
1 Introduction
Twiddle factors are complex number constants used when
recursively combining results from smaller discrete Fourier T
ransforms in the Fast Fourier Transform (FFT) calculation
process. The term ‘twiddle factor’ was first seen in publication
in 1966 in the paper “Fast Fourier Transforms – for fun and
profit,” written by W.M. Gentleman and G. Sande[1]. Since
FFTs have been in use since the 1960s, there are a number of
papers and algorithms in existence explaining twiddle factor
calculation. In this application note, we discuss the structure
and use of a twiddle factor generator Matlab script and
produce outputs in a format useful for programming the
MPC5775K MCU on-chip FFT accelerators.

The twiddle factor generator described in this application note
depends on the user specifying a filename, FFT size, and start
address. It then generates twiddle factors and saves the factors
in two formats:

• A C style header file with hex data format for use in
customers’ application software

• To a text file with decimal real and imaginary format.

The following components make up the Twiddle Factor
Generator:

• Matlab file “twgen.m” for use with 2014 release of
Matlab and later. Accepts user inputs for filename, FFT
size, and start address. Generates twiddle factors and
saves to output files.

Freescale Semiconductor Document Number: AN4995

Application Note Rev 0, 01/2015

MPC5775K Twiddle Factor
Generator User Guide
by: Curt Hillier and Maik Brett

© 2015 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Using the software.......................... 2

3 Example output........................... 3

4 Twiddle RAM..4

5 Matlab source code........................ 4

6 References.............................. 6

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc57xx-mcus/ultra-reliable-mpc577xk-mcu-for-adas-and-radar:MPC577xK?utm_medium=AN-2021

• Text Output file (<filename>.twd). Contains twiddle factors in real and imaginary text format:

<address> <Real part> <Imaginary part>where address is the physical Twiddle memory address, real part is the real
portion of the twiddle entry, and imaginary part is the imaginary portion of the twiddle entry.

• Header Output file (<filename>.h). Contains output of the Matlab script. Format is in an unsigned array of 32-bit values
compatible with C programs.

2 Using the software
Follow the below steps to use the software:

1. Load the ‘twgen.m’ file into Matlab
2. Click on the Go button to start the software
3. In the following dialog box, enter the size and start address of the FFT. For example, enter size = 512 and Start Address

= 0x4000.

Figure 1. Size and start address
4. Next, the Matlab script will ask you to create an output *.twd file. Type in the name of the output file as shown below,

then click on the Save button.

Using the software

MPC5775K Twiddle Factor Generator User Guide, Rev 0, 01/2015

2 Freescale Semiconductor, Inc.

Figure 2. Save output file

3 Example output
The Matlab script will now generate twiddle factors and store them into a C style array of unsigned 32-bit integers into a
<filename>.h file. For example, the 512 FFT sized output is shown below:

/*Twiddle RAM values for FFT length 512*/
/*for use with 16bit complex PMDA transfer*/
/*tw[k].im, tw[k].re, tw[k+1].im, tw[k+1].re*/
const unsigned long fft_twd512[] = {
 0xfe6e7ffd, // 1st twiddle factor, 1st entry
 0xfe6e7ffd, // 1st twiddle factor, 2nd entry
 0xfe6e7ffd, // 1st twiddle factor, 3rd entry
 0xfe6e7ffd, // 1st twiddle factor, 4th entry
 0xfe6e7ffd, // 1st twiddle factor, 5th entry
 0xfe6e7ffd, // 1st twiddle factor, 6th entry
 0xfe6e7ffd, // 1st twiddle factor, 7th entry
 0xfe6e7ffd, // 1st twiddle factor, 8th entry
 0xfcdc7ff5, // 2nd twiddle factor, 1st entry
 0xfcdc7ff5, // 2nd twiddle factor, 2nd entry
…

In addition, the Matlab script produces a text file, "filename.twd" containing the following information:

#Twiddle RAM values for FFT length 512
0x4000: 32765 +i -402
0x4001: 32765 +i -402
0x4002: 32765 +i -402

Example output

MPC5775K Twiddle Factor Generator User Guide, Rev 0, 01/2015

Freescale Semiconductor, Inc. 3

0x4003: 32765 +i -402
0x4004: 32765 +i -402
0x4005: 32765 +i -402
0x4006: 32765 +i -402
0x4007: 32765 +i -402
0x4008: 32757 +i -804
0x4009: 32757 +i -804
…

4 Twiddle RAM
The twiddle RAM holds constants like coefficients, which are used during some operations. It is also organized in slices of 8
to enable parallel access to 8 coefficients simultaneously and can be initialized with DMA operations.

Twiddle factors are calculated based on the following equation:

In the Matlab script, the following code generates the twiddle values:

 % Calculate twiddle factors, real and imaginary in floating point format

 for n = 1:fft_len/8

 fl_re = int_scale * cos(-2*pi*n/fft_len);
 fl_im = int_scale * sin(-2*pi*n/fft_len);

 cpx_twd(n) = round(fl_re) +i * round(fl_im);
end;

5 Matlab source code
The Matlab source code is listed below:

% C FSL 31.03.2014 - M.Brett
% C FSL 19.08.2014 - C.Hillier
% Generates twiddle for use with SPT
% to be used with quadrature extension (1/2 quadrant only stored)
% 19.08.2014 updates include change for unsiged integer 32 storing
% and changing uigetfile to uiputfile for easing new file
% creation.

clear;

fft_len_sup = {'16','32','64','128','256','512','1024','2048','4096'};
int_scale = (2^15)-1;

%ask the user to input the FFT length and starting address
while 1

 ans = inputdlg({'FFT Length', 'Start Address (hex)'}, 'Twiddle Gen', 1, {'256',
'0x4000'});

 fft_len=str2num(ans{1});
 twd_adr = sscanf(ans{2}, '0x%x');

Twiddle RAM

MPC5775K Twiddle Factor Generator User Guide, Rev 0, 01/2015

4 Freescale Semiconductor, Inc.

 fft_len_chk = strcmp(ans{1}, fft_len_sup);

 if sum(fft_len_chk) > 0
 break;
 end

end

% Open a dialog to create an output file. The same base filename will be
% used for both the .twd file and the .h file
[fname, fdir] = uiputfile('*.twd', 'Save output file');

fnm_twd = strcat(fdir,fname)
fp_twd = fopen(fnm_twd, 'w');

if (fp_twd < 0)
 errordlg(strcat('Cannot open file',fnm_twd), 'Error');
 return;
end

[fnm_spl, pos] = regexp(fnm_twd,'\.','split');

fnm_mem = strcat(fnm_spl{1}, '.h')

fp_mem = fopen(fnm_mem, 'w');

if (fp_mem < 0)
 errordlg(strcat('Cannot open file',fnm_mem), 'Error');
 return;
end

% Calculate twiddle factors, real and imaginary in floating point format

for n = 1:fft_len/8

 fl_re = int_scale * cos(-2*pi*n/fft_len);
 fl_im = int_scale * sin(-2*pi*n/fft_len);

 cpx_twd(n) = round(fl_re) +i * round(fl_im);
end;

% convert floating point to 16 bit integer
adr_offs = 0;

int_twd = int32([int16(real(cpx_twd)); int16(imag(cpx_twd))]);

% convert to unsigned 16 bit integers
for n = 1:fft_len/8
 for k = 1:2
 if (int_twd(k, n) < 0)
 tc_twd(k, n) = 2^16 + int_twd(k, n) ;
 else
 tc_twd(k, n) = int_twd(k, n);
 end
 end
end

%Write twiddle factors to the *.twd file
fprintf(fp_twd, '#Twiddle RAM values for FFT length %d\n', fft_len);
for n = 1:fft_len/8

 for k = 1:8
 fprintf(fp_twd, '0x%x: %d +i %d\n', twd_adr + adr_offs, int_twd(1, n), int_twd(2,
n));
 adr_offs = adr_offs + 1;
 end
end

%Write twiddle factors to the *.h file
fprintf(fp_mem, '/*Twiddle RAM values for FFT length %d*/\n', fft_len);

Matlab source code

MPC5775K Twiddle Factor Generator User Guide, Rev 0, 01/2015

Freescale Semiconductor, Inc. 5

fprintf(fp_mem, '/*for use with 16bit complex PMDA transfer*/\n');
fprintf(fp_mem, '/*tw[k].im, tw[k].re, tw[k+1].im, tw[k+1].re*/\n');
%fprintf(fp_mem, 'const unsigned long long fft_twd%d[] = {\n', fft_len);
fprintf(fp_mem, 'const unsigned long fft_twd%d[] = {\n', fft_len);

for n = 1:fft_len/8
% for k = 1:4
% fprintf(fp_mem, ' 0x%04x%04x%04x%04x', tc_twd(1, n), tc_twd(2, n), tc_twd(1, n),
tc_twd(2, n));
 for k = 1:8
 fprintf(fp_mem, ' 0x%04x%04x', tc_twd(2, n), tc_twd(1, n));

% if not(k == 4 && n == fft_len/8)
 if not(k == 8 && n == fft_len/8)
 fprintf(fp_mem, ',');
 end;
 fprintf(fp_mem, '\n');
 end
end
fprintf(fp_mem, '};\n');

%Close files
fclose(fp_twd);
fclose(fp_mem);

6 References
1. W. M. Gentleman and G. Sande, “Fast Fourier transforms-for fun and profit,” 1966 Fall Joint Computer Conf., AFIPS

Proc., vol. 29. Washington, D.C.: Spartan, 1966.

References

MPC5775K Twiddle Factor Generator User Guide, Rev 0, 01/2015

6 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or
service names are the property of their respective owners. The Power
Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by
Power.org.

© 2015 Freescale Semiconductor, Inc.

Document Number AN4995
Revision 0, 01/2015

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Introduction
	Using the software
	Example output
	Twiddle RAM
	Matlab source code
	References

