is divided by 3.
• The PDB is triggered from the FTM0_TRIG.
• At each channel, the pre-trigger 0 is generated in the middle of one PWM period. This is setup in

PDBx_CHnDLY register. PDBx_CHnDLY = PWM_MODULO / 2, but the PDB is clocked
from Bus clock, which is 3x slower than System clock (used for FTM), therefore
PDBx_CHnDLY = PWM_MODULO / 6.

• At each channel, the pre-trigger 1 is generated immediately after the first conversion is
completed using the back-to-back mode.

• The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result
register is not read and the same pre-trigger occurs at this ADC. For more information about
PDB error sequence handling see Tips and Tricks Using PDB in Motor Control Applications on
Kinetis (document AN4822).

http://www.nxp.com/doc/AN4822

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 7

3.1.2.4. Time event, forced commutation control—FTM1
• FTM1 is used for forced commutation control.
• FTM1 is set as free running counter and clocked from the System clock. Timer clock prescaler is

setup to 128.
• The FTM1 counts from 0 to 0xffff.
• The output compare interrupt is enabled and generated when counter equals to value register.
• Value register is periodically updated in fast control loop function and FTM1 output compare

interrupt is not invoked until error in BLDC commutation process appears.
• If error in BLDC commutation process appears, the forced commutation is performed in FTM1

interrupt service routine.

3.1.2.5. Slow-loop interrupt generation—FTM2
• The slow loop is usually 10× or more time slower than the fast loop. Therefore the FTM2 is

clocked from the System clock / 16 to keep its modulo value reasonably low.
• The FTM2 counts from CNTIN = 0 to SPEED_MODULO.
• The interrupt is enabled and generated at the counter reload that serves the slow loop.

3.1.2.6. Communication with MC33937 MOSFET driver—SPI
• The SPI runs in the master mode.
• The SPI chip select 1 signal is active in logic high.
• The baud rate is 3.12 MHz.

3.1.3. Peripheral settings differences among platforms
There are differences in peripheral settings among different platforms. This table summarizes these
differences:

Table 1. KV10 and KV11 platform differences

Peripheral Feature
Platform

FRDM Tower System HVP

FTM0
PWM polarity high sides active high

low sides active high
high sides active low
low sides active high

high sides active high
low sides active high

Dead time 0.84 µs 0.84 µs 0.84 µs
SPI Driver on SPI No Yes No
PDB Pre-trigger 0 delay 0.1 ms 0.1 ms 0.1 ms

3.1.4. CPU load and memory usage
The following information apply to the application built using IAR® Embedded Workbench®
IDE. Table 4 shows the memory usage and CPU load. The memory usage is calculated from the linker
.map file, including 2 KB FreeMASTER recorder buffer (allocated in RAM) and 3.8 KB FreeMASTER

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
8 NXP Semiconductors

TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using the SysTick
timer. The CPU load is dependent on the fast loop and slow loop (speed loop) frequency. In this case, it
applies to the fast loop of 20 kHz and the slow loop of 1 kHz. The total CPU load is calculated
according to these equations:

Eq. 1 𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 ∙
𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇
𝒇𝒇𝑪𝑪𝑪𝑪𝑪𝑪

∙ 𝟏𝟏𝟏𝟏𝟏𝟏 [%]

Eq. 2 𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒄𝒄𝒔𝒔𝒔𝒔 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒇𝒇𝒇𝒇𝒄𝒄𝒔𝒔𝒔𝒔 ∙
𝒇𝒇𝒇𝒇𝒄𝒄𝒔𝒔𝒔𝒔
𝒇𝒇𝑪𝑪𝑪𝑪𝑪𝑪

∙ 𝟏𝟏𝟏𝟏𝟏𝟏 [%]

Eq. 3 𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒔𝒔𝒇𝒇𝒇𝒇𝒄𝒄 = 𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 + 𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒄𝒄𝒔𝒔𝒔𝒔 [%]

where:

𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 —CPU time consumed by the fast loop

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 —number of cycles consumed by the fast loop

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 —frequency of the fast loop calculation (20 kHz)

𝒇𝒇𝑪𝑪𝑪𝑪𝑪𝑪 —CPU frequency

𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒄𝒄𝒔𝒔𝒔𝒔 —CPU time consumed by the slow loop

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒇𝒇𝒇𝒇𝒄𝒄𝒔𝒔𝒔𝒔 —number of cycles consumed by the slow loop

𝒇𝒇𝒇𝒇𝒄𝒄𝒔𝒔𝒔𝒔 —frequency of the slow loop calculation (1 kHz)

𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒔𝒔𝒇𝒇𝒇𝒇𝒄𝒄 —total CPU load consumed by the motor control
Table 2. KV10 and KV11 CPU load and memory usage

— KV10 KV11
CPU clock [MHz] 75 75

Fast Control Loop [cycles] (%) 1364 (36.4 %) 1171 (31.2 %)
Slow Control Loop [cycles] (%) 2686 (3.6 %) 2217 (2.9 %)

Total CPU load [%] 40.0 % 34.1 %
Flash usage [B] 15 678 15 856
RAM usage [B] 3 393 3 401

3.2. KV3x family
The KV31F MCU is a highly scalable member of the Kinetis V series and provides a high-performance,
cost-competitive motor-control solution. Built upon the ARM Cortex-M4 core running at 120 MHz,
with up to 512 KB of flash and up to 96 KB of RAM combined with the floating-point unit, it delivers a
platform enabling customers to build a scalable solution portfolio. The additional features include dual
16-bit ADCs sampling at up to 1.2 MS/s in 12-bit mode, 20 channels of flexible motor-control timers
(PWMs) across four independent time bases, and a large RAM block, enabling local execution of fast
control loops at full clock speed. For more information, see KV31F Sub-Family Reference Manual
(document KV31P100M120SF7RM).

http://www.nxp.com/doc/KV31P100M120SF7RM

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 9

3.2.1. Hardware timing and synchronization
A correct and precise timing is crucial in motor-control applications. The motor-control dedicated
peripherals handle the timing and synchronization on the hardware layer. The timing diagram is shown
in this figure:

Figure 5. Hardware timing and synchronization on KV31F

• The top signal (PWM counter) shows the FTM counter reloads. The dead time is emphasized
at the PWM top and PWM bottom signals. The FTM_TRIG is generated on the PWM reload,
which triggers the PDB (resets the PDB counter).

• The PDB generates the first pre-trigger for the first ADC sample with a delay of approximately
TPWM / 2. This delay ensures correct DC-bus current sampling.

• When the conversion of the first ADC sample is completed, the ADC ISR is entered and fast
loop control function is calculated.

• The PDB uses the back-to-back mode to automatically generate the pre-trig 1 (for next quantity
measurement) immediately after the first conversion is completed.

3.2.2. Peripheral settings
This section describes only the peripherals used for motor control. KV31F uses a 6-channel FlexTimer
(FTM) to generate a 6-channel PWM, and two 16-bit SAR ADCs to measure the back-EMF voltage,
DC-bus current and DC-bus voltage. The FTM and ADC are synchronized via Programmable Delay
Block (PDB). One channel from another independent FTM is used for slow-loop interrupt generation.

3.2.2.1. PWM generation—FTM0

• The FTM is clocked from the 60-MHz Bus clock.
• Only six channels are used, the other two are masked in the OUTMASK register.

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
10 NXP Semiconductors

• Channels 0+1, 2+3, and 4+5 are combined in pairs and they are running in a complementary
mode.

• The Fault mode is enabled for each combined pair with automatic fault clearing (PWM outputs
are re-enabled at the first PWM reload after the fault input returns to zero).

• The PWM period (frequency) is determined as a time for the FTM to count from CNTIN to
MOD. By default, CNTIN = -MODULO / 2 = -1500 and MOD = MODULO / 2 - 1 = 1499.
The FTM is clocked from the 60 MHz Bus clock, so it takes 0.00005 s (20 kHz).

• Dead time insertion is enabled for each combined pair. The dead time length is calculated as
System clock 60 MHz × Tdeadtime. The dead time varies among platforms.

• The FTM generates a trigger for the PDB on counter initialization.
• The FTM fault input is enabled, but its polarity and source vary among platforms.

3.2.2.2. Analog sensing—ADC0 and ADC1
• The ADCs operate as 12-bit, single-ended converters.
• The clock source for both ADCs is the 60 MHz Bus clock, divided by 4 = 15 MHz. The same

ADC clock setup is used for ADC calibration purposes.
• Both ADCs are triggered by the PDB pre-triggers.
• An interrupt that serves for fast-loop algorithm calculation is generated when the first conversion

is completed.

3.2.2.3. PWM and ADC synchronization—PDB0
• Like the FTM, the PDB is clocked from the 60 MHz Bus clock.
• The PDB is triggered by the FTM0_TRIG.
• At each channel, the pre-trigger 0 is generated in the middle of one PWM period. This is setup in

PDBx_CHnDLY register. PDBx_CHnDLY = PWM_MODULO / 2.
• At each channel, the pre-trigger 1 is generated immediately after the first conversion is

completed using the back-to-back mode.
• The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result

register is not read and the same pre-trigger occurs at this ADC. For more information about
PDB error sequence handling see Tips and Tricks Using PDB in Motor Control Applications on
Kinetis (document AN4822).

3.2.2.4. Time event, forced commutation control—FTM1
• FTM1 is used for forced commutation control.
• FTM1 is set as free running counter and clocked from the Bus clock. Timer clock prescaler is

setup to 128.
• The FTM1 counts from 0 to 0xffff.
• The output compare interrupt is enabled and generated when counter equals to value register.
• Value register is periodically updated in fast control loop function and FTM1 output compare

http://www.nxp.com/doc/AN4822

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 11

interrupt is not invoked until error in BLDC commutation process appears.
• If error in BLDC commutation process appears, the forced commutation is performed in FTM1

interrupt service routine.

3.2.2.5. Slow-loop interrupt generation—FTM2
• The slow loop is usually 10× or more time slower than the fast loop. Therefore the FTM2 is

clocked from the System clock / 16 to keep its modulo value reasonably low.
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.
• The interrupt that serves the slow loop is enabled and generated at the reload.

3.2.2.6. Communication with MC33937 MOSFET driver—SPI
• The SPI runs in the master mode.
• The SPI chip-select 1 signal is active in logic high.
• The baud rate is 3.12 MHz.

3.2.3. Peripheral settings differences among platforms
There are differences in peripheral settings among different platforms. This table summarizes these
differences:

Table 3. KV31 platform differences

Peripheral Feature
Platform

Freedom Tower System HVP

FTM0 PWM polarity high sides active high
low sides active high

high sides active low
low sides active high

high sides active high
low sides active high

Dead time 1.05 µs 1.05 µs 1.05 µs
SPI Driver on SPI No Yes No
PDB Pre-trigger 0 delay 0.1 ms 0.1 ms 0.1 ms

3.2.4. CPU load and memory usage
The following information apply to the demonstration application built using IAR Embedded
Workbench IDE. Table 4 shows the memory usage and CPU load. The memory usage is calculated from
the linker .map file, including 2 KB FreeMASTER recorder buffer (allocated in RAM) and 3.8 KB
FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using
the SysTick timer. The CPU load depends on the fast loop (FOC calculation) and slow loop (speed loop)
frequencies. In this case, it applies to the fast loop frequency of 20 kHz and the slow loop frequency of
1 kHz. The total CPU load is calculated according to Eq. 3.

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
12 NXP Semiconductors

Table 4. KV31 CPU load and memory usage

— KV31
CPU clock [MHz] 120

Fast Control Loop [cycles] (%) 1189 (19.8 %)
Slow Control Loop [cycles] (%) 2105 (1.8 %)

Total CPU load [%] 21.6 %
Flash usage [B] 15 904
RAM usage [B] 3 409

3.3. KV4x family
The KV46F family of Kinetis MCUs is a high-performance solution built upon the ARM Cortex-M4
core running at 168 MHz with floating-point unit and up to 256 KB of flash and 32 KB of RAM. It is
targeted mainly at motor-control applications. Advanced peripherals, such as high-resolution
Pulse-Width Modulation (PWM) modules with a total of 30 PWM channels and dual 12-bit
Analog-to-Digital Converters (ADCs) make these devices ideal for high-end motor-control applications.
For more information, see KV4x Reference Manual (document KV4XP100M150RM).

3.3.1. Hardware timing and synchronization
A correct and precise timing is crucial in motor-control applications. The motor-control peripherals
handle the timing and synchronization on the hardware layer. The timing diagram is shown in this
figure:

Figure 6. Hardware timing and synchronization on KV46F

• The top signal (PWM counter) shows the FTM counter reloads. The dead time is emphasized
at the PWM top and PWM bottom signals. The FTM_TRIG is generated on the PWM reload,
which triggers the PDB (resets the PDB counter).

• The PDB generates the pre-trigger for the ADCA and ADCB (parallel sampling) conversion with

http://www.nxp.com/doc/KV4XP100M150RM

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 13

a delay of approximately TPWM / 2. This delay ensures correct DC-bus current sampling.
• When the conversion of the all ADC samples is completed, the ADC ISR is entered and fast

loop control function is calculated.

3.3.2. Peripheral settings
This section describes only the peripherals used for motor control. KV46F uses a 6-channel FlexTimer
(FTM) to generate a 6-channel PWM, and two 12-bit cyclic SAR ADCs to measure the back-EMF
voltage, DC-bus current, and DC-bus voltage. The FTM and ADC are synchronized via Programmable
Delay Block (PDB). One channel from another independent FTM is used for slow-loop interrupt
generation.

3.3.2.1. PWM generation—FTM0
• The FTM is clocked from the Fast Peripheral Clock 74 MHz Bus clock.
• Only six channels are used, the other two are masked in the OUTMASK register.
• Channels 0+1, 2+3, and 4+5 are combined in pairs and they are running in a complementary

mode.
• The Fault mode is enabled for each combined pair with automatic fault clearing (PWM outputs

are re-enabled at the first PWM reload after the fault input returns to zero).
• The PWM period (frequency) is determined as a time for the FTM to count from CNTIN to

MOD. By default, CNTIN = -MODULO / 2 = -1850 and MOD = MODULO / 2 - 1 = 1849.
The FTM is clocked from the 74-MHz Fast Peripheral Clock, so it takes 0.00005 s (20 kHz).

• Dead time insertion is enabled for each combined pair. The dead time length is calculated as
System clock 74 MHz × Tdeadtime. The dead time varies among platforms.

• The FTM generates a trigger for the PDB on counter initialization.
• The FTM fault input is enabled, but its polarity and source vary among platforms.

3.3.2.2. Analog sensing—ADC12
• The ADC12 wrapper contains two independent ADCs. The ADCs operate as 12-bit, single-ended

converters. ADC12 operates in a triggered parallel mode (ADC0 and ADC1 convert
SAMPLE0+SAMPLE8 and SAMPLE1+SAMPLE9 simultaneously). The ADC scan is triggered
by the SYNC0 signal.

• The clock source for ADC12 is the 74-MHz Fast Peripheral clock divided by 6 = 12.3 MHz.
• Only SAMPLE0, SAMPLE1, SAMPLE8, and SAMPLE9 are enabled.
• The end-of-scan interrupt serves for fast-loop algorithm calculation is generated when the all

conversions are completed.

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
14 NXP Semiconductors

3.3.2.3. PWM and ADC synchronization—PDB0
• Like the FTM, the PDB is clocked from the 74-MHz Fast Peripheral clock.
• The PDB is triggered by the FTM0_TRIG.
• At each channel, the pre-trigger 0 is generated in the middle of one PWM period. This is setup in

PDBx_CHnDLY register. PDBx_CHnDLY = PWM_MODULO / 2.
• The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result

register is not read and the same pre-trigger occurs at this ADC. For more information about
PDB error sequence handling see Tips and Tricks Using PDB in Motor Control Applications on
Kinetis (document AN4822).

3.3.2.4. Time event, forced commutation control—FTM1
• FTM1 is used for forced commutation control.
• FTM1 is set as free running counter and clocked from the Fast Peripheral clock. Timer clock

prescaler is setup to 128.
• The FTM1 counts from 0 to 0xffff.
• The output compare interrupt is enabled and generated when counter equals to value register.
• Value register is periodically updated in fast control loop function and FTM1 output compare

interrupt is not invoked until error in BLDC commutation process appears.
• If error in BLDC commutation process appears, the forced commutation is performed in FTM1

interrupt service routine.

3.3.2.5. Slow loop interrupt generation—FTM3
• The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the

System clock / 16 to keep its modulo value reasonably low.
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.
• The interrupt enabled and generated at the reload serves the slow loop.

3.3.2.6. Communication with MC33937 MOSFET driver—SPI
• SPI runs in the master mode.
• The SPI chip select 1 signal is active in logic high.
• The baud rate is 3.12 MHz.

http://www.fsls.co/doc/AN4822

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 15

3.3.3. Peripheral settings differences among platforms
There are some differences in peripheral settings among different platforms. This table summarizes
those differences:

Table 5. KV46 platform differences

Peripheral Feature
Platform

Tower System HVP

FTM0 PWM polarity high sides active low
low sides active high

high sides active high
low sides active high

Dead time 0.8 µs 0.8 µs
SPI Driver on SPI Yes No
PDB Pre-trigger 0 delay 0.1 ms 0.1 ms

3.3.4. CPU load and memory usage
The following information apply to the demonstration application built using IAR Embedded
Workbench IDE. Table 6 shows the memory usage and CPU load. The memory usage is calculated from
the linker .map file, including 2 KB FreeMASTER recorder buffer (allocated in RAM) and 3.8 KB
FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using
the SysTick timer. The CPU load depends on the fast loop (current loop) and slow loop (speed loop)
frequencies. In this case, it applies to the fast loop frequency of 20 kHz and the slow loop frequency of 1
kHz. The total CPU load is calculated according to Eq. 3.

Table 6. KV46 CPU load and memory usage

— KV46
CPU clock [MHz] 148

Fast Control Loop [cycles] (%) 826 (11.2 %)
Slow Control Loop [cycles] (%) 1543 (1.0 %)

Total CPU load [%] 12.2 %
Flash usage [B] 15 884
RAM usage [B] 3 361

3.4. KV5x family
The KV58F family of Kinetis MCUs is a high-performance solution built upon the ARM Cortex-M7
core running at 220 MHz with floating-point unit and up to 1 MB of flash and 64 KB of RAM.
The advanced peripherals, such as high-resolution Pulse-Width Modulation (PWM) modules with a total
of 42 PWM channels and four 12-bit high-speed Analog-to-Digital Converters (ADCs) with a sampling
rate of 5 MSPS, make these devices ideal for high-end multi-motor control applications. For more
information, see KV5x Reference Manual (document KV5XP144M220RM).

3.4.1. Hardware timing and synchronization
Correct and precise timing is crucial in motor-control applications. Therefore, the motor-control
dedicated peripherals handle the timing and synchronization on the hardware layer. The timing diagram
is shown in this figure:

http://www.nxp.com/doc/KV5XP144M220RM

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
16 NXP Semiconductors

Figure 7. Hardware timing and synchronization on KV58F

• The top signal (SM0 counter) shows the eFlexPWM counter. The dead time is emphasized in
the PWM top and PWM bottom signals.

• The SM0 generates a trigger (val4 – TRIG0) for the ADC scan with a delay of approximately
TPWM / 2. This delay ensures correct DC-bus current sampling at all duty cycles.

• When the ADC scan is completed, the ADC ISR is entered. The fast loop calculation is done in
this interrupt.

3.4.2. Peripheral settings
Only the peripherals used for motor control are described in this section. On KV58F, three submodules
from the enhanced FlexPWM (eFlexPWM) are used to generate a 6-channel PWM, and two 12-bit
high-speed ADCs are used to measure the DC-bus voltage, DC-bus current and back-EMF voltage. The
eFlexPWM and HSADC are synchronized via the first eFlexPWM submodule and XBAR periphery.
One channel from an independent FTM is used to generate the slow-loop interrupt.

3.4.2.1. PWM generation—PWMA
• eFlexPWM is clocked from the 100-MHz Fast Peripheral clock.
• Six channels from three submodules are used to generate a 3-phase PWM. Submodule 0

generates the master reload event every nth opportunity. Submodules 1, 2, and 3 are reloaded
when the master reload occurs.

• Submodules 1 and 2 are clocked from submodule 0.
• The counters at submodules 1 and 2 are synchronized with the master sync signal from

submodule 0.
• Submodule 0 is used for synchronization with the ADC. The Val 4 register generates the output

trigger TPWM / 2 after the PWM reload.
• The fault mode is enabled for channels A and B at submodules 0, 1, and 2 with automatic fault

clearing (PWM outputs are re-enabled the first PWM reload after the fault input returns to zero).

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 17

The PWM fault input pin and its polarity vary among platforms.
• The PWM period (frequency) is determined as a time for the counter to count from INIT to

VAL1. By default INIT = -MODULO / 2 = -2500 and VAL1 = MODULO / 2 - 1 = 2499.
The eFlexPWM clock is 100 MHz, so the PWM period is 0.00005 s (20 kHz).

• The dead time insertion is enabled. The dead time length is calculated as the Fast peripheral
clock 100 MHz × Tdeadtime. The dead time varies among the platforms.

3.4.2.2. Analog sensing—ADC12
• The HSADC wrappers are similar to the cyclic ADC12 wrapper at KV46. There are two

wrappers—HSADC0 and HSADC1. The HSADC0A and HSADC1A are used for MC analog
sensing.

• The clock source for HSADC0A and HSADC1A is the 100 MHz Fast Peripheral clock divided
by 2 = 50 MHz.

• The ADCs operate as 12-bit, single-ended converters. ADC12 operates in a triggered sequential
mode (HSADC0A converts SAMPLE0 and SAMPLE1, and HSADC1A also converts
SAMPLE0 and SAMPLE1). Each HSADC scan is triggered by the SYNC0 generated by
the eFlexPWM.

• All samples are enabled at each ADC.
• The end-of-scan interrupt serves for fast-loop algorithm calculation is generated when the all

conversions are completed.

3.4.2.3. Peripheral interconnections—XBARA
• The PWM0_OUT_TRG20 output trigger generated by submodule 0 is connected to the

HSADC0A_SYNC and HSADC1A_SYNC inputs.

3.4.2.4. Slow-loop interrupt generation—FTM2
• The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the

System clock / 16 to keep its modulo value reasonably low.
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.
• The interrupt that serves the slow loop is enabled and generated at reload.

3.4.2.5. Communication with MC33937 MOSFET driver—SPI
• SPI runs in a master mode.
• The SPI chip select 1 signal is active in logic high.
• The baud rate is 3.12 MHz.

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
18 NXP Semiconductors

3.4.3. Peripheral settings differences among platforms
There are differences in peripheral settings among different platforms. This table summarizes those
differences:

Table 7. KV58 platform differences

Peripheral Feature
Platform

Tower System HVP

FTM0 PWM polarity high sides active low
low sides active high

high sides active high
low sides active high

Dead time 0.8 µs 0.8 µs
SPI Driver on SPI Yes No
PDB Pre-trigger 0 delay 0.1 ms 0.1 ms

3.4.4. CPU load and memory usage
The following information apply to the demonstration application built using IAR Embedded
Workbench IDE. Table 8 shows the memory usage and CPU load. The memory usage is calculated from
the linker .map file, including 2 KB FreeMASTER recorder buffer (allocated in RAM) and 3.8 KB
FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using
the SysTick timer. The CPU load depends on the fast loop (FOC calculation) and slow loop (speed loop)
frequencies. In this case, it applies to the fast loop frequency of 20 kHz and the slow loop frequency of 1
kHz. The total CPU load is calculated according to Eq. 3.

Table 8. KV58 CPU load and memory usage

— KV58
CPU clock [MHz] 237.5

Fast Control Loop [cycles] (%) 564 (4.8 %)
Slow Control Loop [cycles] (%) 1012 (0.4 %)

Total CPU load [%] 5.2 %
Flash usage [B] 15 892
RAM usage [B] 3 389

3.5. KE1xZ family
The KE15Z is a part of the Kinetis E series of ARM Cortex-M0+ MCUs. The Kinetis E series family is
a product portfolio with an enhanced ESD/EFT performance for cost-sensitive, high-reliability
applications used in environments with high electrical noise.

Built upon the ARM Cortex-M0+ core running at 72 MHz with up to 256 KB flash and 32 KB RAM, it
delivers a platform that enables you to build a scalable solution portfolio. For more information, see
KE1xZ Sub-Family Reference Manual (document KE1xZP100M72SF0RM).

http://www.nxp.com/doc/KE1xZP100M72SF0RM

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 19

3.5.1. Hardware timing and synchronization
A correct and precise timing is crucial in motor-control applications. The motor-control dedicated
peripherals handle the timing and synchronization on the hardware layer. The timing diagram is shown
in this figure:

Figure 8. Hardware timing and synchronization on KE15Z

• The top signal (PWM counter) shows the FTM counter reloads. The dead time is emphasized
at the PWM top and PWM bottom signals. The FTM_TRIG is generated on the PWM reload,
which triggers the PDB (resets the PDB counter).

• The PDB generates the first pre-trigger for the first ADC sample with a delay of approximately
TPWM / 2. This delay ensures a correct DC-bus current sampling.

• When the conversion of the first ADC sample is completed, the ADC ISR is entered and the
fast-loop control function is calculated.

• The PDB uses the back-to-back mode to automatically generate the pre-trig 1 (for the next
quantity measurement) immediately after the first conversion is completed.

3.5.2. Peripheral settings
This section describes only the peripherals used for motor control. The KE1xZ uses a 6-channel
FlexTimer (FTM) to generate a 6-channel PWM, and two 12-bit SAR ADCs to measure the back-EMF
voltage, DC-bus current, and DC-bus voltage. The FTM and ADC are synchronized via the
Programmable Delay Block (PDB). One channel from another independent FTM is used for the
slow-loop interrupt generation.

3.5.2.1. PWM generation—FTM0

• The FTM is clocked from the 72-MHz System clock.

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
20 NXP Semiconductors

• Only six channels are used, the other two are masked in the OUTMASK register.
• Channels 0+1, 2+3, and 4+5 are combined in pairs and run in a complementary mode.
• The Fault mode is enabled for each combined pair with an automatic fault clearing (PWM

outputs are re-enabled at the first PWM reload after the fault input returns to zero).
• The PWM period (frequency) is determined as a time for the FTM to count from CNTIN to

MOD. By default, CNTIN = -MODULO / 2 = -1800 and MOD = MODULO / 2 - 1 = 1799.
The FTM is clocked from the 72-MHz System clock, so it takes 0.00005 s (20 kHz).

• The dead time insertion is enabled for each combined pair. The dead time length is calculated as
System clock 72 MHz × Tdeadtime. The dead time varies among platforms.

• The FTM generates a trigger for the PDB on the counter initialization.
• The FTM fault input is enabled, but its polarity and source vary among platforms.

3.5.2.2. Analog sensing—ADC0 and ADC1
• The ADCs operate as 12-bit, single-ended converters.
• The clock source for both ADCs is the 8-MHz System oscillator (SOSC), divided by 2 = 4 MHz.

For calibration purposes, the ADC clock is 1 MHz.
• Both ADCs are triggered by the PDB pre-triggers.
• The interrupt that serves for the fast-loop algorithm calculation is generated when the first

conversion is completed.

3.5.2.3. PWM and ADC synchronization—PDB0
• Like the FTM, the PDB is clocked from the 72-MHz System clock.
• The PDB is triggered by the FTM0_TRIG.
• At each channel, the pre-trigger 0 is generated in the middle of one PWM period. This is set up

in the PDBx_CHnDLY register. PDBx_CHnDLY = PWM_MODULO / 2.
• At each channel, the pre-trigger 1 is generated immediately after the first conversion is

completed using the back-to-back mode.
• The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result

register is not read and the same pre-trigger occurs at this ADC. For more information about
PDB error sequence handling, see Tips and Tricks Using PDB in Motor Control Applications on
Kinetis (document AN4822).

3.5.2.4. Time event, forced commutation control—FTM1
• The FTM1 is used for the forced commutation control.
• The FTM1 is set as a free-running counter and clocked from the System clock. The Timer clock

pre-scaler is set to 128.
• The FTM1 counts from 0 to 0xffff.
• The output-compare interrupt is enabled and generated when the counter equals the value

register.

http://www.nxp.com/doc/AN4822

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 21

• The value register is periodically updated in the fast control loop function and the FTM1 output
compare interrupt is not invoked until an error in the BLDC commutation process appears.

• If an error in the BLDC commutation process appears, the forced commutation is performed in
the FTM1 interrupt service routine.

3.5.2.5. Slow-loop interrupt generation—FTM2
• The slow loop is usually 10× (or more) slower than the fast loop. Therefore, the FTM2 is clocked

from the System clock / 16 to keep its modulo value reasonably low.
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.
• The interrupt that serves the slow loop is enabled and generated at the reload.

3.5.3. Peripheral settings differences among platforms
There are differences in the peripheral settings among different platforms. This table summarizes these
differences:

Table 9. KE1xZ platform differences

Peripheral Feature
Platform

Freedom

FTM0 PWM polarity high sides active high
low sides active high

Dead time 0.875 µs
SPI Driver on SPI No
PDB Pre-trigger 0 delay 0.1 ms

3.5.4. CPU load and memory usage
The following information apply to the demonstration application built using the IAR Embedded
Workbench IDE. The following table shows the memory usage and CPU load. The memory usage is
calculated from the linker .map file, including the 2 KB FreeMASTER recorder buffer (allocated in
RAM) and the 3.8 KB FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU
load is measured using the SysTick timer. The CPU load depends on the fast-loop (FOC calculation) and
slow-loop (speed-loop) frequencies. In this case, it applies to the fast-loop frequency of 20 kHz and the
slow-loop frequency of 1 kHz. The total CPU load is calculated according to Eq. 3.

Table 10. KE1xZ CPU load and memory usage

— KE15Z
CPU clock [MHz] 72

Fast Control Loop [cycles] (%) 1298 (34.6 %)
Slow Control Loop [cycles] (%) 2563 (3.6 %)

Total CPU load [%] 38.2 %
Flash usage [B] 16 194
RAM usage [B] 3 397

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
22 NXP Semiconductors

3.6. KE1xF family
The KE18F is a part of the Kinetis E series of ARM Cortex-M4 MCUs. This device is a 32-bit Kinetis
microcontroller based on the ARM Cortex-M4 processor. It is an extension of the existing Kinetis E
series MCU family with an enhanced CPU performance and additional memories and peripherals. This
sub-family provides up to 168 MHz CPU performance, 512 KB flash, and 64 KB SRAM.

For more information, see KE1xZ Sub-Family Reference Manual (document KE1xFP100M168SF0RM).

3.6.1. Hardware timing and synchronization
A correct and precise timing is crucial in motor-control applications. The motor-control-dedicated
peripherals handle the timing and synchronization on the hardware layer. The timing diagram is shown
in this figure:

Figure 9. Hardware timing and synchronization on KE18F

• The top signal (PWM counter) shows the FTM counter reloads. The dead time is emphasized
at the PWM top and PWM bottom signals. The FTM_TRIG is generated on the PWM reload,
which triggers the PDB (resets the PDB counter).

• The PDB generates the first pre-trigger for the first ADC sample with a delay of approximately
TPWM / 2. This delay ensures a correct DC-bus current sampling.

• When the conversion of the first ADC sample is completed, the ADC ISR is entered and the
fast-loop control function is calculated.

• The PDB uses the back-to-back mode to automatically generate the pre-trig 1 (for the next
quantity measurement) immediately after the first conversion is completed.

http://www.nxp.com/doc/KE1xFP100M168SF0RM

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 23

3.6.2. Peripheral settings
This section describes only the peripherals used for motor control. The KE1xF uses a 6-channel
FlexTimer (FTM) to generate a 6-channel PWM, and two 12-bit SAR ADCs to measure the back-EMF
voltage, DC-bus current, and DC-bus voltage. The FTM and ADC are synchronized via the
Programmable Delay Block (PDB). One channel from another independent FTM is used for the
slow-loop interrupt generation.

3.6.2.1. PWM generation—FTM0

• The FTM is clocked from the 168-MHz System clock.
• Only six channels are used, the other two are masked in the OUTMASK register.
• Channels 0+1, 2+3, and 4+5 are combined in pairs and run in a complementary mode.
• The Fault mode is enabled for each combined pair with an automatic fault clearing (PWM

outputs are re-enabled at the first PWM reload after the fault input returns to zero).
• The PWM period (frequency) is determined as a time for the FTM to count from CNTIN to

MOD. By default, CNTIN = -MODULO / 2 = -4200 and MOD = MODULO / 2 - 1 = 4199.
The FTM is clocked from the 168-MHz System clock, so it takes 0.00005 s (20 kHz).

• The dead time insertion is enabled for each combined pair. The dead time length is calculated as
System clock 168 MHz × Tdeadtime. The dead time varies among platforms.

• The FTM generates a trigger for the PDB on the counter initialization.
• The FTM fault input is enabled, but its polarity and source vary among platforms.

3.6.2.2. Analog sensing—ADC0 and ADC1
• The ADCs operate as 12-bit, single-ended converters.
• The clock source for both ADCs is the 8-MHz System Oscillator (SOSC) clock, divided by 1 =

8 MHz. For calibration purposes, the ADC clock is 1 MHz.
• Both ADCs are triggered by the PDB pre-triggers.
• An interrupt that serves for the fast-loop algorithm calculation is generated when the first

conversion is completed.

3.6.2.3. PWM and ADC synchronization—PDB0
• Like the FTM, the PDB is clocked from the 168-MHz System clock.
• The PDB is triggered by the FTM0_TRIG.
• At each channel, the pre-trigger 0 is generated in the middle of one PWM period. This is set up

in the PDBx_CHnDLY register. PDBx_CHnDLY = PWM_MODULO / 2.
• At each channel, the pre-trigger 1 is generated immediately after the first conversion is

completed using the back-to-back mode.
• The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result

register is not read and the same pre-trigger occurs at this ADC. For more information about the

MCU Features and Peripheral Settings

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
24 NXP Semiconductors

PDB error sequence handling, see Tips and Tricks Using PDB in Motor Control Applications on
Kinetis (document AN4822).

3.6.2.4. Time event, forced commutation control—FTM1
• The FTM1 is used for the forced commutation control.
• The FTM1 is set as a free-running counter and clocked from the System clock. The timer clock

pre-scaler is set up to 128.
• The FTM1 counts from 0 to 0xffff.
• The output compare interrupt is enabled and generated when the counter equals the value

register.
• The value register is periodically updated in the fast control loop function and the FTM1 output

compare interrupt is not invoked until an error in the BLDC commutation process appears.
• If an error in the BLDC commutation process appears, the forced commutation is performed in

the FTM1 interrupt service routine.

3.6.2.5. Slow-loop interrupt generation—FTM2
• The slow loop is usually 10× (or more) slower than the fast loop. Therefore, the FTM2 is clocked

from the System clock / 16 to keep its modulo value reasonably low.
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.
• The interrupt that serves the slow loop is enabled and generated at the reload.

3.6.2.6. Communication with MC33937 MOSFET driver—SPI
• The SPI runs in a master mode.
• The SPI chip select 1 signal is active in logic high.
• The baud rate is 0.5 MHz.

3.6.3. Peripheral settings differences among platforms
There are differences in peripheral settings among different platforms. This table summarizes these
differences:

Table 11. KE18F platform differences

Peripheral Feature
Platform

Tower System HVP

FTM0 PWM polarity high sides active low
low sides active high

high sides active high
low sides active high

Dead time 0.37 µs 0.37 µs
LPSPI Driver on LPSPI Yes No
PDB Pre-trigger 0 delay 0.1 ms 0.1 ms

http://www.nxp.com/doc/AN4822

Motor Control Peripheral Drivers

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 25

3.6.4. CPU load and memory usage
The following information apply to the demonstration application built using IAR Embedded
Workbench IDE. The following table shows the memory usage and CPU load. The memory usage is
calculated from the linker .map file, including the 2 KB FreeMASTER recorder buffer (allocated in
RAM) and the 3.8 KB FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU
load is measured using the SysTick timer. The CPU load depends on the fast-loop (FOC calculation) and
slow-loop (speed-loop) frequencies. In this case, it applies to the fast-loop frequency of 20 kHz and the
slow-loop frequency of 1 kHz. The total CPU load is calculated according to Eq. 3.

Table 12. KE1xF CPU load and memory usage

— KE18F
CPU clock [MHz] 168

Fast Control Loop [cycles] (%) 769 (9.2 %)
Slow Control Loop [cycles] (%) 1216 (0.7 %)

Total CPU load [%] 9.9 %
Flash usage [B] 16 056
RAM usage [B] 3 409

4. Motor Control Peripheral Drivers
Motor Control Peripheral Drivers (MCDRV) represent a simple way of peripheral initialization and
access for the purposes of 3-phase ACIM, PMSM or BLDC control. The features provided by the
MCDRV library are 3-phase PWM generation and 3-phase current measurement, as well as the DC-bus
voltage, back-EMF voltage and auxiliary quantity measurement. The principle of BLDC sensorless
application based on integration of back-EMF voltage is described in 3-Phase Sensorless BLDC Motor
Control Application (document DRM144).

The MCDRV are divided into two parts:
• The first part is the peripheral initialization module, consisting of mcdrv_<platform>-

<device>.c and mcdrv_<platform>-<device>.h files, which are unique for each supported
device. The header file includes all MCDRV setup options including the ADC channel
assignment. The source file contains the functions to initialize all peripherals used for motor
control. This module is described in Section 4.2, “Motor Control Peripheral Drivers API”.

• The second part consists of the peripheral driver library modules for each supported periphery.
Generally, all ADC and PWM periphery drivers share the same API within their class. This
enables the higher-level code to be platform-independent, as the peripheral driver function calls
were replaced by universally named macros. The list of supported peripherals and the API of
their drivers is described in Section 4.2, “Motor Control Peripheral Drivers API”.

4.1. Motor Control Peripheral Drivers initialization
The MCDRV initialization module consists of a set of MCU peripheral-initialization functions, as well
as all the definitions that you can specify. The functions are contained in device-specific
mcdrv_<platform>-<device>.c source and mcdrv_<platform>-<device>.h header files. Out of all
functions in the MCDRV initialization module, call the MCDRV_Init_M1() function during MCU

http://www.fsls.co/doc/DRM148

Motor Control Peripheral Drivers

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
26 NXP Semiconductors

startup and before calling any other MCDRV functions. All peripherals used by a given device for
motor-control purposes are initialized within this function.

The mcdrv_<platform>-<device>.h header files offer several macros that you can define:
• M1_MCDRV_ADC—this macro specifies the ADC periphery used. If you select an unsupported

periphery, the preprocessor error is issued.
• M1_MCDRV_PWM3PH—this macro specifies the PWM periphery used. If you select an

unsupported periphery, the preprocessor error is issued.
• M1_PWM_PAIR_PH[A..C]—these macros enable simple assignment of the physical motor

phases to the PWM periphery channels or submodules. Change the order of the motor phases
this way.

• MCDRV_CHAN_OFF—use this macro to specify the unassigned ADC channel. It is
recommended not to change this number.

• M1_ADC[0,1]_PH_[A..C]—these macros serve to assign the ADC channels for back-EMF
voltage measurement. The general rule is that the only one ADC module can be assigned to
sense required back-EMF voltage. When this rule is broken, preprocessor error is issued. The
unassigned ADC channels are set to the MCDRV_CHAN_OFF value.

• M1_ADC[0,1]_UDCB, M1_ADC[0,1]_IDCB and M1_ADC[0,1]_AUX—use these defines to
select the ADC channel to measure the DC-bus voltage, DC-bus current and one user-defined
auxiliary quantity, which is not used directly for motor control (the IPM temperature is measured
by default).

• M1_SET_PTR_U_DC_BUS—this define must contain the name of the 16-bit fractional variable
where you want to store the DC-bus voltage measurements.

• M1_SET_PTR_I_DC_BUS—this define must contain the name of the 16-bit fractional variable
where you want to store the DC-bus current measurements.

• M1_SET_PTR_BEMF_VOLT—this define must contain the name of the 16-bit fractional
variable where you want to store the back-EMF voltage measurements.

• M1_SET_PTR_AUX_CHAN—this define stores the name of the 16-bit fractional variable, in
which you want to store the auxiliary quantity measured values.

4.2. Motor Control Peripheral Drivers API
The ADC and PWM motor-control drivers share the same API within their class. To ensure the device
independency of MCDRV API, all driver functions are accessible via universally named macros in the
mcdrv_<platform>-<device>.h files.

The available API for the ADC MC drivers is:
• M1_MCDRV_ADC_T—MCDRV ADC structure data type.
• bool_t M1_MCDRV_ADC_PERIPH_INIT()—by default, this function is called during the ADC

peripheral initialization procedure invoked by the MCDRV_Init_M1() function, and it must not
be called again after the peripheral initialization is done.

• bool_t M1_MCDRV_ADC_ASSIGN_BEMF(MCDRV_ADC_T*)—calling this function assigns
the proper ADC channels for the next back-EMF voltage measurement based on the actual
commutation sector. This function always returns true.

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 27

• bool_t M1_MCDRV_CURR_CALIB_INIT(MCDRV_ADC_T*)—this function initializes the DC-
bus current channel-offset measurement. This function always returns true.

• bool_t M1_MCDRV_CURR_CALIB(MCDRV_ADC_T*)—this function reads the current
information from the unpowered phase of a standstill motor and filters them using moving
average filter. The goal is to obtain the value of the measurement offset. The length of the
window for moving average filters is set to eight samples by default. This function always
returns true.

• bool_t M1_MCDRV_CURR_CALIB_SET(MCDRV_ADC_T*)—this function asserts the DC-bus
current measurement offset value to the internal register. Call this function after a sufficient
number of M1_MCDRV_CURR_3PH_CALIB() calls. This function always returns true.

• bool_t M1_MCDRV_ADC_GET(MCDRV_ADC_T*)—this function reads and calculates the
actual values of the back-EMF voltage, DC-bus voltage, DC-bus current and auxiliary quantity.
The obtained measurements are stored in the M1_SET_PTR_I_DC_BUS,
M1_SET_PTR_U_DC_BUS, M1_SET_PTR_BEMF_VOLT and M1_SET_PTR_AUX_CHAN
variables. This function always returns true.

The API for the PWM MC drivers is:
• M1_MCDRV_PWM_3PH_T—MCDRV PWM structure data type.
• bool_t M1_MCDRV_PWM_PERIPH_INIT (MCDRV_FTM_PWM3PH_T*)—this function is

called by default during the PWM periphery-initialization procedure invoked by the
MCDRV_Init_M1() function. This function always returns true.

• bool_t M1_MCDRV_PWM3PH_SET_DUTY(MCDRV_FTM_PWM3PH_T*, int16_t i16InpDuty
)—this function updates the PWM duty cycles based on the required value stored in the
f16DutyCycle variable. This function always returns true.

• bool_t M1_MCDRV_PWM3PH_SET_PWM_OUTPUT(MCDRV_FTM_PWM3PH_T*, int16_t
i16Sector)—calling this function enables the required PWM channels and disables non-required
PWM channels according to actual commutation sector.

The API for the CMT MC drivers is:
• M1_MCDRV_TMR_CMT_T—MCDRV CMT structure data type.
• bool_t M1_MCDRV_TMR_CMT_PERIPH_INIT (MCDRV_FTM_CMT_T*)—this function is

called by default during the FTM periphery-initialization procedure invoked by the
MCDRV_Init_M1() function. This function always returns true.

• bool_t M1_MCDRV_TMR_CMT_SET(MCDRV_FTM_CMT_T*)—this function updates the
FTM value register. This function always returns true.

• bool_t M1_MCDRV_TMR_CMT_GET(MCDRV_FTM_CMT_T*)—this function reads the actual
values of FTM value and counter register. This function always returns true.

5. Tuning and Controlling the Application
This section provides information about the tools and recommended procedures for controlling the
sensorless BLDC motor control application. The application contains the embedded side driver of
FreeMASTER real-time debug monitor and data visualization tool for communication with the PC. It
supports non-intrusive monitoring as well as the modification of target variables in real time, which is

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
28 NXP Semiconductors

very useful for algorithm tuning. Besides the target-side driver, FreeMASTER requires installing the PC
application as well. For more information, visit www.nxp.com/freemaster.

Control and tune the BLDC sensorless application easily using Motor Control Application Tuning
(MCAT) tool page for BLDC. The MCAT tool for BLDC is a user-friendly modular page, which runs
within FreeMASTER. To launch it, execute the .pmp file located next to your project. See the user’s
guide for your version of MCRSP_BLDC for more information (document MCRSPPMSMUG). The
following figure shows the MCAT tool for BLDC welcome page. The tool consists of a tab menu (point
one), tuning mode selector (point two), and the workspace (point three). Each tab represents a
submodule, which enables tuning or controlling different aspects of the application. Besides the MCAT
tool page for BLDC, several scopes, recorders, and variables in the variable watch window are
predefined in the FreeMASTER project file to further simplify motor parameter tuning and debugging.
The Basic and Expert tuning modes are available. Selecting the Expert mode grants you the access to
modify all parameters and fields available in MCAT tool. The Basic mode is intended for inexperienced
users. When FreeMASTER is not connected to the target, the “App ID” line shows “offline”. When the
communication with the target MCU (with correct software) is established, the “App ID” line displays
the MCU and platform, and all stored parameters for the given MCU are loaded.

Figure 10. MCAT tool layout

In the default configuration, these tabs are available:
• “Introduction”—welcome page with the BLDC sensorless application diagram and a short

description of the application.
• “Parameters”—this page enables you to modify the motor parameters, the specification of

hardware and application scales, and fault limits.

http://www.nxp.com/freemaster
http://www.nxp.com/doc/MCRSPPMSMUG

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 29

• “Control Loop”—this tab enables you to modify speed and current (torque)-loop PI controller
gains and output limits and to modify speed ramp parameters.

• “Sensorless”—this page enables you to tune the important parameters for sensorless BLDC
application like integration threshold, minimal speed and open loop startup parameters.

• “Output file”—this tab enables the user to view all calculated constants that are required by the
BLDC sensorless application. It also enables you to generate the m1_bldc_appconfig.h file,
which is then used to preset all application parameters permanently at project rebuild.

• “App Control”—this tab contains graphical elements such as speed gauges, DC-bus voltage and
DC-bus current measurement bar, and variety of switches that enable simple, quick, and user-
friendly application control. Here you can control the fault-clearing and demo mode, which sets
various predefined required speeds over time.

Most tabs offer the possibility to immediately write the parameters specified in MCAT tool into the
target using the “Update target” button, and save them to or restore them from the hard drive file using
the “Reload Data” and “Store Data” buttons.

The following sections describe the individual MCAT tabs more deeply.

5.1. BLDC sensorless application control and tuning using MCAT tool
Use FreeMASTER enabled with the MCAT tool page to control and tune the BLDC sensorless
application easily. The MCAT tool for BLDC submodule tabs are described here.

5.1.1. Application parameters setup using MCAT tool

Figure 11. Parameters tab

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
30 NXP Semiconductors

In basic tuning mode the motor parameters and hardware scales can be modified only. Other application
parameters like Fault limits, application scales and alignment constants are calculated from motor
parameters and hardware scales.

More detailed information about individual parameters are provided in following table:
Table 13. MCAT tool parameters tab description

 Motor Parameters

Parameter Units Description Typical range

pp — Motor pole-pairs 1–10
Iph nom [A] Motor nominal phase current 0.5–8

Uph nom [V] Motor nominal phase voltage 10–300

N nom [rpm] Motor nominal speed 1000–5000

 Hardware Scales

Parameter Units Description

Imax [A] Current scale

U DCB max [V] Voltage scale

 Fault Limits

Parameter Units Description Typical value

U DCB trip [V] Trip DC-BUS voltage for braking into resistor 0.8 * U DCB
max

U DCB
under [V] DC Bus under voltage fault trigger 0.4 * U DCB

max

U DCB over [V] DC Bus over voltage fault trigger 0.8 * U DCB
max

N over [rpm] Over speed fault trigger 0.95 * N max

N min [rpm] Minimal motor speed 0.05 * N nom

 Application Scales

Parameter Units Description Typical range

N max [rpm] Motor mechanical speed scale 1.1 * N nom

Ke [V.sec/rad] Back EMF constant, calculated as
(Unom * 60) / (2*π*pp*Nnom) 0.00001 – 0.1

 Alignment

Parameter Units Description Typical range

Align current [A] Align current 0.1 – Iph nom
Align

duration [sec] Align duration 0.2 - 10

There are three buttons, at the bottom of parameters tab. The Update Target button serves to write the
changes into MCU. The Reload Data button serves to reload parameters (default values) from inner
file. The Store Data serves to save the parameters from parameters tab into inner file. Reload data and
store data button are non-active by default until some change in parameters is performed.

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 31

5.1.2. Application Control loops setup using MCAT tool

Figure 12. Control Loop Tab

In basic tuning mode the Speed Ramp parameters can be modified only. Other control loop parameters
like control loop output limits and PI controllers constants can be accessed in expert mode only.

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
32 NXP Semiconductors

More detailed information about individual control loop parameters are provided in following table:
Table 14. MCAT tool control loop tab description

 Loop Sample Time

Parameter Units Description Typical range

Sample time [sec] Speed control loop sampling period 1 – 10 ms
PWM freq [Hz] PWM frequency 4000 - 20000

 Control Loop Output Limits

Parameter Units Description Typical value
Output limit

high [%] High limit of BLDC control loop output in percentage
of duty cycle 90

Output limit
low [%] Low limit of BLDC control loop output in percentage

of duty cycle 0

 Speed Ramp

Parameter Units Description Typical range

Inc Up [rpm/sec] Speed Ramp up increment 5 – 3000

Inc Down [rpm/sec] Speed Ramp down decrement 5 - 3000

 Speed PI Controller Constants

Parameter Units Description Typical value
Speed Loop

Kp [] Speed Controller proportional constant in time
domain 0.00003

Speed Loop
Ki [] Speed Controller integration constant in time

domain 0.03

 Torque PI Controller Constants

Parameter Units Description Typical range
Torque Loop

Kp [] Torque Controller proportional constant in time
domain 0.0178

Torque Loop
Ki [] Torque Controller integration constant in time

domain 17.8

There are three buttons, at the bottom of control loop tab. The Update Target button serves to write the
changes into MCU. The Reload Data button serves to reload parameters (default values) from inner
file. The Store Data serves to save the parameters from parameters tab into inner file. Reload data and
store data button are non-active by default until some change in parameters is performed.

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 33

5.1.3. BLDC Sensorless application setup using MCAT tool

Figure 13. Control Loop Tab

In basic tuning mode the integration threshold correction constant can be modified only. Other
sensorless parameters like start-up parameters can be accessed in expert mode only.

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
34 NXP Semiconductors

More detailed information about individual sensorless control parameters are provided in following
table:

Table 15. MCAT tool sensorless control tab description

 Sensorless Parameters

Parameter Units Description Typical range

Timer freq [Hz] Forced commutation timer frequency, calculated as
Timer input clock / Prescale factor (128)

Speed min [rpm] Minimal speed for sensorless control 0.05 * Nnom
Freewheel

time [sec] Motor Freewheel period from any motor speed 0.5 - 5

 Open Loop Start-up Parameters

Parameter Units Description Typical range

OL sped lim [rpm] Open loop start-up minimal speed to switch to close
loop control 0.1 – 0.3 Nnom

Cmt count [#] Open loop start-up commutation number 2 - 8
1st cmt
period [sec] First commutation period 0.05

 Commutation Parameters

Parameter Units Description Typical range

Time off [%] Time off after commutation 15 - 25

Integ thr corr [%] Integration threshold correction constant 10 - 200

There are three buttons, at the bottom of control loop tab. The Update Target button serves to write the
changes into MCU. The Reload Data button serves to reload parameters (default values) from inner
file. The Store Data button serves to save the parameters from parameters tab into inner file. Reload
data and store data button are non-active by default until some change in parameters is performed.

According to entered parameters the following sensorless control constants are calculated:
Table 16. MCAT tool sensorless control calculated constants

 Sensorless Control Constants

Parameter Units Description Calculation

Cmt_period_
min [] Number of timer interrupt counts for

maximal speed
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓∗10
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚∗𝑝𝑝𝑝𝑝

Cmt_period_

start [] Number of timer interrupt counts for
start-up speed

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓 ∗ 𝐶𝐶𝑇𝑇𝐶𝐶𝑝𝑝𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝

Speed_scale [] Speed scale constant for actual
speed calculation

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∗𝑝𝑝𝑝𝑝
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚∗𝑝𝑝𝑝𝑝

Start_accele

ration [] Start-up acceleration constant (
60

𝑁𝑁𝑂𝑂𝑂𝑂𝑂𝑂𝑝𝑝𝑇𝑇𝑇𝑇𝑝𝑝 𝑙𝑙𝑇𝑇𝑇𝑇 ∗ 𝑝𝑝𝑝𝑝 ∗ 6 ∗ 𝐶𝐶𝑇𝑇𝐶𝐶𝑝𝑝𝑇𝑇𝑇𝑇
)

1
𝐶𝐶𝐶𝐶𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−1

Integration_t
hreshold [] Integration threshold constant

𝑃𝑃𝑃𝑃𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∗𝜋𝜋∗𝑘𝑘𝑓𝑓∗32768
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚∗24

5.1.4. BLDC sensorless application tuning using MCAT tool
This section provides a guide for running your motor in several steps. It is highly recommended to go
through all the steps carefully to eliminate any issues during the tuning process. The state diagram in the

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 35

following figure shows a typical BLDC sensorless control tuning process. The tuning phases are
described in the following sections.

Figure 14. Running a new BLDC

5.1.5. Initial configuration setting and update
1. Open the BLDC sensorless control application FreeMASTER project containing the dedicated

MCAT plug-in module.
2. Select the “Basic” mode—recommended for users who are not experienced in motor-control

theory. The number of required input parameters is reduced.
3. Select the “Parameters” tab.
4. Leave the motor parameters and as they are if you are using Linix motor. If you use other motor,

set correct motor parameters.
5. Set the hardware scales—modifying these two fields is not required when using a reference to

the standard power stage board. These scales specify the maximum measurable current and
voltage analog quantities.

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
36 NXP Semiconductors

6. Check the fault limits—these fields are not accessible in the “Basic” mode and they are
calculated using the motor parameters and hardware scales. See this table:

Table 17. Fault limits

Parameter Units Description Typical range

U DCB trip [V] Voltage value when the external braking resistor switch is
turned on

U DCB
Over~U DCB max

U DCB under [V] Trigger value when the under-voltage fault is detected 0~U DCB Over

U DCB over [V] Trigger value when the over-voltage fault is detected U DCB
Under~U max

N over [rpm] Trigger value when the over-speed fault is detected N nom~N max
N min [rpm] Minimal actual speed value for the sensorless control (0.05~0.2) * N max

7. Check the application scales—these fields are not accessible in the Basic mode and are

calculated using the motor parameters and hardware scales.
Table 18. Application scales

Parameter Units Description Typical range
N max [rpm] Speed scale >1.1 * N nom

Ke [V.sec/rad] Back EMF constant, calculated as
(Unom * 60) / (2*π*pp*Nnom) 0.00001 – 0.1

8. Check the alignment parameters—these fields are not accessible in the Basic mode and are

calculated using the motor parameters and hardware scales. The parameters express the required
phase current value applied to the motor winding during rotor alignment and its duration.

9. Click the “Store Data” button to save the modified parameters into the inner file.
10. Select the “Control Loop” tab.
11. Set the speed ramp parameters, according to your required dynamics.
12. Select the “App Control” tab.
13. Click on Run button and set your required speed on speed slider.

5.1.6. Alignment tuning
The alignment procedure sets the rotor to an accurate initial position and enables applying a full start-up
torque to the motor. The rotor-alignment parameters are available for editing in the Expert mode.
A correct initial position is needed mainly for high start-up loads (compressors, washers, and others).
The aim of the alignment is to have the rotor in a stable position (without oscillations) before the startup.

1. The alignment current is a value applied to the motor winding during alignment. Increase this
value for a higher shaft load.

2. The alignment duration expresses the time for which the alignment routine is to be called. Tune
this parameter to have the rotor without oscillations or movement at the end of the alignment
process.

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 37

5.1.7. Open-loop startup tuning
Tune the start-up process by a set of parameters located in the “Sensorless” tab. Set the optimal values to
achieve a proper motor startup. An example start-up state of low-dynamic drives (fans, pumps) is shown
in Figure 15.

1. Select the “Sensorless” tab and switch to expert mode.
2. Set the open loop speed limit parameter (OL speed lim). It is the minimal speed to switch to

close loop control.
3. Set the start-up commutation count parameter. It is the number of open loop start-up

commutations to be performed before switching to close loop control.
4. Set the first commutation period (1st cmt period). It is the time duration between zero speed and

first commutation. This parameter is responsible for acceleration during start-up.
5. Click the “Update Target” button to write the changes to the MCU.
6. Switch to the “App Control” tab, and try to run the motor.

Figure 15. Motor open-loop startup

5.1.8. Speed ramp tuning
The “Speed” command is applied to the speed controller through a speed ramp. The ramp function
contains two increments (up and down) that express motor acceleration and deceleration per second.
If the increments are very high, they can cause an over-current fault during acceleration and an
over-voltage fault during deceleration.

The increment fields are located in the “Control Loop” tab and they are accessible in both tuning modes.
Clicking the “Update Target” button writes the changes to the MCU. An example speed profile is shown

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
38 NXP Semiconductors

in the following figure. The ramp down increment is set to 2000rpm/sec, while the up increment is set to
500 rpm/sec.

Figure 16. Speed ramp

5.1.9. Current and Speed PI controllers tuning
The current and speed PI controllers constants are adjusted to the same values in fractional format by
default. The different scale for current and speed PI controller constants is the reason why they are
different in s-domain and in “Control loop” tab. The conversion relationship between controller
constants in fractional and s-domain is the following:

Current PI controller constants:

𝐾𝐾𝐼𝐼 𝑓𝑓𝑇𝑇𝑓𝑓𝑓𝑓 = 𝐾𝐾𝐼𝐼 𝑂𝑂 ∗ 𝑇𝑇𝑂𝑂 ∗
𝐼𝐼𝑇𝑇𝑓𝑓𝑚𝑚

𝑈𝑈𝑇𝑇𝑓𝑓𝑚𝑚
=> 𝐾𝐾𝐼𝐼 𝑂𝑂 =

𝐾𝐾𝐼𝐼 𝑓𝑓 ∗ 𝑈𝑈𝑇𝑇𝑓𝑓𝑚𝑚

𝑇𝑇𝑂𝑂 ∗ 𝐼𝐼𝑇𝑇𝑓𝑓𝑚𝑚

𝐾𝐾𝑃𝑃 𝑓𝑓𝑇𝑇𝑓𝑓𝑓𝑓 = 𝐾𝐾𝑃𝑃 𝑂𝑂 ∗
𝐼𝐼𝑇𝑇𝑓𝑓𝑚𝑚

𝑈𝑈𝑇𝑇𝑓𝑓𝑚𝑚
=> 𝐾𝐾𝑃𝑃 𝑂𝑂 =

𝐾𝐾𝑃𝑃 𝑓𝑓 ∗ 𝑈𝑈𝑇𝑇𝑓𝑓𝑚𝑚

𝐼𝐼𝑇𝑇𝑓𝑓𝑚𝑚

Speed PI controller constants:

𝐾𝐾𝐼𝐼 𝑓𝑓𝑇𝑇𝑓𝑓𝑓𝑓 = 𝐾𝐾𝐼𝐼 𝑂𝑂 ∗ 𝑇𝑇𝑂𝑂 ∗
𝑁𝑁𝑇𝑇𝑓𝑓𝑚𝑚

𝐼𝐼𝑇𝑇𝑓𝑓𝑚𝑚
=> 𝐾𝐾𝐼𝐼 𝑂𝑂 =

𝐾𝐾𝐼𝐼 𝑓𝑓 ∗ 𝐼𝐼𝑇𝑇𝑓𝑓𝑚𝑚

𝑇𝑇𝑂𝑂 ∗ 𝑁𝑁𝑇𝑇𝑓𝑓𝑚𝑚

𝐾𝐾𝑃𝑃 𝑓𝑓𝑇𝑇𝑓𝑓𝑓𝑓 = 𝐾𝐾𝑃𝑃 𝑂𝑂 ∗
𝑁𝑁𝑇𝑇𝑓𝑓𝑚𝑚

𝐼𝐼𝑇𝑇𝑓𝑓𝑚𝑚
=> 𝐾𝐾𝑃𝑃 𝑂𝑂 =

𝐾𝐾𝑃𝑃 𝑓𝑓 ∗ 𝐼𝐼𝑇𝑇𝑓𝑓𝑚𝑚

𝑁𝑁𝑇𝑇𝑓𝑓𝑚𝑚

Where Ts is control loop sampling period.

Generally, it is not recommended to change the default PI controller constants. The current PI controller
output limits the speed PI controller output to not exceed the nominal phase current of motor.

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 39

If it is required by final application to tune the PI controller constants it is possible to do in MCAT tool
in Control Loop tab. Follow these instructions:

1. Select the Speed scope from the FreeMASTER Project Tree.
2. Select the Control loop tab, switch to expert mode.
3. Tune the proportional gain:

— Set the speed loop Ki (SL_Ki) integral gain to zero.
— Set the speed ramp to 1000 rpm/sec or higher.
— Switch to the App Control tab and run the motor at a convenient speed, about 30% of

nominal speed.
— Set a step in the required speed to 40% of N nom.
— Switch back to the Control loop tab.
— Adjust the proportional gain Speed loop Kp (SL_Kp) until the system responds properly

to the required value without oscillations or excessive overshoot:
– If SL_Kp is set low, then the system respond will be slow.
– If SL_Kp is set high, then the system respond will be tighter.
– When SL_Ki = 0, then the system will probably not achieve the required speed.

— Click the Update Target button to apply the changes to the MCU.
4. Tune the integral gain:

— Increase slowly SL_Ki to minimize the difference between the required and actual speeds
to zero.

— Adjust SL_Ki in such a way as to not see any oscillation or large overshoot of the actual
speed value while the required speed step is applied.

— Click the Update Target button to apply the changes to the MCU.

Figure 17. Speed controller response—SL_Ki value is low, Speed Ramp not achieved

Tuning and Controlling the Application

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
40 NXP Semiconductors

– SL_Ki value is high, and Speed Actual greatly overshoots and the long settling time is
unwanted, see this figure:

Figure 18. Speed Controller Response—SL_Kp value is low, Speed Actual Filtered greatly overshoots

– Speed loop response is with a small overshoot, and the Speed Actualsettling time is
sufficient. Such a response can be considered as an optimal, see this figure:

Figure 19. Speed Controller Response—Speed loop response with small overshoot

5.1.10. Generating MCAT tool output file
When you successfully finish tuning the application and you want to store all calculated parameters to
the embedded application, navigate to the “Output File” tab. View the list of all definitions generated by
MCAT tool. Clicking the “Generate Configuration File” button overwrites the old version of the
m1_bldc_appconfig.h file, which contains these definitions. Provide a correct path to the file for a proper

References

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
NXP Semiconductors 41

generation of the motor parameter file. To change the path, navigate the cursor to the right corner of the
MCAT tool screen, and a symbol with a screw driver and a wrench appears. When you click this
symbol, the “Application Settings Page” appears. Modify the path to the m1_bldc_appconfig.h file in the
“Project Path Selection” area.

6. Conclusion
This application note describes the implementation of a sensorless control of the 3-phase BLDC motor
using 32-bit Kinetis V series devices and the High-Voltage Platform, Tower System, and Freedom
development platforms. The hardware-dependent part of the sensorless control software (including a
detailed peripheral setup), Motor Control Peripheral Drivers (MCDRV), and application timing are
described in Section 3, “MCU Features and Peripheral Settings”. The last part of the document describes
the user interface represented by Motor Control Application Tuning (MCAT) tool, based on
FreeMASTER communication interface.

7. Acronyms and Abbreviations
Table 19. Acronyms and abbreviations

Term Meaning

AC Alternating Current

ADC Analog-to-Digital Converter

AN Application Note

CPU Central Processing Unit

DC Direct Current

DRM Design Reference Manual

FTM FlexTimer Module

GPIO General-Purpose Input/Output

I/O
Input/Output interfaces between a computer system and the external world (A CPU
reads an input to sense the level of an external signal and writes to an output to
change the level of an external signal.)

MCAT Motor Control Application Tuning tool

MCU Microcontroller Unit

PDB Programmable Delay Block

PI Proportional Integral controller

PWM Pulse-Width Modulation

UART Universal Asynchronous Receiver/Transmitter

8. References
These references are available on nxp.com:

• Three-phase BLDC sensorless motor control application (document DRM144)
• KV11 Sub-Family Reference Manual (document KV31P64M75RM)
• KV31F Sub-Family Reference Manual (document KV31P100M120SF7RM)

http://www.nxp.com/
http://www.nxp.com/doc/DRM144
http://www.nxp.com/doc/KV31P64M75RM
http://www.nxp.com/doc/KV31P100M120SF7RM

Revision History

Sensorless BLDC Control on Kinetis KV and KE, Application Note, Rev. 2, 10/2016
42 NXP Semiconductors

• KV4x Reference Manual (document KV4XP100M168RM)
• KV5x Sub-Family Reference Manual (document KV5XP144M220RM)
• NXP High-Voltage Motor Control Platform User's Guide (document HVPMC3PHUG)
• HVP-KV31F120M User’s Guide (document HVPKV31F120MUG)
• Using FlexTimer in ACIM/PMSM Motor Control Applications (document AN3729)
• Tips and Tricks Using PDB in Motor Control Applications on Kinetis (document AN4822)
• Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (document AN4642)
• BLDC Sensorless Algorithm Tuning (document AN4597)
• Tuning Three-Phase BLDC Motor Sensorless Control Application Using the MKV10x

(document AN4870)

9. Revision History
This table summarizes the changes done to this document since the initial release:

Table 20. Revision history

Revision number Date Substantive changes

0 02/2016 Initial release.

1 09/2016 Added KE1xZ and KE1xF MCUs.

2 10/2016 CPU load and memory usage tables extended and updated.

http://www.nxp.com/doc/KV4XP100M168RM
http://www.nxp.com/doc/KV5XP144M220RM
http://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com/doc/HVPKV31F120MUG
http://www.nxp.com/doc/AN3729
http://www.nxp.com/doc/AN4822
http://www.nxp.com/doc/AN4642
http://www.nxp.com/doc/AN4597
http://www.nxp.com/doc/AN4870

Document Number: AN5263
Rev. 2

10/2016

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further
notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does NXP assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in NXP data sheets and/or specifications can and do
vary in different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. NXP does not convey any license under its patent rights
nor the rights of others. NXP sells products pursuant to standard terms and conditions
of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V.

Tower and Freedom are trademarks of NXP B.V. ARM, the ARM Powered logo, and
Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. IAR is a trademark and IAR Embedded Workbench is a registered
trademark of IAR Systems AB. All other product or service names are the property of
their respective owners. All rights reserved.

© 2016 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Sensorless BLDC Control on Kinetis KV and KE
	1. Introduction
	2. Development Platforms
	2.1. FRDM-MC-LVBLDC
	2.2. TWR-MC-LV3PH
	2.3. HVP-MC3PH

	3. MCU Features and Peripheral Settings
	3.1. KV1x family
	3.1.1. Hardware timing and synchronization
	3.1.2. Peripheral settings
	3.1.2.1. PWM generation—FTM0
	3.1.2.2. Analog sensing—ADC0, ADC1
	3.1.2.3. PWM and ADC synchronization—PDB0
	3.1.2.4. Time event, forced commutation control—FTM1
	3.1.2.5. Slow-loop interrupt generation—FTM2
	3.1.2.6. Communication with MC33937 MOSFET driver—SPI

	3.1.3. Peripheral settings differences among platforms
	3.1.4. CPU load and memory usage

	3.2. KV3x family
	3.2.1. Hardware timing and synchronization
	3.2.2. Peripheral settings
	3.2.2.1. PWM generation—FTM0
	3.2.2.2. Analog sensing—ADC0 and ADC1
	3.2.2.3. PWM and ADC synchronization—PDB0
	3.2.2.4. Time event, forced commutation control—FTM1
	3.2.2.5. Slow-loop interrupt generation—FTM2
	3.2.2.6. Communication with MC33937 MOSFET driver—SPI

	3.2.3. Peripheral settings differences among platforms
	3.2.4. CPU load and memory usage

	3.3. KV4x family
	3.3.1. Hardware timing and synchronization
	3.3.2. Peripheral settings
	3.3.2.1. PWM generation—FTM0
	3.3.2.2. Analog sensing—ADC12
	3.3.2.3. PWM and ADC synchronization—PDB0
	3.3.2.4. Time event, forced commutation control—FTM1
	3.3.2.5. Slow loop interrupt generation—FTM3
	3.3.2.6. Communication with MC33937 MOSFET driver—SPI

	3.3.3. Peripheral settings differences among platforms
	3.3.4. CPU load and memory usage

	3.4. KV5x family
	3.4.1. Hardware timing and synchronization
	3.4.2. Peripheral settings
	3.4.2.1. PWM generation—PWMA
	3.4.2.2. Analog sensing—ADC12
	3.4.2.3. Peripheral interconnections—XBARA
	3.4.2.4. Slow-loop interrupt generation—FTM2
	3.4.2.5. Communication with MC33937 MOSFET driver—SPI

	3.4.3. Peripheral settings differences among platforms
	3.4.4. CPU load and memory usage

	3.5. KE1xZ family
	3.5.1. Hardware timing and synchronization
	3.5.2. Peripheral settings
	3.5.2.1. PWM generation—FTM0
	3.5.2.2. Analog sensing—ADC0 and ADC1
	3.5.2.3. PWM and ADC synchronization—PDB0
	3.5.2.4. Time event, forced commutation control—FTM1
	3.5.2.5. Slow-loop interrupt generation—FTM2

	3.5.3. Peripheral settings differences among platforms
	3.5.4. CPU load and memory usage

	3.6. KE1xF family
	3.6.1. Hardware timing and synchronization
	3.6.2. Peripheral settings
	3.6.2.1. PWM generation—FTM0
	3.6.2.2. Analog sensing—ADC0 and ADC1
	3.6.2.3. PWM and ADC synchronization—PDB0
	3.6.2.4. Time event, forced commutation control—FTM1
	3.6.2.5. Slow-loop interrupt generation—FTM2
	3.6.2.6. Communication with MC33937 MOSFET driver—SPI

	3.6.3. Peripheral settings differences among platforms
	3.6.4. CPU load and memory usage

	4. Motor Control Peripheral Drivers
	4.1. Motor Control Peripheral Drivers initialization
	4.2. Motor Control Peripheral Drivers API

	5. Tuning and Controlling the Application
	5.1. BLDC sensorless application control and tuning using MCAT tool
	5.1.1. Application parameters setup using MCAT tool
	5.1.2. Application Control loops setup using MCAT tool
	5.1.3. BLDC Sensorless application setup using MCAT tool
	5.1.4. BLDC sensorless application tuning using MCAT tool
	5.1.5. Initial configuration setting and update
	5.1.6. Alignment tuning
	5.1.7. Open-loop startup tuning
	5.1.8. Speed ramp tuning
	5.1.9. Current and Speed PI controllers tuning
	5.1.10. Generating MCAT tool output file

	6. Conclusion
	7. Acronyms and Abbreviations
	8. References
	9. Revision History

