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1.1 Summary

This application note contains an introduction to quaternion algebra and its use to
represent rotations. It documents the specific quaternion functions used in the NXP
Sensor Fusion Library within the file orientation.c.

Quaternions are four dimensional hyper-complex numbers that were invented by
Professor William Rowan Hamilton in 1843. The four components of a quaternion provide
a more efficient means, both in storage and computation, to represent orientations as
compared to the nine components of a rotation matrix. Quaternions are therefore used
extensively in computer gaming and have, in consequence, also been adopted as a
standard for representing orientation in sensor fusion applications.

Rotation matrices and rotation quaternions share the very important characteristic of
being well behaved mathematically. The Euler angles (roll, pitch and yaw) are, in
contrast, mathematically unsuited for use in sensor fusion software. The phenomenon of
gimbal lock instability in strapdown sensor systems occurs only in the Euler angle
representation of orientation and is entirely absent in rotation matrix or rotation
guaternion representations. Euler angles are therefore only used in the NXP Sensor
Fusion Library as an alternative final representation of an orientation which has been
computed using rotation matrices or rotation quaternions.

1.2 Terminology

Symbol

Definition

a=ay+ai+ayj+azk

a*=ay—ai—a,j—ask

Components of quaternion a
Conjugate of quaternion a

a = {ay, a} Representation of quaternion a in
terms of scalar a, and vector a
components

a1 = a* Inverse or reciprocal of quaternion a
N(a)®
ao Scalar component of quaternion a

a=a1i+a2j+a3k

Vector component of quaternion a

a-b Scalar product of vectors a and b
axb Vector product of vectors a and b
n Unit vector representing rotation axis

N(a) = \/aoz + a;? + ay? + ag?
Qx: 9y, 9z

R, R, R,

Norm or magnitude of quaternion a

Rotation quaternions about the x, y
and z axes

Rotation matrices around x, y and z
axes
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Symbol Definition

T Real number

N

Complex number

General rotation angle
Roll angle
Pitch angle

Yaw angle

T S (S =

Compass heading angle

1.3 Software Functions

Table 1. Sensor Fusion software functions

Functions Description Reference
Section
) ) Function sets the quaternion A to the unit or 21
void fgAeqgl(struct fquaternion *pgA); identity quaternion.
) Function sets the quaternion A to the 2.4
void gAegBxC quaternion product BC.

(struct fquaternion *pgA, const struct
fquaternion *pgB, const struct
fquaternion *pgC);

) ) Function sets the quaternion A to the 2.4
void gAegAxB(struct fquaternion *pgA, quaternion product AB.
const struct fquaternion *pqgB);
) ) Function returns the quaternion product A*B 2.7
struct fquaternion gconjgAxB where A* is the conjugate of A.
(const struct fquaternion *pgA, const
struct fquaternion *pgB);
) Function normalizes the quaternion A. 2.8
void FfgAegNormgA
(struct fquaternion *pgA);
) ) ) ) Function computes a rotation matrix from a 4.1
void fRotationMatrixFromQuaternion rotation quaternion.
(float R[][3], const struct fquaternion
> -
P ;
) ) ) ) Function computes a rotation quaternion 4.2
void fQuaternionFromRotationMatrix from a rotation matrix.

(float R[][3], struct fquaternion *pq);
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Functions Description Reference
Section
Computes the rotation vector from a rotation 5.1
void fRotationVectorDegFromQuaternion quaternion.
(struct fquaternion *pq, float
rvecdeg[1);
Computes the rotation quaternion from a 5.2
void fQuaternionFromRotationVectorDeg rotation vector with scaling.
(struct fquaternion *pqg, const float
rvecdeg[], float fscaling);

) ) ) ) Function low-pass filters the orientations 6.3
void fLPFOrientationQuaternion represented by a sequence of quaternions.
(struct fquaternion *pg, struct
fquaternion *pLPq, float flpf, float
fdeltat, float fOmegal[])

2. Quaternion Algebra

2.1

ANS5022

Application note

Introduction
Quaternions form a class of four-component hyper-complex numbers.

Whereas the complex number z has two components, one real and the other imaginary:
z=a+ bi 1)

the quaternion a has four components:
a=ay+ai+ayj+ask ={ayay,a, a3} @)

where a,, a,, a, and a; are real numbers. The values i, j and k are simply tags
identifying the three vector components of the quaternion.

a, is termed the scalar component and a = a,i + a,j + ask is termed the vector
component of the quaternion.

Equivalent representations of the quaternion a in terms of its scalar and vector

Components are.
a, a,
a=ay+a={aya}l= {ao, (%)} = yao, (%)} ©))
a3 az

If the scalar component a, is zero, the quaternion is termed a pure quaternion or vector.
If the vector component a is zero, then the quaternion is a real number. The quaternion
a ={1,0,0,0} with scalar component equal to one and vector component equal to zero is
termed the identity quaternion.
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2.2 Equality of Two Quaternions

Two quaternions a and b are equal if and only if all their components are equal:

a=b = ay=by,a, =b;,a, = b,,a; = by (4)

2.3 Addition of Two Quaternions

The sum of two quaternions is defined to be the quaternion with summed components:

Because the addition of real numbers is commutative and associative, quaternion
addition is also commutative and associative:

a+b=b+a (6)

(@a+b)+c=a+(+c) (7)

2.4 Product of Two Quaternions

The product of two quaternions is defined to be the distributive product of the quaternion
components:

C=ab= (aO+a1i+a2j+a3k)(b0+b1i+b2j+b3k) (8)

= ao(bo+b1i+b2j+b3k)+a1i(b0+b1i+b2j+b3k) (9)
+ a,j(by + byi + byj + bsk) + ask(by + byi + byj + b3k)
= (aobo + aobli + aosz + a0b3k) + (alboi + alblii + albzij + a1b3ik)
+ (@2boj + azbiji + azbyjj + azbsjk) (10)
+ (a3b0k + a3b1ki + a3b2kj + a3b3kk)

The products of components of a quaternion are defined to satisfy, where r is any real

number:
ri =ir (11)
rj = jr (12)
rk = kr (13)
ii=jj=kk=-1 (14)

AN5022 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 6 of 26



NXP Semiconductors AN5022

Quaternion Algebra and Rotations

ij=—-ji=k (15)
jk=-kj=i (16)
ki=—-ik=j a7)

A consequence of equations (14) to (17) is that:
(iHk=1i(k) = -1 (18)

Substitution of equations (14) to (18) into equation (10) simplifies the quaternion product
to:

c= ab = (aobo - a1b1 - azbz - a3b3) + (a0b1 + a1b0 + a2b3 - a3b2)i (19)
+ (aobz - a1b3 + azbo + a3b1)j + (a0b3 + albz - azbl + a3b0)k

The four components of the product quaternion ¢ are, therefore:

Co = agby — a;b; — ayb, — asbs (20)
¢1 = agby + a,by + ayb; — azb, (21)
¢, = agh, — a;b; + ayby + azb, (22)
c3 = aghs + a;b, — ayb; + azh, (23)

Examination of equations (20) to (23) shows that quaternion multiplication does not
commute:

ab # ba (24)

Brute force evaluation proves that quaternion multiplication is associative:

(ab)c —a(bc) = {(ag + a,i + ayj + azk)(by + byi + b,yj + bsk)}(cy + c1i + cyj + c3k)

(25)
— (ag + aqi + ayj + ask){(by + byi+ byj + bsk)(co + i+ cj + c3k)} =0
= (ab)c = a(bc) (26)
For the special case a = b, the product ¢ = aa evaluates to:
c=aa = (apay — a,a; — aya, — asas) + 2apa,i + 2a4a,j + 2a,a5k @7)
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2.5 Product of Quaternion and Scalar

A special case of the quaternion product occurs when one of the quaternions has zero
vector components and is a scalar. In this case the multiplication does commute.

If a is a scalar so that a = a, then:

ab = aobo + aobli + aosz + a0b3k (28)
ba = boao + blaoi + bzaoj + b3a0k = aobo + aobli + aosz + a0b3k = ab (29)
= ab = baif ais ascalar (30)

2.6 Product of a Quaternion with a Vector

The product of a quaternion a with a vector quaternion b has non-zero scalar component
and is therefore a general quaternion and not another vector quaternion:

ab = (—a1b1 - azbz - a3b3) + (a0b1 + a2b3 - a3b2)i +

(31)
(aphy — aybs + azhy)j + (aghs + arb; — azby)k
ba = (—b1a1 - b2a2 - b3a3) + (b1a0 + b2a3 - b3a2)i +
(32)
(—b1a3 + bzao + b3a1)j + (b1a2 - b2a1 + b3a0)k
Inspection of equations (31) and (32) shows that the product of the quaternion a and
vector b does not commute:
ab # ba (33)
2.7 Quaternion Conjugate
The quaternion conjugate a* is defined as:
a* = ag— a,;i — ayj — azk (34)
From the definition of the quaternion product ab, it can be shown that (ab)* = b*a*:
(ab)* = (agby — a1by — azb; — azbs) — (aghy + arby + azbs — azb,)i (35)

- (aobz - a1b3 + a2b0 + a3b1)j - (a0b3 + a1b2 - a2b1 + a3b0)k
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The product b*a* evaluates to:

b*a* = (bo - bli - sz - b3k)(a0 - ali - azj - a3k) (36)

= boao - boali - boazj - b0a3k - bliao + bliali + bliazj + blia3k -

szao + szali + szazj + sza3k_b3ka0 + b3ka1i + b3ka2j + b3ka3k (37)
= boao - boali - boazj - b0a3k - blaoi - b1a1 + blazk - b1a3j - (38)
bzaoj - bzalk - bzaz + b2a3i_b3a0k + b3a1j - b3a2i - b3a3
= (bpag — byay — bya; — bzaz) — (byag+boay + bsa; — byaz)i — (39)
(bzao - b3a1 + boaz + b1a3)j - (b3a0 + b2a1 - b1a2 + b0a3)k
= (ab)* = b*a” (40)
Simple extension to higher order products gives:
(abc ..z)* = z*(abc ...)" =z" ..c*b*a* (41)
The sum of the quaternion a and its conjugate a* is the scalar 2a,:
a+a = (ag+ ai+ ayj+ azk) + (ap — ayi — ayj — azk) = 2a, (42)
2.8 Quaternion Norm
The quaternion norm or magnitude N(a) is defined as:
N(a) = ag? + a,2 + a,? + as? (43)
The two products a*a and aa* of a quaternion a with its conjugate a* evaluate to the
norm squared N(a)?:
a‘a = (ay —a,i — ayj — ask)(ay + a,i + a,j + azk) (44)
= agag + apaii + agayj + agazk — a,agi + a;a; — a,a,k + a;asj —
(45)
a,apj + aza k + aya, — ayasi — azagk — aza.j + aza,i + azas
=ay? + a;® + a,® + az? = N(a)? (46)
aa* = (ay + a;i + ayj + azk)(ag — a,i — ayj — azk) (47)
AN5022 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.
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= agag — aoaii — agayj — apazk + ajagi + a;a; — a,a,k + a,asj + aaej +

a,a k + aya, — ayasi+ azagk — aza.j + aza,i + aza; )
=ag? + a;% + ay? + az? = N(a)? (49)
= N(a) = a,? + a,2 + a,? + a;%2 = Va‘a = Vaa* (50)
The norm of a quaternion conjugate equals the norm of the quaternion:
N(@) =Vao? + (ma)? + (a)? + (-a3)? = Va2 + a2 + a2 + a2 =N(@) (1)

The norm of the product of two quaternions is the product of the individual quaternion

norms:
N(ab) = (aghy — a1b; — azb, — azbs)? + (aghy + ayby + a,b; — azb,)? (52)
+(a0b2 - a1b3 + azbo + a3b1)2 + (a0b3 + albz - azbl + a3b0)2
= \/(aoz + a2+ a,2 + az?)(by® + by® + b,” + b3®) = N(a)N(b) (53)
2.9 Quaternion Inverse and Division

The quaternion inverse a™? is defined to be the quaternion which satisfies:

aa—l — a—la =1 (54)

Pre- and post-multiplication of the quaternion a by ﬁ evaluates to:

_1 i : . . (a02 + a12 + a22 + a32)

N(a)z (ao_all—azj—a3k)(a0 +a11+a2]+a3k) = N(a)Z =1 (55)
i + L o (a2 + a,? + ay? + as?)

(a0 + @i+ azj + a3k)m(ao —a,i —ayj —azk) = N2 =1 (56)

The quaternion inverse a™! is, therefore, for all quaternions with non-zero norm:

*

= 1\/31)2 - (N?a0)2> - (N?;P) - (N?;)Z)j - (N?a3)2> k &0

The norm of a quaternion inverse equals the reciprocal of the quaternion norm. The norm
and reciprocation operations, therefore, commute;
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Sy a* B 1 *_N(a) _L_ .
N@™) =N (N(a)2> B (N(a)Z)N(“ )= (N(a)2> - (N(a)) = V(@3 9
2.10 Vector Representation of Quaternion Product

a; by
The scalar and vector products between the two vectors a = (%) and b = <b2> are
as b
defined as:

a. b = albl + azbz + a3b3 (59)
azbz — azb;

a X b = <a3b1 - a1b3> (60)
a,b, —a,b;

The product between two quaternions a = (ay, @) and b = (b, b) can be written in terms
of the scalar and vector products on their vector components. Direct expansion of the
scalar and vector expression below and comparison with equation (10) shows it equals
the quaternion product ab:

{agby — a.b, agb + bya + a x b}

bl aq a2b3 - a3b2 (61)
= aobo - a1b1 + azbz + a3b3,a0 bZ + bo a |+ a3b1 - a1b3

b3 as aq bz —a bl

aobl + albo + a2b3 - a3b2
= ;aobo - albl + azbz + a3b3, (aobz - a1b3 + azbo + a3b1>} =ab (62)
a0b3 + albz - azbl + a3b0
3. Rotation Quaternion
3.1 Definition in Terms of Rotation Vector
The rotation quaternion g for a rotation of the coordinate system about normalized
rotation axis 7i and by angle 7 is defined to be:
7 .M
= - 7 — 63
q cos(2>+nsm(2) (63)
g is a unit quaternion because its norm equals 1:
N _ 2 (M oM a2 a2, o~ 2) (64)
(q@) = cos (E) + sin (E) (A +17,” +1, )=1

AN5022 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 11 of 26



NXP Semiconductors AN5022

3.2

ANS5022

Application note

Quaternion Algebra and Rotations

The value of this definition of the rotation quaternion is shown in the next section which
proves that post- and pre-multiplication of a vector v by the quaternion g and its
conjugate q* is equivalent to multiplication of the vector by the corresponding rotation
matrix R:

Rv = q*vq (65)

Equivalence of Rotation Quaternion and Rotation Matrix

The general rotation matrix R, which transforms a vector as a result of a rotation of the
coordinate system around the axis 7i by angle n, is termed the Rodrigues rotation matrix
and has form:

Ry Ry Ry A+ (1- ﬁxz)msn Ay, (1 — cosn) + Aizsing - Ay, (1 — cosn) — Ay siny
R= <R_yx Ry, Ryz) = iy (1 — cosn) — fpsing A7+ (L=, )cosn iy, (1 — cosn) + fsing (66)
Rix Rzy Ry A, (1 — cosn) + fiysinn A, A, (1 — cosn) — A, sing A2 + (1- ﬁzz)cosr]

For any vector v, the left side of equation (65) evaluates to:

i+ (1- ﬁxz)cosn A, (1 = cosn) + A sing A, A,(1 — cosn) — A, siny vy

Rv = | A7, (1 — cosn) — A, siny ﬁyz + (1 - ﬁyz)cosn Ay, (1 — cosn) + fiysiny (Vy) (67)
A, fi, (1 — cosn) + i, sinn A, A, (1 — cosn) — fi,siny i, + (1- ﬁzz)cosn vz
{7+ (1- ﬁxz)cosn}vx + {fi i, (1 — cosn) + A,sinn}v, + {f,A,(1 — cosn) — Ay sinn v,

=| {A.A, (A — cosn) — Asinn}v, + {ﬁyz +(1- ﬁyz)cosn}vy +{f,A,(1 — cosn) + A sinn}v, (68)

{ﬁxﬁz(l —cosn) + ﬁysinr]}vx + {ﬁyﬁz(l —cosn) — ﬁxsinn}vy + {ﬁzz +(1- ﬁzz)cosr]}vz

The right side of equation (65) evaluates to:

v = (005 (3) = sin (3) ) cos (3) s () ©9)

= (cos (%) — i sin (%) i— ﬁysrzl'n (g)] - ﬁzs;'n (%) k) (vxi +vj+ vzk) (cos (g) + i, sin (%) i (70)
+ fiysin (E)] + fi,sin (E) k)

{ﬁxz +(1- ﬁxz)cosr]}vx + {ﬁxﬁy(l —cosn) + ﬁzsinr]}vy + {ﬁxﬁz(l —cosn) — ﬁysinr]}vz
= {ﬁxﬁy(l —cosn) — ﬁzsinn}vx + {ﬁyz +(1- ﬁyz)cosn}vy + {ﬁyﬁz(l —cosn) + ﬁxsinn}vz (71)

{fiA,(1 — cosn) + Ay sinn}v, + {f,A,(1 — cosn) — A sinnjv, + A2+ (- nzz)cosn}vz

Equations (68) and (71) match, proving the identity in equation (65).

Rotating the coordinate system by angle n plus 360° about the normalized rotation axis n
is obviously equivalent to rotating by angle n about the same normalized rotation axis 7.
However, from the definition of the rotation quaternion in equation (63), the extra 360°
rotation results in the negation of the entire quaternion. In practice, this is more annoying
than problematic since the negation of the quaternion appears twice on the right hand
side of equation (65) and therefore has no effect when rotating vectors. It is, however,
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conventional to constrain the scalar component g, of a rotation quaternion g to be non-
negative. If a negative scalar component is detected then the entire quaternion, both
scalar and vector components, can be safely negated.

3.3 Inverse Rotation Quaternion

From the definition of q*, it follows that q* is the rotation operator about the same axis 7
but by angle —n and is, therefore, the inverse of the rotation quaternion q:

n M -1 e
* — A 1) = 4+ n — 72
q cos (2> nsin (2) COS( 2 ) nsm( 2 ) ( )
The inverse nature of the operators g and q* can also be shown by direct evaluation:

q(q"vq)q” = (qq)v(qq’) = v (73)

q"(qvq’)q = (@ v(q’q) = v (74)

3.4 Product of Rotation Quaternions

The result of successively applying rotation quaternions g, followed by g, through g, to
vector v is:

an” (42" (01"vq1)q2) .ay = (qy" - 92" 41 ) V(q13 - - qn) ©)

The rotation quaternion g, equivalent to the N successive rotations represented by
guaternions g, to qy, is therefore:

q = 41925 - Qv (76)
3.5 Negation of Rotation Axis and Angle

Both a rotation matrix R and quaternion q are unchanged if both the rotation angle and
axis are simultaneously inverted:

R(-7,-1)
ﬁxz + (1 - ﬁxz)cos(—n) ﬁxﬁy(l — cos(—r))) — A sin(—n) ﬁxﬁz(l — cos(—r))) + Ay sin(—1n) (77)
= ﬁxﬁy(l - cos(—n)) + Agsin(—n) ﬁyz + (1 - ﬁyz)cos(—r]) ﬁyﬁz(l - cos(—n)) — Aysin(—n)
ﬁxﬁz(l - cos(—n)) — Ay sin(-n) ﬁyﬁz(l - cos(—n)) + A sin(—n) ﬁzz + (1 - ﬁzz)cos(—r])
o+ (1- ﬁxz)cosn A, (1 — cosn) + fA,sing  A,A,(1 — cosn) — A, sinn
= | A i, (1 — cosn) — Ai,sinn ﬁyz +(1- ﬁyz)cosn Aiyfi, (1 — cosn) + fi,sing | = R(A, 1) (78)
A1, (1 — cosn) + Aysing Ay, (1 — cosn) — A, siny i, + (1- ﬁzz)cosr]
o - ~ . (N n o~ . (M o
q(—An,—n) = cos (—) — fisin (—) = cos (—) + fisin (—) =q(fi,n) (79)
2 2 2 2
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3.6 Square Root of Rotation Quaternion

The square root \/E of the rotation quaternion q for rotation by angle n about axis # is, by
inspection, the quaternion for rotation by angle (g) about the same axis 7:

q(1in) = cos (%) + fisin (g) = {cos (%) + fisin (%)} {cos (%) + fisin (%)} =q (?) q (ﬁz_ﬂ) (80)

Standard double angle trigonometric identities can be used to simplify the calculation of
the components of the square root quaternion:

[cos (3)] = /”CZS@): /1J;qo (81)
|Sin(g>|= /1_625@): fl—z% 82)

The scaling factor for the vector component of the square root is the ratio:

n
1—cos (f) _ M1—a. % _ T % _ 1 ©3)
V2 1 = cos? @ V2J1-4q0) V2J1-qo/1+a0 2+2q,

The square root ﬁ of rotation quaternion g then equals:

1+qo 41 a qs
=V{490, 91,92, 43} = , , , (84)
Va oS 2 "\[2%2q0 \J2 ¥ 240 2 ¥ 244

Direct expansion of the product ,/q,/q equals q as expected. Substituting into equation

sin (%)
n
2

sin (3)

(27) gives:
1+q, Q12+QZ2+Q32> 1+qo< ., & . qs ) (85)
= - 2 / k
Jaa ( 2 ) ( 2+ 2q * 2 J2+2qol+J2+2q0]+J2+2q0
1+q0\ (1-q0°) , ) , ,
=( > 0)—2(1+°qo)+q11+q21+q3k=qo+qll+qzl+q3k=q (86)
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Mathematically, a second square root exists with opposite sign:

1+qo q1 q: qs
va=172 V2t 24, ' o
do /2 +2q, /2 + 2q,

Since this is simply the negated quaternion, which corresponds to a meaningless
additional 360° rotation, it can be ignored.

3.7 Coordinate Frame Rotation Standard

Some texts define the quaternion rotation operator on vector v to be qvq* instead of
qvq. The explanation is that the operator q*vq transforms the vector v as a result of
rotation of the coordinate system by angle n, whereas the operator qvg* rotates the
vector v, by angle n in a fixed coordinate system. The standard used in this document
and the NXP Sensor Fusion Library software is that it is the coordinate system that is
rotating, normally as a result of the device orientation changing, while the vector v, which
is typically the earth's gravitational or geomagnetic field, remains fixed in its frame.

4. Converting between Quaternion and Rotation Matrix

4.1 Rotation Matrix from Quaternion

Expanding equation (65) into its components gives the identity:

Rxx ny sz <Ux

Uy) =(qo — q1i — q2J — CI3k)(in +v,j+ Uzk)(% + qii + q2j + q3k) (88)
UZ

Expanding the right hand side and re-arranging gives:
Rex Rxy Riz\ /vy 9% + 1% — 2% — q5* 24192 + 29093 2G193 — 24092 Uy
Ryx Ry Ry, <VJ'> = 24192 — 29093 qo® — 01 + q2* — q5° 2q293 + 2qoq1 (VJ’> (89)
Vz 24193 + 29092 24293 — 2q041 q0° = q1% = q2* + q3%/) \Vz
Because equation (89) holds for all vectors v, it follows that:
Ryx Ry Ry 90°+a° - 4" — 45’ 24192 + 2q09s3 29193 — 2909,
Ryx Ryy Ry |=|  2410,-20095 40> =2+ @2 —as® 24,05 + 2q00: (90)
24,93 + 2409, 24293 — 2G04 9’ = q1* — 2% + q5°
The normalization constraint for a rotation quaternion is:

qQo* +q:* + g, +q3° =1 (91)

Substituting equation (91) into equation (90) gives a slightly simpler expression for
converting a rotation quaternion to a rotation matrix:
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Rix ny Ry, 2(‘102 + ‘hz) -1 2(9192 + q093) 2(9193 — 9092)
Ryx Ryy Ry )= 2(q192 — 9093) 2(qo* +@;*) =1  2(q2q3 + qoq1) (92)
Rzx Rzy Ry 2(q103 + 9092)  2(q293 — 90q1)  2(q0* +q3*) — 1

4.2 Quaternion from Rotation Matrix

Equation (92) can also be used to determine the rotation quaternion from the rotation
matrix. The procedure is straightforward except for rotations close to 180° where a
fallback algorithm is needed to avoid numerical rounding errors.

The sum of 1 plus the trace of the rotation matrix evaluates to:

1+tr(R) =1+ 2(qo® + q;%) — 14+ 2(qe% + q2%) — 1+ 2(qy% +q32) — 1 (93)
=2q0% +2q,% 4+ 29 + 29,2 — 14+ 2q,> + 2952 — 1 (94)
=(2q0% + 2q1° + 2q,% + 2q3%) + 290> — 1+ 24> — 1 (95)

Using the result that the quaternion has unit norm gives:
1+ tr(R) = 4q,° (96)

q, is always nonnegative because negative q, in a rotation quaternion corresponds to a
rotation angle greater than 180° which is equivalent to a negated rotation of less than
180° about the negated rotation axis. The positive square root of equation (96) can,
therefore, always be taken, giving:

Ji+tr(R) J1+Ry +Ry,, +R,, 97)
9o = 2 = 2

Differencing elements across the diagonal gives the solution for the vector components
of the rotation quaternion:

(Ryz — Rzy)
Ry: —Rzy = 4qoq1 > q1 = yz4q = (98)
0
(Rzx — Ryz)
sz - sz = 4'quZ >0 = Zx4q = (99)
0
(ny — Ryx) (100)
ny - Ryx = 4"10(13 =(q3 = 4_q
0

Equations (98) to (100) fail near 180° rotation about any axis because the rotation matrix
becomes symmetric (giving a near-zero numerator) and the scalar quaternion component
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q, approaches zero (giving a near-zero denominator). A fallback algorithm is needed
which uses the elements on the leading diagonal to give:

1+R

Ry =2(q* +q,) —1=q =+ 2 = qo” (101)
1+R

Ryy = 2(q* + ) —1>q, =+ 2 2 qo? (102)
1+R

Riz=20" +a:*) 1245 =% |— = = qy? (103)

The unknown signs in equations (101) to (103) can be resolved by taking the signs of
equations (98) to (100) and using the fact that g, is always nonnegative:

sign(q,) = sign(Ry, — R,y) (104)
Sign(qz) = Sign(sz - sz) (105)
sign(qs) = sign(ny - Ryx) (106)

5. Converting between Quaternion and Rotation Vector

5.1 Rotation Vector From Quaternion

The definition of the rotation quaternion g in equation (63) shows that it is closely linked
to the equivalent rotation vector nin defined as the product of normalized rotation axis i
and the rotation angle n. Inverting the process to recover the rotation vector from the
quaternion is straightforward.

q=qo+qii+q,j+q3k = cos (g) + nsin (g) (107)

Equating the scalar components gives:
qo = cos (g) =1 = 2cos 1(q,) (108)

Because q, varies between 0 and 1, the rotation angle n in equation (108) has the
required range 0° to 180°.

For the general case where sin (g) is non-zero, equating the remaining three
components of the quaternion gives:
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q, = sin (E> Ny = Ny, = o 109
2 sin (g) (109)
g, = sin (Q) n, = n, = 2 110
? sin () o

(111)

For the case where sin (g) = 0, the rotation angle 7 is also zero since 7 is in the range 0°
to 180°. The rotation axis 7 is then undefined which makes physical sense for the case of
zero rotation angle 7.

5.2 Quaternion From Rotation Vector

Equation (63) defines the rotation quaternion explicitly in terms of the rotation vector axis
7 and rotation angle 7.

q = cos (g) + fisin (g) (112)

6. Low-pass Filtering Orientation Quaternions

ANS5022

Application note

6.1

6.2

Introduction

The Kalman filter algorithms directly compute an optimal Kalman filter estimate of the
orientation. The simpler accelerometer and magnetometer eCompass algorithms,
however, require the explicit low-pass filtering of the stream of noisy orientation
estimates whether in quaternion or rotation matrix forms. Low pass filtering of orientation
guaternions is performed in the function FLPFOrientationQuaternion in file
orientation.c.

The individual elements of orientation matrices and orientation quaternions should not be
separately low pass filtered since the resulting low pass filtered matrix or quaternion is no
longer a valid rotation matrix (with orthonormal row and column vectors) or valid rotation
guaternion (with unit norm). Any low pass filtering on individual elements must therefore
be followed by explicit re-normalizing of the rotation matrix or rotation quaternion. The
results are never terribly satisfactory and the low pass filtered trajectories can be
counter-intuitive. The preferred method is to use exponential filtering of quaternions as
shown in the following subsections.

Exponential Time Domain Low Pass Filter

The difference equation for the single-pole low-pass filter in the time domain is:
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y[n] = (1 — a)y[n — 1] + ax[n] (113)
where:
O<a<1 (114)

The transfer function H(z) is:

a
= 115
H() 1-1-a)z? (119)
with a single pole at z = (1 — a).

In the general case, an impulse at time zero x[0] = 1 gives the exponentially decaying
output:

ylnl = (1 - a)" (116)
The f time constant N in samples is then given by:

1 __ 1 117
e_(1 @) =>N_ln(l—a) (D

For small a:
N = 1 (118)
a

The time constant in samples is therefore approximately equal to the reciprocal of the
filter coefficient a. The case a = 1 corresponds to an all pass filter.

In C code, equation (113) can be efficiently written as:
yn += alpha * (xn — yn); (119)

An example of this filter is the line below taken from the function
fRun_6DOF_GB_BASIC and used to filter the geomagnetic inclination angle:

// low pass filter the geomagnetic inclination angle with a

simple exponential filter
pthisSV->fLPDelta += pthisSV->Flpf * (pthisSV->fDelta - pthisSV->fLPDelta);

Equation (119) makes it clear that the low-pass estimate yn is updated by « times the
difference between the current input xn and the previous low-pass filtered estimate yn.
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The low-pass estimate yn is therefore exponentially steered towards the input sequence
xn. The next section describes how the principle of exponential convergence to a noisy
time varying input orientation can be applied to orientation quaternions.

Exponential Quaternion Low-pass Filter

The orientation space quaternion low pass filter used in the function
FLPFOrientationQuaternion is analogous to the time domain exponential filter
of the previous section in that it exponentially rotates the current low-pass filtered
orientation quaternion towards the instantaneous, and therefore noisy, orientation
guaternion.

The incremental rotation quaternion Ag[n] required at iteration n to completely rotate the
previous low pass filtered quaternion q,p[n — 1] onto the instantaneous noisy quaternion
q[n] is given by:

q[n] = q.p[n — 1]Aq[n] = Aq[n] = q,p"[n — 1]q[n] (120)

The scalar and vector components of Ag[n] are related to the angle n and axis 7
between the low pass and instantaneous orientation estimates at iteration [n] by:

Aq[n] = cos (g) + fisin (g) (121)

Applying the incremental quaternion unchanged results in the special case of the all-pass
filter where q,p[n] = q[n]:

qrp[n] = qip[n — 1]Aq[n] = q,p[n — 1]q.p"[n — 1]q[n] = q[n] (122)

Scaling the vector component by a constant factor a results in an incremental quaternion
correction Aq'[n] which exponentially steers the low pass filtered orientation quaternion
onto the instantaneous quaternion with a time constant approximately equal to the
reciprocal of the filter coefficient a:

Aq'[n] = Agqy'[n] + afisin (g) (123)

The scalar component Ag,'[n] is determined by the constraint that the norm of Aq'[n]
equals 1.

This low pass filter can be improved by making the filter coefficient « dependent on the
relative angle . a should be small when 7 is small in order to give a long time constant
and a high degree of noise rejection but @ should increase as n increases in order to give
faster tracking of aggressive maotion at the expense of less averaging.

The expression used in the function FLPFOrientationQuaternionis:
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a=a+(1—-a)y(1A—-Aqgn?)=a+1—-a) /1 — cos? (g) =a+(1-a) |sin (g)| (124)

where « is the nominal filter coefficient and a’ the actual filter coefficient used .

Using a first order Taylor expansion gives the variation of filter coefficient a’ for small
relative angles n and small a as:

l1-«a
a'=a +% ~a +|727—| forn inradians (125)

a' therefore equals « in the limit of small angles n but increases linearly as the
divergence between the low pass and instantaneous orientation estimates increases
resulting in a decreasing time constant and more rapid convergence as the platform
dynamics become more aggressive.

As the discrepancy between the low pass and instantaneous orientation estimates
reaches the maximum of 180°, Ag,[n] tends to zero and the filter coefficient a’
asymptotes to the all pass case bringing the low pass filtered estimate back into
immediate synchronization with the instantaneous orientation estimate.

a =1 (126)

7. Quaternion Derivative

7.1 Definition

The quaternion derivative is defined in the conventional manner as the limit:

dq(t) _ . . q(t +6t) — q(t)
T = 4 = i {120 =10 a2)
= q(t+dt) =q() +dtq(t) (128)

7.2 Derivation for Rotation Quaternions

An orientation quaternion can also be propagated forward in time by computing the
product of the current rotation quaternion g(t) and the incremental rotation quaternion
8q(t):

q(t + 8t) = q(1)8q(t) (129)

With the assumption that incremental change in orientation results from a constant
angular velocity w over the time interval 6t then using the definition of the rotation
guaternion in terms of rotation angle gives:
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St w, 8t 5t
aq={qo,aql,qu,aqg}={q0.sin(—“’2 ),sin(—y2 >,sm(“’2 )} (130)

q, is determined by the requirement that the rotation quaternion §q be normalized.

In the limit of the interval §t becoming the infinitesimal dt:

L dt dt\ [w,dt
dq={qo,dq1.dq2.dq3}={L(wz ><wy2 ),(wz )} (131)
and:
a(t + dt) = q()dq = q() {1, (&=, (“’yzdt) , (“’szt)} (132)

Combining equations (128) and (132) gives:

q(t) + dtq(t) = q(t) {1, (w"zdt) , (wyzdt) , (wzzdt)} (133)

Using the result that quaternion multiplication is distributive gives the expression for the
guaternion derivative in terms of angular velocity as:

a® +ati(© = 4 + () 100,05, 0,,0,) 130
1
=40 = (5) s (135)

where w(t) is the vector quaternion {0, w, (t), wy (t), w,(t)}.
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