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1. Introduction 

1.1 Summary 
This application note documents the mathematics used by the two Kalman filters which 
implement the fusion of i) accelerometer, magnetometer and gyroscope data and ii) 
accelerometer and gyroscope data. These two algorithms are labeled "Gaming Handset" 
and "Gyro Stabilized Compass" in the NXP Sensor Fusion Toolbox for Windows. 

The NXP Application Note (AN5018) Basic Kalman Filter Theory provides an introduction 
to the mathematics of Kalman filters. The sensor fusion Kalman filters are a variant 
termed i) 'complementary', in that orientation estimates are provided independently by 
the gyroscope and by the combination of accelerometer and magnetometer and ii) 
'indirect' in that the Kalman filter tracks the process error rather than the underlying 
process itself. 

Section 2 describes the estimation of the levels of sensor noise, acceleration and 
magnetic interference impacting i) the accelerometer estimate of the gravity vector and ii) 
the magnetometer estimate of the geomagnetic vector. 

Section 3 derives expressions for the quaternion orientation errors i) between the 
gyroscope and accelerometer estimates of the gravity vector and ii) between the 
gyroscope and magnetometer estimates of the geomagnetic vector. 

Section 4 documents the model for the gyroscope sensor’s zero rate offset error which is 
the primary source of error in the gyroscope estimate of orientation. Unlike the 
accelerometer, the gyroscope is essentially insensitive to acceleration and, unlike the 
magnetometer, is completely insensitive to magnetic fields. 

Section 5 derives the Kalman filter which corrects the gravity and geomagnetic error 
quaternions derived in section 3 using the noise estimates from section 2 to weight the 
relative confidence in the gyroscope, accelerometer and magnetometer measurements. 

Section 6 derives a simplified variant of the Kalman filter of section 5 designed for use in 
systems with accelerometer and gyroscope sensors only. Here only the gravity error 
quaternion is updated according to the relative confidence in the accelerometer and 
gyroscope measurements. 

1.2 Terminology 
 
 
Symbol Definition 
Right superscript 
-  

Denotes an a priori estimate made before correction by the Kalman 
filter. 

Right superscript 
+  

Denotes an a posteriori estimate made after application of the Kalman 
filter. 

Subscript 𝜀𝜀  Denotes an error component. 

Subscript 𝑘𝑘  Refers to sampling iteration 𝑘𝑘. 

Right subscript 𝐺𝐺  Denotes an accelerometer measurement or estimate. 

Right subscript 𝑀𝑀  Denotes a magnetometer measurement or estimate. 

Right subscript 𝑌𝑌  Denotes a gyroscope measurement or estimate. 
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Symbol Definition 
Left superscript 𝐺𝐺  Denotes that the measurement or estimate is in the global (earth) 

frame. 

Left superscript 𝑆𝑆  Denotes that the measurement or estimate is in the sensor frame. 

𝒂𝒂𝑘𝑘 
𝐺𝐺 , 𝒂𝒂𝑘𝑘 

𝑆𝑆  Acceleration in the global and sensor frames (units g) at iteration 𝑘𝑘 

𝑨𝑨𝑘𝑘 Linear prediction or state matrix for the error process 𝒙𝒙𝜀𝜀,𝑘𝑘 at iteration 𝑘𝑘 

𝒃𝒃𝑘𝑘 Gyroscope zero rate offset vector (units deg/s) at iteration 𝑘𝑘 

𝒃𝒃𝜀𝜀,𝑘𝑘 Gyroscope zero rate offset error vector (units deg/s) at iteration 𝑘𝑘 

𝐵𝐵 The local geomagnetic field strength (units µT) 

𝑩𝑩𝑐𝑐,𝑘𝑘 
𝑆𝑆  Calibrated magnetometer measurement in the sensor frame (units µT) 

at iteration 𝑘𝑘 

𝑪𝑪𝑘𝑘 The measurement matrix relating the measured error process 𝒛𝒛𝜀𝜀,𝑘𝑘
  to 

the underlying error process 𝒙𝒙𝜀𝜀,𝑘𝑘 at iteration 𝑘𝑘 
𝒛𝒛𝜀𝜀,𝑘𝑘

 = 𝑪𝑪𝑘𝑘𝒙𝒙𝜀𝜀,𝑘𝑘 + 𝒗𝒗𝑘𝑘 

𝒅𝒅𝑘𝑘 
𝐺𝐺 , 𝒅𝒅𝑘𝑘 

𝑆𝑆  The magnetic disturbance in global and sensor frames (units µT) at 
iteration 𝑘𝑘 

𝐸𝐸[] Expectation operator 

𝑔𝑔 Magnitude of the gravity vector with magnitude 1 g in all measurement 
frames 

𝒈𝒈𝑘𝑘  
𝐺𝐺 , 𝒈𝒈𝑘𝑘 

𝑆𝑆  The gravity vector in the global and sensor frames (units g) at 
iteration 𝑘𝑘 

𝑮𝑮𝑐𝑐,𝑘𝑘 
𝑆𝑆  Calibrated accelerometer measurement in the sensor frame (units g) 

at iteration 𝑘𝑘 

𝑰𝑰 3 by 3 identity matrix 

𝑰𝑰𝑛𝑛 𝑛𝑛 by 𝑛𝑛 identity matrix 

𝑲𝑲𝑘𝑘 The Kalman filter gain matrix at iteration 𝑘𝑘 

𝒎𝒎𝑘𝑘
 

 
𝐺𝐺 , 𝒎𝒎𝑘𝑘

 
 
𝑆𝑆  The geomagnetic vector in the global and sensor frames (units µT) at 

iteration 𝑘𝑘 

𝒏𝒏� Normalized rotation axis 

𝑶𝑶𝑛𝑛 𝑛𝑛 by 𝑛𝑛 zero matrix 

𝑷𝑷𝑘𝑘− A priori covariance matrix. 

𝑷𝑷𝑘𝑘+ A posteriori covariance matrix 

𝑞𝑞 = {𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3} Orientation quaternion transforming from global to sensor frame as a 
result of coordinate system rotation 

𝑞𝑞𝑘𝑘 Orientation quaternion transforming from global to sensor frame at 
iteration 𝑘𝑘 

𝑞𝑞�𝑘𝑘− A priori estimate of the orientation quaternion 𝑞𝑞𝑘𝑘 at iteration 𝑘𝑘 

𝑞𝑞�𝑘𝑘+ A posteriori estimate of the orientation quaternion 𝑞𝑞𝑘𝑘 at iteration 𝑘𝑘 

𝑞𝑞𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 ,𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 Measurement rotation quaternion relating the error between the 
accelerometer and the a priori (gyroscope) estimates of the gravity 
vector. 
𝑞𝑞𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 is the full quaternion and 𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 is the vector component. 
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Symbol Definition 
𝑞𝑞𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 ,𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 Measurement rotation quaternion relating the error between the 

magnetometer and the a priori (gyroscope) estimates of the 
geomagnetic vector. 
𝑞𝑞𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 is the full quaternion and 𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 is the vector component. 

𝑞𝑞𝑔𝑔𝑔𝑔,𝑘𝑘 ,𝒒𝒒𝑔𝑔𝑔𝑔,𝑘𝑘 The orientation tilt error quaternion relative to the true gravity vector 
modeled in the Kalman filter. 
𝑞𝑞𝑔𝑔𝜀𝜀,𝑘𝑘 is the full quaternion and 𝒒𝒒𝑔𝑔𝑔𝑔,𝑘𝑘 is the vector component. 

𝑞𝑞𝑚𝑚𝑚𝑚,𝑘𝑘 ,𝒒𝒒𝑚𝑚𝑚𝑚,𝑘𝑘 The orientation tilt error quaternion relative to the true geomagnetic 
vector modeled in the Kalman filter. 
𝑞𝑞𝑚𝑚𝑚𝑚,𝑘𝑘 is the full quaternion and 𝒒𝒒𝑚𝑚𝑚𝑚,𝑘𝑘 is the vector component. 

𝑄𝑄𝑎𝑎,𝑘𝑘 Acceleration variance (units g2) at iteration 𝑘𝑘: 
𝑄𝑄𝑎𝑎,𝑘𝑘 = 𝐸𝐸[| 𝒂𝒂𝑘𝑘 

𝑆𝑆 |2] 

𝑄𝑄𝑑𝑑,𝑘𝑘 Magnetic disturbance variance (units µT2) at iteration 𝑘𝑘 
𝑄𝑄𝑑𝑑,𝑘𝑘 = 𝐸𝐸[| 𝒅𝒅𝑘𝑘 

𝑆𝑆 |2] 

𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 Magnetometer sensor noise variance (units µT2) at iteration 𝑘𝑘 
𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 = 𝐸𝐸 ��𝒗𝒗𝐵𝐵,𝑘𝑘�

2� 

𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 Accelerometer sensor noise variance (units g2) at iteration 𝑘𝑘 
𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 = 𝐸𝐸 ��𝒗𝒗𝐺𝐺,𝑘𝑘�

2� 

𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 Gyroscope sensor noise variance (units deg2/s2) at iteration 𝑘𝑘 
𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 = 𝐸𝐸 ��𝒗𝒗𝑌𝑌,𝑘𝑘�

2� 

𝑄𝑄𝑤𝑤𝑤𝑤,𝑘𝑘 Covariance of gyroscope zero rate offset random walk (units 
deg2/sec2) at iteration 𝑘𝑘 

𝑄𝑄𝑤𝑤𝑤𝑤,𝑘𝑘 = 𝐸𝐸 ��𝒘𝒘𝑏𝑏,𝑘𝑘�
2� 

𝑸𝑸𝑤𝑤,𝑘𝑘 Covariance matrix of noise process 𝒘𝒘𝑘𝑘 in the underlying process 𝒙𝒙𝜀𝜀,𝑘𝑘 
𝑸𝑸𝑤𝑤,𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐{𝒘𝒘𝑘𝑘 ,𝒘𝒘𝑘𝑘} = 𝐸𝐸[𝒘𝒘𝑘𝑘𝒘𝒘𝑘𝑘

𝑇𝑇] 

𝑸𝑸𝑣𝑣,𝑘𝑘 Covariance matrix of measurement noise process 𝒗𝒗𝑘𝑘 in the measured 
process 𝒛𝒛 

𝑸𝑸𝑣𝑣,𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐{𝒗𝒗𝑘𝑘 ,𝒗𝒗𝑘𝑘} = 𝐸𝐸[𝒗𝒗𝑘𝑘𝒗𝒗𝑘𝑘𝑇𝑇] 

𝑹𝑹𝑘𝑘 Rotation or orientation matrix transforming from global to sensor frame 
at iteration 𝑘𝑘 

𝑹𝑹�𝑘𝑘− A priori estimate of the orientation matrix 𝑹𝑹𝑘𝑘 at iteration 𝑘𝑘 

𝑹𝑹�𝑘𝑘+ A posteriori estimate of the orientation matrix 𝑹𝑹𝑘𝑘 at iteration 𝑘𝑘 

𝒓𝒓, 𝒔𝒔 Arbitrary vectors 

𝒗𝒗𝑘𝑘 Additive noise in the Kalman filter measurement error process 𝒛𝒛𝜀𝜀,𝑘𝑘: 
𝒛𝒛𝜀𝜀,𝑘𝑘

 = 𝑪𝑪𝑘𝑘𝒙𝒙𝜀𝜀,𝑘𝑘 + 𝒗𝒗𝑘𝑘 

𝒗𝒗𝐵𝐵,𝑘𝑘 Magnetometer sensor additive noise (units µT) at iteration 𝑘𝑘 

𝒗𝒗𝐺𝐺,𝑘𝑘 Accelerometer sensor additive noise (units g) at iteration 𝑘𝑘 

𝒗𝒗𝑌𝑌,𝑘𝑘 Gyroscope sensor additive noise (units deg/s) at iteration 𝑘𝑘 

𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘 Noise in the measured gravity tilt error quaternion 𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 at iteration 𝑘𝑘 

𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘 Noise in the measured geomagnetic tilt error quaternion 𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 at 
iteration 𝑘𝑘 

𝒘𝒘𝑘𝑘 Additive noise in error of underlying Kalman filter process 𝒙𝒙𝜀𝜀,𝑘𝑘 
𝒙𝒙𝜀𝜀,𝑘𝑘 = 𝑨𝑨𝑘𝑘𝒙𝒙𝜀𝜀,𝑘𝑘−1 + 𝒘𝒘𝑘𝑘 
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Symbol Definition 
𝒘𝒘𝑏𝑏,𝑘𝑘 Driving noise for gyroscope offset random walk (units deg/s) at 

iteration 𝑘𝑘 

𝒙𝒙𝜀𝜀,𝑘𝑘 The Kalman filter error process at iteration 𝑘𝑘 

𝒙𝒙�𝜀𝜀,𝑘𝑘
−  The a priori estimate of the Kalman filter error process 𝒙𝒙𝜀𝜀,𝑘𝑘 

𝒙𝒙�𝜀𝜀,𝑘𝑘
+  The a posteriori estimate of the Kalman filter error process 𝒙𝒙𝜀𝜀,𝑘𝑘 

𝒀𝒀𝑘𝑘 
𝑆𝑆  Gyroscope measurement (units deg/s) at iteration 𝑘𝑘 

𝒛𝒛𝜀𝜀,𝑘𝑘
  The measurement error vector at iteration 𝑘𝑘 

𝛼𝛼 Scaling constant from deg/s to radians: 

𝛼𝛼 = �
𝜋𝜋𝜋𝜋𝜋𝜋
180� 

𝛿𝛿𝑘𝑘 Geomagnetic inclination angle (deg) at iteration 𝑘𝑘 

𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷 6DOF (accelerometer and magnetometer) estimate of the 
geomagnetic inclination angle 𝛿𝛿 at iteration 𝑘𝑘 

𝛿𝛿𝑘𝑘+ A posteriori (gyroscope) estimate of the geomagnetic inclination angle 
𝛿𝛿 at iteration 𝑘𝑘 

𝛿𝛿𝛿𝛿 Sampling interval of the Kalman filter (units s) 

𝜂𝜂 Rotation angle (degrees or radians) 

𝝎𝝎𝑘𝑘 True angular velocity (deg/s) 

𝝎𝝎𝑘𝑘
− The a priori estimate of the angular velocity 𝝎𝝎𝑘𝑘 (deg/s) 

 

1.3 Software Functions 

Table 1. Sensor Fusion software functions 
Functions Section 
Quaternion Algebra (orientation.c) 

void fveqconjgquq 

(struct fquaternion *pfq, float fu[], float fv[]) 

3 

Nine Axis Sensor Fusion (fusion.c) 

void fInit_9DOF_GBY_KALMAN 
(struct SV_9DOF_GBY_KALMAN *pthisSV, struct 
AccelSensor *pthisAccel, struct MagSensor 
*pthisMag, struct GyroSensor *pthisGyro, struct 
MagCalibration *pthisMagCal); 
 

void fRun_9DOF_GBY_KALMAN 

(struct SV_9DOF_GBY_KALMAN *pthisSV, struct 
AccelSensor *pthisAccel, struct MagSensor 
*pthisMag, struct GyroSensor *pthisGyro, struct 
MagCalibration *pthisMagCal); 

5 

Six Axis Sensor Fusion (fusion.c) 

void fInit_6DOF_GY_KALMAN 6 
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Functions Section 
(struct SV_6DOF_GY_KALMAN *pthisSV, struct 
AccelSensor *pthisAccel, struct GyroSensor 
*pthisGyro); 
 

void fRun_6DOF_GY_KALMAN 
(struct SV_6DOF_GY_KALMAN *pthisSV, struct 
AccelSensor *pthisAccel, struct GyroSensor 
*pthisGyro); 
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2. Estimating Acceleration and Magnetic Disturbance 

2.1 Introduction 
This section describes the algorithm for estimating the noise levels affecting the 
accelerometer estimate of the gravity vector and the magnetometer estimate of the 
geomagnetic vector. The estimated noise levels are then used in the Kalman filter 
described later to determine the relative weightings applied to the gyroscope, 
accelerometer and magnetometer sensor data. 

The accelerometer sensor at rest has high frequency, sample to sample, measurement 
noise of approximately 3 mg and an orientation-dependent error of order 30 mg or so 
resulting from various sources including i) non-linearity in the sensor signal chain ii) 
imperfectly calibrated offset iii) imperfectly calibrated gain and iv) uncorrected cross-axis 
interference. In addition, the accelerometer will also experience large and rapidly 
changing physical accelerations of up to 8000 mg in gaming applications where the 
orientation can change at 2000 dps. The level of noise affecting the accelerometer 
estimate of the gravity vector therefore varies by approximately 60 dB. 

The magnetometer sensor at rest also has high frequency, sample to sample, 
measurement noise of 1 or 2 µT and a low frequency orientation dependent error of a 
few µT resulting from an imperfect estimate of the hard and soft iron interference 
resulting from magnetic sources on the PCB. Magnetic disturbance, which is defined as 
resulting from external magnetic sources such as magnets, unlike hard and soft iron 
magnetic interference which are fixed in the PCB frame, can vary from near zero to 
1000 µT or more when a magnet is brought close. The level of noise affecting the 
magnetometer estimate of the geomagnetic vector therefore also varies by about 60 dB. 

At any location, the gravity vector is constant and points downwards and the 
geomagnetic vector is constant and points northwards and downwards (upwards) in the 
northern (southern) hemisphere. When measured by the accelerometer and 
magnetometer (calibrated for hard and soft iron effects) after rotation to an arbitrary 
orientation, the magnitudes of these two reference vectors measured by the two sensors 
is constant. The locus of the gravity vector measured in the rotated sensor frame is 
therefore a sphere with radius 1 g (in the absence of acceleration or accelerometer 
calibration noise) and, similarly, the locus of the geomagnetic vector measured in the 
rotated sensor frame is a sphere with radius equal to the geomagnetic field strength 𝐵𝐵 
(again, assuming no magnetic disturbance nor magnetic calibration noise). 

Accelerometer and magnetometer sensor noise are zero mean and tend to move the 
measurement magnitudes away from the 1 g gravity and geomagnetic spheres 
respectively producing a radial error. 

Accelerometer (gain, offset and cross axis) and magnetometer (hard and soft iron) 
calibration errors appear as orientation-dependent bulges distorting the measurement 
loci from spheres to ellipsoids. The larger the calibration error at any orientation, the 
larger the radial error deviation from the 1 g gravity and geomagnetic spheres.  

Finally, physical acceleration and magnetic disturbances add to the accelerometer and 
magnetometer measurements and also move these measurements away from the 
gravity and geomagnetic spheres. 

The instantaneous deviations of the accelerometer and magnetometer measurements 
away from the gravity and geomagnetic spheres can therefore be used as proxies for the 
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vector sum of the interfering noise, from all sources, in the accelerometer and 
magnetometer measurements. This may be inaccurate for any specific measurement 
where, by chance, the interfering noise vectors cancel or move the measurement onto 
another point on the gravity or geomagnetic spheres but is statistically valid over a large 
number of measurements. 

2.2 Accelerometer Sensor Model and Noise Variance 
The calibrated accelerometer measurement 𝑮𝑮𝑐𝑐,𝑘𝑘 

𝑆𝑆  includes physical acceleration 𝒂𝒂𝑘𝑘 
𝑆𝑆 , 

gravitational 𝒈𝒈𝑘𝑘 
𝑆𝑆  and noise 𝒗𝒗𝐺𝐺,𝑘𝑘 components where the noise term 𝒗𝒗𝐺𝐺,𝑘𝑘 includes all the 

terms discussed in the previous section. 

All acceleration sensors are natively 'acceleration positive' in that their axes are defined 
such that physical acceleration in the positive direction of any axis increases the sensor 
output. The Android coordinate system is 'acceleration positive' like the accelerometer 
but the Aerospace / NED and Windows 8 coordinate systems are 'gravity positive' or 
‘acceleration negative’. The sign difference between acceleration and gravity results from 
basic Physics in that it is impossible to distinguish the two cases of i) being at rest in a 
downwards pointing 1 g gravitational field or ii) accelerating upwards at 1 g in the 
absence of any gravitational field. 

In the reference position of zero roll or pitch, the accelerometer measurement in the 
Aerospace / NED coordinate system is +1g since both the z axis and gravity are aligned 
and point downwards. In the Android (ENU) coordinate system, the accelerometer 
measurement in the same reference position is also +1 g since both the z axis and 
acceleration equivalent to gravity are aligned and point upwards. In the Windows 8 
(ENU) coordinate system, the accelerometer measurement is –1 g since the z axis points 
upwards and the gravity vector points downwards. 

The models for the accelerometer measurement 𝑮𝑮𝑐𝑐,𝑘𝑘 
𝑆𝑆  in the sensor frame for the three 

coordinate systems are therefore: 
 

𝑮𝑮𝑐𝑐,𝑘𝑘 
𝑆𝑆 = − 𝒂𝒂𝑘𝑘 

𝑆𝑆 + 𝒈𝒈𝑘𝑘 
𝑆𝑆 − 𝒗𝒗𝐺𝐺,𝑘𝑘 (Aerospace, Windows 8) (1) 

𝑮𝑮𝑐𝑐,𝑘𝑘 
𝑆𝑆 = 𝒂𝒂𝑘𝑘 

𝑆𝑆 − 𝒈𝒈𝑘𝑘 
𝑆𝑆 + 𝒗𝒗𝐺𝐺,𝑘𝑘 (Android) 

 
(2) 

 
The physical acceleration variance 𝑄𝑄𝑎𝑎,𝑘𝑘 is defined as: 
 

𝑄𝑄𝑎𝑎,𝑘𝑘 = 𝐸𝐸[| 𝒂𝒂𝑘𝑘 
𝑆𝑆 |2] (3) 

 
The accelerometer sensor noise variance 𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 (including high frequency sensor noise 
and low frequency orientation-dependent noise from calibration errors) is defined as: 
 

𝑄𝑄𝑣𝑣𝑣𝑣 ,𝑘𝑘 = 𝐸𝐸 ��𝒗𝒗𝐺𝐺,𝑘𝑘�
2� (4) 

 
For all three coordinate systems, the the sum of instantaneous acceleration variance 𝑄𝑄𝑎𝑎,𝑘𝑘 
and the sensor noise variance 𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 is defined in terms of the deviation of the 
accelerometer measurement magnitude � 𝑮𝑮𝑐𝑐,𝑘𝑘 

𝑆𝑆 � from the 1 g sphere 𝑔𝑔 as: 



 

 

NXP Semiconductors AN5023 
 Sensor Fusion Kalman Filters 

AN5023 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved. 

Application note Rev. 2.0 — 21 June 2016 10 of 39 

 

𝑄𝑄𝑎𝑎,𝑘𝑘 + 𝑄𝑄𝑣𝑣𝑣𝑣 ,𝑘𝑘 ≈ 𝑘𝑘�� 𝑮𝑮𝑐𝑐,𝑘𝑘 
𝑆𝑆 � − 𝑔𝑔�2 = 𝑘𝑘�� 𝒂𝒂𝑘𝑘 

𝑆𝑆 − 𝒈𝒈𝑘𝑘 
𝑆𝑆 + 𝒗𝒗𝐺𝐺,𝑘𝑘� − 𝑔𝑔�2 (5) 

 
where 𝑘𝑘 is a constant of proportionality that can be determined from geometrical 
arguments. 

Figure 1 shows the vector sum of the component terms in equation (5). The acceleration 
and sensor noise vectors 𝒂𝒂𝑘𝑘 

𝑆𝑆  and 𝒗𝒗𝐺𝐺,𝑘𝑘 are uncorrelated and will have some distribution 
about the true gravity measurement in the sensor frame 𝒈𝒈𝑘𝑘 

𝑆𝑆 . The magnitude 𝑟𝑟𝑘𝑘 of the 
summed vector noise terms at iteration 𝑘𝑘 equals: 
 

𝑟𝑟𝑘𝑘 = � 𝒂𝒂𝑘𝑘 
𝑆𝑆 + 𝒗𝒗𝐺𝐺,𝑘𝑘� (6) 

 
The angle 𝜃𝜃𝑘𝑘 is defined in Figure 1 such that 𝑟𝑟𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑘𝑘 is the radial error of the 
measurement to the 1 g sphere. 
 

𝑟𝑟𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑘𝑘 = � 𝒂𝒂𝑘𝑘 
𝑆𝑆 − 𝒈𝒈𝑘𝑘 

𝑆𝑆 + 𝒗𝒗𝐺𝐺,𝑘𝑘� − 𝑔𝑔 (7) 
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Fig 1. Geometry of acceleration and sensor noise relative to 1g sphere 

 
The constant 𝑘𝑘 can be calculated with the assumptions that i) the noise is spherically 
distributed and ii) has magnitude significantly smaller than 1 g giving: 
 

� � 𝑝𝑝(𝑟𝑟)𝑟𝑟22𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
𝜋𝜋
2

0

∞

0
= 𝑘𝑘� � 𝑝𝑝(𝑟𝑟)𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

𝜋𝜋
2

0
𝑑𝑑𝑑𝑑

∞

0
 (8) 

 
The function 𝑝𝑝(𝑟𝑟) defines the statistics of the falloff of the noise with amplitude but is 
irrelevant since the integrals separate into radial and angular terms and the radial 
distribution 𝑝𝑝(𝑟𝑟) cancels: 
 

2𝜋𝜋� 𝑝𝑝(𝑟𝑟)𝑟𝑟3𝑑𝑑𝑑𝑑
∞

0
� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜋𝜋
2

0
= 2𝜋𝜋𝜋𝜋 � 𝑝𝑝(𝑟𝑟)𝑟𝑟3𝑑𝑑𝑑𝑑

∞

0
� 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜋𝜋
2

0
 (9) 

⇒ [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠]0
𝜋𝜋
2 = 𝑘𝑘 �

𝑠𝑠𝑠𝑠𝑠𝑠3𝜃𝜃
3

�
0

𝜋𝜋
2
⇒ 𝑘𝑘 = 3 (10) 

 

rk

θk

2πrkcosθk

rkcosθk

rk sinθ
k

Qa,k+QvG,k Sphere

Sak

vG,k

1g Sphere
-Sgk

SGc,k=-Sgk+Sak+vG,k
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Substituting back into equation (5) gives a simple expression for the sum of the 
acceleration and sensor noise variances as three times the square of the difference of 
the magnitude of the accelerometer measurement from the 1 g sphere: 
 

𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 + 𝑄𝑄𝑎𝑎,𝑘𝑘 ≈ 3�� 𝑮𝑮𝑐𝑐,𝑘𝑘 
𝑆𝑆 � − 𝑔𝑔�2 (11) 

 

2.3 Magnetometer Sensor Model and Noise Variance 
The calibrated magnetometer measurement 𝑩𝑩𝑐𝑐,𝑘𝑘 

𝑆𝑆  is modeled as the sum of the 
geomagnetic component 𝒎𝒎𝑘𝑘 

𝑆𝑆 , any magnetic disturbance 𝒅𝒅𝑘𝑘 
𝑆𝑆  and the magnetometer 

noise 𝒗𝒗𝐵𝐵,𝑘𝑘 which includes both sensor noise and hard and soft iron calibration errors: 
 

𝑩𝑩𝑐𝑐,𝑘𝑘 
𝑆𝑆 = 𝒎𝒎𝑘𝑘 

𝑆𝑆 + 𝒅𝒅𝑘𝑘 
𝑆𝑆 + 𝒗𝒗𝐵𝐵,𝑘𝑘 (12) 

 
The magnetic calibration algorithms remove hard and soft iron magnetic distortion effects 
which are constant in the sensor frame leaving the calibrated measurement 𝑩𝑩𝑐𝑐,𝑘𝑘 

𝑆𝑆 . The 
magnetic disturbance 𝒅𝒅𝑘𝑘 

𝑆𝑆  is defined as any magnetic interference which does not rotate 
with the sensor frame and is not, therefore, included in the hard and soft iron calibration. 
The magnetic disturbance variance 𝑄𝑄𝑑𝑑,𝑘𝑘 is defined as: 
 

𝑄𝑄𝑑𝑑,𝑘𝑘 = 𝐸𝐸[| 𝒅𝒅𝑘𝑘 
𝑆𝑆 |2] (13) 

 
The magnetometer sensor noise variance 𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 (including high frequency sensor noise 
and low frequency orientation-dependent noise from hard and soft iron calibration errors) 
is defined as: 
 

𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 = 𝐸𝐸 ��𝒗𝒗𝐵𝐵,𝑘𝑘�
2� (14) 

 
With perfect magnetic calibration and in the absence of any magnetic disturbance and 
sensor noise, the calibrated magnetometer measurement lies on the geomagnetic 
sphere and has magnitude equal to the geomagnetic field strength 𝐵𝐵. In practice the 
measurement will not lie on the geomagnetic sphere as a consequence of i) 
magnetometer sensor noise ii) imperfect hard and soft iron calibration and iii) the 
presence of magnetic disturbance in the environment. 

Using the same arguments and algebra used for the accelerometer, the sum of the 
magnetic disturbance and magnetometer noise variances is estimated as three times the 
square of the difference of the magnitude of the calibrated magnetometer measurement 
from the geomagnetic sphere: 
 

𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 + 𝑄𝑄𝑑𝑑,𝑘𝑘 ≈ 3�� 𝑩𝑩𝑐𝑐,𝑘𝑘 
𝑆𝑆 � − 𝐵𝐵�2 (15) 
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2.4 Compile Time Constants 
To provide robustness against the occasional situations where the vector sum of the 
accelerometer and magnetometer noise components results in a measurement lying 
exactly on the gravity or geomagnetic sphere, the sensor fusion software applies lower 
bounds to the noise estimates in equations (11) and (15). These constants are listed 
below and defined in file fusion.h. 

For the full nine degrees of freedom accelerometer, magnetometer and gyroscope 
Kalman filter defined in Section 5, the constants are: 

// minimum accelerometer noise variance units g^2 computed 
from 1g sphere 
#define FQVG_9DOF_GBY_KALMAN 1.2E-3   
// minimum magnetometer noise variance units uT^2 computed 
from geomagnetic sphere 
#define FQVB_9DOF_GBY_KALMAN 5E0 

For the six degrees of freedom accelerometer and gyroscope Kalman filter defined in 
Section 6, the constant is: 

// minimum accelerometer noise variance units g^2 computed 
from 1g sphere 
#define FQVG_6DOF_GY_KALMAN 1.2E-3 
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3. Gravity and Geomagnetic Tilt Error Quaternions 

3.1 Introduction 
Integrating the output from the gyroscope sensor gives the a priori orientation matrix and 
a priori estimates of the gravity and geomagnetic vectors in the sensor frame of 
reference. The gyroscope sensor is insensitive to acceleration and magnetic interference 
and the a priori estimates of the gravity and geomagnetic vectors are therefore also 
insensitive to acceleration and magnetic interference. But any error in the integration of 
the gyroscope sensor will result in a slow drift in the gyroscope’s a priori estimates of the 
gravity and geomagnetic vectors requiring a posteriori corrections performed by the 
Kalman filter. 

The accelerometer and magnetometer sensors can compute a six degree of freedom (or 
6DOF) estimate of orientation using the approach documented in AN5021 “Calculation of 
Orientation Matrices from Sensor Data”. The 6DOF orientation estimate is sensitive to 
acceleration and magnetic disturbance but does not suffer from long term drift. The 
6DOF accelerometer and magnetometer orientation estimate is therefore complementary 
to the a priori gyroscope orientation estimate and can be used to stabilize the a priori 
orientation. 

Sections 3.2 and 3.3 derive expressions for i) the gravity vector and ii) the geomagnetic 
vector estimates computed from the a priori gyroscope orientation matrix and from the 
6DOF accelerometer and magnetometer orientation matrix. 

Section 3.4 derives an expression for the rotation quaternion required to rotate one 
vector onto another vector of equal length. This expression allows the calculation of the 
rotation quaternions defining the tilt errors between the a priori gyroscope and 6DOF 
accelerometer and magnetometer estimates of the gravity and geomagnetic vectors. The 
vector components of these two tilt error quaternions form six of the nine components of 
the indirect Kalman filter with the gyroscope zero rate offset error providing the remaining 
three components. 

If equation (11) indicates that the accelerometer measurement has low noise and is 
reliable then the a posteriori Kalman filter orientation correction reduces the gravity tilt 
error in the direction of the 6DOF gravity vector estimate. Similarly, if equation (15) 
indicates that the magnetometer measurement has low noise and is reliable then the a 
posteriori Kalman filter orientation correction reduces the geomagnetic tilt error in the 
direction of the 6DOF geomagnetic vector estimate. Since the gravity and geomagnetic 
vectors are not parallel, except at the geomagnetic poles, the application of the two 
orientation tilt corrections computed by the Kalman filter results in a stabilized a posteriori 
orientation estimate. 

 

3.2 Gravity Vector Estimation 
The gravity vector 𝒈𝒈𝑘𝑘 

𝐺𝐺  in the global reference frame is constant and always points 
exactly downwards for all Kalman filter iterations 𝑘𝑘. For the Aerospace (NED) coordinate 
system, gravity is in the direction of the positive z axis and for the Android (ENU) and 
Windows 8 (ENU) coordinate systems, gravity is in the direction of the negative z axis. 
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The NXP convention is that the orientation matrix transforms a vector from the global 
frame to the sensor frame. The gravity vector 𝒈𝒈𝑘𝑘 

𝑆𝑆  in the sensor frame can therefore be 
computed by multiplying 𝒈𝒈𝑘𝑘 

𝐺𝐺  by the orientation matrix 𝑹𝑹𝑘𝑘: 
 

𝒈𝒈𝑘𝑘 
𝑆𝑆 = 𝑹𝑹𝑘𝑘 𝒈𝒈𝑘𝑘 

𝐺𝐺  (16) 

 
Evaluating equation (16) using the 6DOF (accelerometer and magnetometer) orientation 
matrix 𝑹𝑹�𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷 and the a priori (gyroscope) orientation matrix 𝑹𝑹�𝑘𝑘− gives the 6DOF 𝒈𝒈𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆  
and a priori 𝒈𝒈𝑘𝑘−𝑆𝑆  estimates of the gravity vector in the sensor frame for the three 
coordinate systems as: 
 

𝒈𝒈𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆 = �
𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷

��
0
0
1
� = �

𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
6𝐷𝐷𝑂𝑂𝐹𝐹

𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷

�  𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴/𝑁𝑁𝑁𝑁𝑁𝑁 (17) 

𝒈𝒈𝑘𝑘−𝑆𝑆 = �
𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
− 𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘

− 𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
−

𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
− 𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘

− 𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
−

𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
− 𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘

− 𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
−

��
0
0
1
� = �

𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
−

𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
−

𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
−

�  𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴/𝑁𝑁𝑁𝑁𝑁𝑁 (18) 

𝒈𝒈𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷
𝑆𝑆 = �

𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷

��
0
0
−1

� = −�
𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷

�  𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 8 (19) 

𝒈𝒈𝑘𝑘−𝑆𝑆 = �
𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
− 𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘

− 𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
−

𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
− 𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘

− 𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
−

𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
− 𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘

− 𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
−

��
0
0
−1

� = −�
𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
−

𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
−

𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
−

�  𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 8 (20) 

 

3.3 Geomagnetic Vector Estimation 
The geomagnetic vector 𝒎𝒎𝑘𝑘 

𝐺𝐺  in the global reference frame is constant and points 
northwards and downwards from horizontal by the inclination angle 𝛿𝛿𝑘𝑘. For the 
Aerospace (NED) coordinate system, northwards is in the direction of the positive x axis 
and for the Android (ENU) and Windows 8 (ENU) coordinate systems, northwards is in 
the direction of the positive y axis. 

The geomagnetic vector 𝒎𝒎𝑘𝑘 
𝑆𝑆  in the sensor frame can be computed by multiplying 𝒎𝒎𝑘𝑘 

𝐺𝐺  
by the orientation matrix 𝑹𝑹𝑘𝑘: 
 

𝒎𝒎𝑘𝑘 
𝑆𝑆 = 𝑹𝑹𝑘𝑘 𝒎𝒎𝑘𝑘 

𝐺𝐺  (21) 

 
Evaluating equation (21) using the 6DOF (accelerometer and magnetometer) orientation 
matrix 𝑹𝑹�𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷 and the a priori (gyroscope) orientation matrix 𝑹𝑹�𝑘𝑘− gives the 6DOF 𝒎𝒎𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆  
and a priori 𝒎𝒎𝑘𝑘

−𝑆𝑆  estimates of the geomagnetic vector in the sensor frame for the three 
coordinate systems as: 
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𝒎𝒎𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆

𝐵𝐵
= 𝑹𝑹�𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷 �

𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷
0

𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷
� = �

𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐹𝐹 + 𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷
�  𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴/𝑁𝑁𝑁𝑁𝑁𝑁 (22) 

𝒎𝒎𝑘𝑘
−𝑆𝑆

𝐵𝐵 = 𝑹𝑹�𝑘𝑘− �
𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷

0
𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷

� = �
𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
− 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘−1+ + 𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘

− 𝑠𝑠𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘−1+

𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
− 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘−1+ + 𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘

− 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘−1+

𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
− 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘−1+ + 𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘

− 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘−1+
�  𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴/𝑁𝑁𝑁𝑁𝑁𝑁 (23) 

𝒎𝒎𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆

𝐵𝐵
= 𝑹𝑹�𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷 �

0
𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷

−𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷
� = �

𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷
�  𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 8 (24) 

𝒎𝒎𝑘𝑘
−𝑆𝑆

𝐵𝐵 = 𝑹𝑹�𝑘𝑘− �
0

𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷

−𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷
� = �

𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘
− 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘−1+ − 𝑅𝑅�𝑥𝑥𝑥𝑥,𝑘𝑘

− 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘−1+

𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘
− 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘−1+ − 𝑅𝑅�𝑦𝑦𝑦𝑦,𝑘𝑘

− 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘−1+

𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘
− 𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿𝑘𝑘−1+ − 𝑅𝑅�𝑧𝑧𝑧𝑧,𝑘𝑘

− 𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑘𝑘−1+
�  𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 8 (25) 

 
𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷 is the 6DOF estimate of the inclination angle at iteration 𝑘𝑘 and 𝛿𝛿𝑘𝑘−1+  is the a 
posteriori estimate of the inclination angle from the previous iteration 𝑘𝑘 − 1. The previous 
iteration’s a posterori estimate 𝛿𝛿𝑘𝑘−1+  is used simply because the a posteriori inclination 
angle 𝛿𝛿𝑘𝑘+ for the current iteration is not available until the Kalman filter has executed. 

AN5021 “Calculation of Orientation Matrices from Sensor Data” equations (77), (88) and 
(99) derive how the 6DOF inclination angle estimate 𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷 can be computed from the 
scalar product of the accelerometer 𝑮𝑮𝑐𝑐,𝑘𝑘 

𝑆𝑆  and magnetometer 𝑩𝑩𝑐𝑐,𝑘𝑘 
𝑆𝑆  measurements as: 

 
 

𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷) =
𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆 . 𝑩𝑩𝑐𝑐,𝑘𝑘

𝑆𝑆

� 𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆 �� 𝑩𝑩𝑐𝑐,𝑘𝑘

𝑆𝑆 �
 𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 (𝑁𝑁𝑁𝑁𝑁𝑁),𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 8 (26) 

𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷) =
− 𝑮𝑮𝑐𝑐,𝑘𝑘

𝑆𝑆 . 𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆

� 𝑮𝑮𝑐𝑐,𝑘𝑘
𝑆𝑆 �� 𝑩𝑩𝑐𝑐,𝑘𝑘

𝑆𝑆 �
 𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (27) 

 
The a posteriori inclination angle estimate 𝛿𝛿𝑘𝑘+ is computed from the scalar product of the 
normalized a posteriori gravity 𝒈𝒈𝑘𝑘+𝑆𝑆  and geomagnetic vector 𝒎𝒎𝑘𝑘

+𝑆𝑆  estimates: 
 

𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿𝑘𝑘+) =
𝒈𝒈𝑘𝑘+𝑆𝑆 . 𝒎𝒎𝑘𝑘

+𝑆𝑆

� 𝒈𝒈𝑘𝑘+𝑆𝑆 �� 𝒎𝒎𝑘𝑘
+𝑆𝑆 �

 𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑁𝑁𝑁𝑁𝑁𝑁),𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 8 (28) 

 
The angle sine rather than cosine in equations (26) to (28) results from the definition of 
the inclination angle as the dip of the magnetic field below horizontal and not the angle 
with the vertical gravity vector. 

 

3.4 Rotation Quaternion Between Two Vectors 
Sections 3.2 and 3.3 derived expressions for the 6DOF (accelerometer and 
magnetometer) and a priori (gyroscope) estimates of the gravity and geomagnetic 
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vectors measured in the sensor frame. This section derives the rotation quaternions that 
relate these two sets of vector measurements and specifically the quaternions that rotate 
the 6DOF estimates of the gravity and geomagnetic vectors onto the a priori estimates. 

The rotation quaternion 𝑞𝑞 required to rotate a general vector 𝒓𝒓 onto vector 𝒔𝒔 satisfies: 
 

𝒔𝒔 = 𝑞𝑞∗𝒓𝒓𝑞𝑞 (29) 

 
For there to be a solution to equation (29), the magnitude of both vectors must be equal 
|𝒔𝒔| = |𝒓𝒓| since a vector's magnitude is unchanged under rotation. 

The angle 𝜂𝜂 between the two vectors can be determined from the scalar product 𝒓𝒓. 𝒔𝒔: 
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2𝑐𝑐𝑐𝑐𝑐𝑐2 �
𝜂𝜂
2
� − 1 =

𝒓𝒓. 𝒔𝒔
|𝒓𝒓||𝒔𝒔| 

(30) 

 
Rearranging gives the solution for the scalar component 𝑞𝑞0 of the rotation quaternion 𝑞𝑞: 
 

𝑞𝑞0 = 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜂𝜂
2
� = �

1
2

+
𝒓𝒓. 𝒔𝒔

2|𝒓𝒓||𝒔𝒔| = �
|𝒓𝒓||𝒔𝒔| + 𝒓𝒓. 𝒔𝒔

2|𝒓𝒓||𝒔𝒔|  (31) 

 
The rotation axis 𝒏𝒏� is calculated from the vector product 𝒓𝒓 × 𝒔𝒔: 
 

𝒏𝒏�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2𝒏𝒏�𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜂𝜂
2
� 𝑐𝑐𝑐𝑐𝑐𝑐 �

𝜂𝜂
2
� =

−𝒓𝒓 × 𝒔𝒔
|𝒓𝒓||𝒔𝒔|  (32) 

 
The minus sign in equation (32) derives from the requirement to calculate the rotation 
axis 𝒏𝒏� for a coordinate system rotation by angle 𝜂𝜂 rather than the rotation axis required to 
rotate the vector 𝒓𝒓 onto 𝒔𝒔 in a fixed coordinate system. 

Substitution gives the vector component 𝒒𝒒 = {𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3} = 𝒏𝒏�𝑠𝑠𝑠𝑠𝑠𝑠 �𝜂𝜂
2
� of the rotation 

quaternion 𝑞𝑞: 
 

𝒒𝒒 = �
𝑞𝑞1
𝑞𝑞2
𝑞𝑞3
� = 𝒏𝒏�𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜂𝜂
2
� =

−𝒓𝒓 × 𝒔𝒔

2|𝒓𝒓||𝒔𝒔| �|𝒓𝒓||𝒔𝒔| + 𝒓𝒓. 𝒔𝒔
2|𝒓𝒓||𝒔𝒔|

 (33) 

 
The required rotation quaternion 𝑞𝑞 is then: 
 

𝑞𝑞 = 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜂𝜂
2� + 𝒏𝒏�𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜂𝜂
2� = �

|𝒓𝒓||𝒔𝒔| + 𝒓𝒓. 𝒔𝒔
2|𝒓𝒓||𝒔𝒔| −

𝒓𝒓 × 𝒔𝒔

2|𝒓𝒓||𝒔𝒔| �|𝒓𝒓||𝒔𝒔| + 𝒓𝒓. 𝒔𝒔
2|𝒓𝒓||𝒔𝒔|

=
|𝒓𝒓||𝒔𝒔| + 𝒓𝒓. 𝒔𝒔 − 𝒓𝒓 × 𝒔𝒔
�2|𝒓𝒓||𝒔𝒔|(|𝒓𝒓||𝒔𝒔| + 𝒓𝒓. 𝒔𝒔)

 (34) 

 
The solution for the scalar component of the rotation quaternion 𝑞𝑞0 in equation (31) is 
always defined except for the nonsensical case of zero magnitude vectors |𝒓𝒓| = |𝒔𝒔| = 0. 
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The solution for the vector component 𝒒𝒒 of the rotation quaternion in equation (33) is 
undefined when |𝒓𝒓||𝒔𝒔| + 𝒓𝒓. 𝒔𝒔 = 0 which occurs when the two vectors 𝒓𝒓 and 𝒔𝒔 are anti-
parallel. In this case the numerator is also zero since 𝒓𝒓 × 𝒔𝒔 = 0. The rotation angle 
between the two vectors is 180o but there are an infinite number of possible rotation axes 
orthogonal to 𝒓𝒓 and 𝒔𝒔. 

By inspection, one solution (of the infinite number available) for the vector component 𝒒𝒒 
for the 180o rotation case valid for all cases except 𝑟𝑟𝑥𝑥 = 𝑟𝑟𝑦𝑦 = 𝑟𝑟𝑧𝑧 is: 
 

𝒒𝒒 = �
𝑞𝑞1
𝑞𝑞2
𝑞𝑞3
� =

1

��𝑟𝑟𝑦𝑦 − 𝑟𝑟𝑧𝑧�
2 + (𝑟𝑟𝑧𝑧 − 𝑟𝑟𝑥𝑥)2 + �𝑟𝑟𝑥𝑥 − 𝑟𝑟𝑦𝑦�

2
�
𝑟𝑟𝑦𝑦 − 𝑟𝑟𝑧𝑧
𝑟𝑟𝑧𝑧 − 𝑟𝑟𝑥𝑥
𝑟𝑟𝑥𝑥 − 𝑟𝑟𝑦𝑦

� (35) 

 
The vector quaternion 𝒒𝒒 in equation (35) has magnitude |𝒒𝒒| = 1 corresponding to 180o 
rotation and is obviously orthogonal to the vector 𝒓𝒓 (and therefore also orthogonal to 𝒔𝒔 =
−𝒓𝒓) since: 

 

𝒒𝒒. 𝒓𝒓 =
1

��𝑟𝑟𝑦𝑦 − 𝑟𝑟𝑧𝑧�
2 + (𝑟𝑟𝑧𝑧 − 𝑟𝑟𝑥𝑥)2 + �𝑟𝑟𝑥𝑥 − 𝑟𝑟𝑦𝑦�

2
�
𝑟𝑟𝑦𝑦 − 𝑟𝑟𝑧𝑧
𝑟𝑟𝑧𝑧 − 𝑟𝑟𝑥𝑥
𝑟𝑟𝑥𝑥 − 𝑟𝑟𝑦𝑦

� .�
𝑟𝑟𝑥𝑥
𝑟𝑟𝑦𝑦
𝑟𝑟𝑧𝑧
� = 0 (36) 

 
For the special case 𝑟𝑟𝑥𝑥 = 𝑟𝑟𝑦𝑦 = 𝑟𝑟𝑧𝑧 and 180o rotation angle, a solution is: 
 

𝒒𝒒 = �
𝑞𝑞1
𝑞𝑞2
𝑞𝑞3
� =

1

√2
�

1
−1
0
� (37) 

 
since |𝒒𝒒| = 1 and 𝒒𝒒. 𝒓𝒓 = 0. 

For the case when the vectors 𝒓𝒓 and 𝒔𝒔 have unit magnitude, equation (34) can be 
simplified to: 
 

𝑞𝑞 = 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜂𝜂
2�+ 𝒏𝒏�𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜂𝜂
2� =

1 + 𝒓𝒓. 𝒔𝒔 − 𝒓𝒓 × 𝒔𝒔
�2(1 + 𝒓𝒓. 𝒔𝒔)

=
1
√2

�√1 + 𝒓𝒓. 𝒔𝒔 −
𝒓𝒓 × 𝒔𝒔

�(1 + 𝒓𝒓. 𝒔𝒔)
� 

𝑓𝑓𝑓𝑓𝑓𝑓 |𝒓𝒓| = |𝒔𝒔| = 1 

(38) 

 
Equation (38) is implemented in function fveqconjgquq in file orientation.c. 

 

3.5 Gravity and Geomagnetic Tilt Error Quaternions 
Sections 3.2, 3.3 and 3.4 can now be combined to give the rotation quaternions relating 
the 6DOF and a priori estimates of the gravity and geomagnetic vectors measured in the 
sensor frame. These quaternions are termed tilt error quaternions since they are the 
measurement error vectors input to the Kalman filter which define the tilt angles between 
the two estimates of the gravity and geomagnetic vectors. 
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The normalized form of equation (34) in equation (38) can be used since the gravity and 
normalized geomagnetic vectors defined in equations (17) to (20) and equations (22) to 
(25) have unit magnitude. 

Substituting equations (17) to (20) into equation (38) gives an expression for the gravity 
tilt error quaternion 𝑞𝑞𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 as: 
 

𝑞𝑞𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 =
1

√2
⎝

⎛�1 + 𝒈𝒈𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆 . 𝒈𝒈𝑘𝑘−𝑆𝑆 −
𝒈𝒈𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆 × 𝒈𝒈𝑘𝑘−𝑆𝑆

��1 + 𝒈𝒈𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆 . 𝒈𝒈𝑘𝑘−𝑆𝑆 �⎠

⎞ (39) 

 
with vector component 𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘: 
 

𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 =
− 𝒈𝒈𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆 × 𝒈𝒈𝑘𝑘−𝑆𝑆

��2 + 2 𝒈𝒈𝑘𝑘6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆 . 𝒈𝒈𝑘𝑘−𝑆𝑆 �
 (40) 

 
Substituting equations (22) to (25) into equation (35) gives an expression for the 
geomagnetic tilt error quaternion 𝑞𝑞𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 as: 
 

𝑞𝑞𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 =
1

√2

⎣
⎢
⎢
⎢
⎢
⎡

�1 + �
𝒎𝒎𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆

𝐵𝐵
� .�

𝒎𝒎𝑘𝑘
−𝑆𝑆

𝐵𝐵
� −

� 𝒎𝒎𝑘𝑘
6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆

𝐵𝐵 �× � 𝒎𝒎𝑘𝑘
−𝑆𝑆

𝐵𝐵 �

��1 + �
𝒎𝒎𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆

𝐵𝐵 � .�
𝒎𝒎𝑘𝑘

−𝑆𝑆

𝐵𝐵 ��
⎦
⎥
⎥
⎥
⎥
⎤

 (41) 

 
with vector component 𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘: 
 

𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 =
−� 𝒎𝒎𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆

𝐵𝐵 �× � 𝒎𝒎𝑘𝑘
−𝑆𝑆

𝐵𝐵 �

�2 + 2�
𝒎𝒎𝑘𝑘

6𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆

𝐵𝐵 � .�
𝒎𝒎𝑘𝑘

−𝑆𝑆

𝐵𝐵 �

 (42) 
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4. Gyroscope Sensor Model 

4.1 Zero Rate Offset Model 
The model of the gyroscope sensor measurement 𝒀𝒀𝑘𝑘 

𝑆𝑆  (with units deg/s) is: 
 

𝒀𝒀𝑘𝑘 
𝑆𝑆 = 𝝎𝝎𝑘𝑘 + 𝒃𝒃𝑘𝑘 + 𝒗𝒗𝑌𝑌,𝑘𝑘 (43) 

 
where 𝝎𝝎𝑘𝑘 is the true angular velocity in deg/s and 𝒃𝒃𝑘𝑘 the gyroscope offset vector (deg/s). 
𝒗𝒗𝑌𝑌,𝑘𝑘 is the additive gyroscope noise vector (deg/s) with covariance matrix 𝑸𝑸𝑣𝑣𝑣𝑣 assumed 
to be constant over time, uncorrelated between axes (diagonal) and to have the same 
value 𝑄𝑄𝑣𝑣𝑣𝑣

3
 in each axis: 

 

𝑸𝑸𝑣𝑣𝑣𝑣 = 𝐸𝐸 �𝒗𝒗𝑌𝑌,𝑘𝑘�𝒗𝒗𝑌𝑌,𝑘𝑘�
𝑇𝑇� = �

𝑄𝑄𝑣𝑣𝑣𝑣
3
� 𝑰𝑰 (44) 

 
The gyroscope offset 𝒃𝒃𝑘𝑘 vector (units deg/s) is modeled as the random walk: 
 

𝒃𝒃𝑘𝑘 = 𝒃𝒃𝑘𝑘−1 + 𝒘𝒘𝑏𝑏,𝑘𝑘 (45) 

 
where 𝒘𝒘𝑏𝑏,𝑘𝑘 is a zero mean white Gaussian noise vector with units of deg/s with 
covariance 𝑄𝑄𝑤𝑤𝑤𝑤 assumed to be constant over time, uncorrelated between axes (diagonal) 
and to have the same value 𝑄𝑄𝑤𝑤𝑤𝑤

3
 in each axis: 

 

𝑸𝑸𝑤𝑤𝑏𝑏 = 𝐸𝐸 �𝒘𝒘𝑏𝑏,𝑘𝑘�𝒘𝒘𝑏𝑏,𝑘𝑘�
𝑇𝑇� = �

𝑄𝑄𝑤𝑤𝑤𝑤
3
� 𝑰𝑰 (46) 

 
The a priori estimate of the gyroscope offset is simply the a posteriori estimate from the 
previous sample since 𝒘𝒘𝑏𝑏,𝑘𝑘 is zero mean and white: 
 

𝒃𝒃�𝑘𝑘− = 𝒃𝒃�𝑘𝑘−1+  (47) 

 
Simple algebra gives 𝒃𝒃�𝜀𝜀,𝑘𝑘

−  as a function of 𝒃𝒃�𝜀𝜀,𝑘𝑘−1
+ : 

 

𝒃𝒃�𝜀𝜀,𝑘𝑘
− = 𝒃𝒃�𝑘𝑘− − 𝒃𝒃𝑘𝑘 = 𝒃𝒃�𝑘𝑘−1+ − 𝒃𝒃𝑘𝑘 = 𝒃𝒃�𝑘𝑘−1+ − �𝒃𝒃𝑘𝑘−1 + 𝒘𝒘𝑏𝑏,𝑘𝑘� = �𝒃𝒃�𝑘𝑘−1+ − 𝒃𝒃𝑘𝑘−1� − 𝒘𝒘𝑏𝑏,𝑘𝑘 (48) 

⇒ 𝒃𝒃�𝜀𝜀,𝑘𝑘
− = 𝒃𝒃�𝜀𝜀,𝑘𝑘−1

+ − 𝒘𝒘𝑏𝑏,𝑘𝑘 (49) 
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4.2 Angular Velocity Model 
The a priori estimate 𝝎𝝎�𝑘𝑘− of the true angular velocity 𝝎𝝎𝑘𝑘 is computed from the gyroscope 
reading in the sensor frame 𝒀𝒀𝑘𝑘 

𝑆𝑆  by subtracting off the current a priori zero rate gyroscope 
offset 𝒃𝒃�𝑘𝑘− which equals the a posteriori offset estimate 𝒃𝒃�𝑘𝑘−1+  from the previous iteration: 
 

𝝎𝝎�𝑘𝑘− = � 𝒀𝒀𝑘𝑘 
𝑆𝑆 − 𝒃𝒃�𝑘𝑘−� = � 𝒀𝒀𝑘𝑘 

𝑆𝑆 − 𝒃𝒃�𝑘𝑘−1+ � (50) 

 
Substituting for 𝒀𝒀𝑘𝑘 

𝑆𝑆  gives the relationship between the error components: 
 

𝝎𝝎�𝑘𝑘− = 𝝎𝝎𝑘𝑘 + 𝒃𝒃𝑘𝑘 + 𝒗𝒗𝑌𝑌,𝑘𝑘 − 𝒃𝒃�𝑘𝑘−1+  (51) 

 
By definition: 
 

𝝎𝝎�𝑘𝑘− = 𝝎𝝎𝑘𝑘 + 𝝎𝝎�𝜀𝜀,𝑘𝑘
−  (52) 

⇒ 𝝎𝝎�𝜀𝜀,𝑘𝑘
− = 𝒃𝒃𝑘𝑘−1 + 𝒘𝒘𝑏𝑏,𝑘𝑘 + 𝒗𝒗𝑌𝑌,𝑘𝑘 − 𝒃𝒃�𝑘𝑘−1+  (53) 

 
By definition: 
 

𝒃𝒃�𝜀𝜀,𝑘𝑘−1
+ = 𝒃𝒃�𝑘𝑘−1+ − 𝒃𝒃𝑘𝑘−1 (54) 

⇒ 𝝎𝝎�𝜀𝜀,𝑘𝑘
− = −𝒃𝒃�𝜀𝜀,𝑘𝑘−1

+ + 𝒘𝒘𝑏𝑏,𝑘𝑘 + 𝒗𝒗𝑌𝑌,𝑘𝑘 = −𝒃𝒃�𝜀𝜀,𝑘𝑘
− + 𝒘𝒘𝑏𝑏,𝑘𝑘 + 𝒗𝒗𝑌𝑌,𝑘𝑘 (55) 

 
Equation (55) states that the error in the a priori estimate of angular velocity comprises 
three terms: 

i) The error in the a priori estimate 𝒃𝒃�𝜀𝜀,𝑘𝑘
−  of the gyroscope zero rate sensor. The 

minus sign results from the fact that an over-estimate of the gyroscope zero rate 
gyroscope leads to an under-estimate of the angular velocity. 
ii) The noise 𝒘𝒘𝑏𝑏,𝑘𝑘 in the gyroscope zero rate offset drift. 
iii) The additive gyroscope sensor noise 𝒗𝒗𝑌𝑌,𝑘𝑘. 

The sensor noise term 𝒗𝒗𝑌𝑌,𝑘𝑘 can only be separated from the offset drift term 𝒘𝒘𝑏𝑏,𝑘𝑘 by 
observing the gyroscope over a period long enough for the drift to be measurable. On a 
sample by sample basis, the gyroscope offset drift term 𝒘𝒘𝑏𝑏,𝑘𝑘 is indistinguishable from the 
gyroscope noise term 𝒗𝒗𝑌𝑌,𝑘𝑘. 

4.3 Compile Time Constants 
The value of 𝑄𝑄𝑣𝑣𝑣𝑣 is set for the 6DOF and 9DOF Kalman filter algorithms in the compile 
time constants FQVY_9DOF_GBY_KALMAN and FQVY_6DOF_GY_KALMAN defined in file 
fusion.h. Increasing the value of 𝑄𝑄𝑣𝑣𝑣𝑣 gives a lower weighting to the gyroscope orientation 
estimate which results in more rapid convergence to the gravity and geomagnetic vector 
estimate from the accelerometer and magnetometer but increased sensitivity to 
acceleration and magnetic disturbance noise. 
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The value of 𝑄𝑄𝑤𝑤𝑤𝑤 is set for the 6DOF and 9DOF Kalman filter algorithms in the compile 
time constants FQWB_9DOF_GBY_KALMAN and FQWB_6DOF_GY_KALMAN defined in file 
fusion.h. Increasing the value of 𝑄𝑄𝑤𝑤𝑤𝑤 allows more rapid tracking of changes in the zero 
rate offset, including the initial estimation at power on, but has the drawback of increased 
sensitivity to acceleration and magnetic disturbance noise. 
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5. Accelerometer, Magnetometer and Gyroscope Sensor Fusion Kalman 
Filter 

5.1 Introduction 
Section 2 derived expressions for the interfering noise levels from sensor noise and from 
external sources such as acceleration and magnetic disturbance. Section 3 defined the 
two tilt error quaternions which form the measurement error vector in the complementary 
Kalman filter. Section 4 defined the gyroscope and angular velocity models. 

This section combines all these results to derive the Kalman filter equations for the 
sensor fusion of accelerometer, magnetometer and gyroscope data. It is also commonly 
referred to as 9 degree of freedom or 9DOF sensor fusion since each of the three 
sensors has three axes and provides 3 degrees of freedom to the filter. 

5.2 Direct Kalman Filter Process Model 
The system is modeled with the seven element state vector 𝒙𝒙𝑘𝑘 comprising i) the 
orientation quaternion 𝑞𝑞𝑘𝑘 and ii) the zero rate gyroscope offset 𝒃𝒃𝑘𝑘 at iteration 𝑘𝑘: 
 

𝒙𝒙𝑘𝑘 =  �
𝑞𝑞𝑘𝑘
𝒃𝒃𝑘𝑘� 

(56) 

 
The orientation quaternion component 𝑞𝑞𝑘𝑘 of the state vector evolves over the Kalman 
filter time period 𝛿𝛿𝛿𝛿 from iteration 𝑘𝑘 − 1 to 𝑘𝑘 through the system angular velocity 𝝎𝝎𝑘𝑘 as: 

𝑞𝑞𝑘𝑘 = 𝑞𝑞𝑘𝑘−1Δ𝑞𝑞(𝝎𝝎𝑘𝑘𝛿𝛿𝛿𝛿) (57) 

 
Δ𝑞𝑞(𝝎𝝎𝑘𝑘𝛿𝛿𝛿𝛿) is the incremental rotation quaternion encoding rotation by angle |𝝎𝝎𝑘𝑘|𝛿𝛿𝛿𝛿 about 
normalized rotation axis 𝒏𝒏� = � 𝝎𝝎𝑘𝑘

|𝝎𝝎𝑘𝑘|
�: 

 

Δ𝑞𝑞 = �𝑐𝑐𝑐𝑐𝑐𝑐 �
|𝝎𝝎𝑘𝑘|𝛿𝛿𝛿𝛿

2
� , �

𝝎𝝎𝑘𝑘

|𝝎𝝎𝑘𝑘|� 𝑠𝑠𝑠𝑠𝑠𝑠 �
|𝝎𝝎𝑘𝑘|𝛿𝛿𝛿𝛿

2
�� (58) 

 
The gyroscope offset component 𝒃𝒃𝑘𝑘 of the state vector evolves as the random walk 
defined in equation (45).  

 

5.3 A Priori Estimation of the Direct Process Model 
The a priori estimate 𝑞𝑞�𝑘𝑘− of the orientation quaternion at iteration 𝑘𝑘 is computed using 
equation (57) by rotating the previous a posteriori orientation estimate 𝑞𝑞�𝑘𝑘−1+  by the 
incremental rotation vector 𝝎𝝎�𝑘𝑘−𝛿𝛿𝛿𝛿 during the Kalman filter interval 𝛿𝛿𝛿𝛿: 
 

𝑞𝑞�𝑘𝑘− = 𝑞𝑞�𝑘𝑘−1+ Δ𝑞𝑞(𝝎𝝎�𝑘𝑘−𝛿𝛿𝛿𝛿) (59) 

 
where the a priori estimate of the angular velocity 𝝎𝝎�𝑘𝑘− is defined in equation (50). 
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The a priori estimate of the gyroscope zero rate offset is given by equation (47) and 
simply equals the a posteriori estimate from the previous iteration. 

 

5.4 Indirect Kalman Filter Process Model 
Instead of estimating the process 𝒙𝒙𝑘𝑘 directly, it is more convenient to use an indirect 
Kalman filter whose state vector is the 9x1 error vector 𝒙𝒙𝜀𝜀,𝑘𝑘 with components: 
 

𝒙𝒙𝜀𝜀,𝑘𝑘 = �
𝒒𝒒𝑔𝑔𝑔𝑔,𝑘𝑘
𝒒𝒒𝑚𝑚𝑚𝑚,𝑘𝑘
𝒃𝒃𝜀𝜀,𝑘𝑘

� (60) 

 
The 3x1 vector 𝒒𝒒𝑔𝑔𝑔𝑔,𝑘𝑘 is the vector component of the quaternion 𝑞𝑞𝑔𝑔𝑔𝑔,𝑘𝑘 which models the 
orientation error in tilt angle relative to the true gravity vector 𝒈𝒈𝑘𝑘 

𝑆𝑆 . The term ‘gravity tilt 
error angle’ has its normal meaning of a tilt error relative to the downwards pointing 
gravity vector. It can be determined using accelerometer measurements alone. 
The 3x1 vector 𝒒𝒒𝑚𝑚𝑚𝑚 ,𝑘𝑘 is the vector component of the quaternion 𝑞𝑞𝑚𝑚𝑚𝑚,𝑘𝑘 which models the 
orientation error in tilt angle relative to the true geomagnetic vector 𝒎𝒎𝑘𝑘

 
 
𝑆𝑆 . The term 

‘geomagnetic tilt error angle’ is analogous to the gravity tilt angle but is now defined as 
the tilt relative to the northwards and downwards (upwards) pointing geomagnetic vector 
in the northern (southern) hemisphere. It can be determined using magnetometer 
measurements alone. 
The 3x1 vector 𝒃𝒃𝜀𝜀,𝑘𝑘 (deg/s) models the error in the estimate of the zero rate gyroscope 
offset. 

The simultaneous correction by the Kalman filter of both the gravity and geomagnetic tilt 
error angles corrects the estimated orientation towards the true orientation. In the 
presence of high levels of magnetic disturbance from a magnet, only the gravity tilt error 
will be corrected resulting in an orientation estimate stable in roll and pitch but 
susceptible to drift in compass heading over a sufficiently long period. Similarly in the 
presence of high levels of acceleration disturbance from shaking, only the geomagnetic 
tilt error will be corrected leading to an orientation estimate susceptible to drift in roll and 
pitch over a sufficiently long period. 

 

5.5 A Posteriori Correction of the Direct Process Model 
The indirect Kalman filter computes a posteriori estimate 𝒙𝒙�𝜀𝜀,𝑘𝑘

+  of the error state vector 𝒙𝒙𝜀𝜀,𝑘𝑘 
defined in equation (60): 
 

𝒙𝒙𝜀𝜀,𝑘𝑘
+ = �

𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘
+

𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘
+

𝒃𝒃�𝜀𝜀,𝑘𝑘
+

� (61) 

 
This section documents how the a posteriori error vector 𝒙𝒙�𝜀𝜀,𝑘𝑘

+  is used to compute the a 
posteriori state vector 𝒙𝒙𝑘𝑘+ defined as: 
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𝒙𝒙𝑘𝑘+ =  �
𝑞𝑞�𝑘𝑘+

𝒃𝒃�𝑘𝑘+
� (62) 

 
The a posteriori gravity tilt error quaternion 𝑞𝑞�𝑔𝑔𝑔𝑔,𝑘𝑘

+  is used to correct the a priori estimate of 
the gravity vector in the sensor frame 𝒈𝒈𝑘𝑘−𝑆𝑆  defined in equations (18) and (20) as: 
 

𝒈𝒈𝑘𝑘+𝑆𝑆 = 𝑞𝑞�𝑔𝑔𝑔𝑔,𝑘𝑘
+ 𝒈𝒈𝑘𝑘−𝑆𝑆 �𝑞𝑞�𝑔𝑔𝑔𝑔,𝑘𝑘

+ �∗ (63) 

 
The a posteriori geomagnetic tilt error quaternion 𝑞𝑞�𝑚𝑚𝑚𝑚,𝑘𝑘

+  is used to correct the a priori 
estimate of the geomagnetic vector in the sensor frame 𝒎𝒎𝑘𝑘

−𝑆𝑆  defined in equations (23) 
and (25) as: 
 

𝒎𝒎𝑘𝑘
+𝑆𝑆 = 𝑞𝑞�𝑚𝑚𝑚𝑚,𝑘𝑘

+ 𝒎𝒎𝑘𝑘
−𝑆𝑆 �𝑞𝑞�𝑚𝑚𝑚𝑚,𝑘𝑘

+ �∗ (64) 

 
Equations (63) and (64) are vector rotations performed by pre- and post-multiplication by 
a rotation quaternion and its conjugate. The conjugated rotation quaternion appears on 
the right hand side and the non-conjugated quaternion on the left to ensure that the tilt 
error is removed from the current a priori estimate rather than added. 

 

The a posteriori estimate of the gyroscope offset vector 𝒃𝒃�𝑘𝑘+ is simply the a priori estimate 
minus the a posteriori error estimate 𝒃𝒃�𝜀𝜀,𝑘𝑘

+ : 
 

𝒃𝒃�𝑘𝑘+ = 𝒃𝒃�𝑘𝑘− − 𝒃𝒃�𝜀𝜀,𝑘𝑘
+ = 𝒃𝒃�𝑘𝑘−1+ − 𝒃𝒃�𝜀𝜀,𝑘𝑘

+  (65) 

 
The final step is the straightforward calculation of the a posteriori orientation quaternion 
𝑞𝑞�𝑘𝑘+ from the a posteriori gravity vector 𝒈𝒈𝑘𝑘+𝑆𝑆  and geomagnetic vector 𝒎𝒎𝑘𝑘

+𝑆𝑆  estimates 
computed in equations (63) and (64). This is done by first calculating the a posteriori 
orientation matrix 𝑹𝑹�𝑘𝑘+ using the vector product algorithm documented in Section 6 of 
AN5021 “Calculation of Orientation Matrices from Sensor Data” and then calculating the 
orientation quaternion 𝑞𝑞�𝑘𝑘+ from the orientation matrix 𝑹𝑹�𝑘𝑘+. 

 

5.6 Kalman Filter Measurement Error Model 
The vector components of the tilt error quaternions 𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 and 𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 are defined in 
equations (40) and (42) and are measured between the 6DOF (accelerometer and 
magnetometer) and a priori (gyroscope) estimates of the gravity and geomagnetic 
vectors. These two vector quaternions form the components of the 6x1 indirect Kalman 
filter measurement error vector 𝒛𝒛𝜀𝜀,𝑘𝑘

 : 
 

𝒛𝒛𝜀𝜀,𝑘𝑘
 = �

𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘
𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘

� (66) 
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The measurement error vector 𝒛𝒛𝜀𝜀,𝑘𝑘
  is modeled as being related to the error process 

vector 𝒙𝒙𝜀𝜀,𝑘𝑘 through the 6x9 measurement matrix 𝑪𝑪𝑘𝑘 plus measurement noise 𝒗𝒗𝑘𝑘: 
 

𝒛𝒛𝜀𝜀,𝑘𝑘
 = �

𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘
𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘

� = 𝑪𝑪𝑘𝑘𝒙𝒙𝜀𝜀,𝑘𝑘 + 𝒗𝒗𝑘𝑘 = 𝑪𝑪𝑘𝑘 �
𝒒𝒒𝑔𝑔𝑔𝑔,𝑘𝑘
𝒒𝒒𝑚𝑚𝑚𝑚 ,𝑘𝑘
𝒃𝒃𝜀𝜀,𝑘𝑘

� + �
𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘
𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘

� (67) 

 
where the 6x1 measurement noise vector 𝒗𝒗𝑘𝑘 is decomposed into 3x1 gravity 𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘 and 
3x1 geomagnetic 𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘 measurement noise vectors: 
 

𝒗𝒗𝑘𝑘 = �
𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘
𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘

� (68) 

 
The measured gravity tilt error quaternion 𝑞𝑞𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 measures the difference between the a 
priori (gyroscope) and 6DOF (accelerometer and magnetometer) orientation estimates. It 
is therefore equal to the product of the true gravity tilt error quaternion 𝑞𝑞𝑔𝑔𝑔𝑔,𝑘𝑘 and i) the 
quaternion error 𝑞𝑞�𝝎𝝎�𝜀𝜀,𝑘𝑘

− 𝛿𝛿𝛿𝛿� resulting from an erroneous estimate of the a priori angular 
velocity and ii) the quaternion error 𝑞𝑞(𝒗𝒗𝑘𝑘) introduced by noise in 6DOF orientation 
estimate: 
 

𝑞𝑞𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 = 𝑞𝑞𝑔𝑔𝑔𝑔,𝑘𝑘𝑞𝑞�𝝎𝝎�𝜀𝜀,𝑘𝑘
− 𝛿𝛿𝛿𝛿�𝑞𝑞(𝒗𝒗𝑘𝑘) = 𝑞𝑞𝑔𝑔𝑔𝑔,𝑘𝑘𝑞𝑞�−𝒃𝒃�𝜀𝜀,𝑘𝑘−1

+ 𝛿𝛿𝛿𝛿�𝑞𝑞�𝒘𝒘𝑏𝑏,𝑘𝑘𝛿𝛿𝛿𝛿�𝑞𝑞�𝒗𝒗𝑌𝑌,𝑘𝑘𝛿𝛿𝛿𝛿�𝑞𝑞�𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘� (69) 

 
With the assumption that the errors are small, the scalar components of the quaternions 
are near unity and equation (69) can be written as: 
 

�1,𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘� ≈ �1,𝒒𝒒𝑔𝑔𝑔𝑔,𝑘𝑘��1,𝒒𝒒�−𝒃𝒃�𝜀𝜀,𝑘𝑘−1
+ 𝛿𝛿𝛿𝛿���1,𝒒𝒒�𝒘𝒘𝑏𝑏,𝑘𝑘𝛿𝛿𝛿𝛿���1,𝒒𝒒�𝒗𝒗𝑌𝑌,𝑘𝑘𝛿𝛿𝛿𝛿���1,𝒒𝒒�𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�� (70) 

 
Separating out the quaternion vector components of equation (70) gives: 
 

𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 ≈ 𝒒𝒒𝑔𝑔𝑔𝑔,𝑘𝑘 + �
1
2
� �
𝜋𝜋𝜋𝜋𝜋𝜋
180

� �−𝒃𝒃�𝜀𝜀,𝑘𝑘−1
+ + 𝒘𝒘𝑏𝑏,𝑘𝑘 + 𝒗𝒗𝑌𝑌,𝑘𝑘� + 𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘 (71) 

 

The factor �1
2
� �𝜋𝜋𝜋𝜋𝜋𝜋

180
� converts from the native units of deg/s in the gyro offset error, 

random walk and noise vectors to the sine of half the subtended angle (equal to half the 
subtended angle in radians) used in the quaternion vector. 

 
Similar arguments for the measured geomagnetic tilt error vector quaternion 𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 give: 
 

𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 ≈ 𝒒𝒒𝑚𝑚𝑚𝑚,𝑘𝑘 + �
1
2
� �
𝜋𝜋𝜋𝜋𝜋𝜋
180

� �−𝒃𝒃�𝜀𝜀,𝑘𝑘−1
+ + 𝒘𝒘𝑏𝑏,𝑘𝑘 + 𝒗𝒗𝑌𝑌,𝑘𝑘� + 𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘 (72) 

 
With the definition of the constant 𝛼𝛼 as: 
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𝛼𝛼 = �
𝜋𝜋𝜋𝜋𝜋𝜋
180

� (73) 

 
the 6x9 measurement matrix 𝑪𝑪𝑘𝑘 can be written as: 
 

𝑪𝑪𝑘𝑘 = �
𝑰𝑰3 𝟎𝟎3 �

−𝛼𝛼
2
� 𝑰𝑰3

𝟎𝟎3 𝑰𝑰3 �
−𝛼𝛼
2
� 𝑰𝑰3

� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 0 0 0 0 0 �
−𝛼𝛼
2
� 0 0

0 1 0 0 0 0 0 �
−𝛼𝛼
2
� 0

0 0 1 0 0 0 0 0 �
−𝛼𝛼
2
�

0 0 0 1 0 0 �
−𝛼𝛼
2
� 0 0

0 0 0 0 1 0 0 �
−𝛼𝛼
2
� 0

0 0 0 0 0 1 0 0 �
−𝛼𝛼
2
�⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 (74) 

 

5.7 Indirect Kalman Filter Update Equations 
This section references the standard Kalman filter equations derived in AN5018 “Basic 
Kalman Filter Theory” but applied to the error process in the indirect Kalman filter 
described in this section. 
The error process 𝒙𝒙𝜀𝜀,𝑘𝑘 defined in equation (60) is modeled as evolving in conventional 
Kalman filter style using the linear model: 
 

𝒙𝒙𝜀𝜀,𝑘𝑘 = 𝑨𝑨𝑘𝑘𝒙𝒙𝜀𝜀,𝑘𝑘−1 + 𝒘𝒘𝑘𝑘 (75) 

 
The matrix 𝑨𝑨𝑘𝑘 is the Kalman filter state matrix and 𝒘𝒘𝑘𝑘 is an additive unpredictable (white) 
noise component. 

Equation (A) in AN5018 defines the a priori estimate of the error vector 𝒙𝒙�𝜀𝜀,𝑘𝑘
−  in terms of 

the previous iteration’s a posteriori estimate 𝒙𝒙�𝜀𝜀,𝑘𝑘−1
+  as: 

 

𝒙𝒙�𝜀𝜀,𝑘𝑘
− = 𝑨𝑨𝑘𝑘𝒙𝒙�𝜀𝜀,𝑘𝑘−1

+  (76) 

 
Equations (63) to (65) for iteration 𝑘𝑘 − 1 use the a posteriori error vector 𝒙𝒙𝜀𝜀,𝑘𝑘−1

+  to correct 
the a posteriori state vector 𝒙𝒙𝑘𝑘−1+  with the result that the a priori error vector estimate 𝒙𝒙�𝜀𝜀,𝑘𝑘

−  
for the next iteration 𝑘𝑘 is zero: 
 

𝒙𝒙�𝜀𝜀,𝑘𝑘
− = 0 ⇒ 𝑨𝑨𝑘𝑘 = 0 (77) 

 
Equation (D) in AN5018 defines the a posteriori estimate of the error vector 𝒙𝒙�𝜀𝜀,𝑘𝑘

+  in terms 
of the measurement matrix 𝑪𝑪𝑘𝑘, Kalman gain matrix 𝑲𝑲𝑘𝑘 and measurement vector 𝒛𝒛𝜀𝜀,𝑘𝑘 as: 
 

𝒙𝒙�𝜀𝜀,𝑘𝑘
+ = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪𝑘𝑘)𝒙𝒙�𝜀𝜀,𝑘𝑘

− + 𝑲𝑲𝑘𝑘𝒛𝒛𝜀𝜀,𝑘𝑘 (78) 
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Substituting equation (77) gives: 
 

𝒙𝒙�𝜀𝜀,𝑘𝑘
+ = 𝑲𝑲𝑘𝑘𝒛𝒛𝜀𝜀,𝑘𝑘 (79) 

 
Equation (B1) in AN5018 defines the evolution of the a priori covariance matrix 𝑷𝑷𝑘𝑘− as: 
 

𝑷𝑷𝑘𝑘− = 𝑨𝑨𝑘𝑘𝑷𝑷𝑘𝑘−1+ 𝑨𝑨𝑘𝑘𝑇𝑇 + 𝑸𝑸𝑤𝑤,𝑘𝑘 (80) 

 
where 𝑸𝑸𝑤𝑤,𝑘𝑘 is the covariance matrix of the process noise vector 𝒘𝒘𝑘𝑘: 
 

𝑸𝑸𝑤𝑤,𝑘𝑘 = 𝐸𝐸[𝒘𝒘𝑘𝑘𝒘𝒘𝑘𝑘
𝑇𝑇] (81) 

 
Substituting 𝑨𝑨𝑘𝑘 = 𝟎𝟎 from equation (77) gives: 
 

𝑷𝑷𝑘𝑘− = 𝑸𝑸𝑤𝑤,𝑘𝑘 (82) 

 
Equation (C) of AN5018 defines the Kalman gain matrix 𝑲𝑲𝑘𝑘 as: 
 

𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑘𝑘−𝑪𝑪𝑘𝑘
𝑇𝑇�𝑪𝑪𝑘𝑘𝑷𝑷𝑘𝑘−𝑪𝑪𝑘𝑘

𝑇𝑇 + 𝑸𝑸𝑣𝑣,𝑘𝑘�
−1 (83) 

 
where 𝑸𝑸𝑣𝑣,𝑘𝑘 is the covariance matrix of the measurement noise vector 𝒗𝒗𝑘𝑘:  
 

𝑸𝑸𝑣𝑣,𝑘𝑘 = 𝐸𝐸[𝒗𝒗𝑘𝑘𝒗𝒗𝑘𝑘𝑇𝑇] (84) 

 
Substituting equation (82) gives the expression for the Kalman filter gain in the indirect 
filter as: 
 

𝑲𝑲𝑘𝑘 = 𝑸𝑸𝑤𝑤,𝑘𝑘𝑪𝑪𝑘𝑘𝑇𝑇�𝑪𝑪𝑘𝑘𝑸𝑸𝑤𝑤,𝑘𝑘𝑪𝑪𝑘𝑘𝑇𝑇 + 𝑸𝑸𝑣𝑣,𝑘𝑘�
−1 (85) 

 
The indirect Kalman filter is now completely defined once expressions are derived for the 
two noise covariance matrices 𝑸𝑸𝑤𝑤,𝑘𝑘 and 𝑸𝑸𝑣𝑣,𝑘𝑘. But before deriving these two matrices in 
the next section, it’s useful to understand their role in the operation of the indirect Kalman 
filter. 
The covariance matrix 𝑸𝑸𝑤𝑤,𝑘𝑘 models the errors in the a priori extrapolation of the state 
vector using the gyroscope sensor and the covariance matrix 𝑸𝑸𝑣𝑣,𝑘𝑘 models the errors in 
the measurement of the state vector using the accelerometer and magnetometer 
sensors. 
In the limiting case of high measurement noise covariance 𝑸𝑸𝑣𝑣,𝑘𝑘, the Kalman filter should 
use the a priori gyroscope sensor extrapolation and apply zero a posteriori correction 
from the measurement vector 𝒛𝒛𝜀𝜀,𝑘𝑘. Evaluating equations (85) and (78) in this limit gives 
the expected result: 
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𝑲𝑲𝑘𝑘 ≈ 𝑸𝑸𝑤𝑤,𝑘𝑘𝑪𝑪𝑘𝑘𝑇𝑇𝑸𝑸𝑣𝑣,𝑘𝑘
−1 = 𝟎𝟎 (86) 

⇒ 𝒙𝒙�𝜀𝜀,𝑘𝑘
+ = 𝒙𝒙�𝜀𝜀,𝑘𝑘

−  (87) 
 
In the limiting case of low measurement noise covariance 𝑸𝑸𝑣𝑣,𝑘𝑘, the Kalman filter should 
ignore the gyroscope and use the orientation estimate measured from the accelerometer 
and magnetometer. Evaluating equations (85) and (78) in this limit gives the expected 
result: 
 

𝑪𝑪𝑘𝑘𝑲𝑲𝑘𝑘𝑪𝑪𝑘𝑘 ≈ �𝑪𝑪𝑘𝑘𝑸𝑸𝑤𝑤,𝑘𝑘𝑪𝑪𝑘𝑘𝑇𝑇��𝑪𝑪𝑘𝑘𝑸𝑸𝑤𝑤,𝑘𝑘𝑪𝑪𝑘𝑘𝑇𝑇�
−1𝑪𝑪𝑘𝑘 = 𝑪𝑪𝑘𝑘 ⇒ 𝑲𝑲𝑘𝑘𝑪𝑪𝑘𝑘 = 𝑰𝑰9 (88) 

⇒ 𝒙𝒙�𝜀𝜀,𝑘𝑘
+ = 𝑲𝑲𝑘𝑘𝒛𝒛𝜀𝜀,𝑘𝑘  (89) 

 

5.8 Process Error Covariance Matrix 
The 9x9 error process noise covariance matrix 𝑸𝑸𝑤𝑤,𝑘𝑘 measures the error covariance in the 
a priori linear prediction of the error state vector 𝒙𝒙𝜀𝜀,𝑘𝑘 defined in equation (75) from one 
iteration to the next: 
 

𝑸𝑸𝑤𝑤,𝑘𝑘 = 𝐸𝐸[𝒘𝒘𝑘𝑘𝒘𝒘𝑘𝑘
𝑇𝑇] =

⎝

⎜
⎛
𝐸𝐸 �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘

− �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘
− �𝑇𝑇� 𝐸𝐸 �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘

− �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘
− �𝑇𝑇� 𝐸𝐸 �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘

− �𝒃𝒃�𝜀𝜀,𝑘𝑘
− �𝑇𝑇�

𝐸𝐸 �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘
− �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘

− �𝑇𝑇� 𝐸𝐸 �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘
− �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘

− �𝑇𝑇� 𝐸𝐸 �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘
− �𝒃𝒃�𝜀𝜀,𝑘𝑘

− �𝑇𝑇�

𝐸𝐸 �𝒃𝒃�𝜀𝜀,𝑘𝑘
− �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘

− �𝑇𝑇� 𝐸𝐸 �𝒃𝒃�𝜀𝜀,𝑘𝑘
− �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘

− �𝑇𝑇� 𝐸𝐸 �𝒃𝒃�𝜀𝜀,𝑘𝑘
− �𝒃𝒃�𝜀𝜀,𝑘𝑘

− �𝑇𝑇� ⎠

⎟
⎞

 

(90) 

 

The covariance 𝐸𝐸 �𝒃𝒃�𝜀𝜀,𝑘𝑘
− �𝒃𝒃�𝜀𝜀,𝑘𝑘

− �𝑇𝑇� evaluates to: 
 

𝐸𝐸 �𝒃𝒃�𝜀𝜀,𝑘𝑘
− �𝒃𝒃�𝜀𝜀,𝑘𝑘

− �𝑇𝑇� = 𝐸𝐸 ��𝒃𝒃�𝜀𝜀,𝑘𝑘−1
+ − 𝒘𝒘𝑏𝑏,𝑘𝑘��𝒃𝒃�𝜀𝜀,𝑘𝑘−1

+ − 𝒘𝒘𝑏𝑏,𝑘𝑘�
𝑇𝑇� = 𝑸𝑸𝑏𝑏𝜀𝜀𝑏𝑏𝜀𝜀,𝑘𝑘−1

+ + �
𝑄𝑄𝑤𝑤𝑤𝑤

3
� 𝑰𝑰3 (91) 

 
𝑸𝑸𝑏𝑏𝜀𝜀𝑏𝑏𝜀𝜀,𝑘𝑘−1
+  is approximated with the computed a posteriori values at iteration 𝑘𝑘 − 1 ignoring 

off-diagonal terms 
 

𝑸𝑸𝑏𝑏𝜀𝜀𝑏𝑏𝜀𝜀,𝑘𝑘−1
+ = 𝐸𝐸 �𝒃𝒃�𝜀𝜀,𝑘𝑘−1

+ �𝒃𝒃�𝜀𝜀,𝑘𝑘−1
+ �𝑇𝑇� ≈

⎝

⎜
⎛
�𝑏𝑏�𝑥𝑥𝑥𝑥,𝑘𝑘−1

+ �2 0 0

0 �𝑏𝑏�𝑦𝑦𝑦𝑦,𝑘𝑘−1
+ �2 0

0 0 �𝑏𝑏�𝑧𝑧𝑧𝑧,𝑘𝑘−1
+ �2⎠

⎟
⎞

 (92) 

 

The a priori gravity tilt error covariance 𝐸𝐸 �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘
− �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘

− �𝑇𝑇� evaluates to: 
 

𝐸𝐸 �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘
− �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘

− �
𝑇𝑇
� = 𝐸𝐸 ��𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘−1

+ + �
𝛼𝛼
2
� �−𝒃𝒃�𝜀𝜀,𝑘𝑘−1

+ + 𝒘𝒘𝑏𝑏,𝑘𝑘 + 𝒗𝒗𝑌𝑌,𝑘𝑘�� �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘−1
+ + �

𝛼𝛼
2
� �−𝒃𝒃�𝜀𝜀,𝑘𝑘−1

+ + 𝒘𝒘𝑏𝑏,𝑘𝑘 + 𝒗𝒗𝑌𝑌,𝑘𝑘��
𝑇𝑇
� (93) 

= 𝑸𝑸𝑞𝑞𝑔𝑔𝑔𝑔𝑞𝑞𝑔𝑔𝑔𝑔,𝑘𝑘−1
+ + �

𝛼𝛼
2
�
2
�𝑸𝑸𝑏𝑏𝜀𝜀𝑏𝑏𝜀𝜀,𝑘𝑘−1

+ + �
𝑄𝑄𝑣𝑣𝑣𝑣

3
� 𝑰𝑰3 + �

𝑄𝑄𝑤𝑤𝑤𝑤
3
� 𝑰𝑰3� (94) 
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where 𝑸𝑸𝑞𝑞𝑔𝑔𝑔𝑔𝑞𝑞𝑔𝑔𝑔𝑔,𝑘𝑘−1

+  is approximated by the a posteriori values at iteration 𝑘𝑘 − 1 ignoring off-
diagonal terms: 
 

𝑸𝑸𝑞𝑞𝑔𝑔𝑔𝑔𝑞𝑞𝑔𝑔𝑔𝑔,𝑘𝑘−1
+ = 𝐸𝐸 �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘−1

+ �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘−1
+ �𝑇𝑇� ≈

⎝

⎜
⎛
�𝑞𝑞�𝑔𝑔𝑔𝑔𝑔𝑔 ,𝑘𝑘−1

+ �2 0 0

0 �𝑞𝑞�𝑔𝑔𝑔𝑔𝑔𝑔,𝑘𝑘−1
+ �2 0

0 0 �𝑞𝑞�𝑔𝑔𝑔𝑔𝑔𝑔,𝑘𝑘−1
+ �2⎠

⎟
⎞

 (95) 

 

Similarly, the geomagnetic tilt error covariance 𝐸𝐸 �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘
− �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘

− �𝑇𝑇� can be written as: 
 

𝐸𝐸 �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘
− �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘

− �𝑇𝑇� = 𝐸𝐸 �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘−1
+ + �

𝛼𝛼
2
� �−𝒃𝒃�𝜀𝜀,𝑘𝑘−1

+ + 𝒘𝒘𝑏𝑏,𝑘𝑘 + 𝒗𝒗𝑌𝑌,𝑘𝑘� �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘−1
+ + �

𝛼𝛼
2
� �−𝒃𝒃�𝜀𝜀,𝑘𝑘−1

+ +𝒘𝒘𝑏𝑏,𝑘𝑘 + 𝒗𝒗𝑌𝑌,𝑘𝑘��
𝑇𝑇
� (96) 

= 𝑸𝑸𝑞𝑞𝑚𝑚𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚,𝑘𝑘−1
+ + �

𝛼𝛼
2
�
2
�𝑸𝑸𝑏𝑏𝜀𝜀𝑏𝑏𝜀𝜀,𝑘𝑘−1

+ + �
𝑄𝑄𝑣𝑣𝑣𝑣

3
� 𝑰𝑰3 + �

𝑄𝑄𝑤𝑤𝑤𝑤
3
�� (97) 

 
where 𝑸𝑸𝑞𝑞𝑚𝑚𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚,𝑘𝑘−1

+  is approximated by the a posteriori values at iteration 𝑘𝑘 − 1 ignoring 
off-diagonal terms: 
 

𝑸𝑸𝑞𝑞𝑚𝑚𝑚𝑚𝑞𝑞𝑚𝑚𝑚𝑚,𝑘𝑘−1
+ = 𝐸𝐸 �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘−1

+ �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘−1
+ �𝑇𝑇� ≈

⎝

⎛
�𝑞𝑞�𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘−1

+ �2 0 0

0 �𝑞𝑞�𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘−1
+ �2 0

0 0 �𝑞𝑞�𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘−1
+ �2⎠

⎞ (98) 

 
The cross covariance of gravity tilt and geomagnetic tilt errors is assumed uncorrelated 
and the covariance 𝐸𝐸 �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘

− �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘
− �𝑇𝑇� is set to zero.  

 

The covariance 𝐸𝐸 �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘
− �𝒃𝒃�𝜀𝜀,𝑘𝑘

− �𝑇𝑇� evaluates to: 
 

𝐸𝐸 �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘
− �𝒃𝒃�𝜀𝜀,𝑘𝑘

− �𝑇𝑇� = 𝐸𝐸 ��𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘−1
+ + �

𝛼𝛼
2
� �−𝒃𝒃�𝜀𝜀,𝑘𝑘−1

+ + 𝒘𝒘𝑏𝑏,𝑘𝑘 + 𝒗𝒗𝑌𝑌,𝑘𝑘�� �𝒃𝒃�𝜀𝜀,𝑘𝑘−1
+ − 𝒘𝒘𝑏𝑏,𝑘𝑘�

𝑇𝑇� (99) 

= 𝑸𝑸𝑔𝑔𝜀𝜀𝑏𝑏𝜀𝜀,𝑘𝑘−1
+ − �

𝛼𝛼
2
� �𝑸𝑸𝑏𝑏𝜀𝜀𝑏𝑏𝜀𝜀,𝑘𝑘−1

+ + �
𝑄𝑄𝑤𝑤𝑤𝑤

3
� 𝑰𝑰3� (100) 

 
where 𝑸𝑸𝑔𝑔𝜀𝜀𝑏𝑏𝜀𝜀,𝑘𝑘−1

+  is approximated with the a posteriori values at iteration 𝑘𝑘 − 1 ignoring off-
diagonal terms: 
 

𝑸𝑸𝑔𝑔𝜀𝜀𝑏𝑏𝜀𝜀,𝑘𝑘−1
+ = 𝐸𝐸 �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘−1

+ �𝒃𝒃�𝜀𝜀,𝑘𝑘−1
+ �

𝑇𝑇
� ≈ �

𝑞𝑞�𝑔𝑔𝑔𝑔𝑔𝑔,𝑘𝑘−1
+ 𝑏𝑏�𝑥𝑥𝑥𝑥,𝑘𝑘−1

+ 0 0
0 𝑞𝑞�𝑔𝑔𝑔𝑔𝑔𝑔,𝑘𝑘−1

+ 𝑏𝑏�𝑦𝑦𝑦𝑦,𝑘𝑘−1
+ 0

0 0 𝑞𝑞�𝑔𝑔𝑔𝑔𝑔𝑔,𝑘𝑘−1
+ 𝑏𝑏�𝑧𝑧𝑧𝑧,𝑘𝑘−1

+
� (101) 

 

The covariance 𝐸𝐸 �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘
− �𝒃𝒃�𝜀𝜀,𝑘𝑘

− �𝑇𝑇� evaluates to: 
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𝐸𝐸 �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘
− �𝒃𝒃�𝜀𝜀,𝑘𝑘

− �𝑇𝑇� = 𝐸𝐸 ��𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘−1
+ + �

𝛼𝛼
2
� �−𝒃𝒃�𝜀𝜀,𝑘𝑘−1

+ + 𝒘𝒘𝑏𝑏,𝑘𝑘 + 𝒗𝒗𝑌𝑌,𝑘𝑘�� �𝒃𝒃�𝜀𝜀,𝑘𝑘−1
+ − 𝒘𝒘𝑏𝑏,𝑘𝑘�

𝑇𝑇� (102) 

= 𝑸𝑸𝑚𝑚𝜀𝜀𝑏𝑏𝜀𝜀,𝑘𝑘−1
+ − �

𝛼𝛼
2
� �𝑸𝑸𝑏𝑏𝜀𝜀𝑏𝑏𝜀𝜀,𝑘𝑘−1

+ + �
𝑄𝑄𝑤𝑤𝑤𝑤

3
� 𝑰𝑰3� (103) 

 
where 𝑸𝑸𝑚𝑚𝜀𝜀𝑏𝑏𝜀𝜀,𝑘𝑘−1

+  is approximated with the a posteriori values at iteration 𝑘𝑘 − 1 ignoring 
off-diagonal terms: 
 

𝑸𝑸𝑚𝑚𝜀𝜀𝑏𝑏𝜀𝜀,𝑘𝑘−1
+ = 𝐸𝐸 �𝒒𝒒�𝑚𝑚𝑚𝑚,𝑘𝑘−1

+ �𝒃𝒃�𝜀𝜀,𝑘𝑘−1
+ �

𝑇𝑇
� ≈ �

𝑞𝑞�𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘−1
+ 𝑏𝑏�𝑥𝑥𝑥𝑥,𝑘𝑘−1

+ 0 0
0 𝑞𝑞�𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘−1

+ 𝑏𝑏�𝑦𝑦𝑦𝑦,𝑘𝑘−1
+ 0

0 0 𝑞𝑞�𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘−1
+ 𝑏𝑏�𝑧𝑧𝑧𝑧,𝑘𝑘−1

+
� (104) 

 

5.9 Measurement Error Covariance Matrix 
The 6x6 covariance matrix of the measurement noise vector 𝒗𝒗𝑘𝑘 is defined using equation 
(68) as: 
 

𝑸𝑸𝑣𝑣,𝑘𝑘 = 𝐸𝐸[𝒗𝒗𝑘𝑘𝒗𝒗𝑘𝑘𝑇𝑇] = 𝐸𝐸 ��
𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘
𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘

� �
𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘
𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘

�
𝑇𝑇
� = �

𝐸𝐸 �𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�
𝑇𝑇� 𝐸𝐸 �𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�

𝑇𝑇�

𝐸𝐸 �𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�
𝑇𝑇� 𝐸𝐸 �𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�

𝑇𝑇�
� (105) 

 
The measurement quaternion vector 𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 is proportional to the sine of half the rotation 
angle between the a priori and 6DOF measurements of the gravity vector. Its noise term 
𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘 therefore includes i) the accelerometer sensor noise plus acceleration noise and ii) 
the gyroscope sensor and zero rate offset noise. It is unaffected by magnetometer noise 
and magnetic disturbance.  

Similarly, the measurement quaternion vector 𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 is the sine of half the rotation angle 
between the a priori and 6DOF measurements of the geomagnetic vector and its noise 
term 𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘 therefore includes i) the magnetometer sensor noise plus magnetic 
disturbance noise and ii) the gyroscope sensor and zero rate offset noise. It is unaffected 
by accelerometer noise and acceleration. 

With a small angle approximation and, remembering that the native units of the vector 
quaternion are radians and the native units of the gyroscope are deg/s, then the terms in 
𝑸𝑸𝑣𝑣,𝑘𝑘 are: 
 

𝐸𝐸 �𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�
𝑇𝑇� = �

1
4
� ��

𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘

3
� + �

𝑄𝑄𝑎𝑎,𝑘𝑘

3
�� 𝑰𝑰3 + �

𝛼𝛼2

4
� ��

𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘

3
� + �

𝑄𝑄𝑤𝑤𝑤𝑤,𝑘𝑘

3
�� 𝑰𝑰3 (106) 

= �
1

12
� ��𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 + 𝑄𝑄𝑎𝑎,𝑘𝑘� + 𝛼𝛼2�𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 + 𝑄𝑄𝑤𝑤𝑤𝑤,𝑘𝑘��𝑰𝑰3 (107) 

𝐸𝐸 �𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�
𝑇𝑇� = �

1
4𝐵𝐵2

� ��
𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘

3
� + �

𝑄𝑄𝑑𝑑,𝑘𝑘

3
�� 𝑰𝑰3 + �

𝛼𝛼2

4
� ��

𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘

3
� + �

𝑄𝑄𝑤𝑤𝑤𝑤,𝑘𝑘

3
�� 𝑰𝑰3 (108) 
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= �
1

12
� �
�𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 + 𝑄𝑄𝑑𝑑,𝑘𝑘�

𝐵𝐵2
+ 𝛼𝛼2�𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 + 𝑄𝑄𝑤𝑤𝑤𝑤,𝑘𝑘�� 𝑰𝑰3 (109) 

 
The noise covariances 𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 + 𝑄𝑄𝑎𝑎,𝑘𝑘 and 𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 + 𝑄𝑄𝑑𝑑,𝑘𝑘 are defined in equations (11) and 
(15) in terms of the measurement deviations from the gravity and geomagnetic spheres. 

The cross-correlation measurement noise terms are assumed to be uncorrelated: 
 

𝐸𝐸 �𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�
𝑇𝑇� = �𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�

𝑇𝑇� (110) 

 

5.10 Compile Time Constants 
These compile time constants are implemented with #define in file fusion.h. 

The constants FQVY_9DOF_GBY_KALMAN and FQWB_9DOF_GBY_KALMAN define the 
covariances 𝑄𝑄𝑣𝑣𝑣𝑣 and 𝑄𝑄𝑤𝑤𝑤𝑤. 

The constants FMIN_9DOF_GBY_BPL and FMAX_9DOF_GBY_BPL limit the permissible 
range of the gyroscope zero rate offset 𝒃𝒃𝑘𝑘. The default range is -7 deg/s to +7 deg/s. The 
main purpose is to prevent the gyroscope zero rate offset being initialized to a 
nonsensical value if the sensors are being rotated rather than held stationary when the 
sensor fusion is initialized. 
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6. Accelerometer and Gyroscope Sensor Fusion Kalman Filter 

6.1 Introduction 
This section derives the Kalman filter equations for the sensor fusion of accelerometer 
and gyroscope data. It is also commonly referred to as a 6 degree of freedom or 6DOF 
sensor fusion model since each of the two sensors has three axes providing three 
degrees of freedom. This Kalman filter is a simplified version of the 9DOF filter described 
in Section 5. 

 

6.2 Direct Kalman Filter Process Model 
This is identical to the description is Section 5.2. 

 

6.3 A Priori Estimation of the Direct Process Model 
This is identical to the description in Section 5.3 and produces the a priori orientation 
quaternion 𝑞𝑞�𝑘𝑘− by incremental rotation by the gyroscope angular velocity vector. 

 

6.4 Indirect Kalman Filter Process Model 
This is a simplified version of the model in Section 5.4 in that only gravity vector error 
quaternion is included in the error state vector. 
 

𝒙𝒙𝜀𝜀,𝑘𝑘 = �
𝒒𝒒𝑔𝑔𝑔𝑔,𝑘𝑘
𝒃𝒃𝜀𝜀,𝑘𝑘

� (111) 

 

6.5 A Posteriori Correction of the Direct Process Model 
This is a simplified version of the description in Section 5.5 in that only the gravity vector 
quaternion correction is included in the a posteriori correction vector. 
 

𝒙𝒙𝜀𝜀,𝑘𝑘
+ = �

𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘
+

𝒃𝒃�𝜀𝜀,𝑘𝑘
+ � (112) 

 
The a posteriori gravity tilt error quaternion 𝑞𝑞�𝑔𝑔𝑔𝑔,𝑘𝑘

+  corrects the a priori orientation 
quaternion 𝑞𝑞�𝑘𝑘− directly to give the a posteriori orientation estimate 𝑞𝑞�𝑘𝑘+: 
 

𝑞𝑞�𝑘𝑘+ = 𝑞𝑞�𝑔𝑔𝑔𝑔,𝑘𝑘
+ 𝑞𝑞�𝑘𝑘−�𝑞𝑞�𝑔𝑔𝑔𝑔,𝑘𝑘

+ �∗ (113) 
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6.6 Kalman Filter Measurement Error Model 
This is a simplified version of the measurement vector described in section 5.6 in that 
only the gravity vector tilt error quaternion is present in the measurement error vector 
𝒛𝒛𝜀𝜀,𝑘𝑘

 : 
 

𝒛𝒛𝜀𝜀,𝑘𝑘
 = 𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 (114) 

 
The measurement model is now: 
 

𝒛𝒛𝜀𝜀,𝑘𝑘
 = 𝒒𝒒𝑧𝑧𝑧𝑧𝑧𝑧,𝑘𝑘 = 𝑪𝑪𝑘𝑘𝒙𝒙𝜀𝜀,𝑘𝑘 + 𝒗𝒗𝑘𝑘 = 𝑪𝑪𝑘𝑘 �

𝒒𝒒𝑔𝑔𝑔𝑔,𝑘𝑘
𝒃𝒃𝜀𝜀,𝑘𝑘

� + 𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘 (115) 

 
where the 3x6 measurement matrix 𝑪𝑪𝑘𝑘 equals: 

1 g𝑪𝑪𝑘𝑘 = �𝑰𝑰3 �−𝛼𝛼
2
� 𝑰𝑰3� =

⎝

⎜
⎛

1 0 0 �−𝛼𝛼
2
� 0 0

0 1 0 0 �−𝛼𝛼
2
� 0

0 0 1 0 0 �−𝛼𝛼
2
�⎠

⎟
⎞

 (116) 

 

6.7 Indirect Kalman Filter Update Equations 
This section is identical to Section 5.7 but using the matrix and vector definitions in 
Section 6. 

6.8 Process Error Covariance Matrix 
The 6x6 error process noise covariance matrix 𝑸𝑸𝑤𝑤,𝑘𝑘 is a simplified version of that defined 
in section 5.8. 
 

𝑸𝑸𝑤𝑤,𝑘𝑘 = 𝐸𝐸[𝒘𝒘𝑘𝑘𝒘𝒘𝑘𝑘
𝑇𝑇] = �

𝐸𝐸 �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘
− �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘

− �𝑇𝑇� 𝐸𝐸 �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘
− �𝒃𝒃�𝜀𝜀,𝑘𝑘

− �𝑇𝑇�

𝐸𝐸 �𝒃𝒃�𝜀𝜀,𝑘𝑘
− �𝒒𝒒�𝑔𝑔𝑔𝑔,𝑘𝑘

− �𝑇𝑇� 𝐸𝐸 �𝒃𝒃�𝜀𝜀,𝑘𝑘
− �𝒃𝒃�𝜀𝜀,𝑘𝑘

− �𝑇𝑇�
� (117) 

 
The terms in the matrix have the same values as those defined in Section 5.8.  

6.9 Measurement Error Covariance Matrix 
The 3x3 covariance matrix of the measurement noise vector 𝒗𝒗𝑘𝑘 is a simplified version of 
that defined in Section 5.9 and contains only the gravity vector term. 
 

𝑸𝑸𝑣𝑣,𝑘𝑘 = 𝐸𝐸[𝒗𝒗𝑘𝑘𝒗𝒗𝑘𝑘𝑇𝑇] = 𝐸𝐸 �𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�𝒗𝒗𝑞𝑞𝑞𝑞𝑞𝑞,𝑘𝑘�
𝑇𝑇� (118) 

= �
1

12
� ��𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 + 𝑄𝑄𝑎𝑎,𝑘𝑘� + 𝛼𝛼2�𝑄𝑄𝑣𝑣𝑣𝑣,𝑘𝑘 + 𝑄𝑄𝑤𝑤𝑤𝑤,𝑘𝑘��𝑰𝑰3 (119) 
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The noise covariance 𝑄𝑄𝑣𝑣𝑣𝑣 ,𝑘𝑘 + 𝑄𝑄𝑎𝑎,𝑘𝑘 is defined in the same as in Section 5.9 in terms of the 
measurement deviation from the gravity sphere using equation (11). 

 

6.10 Compile Time Constants 
The compile time constants below are implemented with #define in file fusion.h. 

The constants FQVY_6DOF_GY_KALMAN and FQWB_6DOF_GY_KALMAN define the 
covariances 𝑄𝑄𝑣𝑣𝑣𝑣 and 𝑄𝑄𝑤𝑤𝑤𝑤. 

 

The constants FMIN_6DOF_GBY_BPL and FMAX_6DOF_GBY_BPL have the function function 
and values as their equivalent for the 9DOF fusion algorithm. 
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