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1. Introduction 

1.1 Summary 
This application note documents the Jacobi rotation eigenanalysis algorithm in the NXP 
Sensor Fusion Library software and implemented by the two functions 
eigencompute10 and eigencompute4 in the file matrix.c. 

The two functions are identical except for their function headers which specify 10x10 and 
4x4 input matrices respectively. This is for software portability with early C standards in 
which C functions cannot be defined to handle arrays with variable numbers of columns. 

The functions are used for a variety of mathematical solutions including magnetic hard 
and soft iron calibration, precision accelerometer calibration and for taking the square 
root of a symmetric matrix. 

1.2 Terminology 
 

Symbol Definition 

𝑨𝑨 General square matrix 

𝑨𝑨𝑇𝑇 Transpose of matrix 𝑨𝑨 

𝑨𝑨−1 Inverse of matrix 𝑨𝑨 

𝑹𝑹𝑖𝑖 i-th Givens rotation matrix 
𝑹𝑹𝑝𝑝𝑝𝑝 Givens rotation matrix with non-zero 

elements in row 𝑝𝑝 and column 𝑞𝑞 
𝑿𝑿 Matrix of column eigenvectors 

𝜷𝜷𝑖𝑖 i-th eigenvector 
𝜆𝜆𝑖𝑖 i-th eigenvalue 
𝚲𝚲 Diagonal eigenvalue matrix 
𝜙𝜙 Jacobi rotation angle 

 

1.3 Software Functions 
 

Functions Description Reference 

void eigencompute10 
(float A[][10], float 
eigval[], float 
eigvec[][10], int8 n) 

Computes the eigenvalues and 
eigenvectors of an n by n square 
matrix stored in the upper left of a 
10x10 array. 

2 

void eigencompute4 
(float A[][4], float 
eigval[], float 
eigvec[][4], int8 n) 

Computes the eigenvalues and 
eigenvectors of an n by n square 
matrix stored in the upper left of a 
4x4 array. 

2 
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2. Eigenanalysis by Jacobi Algorithm 

2.1 Introduction 
The 𝑖𝑖𝑡𝑡ℎ column eigenvector 𝜷𝜷𝑖𝑖 and eigenvalue 𝜆𝜆𝑖𝑖 of any square 𝑁𝑁𝑁𝑁𝑁𝑁 matrix 𝑨𝑨 are defined 
as satisfying: 
 

𝑨𝑨𝜷𝜷𝑖𝑖 = 𝜆𝜆𝑖𝑖𝜷𝜷𝑖𝑖 (1) 

 
The 𝑁𝑁𝑁𝑁𝑁𝑁  matrix 𝑿𝑿 formed from the 𝑁𝑁 individual column eigenvectors 𝜷𝜷𝑖𝑖 is: 
 

𝑿𝑿 = (𝜷𝜷0 𝜷𝜷1 … 𝜷𝜷𝑁𝑁−1) (2) 

 
Equation (1) can then be written in the form: 
 

𝑨𝑨𝑿𝑿 = 𝑿𝑿𝚲𝚲 (3) 

 
where 𝚲𝚲 is the 𝑁𝑁𝑁𝑁𝑁𝑁 matrix formed from the eigenvalues lying on the diagonal: 
 

𝚲𝚲 = �

𝜆𝜆0 0 … 0
0 𝜆𝜆1 … 0
… … … …
0 0 … 𝜆𝜆𝑁𝑁−1

� (4) 

 
If the inverse matrix 𝑿𝑿−1 exists then equation (3) implies: 
 

𝑨𝑨 = 𝑿𝑿𝚲𝚲𝑿𝑿−1 (5) 

𝚲𝚲 = 𝑿𝑿−1𝑨𝑨𝑿𝑿 (6) 

 
A diagonal matrix is unaffected by pre-and post-multiplication by any rotation 
matrix. Pre- and post-multiplying equation (6) by any inverse and forward rotation 
matrix 𝑹𝑹 therefore gives: 
 

𝑹𝑹−1𝚲𝚲𝑹𝑹 = 𝚲𝚲 = 𝑹𝑹−1𝑿𝑿−1𝑨𝑨𝑿𝑿𝑹𝑹 (7) 

 
The Jacobi algorithm underlying the functions eigencompute10 and 
eigencompute4 computes the eigenvalues and eigenvectors of a symmetric (and 
therefore square) 𝑁𝑁𝑁𝑁𝑁𝑁 matrix 𝑨𝑨 by successive pre- and post-multiplication by inverse and 
forward two-dimensional plane rotation matrices 𝑹𝑹𝑖𝑖 termed Givens rotation matrices 
designed to obtain the diagonal matrix 𝚲𝚲: 
 

𝚲𝚲 = 𝑹𝑹𝑁𝑁−1 …𝑹𝑹2−1𝑹𝑹1−1𝑨𝑨𝑹𝑹1𝑹𝑹1𝑹𝑹2 …𝑹𝑹𝑁𝑁 
(8) 
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⇒ 𝚲𝚲 = 𝑹𝑹𝑁𝑁−𝟏𝟏 …𝑹𝑹2−𝟏𝟏𝑹𝑹1−𝟏𝟏(𝑿𝑿𝚲𝚲𝑿𝑿−𝟏𝟏)𝑹𝑹1𝑹𝑹2 …𝑹𝑹𝑁𝑁 
(9) 

⇒ 𝑿𝑿 = 𝑹𝑹1𝑹𝑹2 …𝑹𝑹𝑁𝑁 (10) 

 
The eigenvectors of a symmetric matrix are orthogonal and another way of interpreting 
equations (8) through (10) is that the sequence of Givens rotations matrices rotates the 
matrix of eigenvectors to be aligned with the base vectors of the 𝑁𝑁 dimensional 
coordinate system. 

The eigenvalues of the matrix 𝑨𝑨 are then the elements of the diagonal matrix 𝚲𝚲 derived 
by zeroing off-diagonal elements in 𝑨𝑨 and the matrix of eigenvectors 𝑿𝑿 is the product of 
the sequence of matrices 𝑹𝑹𝑖𝑖 used to perform the diagonalization. 

2.2 Givens Rotation Matrix 
The Givens matrix 𝑹𝑹𝑝𝑝𝑝𝑝 for rotation angle 𝜙𝜙 has form: 
 

𝑹𝑹𝑝𝑝𝑝𝑝 =

⎝

⎜
⎜
⎜
⎛

1 0 0 0 0 0 0
0 1 … … … … 0
0 … 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 … 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 … 0
0 … … 1 … … 0
0 … −𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 … 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 … 0
0 … … … … 1 0
0 0 0 0 0 0 1⎠

⎟
⎟
⎟
⎞

 (11) 

 
All the diagonal elements are one except for the two elements at positions 𝑝𝑝, 𝑝𝑝 and 𝑞𝑞, 𝑞𝑞. 
All off-diagonal elements are zero except for the two elements at positions 𝑝𝑝, 𝑞𝑞 and 𝑞𝑞, 𝑝𝑝. 
The Givens rotation matrix is orthonormal as required for a rotation matrix. 

A general matrix 𝑨𝑨 is transformed by pre- and post-multiplication by the Givens rotation 
matrix with non-zero elements in rows 𝑝𝑝 and 𝑞𝑞 as: 
 

𝑨𝑨′ = 𝑹𝑹𝑝𝑝𝑝𝑝𝑇𝑇𝑨𝑨𝑹𝑹𝑝𝑝𝑝𝑝 (12) 

 
The elements in 𝑨𝑨 changed by this operation are: 
 

𝑨𝑨′ =

⎝

⎜
⎜
⎜
⎛

… … 𝑎𝑎0,𝑝𝑝
′ … 𝑎𝑎0,𝑝𝑝

′ … …
… … … … … … …
𝑎𝑎𝑝𝑝,0
′ … 𝑎𝑎𝑝𝑝,𝑝𝑝

′ … 𝑎𝑎𝑝𝑝,𝑝𝑝
′ … 𝑎𝑎𝑝𝑝,𝑛𝑛−1

′

… … … … … … …
𝑎𝑎𝑝𝑝,0
′ … 𝑎𝑎𝑝𝑝,𝑝𝑝

′ … 𝑎𝑎𝑝𝑝,𝑝𝑝
′ … 𝑎𝑎𝑝𝑝,𝑛𝑛−1

′

… … … … … … …
… … 𝑎𝑎𝑛𝑛−1,𝑝𝑝

′ … 𝑎𝑎𝑛𝑛−1,𝑝𝑝
′ … … ⎠

⎟
⎟
⎟
⎞

 (13) 
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The changed elements of equation (13) are: 
 

𝑎𝑎𝑟𝑟,𝑝𝑝
′ = 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 − 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 (𝑟𝑟 ≠ 𝑝𝑝, 𝑟𝑟 ≠ 𝑞𝑞) (14) 

𝑎𝑎𝑟𝑟,𝑝𝑝
′ = 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 + 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 (𝑟𝑟 ≠ 𝑝𝑝, 𝑟𝑟 ≠ 𝑞𝑞) (15) 

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 + 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙 − 2𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 (16) 

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙 + 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 + 2𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 (17) 

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑎𝑎𝑝𝑝,𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙) + �𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝�𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 (18) 

 

2.3 Determining the Givens Rotation Angle 
The required rotation angle 𝜙𝜙 is that which zeroes out element 𝑎𝑎𝑝𝑝,𝑝𝑝

′  in equation (18): 
 

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 0 ⇒

(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙)
𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙

=
�𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝�

𝑎𝑎𝑝𝑝,𝑝𝑝
 (19) 

 
Standard trigonometry identities allow the cotangent of twice the rotation angle (2𝜙𝜙) to be 
written as: 
 

𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) =
𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)
𝑐𝑐𝑖𝑖𝑠𝑠(2𝜙𝜙) =

𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙
2𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙

 (20) 

 
Combining equations (19) and (20) defines the rotation angle 𝜙𝜙 as: 
 

𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) =
𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝

2𝑎𝑎𝑝𝑝,𝑝𝑝
 (21) 

𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) =
𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙

2𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙
=

1 − 𝑐𝑐𝑎𝑎𝑠𝑠2 𝜙𝜙
2𝑐𝑐𝑎𝑎𝑠𝑠𝜙𝜙

⇒ 𝑐𝑐𝑎𝑎𝑠𝑠2 𝜙𝜙 + 2𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) 𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 − 1 = 0 (22) 

⇒ 𝑐𝑐𝑎𝑎𝑠𝑠𝜙𝜙 = −𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) ± �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1 (23) 

 
Taking the positive square root for 𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 gives: 
 

𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 = −𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1 (24) 
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=
�−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1��−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) − �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�

�−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) − �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�

=
−1

−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) − �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1
 

(25) 

 
Taking the negative square root gives: 
 

𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 = −𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) − �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1 (26) 

=
�−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) −�𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1��−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�

�−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�

=
−1

−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1
 

(27) 

 
For 𝜃𝜃 negative, the smaller magnitude of the two solutions is: 
 

𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 =
−1

�−𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�
=

𝑐𝑐𝑠𝑠𝑠𝑠�𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)�

�|𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)| + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�
 (28) 

 
For 𝜃𝜃 positive, the smaller magnitude of the two solutions is: 
 

𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 =
1

�𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�
=

𝑐𝑐𝑠𝑠𝑠𝑠�𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)�

�|𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)| + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�
 (29) 

 
In both cases: 
 

𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 =
𝑐𝑐𝑠𝑠𝑠𝑠�𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)�

�|𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)| + �𝑐𝑐𝑐𝑐𝑐𝑐2(2𝜙𝜙) + 1�
 (30) 

 
If 𝜃𝜃 is so large that 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) squared would overflow, the alternative is: 
 

𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 =
𝑐𝑐𝑠𝑠𝑠𝑠�𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)�

2|𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙)| =
−1

2𝑐𝑐𝑐𝑐𝑐𝑐(2𝜙𝜙) (31) 
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A trigonometric identity used later is: 
 

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙
1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙

=
2𝑐𝑐𝑖𝑖𝑠𝑠 �𝜙𝜙2� 𝑐𝑐𝑐𝑐𝑐𝑐 �

𝜙𝜙
2�

2𝑐𝑐𝑐𝑐𝑐𝑐2 �𝜙𝜙2�
= 𝑐𝑐𝑎𝑎𝑠𝑠 �

𝜙𝜙
2
� (32) 

 

2.4 The Jacobi Algorithm 
To avoid roundoff error, the iterative updates below are used for equations (14) to (19). 
Equation (19): 
By definition, the rotation angle 𝜙𝜙 is selected so that equation (19) results in zero 𝑎𝑎𝑝𝑝,𝑝𝑝

′ . 
 

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 0 ⇒ 𝑎𝑎𝑝𝑝,𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙) + �𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝�𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 = 0 (33) 

⇒ 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙 =
𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙�𝑎𝑎𝑝𝑝,𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙) + 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙�

𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙
 (34) 

 
Equation (16): 
Substituting equation (34) into equation (16) gives: 
 

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 + 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �

𝑎𝑎𝑝𝑝,𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙) + 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙
𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 � − 2𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 (35) 

= 𝑎𝑎𝑝𝑝,𝑝𝑝 + �
𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙) − 2𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙
� (36) 

⇒ 𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �

𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙
𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 � = 𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝 𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 (37) 

 
Equation (18): 
Since the rotation angle 𝜙𝜙 is selected to zero 𝑎𝑎𝑝𝑝,𝑝𝑝

′ , equation (18) can be written as: 
 

𝑎𝑎𝑝𝑝,𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙) + �𝑎𝑎𝑝𝑝,𝑝𝑝 − 𝑎𝑎𝑝𝑝,𝑝𝑝�𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 = 0 (38) 

⇒ 𝑎𝑎𝑝𝑝,𝑝𝑝 = 𝑎𝑎𝑝𝑝,𝑝𝑝 − �
(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙)𝑎𝑎𝑝𝑝,𝑝𝑝

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙
� (39) 
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Equation (17): 
Substituting equation (39) into equation (17) gives: 
 

𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙 �𝑎𝑎𝑝𝑝,𝑝𝑝 − �

(𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 − 𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙)𝑎𝑎𝑝𝑝,𝑝𝑝

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙
�� + 𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 + 2𝑎𝑎𝑝𝑝,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 (40) 

⇒ 𝑎𝑎𝑝𝑝,𝑝𝑝
′ = 𝑎𝑎𝑝𝑝,𝑝𝑝 + 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �

𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙
𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙

�𝑎𝑎𝑝𝑝,𝑝𝑝 = 𝑎𝑎𝑝𝑝,𝑝𝑝 + 𝑎𝑎𝑝𝑝,𝑝𝑝 𝑐𝑐𝑎𝑎𝑠𝑠 𝜙𝜙 (41) 

 
Equation (14): 
With trivial manipulation, equation (14) can be written as: 
 

𝑎𝑎𝑟𝑟,𝑝𝑝
′ = 𝑎𝑎𝑟𝑟,𝑝𝑝 − 𝑎𝑎𝑟𝑟,𝑝𝑝(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙) − 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 (42) 

= 𝑎𝑎𝑟𝑟,𝑝𝑝 − 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �𝑎𝑎𝑟𝑟,𝑝𝑝 +
(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙)(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙)𝑎𝑎𝑟𝑟,𝑝𝑝

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙) � = 𝑎𝑎𝑟𝑟,𝑝𝑝 − 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �𝑎𝑎𝑟𝑟,𝑝𝑝 +
𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙)� (43) 

 
Substituting equation (32) gives: 
 

𝑎𝑎𝑟𝑟,𝑝𝑝
′ = 𝑎𝑎𝑟𝑟,𝑝𝑝 − 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �𝑎𝑎𝑟𝑟,𝑝𝑝 + 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑎𝑎𝑠𝑠 �

𝜙𝜙
2
�� (44) 

 
Equation (15): 
Similarly, with trivial manipulation, equation (15) can be written as: 
 

𝑎𝑎𝑟𝑟,𝑝𝑝
′ = 𝑎𝑎𝑟𝑟,𝑝𝑝 − 𝑎𝑎𝑟𝑟,𝑝𝑝(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙) + 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 (45) 

= 𝑎𝑎𝑟𝑟,𝑝𝑝 + 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �𝑎𝑎𝑟𝑟,𝑝𝑝 −
(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙)(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙)𝑎𝑎𝑟𝑟,𝑝𝑝

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙) � = 𝑎𝑎𝑟𝑟,𝑝𝑝 + 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �𝑎𝑎𝑟𝑟,𝑝𝑝 −
𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑖𝑖𝑠𝑠2𝜙𝜙

𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙)� (46) 

 
Substituting equation (32) gives: 
 

𝑎𝑎𝑟𝑟,𝑝𝑝
′ = 𝑎𝑎𝑟𝑟,𝑝𝑝 + 𝑐𝑐𝑖𝑖𝑠𝑠𝜙𝜙 �𝑎𝑎𝑟𝑟,𝑝𝑝 − 𝑎𝑎𝑟𝑟,𝑝𝑝𝑐𝑐𝑎𝑎𝑠𝑠 �

𝜙𝜙
2
�� (47) 
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3. Legal information

3.1 Definitions 
Draft — The document is a draft version only. The content is still under 
internal review and subject to formal approval, which may result in 
modifications or additions. NXP Semiconductors does not give any 
representations or warranties as to the accuracy or completeness of 
information included herein and shall have no liability for the consequences 
of use of such information. 

3.2 Disclaimers 
Information in this document is provided solely to enable system and 
software implementers to use NXP products. There are no express or 
implied copyright licenses granted hereunder to design or fabricate any 
integrated circuits based on the information in this document. NXP reserves 
the right to make changes without further notice to any products herein. NXP 
makes no warranty, representation, or guarantee regarding the suitability of 
its products for any particular purpose, nor does NXP assume any liability 
arising out of the application or use of any product or circuit, and specifically 

disclaims any and all liability, including without limitation consequential or 
incidental damages. “Typical” parameters that may be provided in NXP data 
sheets and/ or specifications can and do vary in different applications, and 
actual performance may vary over time. All operating parameters, including 
“typicals,” must be validated for each customer application by customer's 
technical experts. NXP does not convey any license under its patent rights 
nor the rights of others. NXP sells products pursuant to standard terms and 
conditions of sale, which can be found at the following address: 
nxp.com/salestermsandconditions. 

3.3 Trademarks 
Notice: All referenced brands, product names, service names and 
trademarks are property of their respective owners. 

NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of 
NXP B.V. ARM and Cortex are registered trademarks of ARM Limited (or its 
subsidiaries) in the EU and/or elsewhere. 
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