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1. Introduction 

1.1 Summary 
This application note contains an introduction to quaternion algebra and its use to 
represent rotations. It documents the specific quaternion functions used in the NXP 
Sensor Fusion Library within the file orientation.c. 

Quaternions are four dimensional hyper-complex numbers that were invented by 
Professor William Rowan Hamilton in 1843. The four components of a quaternion provide 
a more efficient means, both in storage and computation, to represent orientations as 
compared to the nine components of a rotation matrix. Quaternions are therefore used 
extensively in computer gaming and have, in consequence, also been adopted as a 
standard for representing orientation in sensor fusion applications. 

Rotation matrices and rotation quaternions share the very important characteristic of 
being well behaved mathematically. The Euler angles (roll, pitch and yaw) are, in 
contrast, mathematically unsuited for use in sensor fusion software. The phenomenon of 
gimbal lock instability in strapdown sensor systems occurs only in the Euler angle 
representation of orientation and is entirely absent in rotation matrix or rotation 
quaternion representations. Euler angles are therefore only used in the NXP Sensor 
Fusion Library as an alternative final representation of an orientation which has been 
computed using rotation matrices or rotation quaternions. 

1.2 Terminology 
 
Symbol Definition 

𝑎𝑎 = 𝑎𝑎0 + 𝑎𝑎1𝒊𝒊 + 𝑎𝑎2𝒋𝒋 + 𝑎𝑎3𝒌𝒌 Components of quaternion 𝑎𝑎 
𝑎𝑎∗ = 𝑎𝑎0 − 𝑎𝑎1𝒊𝒊 − 𝑎𝑎2𝒋𝒋 − 𝑎𝑎3𝒌𝒌 Conjugate of quaternion 𝑎𝑎 

𝑎𝑎 = {𝑎𝑎0,𝒂𝒂} Representation of quaternion 𝑎𝑎 in 
terms of scalar 𝑎𝑎0 and vector 𝒂𝒂 
components 

𝑎𝑎−1 =
𝑎𝑎∗

𝑁𝑁(𝑎𝑎)2 Inverse or reciprocal of quaternion 𝑎𝑎 

𝑎𝑎0 Scalar component of quaternion 𝑎𝑎 
𝒂𝒂 = 𝑎𝑎1𝒊𝒊 + 𝑎𝑎2𝒋𝒋+ 𝑎𝑎3𝒌𝒌 Vector component of quaternion 𝑎𝑎 

𝒂𝒂 ∙ 𝒃𝒃 Scalar product of vectors 𝒂𝒂 and 𝒃𝒃 
𝒂𝒂 × 𝒃𝒃 Vector product of vectors 𝒂𝒂 and 𝒃𝒃 
𝒏𝒏� Unit vector representing rotation axis 

𝑁𝑁(𝑎𝑎) = �𝑎𝑎02 + 𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 Norm or magnitude of quaternion 𝑎𝑎 

𝑞𝑞𝑥𝑥 ,𝑞𝑞𝑦𝑦,𝑞𝑞𝑧𝑧 Rotation quaternions about the x, y 
and z axes 

𝑹𝑹𝑥𝑥,𝑹𝑹𝑦𝑦,𝑹𝑹𝑧𝑧 Rotation matrices around x, y and z 
axes 

http://www.nxp.com/sensorfusion
http://www.nxp.com/sensorfusion
http://www.nxp.com/sensorfusion
http://www.nxp.com/sensorfusion
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Symbol Definition 

𝑟𝑟 Real number 
𝑧𝑧 Complex number 

𝜂𝜂 General rotation angle 
𝜙𝜙 Roll angle 
𝜃𝜃 Pitch angle 
𝜓𝜓 Yaw angle 
𝜌𝜌 Compass heading angle 

 

1.3 Software Functions 

Table 1. Sensor Fusion software functions 
Functions Description Reference 

Section 

void fqAeq1(struct fquaternion *pqA); 
Function sets the quaternion A to the unit or 
identity quaternion. 

2.1 

void qAeqBxC 
(struct fquaternion *pqA, const struct 
fquaternion *pqB, const struct 
fquaternion *pqC); 

Function sets the quaternion A to the 
quaternion product BC. 
 

2.4 

void qAeqAxB(struct fquaternion *pqA, 
const struct fquaternion *pqB); 

Function sets the quaternion A to the 
quaternion product AB. 
 

2.4 

struct fquaternion qconjgAxB 
(const struct fquaternion *pqA, const 
struct fquaternion *pqB); 

Function returns the quaternion product A*B 
where A* is the conjugate of A. 

2.7 

void fqAeqNormqA 
(struct fquaternion *pqA); 

Function normalizes the quaternion A. 
 

2.8 

void fRotationMatrixFromQuaternion 
(float R[][3], const struct fquaternion 
*pq); 

Function computes a rotation matrix from a 
rotation quaternion.  

4.1 

void fQuaternionFromRotationMatrix 
(float R[][3], struct fquaternion *pq); 

Function computes a rotation quaternion 
from a rotation matrix. 

4.2 
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Functions Description Reference 
Section 

void fRotationVectorDegFromQuaternion 
(struct fquaternion *pq, float 
rvecdeg[]); 

Computes the rotation vector from a rotation 
quaternion. 
 

5.1 

void fQuaternionFromRotationVectorDeg 
(struct fquaternion *pq, const float 
rvecdeg[], float fscaling); 

Computes the rotation quaternion from a 
rotation vector with scaling. 
 

5.2 

void fLPFOrientationQuaternion 
(struct fquaternion *pq, struct 
fquaternion *pLPq, float flpf, float 
fdeltat, float fOmega[]) 

Function low-pass filters the orientations 
represented by a sequence of quaternions. 

6.3 

 

2. Quaternion Algebra 

2.1 Introduction 
Quaternions form a class of four-component hyper-complex numbers. 

Whereas the complex number 𝑧𝑧 has two components, one real and the other imaginary: 
 

𝑧𝑧 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 (1) 

 
the quaternion 𝑎𝑎 has four components: 
 

𝑎𝑎 = 𝑎𝑎0 + 𝑎𝑎1𝒊𝒊 + 𝑎𝑎2𝒋𝒋 + 𝑎𝑎3𝒌𝒌 = {𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3} (2) 

 
where 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2 and 𝑎𝑎3 are real numbers. The values 𝒊𝒊, 𝒋𝒋 and 𝒌𝒌 are simply tags 
identifying the three vector components of the quaternion. 

𝑎𝑎0 is termed the scalar component and 𝒂𝒂 = 𝑎𝑎1𝒊𝒊 + 𝑎𝑎2𝒋𝒋 + 𝑎𝑎3𝒌𝒌 is termed the vector 
component of the quaternion. 

Equivalent representations of the quaternion 𝑎𝑎 in terms of its scalar and vector 
components are: 
 

𝑎𝑎 = 𝑎𝑎0 + 𝒂𝒂 = {𝑎𝑎0,𝒂𝒂} = �𝑎𝑎0,�
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
�� = �𝑎𝑎0,�

𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧
�� (3) 

 
If the scalar component 𝑎𝑎0 is zero, the quaternion is termed a pure quaternion or vector. 
If the vector component 𝒂𝒂 is zero, then the quaternion is a real number. The quaternion 
𝑎𝑎 = {1, 0, 0, 0} with scalar component equal to one and vector component equal to zero is 
termed the identity quaternion. 
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2.2 Equality of Two Quaternions 
Two quaternions 𝑎𝑎 and 𝑏𝑏 are equal if and only if all their components are equal: 
 

𝑎𝑎 = 𝑏𝑏 ⇒  𝑎𝑎0 = 𝑏𝑏0, 𝑎𝑎1 = 𝑏𝑏1, 𝑎𝑎2 = 𝑏𝑏2, 𝑎𝑎3 = 𝑏𝑏3 (4) 

 

2.3 Addition of Two Quaternions 
The sum of two quaternions is defined to be the quaternion with summed components: 
 

𝑎𝑎 + 𝑏𝑏 = (𝑎𝑎0 + 𝑏𝑏0) + (𝑎𝑎1 + 𝑏𝑏1)𝒊𝒊 + (𝑎𝑎2 + 𝑏𝑏2)𝒋𝒋 + (𝑎𝑎3 + 𝑏𝑏3)𝒌𝒌 (5) 

 
Because the addition of real numbers is commutative and associative, quaternion 
addition is also commutative and associative: 
 

𝑎𝑎 + 𝑏𝑏 = 𝑏𝑏 + 𝑎𝑎 (6) 

(𝑎𝑎 + 𝑏𝑏) + 𝑐𝑐 = 𝑎𝑎 + (𝑏𝑏 + 𝑐𝑐) (7) 

 

2.4 Product of Two Quaternions 
The product of two quaternions is defined to be the distributive product of the quaternion 
components: 
 

𝑐𝑐 = 𝑎𝑎𝑏𝑏 = (𝑎𝑎0 + 𝑎𝑎1𝒊𝒊 + 𝑎𝑎2𝒋𝒋 + 𝑎𝑎3𝒌𝒌)(𝑏𝑏0 + 𝑏𝑏1𝒊𝒊 + 𝑏𝑏2𝒋𝒋 + 𝑏𝑏3𝒌𝒌) (8) 

= 𝑎𝑎0(𝑏𝑏0 + 𝑏𝑏1𝒊𝒊 + 𝑏𝑏2𝒋𝒋 + 𝑏𝑏3𝒌𝒌) + 𝑎𝑎1𝒊𝒊(𝑏𝑏0 + 𝑏𝑏1𝒊𝒊 + 𝑏𝑏2𝒋𝒋 + 𝑏𝑏3𝒌𝒌)

+ 𝑎𝑎2𝒋𝒋(𝑏𝑏0 + 𝑏𝑏1𝒊𝒊 + 𝑏𝑏2𝒋𝒋 + 𝑏𝑏3𝒌𝒌) + 𝑎𝑎3𝒌𝒌(𝑏𝑏0 + 𝑏𝑏1𝒊𝒊 + 𝑏𝑏2𝒋𝒋 + 𝑏𝑏3𝒌𝒌) 
(9) 

= (𝑎𝑎0𝑏𝑏0 + 𝑎𝑎0𝑏𝑏1𝒊𝒊 + 𝑎𝑎0𝑏𝑏2𝒋𝒋 + 𝑎𝑎0𝑏𝑏3𝒌𝒌) + (𝑎𝑎1𝑏𝑏0𝒊𝒊 + 𝑎𝑎1𝑏𝑏1𝒊𝒊𝒊𝒊 + 𝑎𝑎1𝑏𝑏2𝒊𝒊𝒋𝒋 + 𝑎𝑎1𝑏𝑏3𝒊𝒊𝒌𝒌)

+ (𝑎𝑎2𝑏𝑏0𝒋𝒋 + 𝑎𝑎2𝑏𝑏1𝒋𝒋𝒊𝒊 + 𝑎𝑎2𝑏𝑏2𝒋𝒋𝒋𝒋 + 𝑎𝑎2𝑏𝑏3𝒋𝒋𝒌𝒌)

+ (𝑎𝑎3𝑏𝑏0𝒌𝒌 + 𝑎𝑎3𝑏𝑏1𝒌𝒌𝒊𝒊 + 𝑎𝑎3𝑏𝑏2𝒌𝒌𝒋𝒋 + 𝑎𝑎3𝑏𝑏3𝒌𝒌𝒌𝒌) 

(10) 

 
The products of components of a quaternion are defined to satisfy, where 𝑟𝑟 is any real 
number: 
 

𝑟𝑟𝒊𝒊 = 𝒊𝒊𝑟𝑟 (11) 

𝑟𝑟𝒋𝒋 = 𝒋𝒋𝑟𝑟 (12) 

𝑟𝑟𝒌𝒌 = 𝒌𝒌𝑟𝑟 (13) 

𝒊𝒊𝒊𝒊 = 𝒋𝒋𝒋𝒋 = 𝒌𝒌𝒌𝒌 = −1 (14) 
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𝒊𝒊𝒋𝒋 = −𝒋𝒋𝒊𝒊 = 𝒌𝒌 (15) 

𝒋𝒋𝒌𝒌 = −𝒌𝒌𝒋𝒋 = 𝒊𝒊 (16) 

𝒌𝒌𝒊𝒊 = −𝒊𝒊𝒌𝒌 = 𝒋𝒋 (17) 

 
A consequence of equations (14) to (17) is that: 
 

(𝒊𝒊𝒋𝒋)𝒌𝒌 = 𝒊𝒊(𝒋𝒋𝒌𝒌) = −1 (18) 

 
Substitution of equations (14) to (18) into equation (10) simplifies the quaternion product 
to: 
 

𝑐𝑐 = 𝑎𝑎𝑏𝑏 = (𝑎𝑎0𝑏𝑏0 − 𝑎𝑎1𝑏𝑏1 − 𝑎𝑎2𝑏𝑏2 − 𝑎𝑎3𝑏𝑏3) + (𝑎𝑎0𝑏𝑏1 + 𝑎𝑎1𝑏𝑏0 + 𝑎𝑎2𝑏𝑏3 − 𝑎𝑎3𝑏𝑏2)𝒊𝒊
+ (𝑎𝑎0𝑏𝑏2 − 𝑎𝑎1𝑏𝑏3 + 𝑎𝑎2𝑏𝑏0 + 𝑎𝑎3𝑏𝑏1)𝒋𝒋 + (𝑎𝑎0𝑏𝑏3 + 𝑎𝑎1𝑏𝑏2 − 𝑎𝑎2𝑏𝑏1 + 𝑎𝑎3𝑏𝑏0)𝒌𝒌 

(19) 

 
The four components of the product quaternion 𝑐𝑐 are, therefore: 
 

𝑐𝑐0 = 𝑎𝑎0𝑏𝑏0 − 𝑎𝑎1𝑏𝑏1 − 𝑎𝑎2𝑏𝑏2 − 𝑎𝑎3𝑏𝑏3 (20) 

𝑐𝑐1 = 𝑎𝑎0𝑏𝑏1 + 𝑎𝑎1𝑏𝑏0 + 𝑎𝑎2𝑏𝑏3 − 𝑎𝑎3𝑏𝑏2 (21) 

𝑐𝑐2 = 𝑎𝑎0𝑏𝑏2 − 𝑎𝑎1𝑏𝑏3 + 𝑎𝑎2𝑏𝑏0 + 𝑎𝑎3𝑏𝑏1 (22) 

𝑐𝑐3 = 𝑎𝑎0𝑏𝑏3 + 𝑎𝑎1𝑏𝑏2 − 𝑎𝑎2𝑏𝑏1 + 𝑎𝑎3𝑏𝑏0 (23) 

 
Examination of equations (20) to (23) shows that quaternion multiplication does not 
commute: 
 

𝑎𝑎𝑏𝑏 ≠ 𝑏𝑏𝑎𝑎 (24) 

 
Brute force evaluation proves that quaternion multiplication is associative: 
 

(𝑎𝑎𝑏𝑏)𝑐𝑐 − 𝑎𝑎(𝑏𝑏𝑐𝑐) = {(𝑎𝑎0 + 𝑎𝑎1𝒊𝒊 + 𝑎𝑎2𝒋𝒋+ 𝑎𝑎3𝒌𝒌)(𝑏𝑏0 + 𝑏𝑏1𝒊𝒊+ 𝑏𝑏2𝒋𝒋+ 𝑏𝑏3𝒌𝒌)}(𝑐𝑐0 + 𝑐𝑐1𝒊𝒊 + 𝑐𝑐2𝒋𝒋+ 𝑐𝑐3𝒌𝒌)

− (𝑎𝑎0 + 𝑎𝑎1𝒊𝒊 + 𝑎𝑎2𝒋𝒋+ 𝑎𝑎3𝒌𝒌){(𝑏𝑏0 + 𝑏𝑏1𝒊𝒊+ 𝑏𝑏2𝒋𝒋+ 𝑏𝑏3𝒌𝒌)(𝑐𝑐0 + 𝑐𝑐1𝒊𝒊 + 𝑐𝑐2𝒋𝒋+ 𝑐𝑐3𝒌𝒌)} = 0 
(25) 

⇒ (𝑎𝑎𝑏𝑏)𝑐𝑐 = 𝑎𝑎(𝑏𝑏𝑐𝑐) (26) 

 
For the special case 𝑎𝑎 = 𝑏𝑏, the product 𝑐𝑐 = 𝑎𝑎𝑎𝑎 evaluates to: 
 

𝑐𝑐 = 𝑎𝑎𝑎𝑎 = (𝑎𝑎0𝑎𝑎0 − 𝑎𝑎1𝑎𝑎1 − 𝑎𝑎2𝑎𝑎2 − 𝑎𝑎3𝑎𝑎3) + 2𝑎𝑎0𝑎𝑎1𝒊𝒊 + 2𝑎𝑎0𝑎𝑎2𝒋𝒋 + 2𝑎𝑎0𝑎𝑎3𝒌𝒌 (27) 
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2.5 Product of Quaternion and Scalar 
A special case of the quaternion product occurs when one of the quaternions has zero 
vector components and is a scalar. In this case the multiplication does commute. 

If 𝑎𝑎 is a scalar so that 𝑎𝑎 = 𝑎𝑎0 then: 
 

𝑎𝑎𝑏𝑏 = 𝑎𝑎0𝑏𝑏0 + 𝑎𝑎0𝑏𝑏1𝒊𝒊 + 𝑎𝑎0𝑏𝑏2𝒋𝒋 + 𝑎𝑎0𝑏𝑏3𝒌𝒌 (28) 

𝑏𝑏𝑎𝑎 = 𝑏𝑏0𝑎𝑎0 + 𝑏𝑏1𝑎𝑎0𝒊𝒊 + 𝑏𝑏2𝑎𝑎0𝒋𝒋 + 𝑏𝑏3𝑎𝑎0𝒌𝒌 = 𝑎𝑎0𝑏𝑏0 + 𝑎𝑎0𝑏𝑏1𝒊𝒊 + 𝑎𝑎0𝑏𝑏2𝒋𝒋 + 𝑎𝑎0𝑏𝑏3𝒌𝒌 = 𝑎𝑎𝑏𝑏 (29) 

⇒ 𝑎𝑎𝑏𝑏 = 𝑏𝑏𝑎𝑎 𝑏𝑏𝑖𝑖 𝑎𝑎 𝑏𝑏𝑖𝑖 𝑎𝑎 𝑖𝑖𝑐𝑐𝑎𝑎𝑠𝑠𝑎𝑎𝑟𝑟 (30) 

 

2.6 Product of a Quaternion with a Vector 
The product of a quaternion 𝑎𝑎 with a vector quaternion 𝒃𝒃 has non-zero scalar component 
and is therefore a general quaternion and not another vector quaternion: 
 

𝑎𝑎𝒃𝒃 = (−𝑎𝑎1𝑏𝑏1 − 𝑎𝑎2𝑏𝑏2 − 𝑎𝑎3𝑏𝑏3) + (𝑎𝑎0𝑏𝑏1 + 𝑎𝑎2𝑏𝑏3 − 𝑎𝑎3𝑏𝑏2)𝒊𝒊 + 

(𝑎𝑎0𝑏𝑏2 − 𝑎𝑎1𝑏𝑏3 + 𝑎𝑎3𝑏𝑏1)𝒋𝒋 + (𝑎𝑎0𝑏𝑏3 + 𝑎𝑎1𝑏𝑏2 − 𝑎𝑎2𝑏𝑏1)𝒌𝒌 
(31) 

𝒃𝒃𝑎𝑎 = (−𝑏𝑏1𝑎𝑎1 − 𝑏𝑏2𝑎𝑎2 − 𝑏𝑏3𝑎𝑎3) + (𝑏𝑏1𝑎𝑎0 + 𝑏𝑏2𝑎𝑎3 − 𝑏𝑏3𝑎𝑎2)𝒊𝒊 + 

(−𝑏𝑏1𝑎𝑎3 + 𝑏𝑏2𝑎𝑎0 + 𝑏𝑏3𝑎𝑎1)𝒋𝒋 + (𝑏𝑏1𝑎𝑎2 − 𝑏𝑏2𝑎𝑎1 + 𝑏𝑏3𝑎𝑎0)𝒌𝒌 
(32) 

 
Inspection of equations (31) and (32) shows that the product of the quaternion 𝑎𝑎 and 
vector 𝒃𝒃 does not commute: 
 

𝑎𝑎𝒃𝒃 ≠ 𝒃𝒃𝑎𝑎 (33) 

 

2.7 Quaternion Conjugate 
The quaternion conjugate 𝑎𝑎∗ is defined as: 
 

𝑎𝑎∗ = 𝑎𝑎0 − 𝑎𝑎1𝒊𝒊 − 𝑎𝑎2𝒋𝒋 − 𝑎𝑎3𝒌𝒌 (34) 

 
From the definition of the quaternion product 𝑎𝑎𝑏𝑏, it can be shown that (𝑎𝑎𝑏𝑏)∗ = 𝑏𝑏∗𝑎𝑎∗: 
 

(𝑎𝑎𝑏𝑏)∗ = (𝑎𝑎0𝑏𝑏0 − 𝑎𝑎1𝑏𝑏1 − 𝑎𝑎2𝑏𝑏2 − 𝑎𝑎3𝑏𝑏3) − (𝑎𝑎0𝑏𝑏1 + 𝑎𝑎1𝑏𝑏0 + 𝑎𝑎2𝑏𝑏3 − 𝑎𝑎3𝑏𝑏2)𝒊𝒊
− (𝑎𝑎0𝑏𝑏2 − 𝑎𝑎1𝑏𝑏3 + 𝑎𝑎2𝑏𝑏0 + 𝑎𝑎3𝑏𝑏1)𝒋𝒋 − (𝑎𝑎0𝑏𝑏3 + 𝑎𝑎1𝑏𝑏2 − 𝑎𝑎2𝑏𝑏1 + 𝑎𝑎3𝑏𝑏0)𝒌𝒌 

(35) 
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The product 𝑏𝑏∗𝑎𝑎∗ evaluates to: 
 

𝑏𝑏∗𝑎𝑎∗ = (𝑏𝑏0 − 𝑏𝑏1𝒊𝒊 − 𝑏𝑏2𝑗𝑗 − 𝑏𝑏3𝒌𝒌)(𝑎𝑎0 − 𝑎𝑎1𝒊𝒊 − 𝑎𝑎2𝒋𝒋 − 𝑎𝑎3𝒌𝒌) (36) 

= 𝑏𝑏0𝑎𝑎0 − 𝑏𝑏0𝑎𝑎1𝒊𝒊 − 𝑏𝑏0𝑎𝑎2𝒋𝒋 − 𝑏𝑏0𝑎𝑎3𝒌𝒌 − 𝑏𝑏1𝒊𝒊𝑎𝑎0 + 𝑏𝑏1𝒊𝒊𝑎𝑎1𝒊𝒊 + 𝑏𝑏1𝒊𝒊𝑎𝑎2𝒋𝒋 + 𝑏𝑏1𝒊𝒊𝑎𝑎3𝒌𝒌 − 

 𝑏𝑏2𝒋𝒋𝑎𝑎0 + 𝑏𝑏2𝒋𝒋𝑎𝑎1𝒊𝒊 + 𝑏𝑏2𝒋𝒋𝑎𝑎2𝒋𝒋 + 𝑏𝑏2𝒋𝒋𝑎𝑎3𝒌𝒌−𝑏𝑏3𝒌𝒌𝑎𝑎0 + 𝑏𝑏3𝒌𝒌𝑎𝑎1𝒊𝒊 + 𝑏𝑏3𝒌𝒌𝑎𝑎2𝒋𝒋 + 𝑏𝑏3𝒌𝒌𝑎𝑎3𝒌𝒌 
 

(37) 

= 𝑏𝑏0𝑎𝑎0 − 𝑏𝑏0𝑎𝑎1𝒊𝒊 − 𝑏𝑏0𝑎𝑎2𝒋𝒋 − 𝑏𝑏0𝑎𝑎3𝒌𝒌 − 𝑏𝑏1𝑎𝑎0𝒊𝒊 − 𝑏𝑏1𝑎𝑎1 + 𝑏𝑏1𝑎𝑎2𝒌𝒌 − 𝑏𝑏1𝑎𝑎3𝒋𝒋 − 

𝑏𝑏2𝑎𝑎0𝒋𝒋 − 𝑏𝑏2𝑎𝑎1𝒌𝒌 − 𝑏𝑏2𝑎𝑎2 + 𝑏𝑏2𝑎𝑎3𝒊𝒊−𝑏𝑏3𝑎𝑎0𝒌𝒌 + 𝑏𝑏3𝑎𝑎1𝑗𝑗 − 𝑏𝑏3𝑎𝑎2𝒊𝒊 − 𝑏𝑏3𝑎𝑎3 
(38) 

= (𝑏𝑏0𝑎𝑎0 − 𝑏𝑏1𝑎𝑎1 − 𝑏𝑏2𝑎𝑎2 − 𝑏𝑏3𝑎𝑎3) − (𝑏𝑏1𝑎𝑎0+𝑏𝑏0𝑎𝑎1 + 𝑏𝑏3𝑎𝑎2 − 𝑏𝑏2𝑎𝑎3)𝒊𝒊 − 

(𝑏𝑏2𝑎𝑎0 − 𝑏𝑏3𝑎𝑎1 + 𝑏𝑏0𝑎𝑎2 + 𝑏𝑏1𝑎𝑎3)𝒋𝒋 − ( 𝑏𝑏3𝑎𝑎0 + 𝑏𝑏2𝑎𝑎1 − 𝑏𝑏1𝑎𝑎2 + 𝑏𝑏0𝑎𝑎3)𝒌𝒌 
(39) 

⇒ (𝑎𝑎𝑏𝑏)∗ = 𝑏𝑏∗𝑎𝑎∗ (40) 

 
Simple extension to higher order products gives: 
 

(𝑎𝑎𝑏𝑏𝑐𝑐 … 𝑧𝑧)∗ = 𝑧𝑧∗(𝑎𝑎𝑏𝑏𝑐𝑐 … )∗ = 𝑧𝑧∗ … 𝑐𝑐∗𝑏𝑏∗𝑎𝑎∗ (41) 

 
The sum of the quaternion 𝑎𝑎 and its conjugate 𝑎𝑎∗ is the scalar 2𝑎𝑎0: 
 

𝑎𝑎 + 𝑎𝑎∗ = (𝑎𝑎0 + 𝑎𝑎1𝒊𝒊 + 𝑎𝑎2𝒋𝒋 + 𝑎𝑎3𝒌𝒌) + (𝑎𝑎0 − 𝑎𝑎1𝒊𝒊 − 𝑎𝑎2𝒋𝒋 − 𝑎𝑎3𝒌𝒌) = 2𝑎𝑎0 (42) 

 

2.8 Quaternion Norm 
The quaternion norm or magnitude 𝑁𝑁(𝑎𝑎) is defined as: 
 

𝑁𝑁(𝑎𝑎) = �𝑎𝑎02 + 𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 (43) 

 
The two products 𝑎𝑎∗𝑎𝑎 and 𝑎𝑎𝑎𝑎∗ of a quaternion 𝑎𝑎 with its conjugate 𝑎𝑎∗ evaluate to the 
norm squared 𝑁𝑁(𝑎𝑎)2: 
 

𝑎𝑎∗𝑎𝑎 = (𝑎𝑎0 − 𝑎𝑎1𝒊𝒊 − 𝑎𝑎2𝒋𝒋 − 𝑎𝑎3𝒌𝒌)(𝑎𝑎0 + 𝑎𝑎1𝒊𝒊 + 𝑎𝑎2𝒋𝒋 + 𝑎𝑎3𝒌𝒌) (44) 

= 𝑎𝑎0𝑎𝑎0 + 𝑎𝑎0𝑎𝑎1𝒊𝒊 + 𝑎𝑎0𝑎𝑎2𝒋𝒋 + 𝑎𝑎0𝑎𝑎3𝒌𝒌 − 𝑎𝑎1𝑎𝑎0𝒊𝒊 + 𝑎𝑎1𝑎𝑎1 − 𝑎𝑎1𝑎𝑎2𝒌𝒌 + 𝑎𝑎1𝑎𝑎3𝒋𝒋 − 

𝑎𝑎2𝑎𝑎0𝒋𝒋 + 𝑎𝑎2𝑎𝑎1𝒌𝒌 + 𝑎𝑎2𝑎𝑎2 − 𝑎𝑎2𝑎𝑎3𝒊𝒊 − 𝑎𝑎3𝑎𝑎0𝒌𝒌 − 𝑎𝑎3𝑎𝑎1𝒋𝒋 + 𝑎𝑎3𝑎𝑎2𝒊𝒊 + 𝑎𝑎3𝑎𝑎3 
(45) 

= 𝑎𝑎02 + 𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 = 𝑁𝑁(𝑎𝑎)2 (46) 

𝑎𝑎𝑎𝑎∗ = (𝑎𝑎0 + 𝑎𝑎1𝒊𝒊 + 𝑎𝑎2𝒋𝒋 + 𝑎𝑎3𝒌𝒌)(𝑎𝑎0 − 𝑎𝑎1𝒊𝒊 − 𝑎𝑎2𝒋𝒋 − 𝑎𝑎3𝒌𝒌) (47) 
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= 𝑎𝑎0𝑎𝑎0 − 𝑎𝑎0𝑎𝑎1𝒊𝒊 − 𝑎𝑎0𝑎𝑎2𝒋𝒋 − 𝑎𝑎0𝑎𝑎3𝒌𝒌 + 𝑎𝑎1𝑎𝑎0𝒊𝒊 + 𝑎𝑎1𝑎𝑎1 − 𝑎𝑎1𝑎𝑎2𝒌𝒌 + 𝑎𝑎1𝑎𝑎3𝒋𝒋 + 𝑎𝑎2𝑎𝑎0𝒋𝒋 + 

𝑎𝑎2𝑎𝑎1𝒌𝒌 + 𝑎𝑎2𝑎𝑎2 − 𝑎𝑎2𝑎𝑎3𝒊𝒊 + 𝑎𝑎3𝑎𝑎0𝒌𝒌 − 𝑎𝑎3𝑎𝑎1𝒋𝒋 + 𝑎𝑎3𝑎𝑎2𝒊𝒊 + 𝑎𝑎3𝑎𝑎3 
(48) 

= 𝑎𝑎02 + 𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 = 𝑁𝑁(𝑎𝑎)2 (49) 

⇒ 𝑁𝑁(𝑎𝑎) = �𝑎𝑎02 + 𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 = √𝑎𝑎∗𝑎𝑎 = √𝑎𝑎𝑎𝑎∗ (50) 

 
The norm of a quaternion conjugate equals the norm of the quaternion: 
 

𝑁𝑁(𝑎𝑎∗) = �𝑎𝑎02 + (−𝑎𝑎1)2 + (−𝑎𝑎2)2 + (−𝑎𝑎3)2 = �𝑎𝑎02 + 𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 = 𝑁𝑁(𝑎𝑎) (51) 

 
The norm of the product of two quaternions is the product of the individual quaternion 
norms: 
 

𝑁𝑁(𝑎𝑎𝑏𝑏) = �
(𝑎𝑎0𝑏𝑏0 − 𝑎𝑎1𝑏𝑏1 − 𝑎𝑎2𝑏𝑏2 − 𝑎𝑎3𝑏𝑏3)2 + (𝑎𝑎0𝑏𝑏1 + 𝑎𝑎1𝑏𝑏0 + 𝑎𝑎2𝑏𝑏3 − 𝑎𝑎3𝑏𝑏2)2

+(𝑎𝑎0𝑏𝑏2 − 𝑎𝑎1𝑏𝑏3 + 𝑎𝑎2𝑏𝑏0 + 𝑎𝑎3𝑏𝑏1)2 + (𝑎𝑎0𝑏𝑏3 + 𝑎𝑎1𝑏𝑏2 − 𝑎𝑎2𝑏𝑏1 + 𝑎𝑎3𝑏𝑏0)2 
(52) 

= �(𝑎𝑎02 + 𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32)�𝑏𝑏0
2 + 𝑏𝑏1

2 + 𝑏𝑏2
2 + 𝑏𝑏3

2� = 𝑁𝑁(𝑎𝑎)𝑁𝑁(𝑏𝑏) (53) 

 

2.9 Quaternion Inverse and Division 
The quaternion inverse 𝑎𝑎−1 is defined to be the quaternion which satisfies: 
 

𝑎𝑎𝑎𝑎−1 = 𝑎𝑎−1𝑎𝑎 = 1 (54) 

 

Pre- and post-multiplication of the quaternion 𝑎𝑎 by 𝑎𝑎∗

𝑁𝑁(𝑎𝑎)2
 evaluates to: 

 

1
𝑁𝑁(𝑎𝑎)2 (𝑎𝑎0 − 𝑎𝑎1𝒊𝒊 − 𝑎𝑎2𝒋𝒋 − 𝑎𝑎3𝒌𝒌)(𝑎𝑎0 + 𝑎𝑎1𝒊𝒊 + 𝑎𝑎2𝒋𝒋 + 𝑎𝑎3𝒌𝒌) =

(𝑎𝑎02 + 𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32)
𝑁𝑁(𝑎𝑎)2 = 1 (55) 

(𝑎𝑎0 + 𝑎𝑎1𝒊𝒊 + 𝑎𝑎2𝒋𝒋 + 𝑎𝑎3𝒌𝒌)
1

𝑁𝑁(𝑎𝑎)2 (𝑎𝑎0 − 𝑎𝑎1𝒊𝒊 − 𝑎𝑎2𝒋𝒋 − 𝑎𝑎3𝒌𝒌) =
(𝑎𝑎02 + 𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32)

𝑁𝑁(𝑎𝑎)2 = 1 (56) 

 
The quaternion inverse 𝑎𝑎−1 is, therefore, for all quaternions with non-zero norm: 
 

𝑎𝑎−1 =
𝑎𝑎∗

𝑁𝑁(𝑎𝑎)2 = �
𝑎𝑎0

𝑁𝑁(𝑎𝑎)2� − �
𝑎𝑎1

𝑁𝑁(𝑎𝑎)2� 𝒊𝒊 − �
𝑎𝑎2

𝑁𝑁(𝑎𝑎)2� 𝒋𝒋 − �
𝑎𝑎3

𝑁𝑁(𝑎𝑎)2� 𝒌𝒌 (57) 

 
The norm of a quaternion inverse equals the reciprocal of the quaternion norm. The norm 
and reciprocation operations, therefore, commute: 



 

 

NXP Semiconductors AN5022 
 Quaternion Algebra and Rotations 

AN5022 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved. 

Application note Rev. 2.0 — 21 June 2016 11 of 26 

 

𝑁𝑁(𝑎𝑎−1) = 𝑁𝑁 �
𝑎𝑎∗

𝑁𝑁(𝑎𝑎)2� = �
1

𝑁𝑁(𝑎𝑎)2�𝑁𝑁
(𝑎𝑎∗) = �

𝑁𝑁(𝑎𝑎)
𝑁𝑁(𝑎𝑎)2� = �

1
𝑁𝑁(𝑎𝑎)� = {𝑁𝑁(𝑎𝑎)}−1 (58) 

 

2.10 Vector Representation of Quaternion Product 

The scalar and vector products between the two vectors 𝒂𝒂 = �
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� and 𝒃𝒃 = �

𝑏𝑏1
𝑏𝑏2
𝑏𝑏3
� are 

defined as: 
 

𝒂𝒂.𝒃𝒃 = 𝑎𝑎1𝑏𝑏1 + 𝑎𝑎2𝑏𝑏2 + 𝑎𝑎3𝑏𝑏3 (59) 

𝒂𝒂 × 𝒃𝒃 = �
𝑎𝑎2𝑏𝑏3 − 𝑎𝑎3𝑏𝑏2
𝑎𝑎3𝑏𝑏1 − 𝑎𝑎1𝑏𝑏3
𝑎𝑎1𝑏𝑏2 − 𝑎𝑎2𝑏𝑏1

� (60) 

 
The product between two quaternions 𝑎𝑎 = (𝑎𝑎0,𝒂𝒂) and 𝑏𝑏 = (𝑏𝑏0,𝒃𝒃) can be written in terms 
of the scalar and vector products on their vector components. Direct expansion of the 
scalar and vector expression below and comparison with equation (10) shows it equals 
the quaternion product 𝑎𝑎𝑏𝑏: 
 

{𝑎𝑎0𝑏𝑏0 − 𝒂𝒂.𝒃𝒃,  𝑎𝑎0𝒃𝒃 + 𝑏𝑏0𝒂𝒂 + 𝒂𝒂 × 𝒃𝒃}

= �𝑎𝑎0𝑏𝑏0 − 𝑎𝑎1𝑏𝑏1 + 𝑎𝑎2𝑏𝑏2 + 𝑎𝑎3𝑏𝑏3, 𝑎𝑎0 �
𝑏𝑏1
𝑏𝑏2
𝑏𝑏3
� + 𝑏𝑏0 �

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� + �

𝑎𝑎2𝑏𝑏3 − 𝑎𝑎3𝑏𝑏2
𝑎𝑎3𝑏𝑏1 − 𝑎𝑎1𝑏𝑏3
𝑎𝑎1𝑏𝑏2 − 𝑎𝑎2𝑏𝑏1

�� 
(61) 

= �𝑎𝑎0𝑏𝑏0 − 𝑎𝑎1𝑏𝑏1 + 𝑎𝑎2𝑏𝑏2 + 𝑎𝑎3𝑏𝑏3,�
𝑎𝑎0𝑏𝑏1 + 𝑎𝑎1𝑏𝑏0 + 𝑎𝑎2𝑏𝑏3 − 𝑎𝑎3𝑏𝑏2
𝑎𝑎0𝑏𝑏2 − 𝑎𝑎1𝑏𝑏3 + 𝑎𝑎2𝑏𝑏0 + 𝑎𝑎3𝑏𝑏1
𝑎𝑎0𝑏𝑏3 + 𝑎𝑎1𝑏𝑏2 − 𝑎𝑎2𝑏𝑏1 + 𝑎𝑎3𝑏𝑏0

�� = 𝑎𝑎𝑏𝑏 (62) 

 

3. Rotation Quaternion 

3.1 Definition in Terms of Rotation Vector 
The rotation quaternion 𝑞𝑞 for a rotation of the coordinate system about normalized 
rotation axis 𝒏𝒏� and by angle 𝜂𝜂 is defined to be: 
 

𝑞𝑞 = 𝑐𝑐𝑐𝑐𝑖𝑖 �
𝜂𝜂
2
� + 𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
� (63) 

 
𝑞𝑞 is a unit quaternion because its norm equals 1: 
 

𝑁𝑁(𝑞𝑞) = 𝑐𝑐𝑐𝑐𝑖𝑖2 �
𝜂𝜂
2
� + 𝑖𝑖𝑏𝑏𝑠𝑠2 �

𝜂𝜂
2
� �𝑠𝑠�𝑥𝑥

2 + 𝑠𝑠�𝑦𝑦
2 + 𝑠𝑠�𝑧𝑧

2� = 1 (64) 
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The value of this definition of the rotation quaternion is shown in the next section which 
proves that post- and pre-multiplication of a vector 𝒗𝒗 by the quaternion 𝑞𝑞 and its 
conjugate 𝑞𝑞∗ is equivalent to multiplication of the vector by the corresponding rotation 
matrix 𝑹𝑹: 
 

𝑹𝑹𝒗𝒗 = 𝑞𝑞∗𝒗𝒗𝑞𝑞 (65) 

 

3.2 Equivalence of Rotation Quaternion and Rotation Matrix 
The general rotation matrix 𝑹𝑹, which transforms a vector as a result of a rotation of the 
coordinate system around the axis 𝒏𝒏� by angle 𝜂𝜂, is termed the Rodrigues rotation matrix 
and has form: 
 

𝑹𝑹 = �
𝑅𝑅𝑥𝑥𝑥𝑥 𝑅𝑅𝑥𝑥𝑦𝑦 𝑅𝑅𝑥𝑥𝑧𝑧
𝑅𝑅𝑦𝑦𝑥𝑥 𝑅𝑅𝑦𝑦𝑦𝑦 𝑅𝑅𝑦𝑦𝑧𝑧
𝑅𝑅𝑧𝑧𝑥𝑥 𝑅𝑅𝑧𝑧𝑦𝑦 𝑅𝑅𝑧𝑧𝑧𝑧

� = �
𝑠𝑠�𝑥𝑥

2 + �1 − 𝑠𝑠�𝑥𝑥
2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂 𝑠𝑠�𝑥𝑥𝑠𝑠�𝑦𝑦(1 − 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂 𝑠𝑠�𝑥𝑥𝑠𝑠�𝑧𝑧(1 − 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) − 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂

𝑠𝑠�𝑥𝑥𝑠𝑠�𝑦𝑦(1 − 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) − 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂 𝑠𝑠�𝑦𝑦
2 + �1 − 𝑠𝑠�𝑦𝑦

2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂 𝑠𝑠�𝑦𝑦𝑠𝑠�𝑧𝑧(1 − 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂
𝑠𝑠�𝑥𝑥𝑠𝑠�𝑧𝑧(1 − 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂 𝑠𝑠�𝑦𝑦𝑠𝑠�𝑧𝑧(1 − 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) − 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂 𝑠𝑠�𝑧𝑧

2 + �1 − 𝑠𝑠�𝑧𝑧
2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂

� (66) 

 
For any vector 𝒗𝒗, the left side of equation (65) evaluates to: 
 

𝑹𝑹𝒗𝒗 = �
𝑠𝑠�𝑥𝑥

2 + �1 − 𝑠𝑠�𝑥𝑥
2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂 𝑠𝑠�𝑥𝑥𝑠𝑠�𝑦𝑦(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂 𝑠𝑠�𝑥𝑥𝑠𝑠�𝑧𝑧(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) − 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂

𝑠𝑠�𝑥𝑥𝑠𝑠�𝑦𝑦(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) − 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂 𝑠𝑠�𝑦𝑦
2 + �1 − 𝑠𝑠�𝑦𝑦

2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂 𝑠𝑠�𝑦𝑦𝑠𝑠�𝑧𝑧(1 − 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂
𝑠𝑠�𝑥𝑥𝑠𝑠�𝑧𝑧(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂 𝑠𝑠�𝑦𝑦𝑠𝑠�𝑧𝑧(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂)− 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂 𝑠𝑠�𝑧𝑧

2 + �1 − 𝑠𝑠�𝑧𝑧
2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂

��
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧
� (67) 

= �
�𝑠𝑠�𝑥𝑥

2 + �1 − 𝑠𝑠�𝑥𝑥
2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂�𝑣𝑣𝑥𝑥 + �𝑠𝑠�𝑥𝑥𝑠𝑠�𝑦𝑦(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂�𝑣𝑣𝑦𝑦 + �𝑠𝑠�𝑥𝑥𝑠𝑠�𝑧𝑧(1 − 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) − 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂�𝑣𝑣𝑧𝑧

�𝑠𝑠�𝑥𝑥𝑠𝑠�𝑦𝑦(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂)− 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂�𝑣𝑣𝑥𝑥 + �𝑠𝑠�𝑦𝑦
2 + �1− 𝑠𝑠�𝑦𝑦

2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂�𝑣𝑣𝑦𝑦 + �𝑠𝑠�𝑦𝑦𝑠𝑠�𝑧𝑧(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂�𝑣𝑣𝑧𝑧
�𝑠𝑠�𝑥𝑥𝑠𝑠�𝑧𝑧(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂�𝑣𝑣𝑥𝑥 + �𝑠𝑠�𝑦𝑦𝑠𝑠�𝑧𝑧(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂)− 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂�𝑣𝑣𝑦𝑦 + �𝑠𝑠�𝑧𝑧

2 + �1 − 𝑠𝑠�𝑧𝑧
2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂�𝑣𝑣𝑧𝑧

� (68) 

 
The right side of equation (65) evaluates to: 
 

𝑞𝑞∗𝒗𝒗𝑞𝑞 = �𝑐𝑐𝑐𝑐𝑖𝑖 �
𝜂𝜂
2
� − 𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
��𝒗𝒗 �𝑐𝑐𝑐𝑐𝑖𝑖 �

𝜂𝜂
2
� + 𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
�� (69) 

= �𝑐𝑐𝑐𝑐𝑖𝑖 �
𝜂𝜂
2
� − 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
� 𝒊𝒊 − 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
� 𝒋𝒋 − 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
� 𝒌𝒌� �𝑣𝑣𝑥𝑥𝒊𝒊 + 𝑣𝑣𝑦𝑦𝒋𝒋 + 𝑣𝑣𝑧𝑧𝒌𝒌� �𝑐𝑐𝑐𝑐𝑖𝑖 �

𝜂𝜂
2
� + 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
� 𝒊𝒊

+ 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠 �
𝜂𝜂
2
� 𝒋𝒋 + 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
� 𝒌𝒌� 

(70) 

= �
�𝑠𝑠�𝑥𝑥

2 + �1 − 𝑠𝑠�𝑥𝑥
2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂�𝑣𝑣𝑥𝑥 + �𝑠𝑠�𝑥𝑥𝑠𝑠�𝑦𝑦(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂�𝑣𝑣𝑦𝑦 + �𝑠𝑠�𝑥𝑥𝑠𝑠�𝑧𝑧(1 − 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) − 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂�𝑣𝑣𝑧𝑧

�𝑠𝑠�𝑥𝑥𝑠𝑠�𝑦𝑦(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂)− 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂�𝑣𝑣𝑥𝑥 + �𝑠𝑠�𝑦𝑦
2 + �1− 𝑠𝑠�𝑦𝑦

2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂�𝑣𝑣𝑦𝑦 + �𝑠𝑠�𝑦𝑦𝑠𝑠�𝑧𝑧(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂�𝑣𝑣𝑧𝑧
�𝑠𝑠�𝑥𝑥𝑠𝑠�𝑧𝑧(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂�𝑣𝑣𝑥𝑥 + �𝑠𝑠�𝑦𝑦𝑠𝑠�𝑧𝑧(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂)− 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂�𝑣𝑣𝑦𝑦 + �𝑠𝑠�𝑧𝑧

2 + �1 − 𝑠𝑠�𝑧𝑧
2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂�𝑣𝑣𝑧𝑧

� (71) 

 
Equations (68) and (71) match, proving the identity in equation (65). 

Rotating the coordinate system by angle 𝜂𝜂 plus 360° about the normalized rotation axis 𝒏𝒏� 
is obviously equivalent to rotating by angle 𝜂𝜂 about the same normalized rotation axis 𝒏𝒏�. 
However, from the definition of the rotation quaternion in equation (63), the extra 360° 
rotation results in the negation of the entire quaternion. In practice, this is more annoying 
than problematic since the negation of the quaternion appears twice on the right hand 
side of equation (65) and therefore has no effect when rotating vectors. It is, however, 
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conventional to constrain the scalar component 𝑞𝑞0 of a rotation quaternion 𝑞𝑞 to be non-
negative. If a negative scalar component is detected then the entire quaternion, both 
scalar and vector components, can be safely negated. 

3.3 Inverse Rotation Quaternion 
From the definition of 𝑞𝑞∗, it follows that 𝑞𝑞∗ is the rotation operator about the same axis 𝒏𝒏� 
but by angle −𝜂𝜂 and is, therefore, the inverse of the rotation quaternion 𝑞𝑞: 
 

𝑞𝑞∗ = 𝑐𝑐𝑐𝑐𝑖𝑖 �
𝜂𝜂
2
� − 𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
� = 𝑐𝑐𝑐𝑐𝑖𝑖 �

−𝜂𝜂
2
� + 𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �

−𝜂𝜂
2
� (72) 

 
The inverse nature of the operators 𝑞𝑞 and 𝑞𝑞∗ can also be shown by direct evaluation: 
 

𝑞𝑞(𝑞𝑞∗𝒗𝒗𝑞𝑞)𝑞𝑞∗ = (𝑞𝑞𝑞𝑞∗)𝒗𝒗(𝑞𝑞𝑞𝑞∗) = 𝒗𝒗 (73) 

𝑞𝑞∗(𝑞𝑞𝒗𝒗𝑞𝑞∗)𝑞𝑞 = (𝑞𝑞∗𝑞𝑞)𝒗𝒗(𝑞𝑞∗𝑞𝑞) = 𝒗𝒗 (74) 

 

3.4 Product of Rotation Quaternions 
The result of successively applying rotation quaternions 𝑞𝑞1 followed by 𝑞𝑞2 through 𝑞𝑞𝑁𝑁 to 
vector 𝒗𝒗 is: 
 

𝑞𝑞𝑁𝑁∗ … (𝑞𝑞2∗(𝑞𝑞1∗𝒗𝒗𝑞𝑞1)𝑞𝑞2) … 𝑞𝑞𝑁𝑁 = (𝑞𝑞𝑁𝑁∗ … 𝑞𝑞2∗𝑞𝑞1∗)𝒗𝒗(𝑞𝑞1𝑞𝑞2 … … 𝑞𝑞𝑁𝑁) (75) 

 
The rotation quaternion 𝑞𝑞, equivalent to the 𝑁𝑁 successive rotations represented by 
quaternions 𝑞𝑞1 to 𝑞𝑞𝑁𝑁, is therefore: 
 

𝑞𝑞 = 𝑞𝑞1𝑞𝑞2𝑞𝑞3 … 𝑞𝑞𝑁𝑁 (76) 

 

3.5 Negation of Rotation Axis and Angle 
Both a rotation matrix 𝑹𝑹 and quaternion 𝑞𝑞 are unchanged if both the rotation angle and 
axis are simultaneously inverted: 
 

𝑹𝑹(−𝒏𝒏�,−𝜂𝜂)

= �
𝑠𝑠�𝑥𝑥

2 + �1 − 𝑠𝑠�𝑥𝑥
2�𝑐𝑐𝑐𝑐𝑖𝑖(−𝜂𝜂) 𝑠𝑠�𝑥𝑥𝑠𝑠�𝑦𝑦�1 − 𝑐𝑐𝑐𝑐𝑖𝑖(−𝜂𝜂)� − 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠(−𝜂𝜂) 𝑠𝑠�𝑥𝑥𝑠𝑠�𝑧𝑧�1 − 𝑐𝑐𝑐𝑐𝑖𝑖(−𝜂𝜂)� + 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠(−𝜂𝜂)

𝑠𝑠�𝑥𝑥𝑠𝑠�𝑦𝑦�1 − 𝑐𝑐𝑐𝑐𝑖𝑖(−𝜂𝜂)� + 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠(−𝜂𝜂) 𝑠𝑠�𝑦𝑦
2 + �1 − 𝑠𝑠�𝑦𝑦

2�𝑐𝑐𝑐𝑐𝑖𝑖(−𝜂𝜂) 𝑠𝑠�𝑦𝑦𝑠𝑠�𝑧𝑧�1 − 𝑐𝑐𝑐𝑐𝑖𝑖(−𝜂𝜂)� − 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠(−𝜂𝜂)
𝑠𝑠�𝑥𝑥𝑠𝑠�𝑧𝑧�1 − 𝑐𝑐𝑐𝑐𝑖𝑖(−𝜂𝜂)� − 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠(−𝜂𝜂) 𝑠𝑠�𝑦𝑦𝑠𝑠�𝑧𝑧�1 − 𝑐𝑐𝑐𝑐𝑖𝑖(−𝜂𝜂)� + 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠(−𝜂𝜂) 𝑠𝑠�𝑧𝑧

2 + �1 − 𝑠𝑠�𝑧𝑧
2�𝑐𝑐𝑐𝑐𝑖𝑖(−𝜂𝜂)

� 
(77) 

= �
𝑠𝑠�𝑥𝑥

2 + �1− 𝑠𝑠�𝑥𝑥
2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂 𝑠𝑠�𝑥𝑥𝑠𝑠�𝑦𝑦(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂 𝑠𝑠�𝑥𝑥𝑠𝑠�𝑧𝑧(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂)− 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂

𝑠𝑠�𝑥𝑥𝑠𝑠�𝑦𝑦(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂)− 𝑠𝑠�𝑧𝑧𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂 𝑠𝑠�𝑦𝑦
2 + �1 − 𝑠𝑠�𝑦𝑦

2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂 𝑠𝑠�𝑦𝑦𝑠𝑠�𝑧𝑧(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂
𝑠𝑠�𝑥𝑥𝑠𝑠�𝑧𝑧(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) + 𝑠𝑠�𝑦𝑦𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂 𝑠𝑠�𝑦𝑦𝑠𝑠�𝑧𝑧(1− 𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂) − 𝑠𝑠�𝑥𝑥𝑖𝑖𝑏𝑏𝑠𝑠𝜂𝜂 𝑠𝑠�𝑧𝑧

2 + �1− 𝑠𝑠�𝑧𝑧
2�𝑐𝑐𝑐𝑐𝑖𝑖𝜂𝜂

� = 𝑹𝑹(𝒏𝒏�,𝜂𝜂) (78) 

𝑞𝑞(−𝒏𝒏�,−𝜂𝜂) = 𝑐𝑐𝑐𝑐𝑖𝑖 �
−𝜂𝜂
2
� − 𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �

−𝜂𝜂
2
� = 𝑐𝑐𝑐𝑐𝑖𝑖 �

𝜂𝜂
2
� + 𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
� = 𝑞𝑞(𝒏𝒏�, 𝜂𝜂) (79) 
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3.6 Square Root of Rotation Quaternion 
The square root �𝑞𝑞 of the rotation quaternion 𝑞𝑞 for rotation by angle 𝜂𝜂 about axis 𝒏𝒏� is, by 
inspection, the quaternion for rotation by angle �𝜂𝜂

2
� about the same axis 𝒏𝒏�: 

 

𝑞𝑞(𝒏𝒏�𝜂𝜂) = 𝑐𝑐𝑐𝑐𝑖𝑖 �
𝜂𝜂
2
� + 𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
� = �𝑐𝑐𝑐𝑐𝑖𝑖 �

𝜂𝜂
4
� + 𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
4
�� �𝑐𝑐𝑐𝑐𝑖𝑖 �

𝜂𝜂
4
� + 𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
4
�� = 𝑞𝑞 �

𝒏𝒏�𝜂𝜂
2
� 𝑞𝑞 �

𝒏𝒏�𝜂𝜂
2
� (80) 

 
Standard double angle trigonometric identities can be used to simplify the calculation of 
the components of the square root quaternion: 
 

�𝑐𝑐𝑐𝑐𝑖𝑖 �
𝜂𝜂
4
�� = �1 + 𝑐𝑐𝑐𝑐𝑖𝑖 �𝜂𝜂2�

2
= �1 + 𝑞𝑞0

2
 (81) 

�𝑖𝑖𝑏𝑏𝑠𝑠 �
𝜂𝜂
4
�� = �1 − 𝑐𝑐𝑐𝑐𝑖𝑖 �𝜂𝜂2�

2
= �1 − 𝑞𝑞0

2
 (82) 

 
The scaling factor for the vector component of the square root is the ratio: 
 

�
𝑖𝑖𝑏𝑏𝑠𝑠 �𝜂𝜂4�

𝑖𝑖𝑏𝑏𝑠𝑠 �𝜂𝜂2�
� =

�1 − 𝑐𝑐𝑐𝑐𝑖𝑖 �𝜂𝜂2�

√2�1 − 𝑐𝑐𝑐𝑐𝑖𝑖2 �𝜂𝜂2�
=

�1 − 𝑞𝑞0
√2�1− 𝑞𝑞02)

=
�1 − 𝑞𝑞0

√2�1− 𝑞𝑞0�1 + 𝑞𝑞0
=

1
�2 + 2𝑞𝑞0

 (83) 

 
The square root �𝑞𝑞 of rotation quaternion 𝑞𝑞 then equals: 
 

�𝑞𝑞 = �{𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3} = ��
1 + 𝑞𝑞0

2
,

𝑞𝑞1
�2 + 2𝑞𝑞0

,
𝑞𝑞2

�2 + 2𝑞𝑞0
,

𝑞𝑞3
�2 + 2𝑞𝑞0

� (84) 

 
Direct expansion of the product �𝑞𝑞�𝑞𝑞 equals 𝑞𝑞 as expected. Substituting into equation 
(27) gives: 
 

�𝑞𝑞�𝑞𝑞 = �
1 + 𝑞𝑞0

2
� − �

𝑞𝑞12 + 𝑞𝑞22 + 𝑞𝑞32

2 + 2𝑞𝑞0
�+ 2�

1 + 𝑞𝑞0
2 �

𝑞𝑞1
�2 + 2𝑞𝑞0

𝒊𝒊 +
𝑞𝑞2

�2 + 2𝑞𝑞0
𝒋𝒋+

𝑞𝑞3
�2 + 2𝑞𝑞0

𝒌𝒌� (85) 

= �
1 + 𝑞𝑞0

2
� −

(1 − 𝑞𝑞02)
2(1 + 𝑞𝑞0) + 𝑞𝑞1𝒊𝒊 + 𝑞𝑞2𝒋𝒋 + 𝑞𝑞3𝒌𝒌 = 𝑞𝑞0 + 𝑞𝑞1𝒊𝒊 + 𝑞𝑞2𝒋𝒋 + 𝑞𝑞3𝒌𝒌 = 𝑞𝑞 (86) 
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Mathematically, a second square root exists with opposite sign: 
 

�𝑞𝑞 = −��
1 + 𝑞𝑞0

2
,

𝑞𝑞1
�2 + 2𝑞𝑞0

,
𝑞𝑞2

�2 + 2𝑞𝑞0
,

𝑞𝑞3
�2 + 2𝑞𝑞0

� (87) 

 
Since this is simply the negated quaternion, which corresponds to a meaningless 
additional 360° rotation, it can be ignored. 

3.7 Coordinate Frame Rotation Standard 
Some texts define the quaternion rotation operator on vector 𝒗𝒗 to be 𝑞𝑞𝒗𝒗𝑞𝑞∗ instead of 
𝑞𝑞∗𝒗𝒗𝑞𝑞. The explanation is that the operator 𝑞𝑞∗𝒗𝒗𝑞𝑞 transforms the vector 𝒗𝒗 as a result of 
rotation of the coordinate system by angle 𝜂𝜂, whereas the operator 𝑞𝑞𝒗𝒗𝑞𝑞∗ rotates the 
vector 𝒗𝒗, by angle 𝜂𝜂 in a fixed coordinate system. The standard used in this document 
and the NXP Sensor Fusion Library software is that it is the coordinate system that is 
rotating, normally as a result of the device orientation changing, while the vector 𝒗𝒗, which 
is typically the earth's gravitational or geomagnetic field, remains fixed in its frame. 

4. Converting between Quaternion and Rotation Matrix 

4.1 Rotation Matrix from Quaternion 
Expanding equation (65) into its components gives the identity: 
 

�
𝑅𝑅𝑥𝑥𝑥𝑥 𝑅𝑅𝑥𝑥𝑦𝑦 𝑅𝑅𝑥𝑥𝑧𝑧
𝑅𝑅𝑦𝑦𝑥𝑥 𝑅𝑅𝑦𝑦𝑦𝑦 𝑅𝑅𝑦𝑦𝑧𝑧
𝑅𝑅𝑧𝑧𝑥𝑥 𝑅𝑅𝑧𝑧𝑦𝑦 𝑅𝑅𝑧𝑧𝑧𝑧

��
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧
� = (𝑞𝑞0 − 𝑞𝑞1𝒊𝒊 − 𝑞𝑞2𝒋𝒋 − 𝑞𝑞3𝒌𝒌)�𝑣𝑣𝑥𝑥𝒊𝒊 + 𝑣𝑣𝑦𝑦𝒋𝒋 + 𝑣𝑣𝑧𝑧𝒌𝒌�(𝑞𝑞0 + 𝑞𝑞1𝒊𝒊 + 𝑞𝑞2𝒋𝒋 + 𝑞𝑞3𝒌𝒌) (88) 

 
Expanding the right hand side and re-arranging gives: 
 

�
𝑅𝑅𝑥𝑥𝑥𝑥 𝑅𝑅𝑥𝑥𝑦𝑦 𝑅𝑅𝑥𝑥𝑧𝑧
𝑅𝑅𝑦𝑦𝑥𝑥 𝑅𝑅𝑦𝑦𝑦𝑦 𝑅𝑅𝑦𝑦𝑧𝑧
𝑅𝑅𝑧𝑧𝑥𝑥 𝑅𝑅𝑧𝑧𝑦𝑦 𝑅𝑅𝑧𝑧𝑧𝑧

��
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧
� = �

𝑞𝑞02 + 𝑞𝑞12 − 𝑞𝑞22 − 𝑞𝑞32 2𝑞𝑞1𝑞𝑞2 + 2𝑞𝑞0𝑞𝑞3 2𝑞𝑞1𝑞𝑞3 − 2𝑞𝑞0𝑞𝑞2
2𝑞𝑞1𝑞𝑞2 − 2𝑞𝑞0𝑞𝑞3 𝑞𝑞02 − 𝑞𝑞12 + 𝑞𝑞22 − 𝑞𝑞32 2𝑞𝑞2𝑞𝑞3 + 2𝑞𝑞0𝑞𝑞1
2𝑞𝑞1𝑞𝑞3 + 2𝑞𝑞0𝑞𝑞2 2𝑞𝑞2𝑞𝑞3 − 2𝑞𝑞0𝑞𝑞1 𝑞𝑞02 − 𝑞𝑞12 − 𝑞𝑞22 + 𝑞𝑞32

��
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧
� (89) 

 
Because equation (89) holds for all vectors 𝒗𝒗, it follows that: 
 

�
𝑅𝑅𝑥𝑥𝑥𝑥 𝑅𝑅𝑥𝑥𝑦𝑦 𝑅𝑅𝑥𝑥𝑧𝑧
𝑅𝑅𝑦𝑦𝑥𝑥 𝑅𝑅𝑦𝑦𝑦𝑦 𝑅𝑅𝑦𝑦𝑧𝑧
𝑅𝑅𝑧𝑧𝑥𝑥 𝑅𝑅𝑧𝑧𝑦𝑦 𝑅𝑅𝑧𝑧𝑧𝑧

� = �
𝑞𝑞02 + 𝑞𝑞12 − 𝑞𝑞22 − 𝑞𝑞32 2𝑞𝑞1𝑞𝑞2 + 2𝑞𝑞0𝑞𝑞3 2𝑞𝑞1𝑞𝑞3 − 2𝑞𝑞0𝑞𝑞2

2𝑞𝑞1𝑞𝑞2 − 2𝑞𝑞0𝑞𝑞3 𝑞𝑞02 − 𝑞𝑞12 + 𝑞𝑞22 − 𝑞𝑞32 2𝑞𝑞2𝑞𝑞3 + 2𝑞𝑞0𝑞𝑞1
2𝑞𝑞1𝑞𝑞3 + 2𝑞𝑞0𝑞𝑞2 2𝑞𝑞2𝑞𝑞3 − 2𝑞𝑞0𝑞𝑞1 𝑞𝑞02 − 𝑞𝑞12 − 𝑞𝑞22 + 𝑞𝑞32

� (90) 

 
The normalization constraint for a rotation quaternion is: 
 

𝑞𝑞02 + 𝑞𝑞12 + 𝑞𝑞22 + 𝑞𝑞32 = 1 (91) 

 
Substituting equation (91) into equation (90) gives a slightly simpler expression for 
converting a rotation quaternion to a rotation matrix: 
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�
𝑅𝑅𝑥𝑥𝑥𝑥 𝑅𝑅𝑥𝑥𝑦𝑦 𝑅𝑅𝑥𝑥𝑧𝑧
𝑅𝑅𝑦𝑦𝑥𝑥 𝑅𝑅𝑦𝑦𝑦𝑦 𝑅𝑅𝑦𝑦𝑧𝑧
𝑅𝑅𝑧𝑧𝑥𝑥 𝑅𝑅𝑧𝑧𝑦𝑦 𝑅𝑅𝑧𝑧𝑧𝑧

� = �
2(𝑞𝑞02 + 𝑞𝑞12) − 1 2(𝑞𝑞1𝑞𝑞2 + 𝑞𝑞0𝑞𝑞3) 2(𝑞𝑞1𝑞𝑞3 − 𝑞𝑞0𝑞𝑞2)
2(𝑞𝑞1𝑞𝑞2 − 𝑞𝑞0𝑞𝑞3) 2(𝑞𝑞02 + 𝑞𝑞22) − 1 2(𝑞𝑞2𝑞𝑞3 + 𝑞𝑞0𝑞𝑞1)
2(𝑞𝑞1𝑞𝑞3 + 𝑞𝑞0𝑞𝑞2) 2(𝑞𝑞2𝑞𝑞3 − 𝑞𝑞0𝑞𝑞1) 2(𝑞𝑞02 + 𝑞𝑞32) − 1

� (92) 

 

4.2 Quaternion from Rotation Matrix 
Equation (92) can also be used to determine the rotation quaternion from the rotation 
matrix. The procedure is straightforward except for rotations close to 180° where a 
fallback algorithm is needed to avoid numerical rounding errors. 

The sum of 1 plus the trace of the rotation matrix evaluates to: 
 

1 + 𝑡𝑡𝑟𝑟(𝑹𝑹) = 1 + 2(𝑞𝑞02 + 𝑞𝑞12) − 1 + 2(𝑞𝑞02 + 𝑞𝑞22) − 1 + 2(𝑞𝑞02 + 𝑞𝑞32) − 1 (93) 

= 2𝑞𝑞02 + 2𝑞𝑞12 + 2𝑞𝑞02 + 2𝑞𝑞22 − 1 + 2𝑞𝑞02 + 2𝑞𝑞32 − 1 (94) 

= �2𝑞𝑞02 + 2𝑞𝑞12 + 2𝑞𝑞22 + 2𝑞𝑞32� + 2𝑞𝑞02 − 1 + 2𝑞𝑞02 − 1 (95) 

 
Using the result that the quaternion has unit norm gives: 
 

1 + 𝑡𝑡𝑟𝑟(𝑹𝑹) = 4𝑞𝑞02 (96) 

 
𝑞𝑞0 is always nonnegative because negative 𝑞𝑞0 in a rotation quaternion corresponds to a 
rotation angle greater than 180° which is equivalent to a negated rotation of less than 
180° about the negated rotation axis. The positive square root of equation (96) can, 
therefore, always be taken, giving: 
 

𝑞𝑞0 =
�1 + 𝑡𝑡𝑟𝑟(𝑹𝑹)

2
=
�1 + 𝑅𝑅𝑥𝑥𝑥𝑥 + 𝑅𝑅𝑦𝑦𝑦𝑦 + 𝑅𝑅𝑧𝑧𝑧𝑧

2
 (97) 

 
Differencing elements across the diagonal gives the solution for the vector components 
of the rotation quaternion: 
 

𝑅𝑅𝑦𝑦𝑧𝑧 − 𝑅𝑅𝑧𝑧𝑦𝑦 = 4𝑞𝑞0𝑞𝑞1 ⇒ 𝑞𝑞1 =
�𝑅𝑅𝑦𝑦𝑧𝑧 − 𝑅𝑅𝑧𝑧𝑦𝑦�

4𝑞𝑞0
 (98) 

𝑅𝑅𝑧𝑧𝑥𝑥 − 𝑅𝑅𝑥𝑥𝑧𝑧 = 4𝑞𝑞0𝑞𝑞2 ⇒ 𝑞𝑞2 =
(𝑅𝑅𝑧𝑧𝑥𝑥 − 𝑅𝑅𝑥𝑥𝑧𝑧)

4𝑞𝑞0
 (99) 

𝑅𝑅𝑥𝑥𝑦𝑦 − 𝑅𝑅𝑦𝑦𝑥𝑥 = 4𝑞𝑞0𝑞𝑞3 ⇒ 𝑞𝑞3 =
�𝑅𝑅𝑥𝑥𝑦𝑦 − 𝑅𝑅𝑦𝑦𝑥𝑥�

4𝑞𝑞0
 (100) 

 
Equations (98) to (100) fail near 180° rotation about any axis because the rotation matrix 
becomes symmetric (giving a near-zero numerator) and the scalar quaternion component 
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𝑞𝑞0 approaches zero (giving a near-zero denominator). A fallback algorithm is needed 
which uses the elements on the leading diagonal to give: 

 

𝑅𝑅𝑥𝑥𝑥𝑥 = 2(𝑞𝑞02 + 𝑞𝑞12) − 1 ⇒ 𝑞𝑞1 = ±�
1 + 𝑅𝑅𝑥𝑥𝑥𝑥

2
− 𝑞𝑞02 (101) 

𝑅𝑅𝑦𝑦𝑦𝑦 = 2(𝑞𝑞02 + 𝑞𝑞22) − 1 ⇒ 𝑞𝑞2 = ±�
1 + 𝑅𝑅𝑦𝑦𝑦𝑦

2
− 𝑞𝑞02 (102) 

𝑅𝑅𝑧𝑧𝑧𝑧 = 2(𝑞𝑞02 + 𝑞𝑞32) − 1 ⇒ 𝑞𝑞3 = ±�
1 + 𝑅𝑅𝑧𝑧𝑧𝑧

2
− 𝑞𝑞02 (103) 

 
The unknown signs in equations (101) to (103) can be resolved by taking the signs of 
equations (98) to (100) and using the fact that 𝑞𝑞0 is always nonnegative: 
 

𝑖𝑖𝑏𝑏𝑠𝑠𝑠𝑠(𝑞𝑞1) = 𝑖𝑖𝑏𝑏𝑠𝑠𝑠𝑠�𝑅𝑅𝑦𝑦𝑧𝑧 − 𝑅𝑅𝑧𝑧𝑦𝑦� (104) 

𝑖𝑖𝑏𝑏𝑠𝑠𝑠𝑠(𝑞𝑞2) = 𝑖𝑖𝑏𝑏𝑠𝑠𝑠𝑠(𝑅𝑅𝑧𝑧𝑥𝑥 − 𝑅𝑅𝑥𝑥𝑧𝑧) (105) 

𝑖𝑖𝑏𝑏𝑠𝑠𝑠𝑠(𝑞𝑞3) = 𝑖𝑖𝑏𝑏𝑠𝑠𝑠𝑠�𝑅𝑅𝑥𝑥𝑦𝑦 − 𝑅𝑅𝑦𝑦𝑥𝑥� (106) 

 

5. Converting between Quaternion and Rotation Vector 

5.1 Rotation Vector From Quaternion 
The definition of the rotation quaternion 𝑞𝑞 in equation (63) shows that it is closely linked 
to the equivalent rotation vector 𝒏𝒏�𝜂𝜂 defined as the product of normalized rotation axis 𝒏𝒏� 
and the rotation angle 𝜂𝜂. Inverting the process to recover the rotation vector from the 
quaternion is straightforward. 
 

𝑞𝑞 = 𝑞𝑞0 + 𝑞𝑞1𝒊𝒊 + 𝑞𝑞2𝒋𝒋 + 𝑞𝑞3𝒌𝒌 = 𝑐𝑐𝑐𝑐𝑖𝑖 �
𝜂𝜂
2
� + 𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
� (107) 

 
Equating the scalar components gives: 
 

𝑞𝑞0 = 𝑐𝑐𝑐𝑐𝑖𝑖 �
𝜂𝜂
2
� ⇒ 𝜂𝜂 = 2𝑐𝑐𝑐𝑐𝑖𝑖−1(𝑞𝑞0) (108) 

 
Because 𝑞𝑞0 varies between 0 and 1, the rotation angle 𝜂𝜂 in equation (108) has the 
required range 0° to 180°. 

For the general case where 𝑖𝑖𝑏𝑏𝑠𝑠 �𝜂𝜂
2
� is non-zero, equating the remaining three 

components of the quaternion gives: 
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𝑞𝑞1 = 𝑖𝑖𝑏𝑏𝑠𝑠 �
𝜂𝜂
2
� 𝑠𝑠𝑥𝑥 ⇒ 𝑠𝑠𝑥𝑥 =

𝑞𝑞1
𝑖𝑖𝑏𝑏𝑠𝑠 �𝜂𝜂2�

 (109) 

𝑞𝑞2 = 𝑖𝑖𝑏𝑏𝑠𝑠 �
𝜂𝜂
2
� 𝑠𝑠𝑦𝑦 ⇒ 𝑠𝑠𝑦𝑦 =

𝑞𝑞2
𝑖𝑖𝑏𝑏𝑠𝑠 �𝜂𝜂2�

 (110) 

𝑞𝑞3 = 𝑖𝑖𝑏𝑏𝑠𝑠 �
𝜂𝜂
2
� 𝑠𝑠𝑧𝑧 ⇒ 𝑠𝑠𝑧𝑧 =

𝑞𝑞3
𝑖𝑖𝑏𝑏𝑠𝑠 �𝜂𝜂2�

 (111) 

 

For the case where 𝑖𝑖𝑏𝑏𝑠𝑠 �𝜂𝜂
2
� = 0, the rotation angle 𝜂𝜂 is also zero since 𝜂𝜂 is in the range 0o 

to 180o. The rotation axis 𝒏𝒏� is then undefined which makes physical sense for the case of 
zero rotation angle 𝜂𝜂. 

5.2 Quaternion From Rotation Vector 
Equation (63) defines the rotation quaternion explicitly in terms of the rotation vector axis 
𝒏𝒏� and rotation angle 𝜂𝜂. 
 

𝑞𝑞 = 𝑐𝑐𝑐𝑐𝑖𝑖 �
𝜂𝜂
2
� + 𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
� (112) 

 

6. Low-pass Filtering Orientation Quaternions 

6.1 Introduction 
The Kalman filter algorithms directly compute an optimal Kalman filter estimate of the 
orientation. The simpler accelerometer and magnetometer eCompass algorithms, 
however, require the explicit low-pass filtering of the stream of noisy orientation 
estimates whether in quaternion or rotation matrix forms. Low pass filtering of orientation 
quaternions is performed in the function fLPFOrientationQuaternion in file 
orientation.c. 

The individual elements of orientation matrices and orientation quaternions should not be 
separately low pass filtered since the resulting low pass filtered matrix or quaternion is no 
longer a valid rotation matrix (with orthonormal row and column vectors) or valid rotation 
quaternion (with unit norm). Any low pass filtering on individual elements must therefore 
be followed by explicit re-normalizing of the rotation matrix or rotation quaternion. The 
results are never terribly satisfactory and the low pass filtered trajectories can be 
counter-intuitive. The preferred method is to use exponential filtering of quaternions as 
shown in the following subsections. 

 

6.2 Exponential Time Domain Low Pass Filter 
The difference equation for the single-pole low-pass filter in the time domain is: 
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𝑦𝑦[𝑠𝑠] = (1 − 𝛼𝛼)𝑦𝑦[𝑠𝑠 − 1] + 𝛼𝛼𝛼𝛼[𝑠𝑠] (113) 

 
where: 
 

0 < 𝛼𝛼 ≤ 1 (114) 

 
The transfer function 𝐻𝐻(𝑧𝑧) is: 
 

𝐻𝐻(𝑧𝑧) =
𝛼𝛼

1 − (1 − 𝛼𝛼)𝑧𝑧−1
 (115) 

 
with a single pole at 𝑧𝑧 = (1 − 𝛼𝛼). 

In the general case, an impulse at time zero 𝛼𝛼[0] = 1 gives the exponentially decaying 
output: 
 

𝑦𝑦[𝑠𝑠] = (1 − 𝛼𝛼)𝑛𝑛 (116) 

 

The 1
𝑒𝑒
 time constant 𝑁𝑁 in samples is then given by: 

 

1
𝑒𝑒

= (1 − 𝛼𝛼)𝑁𝑁 ⇒ 𝑁𝑁 =
−1

𝑠𝑠𝑠𝑠(1 − 𝛼𝛼) 
(117) 

 
For small 𝛼𝛼: 
 

𝑁𝑁 =
1
𝛼𝛼

 (118) 

 
The time constant in samples is therefore approximately equal to the reciprocal of the 
filter coefficient 𝛼𝛼. The case 𝛼𝛼 = 1 corresponds to an all pass filter. 

In C code, equation (113) can be efficiently written as: 
 

yn += alpha ∗ (xn −  yn); (119) 

 

An example of this filter is the line below taken from the function 
fRun_6DOF_GB_BASIC and used to filter the geomagnetic inclination angle: 
 

// low pass filter the geomagnetic inclination angle with a 
simple exponential filter 
pthisSV->fLPDelta += pthisSV->flpf * (pthisSV->fDelta - pthisSV->fLPDelta); 

Equation (119) makes it clear that the low-pass estimate yn is updated by 𝛼𝛼 times the 
difference between the current input xn and the previous low-pass filtered estimate yn. 
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The low-pass estimate yn is therefore exponentially steered towards the input sequence 
xn. The next section describes how the principle of exponential convergence to a noisy 
time varying input orientation can be applied to orientation quaternions. 

 

6.3 Exponential Quaternion Low-pass Filter 
The orientation space quaternion low pass filter used in the function 
fLPFOrientationQuaternion is analogous to the time domain exponential filter 
of the previous section in that it exponentially rotates the current low-pass filtered 
orientation quaternion towards the instantaneous, and therefore noisy, orientation 
quaternion. 

The incremental rotation quaternion Δ𝑞𝑞[𝑠𝑠] required at iteration 𝑠𝑠 to completely rotate the 
previous low pass filtered quaternion 𝑞𝑞𝐿𝐿𝐿𝐿[𝑠𝑠 − 1] onto the instantaneous noisy quaternion 
𝑞𝑞[𝑠𝑠] is given by: 
 

𝑞𝑞[𝑠𝑠] = 𝑞𝑞𝐿𝐿𝐿𝐿[𝑠𝑠 − 1]Δ𝑞𝑞[𝑠𝑠] ⇒ Δ𝑞𝑞[𝑠𝑠] = 𝑞𝑞𝐿𝐿𝐿𝐿∗[𝑠𝑠 − 1]𝑞𝑞[𝑠𝑠] (120) 

 
The scalar and vector components of Δ𝑞𝑞[𝑠𝑠] are related to the angle 𝜂𝜂 and axis 𝒏𝒏� 
between the low pass and instantaneous orientation estimates at iteration [𝑠𝑠] by: 
 

Δ𝑞𝑞[𝑠𝑠] = 𝑐𝑐𝑐𝑐𝑖𝑖 �
𝜂𝜂
2
� + 𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2
� (121) 

 
Applying the incremental quaternion unchanged results in the special case of the all-pass 
filter where 𝑞𝑞𝐿𝐿𝐿𝐿[𝑠𝑠] = 𝑞𝑞[𝑠𝑠]: 
 

𝑞𝑞𝐿𝐿𝐿𝐿[𝑠𝑠] = 𝑞𝑞𝐿𝐿𝐿𝐿[𝑠𝑠 − 1]Δ𝑞𝑞[𝑠𝑠] = 𝑞𝑞𝐿𝐿𝐿𝐿[𝑠𝑠 − 1]𝑞𝑞𝐿𝐿𝐿𝐿∗[𝑠𝑠 − 1]𝑞𝑞[𝑠𝑠] = 𝑞𝑞[𝑠𝑠] (122) 

 
Scaling the vector component by a constant factor 𝛼𝛼 results in an incremental quaternion 
correction Δ𝑞𝑞′[𝑠𝑠] which exponentially steers the low pass filtered orientation quaternion 
onto the instantaneous quaternion with a time constant approximately equal to the 
reciprocal of the filter coefficient 𝛼𝛼: 
 

Δ𝑞𝑞′[𝑠𝑠] = Δ𝑞𝑞0′[𝑠𝑠] + 𝛼𝛼𝒏𝒏�𝑖𝑖𝑏𝑏𝑠𝑠 �
𝜂𝜂
2
� (123) 

 
The scalar component Δ𝑞𝑞0′[𝑠𝑠] is determined by the constraint that the norm of Δ𝑞𝑞′[𝑠𝑠] 
equals 1. 

This low pass filter can be improved by making the filter coefficient 𝛼𝛼 dependent on the 
relative angle 𝜂𝜂. 𝛼𝛼 should be small when 𝜂𝜂 is small in order to give a long time constant 
and a high degree of noise rejection but 𝛼𝛼 should increase as 𝜂𝜂 increases in order to give 
faster tracking of aggressive motion at the expense of less averaging. 

The expression used in the function fLPFOrientationQuaternion is: 
 



 

 

NXP Semiconductors AN5022 
 Quaternion Algebra and Rotations 

AN5022 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved. 

Application note Rev. 2.0 — 21 June 2016 21 of 26 

𝛼𝛼′ = 𝛼𝛼 + (1 − 𝛼𝛼)�(1 − Δ𝑞𝑞0[𝑠𝑠]2) = 𝛼𝛼 + (1 − 𝛼𝛼)�1 − 𝑐𝑐𝑐𝑐𝑖𝑖2 �
𝜂𝜂
2� = 𝛼𝛼 + (1 − 𝛼𝛼) �𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜂𝜂
2�� 

(124) 

 
where 𝛼𝛼 is the nominal filter coefficient and 𝛼𝛼′ the actual filter coefficient used . 

Using a first order Taylor expansion gives the variation of filter coefficient 𝛼𝛼′ for small 
relative angles 𝜂𝜂 and small 𝛼𝛼 as: 
 

𝛼𝛼′ ≈ 𝛼𝛼 +
(1 − 𝛼𝛼)|𝜂𝜂|

2
≈ 𝛼𝛼 +

|𝜂𝜂|
2

 𝑖𝑖𝑐𝑐𝑟𝑟 𝜂𝜂 𝑏𝑏𝑠𝑠 𝑟𝑟𝑎𝑎𝑟𝑟𝑏𝑏𝑎𝑎𝑠𝑠𝑖𝑖 (125) 

 
𝛼𝛼′ therefore equals 𝛼𝛼 in the limit of small angles 𝜂𝜂 but increases linearly as the 
divergence between the low pass and instantaneous orientation estimates increases 
resulting in a decreasing time constant and more rapid convergence as the platform 
dynamics become more aggressive. 

As the discrepancy between the low pass and instantaneous orientation estimates 
reaches the maximum of 180o, Δ𝑞𝑞0[𝑠𝑠] tends to zero and the filter coefficient 𝛼𝛼′ 
asymptotes to the all pass case bringing the low pass filtered estimate back into 
immediate synchronization with the instantaneous orientation estimate. 
 

𝛼𝛼′ = 1 (126) 

 

7. Quaternion Derivative 

7.1 Definition 
The quaternion derivative is defined in the conventional manner as the limit: 
 

𝑟𝑟𝑞𝑞(𝑡𝑡)
𝑟𝑟𝑡𝑡

= �̇�𝑞(𝑡𝑡) = lim𝛿𝛿𝛿𝛿→0 �
𝑞𝑞(𝑡𝑡 + 𝛿𝛿𝑡𝑡) − 𝑞𝑞(𝑡𝑡)

𝛿𝛿𝑡𝑡
� (127) 

⇒ 𝑞𝑞(𝑡𝑡 + 𝑟𝑟𝑡𝑡) = 𝑞𝑞(𝑡𝑡) + 𝑟𝑟𝑡𝑡�̇�𝑞(𝑡𝑡) (128) 

 

7.2 Derivation for Rotation Quaternions 
An orientation quaternion can also be propagated forward in time by computing the 
product of the current rotation quaternion 𝑞𝑞(𝑡𝑡) and the incremental rotation quaternion 
𝛿𝛿𝑞𝑞(𝑡𝑡): 
 

𝑞𝑞(𝑡𝑡 + 𝛿𝛿𝑡𝑡) = 𝑞𝑞(𝑡𝑡)𝛿𝛿𝑞𝑞(𝑡𝑡) (129) 

 
With the assumption that incremental change in orientation results from a constant 
angular velocity 𝝎𝝎 over the time interval 𝛿𝛿𝑡𝑡 then using the definition of the rotation 
quaternion in terms of rotation angle gives: 
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𝛿𝛿𝑞𝑞 = {𝑞𝑞0, 𝛿𝛿𝑞𝑞1, 𝛿𝛿𝑞𝑞2, 𝛿𝛿𝑞𝑞3} = �𝑞𝑞0, 𝑖𝑖𝑏𝑏𝑠𝑠 �
𝜔𝜔𝑥𝑥𝛿𝛿𝑡𝑡

2
� , 𝑖𝑖𝑏𝑏𝑠𝑠 �

𝜔𝜔𝑦𝑦𝛿𝛿𝑡𝑡
2

� , 𝑖𝑖𝑏𝑏𝑠𝑠 �
𝜔𝜔𝑧𝑧𝛿𝛿𝑡𝑡

2
�� (130) 

 
𝑞𝑞0 is determined by the requirement that the rotation quaternion 𝛿𝛿𝑞𝑞 be normalized. 

In the limit of the interval 𝛿𝛿𝑡𝑡 becoming the infinitesimal 𝑟𝑟𝑡𝑡: 
 

𝑟𝑟𝑞𝑞 = {𝑞𝑞0,𝑟𝑟𝑞𝑞1,𝑟𝑟𝑞𝑞2,𝑟𝑟𝑞𝑞3} = �1, �
𝜔𝜔𝑥𝑥𝑟𝑟𝑡𝑡

2
� ,�

𝜔𝜔𝑦𝑦𝑟𝑟𝑡𝑡
2

� , �
𝜔𝜔𝑧𝑧𝑟𝑟𝑡𝑡

2
�� (131) 

 
and: 
 

𝑞𝑞(𝑡𝑡 + 𝑟𝑟𝑡𝑡) = 𝑞𝑞(𝑡𝑡)𝑟𝑟𝑞𝑞 = 𝑞𝑞(𝑡𝑡) �1, �
𝜔𝜔𝑥𝑥𝑟𝑟𝑡𝑡

2
� ,�

𝜔𝜔𝑦𝑦𝑟𝑟𝑡𝑡
2

� , �
𝜔𝜔𝑧𝑧𝑟𝑟𝑡𝑡

2
�� (132) 

 
Combining equations (128) and (132) gives: 
 

𝑞𝑞(𝑡𝑡) + 𝑟𝑟𝑡𝑡�̇�𝑞(𝑡𝑡) = 𝑞𝑞(𝑡𝑡) �1, �
𝜔𝜔𝑥𝑥𝑟𝑟𝑡𝑡

2
� ,�

𝜔𝜔𝑦𝑦𝑟𝑟𝑡𝑡
2

� , �
𝜔𝜔𝑧𝑧𝑟𝑟𝑡𝑡

2
�� (133) 

 
Using the result that quaternion multiplication is distributive gives the expression for the 
quaternion derivative in terms of angular velocity as: 
 

𝑞𝑞(𝑡𝑡) + 𝑟𝑟𝑡𝑡�̇�𝑞(𝑡𝑡) = 𝑞𝑞(𝑡𝑡) + �
𝑟𝑟𝑡𝑡
2
� 𝑞𝑞(𝑡𝑡)�0,𝜔𝜔𝑥𝑥 ,𝜔𝜔𝑦𝑦 ,𝜔𝜔𝑧𝑧� (134) 

⇒ �̇�𝑞(𝑡𝑡) = �
1
2
� 𝑞𝑞(𝑡𝑡)𝝎𝝎(𝑡𝑡) (135) 

 
where 𝝎𝝎(𝑡𝑡) is the vector quaternion �0,𝜔𝜔𝑥𝑥(𝑡𝑡),𝜔𝜔𝑦𝑦(𝑡𝑡),𝜔𝜔𝑧𝑧(𝑡𝑡)�. 
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8. Legal information

8.1 Definitions 
Draft — The document is a draft version only. The content is still under 
internal review and subject to formal approval, which may result in 
modifications or additions. NXP Semiconductors does not give any 
representations or warranties as to the accuracy or completeness of 
information included herein and shall have no liability for the consequences 
of use of such information. 

8.2 Disclaimers 
Information in this document is provided solely to enable system and 
software implementers to use NXP products. There are no express or 
implied copyright licenses granted hereunder to design or fabricate any 
integrated circuits based on the information in this document. NXP reserves 
the right to make changes without further notice to any products herein. NXP 
makes no warranty, representation, or guarantee regarding the suitability of 
its products for any particular purpose, nor does NXP assume any liability 

arising out of the application or use of any product or circuit, and specifically 
disclaims any and all liability, including without limitation consequential or 
incidental damages. “Typical” parameters that may be provided in NXP data 
sheets and/ or specifications can and do vary in different applications, and 
actual performance may vary over time. All operating parameters, including 
“typicals,” must be validated for each customer application by customer's 
technical experts. NXP does not convey any license under its patent rights 
nor the rights of others. NXP sells products pursuant to standard terms and 
conditions of sale, which can be found at the following address: 
nxp.com/salestermsandconditions.  

8.3 Trademarks 
Notice: All referenced brands, product names, service names and 
trademarks are property of their respective owners. 

NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of 
NXP B.V. ARM and Cortex are registered trademarks of ARM Limited (or its 
subsidiaries) in the EU and/or elsewhere. 
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