
Freescale Semiconductor
Application Note

Document Number: AN4856
Rev. 0, 03/2014

Contents

Introduction . 1
Overview . 2

2.1 SENT encoding scheme . 2
2.2 SPC protocol . 6
2.3 SENT physical layer . 7
MPC574xP SENT/SPC Driver. 9

3.1 Utilized MPC574xP peripherals. 9
3.2 SPC bidirectional communication 9
3.3 Driver configuration . 11
3.4 Application programming interface 12
3.5 Functional description . 21
3.6 Memory allocation . 32
3.7 Application example . 33
Conclusion. 34
References . 35
Acronyms and Definitions . 36

MPC574xP SENT/SPC Driver
by: Josef Kramoliš
1 Introduction
This application note describes the SENT/SPC driver for
the MPC574xP 32-bit microcontrollers. It also provides
information on the Single Edge Nibble Transmission
protocol (SENT, SAE J2716), along with its Short PWM
Code (SPC) enhancement. Additionally, the driver
implementation, API, and functional description are also
discussed in this application note.

The information about the SENT protocol has been
derived from the SAE J2716 Surface Vehicle
Information Report, JAN2010.

The information about the SPC enhancement has been
derived from the TLE4998C Data Sheet, Rev 1.0,
December 2008.

The MPC574xP SENT/SPC driver itself and the
example application are part of the AN4856SW package.

1
2

3

4
5
6

© Freescale Semiconductor, Inc., 2014. All rights reserved.

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc57xx-mcus/ultra-reliable-mpc574xp-mcu-for-automotive-industrial-safety-applications:MPC574xP?utm_medium=AN-2021

Overview
2 Overview
The Single Edge Nibble Transmission protocol is targeted for use in those applications where
high-resolution data is transmitted from a sensor to the ECU. It can be considered as an alternative to
conventional sensors providing analog output voltage, and for PWM output sensors. It can also be
considered as a low-cost alternative to the LIN or CAN communication standards.

Applications for electric power steering, throttle position sensing, pedal position sensing, airflow mass
sensing, liquid level sensing, etc., can be used as examples of target applications for SENT-compatible
sensor devices.

2.1 SENT encoding scheme
SENT is a unidirectional communication standard where data from a sensor is transmitted independently
without any intervention of the data receiving device (for example, the MCU). A signal transmitted by the
sensor consists of a series of pulses, where the distance between consecutive falling edges defines the
transmitted 4-bit data nibble representing values from 0 to 15. Total transmission time is dependent on the
transmitted data values and on the clock variation of the transmitter (sensor). A consecutive SENT
transmission starts immediately after the previous transmission ends (the trailing falling edge of the SENT
transmission CRC nibble is also the leading falling edge of the consecutive SENT transmission
synchronization/calibration pulse – see Figure 1).

A SENT communication fundamental unit of time (unit time – UT, nominal transmitter clock period) can
be in the range of 3–90 s, according to the SAE J2716 specification. The maximum allowed clock
variation is ± 20% from the nominal unit time, which allows the use of low-cost RC oscillators in the
sensor device.

NOTE
A 3 s fundamental unit time will be considered as nominal for unification
of further timing descriptions.

The transmission sequence consists of the following pulses:

1. Synchronization/calibration pulse (56 unit times)

2. 4-bit status nibble pulse (12 to 27 unit times)

3. Up to six 4-bit data nibble pulses (12 to 27 unit times each)

4. 4-bit checksum nibble pulse (12 to 27 unit times)
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor2

Overview
Figure 1. Transmission example of 16-bit and 8-bit signal data

2.1.1 Synchronization/calibration pulse

Since the SAE J2716 specification allows a ± 20% transmitter clock deviation from the nominal unit time,
the synchronization/calibration pulse provides information on the actual transmitter (sensor) unit time
period. The time between synchronization/calibration pulse falling edges defines the 56 unit time periods.
The receiver can calculate the actual unit time period of the sensor from the pulse width, and can thus
re-synchronize. The actual sensor data is measured during the synchronization/calibration pulse duration.

The pulse starts with the falling edge and remains low for five or more unit times. The remainder of the
pulse width is driven high (see Figure 2).

Figure 2. Synchronization/calibration pulse format

C
R

C

S
ta

tu
s

D
at

a
1

D
at

a
2

D
at

a
3

D
at

a
4

D
at

a
5

D
at

a
6

C
R

C

Sync./Calib.Sync./Calib.

16-bit data 8-bit data

152 272 UT (456 816 s)

56 UT (168 s)

 5 UT (15 s)
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 3

Overview
2.1.2 Status and communication nibble pulse

The status nibble contains 4-bit status information of the sensor (for example, fault indication and mode
of operation). It can also carry a serial message (refer to Section 2.1.2.1, “Short serial message” and
Section 2.1.2.2, “Enhanced serial message” for details).

The width of the status nibble pulse is dependent on the nibble value. The status nibble pulse and data
nibble pulse formats are identical. Refer to Section 2.1.3, “Data nibble pulse”.

2.1.2.1 Short serial message

A 16-bit serial message can be transmitted using bit 2 of the status and communication nibble in 16
consecutive frame transmissions. Start of the short serial message is indicated by bit 3 of the status and
communication nibble set to 1. Bit 3 has to be cleared in the remaining 15 frame transmissions. If at least
one of 16 messages is not successfully received due to receiver diagnostic error, the short serial message
is discarded by the receiver. The format of the short serial message is shown in Table 2.

The 4-bit CRC is calculated over the 4-bit message ID and two serial data nibbles the same way as
described in Section 2.1.4, “Checksum nibble pulse”.

2.1.2.2 Enhanced serial message

For larger data, an 18-bit enhanced message can be transmitted using bits 2 and 3 of the status and
communication nibble in 18 consecutive frame transmissions. Two types of enhanced serial message can
be determined by the configuration bit (bit 3 in the eight received status and communication nibble):

• 8-bit message ID, 12-bit data (configuration bit C = 0)

• 4-bit message ID, 16-bit data (configuration bit C = 1)

If at least one of 18 messages is not successfully received due to receiver diagnostic error, the enhanced
serial message is discarded by the receiver. The format of both enhanced serial message types is shown in
Table 3 and Table 4.

Table 1. Status and communication nibble format

Bit Description

3 Serial message start bit (=1), otherwise 0 or
serial message data bits.

2 Serial message data bits.

1 Sensor specific.

0 Sensor specific.

Table 2. Short serial message format

Status and communication nibble received 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Status and communication nibble (bit 3) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Status and communication nibble (bit 2) 4-bit Message ID 8-bit Data Byte 4-bit CRC
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor4

Overview
An enhanced serial message CRC calculation method description is beyond the scope of this document.
For details, refer to SAE J2716 at www.sae.org.

2.1.3 Data nibble pulse

A single data nibble pulse carries 4-bit sensor data. A maximum of six data nibbles can be transmitted in
one SENT transmission. The total number of data nibbles depends on the size of the data provided by
the sensor, and this is fixed during the sensor operation (see Figure 1 for a combined 16-bit and 8-bit data
transmission example). Some sensors provide the possibility of pre-programming the resolution of
the measured value using special tools, thus changing the number of data nibbles.

The width of the data nibble pulse is dependent on the nibble value. Figure 3 depicts the format of the data
nibble pulse. The pulse starts with the falling edge and remains low for five or more unit times. The
remainder of the pulse width is driven high. The next pulse falling edge occurs after twelve unit times from
the initial falling edge plus the number of unit times equal to the nibble value. The data pulse width in the
number of unit times is defined by Equation 1:

Eqn. 1

Figure 3. Data nibble pulse format

Table 3. Enhanced serial message format with 8-bit ID and 12-bit data (C = 0)

Status and communication nibble received 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Status and communication nibble (bit 3) 1 1 1 1 1 1 0 C=0 8-bit Message ID [7:4] 0 8-bit Message ID [3:0] 0

Status and communication nibble (bit 2) 6-bit CRC 12-bit Data

Table 4. Enhanced serial message format with 4-bit ID and 16-bit data (C = 1)

Status and communication nibble received 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Status and communication nibble (bit 3) 1 1 1 1 1 1 0 C=1 4-bit Message ID 0 16-bit Data [15:12] 0

Status and communication nibble (bit 2) 6-bit CRC 16-bit Data [11:0]

DataNibblePulseWidth 12 NibbleValue+ =

Nibble value (N)0 15

 5 UT (15 s)

(12 + N) UT, (36 + 3 N) s

12 UT (36 s) N UT (0 45 s)
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 5

Overview
2.1.4 Checksum nibble pulse

The checksum nibble contains a 4-bit CRC. The checksum is calculated using the x4 + x3 + x2 + 1
polynomial with the seed value of 5 (0b0101), and is calculated over all nibbles except for the status and
communication nibble (according to SAE J2716).

The CRC allows detection of the following errors:

1. All single bit errors.

2. All odd number of nonconsecutive errors.

3. All single burst errors of length 4.

4. 87.5% of single burst errors of length = 5.

5. 93.75% of single burst errors of length > 5.

Refer to SAE J2716 (www.sae.org) for more information about the SENT CRC polynomial error
detection.

2.2 SPC protocol
The SPC protocol enhances the SENT protocol defined by the SAE 2716 specification. SPC introduces
a half-duplex synchronous communication. The receiver (MCU) generates the master trigger pulse on
the sensor interface by pulling it low for a defined amount of time (tMT). The pulse width is measured by
the transmitter (sensor) and the SENT transmission is initiated only if the width is within defined limits.
The end pulse is generated additionally after the SENT transmission has completed to provide a trailing
falling edge for the CRC nibble pulse. The sensor interface then remains idle until a new master trigger
pulse is generated by the receiver. Figure 4 depicts the SENT/SPC frame format.

Figure 4. SENT/SPC frame format

M
as

te
r

Tr
ig

ge
r

S
ta

tu
s

D
at

a
1

D
at

a
2

D
at

a
3

D
at

a
4

D
at

a
5

D
at

a
6

C
R

C

Sync./Calib. E
nd

tMT

Sensor Response Time

SENT Transmission
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor6

Overview
The SPC protocol allows choosing between various protocol modes. For example, the TLE4998C Hall
sensor can be pre-programmed in one of three protocol modes:

1. Synchronous mode – a single sensor is connected to the MCU; a master trigger pulse width in a
defined range triggers the transmission.

2. Synchronous mode with range selection – a single sensor is connected to the MCU; the width of
the master trigger pulse defines the magnetic range for the triggered transmission.

3. Synchronous transmission with ID selection – up to four sensors are connected in parallel to
the MCU; the width of the master trigger pulse defines which sensor will start the transmission.

2.3 SENT physical layer
The receiver side (ECU) provides the stabilized 5 V voltage to supply the sensor. The sensor interface is
pulled up by the 10 51 k resistor to the supply voltage. The receiver input is formed by the parasitic
capacitance of the input pin and its ESD protection, and the 560 /2.2 nF EMC low-pass filter to suppress
RF noise coupled to the sensor interface. The open-drain output pin on the MCU pulls down the sensor
interface to generate the master trigger pulse. See Figure 5.

The transmitter provides a bidirectional open-drain I/O pin with an EMC filter to suppress the RF noise
coupled to the sensor interface. The sensor interface is pulled down by its output driver to generate the
SENT pulse sequence. See Figure 5.

Signal shaping is required to limit the radiated emissions. The maximum limits of the falling and rising
edge durations for the 3 s nominal clock tick are TFALL = 6.5 s and TRISE = 18 s with a maximum
allowed 0.1 s falling edge jitter (these values can be increased proportionally for higher clock tick times).
An example of a TLE4998S SENT waveform and one of a TLE4998C SENT/SPC compatible Hall sensor
waveform are shown in Figure 6 and Figure 7.

The overall resistance of all connectors is limited to 1 , the bus wiring to 0.1 nF/m capacitance, and
the maximum cable length to 5 m.

The transmitter-receiver network devices are protected from short-to-ground and short-to-supply
conditions. Upon recovery from these faults, normal operation is resumed.

Figure 5. SENT/SPC circuit topology

Transmitter (Sensor board/package) Receiver (ECU)5V

Sensor
Interface

Sensor device
with SENT

protocol
generator

EMC filter

1051 k

> 4 k560 ±20%

2.2 nF
±20%

Cf RVCin

MCU

Input pin

Output pin
(open-drain)1

1SPC only
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 7

Overview
Figure 6. TLE4998S SENT 16-bit Hall, 8-bit temperature waveform

Figure 7. TLE4998C SENT/SPC 12-bit Hall waveform

SENT Transmission (6 Data Nibbles) Next SENT Transmission

S
yn

ch
./C

al
ib

.

C
R

C

S
ta

tu
s

D
at

a1

D
at

a2

D
at

a3

D
at

a4

D
at

a5

D
at

a6

C
R

C

S
yn

ch
./C

al
ib

.

D
at

a1

D
at

a2

S
ta

tu
s

SENT/SPC Transmission (3 Data Nibbles)

S
ta

tu
s

M
as

te
r

Tr
ig

ge
r

D
at

a1

D
at

a2

S
yn

ch
./C

al
ib

.

D
at

a3

C
R

C

E
nd
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor8

MPC574xP SENT/SPC Driver
3 MPC574xP SENT/SPC Driver
The driver is provided as an example code only, and in the form of source code optimized for the Green
Hills compiler. It is intended for use with the MPC574xP microcontroller and any SENT or SENT/SPC
compatible sensor. The driver supports up to four independent channels and reception of two main
message types:

1. Message consisting of the data from a status and communication nibble, and all data nibbles
received from a single SENT frame (further referred to as a fast message)

2. Message consisting of the data from status and communication nibble bits 2 and 3 in 16 or 18
consecutively received SENT frames (further referred to as a serial message)

3.1 Utilized MPC574xP peripherals
The driver utilizes the following MPC57xP peripherals:

• System Integration Unit Lite 2 (SIUL2) module

• SENT Receiver (further referred to as SRX) modules – 1 module channel per driver channel

• Enhanced Motor Control Timer (eTimer) modules – 1 module channel per driver channel operating
in the SENT/SPC mode

• Enhanced Direct Memory Access (eDMA) module – 1 channel per SRX module with at least one
channel with the fast message FIFO enabled in the channel configuration

3.2 SPC bidirectional communication
The driver is designed to support various sensor to MCU connection options (see Figure 8).

1. Single-pin (open-drain) – the sensor interface is connected to the MCU via a single open-drain
input/output pin shared between the SRX and eTimer modules.

2. Two-pin (open-drain) – the sensor interface is connected to the MCU via two pins connected
together, the SRX input pin and eTimer open-drain output pin.

3. Two-pin (push-pull) – the sensor interface is connected to the MCU via a single SRX input pin, the
eTimer push-pull output pin drives an external transistor connected to the sensor interface.

Figure 8. Sensor to MCU connection options

22 k

Input pin

Output pin

GND

(push-pull)

Sensor interface

MPC574xP

Input pin

Output pin

GND

(open-drain)

MPC574xP

Sensor interface
Input/output

GND

MPC574xP

Sensor interface pin
(open-drain)1

1Pin shared between
SRX and eTimer
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 9

MPC574xP SENT/SPC Driver
Generally, SENT frame data is received on the input pin, while the master trigger pulse is generated either
by the eTimer open-drain output directly connected to the sensor interface or by the eTimer push-pull
output via an external transistor connected to the sensor interface. Open-drain output can be enabled by
the SentSpcEtimerOdEnable configuration parameter (see Section 3.3, “Driver configuration”).

Figure 9 shows an example of the TLE4998C programmable Hall sensor application circuit with an
external MOSFET transistor.

Figure 9. Typical TLE4998C application circuit with external MOSFET transistor

+3.3V

VDD

GND

+5V

22 k

1 nF4.7 nF

50
2k2

47 nF

VDD

Input pin

Output pin

GND

MPC574xP

in/outTLE
4998C4
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor10

MPC574xP SENT/SPC Driver
3.3 Driver configuration
The SENT/SPC Driver is configurable via the MPC574xP SENT/SPC Driver Configurator application.
The application is supplied in the form of an Excel macro-enabled workbook SentSpc_Configurator.xlsm.
Microsoft Excel® 2007 or newer, with the Visual Basic for Applications feature installed, is required to
run the application.

Driver configuration parameters are stored in files SentSpc_Driver_Cfg.h and SentSpc_Driver_Cfg.c
generated by the configurator application in the form of a configuration structure definition.

Figure 10. MPC5744P SENT/SPC driver configurator application window

For a detailed list of the configuration parameters, refer to the driver user manual document
(SENTSPCMPC574XPUM.pdf) which is part of the AN4856SW.

General Parameters

Hint Display

Channel Browser

Channel Parameters

Adds a new driver channel
Removes
the selected driver channel

Opens an existing
configuration from the .xlsx file
Saves the actual
configuration in the .xlsx file

Checks the actual
configuration for errors

Generates configuration source
files SentSpc_Driver_Cfg.h
and SentSpc_Driver_Cfg.c

Exits the configurator application
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 11

MPC574xP SENT/SPC Driver
3.4 Application programming interface
This section provides the description of the API return type and the list of driver API functions.

3.4.1 API return type

The driver API functions return values based on the enumeration type SentSpc_ReturnType. See Table 5.

3.4.2 API functions

3.4.2.1 SentSpc_Init()

The function initializes the SRX, eTimer, SIUL2, and eDMA hardware modules and the driver structures.

NOTE
The function has to be called prior to any other driver function call.

Prototype: SentSpc_ReturnType SentSpc_Init(const SentSpc_ConfigType *ConfigPtr);

Table 5. Enumeration SentSpc_ReturnType

Value Description

SENT_SPC_OK Function executed successfully.

SENT_SPC_E_NOT_OK Function executed with an error.

SENT_SPC_E_ALREADY_INIT1

1 These development errors are reported only if the driver is configured in the debug mode (SentSpcDebugMode = true).

SentSpc_Init() has been called while the SENT/SPC Driver is already initialized.

SENT_SPC_E_UNINIT1 SentSpc_Init() has not been called prior to the function call.

SENT_SPC_E_PARAM_CONFIG1 Function called with an incorrect configuration parameter (configuration pointer is
NULL_PTR).

SENT_SPC_E_PARAM_CHANNEL1 Invalid channel ID passed as a function argument.

SENT_SPC_E_PARAM_MODULE1 SentSpc_GetFastMsgFifoData() function called with an invalid SRX module ID or the
requested SRX module has no channel configured with fast message FIFO enabled.

SENT_SPC_E_PARAM_MODE1 SentSpc_Request() function called on a channel configured in SENT mode.

Table 6. SentSpc_Init() arguments

Type Name Direction Description

const SentSpc_ConfigType * ConfigPtr Input Pointer to the configuration.
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor12

MPC574xP SENT/SPC Driver
3.4.2.2 SentSpc_Request()

The function requests the master trigger pulse generation on the sensor interface of a selected channel (see
Section 3.2, “SPC bidirectional communication” for sensor to MCU option).

Prototype: SentSpc_ReturnType SentSpc_Request(uint8_t ui8ChannelIndex, uint8_t ui8MasterTime);

NOTE
The master trigger pulse width is dependent on the sensor interface
resistor/capacitor parameters and the operating temperature, and it is always
wider than the gate pulse width defined by the SentSpc_Request() function
input parameter (see Figure 11). The user shall ensure (e.g. by a
measurement) that the master trigger pulse width will be always within
proper limits (consult the target sensor data sheet for the limit values).

Figure 11. Master trigger pulse timing

External transistor gate pulse width values shown in the Table 8, Table 9, and Table 10 correspond with
the typical master trigger pulse widths as defined in the TLE4998C Data Sheet, V 1.0, December 2008.
Equivalent gate pulse widths were obtained by measurement at 23°C ambient temperature using a typical
application circuit with a BSS138 N-channel MOSFET transistor.

Table 7. SentSpc_Request() arguments

Type Name Direction Description

uint8_t ui8ChannelIndex Input Numeric ID of the driver channel.

uint8_t ui8MasterTime Input External transistor gate/open-drain output
pin driving pulse width in microseconds.

Vthf, Vthr - Falling, rising edge thresholds (sensor)

Vthr

tmlow

tgh

tmlow - Master trigger pulse width
tgh - External transistor gate pulse width or

tgh < tmlow

Vthf

open-drain output pulse width (inverted)
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 13

MPC574xP SENT/SPC Driver
3.4.2.3 SentSpc_GetFastMsgData()

The function reads and decodes received raw fast message data from the channel’s internal buffer.

A SW based CRC calculation is performed on the data from the channels with the SW based CRC
calculation method selected in the configuration.

A configured number of data nibble values, concatenated into 16-bit right-aligned format (data nibble 1 as
most significant), the status nibble value, and the 32-bit transmission time stamp are then stored in the
destination variable of data type SentSpc_ChannelDataType.

NOTE
If the SW based calculated CRC value is not identical to the received CRC
nibble value, data from the entire fast message are discarded. The error
notification function is then called by the driver if the error notification
mechanism for that particular channel is enabled using the
SentSpc_EnableErrNotification() function.

Prototype: SentSpc_ReturnType SentSpc_GetFastMsgData(uint8_t ui8ChannelIndex,

SentSpc_ChannelDataType *DestDataPtr);

Table 8. Typical master trigger pulse timing for Synchronization Mode of the TLE4998C sensor

Define Notes
Master trigger pulse width

[UT]
Pulse width [µs]

SPC_SYNCH – 2.75 4

Table 9. Typical master trigger pulse timing for ID Selection Mode of the TLE4998C sensor

Define Notes
Master trigger pulse width

[UT]
Pulse width [µs]

SPC_ID_0 ID = 0 10.5 28

SPC_ID_1 ID = 1 21 59

SPC_ID_2 ID = 2 38 110

SPC_ID_3 ID = 3 64.5 190

Table 10. Typical master trigger pulse timing for Dynamic Range Mode of the TLE4998C sensor

Define Notes
Master trigger pulse width

[UT]
Pulse width [µs]

SPC_RANGE_200 Range = 200 mT 3.25 6

SPC_RANGE_100 Range = 100 mT 12 32

SPC_RANGE_50 Range = 50 mT 31.5 91
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor14

MPC574xP SENT/SPC Driver
3.4.2.4 SentSpc_GetFastMsgFifoData()

The function reads and decodes raw fast message data from the SRX module’s fast message FIFO (module
selected by the ui8SrxModuleIndex input parameter). It loops through the internal FIFO buffer entries
starting with the last message in the buffer based on the FIFO water mark level value configured. If
multiple fast messages from the same channel are found in the buffer, only the most recent message data
is stored in the destination variable.

A SW based CRC calculation is performed on the data from the channels with the SW based CRC
calculation method selected in the configuration.

A configured number of data nibble values, concatenated into 16-bit right-aligned format (data nibble 1 as
most significant), the status nibble value, and the 32-bit transmission time stamp from each channel found
in the FIFO are stored into the destination array of data type SentSpc_ChannelDataType at the index
position equal to the respective channel’s numeric ID.

NOTE
If the SW based calculated CRC value is not identical to the received CRC
nibble value, data from the entire fast message are discarded. The error
notification function is then called by the driver if the error notification
mechanism for that particular channel is enabled using the
SentSpc_EnableErrNotification() function.

Prototype: SentSpc_ReturnType SentSpc_GetFastMsgFifoData(uint8_t ui8SrxModuleIndex,

SentSpc_ChannelDataType DestDataArray[]);

3.4.2.5 SentSpc_GetSerialMsgData()

The function reads and decodes received raw serial message data from the channel’s internal buffer. The
message ID, data, and the 32-bit time stamp are then stored in the destination variable of data type
SentSpc_ChannelDataType.

Prototype: SentSpc_ReturnType SentSpc_GetSerialMsgData(uint8_t ui8ChannelIndex,

SentSpc_ChannelDataType *DestDataPtr);

Table 11. SentSpc_GetFastMsgData() arguments

Type Name Direction Description

uint8_t ui8ChannelIndex Input Numeric ID of the driver channel.

SentSpc_ChannelDataType * DestDataPtr Output Pointer to where to store the data.

Table 12. SentSpc_GetFastMsgFifoData() arguments

Type Name Direction Description

uint8_t ui8SrxModuleIndex Input Numeric ID of the SRX module.

SentSpc_ChannelDataType DestDataArray[] Output Array where to store the data.
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 15

MPC574xP SENT/SPC Driver
3.4.2.6 SentSpc_EnableRxNotification()

The function enables the fast or slow message reception notification mechanism for the selected driver
channel.

Prototype: SentSpc_ReturnType SentSpc_EnableRxNotification(uint8_t ui8ChannelIndex,

SentSpc_MessageType ui8TypeOfMessage);

3.4.2.7 SentSpc_DisableRxNotification()

The function disables the fast or slow message reception notification mechanism for the selected driver
channel.

Prototype: SentSpc_ReturnType SentSpc_DisableRxNotification(uint8_t ui8ChannelIndex,

SentSpc_MessageType ui8TypeOfMessage);

3.4.2.8 SentSpc_EnableErrNotification()

The function enables the error notification mechanism for the selected driver channel.

Prototype: SentSpc_ReturnType SentSpc_EnableErrNotification(uint8_t ui8ChannelIndex);

Table 13. SentSpc_GetSerialMsgData() arguments

Type Name Direction Description

uint8_t ui8ChannelIndex Input Numeric ID of the driver channel.

SentSpc_ChannelDataType * DestDataPtr Output Pointer to where to store the data.

Table 14. SentSpc_EnableRxNotification() arguments

Type Name Direction Description

uint8_t ui8ChannelIndex Input Numeric ID of the driver channel.

SentSpc_MessageType ui8TypeOfMessage Input SENT_SPC_FAST_MSG,
SENT_SPC_SERIAL_MSG

Table 15. SentSpc_DisableRxNotification() arguments

Type Name Direction Description

uint8_t ui8ChannelIndex Input Numeric ID of the driver channel.

SentSpc_MessageType ui8TypeOfMessage Input SENT_SPC_FAST_MSG,
SENT_SPC_SERIAL_MSG

Table 16. SentSpc_EnableErrNotification() arguments

Type Name Direction Description

uint8_t ui8ChannelIndex Input Numeric ID of the driver channel.
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor16

MPC574xP SENT/SPC Driver
3.4.2.9 SentSpc_DisableErrNotification()

The function disables the error notification mechanism for the selected driver channel.

Prototype: SentSpc_ReturnType SentSpc_DisableErrNotification(uint8_t ui8ChannelIndex);

3.4.2.10 SentSpc_GetChannelStatus()

The function retrieves the actual channel status information.

Prototype: SentSpc_ReturnType SentSpc_GetChannelStatus(uint8_t ui8ChannelIndex,

SentSpc_ChannelStatusType *DestPtr);

3.4.3 Notification functions

Notification functions notify the application about asynchronous events such as the reception of a fast or
serial message, reaching the water mark level value of messages in the SRX fast message FIFO, and a
channel diagnostic error.

3.4.3.1 SentSpc_FastMsgNotification()

The function notifies the application that the channel fast message data is ready to be read by the
SentSpc_GetFastMsgData() function. The notification function is called by the driver only if the fast
message notification mechanism for a particular channel is enabled using the
SentSpc_EnableRxNotification() function.

Prototype: void SentSpc_FastMsgRxNotification(uint8_t ui8ChannelIndex);

NOTE
Function SentSpc_FastMsgNotification() has to be manually defined in the
application. The body of the function is user-defined.

Table 17. SentSpc_DisableErrNotification() arguments

Type Name Direction Description

uint8_t ui8ChannelIndex Input Numeric ID of the driver channel.

Table 18. SentSpc_GetChannelStatus() arguments

Type Name Direction Description

uint8_t ui8ChannelIndex Input Numeric ID of the driver channel.

SentSpc_ChannelStatusType * DestPtr Output Pointer to where to store the status.

Table 19. SentSpc_FastMsgNotification() arguments

Type Name Direction Description

uint8_t ui8ChannelIndex Input Numeric ID of the driver channel.
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 17

MPC574xP SENT/SPC Driver
3.4.3.2 SentSpc_FastMsgFifoNotification()

The function notifies the application that the fast message FIFO of a particular SRX module has reached
the configured water mark level and the FIFO data is available to be read from the internal buffer using
the SentSpc_GetFastMsgFifoData() function.

Prototype: void SentSpc_FastMsgFifoNotification(uint8_t ui8SrxModuleIndex);

NOTE
Function SentSpc_FastMsgFifoNotification() has to be manually defined in
the application. The body of the function is user-defined.

3.4.3.3 SentSpc_SerialMsgNotification()

The function notifies the application that the channel serial message data is ready to be read by the
SentSpc_GetSerialMsgData() function. The notification function is called by the driver only if the serial
message notification mechanism for a particular channel is enabled using the
SentSpc_EnableRxNotification() function.

Prototype: void SentSpc_FastMsgRxNotification(uint8_t ui8ChannelIndex);

NOTE
Function SentSpc_SerialMsgNotification() has to be manually defined in
the application. The body of the function is user-defined.

3.4.3.4 SentSpc_ErrorNotification()

The function notifies the application that a particular channel error was detected.

Prototype: void SentSpc_ErrorNotification(uint8_t ui8ChannelIndex, SentSpc_ChannelErrorType

ChannelError);

NOTE
Function SentSpc_ErrorNotification() has to be manually defined in the
application. The body of the function is user-defined.

Table 20. SentSpc_FastMsgFifoNotification() arguments

Type Name Direction Description

uint8_t ui8SrxModuleIndex Input Numeric ID of the SRX module.

Table 21. SentSpc_SerialMsgNotification() arguments

Type Name Direction Description

uint8_t ui8ChannelIndex Input Numeric ID of the driver channel.
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor18

MPC574xP SENT/SPC Driver
3.4.4 Interrupt service routines

This section lists the driver interrupt service routines. Interrupt service routines are responsible for:

1. Raw fast message data transfers between SRX data registers and the driver channel buffer (of those
channels not configured to use the SRX fast message FIFO), and fast message data ready
notification.

2. Raw serial message data transfers between SRX data registers and the driver channel buffer, and
for serial message data ready notification.

3. Channel internal status updates (if a channel error occurs) and error notification.

4. Fast message FIFO data ready notification.

3.4.4.1 Fast message interrupt service routines

Fast message ISR functions listed in Table 23 are used by the driver.

The fast message ISR is executed once a valid fast message has been received by the SRX module and
combines the processing of both fast and serial message types. See Section 3.5.2, “Message reading via
interrupts” for more details.

NOTE
The fast message ISR function of a particular SRX channel is available only
if its related driver channel is configured with fast message FIFO disabled
(SentSpcSrxFastMsgFifoEnable = false in configuration).

Table 22. SentSpc_ErrorNotification() arguments

Type Name Direction Description

uint8_t ui8ChannelIndex Input Numeric ID of the driver channel.

SentSpc_ChannelErrorType ChannelError Output Channel error status.

Table 23. Fast message interrupt service routines

ISR Name Interrupt vector Source signal

SentSpc_Srx0_Rx0_FastMsg_Isr() 570 Valid fast message received on SENT0_RX0

SentSpc_Srx0_Rx1_FastMsg_Isr() 573 Valid fast message received on SENT0_RX1

SentSpc_Srx1_Rx0_FastMsg_Isr() 582 Valid fast message received on SENT1_RX0

SentSpc_Srx1_Rx1_FastMsg_Isr() 585 Valid fast message received on SENT1_RX1
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 19

MPC574xP SENT/SPC Driver
3.4.4.2 Serial message interrupt service routines

The serial message ISR functions listed in Table 24 are used by the driver.

Serial message ISR is executed once a valid serial message has been received by the SRX module.

The ISR calls the processing function which copies data from the SRX channel serial message data
registers into the internal buffer of the related driver channel. If the channel serial message reception
notification is enabled, serial message notification function SentSpc_SerialMsgNotification() is executed
as part of the ISR.

NOTE
The serial message ISR function of a particular SRX channel is available
only if its related driver channel is configured with fast message FIFO
enabled (SentSpcSrxFastMsgFifoEnable = true in configuration).

3.4.4.3 End of eDMA Transfer interrupt service routines

End of eDMA Transfer ISR functions listed in Table 25 are used by the driver.

The End of eDMA Transfer ISR function is executed once a number of entries, equal to the configured
FIFO water mark level value of the related SRX module, have been transferred by the eDMA engine from
the FIFO into the internal buffer of the driver. The fast message FIFO notification function
SentSpc_FastMsgFifoNotification() is executed as part of the ISR.

NOTE
The SentSpc_SrxN_DMA_Isr() (where N is the index of the SRX module)
ISR is available only if at least one driver channel is configured to utilize
SRX_N with fast message FIFO enabled. The interrupt vector number of the
ISR is defined by the value of configuration parameter
SentSpcSrxNFMsgDma + 53.

Table 24. Serial message interrupt service routines

ISR Name Interrupt vector Source signal

SentSpc_Srx0_Rx0_SerialMsg_Isr() 571 Valid serial message received on SENT0_RX0

SentSpc_Srx0_Rx1_SerialMsg_Isr() 574 Valid serial message received on SENT0_RX1

SentSpc_Srx1_Rx0_SerialMsg_Isr() 583 Valid serial message received on SENT1_RX0

SentSpc_Srx1_Rx1_SerialMsg_Isr() 586 Valid serial message received on SENT1_RX1

Table 25. End of eDMA Transfer interrupt service routines

ISR Name Interrupt vector Source signal Source module

SentSpc_Srx0_Dma_Isr() 69–84 eDMA Channel [16–31] eDMA

SentSpc_Srx1_Dma_Isr() 53–68 eDMA Channel [0–15] eDMA
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor20

MPC574xP SENT/SPC Driver
3.4.4.4 Channel error interrupt service routines

Channel error ISR functions listed in Table 26 are used by the driver.

The error interrupt ISR is executed if a channel error is detected during a message reception. If channel
error notification is enabled, the notification function SentSpc_ErrorNotification() is executed as part of
the ISR.

3.5 Functional description
This section provides a functional description of the MPC574xP SENT/SPC driver.

3.5.1 Driver initialization and SENT data acquisition

The SENT data acquisition is completely handled by the SRX module linked to the driver channel. The
SentSpc_Init() API function initializes the SRX module based on the channel configuration parameter
values. The SRX module’s channel properly receives only messages with the format specified by the
configuration parameters.

Figure 12. Driver initialization

3.5.2 Message reading via interrupts

The driver channel is configured for the interrupt operation if the SentSpcSrxFastMsgFifoEnable
configuration parameter is set to false.

Reception of each valid fast message invokes the fast message interrupt related to the SRX module’s
channel linked to the driver channel (see Section 3.4.4.1, “Fast message interrupt service routines”).

Table 26. Channel error interrupt service routines

ISR Name Interrupt vector Source signal

SentSpc_Srx0_Rx0_Err_Isr() 572 SENT0_RX0 receive error interrupt

SentSpc_Srx0_Rx1_Err_Isr() 575 SENT0_RX1 receive error interrupt

SentSpc_Srx1_Rx0_Err_Isr() 584 SENT1_RX0 receive error interrupt

SentSpc_Srx1_Rx1_Err_Isr() 587 SENT1_RX1 receive error interrupt

SentSpc User SentSpc Driver

SentSpc_Init(&SentSpcConfig)

SentSpc_Init
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 21

MPC574xP SENT/SPC Driver
The interrupt service routine calls a processing function which copies data from the SRX channel fast
message data registers into the internal buffer of the related driver channel.

To avoid the stacking/unstacking delay caused by an additional possibly pending serial message interrupt
request, the processing function also checks if this message was the last message required to construct the
serial message. If so, the processing function copies data from the SRX channel serial message data
registers into the internal buffer of the related driver channel.

Additionaly, the proccessing function loops through all the SRX module channels to check if there was
another fast message received on a different channel during its execution. If so, it repeats the proccess
described above. Figure 13 illustrates fast message reception with enabled reception notification.
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor22

MPC574xP SENT/SPC Driver
Figure 13. Message reading via interrupts (notification enabled)

SentSpc User SentSpc Driver SRX Module
HardwareSentSpc_ChannelDataType ChannelData;

1st fast
message
received

... 16th fast
message
received

SentSpc_EnableRxNotification(channel,SENT_SPC_FAST_MSG)

SentSpc_EnableRxNotification

SentSpc_EnableRxNotification(channel,SENT_SPC_SERIAL_MSG)

SentSpc_EnableRxNotification

Fast message interrupt

Read raw fast
message data from
the SRX data
registersSentSpc_FastMsgRxNotification(channel)

SentSpc_GetFastMsgData(channel, &ChannelData)

SentSpc_GetFastMsgData

SentSpc_FastMsgRxNotification
Fast message interrupt

Fast message interrupt

Read raw fast
message data from
the SRX data
registersSentSpc_FastMsgRxNotification(channel)

SentSpc_GetFastMsgData(channel, &ChannelData)

SentSpc_GetFastMsgData

SentSpc_FastMsgRxNotification
Since the 16th fast message
completed a short serial
message, read raw serial
message data from the SRX
data registersSentSpc_SerialMsgRxNotification(channel)

SentSpc_GetSerialMsgData(channel, &ChannelData)

SentSpc_GetSerialMsgData

SentSpc_SerialMsgRxNotification

Fast message interrupt
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 23

MPC574xP SENT/SPC Driver
3.5.2.1 Message reception notification

If the channel fast message reception notification is enabled, the fast message notification function
SentSpc_FastMsgNotification() is executed as part of the fast message interrupt service routine. Similarly,
if the channel serial message reception notification is enabled and the received fast message has completed
the serial message, the serial message notification function SentSpc_SerialMsgNotification() is executed
as part of the fast message interrupt service function.

Figure 14 illustrates driver channel behavior with fast message notification enabled/disabled. Serial
message notification follows the same behavior as depicted in Figure 14.

Figure 14. Disable/re-enable fast message notification

SentSpc User SentSpc Driver SRX Module
Hardware

2nd fast
message
received

1st fast
message
received

Fast message notification is disabled.
Notification for the 2nd fast message is
discarded, the user will not be informed about
the 2nd fast message reception.

3rd fast
message
received

Fast message notification re-enabled.
Notification of the 3rd fast message reception
will be involved.

SentSpc_EnableRxNotification(channel,SENT_SPC_FAST_MSG)

SentSpc_EnableRxNotification

Fast message interrupt

Read raw fast message
data from the SRX data
registersSentSpc_FastMsgRxNotification(channel)

SentSpc_FastMsgRxNotification

Fast message interrupt

SentSpc_DisableRxNotification(channel, SENT_SPC_FAST_MSG)

SentSpc_DisableRxNotification

Fast message interrupt

Read raw fast message
data from the SRX data
registers

Fast message interrupt

SentSpc_EnableRxNotification(channel,SENT_SPC_FAST_MSG)

SentSpc_EnableRxNotification

Fast message interrupt

Read raw fast message
data from the SRX data
registers

SentSpc_FastMsgRxNotification(channel)

SentSpc_FastMsgRxNotification

Fast message interrupt
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor24

MPC574xP SENT/SPC Driver
3.5.2.2 Message reception polling

Fast message and serial message are used to notify the application about a message reception. However,
these functions are executed as part of interrupt service routines, so prolonging interrupt duration. To
minimize interrupt service routine durations, the driver can be used in the polling mode with disabled
notifications.

The driver channel status can be polled by the SentSpc_GetChannelStatus() API function. The actual
channel status is returned in the form of the data type SentSpcChannelStatusType (see Table 27).

Figure 15 shows the sequence diagram illustrating fast message reception polling. Serial message
reception polling uses the same mechanism.

Table 27. Channel status structure (SentSpc_ChannelStatusType)

Member Description

SentSpc_FastMsgRxNotifEnabled Fast Message Reception Notification Enable.
0 Fast message reception notification disabled
1 Fast message reception notification enabled

SentSpc_SerialMsgRxNotifEnabled Serial Message Reception Notification Enable.
0 Serial message reception notification disabled
1 Serial message reception notification enabled

SentSpc_ErrorNotifEnabled Reception Error Notification Enable.
0 Reception error notification disabled
1 Reception error notification enabled

SentSpc_Reserved This bit is reserved.

SentSpc_FastMsgDataReady Fast Message Data Ready.
0 New fast message data is not ready in the channel buffer
1 New fast message data is ready in the channel buffer for reading by the
SentSpc_GetFastMsgData() function.

SentSpc_SerialMsgDataReady Serial Message Data Ready.
0 New serial message data is not ready in the channel buffer
1 New serial message data is ready in the channel buffer for reading by the
SentSpc_GetSerialMsgData() function.

SentSpc_FastMsgDataOverflow Fast Message Data Overflow. This bit is set when data stored in the internal buffer
is overwritten by the fast message interrupt service routine before it was read by the
SentSpc_GetFastMsgData() function.
0 No fast message overflow
1 Fast message overflow.

SentSpc_SerialMsgDataOverflow Serial Message Data Overflow. This bit is set when data stored in the internal buffer
is overwritten by the serial message interrupt service routine before it was read by
the SentSpc_GetSerialMsgData() function.
0 No serial message overflow.
1 Serial message overflow.

SentSpc_ErrorStatus Channel error status byte (see Table 28).
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 25

MPC574xP SENT/SPC Driver
Figure 15. Fast message reception (with and without overflow) polling

SentSpc User SentSpc Driver SRX Module
HardwareSentSpc_ChannelDataType ChannelData;

SentSpc_ChannelStatusType ChannelStatus;

1st fast
message
received

2nd fast
message
received

3rd fast
message
received

2nd fast message data is overwritten by the 3rd message data

Fast message overflow status bit set internally

Fast message ready status bit set internally

Fast message ready status bit set internally

Fast message data available

Fast message data available

SentSpc_GetChannelStatus(channel, &ChannelStatus)

SentSpc_GetChannelStatus :ChannelStatus.B.SentSpc_FastMsgDataReady=0

Fast message interrupt

Read raw fast message
data from the SRX data
registers

SentSpc_FastMsgDataReady = 1

Fast message interrupt

SentSpc_GetChannelStatus(channel, &ChannelStatus)

SentSpc_GetChannelStatus :ChannelStatus.B.SentSpc_FastMsgDataReady = 1

SentSpc_GetFastMsgData(channel, &ChannelData)

SentSpc_FastMsgDataReady=0

SentSpc_GetFastMsgData

SentSpc_GetChannelStatus(channel, &ChannelStatus)

SentSpc_GetChannelStatus :ChannelStatus.B.SentSpc_FastMsgDataReady = 0

Fast message interrupt

Read raw fast message
data from the SRX data
registers

SentSpc_FastMsgDataReady = 1

Fast message interrupt

Fast message interrupt

Read raw fast message
data from the SRX data
registers

SentSpc_FastMsgDataOverflow = 1

Fast message interrupt

SentSpc_GetChannelStatus(channel, &ChannelStatus)

SentSpc_GetChannelStatus :ChannelStatus.B.SentSpc_FastMsgDataReady = 1

SentSpc_GetFastMsgData(channel, &ChannelData)

SentSpc_FastMsgDataReady = 0
SentSpc_FastMsgDataOverflow = 0

SentSpc_GetFastMsgData
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor26

MPC574xP SENT/SPC Driver
3.5.3 Fast message reading using FIFO

The driver channel is configured for the FIFO operation if its related SentSpcSrxFastMsgFifoEnable
configuration parameter is set to true.

Each successfully received raw fast message data is stored in the fast message FIFO. The FIFO water mark
level is configurable by the SentSpcSrxNFifoWaterMark (where N is the index of the SRX module)
configuration parameter value on a per SRX module basis. That means, if at least one driver channel is
configured with fast message FIFO enabled, then the SentSpcSrxNFifoWaterMark configuration
parameter for the related SRX module is made configurable in the configuration tool.

Once the configured number of received messages in the FIFO reaches the water mark level, a DMA
transfer request is asserted. The eDMA engine transfers a number of fast messages, equal to the FIFO
water mark level, from the fast message FIFO into the internal buffer of the driver. Once the transfer is
complete, the End of eDMA Transfer interrupt is invoked (see Section 3.4.4.3, “End of eDMA Transfer
interrupt service routines”). The SentSpc_FastMsgFifoNotification() notification function is then
executed as part of the ISR.

NOTE
The SentSpc_FastMsgFifoNotification() is always executed once the FIFO
data has transferred into the driver internal buffer. The user is advised to
read the data using the SentSpc_GetFastMsgFifoData() API function within
the fast message FIFO notification function. This approach eliminates
possible collision with the following eDMA FIFO data transfer while
reading the driver internal buffer.

As the FIFO can be used only for fast messages, processing of the received serial messages is performed
using the separate serial message interrupt (see Section 3.4.4.2, “Serial message interrupt service
routines”).

Figure 16 illustrates driver channel behavior with an enabled fast message FIFO.
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 27

MPC574xP SENT/SPC Driver
Figure 16. Fast message reading using FIFO

SentSpc User SentSpc Driver SRX Module
Hardware

eDMA Module
Hardware

... 16th fast
message
received

The 16th fast message has
completed a short serial message

FIFO water mark level = 2
reached

... 2nd fast
message
received

FIFO water mark level = 2
reached

SentSpc_ChannelDataType
ChannelData[SENT_SPC_CHANNEL_COUNT];

SentSpc_EnableRxNotification(channel,SENT_SPC_SERIAL_MSG)

SentSpc_EnableRxNotification

Transfer
SRX FIFO
data into
the driver
internal
buffer

End of eDMA transfer interrupt
SentSpc_FastMsgFifoNotification(SrxModule)

SentSpc_GetFastMsgFifoData(channel, ChannelData)

SentSpc_GetFastMsgFifoData

SentSpc_FastMsgFifoNotification
End of eDMA transfer interrupt

Transfer
SRX FIFO
data into
the driver
internal
buffer

End of eDMA transfer interrupt
SentSpc_FastMsgFifoNotification(SrxModule)

SentSpc_GetFastMsgFifoData(channel, &ChannelData)

SentSpc_GetFastMsgFifoData

SentSpc_FastMsgFifoNotification
End of eDMA transfer interrupt

Serial message interrupt

Read raw serial
message data from
the SRX data registersSentSpc_SerialMsgRxNotification(channel)

SentSpc_GetSerialMsgData(channel, &ChannelData)

SentSpc_GetSerialMsgData

SentSpc_SerialMsgRxNotification
Serial message interrupt
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor28

MPC574xP SENT/SPC Driver
3.5.4 Master trigger pulse generation

The SentSpc_Request() API function initiates generation of the master trigger pulse on the sensor
interface. Figure 17 illustrates a 4 s master trigger driving pulse generation using the eTimer channel
operating in the output compare mode with the channel counter running at 160 MHz.

Figure 17. Master trigger pulse generation example

The driving pulse width is defined by the u8MasterTime input parameter of the SentSpc_Request() API
function. The width of the driving pulse in the number of eTimer channel counter ticks is defined by the
Compare Register 2 (COMP2) value, while the Compare Register 1 (COMP1) register is set to 0x0000 by
the API functions. The eTimer Channel Control Register 2 (CTRL2) is set up in such a way to toggle the
eTimer channel OFLAG output signal using the alternating compare registers COMP1 and COMP2. The
polarity of the leading edge (generated on COMP1 compare) is based on the driver channel configuration
parameter SentSpcEtimerOdEnable value which corresponds with the CTRL2[OPS] bit value
(SentSpcEtimerOdEnable = false OPS = 1, SentSpcEtimerOdEnable = true OPS = 0). The eTimer
channel Control Register 1 (CTRL1) is written by the SentSpc_Request() API function to start the channel
counter (counting from 0x0000). The counter stops counting and resets to 0x0000 on COMP2 compare
(trailing edge generated).

Figure 18 illustrates the procedure to request SENT data from the SENT/SPC compatible sensor.
A Periodic Interrupt Timer (PIT) interrupt service routine is used to trigger the transmission periodically
in 1.2 ms intervals. Message reception is polled after a 1.2 ms time out.

(external transistor gate pulse)

(open-drain pin pulse)
eTtimer output pin

(open-drain)
CHx_CTRL2[OPS] = 1

eTimer output pin
(push-pull)

CHx_CTRL2[OPS] = 0

eTimer channel counter
CHx_CNTR

0x0280

0x0000

CHx_CTRL2 = 0x8004
CHx_COMP1 = 0x0000

SentSpc_Request():
CHx_COMP2 0x0280
CHx_CTRL1 0x38C0
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 29

MPC574xP SENT/SPC Driver
Figure 18. SENT message triggering using SPC master trigger pulse (FIFO disabled)

SentSpc User SentSpc Driver SRX Module
Hardware

PIT Module
HardwareSentSpc_ChannelDataType ChannelData;

SentSpc_ChannelStatusType ChannelStatus;

Fast message
received

Fast message properly received before PIT time out

Fast message NOT properly received before time out

Request new data

Request new data

No data to read:
Check ChannelStatus.B.ErrorStatus for message errors
(if no error flags are set, the master trigger pulse was not
properly generated or the sensor did not respond - can
be determined by the SentSpc_BusIdle status bit)

Request new data

Start PIT with 1.2 ms period

SentSpc_Request(channel, SPC_SYNC)

SentSpc_Request

Fast message interrupt

Read raw fast
message data from
the SRX data registers

SentSpc_FastMsgDataReady = 1

Fast message interrupt

{1.2 ms}

PIT interrupt

SentSpc_GetChannelStatus(channel, &ChannelStatus)

SentSpc_GetChannelStatus :ChannelStatus.B.SentSpc_FastMsgDataReady = 1

SentSpc_GetFastMsgData(channel, &ChannelData)

SentSpc_FastMsgDataReady = 0

SentSpcChannelData

SentSpc_Request(channel, SPC_SYNC)

SentSpc_Request

PIT interrupt

{1.2 ms}

PIT interrupt

SentSpc_GetChannelStatus

SentSpc_GetChannelStatus :ChannelStatus.B.SentSpc_FastMsgDataReady = 0

SentSpc_Request(channel, SPC_SYNC)

SentSpc_Request

PIT interrupt
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor30

MPC574xP SENT/SPC Driver
3.5.5 Receiver diagnostics

The SRX module provides sensor interface and message reception diagnostics defined by the SAE J2716
specification. The actual driver channel error status can be obtained by the SentSpc_GetChannelStatus()
API function call. If the channel error notification is enabled by the SentSpc_EnableErrNotification(), the
occurrence of the channel error is signalized by the SentSpc_ErrorNotification() within the channel error
interrupt service routine, and within the SentSpc_GetFastMsgData() and SentSpc_GetFastMsgFifoData()
functions to signalize the fast message CRC error (SW based CRC type only).

For a complete list of supported types of sensor interface and message diagnostics, see the description of
the SentSpcChannelErrorType data type in Table 28.

Table 28. Channel error structure (SentSpc_ChannelErrorType)

Member Description

SentSpc_BusIdle1

1 Bus idle state is not signalized by the SentSpc_ErrorNotification() notification function. It needs to be polled using the
SentSpc_GetChannelStatus() API function.

Bus Idle Status. This status bit indicates that the sensor interface has been idle for
more than the period defined in the channel configuration.
0 Bus is not idle
1 Channel has been idle for more than the allowed value

SentSpc_PausePulseDiagError This error status bit indicates that the ratio of the calibration pulse length to overall
message length is greater than ±1.5625% between two messages.
0 Error check has passed
1 Error check has failed

SentSpc_CalibLengthError2

2 If the channel operates in the SENT/SPC mode, the SentSpc_CalibLengthError bit is always zero due to the SRX module HW
limitations.

This error status bit indicates that the calibration pulse length is greater than 56 ticks
±25% or ±20%, depending on the configuration.
0 Error check has passed
1 Error check has failed

SentSpc_CalibDiagError This error status bit indicates that the successive calibration pulses differ by more
than ±1.5625%.
0 Error check has passed
1 Error check has failed

SentSpc_NibbleValueError This error status bit indicates that any nibble data value is <0 or >15.
0 Error check has passed
1 Error check has failed

SentSpc_SerialMsgCRCError This error status bit indicates a checksum error in the slow serial message.
0 Error check has passed
1 Error check has failed

SentSpc_FastMsgCRCError This error status bit indicates a checksum error in the fast message.
0 Error check has passed
1 Error check has failed

SentSpc_ErrorNumberOfEdges3

3 If the channel operates in the SENT/SPC mode or Option 2 is selected for the successive calibration pulse check in the
configuration, the SentSpc_ErrorNumberOfEdges bit is always zero.

This error status bit indicates that not the expected number of falling edges was
detected between calibration pulses.
0 Error check has passed
1 Error check has failed
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 31

MPC574xP SENT/SPC Driver
Figure 19 illustrates error reporting with enabled/disabled channel error notification.

Figure 19. Error reporting with enabled/disabled channel error notification

SentSpc User SentSpc Driver SRX Module
HardwareSentSpc_ChannelDataType ChannelData;

SentSpc_ChannelStatusType ChannelStatus;

Fast message
error detected

Fast message
error detected

SentSpc_EnableErrNotification(channel,SENT_SPC_FAST_MSG)

SentSpc_EnableErrNotification

Channel error interrupt

Update error status
internally, clear HW flags

SentSpc_ErrorNotification(channel, ChannelError)

SentSpc_ErrorNotification
Channel error interrupt

SentSpc_DisableErrNotification(channel)

SentSpc_DisableErrNotification

SentSpc_GetChannelStatus(channel, &ChannelStatus)

Update error and bus idle
status, clear HW flags

SentSpc_GetChannelStatus :ChannelStatus.B.SentSpc_ErrorStatus = 0

SentSpc_GetChannelStatus(channel, &ChannelStatus)

Update error and bus idle
status, clear HW flags

SentSpc_GetChannelStatus :ChannelStatus.B.SentSpc_ErrorStatus != 0
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor32

MPC574xP SENT/SPC Driver
3.6 Memory allocation
To ensure data coherency when the core’s data cache is enabled, certain variables that are write accessible
by the eDMA module need to be placed in the non-cacheable section of the SRAM memory. The driver
requires up to 96 bytes of the non-cacheable memory. Impacted variables are explicitly placed in the
program section “.sentspc_bss” by the compiler pragma in the source code. In order to place impacted
variables in the non-cacheable SRAM memory region, do the following:

1. Create a new memory region covering the desired portion of the non-cacheable SRAM memory in
the linker directives file of the project. The memory region must be 32-bytes aligned with a size
equal to a multiple of 32 bytes.

2. Place the section “.sentspc_bss” into the section map of the memory region created in the previous
step, in the linker directives file of the project.

3. Specify a non-cacheable SRAM region by initializing the System Memory Protection Unit
(SMPU) module region descriptor, with the region start address in SMPU_WORD0, region end
address (last byte address of the section) in SMPU_WORD1, bus master permissions in
SMPU_WORD2, and the SMPU_WORD3[CI] Cache Inhibit bit.

4. Mark the SMPU region descriptor as valid by writing 1 to the WORD3[VLD] bit.

5. Enable the SMPU by writing 1 to the CESR0[GVLD] bit.

NOTE
All memory regions accessed by the application must be specified by the
SMPU region descriptors before enabling the SMPU.

For more information about the SMPU, consult the MPC5744P Reference Manual, MPC5744PRM or
refer to Example 1 and Example 2.

Example 1. Memory region and section map definition in the linker directives file

MEMORY
{

/* ... */
/* Cache-inhibit memory region */
int_sram_ci : ORIGIN = 0x4005F000, LENGTH = 0x1000

}

SECTIONS
{

/* ... */
/* SENT/SPC driver section */
.sentspc_bss : > int_sram_ci

}

MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 33

MPC574xP SENT/SPC Driver
Example 2. SMPU initialization code

void SMPU_Init(void)
{

/* SRAM */
SMPU_0.RGD[0].WORD0.R = 0x40000000; /* Start address */
SMPU_0.RGD[0].WORD1.R = 0x4005EFFF; /* End address */
SMPU_0.RGD[0].WORD2.R = 0xCFF0C000; /* Master 0,2,3,4,5,8, RW access enabled */
SMPU_0.RGD[0].WORD3.R = 0x00000001; /* Valid */

/* SRAM (cache inhibit memory range) */
SMPU_0.RGD[1].WORD0.R = 0x4005F000; /* Start address */
SMPU_0.RGD[1].WORD1.R = 0x4005FFFF; /* End address */
SMPU_0.RGD[1].WORD2.R = 0xCFF0C000; /* Master 0,2,3,4,5,8, RW access enabled */
SMPU_0.RGD[1].WORD3.R = 0x00000003; /* Valid, Cache Inhibit */

/* Flash */
SMPU_0.RGD[2].WORD0.R = 0x01000000; /* Start address */
SMPU_0.RGD[2].WORD1.R = 0x011FFFFF; /* End address */
SMPU_0.RGD[2].WORD2.R = 0xCFF0C000; /* Master 0,2,3,4,5,8, RW access enabled */
SMPU_0.RGD[2].WORD3.R = 0x00000001; /* Valid */

/* DMEM */
SMPU_0.RGD[3].WORD0.R = 0x50800000; /* Start address */
SMPU_0.RGD[3].WORD1.R = 0x5080FFFF; /* End address */
SMPU_0.RGD[3].WORD2.R = 0xCFF0C000; /* Master 0,2,3,4,5,8, RW access enabled */
SMPU_0.RGD[3].WORD3.R = 0x00000003; /* Valid, Cache Inhibit */

/* Peripheral space */
SMPU_0.RGD[4].WORD0.R = 0xF8000000; /* Start address */
SMPU_0.RGD[4].WORD1.R = 0xFFFFFFFF; /* End address */
SMPU_0.RGD[4].WORD2.R = 0xCFF0C000; /* Master 0,2,3,4,5,8, RW access enabled */
SMPU_0.RGD[4].WORD3.R = 0x00000003; /* Valid, Cache Inhibit */

SMPU_0.CESR0.R = 0x00000001; /* Enable SMPU */
}

3.7 Application example
Please refer to the sample application which is part of the AN4856SW package.
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor34

Conclusion
4 Conclusion
The application note describes the SENT protocol basics along with its SPC enhancement. A list of utilized
peripherals, the application programming interface description, and a functional description of the
MPC574xP SENT/SPC driver including the API calling sequences are provided in the text.

The driver provides support for SENT compatible sensor data acquisition and full communication with the
SENT/SPC compatible Infineon TLE4998C programmable linear Hall sensor, including all its supported
SPC modes.
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 35

References
5 References
1. SAE J2716 (R) SENT – Single Edge Nibble Transmission for Automotive Applications, JAN2010

2. MPC5744P Reference Manual, Rev. 2, 06/2013

3. MPC5744P Data Sheet, Rev. 0.4, 04/2013

4. TLE4998C Target Data Sheet, V 1.0, December 2008
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor36

Acronyms and Definitions
6 Acronyms and Definitions
Table 29. Acronyms and definitions

Term Definition

API Application Programming Interface

CAN Controller Areal Network

CRC Cyclic Redundancy Check

ECU Electronic Control Unit

eDMA Enhanced Direct Memory Access

EMC Electromagnetic Compatibility

ESD Electrostatic Discharge

eTimer Enhanced Motor Control Timer

FIFO First In First Out

HW Hardware

ID Identification

ISR Interrupt Service Routine

LIN Local Interconnect Network

MCU Microcontroller Unit

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

PIT Periodic Interrupt Timer

PWM Pulse Width Modulation

SAE Society of Automotive Engineers

SENT Single Edge Nibble Transfer Protocol

SIUL2 System Integration Unit Lite 2

SPC Short PWM Code

SRAM Static Random Access Memory

SRX SENT Receiver

SW Software

UT Unit Time
MPC574xP SENT/SPC Driver, Rev. 0

Freescale Semiconductor 37

Document Number: AN4856
Rev. 0
03/2014

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, and Qorivva are trademarks of Freescale Semiconduc-

tor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property

of their respective owners. The Power Architecture and Power.org word

marks and the Power and Power.org logos and related marks are trademarks and ser-

vice marks licensed by Power.org.

© 2014 Freescale Semiconductor, Inc.

	1 Introduction
	2 Overview
	2.1 SENT encoding scheme
	2.1.1 Synchronization/calibration pulse
	2.1.2 Status and communication nibble pulse
	2.1.2.1 Short serial message
	2.1.2.2 Enhanced serial message

	2.1.3 Data nibble pulse
	2.1.4 Checksum nibble pulse

	2.2 SPC protocol
	2.3 SENT physical layer

	3 MPC574xP SENT/SPC Driver
	3.1 Utilized MPC574xP peripherals
	3.2 SPC bidirectional communication
	3.3 Driver configuration
	3.4 Application programming interface
	3.4.1 API return type
	3.4.2 API functions
	3.4.2.1 SentSpc_Init()
	3.4.2.2 SentSpc_Request()
	3.4.2.3 SentSpc_GetFastMsgData()
	3.4.2.4 SentSpc_GetFastMsgFifoData()
	3.4.2.5 SentSpc_GetSerialMsgData()
	3.4.2.6 SentSpc_EnableRxNotification()
	3.4.2.7 SentSpc_DisableRxNotification()
	3.4.2.8 SentSpc_EnableErrNotification()
	3.4.2.9 SentSpc_DisableErrNotification()
	3.4.2.10 SentSpc_GetChannelStatus()

	3.4.3 Notification functions
	3.4.3.1 SentSpc_FastMsgNotification()
	3.4.3.2 SentSpc_FastMsgFifoNotification()
	3.4.3.3 SentSpc_SerialMsgNotification()
	3.4.3.4 SentSpc_ErrorNotification()

	3.4.4 Interrupt service routines
	3.4.4.1 Fast message interrupt service routines
	3.4.4.2 Serial message interrupt service routines
	3.4.4.3 End of eDMA Transfer interrupt service routines
	3.4.4.4 Channel error interrupt service routines

	3.5 Functional description
	3.5.1 Driver initialization and SENT data acquisition
	3.5.2 Message reading via interrupts
	3.5.2.1 Message reception notification
	3.5.2.2 Message reception polling

	3.5.3 Fast message reading using FIFO
	3.5.4 Master trigger pulse generation
	3.5.5 Receiver diagnostics

	3.6 Memory allocation
	3.7 Application example

	4 Conclusion
	5 References
	6 Acronyms and Definitions

