
© 2015 Freescale Semiconductor, Inc. All rights reserved.

Emulating IRDA by Using FlexIO

How to use FlexIO SDK UART driver to emulate IRDA

1. Introduction

The Kinetis Software Development Kit (SDK) provides

robust peripheral drivers, stacks, middleware, and

example applications designed to simplify and accelerate

application development on any Kinetis MCU. The

FlexIO peripheral was initially introduced in the Kinetis

KL43 family. SDK 1.2 GA has fully supported this

peripheral with many protocol drivers such as UART,

I2C, I2S, and SPI.

This use case uses the FlexIO UART driver to create an

IRDA protocol, like Kinetis, with UART supporting

IRDA. It uses two additional timers besides the FlexIO

UART driver to encode and decode the UART signal into

IRDA waveform. The Freescale FRDM platform is used

for this demonstration.

Freescale Semiconductor, Inc. Document Number: AN5116

Application Note Rev. 0 , 04/2015

Contents

1. Introduction 1
2. FlexIO SDK driver overview 2
3. Required hardware and software 2
4. IRDA timer encoding and decoding configuration 2

4.1. IRDA encoding timer configuration 3
4.2. IRDA decoding time configuration 4

5. SDK driver example for FlexIO IRDA 5
5.1. FlexIO UART driver initialization 5
5.2. FlexIO IRDA driver initialization 6
5.3. FlexIO IRDA driver test 6

6. References 7
7. Revision History 7

IRDA timer encoding and decoding configuration

Emulating IRDA by Using FlexIO, Application Note, Rev. 0, 04/2015

2 Freescale Semiconductor, Inc.

2. FlexIO SDK driver overview

SDK 1.2 GA/SA fully supports FlexIO drivers to emulate the following protocols:

 12C

 SPI

 UART

 I2S

To make it easier for the user to use these drivers, the SDK 1.2 GA/SA package provides some examples

on how to these drivers. For example, the FlexIO UART driver uses two timers and two shifters to

transmit and receive data asynchronously.

3. Required hardware and software

This document describes the example application based on the Freescale FRDM system. The basic

concept can be easily implemented on the customized hardware as well.

The application can be easily set up using the following FRDM boards:

 FRDM-KL43Z Freescale Freedom development board

This use case is delivered with the SDK 1.2 KL33Z64 SA package. The user can download the full

package from freescale.com/ksdk.

4. IRDA timer encoding and decoding configuration

UART data is in NRZ format. To encode this data into the IRDA protocol, one FlexIO timer in dual 8-

bit counters PWM mode is needed to modulate the NRZ data. To receive the IRDA signal, one FlexIO

timer in dual 8-bit counters baud/bit mode is needed to decode IRDA signal into NRZ format. This use

case diagram, similar to Figure 1, is provided in SDK 1.2 SA for KL33Z64 standalone package:

(examples/frdmkl43zkl33z4/driver_examples/flexio/irda).

http://www.freescale.com/ksdk

IRDA timer encoding and decoding configuration

Emulating IRDA by Using FlexIO, Application Note, Rev. 0, 04/2015

Freescale Semiconductor, Inc. 3

Figure 1. FlexIO UART driver and IRDA encode/decode

The waveform is similar to Figure 2:

Figure 2. FlexIO UART and IRDA waveform

4.1. IRDA encoding timer configuration

The encoding timer is configured to be triggered by the UART NRZ data falling edge, which is the first

edge for the start signal. The following lists the details of the timer configuration.

Timer Control Register (FLEXIO_TIMCTLn):

 TRGSEL: Select FlexIO UART driver TX output pin.

 TRGPOL: Select trigger polarity active low – 1.

 TRGSRC: Select trigger source internal – 1.

 PINCFG: Select timer pin output – 11.

 PINSEL: Select timer pin to use. Select a pin which is not used by FlexIO UART TX.

 PINPOL: Select timer output polarity. This can be high true or low true depending on the

external IRDA device used.

IRDA timer encoding and decoding configuration

Emulating IRDA by Using FlexIO, Application Note, Rev. 0, 04/2015

4 Freescale Semiconductor, Inc.

 TIMOD: Select timer running mode, dual 8-bit counters PWM mode.

Timer Configuration Register (FLEXIO_TIMCFGn):

 TIMOUT: Select timer output one, not affected by timer reset – 00.

 TIMDEC: Select timer decreased on FlexIO clock – 00.

 TIMRST: Select timer never reset – 000.

 TIMDIS: Select timer disabled on timer compared – 010.

 TIMENA: Select timer enabled on trigger event high, which means input low for this case – 010.

 TSTOP: Select timer stop bit enabled on timer disabled – 010.

 TSTART: Select timer start bit disabled – 0.

Timer Compare Register (FLEXIO_TIMCMPn):

 CMP: Timer value to set. The time is running in dual 8-bit counter mode, so the lower 8-bits

configure the high period of the output to (CMP[7:0] + 1) * 2. The upper 8-bits configure the low

period of the output to (CMP[15:8] + 1) * 2.

4.2. IRDA decoding time configuration

The decoding timer is configured to be triggered by the IRDA data rising edge, which is the first edge

for the start signal. The following lists the details of the timer configuration.

Timer Control Register (FLEXIO_TIMCTLn):

 TRGSEL: Select FlexIO triggered by CMP0 output or FlexIO pin input, depending on user

application.

 TRGPOL: Select trigger polarity active low or high depending on user application, the IRDA

receiver output signal polarity.

 TRGSRC: Select trigger source external or internal depending on TRGSEL configuration.

 PINCFG: Select timer pin output if user wants to check out the decoding signal to meet NRZ

format or not. Otherwise, disable it.

 PINSEL: Select timer pin to use.

 PINPOL: Select timer output polarity, active low – 1.

 TIMOD: Select timer running mode, dual 8-bit counters baud/bit mode.

Timer Configuration Register (FLEXIO_TIMCFGn):

 TIMOUT: Select timer output one. Not affected by timer reset – 00.

 TIMDEC: Select timer decreased on FlexIO clock – 00.

 TIMRST: Select timer reset on timer trigger rising edge –110.

SDK driver example for FlexIO IRDA

Emulating IRDA by Using FlexIO, Application Note, Rev. 0, 04/2015

Freescale Semiconductor, Inc. 5

 TIMDIS: Select timer disabled on timer compared – 010.

 TIMENA: Select timer enabled on trigger high – 110.

 TSTOP: Select timer stop disabled – 000.

 TSTART: Select timer start bit disabled – 0.

Timer Compare Register (FLEXIO_TIMCMPn):

 CMP: Timer value to set. The time is running in dual 8-bit counters baud/bit mode. The lower 8-

bits configures the baud rate divider equal to (CMP[7:0] + 1) * 2. The upper 8-bits configure the

number of bits in each word equal to (CMP[15:8] + 1) * 2, which is not used for this case.

5. SDK driver example for FlexIO IRDA

This use case is implemented in the KL33Z64 SDK 1.2 SA package. The example code is located in

{installation path}/examples/src/flexio/irda, and the supported IDE workspace files are located in

{installation path}/examples/frdmkl43zkl33z/driver_examples/flexio/irda/{IDE}. This example can be

easily ported to any hardware platform. For SDK driver examples, main.c provides user details on how

to run the demo.

5.1. FlexIO UART driver initialization

The user needs to configure the FlexIO UART driver work mode like the following:

flexio_user_config_t userConfig =

 {

 .useInt = true,

 .onDozeEnable = false,

 .onDebugEnable = true,

 .fastAccessEnable = false

 };

 CLOCK_SYS_EnableFlexioClock(FLEXIO_INSTANCE);

 freq = CLOCK_SYS_GetFlexioFreq(FLEXIO_INSTANCE);

 FLEXIO_DRV_Init(instance,&userConfig);

 /* Fill in uart config data */

 uartConfig.bitCounter = kFlexIOUart8BitsPerChar;

 uartConfig.baudRate = FLEXIO_UART_BAUDRATE;

 uartConfig.uartMode = flexioUART_TxRx;

 uartConfig.txConfig.pinIdx = FLEXIO_UART_TX_PIN;

 uartConfig.txConfig.shifterIdx = FLEXIO_UART_TX_SHIFTER;

 uartConfig.txConfig.timerIdx = FLEXIO_UART_TX_TIMER;

 uartConfig.rxConfig.pinIdx = FLEXIO_UART_RX_PIN;

 uartConfig.rxConfig.shifterIdx = FLEXIO_UART_RX_SHIFTER;

 uartConfig.rxConfig.timerIdx = FLEXIO_UART_RX_TIMER;

 uartState.rxBuff= rxBuff;

 /* init the uart module with base address and config structure*/

 FLEXIO_UART_DRV_Init(instance, &uartState, &uartConfig);

SDK driver example for FlexIO IRDA

Emulating IRDA by Using FlexIO, Application Note, Rev. 0, 04/2015

6 Freescale Semiconductor, Inc.

5.2. FlexIO IRDA driver initialization

The user needs to configure the FlexIO timer to encode and decode UART signals:

txConfig.baudrate = uartConfig.baudRate;

 txConfig.flexioFrequency = freq;

 rxConfig = txConfig;

 rxConfig.timerIdx = FLEXIO_UART_IRDA_RX_TIMER;

 rxConfig.timerPinIdx = FLEXIO_UART_RX_PIN;

#if LOOPBACK_TEST

 rxConfig.trigPinIdx = FLEXIO_UART_IRDA_TX_PIN;

#else

 rxConfig.trigPinIdx = FLEXIO_UART_IRDA_RX_PIN;

#endif

 txConfig.timerIdx = FLEXIO_UART_IRDA_TX_TIMER;

 txConfig.timerPinIdx = FLEXIO_UART_IRDA_TX_PIN;

 txConfig.trigPinIdx = FLEXIO_UART_TX_PIN;

#if IRDA_RX_CMP0_TRIG

 // Configuration for cmp

 cmp_state_t cmpState;

 cmp_comparator_config_t cmpUserConfig;

 cmp_sample_filter_config_t cmpSampleFilterConfig;

 cmp_dac_config_t cmpDacConfig;

 // Disable rising interrupt

 // Disable falling interrupt

 // Init the CMP comparator.

 CMP_DRV_StructInitUserConfigDefault(&cmpUserConfig,

(cmp_chn_mux_mode_t)BOARD_CMP_CHANNEL, kCmpInputChnDac);

 cmpUserConfig.risingIntEnable = false;

 cmpUserConfig.fallingIntEnable = false;

 CMP_DRV_Init(CMP_INSTANCE, &cmpState, &cmpUserConfig);

 // Configure the internal DAC when in used.

 cmpDacConfig.dacEnable = true;

 cmpDacConfig.dacValue = IRDA_RX_CMP0_DAC_VALUE; // 0U - 63U

 cmpDacConfig.refVoltSrcMode = kCmpDacRefVoltSrcOf2;

 CMP_DRV_ConfigDacChn(CMP_INSTANCE, &cmpDacConfig);

 // Configure the Sample/Filter Mode.

 cmpSampleFilterConfig.workMode = kCmpContinuousMode;

 CMP_DRV_ConfigSampleFilter(CMP_INSTANCE, &cmpSampleFilterConfig);

 // Start the CMP function.

 CMP_DRV_Start(CMP_INSTANCE);

#endif

 //configure FlexIO timers to decode IRDA signals

 FLEXIO_IRDA_Init(FLEXIO, &rxConfig, &txConfig);

 FLEXIO_DRV_Start(instance);

5.3. FlexIO IRDA driver test

For the encoding and decoding timer to always work, use the FlexIO UART driver to trigger the

working timer. The following example provides the user three tests for using the FlexIO UART driver.

 Non-blocking for both TX/RX

Revision History

Emulating IRDA by Using FlexIO, Application Note, Rev. 0, 04/2015

Freescale Semiconductor, Inc. 7

 Blocking for TX

 Blocking for RX

6. References

The references listed below have additional information regarding FlexIO for the Kinetis L family. Find

a particular reference manual, data sheet, or errata report by choosing a device on the Kinetis

(freescale.com/Kinetis) pages and select the family you are interested in to find more information. To

find latest SDK installer, visit www.freescale.com/ksdk.

 MCU Reference Manuals: The reference manuals contain MCU-specific implementation

details in the Chip Configuration chapters and include a detailed description of the Resets and

Power Management Features of each MCU.

 MCU Data Sheet Specifications: The data sheet includes all MCU specifications, including

clock rates, low power module power consumption expectations, and so forth.

 Errata for MCUs: Device errata identify what functionality and/or specification is not being

met due to a problem with the MCU. Most issues have workarounds.

7. Revision History

Table 1. Revision history

Revision Number Date Substantive changes

0 4/2015 Initial Release

http://www.freescale.com/Kinetis
http://www.freescale.com/ksdk

Document Number: AN5116
Rev. 0
04/2015

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor,

Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of

their respective owners. ARM, ARM Powered logo, and Cortex are registered

trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights

reserved.

© 2015 Freescale Semiconductor, Inc.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Emulating IRDA by Using FlexIO
	1. Introduction
	2. FlexIO SDK driver overview
	3. Required hardware and software
	4. IRDA timer encoding and decoding configuration
	4.1. IRDA encoding timer configuration
	4.2. IRDA decoding time configuration

	5. SDK driver example for FlexIO IRDA
	5.1. FlexIO UART driver initialization
	5.2. FlexIO IRDA driver initialization
	5.3. FlexIO IRDA driver test

	6. References
	7. Revision History

