

Freescale Semiconductor, Inc. Document Number: AN5101
Application Note Rev. 0, 04/2015

The High-Performance Data Acquisition
Circuit

By Jan Tomecek

1. Introduction
Currently many applications use external high-
performance sigma-delta analog to digital
converters (SD ADC) to convert analogue
signals to a digital representation. Amongst the
main advantages of such high performance SD
ADCs are 24-bit dynamic range of measurement,
outstanding linearity and high signal-to-noise
ratio (SNR). These devices are designed to
measure and communicate raw measured
quantities with other devices through either an
SPI or an I2C communication bus. They feature
one to sixteen analogue input channels with
optional programmable gain of the measurement.

Besides external SD ADCs also variety of
microcontrollers is integrated with a 24-bit SD
ADC. Such microcontrollers are designed to
convert analogue signals into digital
representation and to perform advanced digital
signal processing via a single chip.

The Freescale Kinetis-M microcontroller series
can be programmed to acquire analogue signals
at various sampling rates, communicate
measured values through a variety of
communication buses and to emulate the
functionalities of many popular 24-bit SD ADCs.

1 Introduction .. 1
2 Block diagram .. 2
3 Implementation ... 3

3.1 Measurement engine ... 3
3.2 Filtering... 3

3.2.1 Moving average filter 4
3.3 Result conversion .. 5

3.3.1 Kinetis-M data format 5
3.3.2 LTC244x data format. 6
3.3.3 Conversion process ... 6

3.4 SPI communication ... 8
3.4.1 Communication interface 8
3.4.2 Communication format.................................... 8
3.4.3 Busy bit function ... 10

3.5 Application structure ... 12
4 Test Results .. 13

4.1 Communication with Kinetis M device 13
4.2 Visualization of the received data 14

5 Parameters .. 15
6 Summary .. 15
7 References .. 17
 Appendix .. 18
8 Revision history .. 19

Contents

©2015 Freescale Semiconductor, Inc. All rights reserved.

This application note describes the basic features of the Kinetis-M microcontroller and data
acquisition firmware that transforms this highly integrated microcontroller into a four-channel,
24-bit SD ADC data acquisition circuit with SPI communication interface.

The Kinetis-M microcontrollers integrate up to four SD ADCs. These SD ADCs measure analogue
signals within the range ±0.5 V with 92 dB SNR. As opposed to stand-alone, dedicated external SD
ADCs, a microcontroller based solution allows other signal processing steps to be added into the
firmware application. This allows the SNR of the integrated SD ADC within the microcontroller to be
further improved by averaging measured values using a software low-pass filter.

The data acquisition firmware for Kinetis-M microcontrollers, described in the following sections, sets
the output sample rate to 2.8 ksps and programs the SPI module to take output measurements in an
LTC244x data format (see Section 3.3.2 - LTC244x data format.) If device pinout and measurement
parameters are not so strict then the Kinetis-M microcontroller, programmed with the firmware covered
in this document, can be used as an alternative to the LTC2440/5 devices [1]. (Moreover, the high-
performance SD ADCs with maximum conversion rates up to 92 ksps, wide selection of communication
interfaces including I2C, SPI, UART, ARM® Cortex®-M0+ core and the tiny LGA 5 x 5 mm2 package
makes the Kinetis-M microcontrollers suitable for emulating many types of 24-bit SD ADCs – see
Figure 1.

Figure 1. Block schematic of described firmware

2. Block diagram
Figure 2 shows the block diagram of the data acquisition firmware. This firmware consists of three
essential parts for the application:

• Measurement engine
• Filtering & Result conversion
• SPI communication

The measurement engine performs analog-to-digital conversion of analogue input signals and basic
signal processing. The filtering block averages measured data to further improve signal-to-noise ratio
and the result conversion block converts smoothed data to the required output format. Finally, the SPI
communication block sends smoothed data to the master device, a general purpose MCU or PC. In
addition, the SPI communication block also receives commands from the master device, performs
decoding commands and controls accordingly the operation of the measurement engine.

Figure 2. Block diagram of the data acquisition firmware

Measurement
engine

SPI
communication

Filtering
&

result
conversion

SPI Kinetis-M
microcontroller

with
measurement

firmware

General
purpose MCU

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
2 Freescale Semiconductor, Inc.

3. Implementation
This section describes the implementation of the data acquisition firmware. Although filtering and result
conversion processes are carried out by one block (Figure 2), these processes are discussed in separate
subsections due to their complexity. In addition, synchronization between all blocks of the data
acquisition firmware is a key feature and is also described in a separate subsection.

3.1 Measurement engine
The measurement engine uses four 24-bit SD ADCs with true differential inputs to measure input
analogue signals. There are several possibilities how to configure this peripheral which affects sampling
frequency, measuring range, SNR and so on. The data acquisition firmware configures all four channels
to operate in interrupt mode. This mode asserts an interrupt event when the conversion is completed.
Because all channels are triggered simultaneously, only one interrupt service routine (ISR) and callback
function is required to process data from all channels. As all channels are configured to operate in
continuous mode, only the initial trigger is needed to initiate simultaneous conversions in the same
period without extra startup delays. The programmable gain amplifier (PGA) for amplification of the
input analogue signals is turned off. The oversampling ratio (OSR) is set to 2048. The system clock
frequency for SD ADC is generated by the PLL module and it is 12.288 MHz. Due to the 6.5 MHz
maximal SD ADC clock frequency, the system clock frequency generated by the PLL must be divided
by two in the module's clock divider. The output sample rate in Hz is then given:

𝒇𝒔 =
𝒂𝒇𝒆_𝒄𝒍𝒐𝒄𝒌
𝒄𝒍𝒐𝒄𝒌_𝒅𝒊𝒗

∙ 𝑶𝑺𝑹 [𝑯𝒛]

Eq. 1

And with mentioned values

𝒇𝒔 =
𝟏𝟐𝟐𝟖𝟖𝟎𝟎𝟎

𝟐
∙ 𝟐𝟎𝟒𝟖 = 𝟑𝟎𝟎𝟎 𝑯𝒛

Eq. 2

SD ADC ISR will occur every 333 μs after the actual voltage on the analogue input is sampled. The
SNR is typically 92dB. More parameters of the measurement engine are described in the Section 5 -
Parameters section of this document.

3.2 Filtering
To further improve the SNR measurement, the sampled raw data can be smoothed by a Finite Impulse
Response (FIR) filter that is implemented in the software [2]. The FIR filter is a digital filter with a finite
impulse response. For the discrete time FIR filter, the output signal y[n] of the discrete FIR filter is
defined:

𝒚[𝒏] = �𝒂[𝒊] ∙ 𝒙[𝒏 − 𝒊]
𝑵

𝒊=𝟎

Eq. 3

Where x[n] is the input signal, N is the filter order and 𝑎[𝑖] is the ith value of the filter's impulse
response.

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
Freescale Semiconductor, Inc. 3

3.2.1 Moving average filter
The moving average filter is the simplest form of a discrete FIR filter. Because all values of the impulse
response are the same, and equal to 1/N, the output signal y[n] of the discrete moving average filter is
defined:

𝒚[𝒏] =
𝟏
𝑵
�𝒙[𝒏 − 𝒊]
𝑵

𝒊=𝟎

Eq. 4

The main goal of the moving average filter is to eliminate from the measured signal most of the
frequency components above the measurement bandwidth. Therefore, one of the key factors is filter
frequency response. Figure 3 shows the magnitude responses of the moving average filters of lengths 8,
12, 16 taps and 3.0 kHz sampling frequency. From these magnitude responses, it is clear that
characteristics of moving average filters are similar to low-pass filters.

Figure 3. Magnitude frequency response of moving average filters

The magnitude frequency response of the moving average filter is calculated through the following
equation:

𝑯(𝝎) =
𝒔𝒊𝒏(𝝎 ∙ 𝑵

𝟐)

𝑵 ∙ 𝒔𝒊𝒏(𝝎𝟐)

Eq. 5

where 𝝎 = 𝟐 ∙ 𝝅 ∙ 𝒇 𝒇𝒔⁄ , 𝒇 is input signal frequency and 𝒇𝒔 is sampling frequency.

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
4 Freescale Semiconductor, Inc.

From this equation, the filter cut-off frequency (frequency with signal magnitude reduced by 3 dB) can
be approximated for an arbitrary N as:

𝒇−𝟑𝒅𝑩 ≈
𝟏𝟐𝟗𝟗
𝑵

Eq. 6

For example, when N = 16 (the same value is used in the data acquisition firmware) the cut-off
frequency of the respective moving average filter is 81.187 Hz. For the sake of computation efficiency,
it is recommended to select N as a power of two because the filter equation can then be computed as a
trailing sum of samples with a single arithmetic shift instruction to divide by N.

3.3 Result conversion
This section describes the conversion between Kinetis-M and LTC244x data formats. The Kinetis-M
data format relates to the numerical representation of measurements within the result registers of the SD
ADC. The LTC244x data format is used by data acquisition firmware to represent measured data which
is communicated to a host device through SPI bus.

Each SD ADC channel has its own 32-bit result register in the Kinetis-M microcontrollers – see Figure
4.

01

SDRSIGN
2345678910111213141516171819202122232425262728293031

Figure 4. Kinetis-M - AFE result format (right justified)

In this figure, the SIGN part contains sign bits and the SDR part shows the absolute value of the sample
data result. This arrangement is used when the right justified format of the result is selected. The range
of the result is as follows:

−𝟐(𝑵−𝟏) ≤ 𝑰𝒏𝒕𝒆𝒈𝒆𝒓 ≤ �𝟐(𝑵−𝟏) − 𝟏�

Eq. 7

The maximal positive value is 2,147,483,647 and the maximum negative value is -2,147,483,648.

3.3.1 Kinetis-M data format
Table 1 shows several examples of the left justified data format of the SD ADC result registers as
implemented on the Kinetis-M microcontroller device. Note that bit 31 represents a sign, bit 30 is the
most significant bit and bit 9 is the least significant bit of the digitized analogue value. Bits 8 to 0 are
always zeroed.

Table 1. Kinetis-M result format
 Measured
voltage [V] 31 30 29 28 27 26 25 … 9 8 … 0

>0.5 0 1 1 1 1 1 1 1 0

0

0.5 0 1 1 1 1 1 1 0 0 0

0.25 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

-0.25 1 1 0 0 0 0 0 0 0 0

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
Freescale Semiconductor, Inc. 5

Table 1. Kinetis-M result format

-0.5 1 0 0 0 0 0 0 1 0 0

<-0.5 1 0 0 0 0 0 0 … 0 0 0

3.3.2 LTC244x data format
Table 2 shows several examples of the LTC244x data format. This format is slightly different in
comparison to the Kinetis-M data format. It also has valid 23 SDR bits where bits 31 and 30 have no
value (dummy), 29 bit represents a sign, bit 27 is the most significant bit and bit 5 is the least significant
bit of the digitized analogue value. Bits 4 to 0 have no value and their states may vary.

NOTE
Bit 31 is the EOC (End of Conversion) bit in the LTC244x data format.
When the data packet is read from the LTC2440/5 device with this bit de-
asserted then the data packet contains the result from the last conversion.
This bit is read asserted in all other cases.

Table 2. LTC result format
Measured
voltage
[V] 31 30 29 28 27 26 25 … 0

>0.5 0 0 1 1 0 0 0 0

0.5 0 0 1 0 1 0 0 0

0.25 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0 0

-0.25 0 0 0 1 1 0 0

-0.5 0 0 0 1 0 0 0 0

<-0.5 0 0 0 0 1 1 1 … 1

3.3.3 Conversion process
There are four result conversions implemented in the data acquisition firmware application for the
Kinetis-M microcontroller device.

• Positive saturation – Positive saturation occurs when the measured voltage is higher than 0.5 V.
If the left justified result format is being used, the value in the result register is 0x7FFFFF00.
According to the LTC244x data format a value of 0x30000000 is needed. The following code
carries out the necessary conversion from Kinetis-M data format to LTC244x data format:

Positive saturation conversion code
 if(filt_res0 == 0x7FFFFF00) /* Positive saturation */
 {

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
6 Freescale Semiconductor, Inc.

((unsigned volatile long)(adc_buff)) = 0x30000000;
 return;
 }

• Negative saturation – If the measured value is less than -0.5 V then negative saturation occurs.
With left justified result format the value in the AFE result register is 0x80000000. According to
the LTC244x data format a value of 0x0FFFFFFF is needed. The following code carries out the
required conversion:

Negative saturation conversion code
 else if(filt_res0 == 0x80000000) /* Negative saturation */
 {
 ((unsigned volatile long)(adc_buff)) = 0xFFFFFFF;
 return;
 }

• Positive result – For a positive, including zero, non-saturated conversion result you must carry
out several steps. Firstly, the AFE result must be logical shifted to the right by two bits due to the
LTC dummy bits on MSBs. Next the converted value is divided by two and the sign bit is set
when the result is positive in the LTC244x data format. The remaining differences in sub
resolution bits can be ignored. The described shift operation and divide operation can be done in
one logical shift to the right by three.

Positive result conversion code
 raw0 = (filt_res0 & ~(1<<31)); /* Store the filtered and shifted result value with cleared sign bit */
 if(!(filt_res0 & (1<<31))) /* Positive result - Sign bit (of KM3x result format) is zero */
 {
 raw_res0 = raw0>>3; /* Do a shift and set the sign bit according to the LTC244x format */
 raw_res0 |= 1<<29;
 }

• Negative value – If the measured value is less than zero and bigger than -0.5 V the result has to
be converted by carrying out the following steps. Firstly, the result must be logical shifted to the
right by two bits, due to the dummy bits of the LTC, and then the sign bit has to be cleared.
Secondly, the offset value 0xFFFFFFF must be added to the value obtained through the previous
step. The following code carries out the described conversion:

Negative result conversion code
 else /* Negative result - Sign bit (of KM3x result format) is one */
 {
 raw0>>=3; /* Do a shift and convert value to the LTC244x format */
 raw_res0 = raw0 + (0xFFFFFFF);
 }

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
Freescale Semiconductor, Inc. 7

3.4 SPI communication
This section describes communication between the Kinetis-M based data acquisition circuit and a host
device. The host device will most-commonly be a general purpose microcontroller.

3.4.1 Communication interface
After the measured value is filtered, converted to the required format and stored in the memory the final
step is to send the value to a host microcontroller device. For this purpose an SPI communication
interface is used. The SPI communication interface uses five pins to transmit and receive data:

• SPI MISO – Master in, slave out data line
• SPI MOSI – Master out, slave in data line
• SPI SPSCK – SPI clock signal
• SPI SS – SPI slave select line
• BUSY – Slave busy bit line

3.4.2 Communication format
Although the SPI module of the Kinetis-M microcontroller is designed to operate in 8-bit and 16-bit
modes, when the FIFO buffer is enabled the module can transfer up to 48-bit data without interruption
via a clock signal from the master side. In the described firmware, 32-bit words are transferred, so the
Kinetis-M device acts like a 32-bit SPI slave peripheral in this case.

NOTE
Only the SPI1 module supports the FIFO buffer.

Moreover, there is a possibility to keep the /SS signal in a permanent low state. However if the device is
to work in this mode, the /SS signal cannot be used for transfer triggering. In this case communication
has to be triggered by the SPSCK signal. The Kinetis-M SPI module allows triggering by SPSCK signal
only if the CPHA mode is enabled (C1[CPHA] bit must be set). The CPHA mode causes the clock
signal shift as shown in Figure 5. Simultaneously, if the C1[CPOL] bit is de-asserted a first rising edge
on SPSCK line triggers the transfer. A falling edge then becomes an active edge.

NOTE
The CPHA mode must also be set on the SPI master for communication
with the Kinetis-M device.

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
8 Freescale Semiconductor, Inc.

Figure 5. General SPI clock format when the CPHA bit is asserted

The next configuration of the SPI module is the following. The SPI FIFO is configured to receive nearly
full interrupt mode. That means that interrupt occurs when the receive FIFO buffer reaches 32 bits and
then the SPI ISR callback function is called. This is the same situation when the measured result was
transferred to the master (from transmit FIFO buffer) and a new command from SPI master was received
(into receive FIFO buffer), simultaneously.

In the SPI ISR callback function several steps are done. The busy bit is asserted as a first step and then
the received command is stored from receive FIFO buffer to a memory. Next, the system timer
(SysTick) is enabled and triggered (this step is described in more depth in the Busy bit function
subsection). Finally, the SPI module is disabled causing all communication from the SPI master to be
ignored. This step is signaled by the asserted busy bit.

The following SPI ISR callback function, represented by the spi1_isr_optim function in the source code,
performs command decoding according to the steps described above.

Code for result storing and asserting the busy bit
 GPIO_Set(FGPIOG, PIN0); /* Assert the busy bit */
 if(SPI1_S & SPI_S_RNFULLF_MASK){ /* If the SPI RX FIFO buffer is near to full.. */
 SPI_GetWordFromFifo(SPI1,(uint16*)spi_buff,2); /* ..store the received bytes to the spi_buff array */
 }
 SYST_Enable(); /* Enable and trigger system timer */
 SPI1_C1 &= ~SPI_C1_SPE_MASK; /* Disable SPI module */

Figure 6 shows the communication format for transferring a command from an SPI master to an SPI
slave device. Together with transferring a new command to the slave using the MOSI communication
line, the last measured data are read by the master device from the MISO communication line.

BIT31 BIT30 BIT2 BIT1 BIT0

SS

MOSI

SPSCK

MISO

SAMPLE IN

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
Freescale Semiconductor, Inc. 9

Figure 6. SPI MOSI command format

The bits 31 to 26 are fixed in the SPI master command. The measurement engine channel whose result
will be read on the next communication transfer is selected based on decoding bits 25 (CH1) and 24
(CH0), see Table 3.

Table 3. Bits for channel selection in SPI master’s command

CH1 CH0 Selected channel

0 0 Channel 0

0 1 Channel 1

1 0 Channel 2

1 1 Channel 3

3.4.3 Busy bit function
A function of the busy bit is to signal if a new measurement result is ready to transmit or not. If the busy
bit is asserted the result is not yet ready. After a falling edge on this line occurs, the SPI master can start
a new data transfer.

The busy bit does not only ensure time needed for filtering and format conversion of the measured result
but it also ensures synchronization between conversions of the measurement engine and SPI
communication. The timing details of the busy bit are as follows. The measurement engine sampling
frequency is 3 kHz. In addition, time needed to smooth, format and store smoothed result is no more
than 20μs. This means that the busy bit has to be asserted for a length of time according to the following
equation:

𝒕𝒃𝒖𝒔𝒚 ≥ 𝒕𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈 + 𝒕𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈

𝒕𝒃𝒖𝒔𝒚 ≥ 𝟑𝟑𝟑.𝟑� ∙ 𝟏𝟎−𝟔 + 𝟐𝟎 ∙ 𝟏𝟎−𝟔

Eq. 8

The SysTick timer acts as timer for the busy bit. The SysTick timer is configured to generate an
interrupt request whenever its counter reaches zero. The timer’s counter is preloaded by value according
to Eq. 9:

1 0 1 0 0 0 CH1 CH0

0 0 SIGN MSB LSB

SS

MOSI

SPSCK

MISO

BUSY

BIT31 BIT30 BIT29 BIT28 BIT27 BIT26 BIT25 BIT24 BIT0

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
10 Freescale Semiconductor, Inc.

𝒗𝒂𝒍𝒖𝒆 = 𝒕𝒃𝒖𝒔𝒚 ∙ 𝒇𝒄𝒐𝒓𝒆 + 𝟏
𝒗𝒂𝒍𝒖𝒆 = 𝟑𝟓𝟑.𝟑� ∙ 𝟏𝟎−𝟔 ∙ 𝟒𝟖 ∙ 𝟏𝟎𝟔 + 𝟏 = 𝟏𝟔𝟖𝟎𝟏

Eq. 9

Initially, the timer is stopped until the software trigger occurs in SPI ISR callback function. At the same
time the busy bit is asserted in this callback function. After the 𝑡𝑏𝑢𝑠𝑦 time the SysTick ISR callback
function is called. There are several steps executed by the SysTick ISR callback function. At first the
SPI IP module is enabled. Then the processed result from the desired channel is pushed to the SPI
transmit FIFO buffer to wait for the next SPI communication. Next the timer is stopped and the timer’s
counter is cleared. At the end of the callback function the busy bit is de-asserted. The implementation is
shown in the following source code.

Code for busy bit de-assertion and result store to the SPI FIFO transmit buffer

static void syst_callback(void)
 {
 SPI1_C1 |= SPI_C1_SPE_MASK; /* SPI module enabling */
 if((spi_buff[0] & 0xFF00) == 0xA000){ /* If the SPI master device is requiring result from AFE’s channel 0,
the converted result of this channel is stored into the SPI transmit FIFO buffer */
 SPI_PutWord(SPI1,adc_buff[1]);
 SPI_PutWord(SPI1,adc_buff[0]);
 }
 if((spi_buff[0] & 0xFF00) == 0xA100){ /* If the SPI master device is requiring result from AFE’s channel 1,
the converted result of this channel is stored into the SPI transmit FIFO buffer */
 SPI_PutWord(SPI1,adc_buff[3]);
 SPI_PutWord(SPI1,adc_buff[2]);
 }
 if((spi_buff[0] & 0xFF00) == 0xA200){ /* If the SPI master device is requiring result from AFE’s channel 2,
the converted result of this channel is stored into the SPI transmit FIFO buffer */
 SPI_PutWord(SPI1,adc_buff[5]);

 SPI_PutWord(SPI1,adc_buff[4]);
 }
 if((spi_buff[0] & 0xFF00) == 0xA300){ /* If the SPI master device is requiring result from AFE’s channel 3,
the converted result of this channel is stored into the SPI transmit FIFO buffer */
 SPI_PutWord(SPI1,adc_buff[7]);
 SPI_PutWord(SPI1,adc_buff[6]);
 }
 SYST_Disable(); /* Hold the SysTick timer */
 SYST_ClrCntrVal(); /* Clear the SysTick timer's counter */
 GPIO_Clr(FGPIOG, PIN0); /* Clear the busy bit */
 }

3.4.3.1 Busy bit at the beginning of application
As was mentioned in Section 3.2 - Filtering, for averaging the measured values, the last N (relates to the
FIR filter order) results from the previous measurements have to be stored in the memory. This
requirement is not satisfied at the launch of the firmware. Therefore, at the launch of the firmware
application the SPI communication module is disabled and the busy bit is asserted until N=16 values are
collected and stored in the memory. This initial delay is controlled by SysTick timer which is configured
according to the following formula:

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
Freescale Semiconductor, Inc. 11

𝒕𝒃𝒖𝒔𝒚𝒇𝒊𝒓𝒔𝒕 ≥ 𝟏𝟔 ∙ 𝒕𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈 + 𝒕𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈

𝒕𝒃𝒖𝒔𝒚𝒇𝒊𝒓𝒔𝒕 ≥ 𝟏𝟔 ∙ 𝟑𝟑𝟑.𝟑� ∙ 𝟏𝟎−𝟔 + 𝟐𝟎 ∙ 𝟏𝟎−𝟔

Eq. 10

The first value read from the Kinetis-M device is a dummy word of value 0x80000000.

3.5 Application structure and timing
The application contains three main parts whose operations have to be synchronized.

• Measurement & result processing – The first part is included in the AFE ISR callback function
(afe_ch1_callback). This part carries out result conversion, result filtering and result storing. As
was mentioned previously in Section 3.1 - Measurement engine, the AFE ISR callback is called
with a frequency of 3 kHz and the callback duration is less than 20 us.

• Communication – The second part is handling of the SPI communication with the host device.
Because the Kinetis-M device acts like an SPI slave in the described firmware, the
communication must be synchronized with measurements. When the host device begins
communication, the SPI ISR callback function (spi1_isr_optim) is called which signals that the
measured and formatted results have been automatically sent to the host device from the SPI
transmit FIFO buffer. Simultaneously, a command from the host device containing information
about the next measurement has been stored in the SPI receive FIFO buffer. At the end of this
callback function the busy bit is asserted and the SPI module is disabled.

• Busy bit – The main functionality of the third part is the busy bit de-assertion. This functionality
is processed by the SysTick timer ISR callback function (syst_callback). When the busy bit is de-
asserted, the SPI module is enabled and the result from the measurement & result processing part
is stored in the SPI transmit FIFO buffer. Afterwards, the application firmware is ready to
transmit the measured data and to receive the next measurement command.

The timing diagram for the application is shown in appendix I.

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
12 Freescale Semiconductor, Inc.

4. Test Results
The KM34Z TWR board has been used during testing. The board configuration is shown in Figure 7.

Figure 7. KM34 TWR board – pin connection

NOTE
Please ignore the jumpers on the CH0 M, CH1 M CH2 M and CH3 M pins.

4.1 Communication with the Kinetis-M device
For communication with the Kinetis-M device an arbitrary host device supporting SPI interface can be
used. Although the length of data packet of the Kinetis-M device with described firmware is 32 bits,
data transfer may also be split into 2 x 16 bits or 4 x 8 bits packets. This is useful when the SPI
peripheral on the host side does not support 32-bit mode. The following figures show SPI signals for
various tested communication modes.

Figure 8. SPI communication when host SPI is in 8-bit mode

Figure 9. SPI communication when host SPI is in 16-bit mode

SS
MISO

BUSY

MOSI

SPSCK

CH0 P

CH1 P

CH0 M

CH1 M

CH3 P
CH2 P

CH3 M
CH2 M

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
Freescale Semiconductor, Inc. 13

Figure 10. SPI communication when host SPI is in 32-bit mode

Due to software implementation there is a time delay between the last falling edge of the SPSCK signal
and the rising edge on the busy line. This time is about 700 ns when the 48 MHz core clock is selected.

4.2 Visualization of the received data
Figure 11 shows a graphical representation of measurements received from the Kinetis-M device that
has been programmed with firmware emulating popular LTC2440/5 measurement devices.

Figure 11. Received data on SPI master side shown by FreeMASTER tool

Another KM34Z50 TWR board was used as a host side during this test. The SPI peripheral was
configured in 16-bit master mode without a FIFO buffer. You must set the CPHA mode of SPI
communication on both boards. On this host side the following code for data acquisition was used.

Part of the code for the SPI master device for data receiving from the Kinetis-M device
if(msgFlag == 0)
 {
 spi_buff[0] = SPI_TxRxWord(SPI1, spi_data0[0]);
 spi_buff[1] = SPI_TxRxWord(SPI1, spi_data0[1]);
 result_chn3 = (spi_buff[0]<<16)|spi_buff[1];
 }
else if(msgFlag == 1)
 {
 spi_buff[0] = SPI_TxRxWord(SPI1, spi_data1[0]);
 spi_buff[1] = SPI_TxRxWord(SPI1, spi_data1[1]);
 result_chn0 = (spi_buff[0]<<16)|spi_buff[1];

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
14 Freescale Semiconductor, Inc.

 }
else if(msgFlag == 2){
 spi_buff[0] = SPI_TxRxWord(SPI1, spi_data2[0]);
 spi_buff[1] = SPI_TxRxWord(SPI1, spi_data2[1]);
 result_chn1 = (spi_buff[0]<<16)|spi_buff[1];
 }
else if(msgFlag == 3){
 spi_buff[0] = SPI_TxRxWord(SPI1, spi_data3[0]);
 spi_buff[1] = SPI_TxRxWord(SPI1, spi_data3[1]);
 result_chn2 = (spi_buff[0]<<16)|spi_buff[1];
 }
else if(msgFlag == 4){
 SPI_PutWordToFifo(SPI1,spi_data0,2);
 }

5. Parameters
Table 4 lists the most common parameters of the Kinetis-M device with the described application
firmware.

Table 4. Parameters of Kinetis-M device with described firmware

Parameter Value Unit

OSR 2048 -

ENOB 15.3 bits

Output data rate 2.8 kHz

SNR 92 dB

SINAD 78 dB

CMMR 70 dB

PSRR 60 dB

Input range +/-0.5 mV

The parameters (OSR, ENOB and so on) in this table are minimum values as outlined in the Kinetis-M
device datasheet [6]. These parameter values are further improved by using the moving average filter
described in Section 3.2 - Filtering. For example, when the filter has 16-tap the ENOB value will
increase by approximately 2 bits.

6. Summary
This application note describes data acquisition firmware for Kinetis-M microcontrollers. With this
firmware the Kinetis-M device can emulate a four-channel sigma-delta analogue-to-digital converter.
The Kinetis-M device communicates with other devices via a SPI bus. Therefore, an arbitrary device
supporting this bus could be used as a host device. This communication interface uses a 32-bit data
format and specific commands for measurement channel selection, which is very similar to an LTC244x
ADC interface. The output data format is also similar to an LTC244x ADC interface. The Kinetis-M

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
Freescale Semiconductor, Inc. 15

device with this firmware acts like a slave data acquisition module with 32-bit SPI communication. This
functionality is possible due to the SPI FIFO mode supported by the device’s SPI1 module.

The Kinetis-M device measures analogue input signals via four SD ADCs. In the described application,
these SD ADCs are clocked by a very accurate low jitter PLL module. To achieve the best SNR an OSR
value of 2048 is selected. In this case the sampling frequency of the measurement engine is 3 kHz for
each channel. The maximal output data rate of the device is 2.8 ksps.

To optimize the SNR, measured data is additionally filtered with a 16-tap software moving average
filter. The measured results are filtered after every conversion. Additionally, the result from the channel,
which will be sent on the next transfer, is converted to the LTC244x data output format. These filtering
and converting operations take about 20μs @ 48 MHz core clock. Because the Kinetis-M device is a
slave device in the described application the host device may start data transfer independently and
therefore operations have to be synchronized. Due to this the functionality of busy bit is integrated in the
firmware. When the busy bit is asserted the result is not yet ready and all communication from the side
of the master is ignored. For the best data throughput, the host device should check the busy line and
start the communication when the busy bit is de-asserted.

As shown in this application note, the data acquisition circuit based on the Kinetis-M microcontroller
series can be successfully used to emulate many popular, high-performance 24-bit SD ADCs.
Characteristics of emulated ADCs can be further improved by additional signal processing. For
example, the firmware described in this application note transforms the Kinetis-M microcontroller into a
full-featured data acquisition circuit that communicates with other devices using SPI communication and
data format compliant with the LTC244x ADCs.

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
16 Freescale Semiconductor, Inc.

7. References
The following documents are useful when using the Kinetis-M High Speed Data Acquisition Firmware.

1. LTC2440 Datasheet, cds.linear.com/docs/en/datasheet/2440fd.pdf

2. Handbook for Digital Signal Processing, Sanjit K. Mitra, James F. Kaiser (John Wiley &
Sons, 1993, USA)

3. Circular buffer, en.wikipedia.org/wiki/Circular_buffer

4. Frequency response of FIR filters,
eas.uccs.edu/wickert/ece2610/lecture_notes/ece2610_chap6.pdf

The following documents can be found on freescale.com. Additional documents not listed here can be
found on the Kinetis-M Series product page.

5. Kinetis-M Reference Manual

6. Kinetis-M Datasheet

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
Freescale Semiconductor, Inc. 17

http://cds.linear.com/docs/en/datasheet/2440fd.pdf
http://en.wikipedia.org/wiki/Circular_buffer
http://www.eas.uccs.edu/wickert/ece2610/lecture_notes/ece2610_chap6.pdf
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=KINETIS_M_SERIES

time

Appendix I. Timing Diagram

After two 16-bit data packets are exchanged, the spi1_isr_optim function is called. The
received data with information about next measurement (channel number) is stored.

Busy bit is asserted for a certain period of time. After this time (syst_callback function is
called), the busy bit is cleared and recent measured data is stored into the SPI transmit
FIFO buffer (the selected channel’s number depends on the last received command from
SPI Master).

When a conversion for all channels is complete (afe_ch1_callback function is called) the
measured results are filtered and stored. Only the channel’s result which is required as a
result to transmit is converted to the desired result format.

SPI Communication

Busy bit

ADC result conversion
and storage

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
18 Freescale Semiconductor, Inc.

8. Revision history
Table 5. Revision History

Revision number Date Substantive changes

0 04/2015 Initial release

High-Performance Data Acquisition Circuit, Application Note, Rev 0, 04/2015
Freescale Semiconductor, Inc. 19

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated
circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any
products herein. Freescale makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale data sheets and/or specifications can and do
vary in different applications, and actual performance may vary over time. All
operating parameters, including “typicals,” must be validated for each customer
application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the
following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service
names are the property of their respective owners. ARM, the ARM Powered
logo and Cortex are registered trademarks of ARM Limited (or its subsidiaries)
in the EU and/or elsewhere.
© 2015 Freescale Semiconductor, Inc. All rights reserved.

 Document Number: AN5101

Rev 0
 04/2015

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions

	The High-Performance Data Acquisition Circuit
	Introduction
	2. Block diagram
	Implementation
	3.1 Measurement engine
	3.2 Filtering

	3.2.1 Moving average filter
	3.3 Result conversion

	3.3.1 Kinetis-M data format
	3.3.2 LTC244x data format
	3.3.3 Conversion process
	3.4 SPI communication

	3.4.1 Communication interface
	3.4.2 Communication format
	3.4.3 Busy bit function
	3.4.3.1 Busy bit at the beginning of application
	3.5 Application structure and timing

	4. Test Results
	4.2 Visualization of the received data

	5. Parameters
	6. Summary
	7. References
	Revision history

