

 AN5020
Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm
Rev. 2.0 — 21 June 2016 Application note

Document information
Info Content
Abstract This application note documents the Jacobi rotation eigenanalysis

algorithm in the NXP Sensor Fusion Library software.

NXP Semiconductors AN5020
 Determining Matrix Eigenvalues and Eigenvectors by Jacobi Algorithm

AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 2 of 11

Contact information
For more information, please visit: http://www.nxp.com

Revision history
Document
ID

Release date Supercedes

AN5020 v2.0 20160606 AN5020 v1.0

Modifications: • Minor changes
• The format of this document has been redesigned to comply with the new identity guidelines of NXP

Semiconductors. Legal texts have been adapted to the new company name where appropriate.

AN5020 v1.0 2015 September —

http://www.nxp.com/

NXP Semiconductors AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm

AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 3 of 11

1. Introduction

1.1 Summary
This application note documents the Jacobi rotation eigenanalysis algorithm in the NXP
Sensor Fusion Library software and implemented by the two functions
eigencompute10 and eigencompute4 in the file matrix.c.

The two functions are identical except for their function headers which specify 10x10 and
4x4 input matrices respectively. This is for software portability with early C standards in
which C functions cannot be defined to handle arrays with variable numbers of columns.

The functions are used for a variety of mathematical solutions including magnetic hard
and soft iron calibration, precision accelerometer calibration and for taking the square
root of a symmetric matrix.

1.2 Terminology

Symbol Definition

𝑨𝑨 General square matrix

𝑨𝑨𝑇𝑇 Transpose of matrix 𝑨𝑨

𝑨𝑨−1 Inverse of matrix 𝑨𝑨

𝑹𝑹𝑖𝑖 i-th Givens rotation matrix
𝑹𝑹𝑝𝑝𝑝𝑝 Givens rotation matrix with non-zero

elements in row 𝑝𝑝 and column 𝑞𝑞
𝑿𝑿 Matrix of column eigenvectors

𝜷𝜷𝑖𝑖 i-th eigenvector
𝜆𝜆𝑖𝑖 i-th eigenvalue
𝚲𝚲 Diagonal eigenvalue matrix
𝜙𝜙 Jacobi rotation angle

1.3 Software Functions

Functions Description Reference

void eigencompute10
(float A[][10], float
eigval[], float
eigvec[][10], int8 n)

Computes the eigenvalues and
eigenvectors of an n by n square
matrix stored in the upper left of a
10x10 array.

2

void eigencompute4
(float A[][4], float
eigval[], float
eigvec[][4], int8 n)

Computes the eigenvalues and
eigenvectors of an n by n square
matrix stored in the upper left of a
4x4 array.

2

NXP Semiconductors AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm

AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 4 of 11

2. Eigenanalysis by Jacobi Algorithm

2.1 Introduction
The 𝑖𝑖𝑡𝑡ℎ column eigenvector 𝜷𝜷𝑖𝑖 and eigenvalue 𝜆𝜆𝑖𝑖 of any square 𝑁𝑁𝑁𝑁𝑁𝑁 matrix 𝑨𝑨 are defined
as satisfying:

𝑨𝑨𝜷𝜷𝑖𝑖 = 𝜆𝜆𝑖𝑖𝜷𝜷𝑖𝑖 (1)

The 𝑁𝑁𝑁𝑁𝑁𝑁 matrix 𝑿𝑿 formed from the 𝑁𝑁 individual column eigenvectors 𝜷𝜷𝑖𝑖 is:

𝑿𝑿 = (𝜷𝜷0 𝜷𝜷1 … 𝜷𝜷𝑁𝑁−1) (2)

Equation (1) can then be written in the form:

𝑨𝑨𝑿𝑿 = 𝑿𝑿𝚲𝚲 (3)

where 𝚲𝚲 is the 𝑁𝑁𝑁𝑁𝑁𝑁 matrix formed from the eigenvalues lying on the diagonal:

𝚲𝚲 = �

𝜆𝜆0 0 … 0
0 𝜆𝜆1 … 0
… … … …
0 0 … 𝜆𝜆𝑁𝑁−1

� (4)

If the inverse matrix 𝑿𝑿−1 exists then equation (3) implies:

𝑨𝑨 = 𝑿𝑿𝚲𝚲𝑿𝑿−1 (5)

𝚲𝚲 = 𝑿𝑿−1𝑨𝑨𝑿𝑿 (6)

A diagonal matrix is unaffected by pre-and post-multiplication by any rotation
matrix. Pre- and post-multiplying equation (6) by any inverse and forward rotation
matrix 𝑹𝑹 therefore gives:

𝑹𝑹−1𝚲𝚲𝑹𝑹 = 𝚲𝚲 = 𝑹𝑹−1𝑿𝑿−1𝑨𝑨𝑿𝑿𝑹𝑹 (7)

The Jacobi algorithm underlying the functions eigencompute10 and
eigencompute4 computes the eigenvalues and eigenvectors of a symmetric (and
therefore square) 𝑁𝑁𝑁𝑁𝑁𝑁 matrix 𝑨𝑨 by successive pre- and post-multiplication by inverse and
forward two-dimensional plane rotation matrices 𝑹𝑹𝑖𝑖 termed Givens rotation matrices
designed to obtain the diagonal matrix 𝚲𝚲:

𝚲𝚲 = 𝑹𝑹𝑁𝑁−1 …𝑹𝑹2−1𝑹𝑹1−1𝑨𝑨𝑹𝑹1𝑹𝑹1𝑹𝑹2 …𝑹𝑹𝑁𝑁
(8)

NXP Semiconductors AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm

AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 5 of 11

⇒ 𝚲𝚲 = 𝑹𝑹𝑁𝑁−𝟏𝟏 …𝑹𝑹2−𝟏𝟏𝑹𝑹1−𝟏𝟏(𝑿𝑿𝚲𝚲𝑿𝑿−𝟏𝟏)𝑹𝑹1𝑹𝑹2 …𝑹𝑹𝑁𝑁
(9)

⇒ 𝑿𝑿 = 𝑹𝑹1𝑹𝑹2 …𝑹𝑹𝑁𝑁 (10)

The eigenvectors of a symmetric matrix are orthogonal and another way of interpreting
equations (8) through (10) is that the sequence of Givens rotations matrices rotates the
matrix of eigenvectors to be aligned with the base vectors of the 𝑁𝑁 dimensional
coordinate system.

The eigenvalues of the matrix 𝑨𝑨 are then the elements of the diagonal matrix 𝚲𝚲 derived
by zeroing off-diagonal elements in 𝑨𝑨 and the matrix of eigenvectors 𝑿𝑿 is the product of
the sequence of matrices 𝑹𝑹𝑖𝑖 used to perform the diagonalization.

2.2 Givens Rotation Matrix
The Givens matrix 𝑹𝑹𝑝𝑝𝑝𝑝 for rotation angle 𝜙𝜙 has form:

𝑹𝑹𝑝𝑝𝑝𝑝 =

⎝

⎜
⎜
⎜
⎛

1 0 0 0 0 0 0
0 1 … … … … 0
0 … 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 … 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 … 0
0 … … 1 … … 0
0 … −𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 … 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 … 0
0 … … … … 1 0
0 0 0 0 0 0 1⎠

⎟
⎟
⎟
⎞

 (11)

All the diagonal elements are one except for the two elements at positions 𝑝𝑝, 𝑝𝑝 and 𝑞𝑞, 𝑞𝑞.
All off-diagonal elements are zero except for the two elements at positions 𝑝𝑝, 𝑞𝑞 and 𝑞𝑞, 𝑝𝑝.
The Givens rotation matrix is orthonormal as required for a rotation matrix.

A general matrix 𝑨𝑨 is transformed by pre- and post-multiplication by the Givens rotation
matrix with non-zero elements in rows 𝑝𝑝 and 𝑞𝑞 as:

𝑨𝑨′ = 𝑹𝑹𝑝𝑝𝑝𝑝𝑇𝑇𝑨𝑨𝑹𝑹𝑝𝑝𝑝𝑝 (12)

The elements in 𝑨𝑨 changed by this operation are:

𝑨𝑨′ =

⎝

⎜
⎜
⎜
⎛

… … 𝑎𝑎0,𝑝𝑝
′ … 𝑎𝑎0,𝑝𝑝

′ … …
… … … … … … …
𝑎𝑎𝑝𝑝,0
′ … 𝑎𝑎𝑝𝑝,𝑝𝑝

′ … 𝑎𝑎𝑝𝑝,𝑝𝑝
′ … 𝑎𝑎𝑝𝑝,𝑛𝑛−1

′

… … … … … … …
𝑎𝑎𝑝𝑝,0
′ … 𝑎𝑎𝑝𝑝,𝑝𝑝

′ … 𝑎𝑎𝑝𝑝,𝑝𝑝
′ … 𝑎𝑎𝑝𝑝,𝑛𝑛−1

′

… … … … … … …
… … 𝑎𝑎𝑛𝑛−1,𝑝𝑝

′ … 𝑎𝑎𝑛𝑛−1,𝑝𝑝
′ … … ⎠

⎟
⎟
⎟
⎞

 (13)

NXP Semiconductors AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm

AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 6 of 11

The changed elements of equation (13) are:

𝑎𝑎𝑟𝑟,𝑝𝑝
′ = 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 − 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 (𝑟𝑟 ≠ 𝑝𝑝, 𝑟𝑟 ≠ 𝑞𝑞) (14)

𝑎𝑎𝑟𝑟,𝑝𝑝
′ = 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 + 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 (𝑟𝑟 ≠ 𝑝𝑝, 𝑟𝑟 ≠ 𝑞𝑞) (15)

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 + 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙 − 2𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 (16)

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙 + 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 + 2𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 (17)

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑎𝑎𝑝𝑝,𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙) + �𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝�𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 (18)

2.3 Determining the Givens Rotation Angle
The required rotation angle 𝜙𝜙 is that which zeroes out element 𝑎𝑎𝑝𝑝,𝑝𝑝

′ in equation (18):

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 0 ⇒

(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙)
𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙

=
�𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝�

𝑎𝑎𝑝𝑝,𝑝𝑝
 (19)

Standard trigonometry identities allow the cotangent of twice the rotation angle (2𝜙𝜙) to be
written as:

𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) =
𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)
𝑐𝑐𝑖𝑖𝑠𝑠(2𝜙𝜙) =

𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙
2𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙

 (20)

Combining equations (19) and (20) defines the rotation angle 𝜙𝜙 as:

𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) =
𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝

2𝑎𝑎𝑝𝑝,𝑝𝑝
 (21)

𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) =
𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙

2𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙
=

1 − 𝑐𝑐𝑎𝑎𝑠𝑠2 𝜙𝜙
2𝑐𝑐𝑎𝑎𝑠𝑠𝜙𝜙

⇒ 𝑐𝑐𝑎𝑎𝑠𝑠2 𝜙𝜙 + 2𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) 𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 − 1 = 0 (22)

⇒ 𝑐𝑐𝑎𝑎𝑠𝑠𝜙𝜙 = −𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) ± �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1 (23)

Taking the positive square root for 𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 gives:

𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 = −𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1 (24)

NXP Semiconductors AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm

AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 7 of 11

=
�−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1��−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) − �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�

�−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) − �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�

=
−1

−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) − �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1

(25)

Taking the negative square root gives:

𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 = −𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) − �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1 (26)

=
�−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) −�𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1��−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�

�−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�

=
−1

−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1

(27)

For 𝜃𝜃 negative, the smaller magnitude of the two solutions is:

𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 =
−1

�−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�
=

𝑐𝑐𝑠𝑠𝑠𝑠�𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)�

�|𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)| + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�
 (28)

For 𝜃𝜃 positive, the smaller magnitude of the two solutions is:

𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 =
1

�𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�
=

𝑐𝑐𝑠𝑠𝑠𝑠�𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)�

�|𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)| + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�
 (29)

In both cases:

𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 =
𝑐𝑐𝑠𝑠𝑠𝑠�𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)�

�|𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)| + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�
 (30)

If 𝜃𝜃 is so large that 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) squared would overflow, the alternative is:

𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 =
𝑐𝑐𝑠𝑠𝑠𝑠�𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)�

2|𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)| =
−1

2𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) (31)

NXP Semiconductors AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm

AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 8 of 11

A trigonometric identity used later is:

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙
1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙

=
2𝑐𝑐𝑖𝑖𝑠𝑠 �𝜙𝜙2� 𝑐𝑐𝑐𝑐𝑐𝑐 �

𝜙𝜙
2�

2𝑐𝑐𝑐𝑐𝑐𝑐2 �𝜙𝜙2�
= 𝑐𝑐𝑎𝑎𝑠𝑠 �

𝜙𝜙
2
� (32)

2.4 The Jacobi Algorithm
To avoid roundoff error, the iterative updates below are used for equations (14) to (19).
Equation (19):
By definition, the rotation angle 𝜙𝜙 is selected so that equation (19) results in zero 𝑎𝑎𝑝𝑝,𝑝𝑝

′ .

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 0 ⇒ 𝑎𝑎𝑝𝑝,𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙) + �𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝�𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 = 0 (33)

⇒ 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙 =
𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙�𝑎𝑎𝑝𝑝,𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙) + 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙�

𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙
 (34)

Equation (16):
Substituting equation (34) into equation (16) gives:

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 + 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �

𝑎𝑎𝑝𝑝,𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙) + 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙
𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 � − 2𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 (35)

= 𝑎𝑎𝑝𝑝,𝑝𝑝 + �
𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙) − 2𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙
� (36)

⇒ 𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �

𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙
𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 � = 𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝 𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 (37)

Equation (18):
Since the rotation angle 𝜙𝜙 is selected to zero 𝑎𝑎𝑝𝑝,𝑝𝑝

′ , equation (18) can be written as:

𝑎𝑎𝑝𝑝,𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙) + �𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝�𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 = 0 (38)

⇒ 𝑎𝑎𝑝𝑝,𝑝𝑝 = 𝑎𝑎𝑝𝑝,𝑝𝑝 − �
(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙)𝑎𝑎𝑝𝑝,𝑝𝑝

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙
� (39)

NXP Semiconductors AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm

AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 9 of 11

Equation (17):
Substituting equation (39) into equation (17) gives:

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙 �𝑎𝑎𝑝𝑝,𝑝𝑝 − �

(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙)𝑎𝑎𝑝𝑝,𝑝𝑝

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙
�� + 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 + 2𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 (40)

⇒ 𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑎𝑎𝑝𝑝,𝑝𝑝 + 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �

𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙
𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙

�𝑎𝑎𝑝𝑝,𝑝𝑝 = 𝑎𝑎𝑝𝑝,𝑝𝑝 + 𝑎𝑎𝑝𝑝,𝑝𝑝 𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 (41)

Equation (14):
With trivial manipulation, equation (14) can be written as:

𝑎𝑎𝑟𝑟,𝑝𝑝
′ = 𝑎𝑎𝑟𝑟,𝑝𝑝 − 𝑎𝑎𝑟𝑟,𝑝𝑝(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙) − 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 (42)

= 𝑎𝑎𝑟𝑟,𝑝𝑝 − 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �𝑎𝑎𝑟𝑟,𝑝𝑝 +
(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙)(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙)𝑎𝑎𝑟𝑟,𝑝𝑝

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙) � = 𝑎𝑎𝑟𝑟,𝑝𝑝 − 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �𝑎𝑎𝑟𝑟,𝑝𝑝 +
𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙)� (43)

Substituting equation (32) gives:

𝑎𝑎𝑟𝑟,𝑝𝑝
′ = 𝑎𝑎𝑟𝑟,𝑝𝑝 − 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �𝑎𝑎𝑟𝑟,𝑝𝑝 + 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑎𝑎𝑠𝑠 �

𝜙𝜙
2
�� (44)

Equation (15):
Similarly, with trivial manipulation, equation (15) can be written as:

𝑎𝑎𝑟𝑟,𝑝𝑝
′ = 𝑎𝑎𝑟𝑟,𝑝𝑝 − 𝑎𝑎𝑟𝑟,𝑝𝑝(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙) + 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 (45)

= 𝑎𝑎𝑟𝑟,𝑝𝑝 + 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �𝑎𝑎𝑟𝑟,𝑝𝑝 −
(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙)(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙)𝑎𝑎𝑟𝑟,𝑝𝑝

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙) � = 𝑎𝑎𝑟𝑟,𝑝𝑝 + 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �𝑎𝑎𝑟𝑟,𝑝𝑝 −
𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙)� (46)

Substituting equation (32) gives:

𝑎𝑎𝑟𝑟,𝑝𝑝
′ = 𝑎𝑎𝑟𝑟,𝑝𝑝 + 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �𝑎𝑎𝑟𝑟,𝑝𝑝 − 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑎𝑎𝑠𝑠 �

𝜙𝜙
2
�� (47)

NXP Semiconductors AN5020
 Determining Matrix Eigenvalues and Eigenvectors by Jacobi

Algorithm

AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 20164. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 10 of 11

3. Legal information

3.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

3.2 Disclaimers
Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves
the right to make changes without further notice to any products herein. NXP
makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability
arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/ or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's
technical experts. NXP does not convey any license under its patent rights
nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address:
nxp.com/salestermsandconditions.

3.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of
NXP B.V. ARM and Cortex are registered trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere.

NXP Semiconductors AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2016. All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 21 June 2016
Document identifier: AN5020

4. Contents

1. Introduction ... 3
1.1 Summary .. 3
1.2 Terminology ... 3
1.3 Software Functions .. 3
2. Eigenanalysis by Jacobi Algorithm 4
2.1 Introduction .. 4
2.2 Givens Rotation Matrix 5
2.3 Determining the Givens Rotation Angle 6
2.4 The Jacobi Algorithm ... 8
3. Legal information .. 10
3.1 Definitions .. 10
3.2 Disclaimers... 10
3.3 Trademarks .. 10
4. Contents ... 11

	1. Introduction
	1.1 Summary
	1.2 Terminology
	1.3 Software Functions

	2. Eigenanalysis by Jacobi Algorithm
	2.1 Introduction
	2.2 Givens Rotation Matrix
	2.3 Determining the Givens Rotation Angle
	2.4 The Jacobi Algorithm

	3. Legal information
	3.1 Definitions
	3.2 Disclaimers
	3.3 Trademarks

	4. Contents

