

© 2016 Freescale Semiconductor, Inc. All rights reserved.

Emulating Dual SPI Using FlexIO

1. Introduction

This application note discusses one example of how to

use FlexIO module to emulate the dual SPI of both

master and slave mode at the same time.

FlexIO is a new on-chip peripheral available on some of

the Kinetis series microcontrollers. It is highly

configurable and capable of emulating a wide range of

communication protocols, such as UART, I2C, SPI, and

I2S.

The standalone peripheral module FlexIO is used as an

additional peripheral module of the microcontroller and

is not a replacement of the SPI peripheral. The key

feature of this peripheral is that it enables the user to

build their own peripheral directly.

This example creates a simple software demo based on

KSDK HAL drivers for you to use FlexIO to emulate

the dual SPI of both master and slave mode at the same

time.

Freescale Semiconductor, Inc. Document Number: AN5242

Application Note Rev. 0 , 01/2016

Contents

1. Introduction .. 1
2. Overview of the FlexIO module 2
3. Emulating Dual SPI by using FlexIO 5

3.1 Configurations of the Shifters and Timers 8
3.2 Software implementation overview...................... 12
3.3 Running the demos ... 14

4 Conclusion .. 17
5 Additional information .. 17
6 References .. 17
7 Revision history .. 18

Overview of the FlexIO module

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

2 Freescale Semiconductor, Inc.

2. Overview of the FlexIO module

The FlexIO module has the following main hardware resources:

 Shifter

 Timer

 Pin

The amount of these resources for a given MCU can be read from the FLEXIO_PARAM register. For

example, there are 4 shifters, 4 timers, and 8 pins in MKS22FN256.

The following diagram shows a high-level overview of the FlexIO module.

Overview of the FlexIO module

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 3

Figure 1. FlexIO block diagram

The following key features are provided:

 32-bit shifters with transmit, receive, and data match modes

 Double buffered shifter operation

 16-bit timers with high flexibility support for a variety of internal or external triggers, and Reset/

Enable/Disable/ Decrement conditions

Emulating Dual SPI by using FlexIO

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

4 Freescale Semiconductor, Inc.

 Automatic start/stop bit generation/check

 Interrupt, DMA, or polling mode operation

 Shifters, timers, pins, and triggers can be flexibly combined to operate

Transmit and receive are two basic modes of the shifters. If one shifter is configured to transmit mode, it

loads data from its buffer register and shifts data out to its assigned pin bit by bit. If one shifter is

configured to receive mode, it shifts data in from its assigned pin and stores data in its buffer register.

The load, store, and shift operations are all controlled by the shifter’s assigned timer.

The timers can also be configured as different operation modes according to your requirement, including

dual 8-bit counters baud/bit mode, dual 8-bit counters PWM mode, and single 16-bit counter mode.

Emulating Dual SPI by using FlexIO

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 5

3. Emulating Dual SPI by using FlexIO

This section describes how to emulate dual SPI by using FlexIO. For this application, the Freescale

MAPS platform MAPS-KS22F256, which is shown in the below figure, has been used.

Figure 2. MAPS platform MAPS-KS22F256

In this application, FlexIO D0~D3 pins are configured as SPI master, FlexIO D4~D7 pins are configured

as SPI slave. Make the connections between the master and slave using 4 external wires. You can use

OpenSDA or general UART debug console to check the result of data loopback transfer.

Emulating Dual SPI by using FlexIO

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

6 Freescale Semiconductor, Inc.

The following diagram shows the hardware platform and data flows:

Figure 3. Hardware platform and data flows

When you initially open a document from the template, you are prompted to enter the values for the

document’s metadata.

SPI bus master can be emulated using:

 2 Shifters: one shifter is used as the data transmitter and the other shifter is the receiver.

 2 Timers: one timer is used for the SPI_CS output generation, and the other timer is used for the

load/store/shift control of the two shifters and SPI_SCK generation.

 4 Pins: these are used as SPI_CS, SPI_SCK, SPI_SOUT, and SPI_SIN.

Emulating Dual SPI by using FlexIO

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 7

The following diagram shows the master resource assignment.

Figure 4. Resource Assignment of FlexIO to Emulate SPI Master

The SPI bus slave can be emulated using:

 2 Shifters: one shifter is used as the data transmitter and the other shifter as the receiver.

 1 Timer: used for the load/store/shift control of the two shifters.

 4 Pins: the pins are used as SPI_CS, SPI_SCK, SPI_SOUT, and SPI_SIN.

The following diagram shows the slave resource assignment.

Emulating Dual SPI by using FlexIO

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

8 Freescale Semiconductor, Inc.

Figure 5. Resource Assignment of FlexIO to Emulate SPI Slave

Detailed configurations and usage information are provided in the following sections.

3.1 Configurations of the Shifters and Timers

This section provides detailed configurations of the shifters and timers. Note that the items listed in this

section are the initial setting with CPHA= 0, SPI baud rate= 2 MHz, and SPI bit count= 8-bit, by default.

Some of these settings must be changed by software to support the different SPI features. To understand

these configurations, refer to the following sections and the KS22 reference manual.

3.1.1 SPI master configurations

Configurations for shifter 0

Shifter 0 is used as the SPI master transmitter on pin FlexIO_D0 as SPI_SOUT. It has the following

initial configurations.

Emulating Dual SPI by using FlexIO

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 9

Table 1. Configurations for shifter 0

Items Configurations

Shifter mode transmit

Timer selection timer 0

Timer polarity on negative of shift clock

Pin selection pin 0

Pin configuration pin output

Pin polarity active high

Input source from pin

Start bit
disabled, transmitter loads data on

enable

Stop bit disabled

Buffer used bit byte swapped register

Configurations for shifter 1

Shifter 1 is used as the SPI master receiver on pin FlexIO_D1 as SPI_SIN. It has the following initial

configurations.

Table 2. Configurations for shifter 1

Items Configurations

Shifter mode receive

Timer selection timer 0

Timer polarity on positive of shift clock

Pin selection Pin 1

Pin configuration output disabled

Pin polarity active high

Input source from pin

Start bit
disabled, transmitter loads data on

enable

Stop bit disabled

Buffer used bit byte swapped register

Configurations for timer 0

Timer 0 is used by the SPI master to generate SPI_SCK output on pin FlexIO_D2 and load/store/shift

control of the two shifters. The shifter status flag is set and cleared each time the SHIFTBUF register is

written and read, which means the data in the SHIFTBUF has been transferred to the Shifter

(SHIFTBUF is empty). The shifter status flag 0 is configured to be the trigger of the timer 0, so as soon

as the SHIFTBUT is written, the status flag is cleared and timer 0 is enabled. The shifter begins to shift

out the data on the negative edge of the clock until the timer is disabled. The timer is disabled when the

timer counter counts down to 0. Timer 0 has the following initial configurations.

Emulating Dual SPI by using FlexIO

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

10 Freescale Semiconductor, Inc.

Table 3. Configurations for timer 0

Items Configurations

Timer mode dual 8-bit counters baud/bit mode.

Trigger selection shifter 0 status flag

Trigger polarity active low

Trigger source internal trigger

Pin selection pin 2

Pin configuration output enable

Pin polarity active high

Timer initial output output logic 0 when enabled, not affect by reset

Timer decrement source decrement on FlexIO clock, shift on timer output

Timer enable condition on trigger high

Timer disable condition on timer compare

Timer reset condition Timer never reset

Start bit enabled

Stop bit enabled on timer disable

Timer compare value ((n*2-1)<<8) | (baudrate_divider/2-1)) [1]

1 - n is the number of bytes in the transmission. Baudrate_divider is a value used for dividing the baud

rate from the FlexIO clock source.

Configurations for timer 1

Timer 1 is used by the SPI master to generate the SPI_CS output on pin FlexIO_D3. Timer 1 is

configured to be enabled when the timer 0 is enabled. The compare register is configured to the 16-bit

counter and set to 0xFFFF.With this value the timer never compares and is always active when the timer

is enabled. Timer 1 has the following initial configurations.

Table 4. Configurations for timer 1

Items Configurations

Timer mode single 16-bit counter mode

Trigger selection trigger from timer0

Trigger polarity active high

Trigger source internal trigger

Pin selection pin 3

Pin configuration output enable

Pin polarity active low

Timer initial output output logic 1 when enabled, not affect by reset

Timer decrement source
decrement counter on FlexIO clock, Shift clock equals

timer output.

Timer enable condition on timer0 enable

Timer disable condition on timer0 disable

Timer reset condition never reset

Start bit disabled

Emulating Dual SPI by using FlexIO

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 11

Table 4. Configurations for timer 1

Items Configurations

Stop bit disabled

 Timer compare value 0xFFFF

3.1.2 SPI slave Configurations

Configurations for Shifter 2

Shifter 2 is used by the SPI slave transmitter on pin FlexIO_D4 as SPI_SOUT. It has the following

initial configurations.

Table 5. Configurations for Shifter 2

Items Configurations

Shifter mode transmit

Timer selection timer 2

Timer polarity on negative of shift clock

Pin selection pin 4

Pin configuration output enable

Pin polarity active high

Input source from pin

Start bit
disabled, transmitter loads data on

enable

Stop bit disabled

Buffer used bit byte swapped register

Configurations for Shifter 3

Shifter 3 is used by the SPI slave receiver on pin FlexIO_D5 as SPI_SIN. It has the following initial

configurations.

Table 6. Configurations for Shifter 3

Items Configurations

Shifter mode receive

Timer selection timer 2

Timer polarity on positive of shift clock

Pin selection Pin 5

Pin configuration output disabled

Pin polarity active high

Input source from pin

Start bit
disabled, transmitter loads data on

enable

Stop bit disabled

Buffer used bit byte swapped register

Emulating Dual SPI by using FlexIO

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

12 Freescale Semiconductor, Inc.

Configurations for Timer 2

Timer 2 is used by the SPI slave to acquire SPI_SCK on pin FlexIO_D6 from master to load/store/shift

control of the two shifters. In slave mode, the SPI_SCK and SPI_CS signal are configured as inputs and

driven by the SPI bus master. The transmit data is transferred at every SPI_SCK clock edge of each

frame to the shift register when the SPI_CS signal is asserted. As a result, select pin FlexIO_D7 of

SPI_CS as the trigger input to Timer 2. It has the following initial configurations.

Table 7. Configurations for Timer 2

Items Configurations

Timer mode single 16-bit counter mode

Trigger selection trigger from FlexIO pin 7 of SPI_CS

Trigger polarity active low

Trigger source internal trigger

Pin selection pin 6

Pin configuration output disable

Pin polarity active high

Timer initial output output logic 0 when enabled, not affected by reset

Timer decrement source decrement on pin input, Shift clock equals pin input

Timer enable condition on trigger rising edge

Timer disable condition timer is never disabled

Timer reset condition timer is never reset

Start bit disabled

Stop bit disabled

Timer compare value (n*2-1) 2

2 - n is the number of bytes in the transmission.

3.2 Software implementation overview

Several driver functions have been implemented in this application, these are based on the HAL

(Hardware Abstraction Layer) of the Freescale KSDK (Kinetis Software Development Kit).

A software package is provided along with this application note. The package contains a pruned KSDK

based on V1.3, which this application requires.

The demo software includes two source files: main_loopback.c and retarget.c. The source files provide

the following functions: configure the FlexIO to emulate dual SPI, DMA configurations and data

verification after transfer can be directly used by user in their own codes with minor changes. This demo

is realized in DMA mode as it has better performance compared with polling mode and interrupt mode.

FlexIO SPI Initialize Function

The Initialize Function is used to configure the shifters and timers in the application’s initialization

phase. The prototypes are:

FlexIO_SPI_Master_Init();

Emulating Dual SPI by using FlexIO

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 13

FlexIO_SPI_Slave_Init();

These two functions are used to configure both the SPI master and the slave. They feature FlexIO clock

source setting, external pin mux setting, and the shifter/timer configuration for the SPI master and the

slave. In the two prototypes, KSDK FlexIO HAL drivers are called and there are some parameters

defined as macros which can be modified during initialization for different usage.

DMA Configuration Function

This demo is to realize FlexIO emulate dual SPI loopback transfer by DMA mode. The following

prototypes are used to configure the DMA and DMAMUX.

The prototypes are:

 DMA_Init();

 ConfigDMAfor_SPI_MASTER_TX();

 ConfigDMAfor_SPI_MASTER_RX();

 ConfigDMAfor_SPI_SLAVE_TX();

 ConfigDMAfor_SPI_SLAVE_RX();

Transmit/Receive Function

This function is used to start transmit/receive one byte data in SPI master or slave mode. As the

subsequent transfer is handled by DMA automatically, no CPU intervention is needed.

The prototypes are:

FLEXIO_SPI_HAL_PutDataMSB(flexio_spi_dev_t *devPtr, uint32_t dat);

FLEXIO_SPI_HAL_GetDataMSB(flexio_spi_dev_t *devPtr);

 devPtr - structure of configuring the flexio spi device;

 dat – data to be transfter;

Data Verification Function

This function is to use debug the console and to print and verify the data after loopback transfer between

the SPI master and the slave. The prototypes are:

Debug_LPUART_Init();

PrintArray(uint8_t *Array, uint32_t Length);

 Array – transmit/receive data array to be print on debug console;

 Length – the length of data array to be printed;

CompareArray(uint8_t *Array1, uint8_t *Array2, uint32_t Length)

 Array1- expected correct data array to be compared;

 Array2- actual transmit/receive data array;

 Length - the length of data array to be compared;

Emulating Dual SPI by using FlexIO

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

14 Freescale Semiconductor, Inc.

3.3 Running the demos

This demo runs on MAPS-KS22F256 along with the MAPS-Dock platform. The FlexIO pins

assignment for SPI master and slave are shown in the following table:

Table 8. FlexIO pins assignment table for SPI master and slave

FlexIO SPI Master

FlexIO SPI master TX Pin:FlexIO_D0 PTC12:CN9D pin84

FlexIO SPI master RX Pin:FlexIO_D1 PTC13:CN9D pin85

FlexIO SPI master SCK Pin:FlexIO_D2 PTC14:CN9D pin86

FlexIO SPI master CS Pin:FlexIO_D3 PTC15:CN9D pin87

FlexIO SPI Slave

FlexIO SPI slave TX Pin:FlexIO_D4 PTC16:CN9D pin90

FlexIO SPI slave RX Pin:FlexIO_D5 PTC17:CN9D pin91

FlexIO SPI slave SCK Pin:FlexIO_D6 PTD0:CN9D pin93

FlexIO SPI slave CS Pin:FlexIO_D7 PTD1:CN9D pin94

You must make the connections between the master and slave by using 4 external wires before

downloading the program image to the MCU via J-link or OpenSDA:

• SPI master TX <----> SPI slave RX

• SPI master RX <----> SPI Slave TX

• SPI master SCK <----> SPI slave SCK

• SPI master CS <----> SPI slave CS

After that is complete, follow the next steps to run the demo and check the result:

• Plug in the Micro USB to connect the PC and target the MAPS-KS22F256 board and the

MAPS-Dock board

• Open the UART debug terminal on your PC with 8in1 and 115200bps settings

• Connect CN7/UART1 on MAPS-Dock board to the PC host

• Open the project by IAR workbench on your PC

• Rebuild all files and download the image into target on-chip flash

• Press any key to run the demo

• After the data finishes transferring the results are printed on the master terminal.

Emulating Dual SPI by using FlexIO

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 15

Figure 6. Terminal Utility Output

Emulating Dual SPI by using FlexIO

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

16 Freescale Semiconductor, Inc.

Figure 7. Terminal Utility Output (continued)

The software aims to ensure that SPI master transmits 256 bytes of 0x0~0xFF to slave. Simultaneously

the slave transmits inverted 256 bytes of 0xFF~0x0 to the master. You can check that the data transfer

result is correct using the debug terminal.

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. 17

4 Conclusion

FlexIO is a new peripheral on some of the Kinetis microcontrollers. Due to the high flexibility of the

shifters and timers, FlexIO has the capability to emulate a wide range of protocols.

This application note describes how to emulate dual SPI using FlexIO. The application is based on

KSDK HAL. An SPI application can be easily implemented based on the driver functions in this

application. Although this demo runs on MAPS-KS22F256, the user can port them to other parts of

Kinetis chips with FlexIO.

5 Additional information

The FlexIO module can currently be found on the following Kinetis series MCUs: KL17, K27, KL33,

and KL43. The FlexIO modules on these platforms have the same hardware resources and capabilities.

The next version of FlexIO is in development and will be launched with new Kinetis parts. The version

has more abundant hardware resources and capabilities that are more powerful. Some of the key features

are listed below.

 Up to 8 Shifters

 Up to 8 Timers

 Up to 32 Pins

 Parallel data transmission is supported, which enables the emulations of camera interface,

Motorola 68K and Intel 8080 bus

 Programmable logic blocks allowing external digital logic to be integrated on-chip

 Programmable state machine for offloading basic system control functions from CPU

6 References

1. MAPS-KS22F256 and MAPS-Dock: Freescale MAPS Platform for Kinetis MCUs

2. KINETIS_SDK: Software Development Kit for Kinetis MCUs

3. Kinetis KS22 introduction

4. KS22 Reference Manual (doc. KS22P100M120SF0RM)

http://www.nxpic.org/page/nxp-mcu
http://www.nxp.com/products/software-and-tools/run-time-software/kinetis-software-and-tools/development-platforms-with-mbed/software-development-kit-for-kinetis-mcus:KINETIS-SDK?tid=redKINETIS_SDK
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/kinetis-cortex-m/k-series/ks22-mcus:KS22_MCU?fsrch=1&sr=1&pageNum=1
http://cache.nxp.com/files/microcontrollers/doc/ref_manual/KS22P100M120SF0RM.pdf?fsrch=1&sr=3&pageNum=1

Revision history

Emulating Dual SPI Using FlexIO, Application Note, Rev. 0, 01/2016

18 Freescale Semiconductor, Inc.

7 Revision history
Table 9. Revision history

Revision number Date Substantive changes

0 01/2016 Initial release

Document Number: AN5242
Rev. 0

01/2016

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,

Reg. U.S. Pat. & Tm. Off.

ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or

its subsidiaries) in the EU and/or elsewhere. All other product or service names are the

property of their respective owners. All rights reserved.

© 2016 Freescale Semiconductor, Inc.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Emulating Dual SPI Using FlexIO
	1. Introduction
	2. Overview of the FlexIO module
	3. Emulating Dual SPI by using FlexIO
	3.1 Configurations of the Shifters and Timers
	3.1.1 SPI master configurations
	3.1.2 SPI slave Configurations

	3.2 Software implementation overview
	3.3 Running the demos

	4 Conclusion
	5 Additional information
	6 References
	7 Revision history

