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1. Introduction 

1.1 Summary 
This application note documents the mathematics for magnetic calibration used by the 
NXP Sensor Fusion Library. These functions compute the calibration of the 
magnetometer sensor with respect to the hard and soft iron magnetic interference 
caused by ferromagnetic components on the circuit board. 

Section 2 derives the mathematical techniques used throughout in this document for 
least squares optimization. Section 3 defines the general hard and soft iron magnetic 
interference model. Sections 4 to 6 derive the solutions for three models of magnetic 
calibration in order of increasing complexity. 

1.2 Terminology 

Table 1. Terminology 
Term/Symbol Definition 

Left superscript 𝐺𝐺 Denotes that the measurement is in the 
global frame: eg 𝑩𝑩𝑘𝑘 

𝐺𝐺  

Left superscript 𝑆𝑆 Denotes that the measurement is in the 
sensor frame: eg 𝑩𝑩𝑘𝑘 

𝑆𝑆  

𝑨𝑨 Ellipsoid matrix: 𝑨𝑨 = (𝑾𝑾−1)𝑇𝑇𝑾𝑾−1 

𝐵𝐵 Magnitude of the geomagnetic vector 𝑩𝑩0 
𝐺𝐺  

𝑩𝑩0 
𝐺𝐺  Geomagnetic vector measured in the 

global frame 

𝑩𝑩𝑘𝑘 
𝑆𝑆  Uncalibrated magnetometer measurement 

𝑘𝑘 in the sensor frame 

𝑩𝑩𝑐𝑐,𝑘𝑘 
𝑆𝑆  Calibrated magnetometer measurement 𝑘𝑘 

in the sensor frame 

𝐸𝐸 Error function 

𝑀𝑀 Number of measurements used in 
calibration fit 

𝑁𝑁 Number of calibration model coefficients 

𝑸𝑸 Matrix of eigenvectors 

𝑟𝑟𝑘𝑘 Error residual in measurement 𝑘𝑘 

𝒓𝒓 Vector of residual errors 

𝑹𝑹 Rotation matrix 

𝑽𝑽 Hard iron offset vector 

𝑾𝑾 Soft iron gain matrix 

𝑋𝑋𝑗𝑗,𝑘𝑘 𝑗𝑗-th dependent variable in fit to 
magnetometer measurement 𝑘𝑘 

𝑿𝑿 Matrix of magnetometer measurements 

http://www.nxp.com/products/sensors/nxp-sensor-fusion
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Term/Symbol Definition 

𝑌𝑌𝑘𝑘 Dependent variable in magnetometer 
measurement 𝑘𝑘 

𝜷𝜷 Solution vector 

𝜆𝜆 Eigenvalue and Lagrange Multiplier 

𝚲𝚲 Diagonal matrix of eigenvalues 
 

1.3 Software Functions 

Table 2. Software Functions 
Function Description Section 

void fInvertMagCal(struct 
MagSensor *pthisMag, struct 
MagCalibration *pthisMagCal) 

Computes calibrated magnetometer 
measurements by applying the 
calibration coefficients to uncalibrated 
measurements. 

3.1 

void 
fUpdateMagCalibration4Slice(str
uct MagCalibration 
*pthisMagCal, struct MagBuffer 
*pthisMagBuffer, struct 
MagSensor *pthisMag) 

Determines the coefficients of the 4 
parameter calibration model using a 
time slice algorithm. 

4, 7 

void 
fUpdateMagCalibration7Slice(str
uct MagCalibration 
*pthisMagCal, struct MagBuffer 
*pthisMagBuffer, struct 
MagSensor *pthisMag) 

Determines the coefficients of the 7 
parameter calibration model using a 
time slice algorithm. 

5, 7 

void 
fUpdateMagCalibration10Slice(st
ruct MagCalibration 
*pthisMagCal, struct MagBuffer 
*pthisMagBuffer, struct 
MagSensor *pthisMag) 

Determines the coefficients of the 10 
parameter calibration model using a 
time slice algorithm. 

6, 7 

 

2. Least Squares Optimization 

2.1 Linear Measurement Model 
The general linear model relating the dependent variable 𝑌𝑌𝑘𝑘 to the independent variables 
𝑋𝑋𝑗𝑗,𝑘𝑘 at measurement 𝑘𝑘 through 𝑁𝑁 model parameters 𝛽𝛽𝑗𝑗 is: 
 

𝑌𝑌𝑘𝑘 = 𝛽𝛽0𝑋𝑋0,𝑘𝑘 + 𝛽𝛽1𝑋𝑋1,𝑘𝑘 + ⋯+ 𝛽𝛽𝑁𝑁−1𝑋𝑋𝑁𝑁−1,𝑘𝑘 (1) 
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The fit to the model will not be perfectly accurate and will result in an error residual 𝑟𝑟𝑘𝑘 
defined as: 
 

𝑟𝑟𝑘𝑘 = 𝑌𝑌𝑘𝑘 − 𝛽𝛽0𝑋𝑋0,𝑘𝑘 − 𝛽𝛽1𝑋𝑋1,𝑘𝑘 − ⋯− 𝛽𝛽𝑁𝑁−1𝑋𝑋𝑁𝑁−1,𝑘𝑘 (2) 

 
For a series of 𝑀𝑀 measurements, equation (2) can be written in matrix form as: 
 

�

𝑟𝑟0
𝑟𝑟1
…
𝑟𝑟𝑀𝑀−1

� = �

𝑌𝑌0
𝑌𝑌1
…

𝑌𝑌𝑀𝑀−1

� − �

𝑋𝑋0,0 𝑋𝑋1,0 … 𝑋𝑋𝑁𝑁−1,0
𝑋𝑋0,1 𝑋𝑋1,1 … 𝑋𝑋𝑁𝑁−1,1
… … … …

𝑋𝑋0,𝑀𝑀−1 𝑋𝑋1,𝑀𝑀−1 … 𝑋𝑋𝑁𝑁−1,𝑀𝑀−1

��

𝛽𝛽0
𝛽𝛽1
…

𝛽𝛽𝑁𝑁−1

� (3) 

 
With the definitions that 𝒓𝒓 is the 𝑀𝑀 × 1 column vector of error residuals: 
 

𝒓𝒓 = �

𝑟𝑟0
𝑟𝑟1
…
𝑟𝑟𝑀𝑀−1

� (4) 

 
and 𝒀𝒀 is the 𝑀𝑀 × 1 column vector of 𝑀𝑀 measurements of the dependent variable: 
 

𝒀𝒀 = �

𝑌𝑌0
𝑌𝑌1
…

𝑌𝑌𝑀𝑀−1

� (5) 

 
and 𝑿𝑿 is the 𝑀𝑀 × 𝑁𝑁 matrix containing the 𝑀𝑀 measurements of the independent variable: 
 

𝑿𝑿 = �

𝑋𝑋0,0 𝑋𝑋1,0 … 𝑋𝑋𝑁𝑁−1,0
𝑋𝑋0,1 𝑋𝑋1,1 … 𝑋𝑋𝑁𝑁−1,1
… … … …

𝑋𝑋0,𝑀𝑀−1 𝑋𝑋1,𝑀𝑀−1 … 𝑋𝑋𝑁𝑁−1,𝑀𝑀−1

� (6) 

 
and 𝜷𝜷 is the 𝑁𝑁 × 1 column vector of unknown model coefficients 𝛽𝛽0 to 𝛽𝛽𝑁𝑁−1 to be 
determined: 
 

𝜷𝜷 = �

𝛽𝛽0
𝛽𝛽1
…

𝛽𝛽𝑁𝑁−1

� (7) 

 
then equation (3) can be written in the form: 
 

𝒓𝒓 = 𝒀𝒀 − 𝑿𝑿𝑿𝑿 (8) 
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If there are more measurements 𝑀𝑀 than there are unknowns 𝑁𝑁, then the equations are 
solved in a least squares sense by minimizing the error function 𝐸𝐸(𝜷𝜷) defined as the 
modulus squared of the error vector 𝒓𝒓 defined in equation (5): 
 

𝐸𝐸(𝜷𝜷) = � 𝑟𝑟𝑘𝑘2
𝑀𝑀−1

𝑘𝑘=0

= ‖𝒓𝒓‖2 = 𝒓𝒓𝑇𝑇𝒓𝒓 = (𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝑇𝑇(𝒀𝒀 − 𝑿𝑿𝑿𝑿) = ‖𝒀𝒀 − 𝑿𝑿𝑿𝑿‖2 (9) 

 

2.2 Normal Equations Solution in Non-Homogeneous Case 
If the measurement vector 𝒀𝒀 is non-zero, then the equations are termed non-
homogeneous. The error function 𝐸𝐸(𝜷𝜷) will be a minimum when it is stationary with 
respect to any perturbation 𝛿𝛿𝜷𝜷 about the optimal least squares solution 𝜷𝜷: 
 

𝑙𝑙𝑙𝑙𝑙𝑙𝛿𝛿𝜷𝜷→𝟎𝟎{𝐸𝐸(𝜷𝜷 + 𝛿𝛿𝜷𝜷) − 𝐸𝐸(𝜷𝜷)} = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿𝜷𝜷 (10) 

 
Equation (9) shows that the error function is a simple quadratic function of the model 
coefficients 𝜷𝜷 leading to a single global minimum where the error function is stationary 
with respect to perturbations. There are no local minima in the error function. 

Substituting equation (8) into (10) and ignoring second order terms gives: 
 

{𝒀𝒀 − 𝑿𝑿(𝜷𝜷 + 𝛿𝛿𝜷𝜷)}𝑇𝑇{𝒀𝒀 − 𝑿𝑿(𝜷𝜷 + 𝛿𝛿𝜷𝜷)} − (𝒀𝒀 − 𝑿𝑿𝑿𝑿)𝑇𝑇(𝒀𝒀 − 𝑿𝑿𝑿𝑿) = 0 (11) 

⇒ −𝒀𝒀𝑇𝑇𝑿𝑿𝛿𝛿𝜷𝜷 + (𝑿𝑿𝑿𝑿)𝑇𝑇𝑿𝑿𝛿𝛿𝜷𝜷 − (𝑿𝑿𝛿𝛿𝜷𝜷)𝑇𝑇𝒀𝒀 + (𝑿𝑿𝛿𝛿𝜷𝜷)𝑇𝑇𝑿𝑿𝑿𝑿 = 0 (12) 

⇒ −𝒀𝒀𝑇𝑇𝑿𝑿𝛿𝛿𝜷𝜷 + 𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝛿𝛿𝜷𝜷 − 𝛿𝛿𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝒀𝒀 + 𝛿𝛿𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 = 0 (13) 

 
Each component of equation (13) is a scalar and is therefore unchanged by the 
transpose operation allowing equation (13) to be rewritten as: 
 

2(−𝒀𝒀𝑇𝑇𝑿𝑿 + 𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿)𝛿𝛿𝜷𝜷 = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿𝜷𝜷 (14) 

⇒ 𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿 = 𝒀𝒀𝑇𝑇𝑿𝑿 ⇒ 𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 = 𝑿𝑿𝑇𝑇𝒀𝒀 (15) 

⇒ 𝜷𝜷 = (𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝒀𝒀 (16) 

 
Equation (16) is termed the Normal Equations solution for 𝜷𝜷 in the non-homogeneous 
case. Expanding the expression for the error function 𝐸𝐸(𝜷𝜷) defined in equation (9) gives: 
 

𝐸𝐸(𝜷𝜷) = (𝒀𝒀𝑇𝑇 − 𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇)(𝒀𝒀 − 𝑿𝑿𝑿𝑿) = 𝒀𝒀𝑇𝑇𝒀𝒀 − 𝒀𝒀𝑇𝑇𝑿𝑿𝑿𝑿 − 𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝒀𝒀 + 𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 (17) 
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Each term of equation (17) is again a scalar and equal to its transpose. The error 
function 𝐸𝐸(𝜷𝜷) can therefore be written as: 
 

𝐸𝐸(𝜷𝜷) = 𝒀𝒀𝑇𝑇𝒀𝒀 − 2𝒀𝒀𝑇𝑇𝑿𝑿𝑿𝑿 + 𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 = 𝒀𝒀𝑇𝑇𝒀𝒀 − 2𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝒀𝒀 + 𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 (18) 

 
For the special case where the number of measurements 𝑀𝑀 equals the number of model 
parameters 𝑁𝑁 to be fitted, the matrix 𝑿𝑿 is square and the transpose and inversion 
operators commute: 
 

(𝑿𝑿𝑇𝑇𝑿𝑿)−1 = 𝑿𝑿−1(𝑿𝑿𝑇𝑇)−1 (19) 

 
Equation (16) can then be written as: 
 

𝜷𝜷 = 𝑿𝑿−1(𝑿𝑿𝑇𝑇)−1𝑿𝑿𝑇𝑇𝒀𝒀 = 𝑿𝑿−1𝒀𝒀 (20) 

 
and the error function 𝐸𝐸(𝜷𝜷) evaluates to zero in this case: 
 

𝐸𝐸(𝜷𝜷) = 𝒀𝒀𝑇𝑇𝒀𝒀 − 2𝒀𝒀𝑇𝑇𝑿𝑿𝑿𝑿−1𝒀𝒀 + (𝑿𝑿−1𝒀𝒀)𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿−1𝒀𝒀 = 𝒀𝒀𝑇𝑇𝒀𝒀 − 2𝒀𝒀𝑇𝑇𝒀𝒀+ 𝒀𝒀𝑇𝑇(𝑿𝑿𝑇𝑇)−1𝑿𝑿𝑇𝑇𝒀𝒀 = 0 (21) 

 
Equation (21) states the expected result that the error function is zero and the fit is 
perfect when the number of model parameters to be fitted 𝑁𝑁 equals the number of 
measurements 𝑀𝑀. 

2.3 Constrained Optimization Via Lagrange Multipliers 
The method of Lagrange Multipliers is a standard mathematical technique for constrained 
optimization of the scalar field 𝑓𝑓(𝒙𝒙) defined in the 𝑁𝑁 dimensional space 𝒙𝒙 subject to the 
constraint 𝑔𝑔(𝒙𝒙) = 𝑐𝑐 where 𝑐𝑐 is constant. 

The unconstrained stationary points of 𝑓𝑓 occur when ∇𝒙𝒙𝑓𝑓(𝒙𝒙) = 0 but this solution does 
not, in general, satisfy the constraint 𝑔𝑔(𝒙𝒙) = 𝑐𝑐. 

The method of Lagrange Multipliers states that the constrained stationary point occurs 
where the gradient vectors of 𝑓𝑓(𝒙𝒙) and 𝑔𝑔(𝒙𝒙) are parallel: 
 

∇𝒙𝒙𝑓𝑓(𝒙𝒙) = −𝜆𝜆∇𝒙𝒙𝑔𝑔(𝒙𝒙) (22) 

 
where the unknown parameter 𝜆𝜆 is termed the Lagrange Multiplier. The proof follows. 

The gradient vector ∇𝒙𝒙𝑔𝑔(𝒙𝒙) of the scalar field 𝑔𝑔(𝒙𝒙) is normal to any displacement ∆𝒙𝒙 lying 
on the constraint surface 𝑔𝑔(𝒙𝒙) = 𝑐𝑐: 
 
 

∇𝒙𝒙𝑔𝑔(𝒙𝒙).∆𝒙𝒙 = 0 (23) 
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Since, by definition, the solution requires that 𝑓𝑓(𝒙𝒙) be stationary subject to the constraint 
𝑔𝑔(𝒙𝒙) = 𝑐𝑐, the gradient vector ∇𝒙𝒙𝑓𝑓(𝒙𝒙) must also be normal to the same displacement ∆𝒙𝒙 
lying on the constraint surface: 
 

∇𝒙𝒙𝑓𝑓(𝒙𝒙).∆𝒙𝒙 = 0 (24) 

 
At the stationary point, the two gradient vectors must be parallel and related by an 
unknown multiplier 𝜆𝜆: 
 

{∇𝒙𝒙𝑓𝑓(𝒙𝒙) + 𝜆𝜆∇𝒙𝒙𝑔𝑔(𝒙𝒙)}.∆𝒙𝒙 = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 ∆𝒙𝒙 (25) 

⇒ ∇𝒙𝒙𝑓𝑓(𝒙𝒙) = −𝜆𝜆∇𝒙𝒙𝑔𝑔(𝒙𝒙) (26) 

 
Equation (26) and the constraint 𝑔𝑔(𝒙𝒙) = 𝑐𝑐 are most conveniently satisfied by searching 
for stationary points of the Lagrangian function 𝐹𝐹(𝒙𝒙, 𝜆𝜆) defined in the 𝑁𝑁 + 1 dimensional 
space comprising 𝒙𝒙 and 𝜆𝜆 as: 
 

𝐹𝐹(𝒙𝒙, 𝜆𝜆) = 𝑓𝑓(𝒙𝒙) + 𝜆𝜆(𝑔𝑔(𝒙𝒙) − 𝑐𝑐) (27) 

 
Setting all 𝑁𝑁 + 1 components of the gradient of 𝐹𝐹(𝒙𝒙, 𝜆𝜆) to zero gives: 
 

∇𝒙𝒙,𝜆𝜆𝐹𝐹(𝒙𝒙, 𝜆𝜆) = ∇𝒙𝒙,𝜆𝜆�𝑓𝑓(𝒙𝒙) + 𝜆𝜆(𝑔𝑔(𝒙𝒙) − 𝑐𝑐)� = 0 (28) 

Since 𝜆𝜆 is independent of 𝒙𝒙 and 𝑐𝑐 is constant, the first 𝑁𝑁 derivatives with respect to 𝒙𝒙 give 
the required constraint of equation (26): 
 

∇𝒙𝒙𝐹𝐹(𝒙𝒙, 𝜆𝜆) = 0 ⇒ ∇𝒙𝒙𝑓𝑓(𝒙𝒙) + 𝜆𝜆∇𝒙𝒙(𝑔𝑔(𝒙𝒙) − 𝑐𝑐) = 0 (29) 

⇒ ∇𝒙𝒙𝑓𝑓(𝒙𝒙) = −𝜆𝜆∇𝒙𝒙𝑔𝑔(𝒙𝒙) (30) 

 
Since 𝑓𝑓(𝒙𝒙), 𝑔𝑔(𝒙𝒙) are independent of 𝜆𝜆 and 𝑐𝑐 is constant, the last component of the 
derivative with respect to 𝜆𝜆 ensures that the constraint 𝑔𝑔(𝒙𝒙) = 𝑐𝑐 is satisfied: 
 

∂𝐹𝐹(𝒙𝒙, 𝜆𝜆)
∂𝜆𝜆

= 0 ⇒
∂{𝑓𝑓(𝒙𝒙) + 𝜆𝜆(𝑔𝑔(𝒙𝒙) − 𝑐𝑐)}

∂𝜆𝜆
=
∂{𝜆𝜆(𝑔𝑔(𝒙𝒙) − 𝑐𝑐)}

∂𝜆𝜆
= 𝑔𝑔(𝒙𝒙) − 𝑐𝑐 = 0 (31) 

 

2.4 Eigenvector Solution in Homogeneous Case 
If the dependent measurement vector 𝒀𝒀 is zero, then the equations are termed 
homogeneous. The model being fitted in a least squares sense is now: 
 

𝑿𝑿𝑿𝑿 = 0 (32) 
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The error function 𝐸𝐸 to be minimized simplifies to: 
 

𝐸𝐸(𝜷𝜷) = ‖𝒓𝒓‖2 = ‖𝑿𝑿𝑿𝑿‖2 = (𝑿𝑿𝑿𝑿)𝑇𝑇𝑿𝑿𝑿𝑿 = 𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 (33) 

 
Unfortunately, using the Normal Equations solution given by equation (16) for the non-
homogeneous case gives the zero vector solution for 𝜷𝜷 when 𝒀𝒀 is the null vector. 
 

𝜷𝜷 = (𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝒀𝒀 = 0 (34) 

 
This is a valid solution but not terribly useful. A solution method is required that 
minimizes the error function 𝐸𝐸(𝜷𝜷) in equation (33) subject to the constraint that 𝜷𝜷 has 
non-zero magnitude. Because equation (32) is linear, the solution vector 𝜷𝜷 can be 
constrained to have unit magnitude: 
 

1 − 𝜷𝜷𝑇𝑇𝜷𝜷 = 0 (35) 

 
Using the method of Lagrange Multipliers, the modified error function can be rewritten as: 
 

𝐸𝐸(𝜷𝜷) = (𝑿𝑿𝑿𝑿)𝑇𝑇𝑿𝑿𝑿𝑿 + 𝜆𝜆(1 − 𝜷𝜷𝑇𝑇𝜷𝜷) = 𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 + 𝜆𝜆(1 − 𝜷𝜷𝑇𝑇𝜷𝜷) (36) 

 
Applying the stationary constraint that 𝐸𝐸(𝜷𝜷 + 𝛿𝛿𝜷𝜷) = 𝐸𝐸(𝜷𝜷) to equation (36) gives: 
 

(𝜷𝜷 + 𝛿𝛿𝜷𝜷)𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿(𝜷𝜷 + 𝛿𝛿𝜷𝜷) + 𝜆𝜆�1 − (𝜷𝜷 + 𝛿𝛿𝜷𝜷)𝑇𝑇(𝜷𝜷 + 𝛿𝛿𝜷𝜷)� = 𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 + 𝜆𝜆(1 − 𝜷𝜷𝑇𝑇𝜷𝜷) (37) 

 
Ignoring second order terms gives: 
 

𝛿𝛿𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 + 𝜷𝜷𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝛿𝛿𝜷𝜷 − 𝜆𝜆𝜷𝜷𝑇𝑇𝛿𝛿𝜷𝜷 − 𝜆𝜆𝛿𝛿𝜷𝜷𝑇𝑇𝜷𝜷 = 0 (38) 

 
Because each term in equation (38) is a scalar and equal to its transpose, the solution for 
the optimum 𝜷𝜷 which constrains the performance function is: 
 

2𝛿𝛿𝜷𝜷𝑇𝑇(𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 − 𝜆𝜆𝜷𝜷) = 0 (39) 

⇒ 𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 = 𝜆𝜆𝜷𝜷 (40) 

 
Equation (40) states that the required solution vector 𝜷𝜷 is one of the eigenvectors of the 
product matrix 𝑿𝑿𝑇𝑇𝑿𝑿 with eigenvalue 𝜆𝜆. 

Substituting equation (40) into equation (33) gives the error function 𝐸𝐸(𝜷𝜷𝑖𝑖) associated 
with eigenvalue 𝜆𝜆𝑖𝑖  and eigenvector 𝜷𝜷𝑖𝑖 as: 
 

𝐸𝐸(𝜷𝜷𝑖𝑖) = 𝜷𝜷𝑖𝑖
𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝜷𝜷𝑖𝑖 = 𝜆𝜆𝑖𝑖𝜷𝜷𝑖𝑖

𝑇𝑇𝜷𝜷𝑖𝑖 =  𝜆𝜆𝑖𝑖 (41) 
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The error function 𝐸𝐸(𝜷𝜷𝑖𝑖) for the 𝑖𝑖𝑡𝑡ℎ eigenvector 𝜷𝜷𝑖𝑖 therefore equals the associated 
eigenvalue 𝜆𝜆𝑖𝑖. The minimum error function is therefore equal to the smallest eigenvalue 
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 of 𝑿𝑿𝑇𝑇𝑿𝑿 and the required solution 𝜷𝜷𝑚𝑚𝑚𝑚𝑚𝑚 is the eigenvector with the smallest 
eigenvalue. 

2.5 Eigenvectors and Eigenvalues of Symmetric Matrices 
The measurement matrix 𝑿𝑿𝑇𝑇𝑿𝑿 is symmetric because: 
 

(𝑿𝑿𝑇𝑇𝑿𝑿)𝑇𝑇 = 𝑿𝑿𝑇𝑇𝑿𝑿 (42) 

 
The eigenvectors 𝜷𝜷 of 𝑿𝑿𝑇𝑇𝑿𝑿 satisfy: 
 

�𝜷𝜷𝑗𝑗�
𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿 𝜷𝜷𝑘𝑘 = 𝜆𝜆𝑘𝑘�𝜷𝜷𝑗𝑗�

𝑇𝑇𝜷𝜷𝑘𝑘 (43) 

 
Transposing equation (43) gives: 
 

(𝜷𝜷𝑘𝑘)𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝜷𝜷𝑗𝑗 = 𝜆𝜆𝑘𝑘(𝜷𝜷𝑘𝑘)𝑇𝑇𝜷𝜷𝑗𝑗 (44) 

⇒ 𝜆𝜆𝑗𝑗(𝜷𝜷𝑘𝑘)𝑇𝑇𝜷𝜷𝑗𝑗 = 𝜆𝜆𝑘𝑘(𝜷𝜷𝑘𝑘)𝑇𝑇𝜷𝜷𝑗𝑗 (45) 

⇒ �𝜆𝜆𝑗𝑗 − 𝜆𝜆𝑘𝑘�(𝜷𝜷𝑘𝑘)𝑇𝑇𝜷𝜷𝑗𝑗 = 0 (46) 

⇒ (𝜷𝜷𝑘𝑘)𝑇𝑇𝜷𝜷𝑗𝑗 = 0 𝑖𝑖𝑖𝑖 𝜆𝜆𝑗𝑗 ≠ 𝜆𝜆𝑘𝑘 (47) 

 
The eigenvectors of a symmetric matrix are therefore orthogonal if the eigenvalues are 
distinct.  

The definition of a positive semi-definite matrix 𝑨𝑨 is one that satisfies for all nonzero 
vectors 𝒗𝒗𝑗𝑗: 
 

�𝒗𝒗𝑗𝑗�
𝑇𝑇𝑨𝑨𝒗𝒗𝑗𝑗 ≥ 0 (48) 

 
Setting 𝑘𝑘 = 𝑗𝑗 in equation (43) gives: 
 

�𝜷𝜷𝑗𝑗�
𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝜷𝜷𝑗𝑗 = �𝑿𝑿𝜷𝜷𝑗𝑗�

𝑇𝑇𝑿𝑿𝜷𝜷𝑗𝑗 = 𝜆𝜆𝑗𝑗�𝜷𝜷𝑗𝑗�
𝑇𝑇𝜷𝜷𝑗𝑗 (49) 

⇒ �𝑿𝑿𝜷𝜷𝑗𝑗�
2 = 𝜆𝜆𝑗𝑗�𝜷𝜷𝑗𝑗�

2 (50) 

The left-hand side of equation (50) is non-negative. For nonzero 𝜷𝜷𝑗𝑗 it therefore follows 
that the symmetric matrix 𝑿𝑿𝑇𝑇𝑿𝑿 is positive semi-definite and has non-negative eigenvalues 
if the associated eigenvector has non-zero norm. 
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3. Hard and Soft Iron Magnetic Model 

3.1 General Linear Model 
The most general linear model for the k-th magnetometer measurement 𝑩𝑩𝑘𝑘

𝑆𝑆  in the 
sensor frame, as a consequence of hard and soft iron distortion to the true magnetic field 
𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆  incident on the magnetometer, is: 

 

𝑩𝑩𝑘𝑘
𝑆𝑆 = 𝑾𝑾 𝑩𝑩𝑐𝑐,𝑘𝑘

𝑆𝑆 + 𝑽𝑽 (51) 

 
The 3x1 vector 𝑽𝑽 is termed the hard iron offset and the 3x3 matrix 𝑾𝑾 is termed the soft 
iron matrix. The hard iron offset models the sensor’s intrinsic zero magnetic field offset 
plus the effects of permanently magnetized components on the circuit board. The soft 
iron matrix models the directional effect of induced magnetic fields and differing 
sensitivities in the three axes of the magnetometer sensor. 

The calibration algorithms derived in this document estimate the hard iron offset 𝑽𝑽 and 
the soft iron matrix 𝑾𝑾 from magnetometer measurements and then invert equation (51) 
to give the calibrated magnetometer measurement in the sensor frame 𝑩𝑩𝑐𝑐,𝑘𝑘

𝑆𝑆  as: 
 

𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆 = 𝑾𝑾−1� 𝑩𝑩𝑘𝑘

𝑆𝑆 − 𝑽𝑽� (52) 

 
Equation (52) is implemented in the function fInvertMagCal. 

In the absence of any extraneous magnetic disturbance, such as an external magnet, the 
true applied field in the sensor frame is simply the earth's geomagnetic field 𝑩𝑩0

𝐺𝐺  rotated 
by the orientation matrix 𝑹𝑹 defining the orientation of the magnetometer: 
 

𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆 = 𝑹𝑹 𝑩𝑩0

𝐺𝐺  (53) 

 
The geomagnetic vector 𝑩𝑩0

𝐺𝐺  is a constant vector in the global reference frame (pointing 
northwards and downwards in the northern hemisphere). The multiplication by the circuit 
board orientation matrix 𝑹𝑹 is an example of a vector transformation from the global 
coordinate frame to the sensor coordinate frame. 

Substituting equation (53) into equation (51) gives the model for the magnetometer 
measurement in terms of the rotated and distorted geomagnetic field vector as: 
 

𝑩𝑩𝑘𝑘
𝑆𝑆 = 𝑾𝑾𝑾𝑾 𝑩𝑩0

𝐺𝐺 + 𝑽𝑽 (54) 

 
If the hard and soft iron calibration is accurately determined then the calibrated 
magnetometer measurement 𝑩𝑩𝑐𝑐,𝑘𝑘

𝑆𝑆  is the simply the geomagnetic field rotated into the 
sensor frame: 
 

𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆 = 𝑾𝑾−1� 𝑩𝑩𝑘𝑘

𝑆𝑆 − 𝑽𝑽� = 𝑾𝑾−1��𝑾𝑾𝑾𝑾 𝑩𝑩0
𝐺𝐺 + 𝑽𝑽� − 𝑽𝑽� = 𝑹𝑹 𝑩𝑩0

𝐺𝐺  (55) 
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3.2 Measurement Loci 
Under arbitrary rotation of the magnetometer sensor, the locus of the calibrated 
magnetometer readings 𝑩𝑩𝑐𝑐,𝑘𝑘

𝑆𝑆  satisfies: 
 

� 𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆 �2 = � 𝑩𝑩𝑐𝑐,𝑘𝑘

𝑆𝑆 �
𝑇𝑇
𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆 = �𝑹𝑹 𝑩𝑩0

𝐺𝐺 �𝑇𝑇𝑹𝑹 𝑩𝑩0
𝐺𝐺 = � 𝑩𝑩0

𝐺𝐺 �𝑇𝑇𝑹𝑹𝑇𝑇𝑹𝑹 𝑩𝑩0
𝐺𝐺 = � 𝑩𝑩0

𝐺𝐺 �2 = 𝐵𝐵2 (56) 

 
where 𝐵𝐵 is the magnitude of the geomagnetic field vector 𝑩𝑩0

𝐺𝐺 . The calibrated 
measurements 𝑩𝑩𝑐𝑐,𝑘𝑘

𝑆𝑆  therefore lie on the surface of the sphere centered at the origin with 
radius 𝐵𝐵. 

The locus of the uncalibrated magnetometer readings 𝑩𝑩𝑘𝑘
𝑆𝑆  satisfies: 

 

�𝑾𝑾−1� 𝑩𝑩𝑘𝑘
𝑆𝑆 − 𝑽𝑽��

𝑇𝑇
�𝑾𝑾−1� 𝑩𝑩𝑘𝑘

𝑆𝑆 − 𝑽𝑽�� = �𝑹𝑹 𝑩𝑩0
𝐺𝐺 �

𝑇𝑇
𝑹𝑹 𝑩𝑩0
𝐺𝐺 = � 𝑩𝑩0

𝐺𝐺 �
𝑇𝑇
𝑹𝑹𝑇𝑇𝑹𝑹 𝑩𝑩0

𝐺𝐺 = � 𝑩𝑩0
𝐺𝐺 �

2
= 𝐵𝐵2 (57) 

⇒ � 𝑩𝑩𝑘𝑘
𝑆𝑆 − 𝑽𝑽�

𝑇𝑇(𝑾𝑾−1)𝑇𝑇𝑾𝑾−1� 𝑩𝑩𝑘𝑘
𝑆𝑆 − 𝑽𝑽� = 𝐵𝐵2 (58) 

 
The general expression for the locus of a vector 𝒖𝒖 lying on the surface of an ellipsoid with 
center at 𝒖𝒖0 is known to be:  
 

(𝒖𝒖 − 𝒖𝒖0)𝑇𝑇𝑨𝑨(𝒖𝒖 − 𝒖𝒖0) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (59) 

 
where 𝑨𝑨 is a symmetric matrix defining the shape of the ellipsoid. 

Equations (58) and (59) are clearly of the same form with 𝑨𝑨 = (𝑾𝑾−1)𝑇𝑇𝑾𝑾−1. It is easily 
proven that the matrix 𝑨𝑨 = {𝑾𝑾−1}𝑇𝑇𝑾𝑾−1 is symmetric: 
 

𝑨𝑨𝑇𝑇 = {{𝑾𝑾−1}𝑇𝑇𝑾𝑾−1}𝑇𝑇 = {𝑾𝑾−1}𝑇𝑇{{𝑾𝑾−1}𝑇𝑇}𝑇𝑇 = {𝑾𝑾−1}𝑇𝑇𝑾𝑾−1 = 𝑨𝑨 (60) 

 
In the absence of any hard iron and soft iron distortion, the magnetometer measurements 
in the sensor frame lie on the surface of a sphere with radius equal to the geomagnetic 
field strength 𝐵𝐵. The hard iron offset vector 𝑽𝑽 moves the center of the sphere to 𝑽𝑽 and 
the soft iron matrix 𝑾𝑾 distorts the sphere into an ellipsoid. 

The calibration mapping of equation (52) transforms uncalibrated measurements 𝑩𝑩𝑘𝑘
𝑆𝑆  

from their locus on the surface on the measurement ellipsoid onto the locus of the 
calibrated measurements 𝑩𝑩𝑐𝑐,𝑘𝑘

𝑆𝑆  which is the surface of a sphere. The transformation has 
two components: i) subtraction of the hard iron vector 𝑽𝑽 which centers the measurements 
at the origin and ii) multiplication by the inverse soft iron gain matrix 𝑾𝑾−1 which removes 
the ellipsoidal distortion. 

 

3.3 Example Calibration Surfaces 
Fig 1 shows measurements taken from a sensor circuit board with minimal ferromagnetic 
components. The uncalibrated measurements are shown in red and the calibrated 
measurements in blue. The soft iron matrix 𝑾𝑾 is close to the identity matrix and the hard 



 

 

NXP Semiconductors AN5019 
 Magnetic Calibration Algorithms 

AN5019 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved. 

Application note Rev. 2.0 — 21 June 2016 13 of 33 

iron vector is dominated by a 100 µT offset in the z-axis which in this case results from 
the sensor's zero field offset. This type of circuit board could be calibrated for hard iron 
offset only, ignoring soft iron calibration, using the algorithm described in Section 4. The 
more sophisticated soft iron algorithms of Sections 5 and 6 could also be used but would 
provide little, or no, performance improvement. 

In this particular example, the calibration mapping is approximately the translation: 
 

𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆 ≈ 𝑩𝑩𝑘𝑘

𝑆𝑆 − 𝑉𝑉𝑧𝑧𝒌𝒌� ≈ 𝑩𝑩𝑘𝑘
𝑆𝑆 − 100µ𝑇𝑇𝒌𝒌� (61) 

 

 
Fig 1. Uncalibrated (red) and calibrated (blue) measurements from a simple hard iron 

environment 
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Fig 2 shows measurements taken from an Android tablet with strong hard and soft iron 
distortions resulting from a ferromagnetic film behind the display. This type of distortion 
must be calibrated using the more sophisticated hard and soft iron algorithms described 
in Sections 5 and 6. 

 
Fig 2. Uncalibrated (red) and calibrated (blue) measurements from a complex hard and 

soft iron environment 
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4. Four Parameter Magnetic Calibration Model 

4.1 Derivation of the Least Squares Solution 
This section documents the simplest magnetic calibration algorithm implemented in 
function fUpdateMagCalibration4Slice which calculates the four parameters 
comprising the hard iron offset vector 𝑽𝑽 and geomagnetic field strength 𝐵𝐵. The soft iron 
matrix 𝑾𝑾 in this model is the identity matrix 𝑰𝑰. This model provides reasonable 
performance with high simplicity on simple circuit boards with low soft iron distortion. 

The model for the magnetometer measurement 𝑩𝑩𝑘𝑘
𝑆𝑆  in terms of the true calibrated 

measurement 𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆 , which is the geomagnetic field vector 𝑩𝑩0 rotated from the global to 

the sensor frame by rotation matrix 𝑹𝑹, is: 
 

𝑩𝑩𝑘𝑘
𝑆𝑆 = 𝑩𝑩𝑐𝑐,𝑘𝑘

𝑆𝑆 + 𝑽𝑽 = 𝑹𝑹 𝑩𝑩0
𝐺𝐺 + 𝑽𝑽 (62) 

 
The rotation matrix 𝑹𝑹 can be eliminated from equation (62) giving the measurement 
locus: 
 

� 𝑩𝑩𝑘𝑘
𝑆𝑆 − 𝑽𝑽�𝑇𝑇� 𝑩𝑩𝑘𝑘

𝑆𝑆 − 𝑽𝑽� = 𝐵𝐵2 ⇒ 𝑩𝑩𝑘𝑘
𝑆𝑆 𝑇𝑇 𝑩𝑩𝑘𝑘

𝑆𝑆 − 2 𝑩𝑩𝑘𝑘
𝑆𝑆 𝑇𝑇𝑽𝑽 + 𝑽𝑽𝑇𝑇𝑽𝑽 = 𝐵𝐵2 (63) 

 
Equation (63) models the locus of the magnetometer measurements 𝑩𝑩𝑘𝑘

𝑆𝑆  as lying on the 
surface of a sphere with radius 𝐵𝐵 offset from the origin by 𝑽𝑽. 

The residual error 𝑟𝑟𝑘𝑘 for the 𝑘𝑘𝑡𝑡ℎ magnetometer measurement is defined in terms of the 
deviation of the squared calibrated measurement from the squared geomagnetic field 
strength as: 
 

𝑟𝑟𝑘𝑘 = � 𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆 �

2
− 𝐵𝐵2 = � 𝑩𝑩𝑘𝑘

𝑆𝑆 − 𝑽𝑽�
𝑇𝑇
� 𝑩𝑩𝑘𝑘
𝑆𝑆 − 𝑽𝑽� − 𝐵𝐵2 = 𝑩𝑩𝑘𝑘

𝑆𝑆 𝑇𝑇
𝑩𝑩𝑘𝑘
𝑆𝑆 − 2 𝑩𝑩𝑘𝑘

𝑆𝑆 𝑇𝑇
𝑽𝑽 + 𝑽𝑽𝑇𝑇𝑽𝑽 − 𝐵𝐵2 (64) 

 
The residual 𝑟𝑟𝑘𝑘 therefore has dimensions of 𝐵𝐵2. Expanding the components of equation 
(64) gives: 
 

𝑟𝑟𝑘𝑘 = 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

+ 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

+ 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

− 2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝑉𝑉𝑥𝑥 − 2 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝑉𝑉𝑦𝑦 − 2 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝑉𝑉𝑧𝑧 + 𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2 − 𝐵𝐵2 (65) 

 
Simplifying and returning to matrix format gives: 
 

𝑟𝑟𝑘𝑘 = � 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2 + 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2 + 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2� − � 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 1�

⎝

⎜
⎛

2𝑉𝑉𝑥𝑥
2𝑉𝑉𝑦𝑦
2𝑉𝑉𝑧𝑧

𝐵𝐵2 − 𝑉𝑉𝑥𝑥2 − 𝑉𝑉𝑦𝑦2 − 𝑉𝑉𝑧𝑧2⎠

⎟
⎞

 (66) 
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Equation (66) can be expanded to represent 𝑀𝑀 measurements as: 
 

�

𝑟𝑟0
𝑟𝑟1
…

𝑟𝑟𝑀𝑀−1

� =

⎝

⎜
⎛

𝐵𝐵𝑥𝑥,0
𝑆𝑆 2

+ 𝐵𝐵𝑦𝑦,0
𝑆𝑆 2

+ 𝐵𝐵𝑧𝑧,0
𝑆𝑆 2

𝐵𝐵𝑥𝑥,1
𝑆𝑆 2

+ 𝐵𝐵𝑦𝑦,1
𝑆𝑆 2

+ 𝐵𝐵𝑧𝑧,1
𝑆𝑆 2

…
𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 2

+ 𝐵𝐵𝑦𝑦,𝑀𝑀−1
𝑆𝑆 2

+ 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 2

⎠

⎟
⎞
−

⎝

⎜
⎛

𝐵𝐵𝑥𝑥,0
𝑆𝑆 𝐵𝐵𝑦𝑦,0

𝑆𝑆 𝐵𝐵𝑧𝑧,0
𝑆𝑆 1

𝐵𝐵𝑥𝑥,1
𝑆𝑆 𝐵𝐵𝑦𝑦,1

𝑆𝑆 𝐵𝐵𝑧𝑧,1
𝑆𝑆 1

… … … 1
𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑀𝑀−1

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 1⎠

⎟
⎞
𝜷𝜷 (67) 

 

where the 4 × 1 solution vector 𝜷𝜷 is defined as: 
 

𝜷𝜷 = �

𝛽𝛽0
𝛽𝛽1
𝛽𝛽2
𝛽𝛽3

� =

⎝

⎜
⎛

2𝑉𝑉𝑥𝑥
2𝑉𝑉𝑦𝑦
2𝑉𝑉𝑧𝑧

𝐵𝐵2 − 𝑉𝑉𝑥𝑥2 − 𝑉𝑉𝑦𝑦2 − 𝑉𝑉𝑧𝑧2⎠

⎟
⎞

 (68) 

 
With the definitions of the 𝑀𝑀 × 1 error residual vector 𝒓𝒓 as: 
 
 

𝒓𝒓 = �

𝑟𝑟0
𝑟𝑟1
…
𝑟𝑟𝑀𝑀−1

� (69) 

 
and 𝒀𝒀 the 𝑀𝑀 × 1 vector of dependent variables: 
 

𝒀𝒀 =

⎝

⎜
⎛

𝐵𝐵𝑥𝑥 ,0
𝑆𝑆 2 + 𝐵𝐵𝑦𝑦,0

𝑆𝑆 2 + 𝐵𝐵𝑧𝑧,0
𝑆𝑆 2

𝐵𝐵𝑥𝑥 ,1
𝑆𝑆 2 + 𝐵𝐵𝑦𝑦,1

𝑆𝑆 2 + 𝐵𝐵𝑧𝑧,1
𝑆𝑆 2

…
𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 2 + 𝐵𝐵𝑦𝑦,𝑀𝑀−1

𝑆𝑆 2 + 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 2

⎠

⎟
⎞

 (70) 

 
and 𝑿𝑿 the 𝑀𝑀 × 4 measurement matrix: 
 

𝑿𝑿 =

⎝

⎜
⎛

𝐵𝐵𝑥𝑥,0
𝑆𝑆 𝐵𝐵𝑦𝑦,0

𝑆𝑆 𝐵𝐵𝑧𝑧,0
𝑆𝑆 1

𝐵𝐵𝑥𝑥,1
𝑆𝑆 𝐵𝐵𝑦𝑦,1

𝑆𝑆 𝐵𝐵𝑧𝑧,1
𝑆𝑆 1

… … … 1
𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑀𝑀−1

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 1⎠

⎟
⎞

 (71) 

 
then equation (67) can be written as: 
 

𝒓𝒓 = 𝒀𝒀 − 𝑿𝑿𝑿𝑿 (72) 

 
The model being fitted has the non-homogeneous form 𝒓𝒓 = 𝒀𝒀 − 𝑿𝑿𝑿𝑿 and can be solved 
using the Normal Equations method documented in Section 2. 
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The matrices 𝑿𝑿𝑇𝑇𝑿𝑿, 𝑿𝑿𝑇𝑇𝒀𝒀 and 𝒀𝒀𝑇𝑇𝒀𝒀 expand to: 
 

𝑿𝑿𝑇𝑇𝑿𝑿 =

⎝

⎜
⎛

𝐵𝐵𝑥𝑥,0
𝑆𝑆 𝐵𝐵𝑦𝑦,0

𝑆𝑆 𝐵𝐵𝑧𝑧,0
𝑆𝑆 1

𝐵𝐵𝑥𝑥,1
𝑆𝑆 𝐵𝐵𝑦𝑦,1

𝑆𝑆 𝐵𝐵𝑧𝑧,1
𝑆𝑆 1

… … … 1
𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑀𝑀−1

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 1⎠

⎟
⎞

𝑇𝑇

⎝

⎜
⎛

𝐵𝐵𝑥𝑥,0
𝑆𝑆 𝐵𝐵𝑦𝑦,0

𝑆𝑆 𝐵𝐵𝑧𝑧,0
𝑆𝑆 1

𝐵𝐵𝑥𝑥,1
𝑆𝑆 𝐵𝐵𝑦𝑦,1

𝑆𝑆 𝐵𝐵𝑧𝑧,1
𝑆𝑆 1

… … … 1
𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑀𝑀−1

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 1⎠

⎟
⎞

 (73) 

𝑿𝑿𝑇𝑇𝑿𝑿 = �

⎝

⎜⎜
⎛

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 1 ⎠

⎟⎟
⎞𝑀𝑀−1

𝑘𝑘=0

 (74) 

𝑿𝑿𝑇𝑇𝒀𝒀 =

⎝

⎜
⎛

𝐵𝐵𝑥𝑥,0
𝑆𝑆 𝐵𝐵𝑦𝑦,0

𝑆𝑆 𝐵𝐵𝑧𝑧,0
𝑆𝑆 1

𝐵𝐵𝑥𝑥,1
𝑆𝑆 𝐵𝐵𝑦𝑦,1

𝑆𝑆 𝐵𝐵𝑧𝑧,1
𝑆𝑆 1

… … … 1
𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑀𝑀−1

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 1⎠

⎟
⎞

𝑇𝑇

⎝

⎜
⎛

𝐵𝐵𝑥𝑥,0
𝑆𝑆 2 + 𝐵𝐵𝑦𝑦,0

𝑆𝑆 2 + 𝐵𝐵𝑧𝑧,0
𝑆𝑆 2

𝐵𝐵𝑥𝑥,1
𝑆𝑆 2 + 𝐵𝐵𝑦𝑦,1

𝑆𝑆 2 + 𝐵𝐵𝑧𝑧,1
𝑆𝑆 2

…
𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 2 + 𝐵𝐵𝑦𝑦,𝑀𝑀−1

𝑆𝑆 2 + 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 2

⎠

⎟
⎞

 (75) 

= �

⎝

⎜
⎜
⎜
⎛

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 � 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2 + 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2 + 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 2�

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 � 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2 + 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2 + 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 2�

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 � 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2 + 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2 + 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 2�

� 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2 + 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2 + 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2� ⎠

⎟
⎟
⎟
⎞𝑀𝑀−1

𝑘𝑘=0

 (76) 

𝒀𝒀𝑇𝑇𝒀𝒀 =

⎝

⎜
⎛

𝐵𝐵𝑥𝑥,0
𝑆𝑆 2

+ 𝐵𝐵𝑦𝑦,0
𝑆𝑆 2

+ 𝐵𝐵𝑧𝑧,0
𝑆𝑆 2

𝐵𝐵𝑥𝑥,1
𝑆𝑆 2

+ 𝐵𝐵𝑦𝑦,1
𝑆𝑆 2

+ 𝐵𝐵𝑧𝑧,1
𝑆𝑆 2

…
𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 2

+ 𝐵𝐵𝑦𝑦,𝑀𝑀−1
𝑆𝑆 2

+ 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 2

⎠

⎟
⎞

𝑇𝑇

⎝

⎜
⎛

𝐵𝐵𝑥𝑥,0
𝑆𝑆 2

+ 𝐵𝐵𝑦𝑦,0
𝑆𝑆 2

+ 𝐵𝐵𝑧𝑧,0
𝑆𝑆 2

𝐵𝐵𝑥𝑥,1
𝑆𝑆 2

+ 𝐵𝐵𝑦𝑦,1
𝑆𝑆 2

+ 𝐵𝐵𝑧𝑧,1
𝑆𝑆 2

…
𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 2

+ 𝐵𝐵𝑦𝑦,𝑀𝑀−1
𝑆𝑆 2

+ 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 2

⎠

⎟
⎞

 (77) 

= � � 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2 + 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2 + 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2�

2
𝑀𝑀−1

𝑘𝑘=0

 (78) 

 
The solution vector 𝜷𝜷 is then given by equation (16) as: 
 

𝜷𝜷 = �

𝛽𝛽0
𝛽𝛽1
𝛽𝛽2
𝛽𝛽3

� =

⎩
⎪
⎨

⎪
⎧

�

⎝

⎜⎜
⎛

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 1 ⎠

⎟⎟
⎞𝑀𝑀−1

𝑘𝑘=0

⎭
⎪
⎬

⎪
⎫
−1

�

⎝

⎜
⎜
⎜
⎛

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 � 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2
+ 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2
+ 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 2
�

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 � 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2
+ 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2
+ 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 2
�

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 � 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2
+ 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2
+ 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 2
�

� 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

+ 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

+ 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

� ⎠

⎟
⎟
⎟
⎞𝑀𝑀−1

𝑘𝑘=0

 (79) 
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4.2 Hard Iron Vector 
The hard iron solution vector is given directly by equation (68) as: 
 

�
𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
� = �

1
2
� �

𝛽𝛽0
𝛽𝛽1
𝛽𝛽2
� (80) 

 

4.3 Geomagnetic Field Strength 
The geomagnetic field strength is computed from the last component of equation (68) as: 

 

𝐵𝐵2 = 𝛽𝛽3 + 𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2 ⇒  𝐵𝐵 = �𝛽𝛽3 + 𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2 (81) 

 

4.4 Fit Error 
The residuals 𝑟𝑟𝑘𝑘 have dimensions of the geomagnetic field strength squared or 𝐵𝐵2. The 
error function 𝐸𝐸 is proportional to the sum of the 𝑀𝑀 squared residuals and has 
dimensions of 𝐵𝐵4. A dimensionless measure of fit error 𝜀𝜀, independent of the number of 
measurements, is: 
 

𝜀𝜀 =
1
2
�𝐸𝐸(𝜷𝜷)
𝑀𝑀𝐵𝐵4

=
1

2𝐵𝐵2
�𝐸𝐸(𝜷𝜷)

𝑀𝑀
 (82) 

 
The scaling factor of 2 is for mathematical convenience and has no particular 
significance. 

The sensor fusion software returns the normalized fit error as the percentage 𝜀𝜀% defined 
as: 
 

𝜀𝜀% =
50
𝐵𝐵2

�𝐸𝐸(𝜷𝜷)
𝑀𝑀

 (83) 
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5. Seven Parameter Magnetic Calibration Model 

5.1 Derivation of the Least Squares Solution 
This section documents the magnetic calibration algorithm implemented in function 
fUpdateMagCalibration7Slice which extends the four-parameter model of the 
previous section with the addition of three gain terms on the diagonal of the soft iron 
matrix 𝑾𝑾 giving a total of seven magnetic calibration parameters. This model gives a 
significant improvement when either the magnetometer sensor has differing gains in its 
three channels or when the PCB has differing magnetic impedances along its three 
Cartesian axes. The diagonal form of 𝑾𝑾 means that the magnetic distribution ellipsoid is 
modeled as having its principal axes aligned with the PCB’s Cartesian axes. If this is not 
the case then the ten-parameter calibration model of Section 6 should be used instead. 

The model for the magnetometer measurement 𝑩𝑩𝑘𝑘
𝑆𝑆  in terms of the true calibrated 

measurement 𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆 , which is the geomagnetic field vector 𝑩𝑩0 rotated from the global to 

the sensor frame by rotation matrix 𝑹𝑹, is: 
 

𝑩𝑩𝑘𝑘
𝑆𝑆 = 𝑾𝑾 𝑩𝑩𝑐𝑐,𝑘𝑘

𝑆𝑆 + 𝑽𝑽 = 𝑾𝑾𝑾𝑾 𝑩𝑩0
𝐺𝐺 + 𝑽𝑽 (84) 

 
In the seven-parameter magnetic calibration model, the soft iron matrix 𝑾𝑾 is diagonal but 
not, in general, equal to the identity matrix. 

The rotation matrix 𝑹𝑹 can be eliminated from equation (84) giving the measurement 
locus: 
 

�𝑾𝑾−1� 𝑩𝑩𝑘𝑘
𝑆𝑆 − 𝑽𝑽��

𝑇𝑇
𝑾𝑾−𝟏𝟏� 𝑩𝑩𝑘𝑘

𝑆𝑆 − 𝑽𝑽� = � 𝑩𝑩𝑘𝑘
𝑆𝑆 − 𝑽𝑽�

𝑇𝑇(𝑾𝑾−1)𝑇𝑇𝑾𝑾−1� 𝑩𝑩𝑘𝑘
𝑆𝑆 − 𝑽𝑽� = 𝐵𝐵2 (85) 

⇒ � 𝑩𝑩𝑘𝑘
𝑆𝑆 − 𝑽𝑽�

𝑇𝑇
𝑨𝑨� 𝑩𝑩𝑘𝑘

𝑆𝑆 − 𝑽𝑽� = 𝐵𝐵2 (86) 

 
Equation (86) models the locus of the magnetometer measurements 𝑩𝑩𝑘𝑘

𝑆𝑆  as lying on the 
surface of an ellipsoid offset from the origin by 𝑽𝑽 with axes defined by the ellipsoid matrix 
𝑨𝑨 = (𝑾𝑾−1)𝑇𝑇𝑾𝑾−1. Because 𝑨𝑨 is diagonal, the ellipsoid's axes are aligned with the 
coordinate system's Cartesian axes. 

The manipulations that follow derive an expression for the error residual 𝑟𝑟𝑘𝑘 defined, for 
the 𝑘𝑘𝑡𝑡ℎ magnetometer measurement, in terms of the deviation of the squared calibrated 
measurement from the geomagnetic sphere as: 
 

𝑟𝑟𝑘𝑘 = � 𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆 �2 − 𝐵𝐵2 = �𝑾𝑾−1� 𝑩𝑩𝑘𝑘

𝑆𝑆 − 𝑽𝑽��𝑇𝑇�𝑾𝑾−1� 𝑩𝑩𝑘𝑘
𝑆𝑆 − 𝑽𝑽�� − 𝐵𝐵2 (87) 

= � 𝑩𝑩𝑘𝑘
𝑆𝑆 − 𝑽𝑽�𝑇𝑇𝑨𝑨� 𝑩𝑩𝑘𝑘

𝑆𝑆 − 𝑽𝑽�� − 𝐵𝐵2 (88) 

 
𝑟𝑟𝑘𝑘 has dimensions of 𝐵𝐵2 in the same manner as the definition of the error residual in the 
four-parameter calibration model. 
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Expanding equation (87) gives: 
 

𝑟𝑟𝑘𝑘 = � 𝑩𝑩𝑘𝑘
𝑆𝑆 �𝑇𝑇𝑨𝑨 𝑩𝑩𝑘𝑘

𝑆𝑆 − � 𝑩𝑩𝑘𝑘
𝑆𝑆 �𝑇𝑇𝑨𝑨𝑨𝑨 − 𝑽𝑽𝑇𝑇𝑨𝑨 𝑩𝑩𝑘𝑘

𝑆𝑆 + 𝑽𝑽𝑇𝑇𝑨𝑨𝑨𝑨 − 𝐵𝐵2 (89) 

 

The term � 𝑩𝑩𝑘𝑘
𝑆𝑆 �𝑇𝑇𝑨𝑨𝑨𝑨 is a scalar and therefore unchanged under transposition: 

 

�� 𝑩𝑩𝑘𝑘
𝑆𝑆 �𝑇𝑇𝑨𝑨𝑨𝑨�

𝑇𝑇
= 𝑽𝑽𝑇𝑇𝑨𝑨 𝑩𝑩𝑘𝑘

𝑆𝑆 = � 𝑩𝑩𝑘𝑘
𝑆𝑆 �𝑇𝑇𝑨𝑨𝑨𝑨 (90) 

 
Substituting equation (90) into equation (89) and rearranging gives: 
 

𝑟𝑟𝑘𝑘 = � 𝑩𝑩𝑘𝑘
𝑆𝑆 �𝑇𝑇𝑨𝑨 𝑩𝑩𝑘𝑘

𝑆𝑆 − 2� 𝑩𝑩𝑘𝑘
𝑆𝑆 �𝑇𝑇𝑨𝑨𝑨𝑨 + 𝑽𝑽𝑇𝑇𝑨𝑨𝑨𝑨 − 𝐵𝐵2 (91) 

 
Expanding equation (91) into its individual components gives: 
 

𝑟𝑟𝑘𝑘 = 𝐴𝐴𝑥𝑥𝑥𝑥 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2 + 𝐴𝐴𝑦𝑦𝑦𝑦 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2 + 𝐴𝐴𝑧𝑧𝑧𝑧 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2−2 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 − 2 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2

+ 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝐵𝐵2 
(92) 

 
Simplifying and returning to matrix format gives: 
 

𝑟𝑟𝑘𝑘 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

1 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

𝑇𝑇

⎝

⎜
⎜
⎜
⎜
⎛

𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑧𝑧𝑧𝑧

−2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥
−2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦
−2𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧

𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝐵𝐵2⎠

⎟
⎟
⎟
⎟
⎞

 (93) 

 
With the definition of the right-hand side of equation (93) as the 7 × 1 solution vector 𝜷𝜷: 
 

𝜷𝜷 =

⎝

⎜
⎜
⎜
⎛

𝛽𝛽0
𝛽𝛽1
𝛽𝛽2
𝛽𝛽3
𝛽𝛽4
𝛽𝛽5
𝛽𝛽6⎠

⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎛

𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑧𝑧𝑧𝑧

−2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥
−2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦
−2𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧

𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝐵𝐵2⎠

⎟
⎟
⎟
⎟
⎞

 (94) 
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then equation (92) for the error residual 𝑟𝑟𝑘𝑘, whose squared sum is to be minimized, is: 
 

𝑟𝑟𝑘𝑘 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

1 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

𝑇𝑇

𝜷𝜷 (95) 

 
The error residual vector 𝒓𝒓 from 𝑀𝑀 magnetometer measurements is defined as the 𝑀𝑀 × 1 
vector: 
 

𝒓𝒓 = �

𝑟𝑟0
𝑟𝑟1
…
𝑟𝑟𝑀𝑀−1

� (96) 

 
The 𝑀𝑀 × 7 measurement matrix 𝑿𝑿 containing the 𝑀𝑀 measurements is defined as: 
 

𝑿𝑿 =

⎝

⎜
⎛

𝐵𝐵𝑥𝑥,0
𝑆𝑆 2 𝐵𝐵𝑦𝑦,0

𝑆𝑆 2 𝐵𝐵𝑧𝑧,0
𝑆𝑆 2 𝐵𝐵𝑥𝑥,0

𝑆𝑆 𝐵𝐵𝑦𝑦,0
𝑆𝑆 𝐵𝐵𝑧𝑧,0

𝑆𝑆 1

𝐵𝐵𝑥𝑥,1
𝑆𝑆 2 𝐵𝐵𝑦𝑦,1

𝑆𝑆 2 𝐵𝐵𝑧𝑧,1
𝑆𝑆 2 𝐵𝐵𝑥𝑥,1

𝑆𝑆 𝐵𝐵𝑦𝑦,1
𝑆𝑆 𝐵𝐵𝑧𝑧,1

𝑆𝑆 1
… … … … … … 1

𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 2 𝐵𝐵𝑦𝑦,𝑀𝑀−1

𝑆𝑆 2 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 2 𝐵𝐵𝑥𝑥,𝑀𝑀−1

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑀𝑀−1
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑀𝑀−1

𝑆𝑆 1⎠

⎟
⎞

 (97) 

 
With these definitions, equation (93) can be expanded to represent all 𝑀𝑀 measurements 
as: 
 

𝒓𝒓 = 𝑿𝑿𝑿𝑿 (98) 

 
The error model being fitted is the homogeneous model 𝑿𝑿𝑿𝑿 = 0 which can be solved for 
𝜷𝜷 using the Lagrange Multiplier and eigen-decomposition approach described in 
Section 2. 

The 7 × 7 product matrix 𝑿𝑿𝑇𝑇𝑿𝑿 whose eigenvectors and eigenvalues are to be determined 
evaluates to: 
 

𝑿𝑿𝑇𝑇𝑿𝑿 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝐵𝐵𝑥𝑥,0
𝑆𝑆 2

𝐵𝐵𝑥𝑥,1
𝑆𝑆 2

… 𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 2

𝐵𝐵𝑦𝑦,0
𝑆𝑆 2

𝐵𝐵𝑦𝑦,1
𝑆𝑆 2

… 𝐵𝐵𝑦𝑦,𝑀𝑀−1
𝑆𝑆 2

𝐵𝐵𝑧𝑧,0
𝑆𝑆 2

𝐵𝐵𝑧𝑧,1
𝑆𝑆 2

… 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 2

𝐵𝐵𝑥𝑥,0
𝑆𝑆 𝐵𝐵𝑥𝑥,1

𝑆𝑆 … 𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆

𝐵𝐵𝑦𝑦,0
𝑆𝑆 𝐵𝐵𝑦𝑦,1

𝑆𝑆 … 𝐵𝐵𝑦𝑦,𝑀𝑀−1
𝑆𝑆

𝐵𝐵𝑧𝑧,0
𝑆𝑆 𝐵𝐵𝑧𝑧,0

𝑆𝑆 … 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆

1 1 1 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎛

𝐵𝐵𝑥𝑥,0
𝑆𝑆 2

𝐵𝐵𝑦𝑦,0
𝑆𝑆 2

𝐵𝐵𝑧𝑧,0
𝑆𝑆 2

𝐵𝐵𝑥𝑥,0
𝑆𝑆 𝐵𝐵𝑦𝑦,0

𝑆𝑆 𝐵𝐵𝑧𝑧,0
𝑆𝑆 1

𝐵𝐵𝑥𝑥,1
𝑆𝑆 2

𝐵𝐵𝑦𝑦,1
𝑆𝑆 2

𝐵𝐵𝑧𝑧,1
𝑆𝑆 2

𝐵𝐵𝑥𝑥,1
𝑆𝑆 𝐵𝐵𝑦𝑦,1

𝑆𝑆 𝐵𝐵𝑧𝑧,1
𝑆𝑆 1

… … … … … … 1
𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑀𝑀−1
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑀𝑀−1

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 1⎠

⎟
⎞ (99) 
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= �

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 4

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 3

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 4

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 3
𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 4

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 3
𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 3

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 3

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 3

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑀𝑀−1

𝑘𝑘=0

 (100) 

 
Because the eigenvalues of 𝑿𝑿𝑇𝑇𝑿𝑿 are equal to the fit errors associated with the 7 
candidate eigenvector solutions, the required solution vector 𝜷𝜷𝑚𝑚𝑚𝑚𝑚𝑚 is the eigenvector 
associated with the smallest eigenvalue 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚. 

5.2 Ellipsoid Fit Matrix 
The ellipsoid fit matrix 𝑨𝑨 is obtained directly from the first three rows of the solution vector 
𝜷𝜷 in equation (94): 
 

𝑨𝑨 = �
𝐴𝐴𝑥𝑥𝑥𝑥 0 0

0 𝐴𝐴𝑦𝑦𝑦𝑦 0
0 0 𝐴𝐴𝑧𝑧𝑧𝑧

� = �
𝛽𝛽0 0 0
0 𝛽𝛽1 0
0 0 𝛽𝛽2

� (101) 

 
The solution eigenvector 𝜷𝜷 is undefined within a multiplicative factor of ±1 (assuming it is 
normalized to unit magnitude). Since physically sensible solutions for 𝑨𝑨 require that it 
have a positive determinant, the entire solution vector 𝜷𝜷 should therefore be negated if 
|𝑨𝑨| < 0. 

The ellipsoid matrix 𝑨𝑨 is normalized to have unit determinant: 
 

|𝑨𝑨| = �
𝐴𝐴𝑥𝑥𝑥𝑥 0 0

0 𝐴𝐴𝑦𝑦𝑦𝑦 0
0 0 𝐴𝐴𝑧𝑧𝑧𝑧

� = 𝐴𝐴𝑥𝑥𝑥𝑥𝐴𝐴𝑦𝑦𝑦𝑦𝐴𝐴𝑧𝑧𝑧𝑧 = 1 (102) 

 
The justification for the normalization in equation (102) is that it is physically impossible 
to separate out the magnitude of the geomagnetic field strength 𝐵𝐵 from the soft iron 
matrix gain terms. A 25 µT geomagnetic field strength 𝐵𝐵 with unit soft iron matrix gain 
results in the same magnetometer measurement as a 50 µT geomagnetic field strength 
𝐵𝐵 attenuated 50% by magnetic shielding. The solution taken in the NXP software always 
sets the determinant of the soft iron matrix |𝑨𝑨| = 1 and computes the geomagnetic field 
strength 𝐵𝐵 on this assumption. 
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5.3 Hard Iron Vector 
The hard iron vector 𝑽𝑽 is given by equation (94) as: 

 

�
−2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥
−2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦
−2𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧

� = �
𝛽𝛽3
𝛽𝛽4
𝛽𝛽5
� ⇒ �

𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
� =

⎝

⎜
⎜
⎜
⎛
�
−𝛽𝛽3
2𝐴𝐴𝑥𝑥𝑥𝑥

�

�
−𝛽𝛽4
2𝐴𝐴𝑦𝑦𝑦𝑦

�

�
−𝛽𝛽5
2𝐴𝐴𝑧𝑧𝑧𝑧

�⎠

⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎛
�
−𝛽𝛽3
2𝛽𝛽0

�

�
−𝛽𝛽4
2𝛽𝛽1

�

�
−𝛽𝛽5
2𝛽𝛽2

�
⎠

⎟
⎟
⎟
⎞

 (103) 

 
The hard iron vector 𝑽𝑽 is obviously unchanged if the entire solution vector 𝜷𝜷 is negated to 
force the ellipsoid matrix 𝑨𝑨 to have positive determinant since the sign change occurs on 
both numerator and denominator. 

5.4 Inverse Soft Iron Matrix 
The inverse soft iron matrix can be found from the square root of the diagonal ellipsoid 
matrix as: 
 

𝑾𝑾−1 = �
𝑊𝑊𝑥𝑥𝑥𝑥 0 0

0 𝑊𝑊𝑦𝑦𝑦𝑦 0
0 0 𝑊𝑊𝑧𝑧𝑧𝑧

� = √𝑨𝑨 =  �
�𝛽𝛽0 0 0

0 �𝛽𝛽1 0
0 0 �𝛽𝛽2

� (104) 

 
Physically sensible solutions have 𝑊𝑊𝑥𝑥𝑥𝑥, 𝑊𝑊𝑦𝑦𝑦𝑦 and 𝑊𝑊𝑧𝑧𝑧𝑧 all positive. The case where the 
negative eigenvector is returned by the eigensolver is handled by computing the 
determinant of the ellipsoid matrix 𝑨𝑨 and negating the entire solution vector 𝜷𝜷 if negative. 
𝛽𝛽0, 𝛽𝛽1 and 𝛽𝛽2 will therefore be positive in equation (104) allowing the positive square root 
to be taken. 

5.5 Geomagnetic Field Strength 
The geomagnetic field strength 𝐵𝐵 is given by the last component of equation (94): 
 

𝛽𝛽6 = 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝐵𝐵2 ⇒ 𝐵𝐵 = �𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝛽𝛽6 (105) 
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5.6 Fit Error 
The error function 𝐸𝐸 equals the smallest eigenvalue 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 of the product matrix 𝑿𝑿𝑇𝑇𝑿𝑿 but is 
not normalized to either the number of measurement points 𝑀𝑀 nor to the geomagnetic 
field strength 𝐵𝐵. Because 𝐸𝐸 = 𝒓𝒓𝑇𝑇𝒓𝒓 and 𝒓𝒓 has 𝑀𝑀 elements with each element having 
dimensions 𝐵𝐵2, a suitable normalized calibration fit error measurement 𝜀𝜀 is: 
 

𝜀𝜀 =
1

2𝐵𝐵2
�𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀
 (106) 

 
The sensor fusion software returns the normalized fit error as the percentage 𝜀𝜀% defined 
as: 
 

𝜀𝜀% =
50
𝐵𝐵2

�𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀

 (107) 
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6. Ten Parameter Magnetic Calibration Model 

6.1 Derivation of the Least Squares Solution 
This section documents the magnetic calibration algorithm implemented in function 
fUpdateMagCalibration10Slice, which extends the seven-parameter model of 
the previous section with the addition of three off-diagonal soft iron matrix terms to 𝑾𝑾 to 
give a total of ten magnetic calibration parameters. This model gives an improvement 
over the seven-parameter model when the PCB’s magnetic impedances steer the 
geomagnetic field in directions that are not aligned with the PCB’s Cartesian axes giving 
a rotated magnetic ellipsoid. 

The model for the magnetometer measurement 𝑩𝑩𝑘𝑘
𝑆𝑆  in terms of the true calibrated 

measurement 𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆 , which is the geomagnetic field vector 𝑩𝑩0 rotated from the global to 

the sensor frame by rotation matrix 𝑹𝑹, is: 
 

𝑩𝑩𝑘𝑘
𝑆𝑆 = 𝑾𝑾 𝑩𝑩𝑐𝑐,𝑘𝑘

𝑆𝑆 + 𝑽𝑽 = 𝑾𝑾𝑾𝑾 𝑩𝑩0
𝐺𝐺 + 𝑽𝑽 (108) 

 
In the ten-parameter magnetic calibration model, the soft iron matrix 𝑾𝑾 is symmetric but 
otherwise unconstrained. 

The locus of the magnetometer measurements is: 
 

{𝑾𝑾−1(𝑩𝑩𝑠𝑠 − 𝑽𝑽)}𝑇𝑇𝑾𝑾−𝟏𝟏(𝑩𝑩𝑠𝑠 − 𝑽𝑽) = (𝑩𝑩𝑠𝑠 − 𝑽𝑽)𝑇𝑇(𝑾𝑾−1)𝑇𝑇𝑾𝑾−1(𝑩𝑩𝑠𝑠 − 𝑽𝑽) = (𝑩𝑩𝑠𝑠 − 𝑽𝑽)𝑇𝑇𝑨𝑨(𝑩𝑩𝑠𝑠 − 𝑽𝑽) = 𝐵𝐵2 (109) 

 
where 𝑨𝑨 = (𝑾𝑾−1)𝑇𝑇𝑾𝑾−1. 

Equation (109) models the locus of the magnetometer measurements 𝑩𝑩𝑠𝑠 as lying on the 
surface of an ellipsoid with arbitrary dimensions and directions of its axes and offset from 
the origin by the hard iron vector 𝑽𝑽. 

The manipulations that follow derive an expression for the error residual 𝑟𝑟𝑘𝑘, defined in the 
same manner as for the 4 and 7 parameter models, as: 
 

𝑟𝑟𝑘𝑘 = � 𝑩𝑩𝑐𝑐,𝑘𝑘
𝑆𝑆 �2 − 𝐵𝐵2 = � 𝑩𝑩𝑘𝑘

𝑆𝑆 − 𝑽𝑽�𝑇𝑇𝑨𝑨� 𝑩𝑩𝑘𝑘
𝑆𝑆 − 𝑽𝑽�� − 𝐵𝐵2 (110) 

= � 𝑩𝑩𝑘𝑘
𝑆𝑆 �𝑇𝑇𝑨𝑨 𝑩𝑩𝑘𝑘

𝑆𝑆 − 2� 𝑩𝑩𝑘𝑘
𝑆𝑆 �𝑇𝑇𝑨𝑨𝑨𝑨 + 𝑽𝑽𝑇𝑇𝑨𝑨𝑨𝑨 − 𝐵𝐵2 (111) 

 
The only difference between equation (91) for the seven-parameter model and equation 
(111) for the ten-parameter model is that the ellipsoid matrix 𝑨𝑨 is diagonal in equation 
(91) but is symmetric with off-diagonal terms in equation (111). 
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Expanding equation (111) gives: 
 

𝑟𝑟𝑘𝑘 = �
𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

�

𝑇𝑇

�
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑧𝑧𝑧𝑧

��
𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

�

− 2�
𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

�

𝑇𝑇

�
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑧𝑧𝑧𝑧

��
𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
�+�

𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
�

𝑇𝑇

�
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑧𝑧𝑧𝑧

��
𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
� − 𝐵𝐵2 

(112) 

 
The first term in equation (112) expands to: 
 

�
𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

�

𝑇𝑇

�
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑧𝑧𝑧𝑧

��
𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

� = �
𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

�

𝑇𝑇

�
𝐴𝐴𝑥𝑥𝑥𝑥 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 + 𝐴𝐴𝑥𝑥𝑥𝑥 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 + 𝐴𝐴𝑥𝑥𝑥𝑥 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆

𝐴𝐴𝑥𝑥𝑥𝑥 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 + 𝐴𝐴𝑦𝑦𝑦𝑦 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 + 𝐴𝐴𝑦𝑦𝑦𝑦 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

𝐴𝐴𝑥𝑥𝑥𝑥 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 + 𝐴𝐴𝑦𝑦𝑦𝑦 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 + 𝐴𝐴𝑧𝑧𝑧𝑧 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

� (113) 

= 𝐴𝐴𝑥𝑥𝑥𝑥 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2 + 𝐴𝐴𝑦𝑦𝑦𝑦 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2 + 𝐴𝐴𝑧𝑧𝑧𝑧 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2 + 2𝐴𝐴𝑥𝑥𝑥𝑥 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 + 2𝐴𝐴𝑥𝑥𝑥𝑥 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 + 2𝐴𝐴𝑦𝑦𝑦𝑦 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆  (114) 

 
The second term in equation (112) expands to: 
 

−2�
𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

�

𝑇𝑇

�
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑥𝑥𝑧𝑧 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑧𝑧𝑧𝑧

��
𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
� = −2�

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

�

𝑇𝑇

�
𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 + 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑦𝑦 + 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑧𝑧
𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑧𝑧
𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧

� (115) 

= −2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑦𝑦 − 2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑧𝑧 − 2 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦

− 2 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑧𝑧−2 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 − 2 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧 
(116) 

 
The third term in equation (112) expands to: 
 

�
𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
�

𝑇𝑇

�
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑧𝑧𝑧𝑧

��
𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
� = �

𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
�

𝑇𝑇

�
𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 + 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑦𝑦 + 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑧𝑧
𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑧𝑧
𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧

� (117) 

= 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 + 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥𝑉𝑉𝑦𝑦 + 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥𝑉𝑉𝑧𝑧 + 2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦𝑉𝑉𝑧𝑧 (118) 
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The full equation for the residual error 𝑟𝑟𝑘𝑘 from the k-th observation is then: 

𝑟𝑟𝑘𝑘 = 𝐴𝐴𝑥𝑥𝑥𝑥 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2 + 𝐴𝐴𝑦𝑦𝑦𝑦 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2 + 𝐴𝐴𝑧𝑧𝑧𝑧 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2 + 2𝐴𝐴𝑥𝑥𝑥𝑥 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 + 2𝐴𝐴𝑥𝑥𝑥𝑥 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

+ 2𝐴𝐴𝑦𝑦𝑦𝑦 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆  

−2 𝐵𝐵𝑥𝑥 ,𝑘𝑘
𝑆𝑆 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑦𝑦 − 2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑧𝑧 − 2 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 − 2 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑧𝑧 

−2 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 − 2 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧 

 

+𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 + 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥𝑉𝑉𝑦𝑦 + 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥𝑉𝑉𝑧𝑧 + 2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦𝑉𝑉𝑧𝑧 − 𝐵𝐵2 (119) 

 
Simplifying and returning to matrix format gives: 
 

𝑟𝑟𝑘𝑘 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

2 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

1 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑇𝑇

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑧𝑧𝑧𝑧

−2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑦𝑦 − 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑧𝑧
−2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 − 2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑧𝑧
−2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 − 2𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧

𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥𝑉𝑉𝑦𝑦 + 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝐵𝐵2⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 (120) 

 
The right-hand side of equation (120) is defined to be the 10 × 1 solution vector 𝜷𝜷: 
 

𝜷𝜷 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝛽𝛽0
𝛽𝛽1
𝛽𝛽2
𝛽𝛽3
𝛽𝛽4
𝛽𝛽5
𝛽𝛽6
𝛽𝛽7
𝛽𝛽8
𝛽𝛽9⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑧𝑧𝑧𝑧

−2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑦𝑦 − 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑧𝑧
−2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 − 2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑧𝑧
−2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥 − 2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦 − 2𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧

𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥𝑉𝑉𝑦𝑦 + 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝐵𝐵2⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 (121) 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑧𝑧𝑧𝑧

−2𝛽𝛽0𝑉𝑉𝑥𝑥 − 2𝛽𝛽1𝑉𝑉𝑦𝑦 − 2𝛽𝛽2𝑉𝑉𝑧𝑧
−2𝛽𝛽1𝑉𝑉𝑥𝑥 − 2𝛽𝛽3𝑉𝑉𝑦𝑦 − 2𝛽𝛽4𝑉𝑉𝑧𝑧
−2𝛽𝛽2𝑉𝑉𝑥𝑥 − 2𝛽𝛽4𝑉𝑉𝑦𝑦 − 2𝛽𝛽5𝑉𝑉𝑧𝑧

𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥𝑉𝑉𝑦𝑦 + 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝐵𝐵2⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 (122) 
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Equation (120) for the error residual 𝑟𝑟𝑘𝑘 whose squared sum is to be minimized is then: 
 

𝑟𝑟𝑘𝑘 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

2 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

1 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑇𝑇

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝛽𝛽0
𝛽𝛽1
𝛽𝛽2
𝛽𝛽3
𝛽𝛽4
𝛽𝛽5
𝛽𝛽6
𝛽𝛽7
𝛽𝛽8
𝛽𝛽9⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 (123) 

 
The 𝑀𝑀 × 1 error residual vector 𝒓𝒓 from 𝑀𝑀 magnetometer measurements is defined as: 
 

𝒓𝒓 = �

𝑟𝑟0
𝑟𝑟1
…
𝑟𝑟𝑀𝑀−1

� (124) 

 
and the 𝑀𝑀 × 10 measurement matrix 𝑿𝑿 containing the 𝑀𝑀 measurements is defined as: 
 

𝑿𝑿 =

⎝

⎜
⎛

𝐵𝐵𝑥𝑥,0
𝑆𝑆 2 2 𝐵𝐵𝑥𝑥,0

𝑆𝑆 𝐵𝐵𝑦𝑦,0
𝑆𝑆 … 𝐵𝐵𝑦𝑦,0

𝑆𝑆 𝐵𝐵𝑧𝑧,0
𝑆𝑆 1

𝐵𝐵𝑥𝑥,1
𝑆𝑆 2 2 𝐵𝐵𝑥𝑥,1

𝑆𝑆 𝐵𝐵𝑦𝑦,1
𝑆𝑆 … 𝐵𝐵𝑦𝑦,1

𝑆𝑆 𝐵𝐵𝑧𝑧,1
𝑆𝑆 1

… … … … … 1
𝐵𝐵𝑥𝑥,𝑀𝑀−1
𝑆𝑆 2 2 𝐵𝐵𝑥𝑥,𝑀𝑀−1

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑀𝑀−1
𝑆𝑆 … 𝐵𝐵𝑦𝑦,𝑀𝑀−1

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑀𝑀−1
𝑆𝑆 1⎠

⎟
⎞

 (125) 

 
Equation (123) can then be expanded to represent 𝑀𝑀 measurements as: 
 

𝒓𝒓 = 𝑿𝑿𝑿𝑿 (126) 

 
The model being fitted is the homogeneous model 𝑿𝑿𝑿𝑿 = 0 which can be solved for 𝜷𝜷 
using the eigen-decomposition approach described in Section 2. 
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The 10 × 10 matrix 𝑿𝑿𝑇𝑇𝑿𝑿 whose eigenvectors and eigenvalues are to be determined 
evaluates to: 
 

𝑿𝑿𝑇𝑇𝑿𝑿 = �

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 4

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 3

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 3
𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 … 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 3

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 4 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

4 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 … 2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 3

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 4 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 4 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

… 2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 2
2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 3
2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 … 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 4 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 4 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 2
… 2 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

2 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 3
… 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 3
𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 3

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 2
𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 … 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 2

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 … 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 2 𝐵𝐵𝑥𝑥,𝑘𝑘

𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 2
… 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 3
𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆

𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 2

2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑦𝑦,𝑘𝑘

𝑆𝑆 2 𝐵𝐵𝑥𝑥,𝑘𝑘
𝑆𝑆 𝐵𝐵𝑧𝑧,𝑘𝑘

𝑆𝑆 … 𝐵𝐵𝑧𝑧,𝑘𝑘
𝑆𝑆 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑀𝑀−1

𝑘𝑘=0

 (127) 

 
Because the eigenvalues of 𝑿𝑿𝑇𝑇𝑿𝑿 are equal to the fit errors associated with the ten-
parameter eigenvector solutions, the required solution vector 𝜷𝜷𝑚𝑚𝑚𝑚𝑚𝑚 is the eigenvector 
associated with the smallest eigenvalue 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚. 

6.2 Ellipsoid Fit Matrix 
The ellipsoid fit matrix 𝑨𝑨 is computed from the first six rows of the solution vector 𝜷𝜷 in 
equation (121): 
 

𝑨𝑨 = �
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑧𝑧𝑧𝑧

� = �
𝛽𝛽0 𝛽𝛽1 𝛽𝛽2
𝛽𝛽1 𝛽𝛽3 𝛽𝛽4
𝛽𝛽2 𝛽𝛽4 𝛽𝛽5

� (128) 

 
The solution eigenvector 𝜷𝜷 is undefined within a multiplicative factor of ±1 (assuming it is 
normalized to unit magnitude). Since physically sensible solutions for 𝑨𝑨 require that it 
have a positive determinant, the entire solution vector 𝜷𝜷 should be negated if |𝑨𝑨| < 0. 

For the same reasons as for the seven-parameter calibration algorithm, the determinant 
of 𝑨𝑨 is set to 1.0 and the geomagnetic field strength is computed with this assumption. 

6.3 Hard Iron Vector 
Rows 6 to 8 of equation (121) can be written as: 
 

�
𝛽𝛽6
𝛽𝛽7
𝛽𝛽8
� = −2�

𝛽𝛽0 𝛽𝛽1 𝛽𝛽2
𝛽𝛽1 𝛽𝛽3 𝛽𝛽4
𝛽𝛽2 𝛽𝛽4 𝛽𝛽5

��
𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
� = −2𝑨𝑨�

𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
� (129) 
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The solution for the hard iron vector 𝑽𝑽 is: 
 

𝑽𝑽 = �
𝑉𝑉𝑥𝑥
𝑉𝑉𝑦𝑦
𝑉𝑉𝑧𝑧
� = −�

1
2
� �

𝛽𝛽0 𝛽𝛽1 𝛽𝛽2
𝛽𝛽1 𝛽𝛽3 𝛽𝛽4
𝛽𝛽2 𝛽𝛽4 𝛽𝛽5

�

−1

�
𝛽𝛽6
𝛽𝛽7
𝛽𝛽8
� = −�

1
2
� 𝑨𝑨−1 �

𝛽𝛽6
𝛽𝛽7
𝛽𝛽8
� (130) 

 
The solution for the hard iron vector 𝑽𝑽 is independent of any sign change of the solution 
vector 𝜷𝜷. 

6.4 Inverse Soft Iron Matrix 
The inverse soft iron matrix 𝑾𝑾−1 is computed from the square root of the symmetric 
matrix 𝑨𝑨: 
 

𝑾𝑾−1 = √𝑨𝑨 = �
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑦𝑦𝑦𝑦
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑦𝑦𝑦𝑦 𝐴𝐴𝑧𝑧𝑧𝑧

�

1
2

= �
𝛽𝛽0 𝛽𝛽1 𝛽𝛽2
𝛽𝛽1 𝛽𝛽3 𝛽𝛽4
𝛽𝛽2 𝛽𝛽4 𝛽𝛽5

�

1
2

 (131) 

 
The matrix square root is computed by eigen-decomposition of the 3 × 3 ellipsoid matrix 
𝑨𝑨. By definition, the 3 × 3 matrix 𝑸𝑸 containing the eigenvectors and the 3 × 3 diagonal 
matrix 𝚲𝚲 containing the eigenvalues of 𝑨𝑨 are related by: 
 

𝑨𝑨𝑨𝑨 = 𝑸𝑸𝚲𝚲 ⇒ 𝑨𝑨 = 𝑸𝑸𝚲𝚲𝑸𝑸−1  ⇒ 𝚲𝚲 = 𝑸𝑸−1𝑨𝑨𝑨𝑨 (132) 

 
The matrix 𝑸𝑸√𝚲𝚲𝑸𝑸−1 can be shown to be the required square root of 𝑨𝑨 by simple 
multiplication and using the standard result that the eigenvectors of a symmetric matrix 
are orthonormal: 
 

�𝑸𝑸√𝚲𝚲𝑸𝑸−1��𝑸𝑸√𝚲𝚲𝑸𝑸−1� = 𝑸𝑸√𝚲𝚲𝑸𝑸−1𝑸𝑸√𝚲𝚲𝑸𝑸−1 = 𝑸𝑸𝚲𝚲𝑸𝑸−1 = 𝑨𝑨 (133) 

 
The required square-root solution for the inverse soft iron matrix is then: 
 

𝑾𝑾−1 = √𝑨𝑨 = 𝑸𝑸√𝚲𝚲𝑸𝑸−1 = 𝑸𝑸√𝚲𝚲𝑸𝑸𝑇𝑇 (134) 

 

6.5 Geomagnetic Field Strength 
The geomagnetic field strength can be computed from the last component of equation 
(121): 
 

𝐵𝐵 = �𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥2 + 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥𝑉𝑉𝑦𝑦 + 2𝐴𝐴𝑥𝑥𝑥𝑥𝑉𝑉𝑥𝑥𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦2 + 2𝐴𝐴𝑦𝑦𝑦𝑦𝑉𝑉𝑦𝑦𝑉𝑉𝑧𝑧 + 𝐴𝐴𝑧𝑧𝑧𝑧𝑉𝑉𝑧𝑧2 − 𝛽𝛽9 (135) 
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6.6 Fit Error 
In the same manner as for the seven-parameter calibration model, the normalized fit 
error is defined as: 
 

𝜀𝜀 =
1

2𝐵𝐵2
�𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀
 (136) 

 
and the percentage fit error 𝜀𝜀% defined as: 
 

𝜀𝜀% =
50
𝐵𝐵2

�𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀

 (137) 

 

7. Iterative Time Slice Solution 
Previous versions of the Sensor Fusion library ran using three tasks running on top of the 
MQX-Lite Real Time Operating System (RTOS). The highest priority task was the high 
frequency (200 Hz or higher) sensor read task. The second highest priority task was the 
sensor fusion Kalman filter (typically running at 25 Hz) and the lowest priority task was 
the background magnetic calibration (running occasionally every few minutes). 

The requirement for an RTOS was eliminated in the current sensor fusion release which 
uses a single task (typically running at 25 Hz) to implement the sensor fusion Kalman 
filter. The FIFO buffers in the sensors (typically 32 measurements long) capture of 
sensor data at the maximum rate permitted by the sensors and implement the previous 
high priority sensor read task but without interrupting the Kalman filter task. The magnetic 
calibration algorithms described in this document are now incrementally computed in 
time slices called every pass of the Kalman filter. Other than the decomposition into time 
slices there are no changes to the magnetic calibration mathematics. 
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8. Legal information

8.1 Definitions 
Draft — The document is a draft version only. The content is still under 
internal review and subject to formal approval, which may result in 
modifications or additions. NXP Semiconductors does not give any 
representations or warranties as to the accuracy or completeness of 
information included herein and shall have no liability for the consequences 
of use of such information. 

8.2 Disclaimers 
Information in this document is provided solely to enable system and 
software implementers to use NXP products. There are no express or 
implied copyright licenses granted hereunder to design or fabricate any 
integrated circuits based on the information in this document. NXP reserves 
the right to make changes without further notice to any products herein. NXP 
makes no warranty, representation, or guarantee regarding the suitability of 
its products for any particular purpose, nor does NXP assume any liability 

arising out of the application or use of any product or circuit, and specifically 
disclaims any and all liability, including without limitation consequential or 
incidental damages. “Typical” parameters that may be provided in NXP data 
sheets and/ or specifications can and do vary in different applications, and 
actual performance may vary over time. All operating parameters, including 
“typicals,” must be validated for each customer application by customer's 
technical experts. NXP does not convey any license under its patent rights 
nor the rights of others. NXP sells products pursuant to standard terms and 
conditions of sale, which can be found at the following address: 
nxp.com/salestermsandconditions. 

8.3 Trademarks 
Notice: All referenced brands, product names, service names and 
trademarks are property of their respective owners. 

NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of 
NXP B.V. ARM and Cortex are registered trademarks of ARM Limited (or its 
subsidiaries) in the EU and/or elsewhere. 
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