

© 2016 NXP B.V.

Control of a DC/DC Converter Using

FlexPWM’s Force-Out Logic

Implemented with MPC564xL

By: Yves Briant

1. Introduction

The MPC560xP and MPC564xL are two derivatives

of the Qorivva family of automotive microcontrollers

that have been tailored to easily control electrical

machines like permanent magnet synchronous motors

(PMSMs), brushless DC electric motors (BLDCs),

DC/DC converters, and so on.

The FlexPWM module is one of the motor control

peripherals embedded on these devices. Along with

usual features like PWM generation, input capture, and

so on, this module embeds some powerful mechanisms

like force-out logic.

 This application note describes how this force-out logic

can be used to safely control a DC/DC converter with

limited CPU usage. This control relies on other

peripherals such as the eDMA, the ADC, and the

eTimer. This document describes the configuration of

each of these modules.

NXP Semiconductors Document Number: AN4794

Application Note Rev. 2 , 06/2016

Contents

1. Introduction .. 1
2. Control of a DC/DC Convertor .. 2

2.1. Basic control... 2
2.2. Overcurrent control ... 4

3. Implementation on MPC564xL .. 5
3.1. Generation of the phase-shifted PWM 5
3.2. Current acquisition with the CTU 7
3.3. Overcurrent control with force-out logic 8
3.4. Force-out logic reconfiguration by eDMA 11
3.5. Connection of the limit signal to the EXT_FORCE
input….. .. 14

4. Performance .. 17
4.1. Reaction time.. 18
4.2. Configuration time .. 19

5. Revision History ... 20
Appendix A.Set-up with the MPC5643L Evaluation Board..... 21

Control of a DC/DC Convertor

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

2 NXP Semiconductors

2. Control of a DC/DC Convertor

In the scope of a Hybrid Electrical Vehicle (HEV), a DC/DC converter is used for supplying the low-

voltage network (12 V nominal) from the high-voltage traction battery (300 V, for example). The

control method described in this document assumes the topology in the following figure.

Figure 1. Typical topology of a DC/DC converter for HEV

The H-bridge works as a two-phase inverter. Controlled by the FlexPWM module, it has the capability

to vary the amount of energy brought to the transformer. The transformer reduces the input voltage to a

few tens of volts. The current supplied to the transformer is compared to a threshold. In case of an over-

current, an Ilimit pulse is sent to the eTimer module linked to the force-out logic. Finally, the rectifier

outputs a continuous DC voltage monitored by an ATD channel. The conversion result is used by

software to pilot the FlexPWM module.

2.1. Basic control

The Zero-Voltage-Switch (ZVS) H-bridge is controlled with two pairs of phase-shifted PWM signals to

keep the output voltage at the same level, in spite of variations in the input voltage and output current.

Figure 2 shows the simplified schematic of the converter and where the control is done.

The PWM0_H and PWM0_L signals on one side and PWM1_L and PWM1_H on the other side form

two pairs of complementary phase-shifted PWMs. The period and duty-cycle of these signals are fixed

(for example, frequency = 100 kHz, duty-cycle = 50 %). The amount of energy delivered to the

transformer is achieved by varying the phase shift between the two pairs of PWM signals (see Figure 3).

Control of a DC/DC Convertor

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

NXP Semiconductors 3

Figure 2. Simplified schematic of a DC/DC converter

Thus the control of such a DC/DC converter requires:

1. The generation of two complementary pairs of PWM, with deadtime insertion

2. An accurate control of the phase shift between the two complementary pairs

The flexPWM module offers these two features. The “Phase-shifted PWM” of MPC5643LRM, Qorivva

MPC5643L Microcontroller Reference Manual is dedicated to the generation of phase-shifted PWM.

Figure 3. Phase shifted PWM and voltage at the primary of the transformer

Control of a DC/DC Convertor

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

4 NXP Semiconductors

2.2. Overcurrent control

The control of the DC/DC converter has to ensure that the current flowing from the high-voltage battery

does not exceed a limit that could destroy the converter. An electrical problem within the transformer,

the rectifier, or the load could be the cause for this overcurrent.

The reaction to this overcurrent should be as fast as possible (less than 1 µs) in order to prevent any

electrical damage to the converter or to the high-voltage source. Thus, having a hardware reaction to this

overcurrent (as opposed to a software reaction) would allow both a fast and a reliable control.

If an overcurrent is detected, the pair of PWM1 signals should be immediately set to the same level as

the PWM0 signals, so that no energy is brought to the system. Thus, the phase shift between the two

pairs of PWM signal is temporary reduced. This causes the Isupply current to decrease and the

overcurrent condition to disappear.

Figure 4 shows the waveforms of the two pairs of complementary PWM signals, the Isupply current,

and the overcurrent pulse. For sake of clarity the deadtimes are not shown on these waveforms. The

dotted lines on the PWM1_H and PWM1_L show what would have been these signals without any

reaction to the overcurrent.

Figure 4. Overcurrent protection complements the state of the PWM0 pair

Section 3.3 Overcurrent control with force-out logic explains how this overcurrent protection can be

implemented using the FlexPWM module’s force-out logic, without any CPU load.

Implementation on MPC564xL

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

NXP Semiconductors 5

3. Implementation on MPC564xL

This section describes the implementation of this control and details the configuration of each peripheral

used for this function.

3.1. Generation of the phase-shifted PWM

This use-case is already described in the MPC564xL reference manual. The first pair of PWM is

generated by submodule 0 of one FlexPWM module, the second pair by submodule 1.The counters of

these two submodules are configured with the same clock, initial, and overflow values and are started at

the same time1 so that they are always synchronized.

As already explained both PWM pairs have a fixed frequency of 100 kHz and a fixed duty-cycle of

50 %. Since only the second pair of PWM is modified to adjust the phase shift, the initial configuration

of submodule 0 remains unchanged.

The frequency of the FlexPWM module is configured to be 120 MHz. The counters of both submodules

are configured to count from the initial value -600 (0xFDA8) to the overflow value 600 (0x258), thus

achieving a frequency of 100 kHz and a resolution better than 0.1 % for the phase shift.

Submodule 0 and submodule 1 are configured in complementary mode with automatic deadtime

insertion: The DTCNT0 and DTCNT1 registers of submodules 0 and 1 have been set to the value 6,

yielding a deadtime of 50 ns 2. Figure 5 shows how the 2 complementary pairs of PWM signals are

generated. The grey area visible on each PWM are the deadtimes.

1 Two counters of the same FlexPWM module can be started simultaneously by a unique write to the field RUN of
the MCTRL register
2 The duration of the deadtime mainly depends on the performance (switching time) of the transistors used to
implement the bridge. 50 ns (or 0.5% of PWM period) is a typical value.

Implementation on MPC564xL

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

6 NXP Semiconductors

Figure 5. Generation of the phase-shifted PWMs with 2 submodules of the FlexPWM

The submodules 0 and 1 are configured for half reload. It means that any new values written to the

VALx registers (among others) are taken into account when the timer reaches the value held by the

VAL0 register. This is called a reload-event.

These reload events are also the triggers for the DMA transfers that are used to configure the force-out

logic. This is further explained in Section 3.3 Overcurrent control with force-out logic.

Implementation on MPC564xL

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

NXP Semiconductors 7

3.2. Current acquisition with the CTU

The output voltage is regularly converted via an analog to digital channel1, synchronously with the

generation of the PWM0 signal. The CTU is configured for launching a single conversion exactly 7.5 µs

after the rising edge on PWM0_H. The result is then stored in the FIFO0 embedded in the CTU. When

the FIFO0 contains 4 ATD results, a DMA transfer is triggered that fills an internal RAM array. At the

end of this DMA transfer, an interrupt is triggered. In this interrupt routine, the last four voltage readings

are summed up and a new value for the shift is computed.

The diagram below illustrates how this chain happens:

Figure 6. Current acquisition and update of the phase-shift

The shift value is computed in a simple way that could be greatly enhanced in a real application: the new

shift value is inversely proportional to the measured voltage. A voltage of 0 generates a maximum shift

of 600, and a voltage of 0x3FFF resets the shift value to 0.

Table 1. Calculation of the phase-shift

 Min Max

One voltage reading 0 0xFFF (12bit conversion)

Sum of 4 voltage readings 0 0x3FFF

SHIFT value 600 0

1 The 12 V output obviously cannot be converted directly. A resistor network divides the output voltage to a value
within [0;5] V that the ATD converter can handle. Note also that the maximum output voltage should be taken in
account when selecting the ratio of the resistor network.

Implementation on MPC564xL

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

8 NXP Semiconductors

It yields the following formula for computing the SHIFT value:

SHIFT = (0x3FFF – sum_4_voltages) * 600 / 0x3FFF

Which can be rounded to (in order to get rid of one division)1:

SHIFT = (0x3FFF – sum_4_voltages) * 37 /1024

The new SHIFT value is applied to PWM1_H and PWM1_L by adding it to the initial value of VAL2

and VAL3 in the submodule 1 of FlexPWM0.

CAUTION:

 Modifying the double-buffered registers of a FlexPWM submodule is

allowed only if MCTRL[LDOK] is reset. To clear this bit,

MCTRL[CLDOK] should be used.

3.3. Overcurrent control with force-out logic

The configuration described in the previous section allows software control of the shift between the two

PWM pairs, and thus of the output voltage of the DC/DC converter. The force-out logic of the

FlexPWM should now be configured to automatically and immediately complement the second PWM

pair in case of an overcurrent condition.

A full description of the force-out logic can be found in the FlexPWM chapter of the device’s reference

manual. One should consider this mechanism as a way to disrupt, permanently or temporarily, the

continuous PWM generation.

Two things need to be configured when using the force-out logic:

1. The event causing this disruption, referred to as the force-event. It can be an internal event

(reload event, overflow of the counter, or software command, for example) or an external event

(EXT_FORCE signal). This setting is configured by the field CTRL2[FORCE_SEL] field of

each submodule.

2. The signal to be applied on the PWM outputs when the force-event occurs. The possible

configurations are:

a) PWM signals are left unchanged —called Normal mode in this application note

b) PWM signals are complemented—called Complementary mode in this application note

c) PWM signals are set to a specific logic level, 0 or 1

d) PWM signals are set to the level of an external signal

This configuration is achieved for each submodule by the DTSRCSEL and SWCOUT registers.

1 Note that this rounding may not be acceptable in a real application, where the shift value needs to be computed
and applied with a 0.1% accuracy.

Implementation on MPC564xL

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

NXP Semiconductors 9

Figure 7. Connection of the FlexPWM module to the H-bridge and to the overcurrent signal

The principles of the overcurrent control with the force-out logic are the following:

• The force-out logic is switched into one of these three modes:

1. Normal mode: the PWM1 signals are left unchanged in case of a force-event

2. One mode: PWM1_H is set to 1, PWM1_L is set to 0 in case of a force-event

3. Zero mode: PWM1_H is set to 0, PWM1_L is set to 1 in case of a force-event

• At each falling edge of PWM0_H, the force-out logic is configured to apply Zero mode in the

case of a force-event

• At each rising edge of PWM0_H, the force-out logic is configured to apply the One mode in the

case of a force-event

• The force-event is configured to be the external EXT_FORCE signal, connected to the

overcurrent signal.

• At each edge of the PWM0_H signal, the force-out logic is switched to Normal mode using a

software FORCE. This action clears an optional overcurrent protection that would have occurred

in the previous cycle.

• The configuration of the force-out logic at each PWM0 edge is done by the eDMA

Figure 8 illustrates these principles. Note that only the “high” PWM signal has been represented. The

blue dotted lines on PWM0_H show the internal PWM0_H signal before the force-out logic.

Remarks:

• The configuration of the force-out logic performed by the eDMA at each edge of PWM0_H is

only applied in case of an EXT_FORCE event, (that is, in the case of an overcurrent condition).

As long as no over-current condition occurs, the force-out logic never leaves Normal mode.

• At each edge of PWM0_H, the force-out logic is switched back to Normal mode before being

configured for the new setting (either One mode or Zero mode). This normal mode is applied by

a so-called software force signal, (that is, by setting the MCTRL2[FORCE] bit).

• One may wonder why the “complementary mode” of the force-out logic has not been used.

Indeed one may think this mode may remove the need for reconfiguration at each edge of

PWM0_H. However consider the first overcurrent condition in Figure 8: if the force-out logic

was configured in Complementary mode, the reaction to the overcurrent condition would have

Implementation on MPC564xL

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

10 NXP Semiconductors

been the same, but then the PWM1_H would have switched back to zero as soon as the timer

reached the VAL3 values (edge represented by the dotted line). In any case the force-out logic

needs to be reset to its Normal mode at each edge.

• As we have seen in the previous section, the DMA transfers are triggered by the “half-reload”

events in the submodules 0 and 1, (that is, when the timers reaches the value hold by the VAL0

registers of each submodule). Thus the VAL0 values can be adjusted so that the DMA transfers

are achieved exactly at the moment of the edges of PWM0. Typically VAL0 are set with the

value 0 and 600 on submodule 0 and 1, so that the DMA triggers correspond to each edge of

PWM0.

Figure 8. Principle of the overcurrent control with the force-out logic.

The register configuration should be the following at each falling edge:

1. Reset the force-out logic to its Normal mode:

DTSRCSEL[SEL23_1] = b00 (Generated PWM signal is used by the deadtime logic)

CTRL2[FORCE_SEL] = b000 (The local force signal is used to force the config)

CTRL2[FORCE] = b1 (Generate the local force signal by software)

2. Configure the force-out logic to its One mode:

Implementation on MPC564xL

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

NXP Semiconductors 11

DTSRCSEL[SEL23_1] = b10 (OUT23_1 bit is used by the deadtime logic)

SWCOUT[OUT23_1] = b1 (PWM0_H set to 1 in case of a force event)

CTRL2[FORCE_SEL] = b110 (The EXT_FORCE signal is used to force the config)

The register configuration is the same for the rising edges, with only one difference:

SWCOUT[OUT23_1] is set to b0 instead of b1.

NOTE:

Since PWM0_H and PWM0_L are configured as a complementary pair of

PWM signals, PWM0_L will be automatically complemented when the

force-out logic inverts PWM0_H.

3.4. Force-out logic reconfiguration by eDMA

As described earlier, the register configuration described in the previous section should be performed by

the eDMA at each edge (falling and rising) of the PWM0_H signal.

3.4.1. Generation of the eDMA requests by the FlexPWM module

When configured for PWM generation, the FlexPWM module can generate a DMA request at each

reload event1. It means each time the timer reaches VAL0 if half reload is enabled, and each time the

timer reaches VAL1 if full reload is enabled.

This trigger is called VALx write request in the reference manual. All the triggers from the four

submodules are merged in a single trigger source to the DMA_MUX, which is called comp_val.

Within one PWM period, two comp_val triggers will be generated:

• One from submodule 0, when its internal counter reaches the value of VAL0 (half-reload),

initialized to 0.

• One from submodule 1, when its internal counter reaches the value of VAL0 (half-reload),

initialized to 600.2

3.4.2. Description of the eDMA transfers

According to Section 3.3 Overcurrent control with force-out logic, three registers (SWCOUT,

DTSRCSEL, and CTRL2) need to be configured by DMA at each edge of the signal PWM0. Although

the addresses of these registers are not contiguous, it is possible to implement the necessary

configuration using only one DMA channel in one single transfer.

1 A reload event is an event causing the double-buffered registers of the FlexPWM module to be loaded. A reload
event is either the FlexPWM timer reaching the VAL0 value (half-reload), or reaching the VAL1 value (full-reload).
2 Actually, the DMA transfers are triggered a little before the rising and falling edges to account for the delay of
these transfers. By doing so, the force-out configuration is effective exactly at the moment of the edge.

Implementation on MPC564xL

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

12 NXP Semiconductors

The parameters of this DMA channel are as follows:

Table 2. eDMA channel parameters

Parameter Value

Number of bytes transferred (NBYTES) 64bits

Source Size (SSIZE) 64bits

Destination Size (DSIZE) 32bits

Destination Offset (DOFF) 0xFF10 (-0xF0)

Minor loop offset (MLOFF) 0x01E0

Destination address last adjustment (DLAST) 0x01E0

Number of iteration in a major loop (BITER) 2

The figure below shows how a transfer occurs within a minor loop:

Figure 9. DMA transfer during a minor loop for Force-Out reconfiguration

DMA channel 0 is used to implement this transfer. As mentioned in Section 3.3 Overcurrent control

with force-out logic, two configurations needs to be applied at each edge of the signal PWM0: the

configuration for the Normal mode and the configuration for the One or Zero mode. This is achieved by

channel linking: channel 0 links to itself at the end of each minor loop, and the iteration loop is set to 2.

In order to debug the DMA transfer and to assess their duration, an additional channel (channel 1) is

configured to toggle a pin at the beginning and at the end of each transfer. Figure 10 shows how

channels 0 and 1 are linked to each other.

Implementation on MPC564xL

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

NXP Semiconductors 13

Figure 10. Configuration and linking of the eDMA channels for the force-out reconfiguration

Several points need to be noted regarding the transfer generated by DMA channel 0:

1. 64bits are transferred at each DMA trigger, but the destination size (DSIZE) is set to 32bits. This

allows the 64bit transfer to be broken down into two 32bit transfers with different destination

addresses. An offset of -0x00F0 (DOFF) is applied to the destination address after each 32bit

transfer.

2. The CTRL1 register is written to as a side effect, but its configuration is not required.

3. At the end of the 64bit transfer (minor loop), the destination address need to be adjusted in order

to point to CTRL2 again. This is achieved by enabling the Minor Loop Mapping capability on

the destination address.

4. Each comp_val event from the FlexPWM starts two minor loops of channel 0. Each minor loop

of channel 0 configures the force-out logic for a specific mode (Normal mode, Zero mode, One

mode) in the following sequence:

5. Normal mode > One mode > Normal mode > Zero mode

6. The source memory for these transfers contains 4 groups of 64bits, each group corresponding to

one mode: Normal, Zero or One. This is depicted in the following figure.

Implementation on MPC564xL

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

14 NXP Semiconductors

Figure 11. Force-out logic configuration for Normal-mode, One-mode, and Zero-mode

3.5. Connection of the limit signal to the EXT_FORCE input

The EXT_FORCE input of the FlexPWM module is not an external pin of MPC564xL. The

EXT_FORCE signal is connected to the internal output of the eTimer0’s the channel 1.

Implementation on MPC564xL

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

NXP Semiconductors 15

Figure 12. Connections of the motor control peripherals on Leopard

Channel 1 of eTimer0 is configured to work in EDGE-COUNT mode. In this mode, the channel 1

counter counts both edges of the primary source. The primary source is the channel 0 input pin, which is

connected to the Ilimit. The output mode (selected with the CTRL2 register) is configured to enable

gated clock output while counter is active. This mode is selected so that the channel 1 output flag

(OFLAG1) mirrors exactly the overcurrent condition.

Performance

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

16 NXP Semiconductors

Figure 13. External and internal connections of the Ilimit signal

Performance

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

NXP Semiconductors 17

4. Performance

The figure below shows the result of the implementation of this control.

The PWM0 signal’s behavior conforms to what was expected: it is complemented as soon as the Ilimit

pulse arrives.

The signal in pink shows the state of the pin used to debug the DMA transfer responsible for

reconfiguring the force-out logic at each edge of PWM1.

NOTE

The actual transfer time is shorter than the length of the pulse, which

accounts for three transfer durations (two transfers to toggle the pin and

one transfer for the force-out logic).

1 Pink : DMA debug pin for force-out reconfiguration
2 Yellow: PWM0_H signal (generated by FlexPWM0 submodule 0)
3 Blue: PWM1_H signal (generated by FlexPWM0 submodule 1)
4 Green: Ilimit signal connected to eTimer0 channel 1

Figure 14. Observation of the PWM0_H and PWM1_H signals in case of an overcurrent

There are two critical timings to measure the performances:

1. The delay between the Ilimit edge and the action to complement the PWM1 signals: if this time

is too long, an overcurrent condition may cause some damage before the bridge is put in a safe

Performance

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

18 NXP Semiconductors

state. This delay is called reaction time.

2. The minimum time between an edge of PWM0 and a subsequent Ilimit pulse. If an Ilimit pulse

arrives too early after a PWM0 edge, the DMA transfer reconfiguring the force-out may not have

the time to complete, and the PWM1 signal will not be complemented instantaneously. To

minimize the delay, the DMA transfers can be started slightly before the edges of the PWM0 to

account for the time required for the DMA to load the TCD and to achieve the second portion of

the 64bit transfer that really loads the force-out configuration. To do this, the VAL0 value of the

submodules 0 and 1 can simply be adjusted. This time is called configuration time.

4.1. Reaction time

The following diagram shows the delay observed between the Ilimit pulse and the complement of

PWM_1.

1 Yellow: PWM0_H
2 Blue: PWM1_H
4 Green: Ilimit signal connected to eTimer0 channel 1

Figure 15. Delay of the force-out logic activation

This delay has been measured to be less than 100 ns. This time is basically the reaction time of the

force-out logic and the delay introduced by the eTimer channel gating the Ilimit signal.

Performance

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

NXP Semiconductors 19

4.2. Configuration time

At each edge of the PWM0 signal, the force-out is reconfigured via a DMA transfer. This transfer takes

some time. During the transfer, if an overcurrent pulse arrives, the force-out will not react. Three points

contribute to keep that configuration time as short as possible:

1. The DMA transfer for the force-out configuration should have the highest priority over other

DMA transfers

2. The DMA should have the highest priority on the crossbar in regards to other bus masters like

the cores or FlexRay. This highest priority has to be set for the two slave ports of the crossbar

used by the DMA transfer: the SRAM and the PBRIDGES. The core can keep the highest

priority on the flash memory. In addition, the parking option (the default master port connected

to a slave port when the slave is not used) has an impact on this transfer time. The SRAM and

PBRIDGE slave port should have the DMA as the default parking option.

3. The launch of the DMA transfers can be advanced by changing the VAL0 value of submodules 0

and 1. The following result has been obtained by launching the DMA transfer 300 ns before the

edges of PWM1.

1 Pink : DMA debug pin for force-out reconfiguration
2 Yellow: PWM0_H signal 3 Blue: PWM1_H signal 4 Green: Ilimit pulse

Figure 16. Behavior of the PWM signals if the Ilimit signal appears before the force-out logic

reconfiguration

Revision History

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

20 NXP Semiconductors

It is important to note that the force-out logic is level-sensitive. So if the Ilimit pulse occurs before the

DMA transfers complete, the new force-out configuration will apply as soon as the DMA transfer

finishes.

This scope shows that the Ilimit pulse can be simultaneous with the PWM0 edge. The consequence

would be an increased reaction time (132 ns instead of 100 ns).

5. Revision History
Table 3. Revision history

Revision number Date Substantive changes

1 09/2013 Initial release

2 06/2016 Table 2 – 3 new rows added

Revision History

Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic, Application Note, Rev. 2, 06/2016

NXP Semiconductors 21

Appendix A. Set-up with the MPC5643L Evaluation Board

The attached CodeWarrior project can be used as example for MPC5643L, and loaded on a standard

evaluation board. The standard evaluation board, consisting of a generic MPC56xx mother board plus a

specific MPC564xL daughter board, is used.

The MPC5643L has to be configured in Lock-Step mode (LSM) for running this project (using

Decoupled Parallel mode is possible but requires some software adjustment, such as RAM mapping).

The signals generated by MPC5643L can be observed on the following pins of the evaluation board:

Signal Description MCU pin Port Name PCR or PSMI

number

EVB pin (motherboard)

PWM0_H FlexPWM0_A[0] A[11] 11 PJ9[12]

PWM0_L FlexPWM0_B[0] A[10] 10 PJ9[11]

PWM1_H FlexPWM0_A[1] C[7] 39 PJ3[8]

PWM1_L FlexPWM0_B[1] C[6] 38 PJ1[8]

Ilimit (fake) FlexPWM0_A[3] A[2] 2 PJ9[3]

Analog input for current

measurement

ADC1_AN[5] E[0] 64 PJ5[1] – connected via

the jumper J40 to the on-

board potentiometer

CTU external trigger CTU_0[EXT_TRG] C[14] 46 PJ3[15]

DMA debug pin for force-out

configuration

GPIO A[0] A[0] 0 PJ9[1]

DMA debug pin for current

acquisition

GPIO A[3] A[3] 3 PJ9[4]

eTimer input for Ilimit eTimer_0 ETC[0] D[10] 58,

PSMI[35],

PADSEL=1

PJ8[11]

eTimer output for Ilimit eTimer_0 ETC[1] A[1] 1 PJ9[2]

Clock out GPIO B[6] B[6] 22 PJ7[7]

To test the software without any power stage, two signals are simulated:

• The output voltage through the load is simulated by the potentiometer W1, connected to analog

input channel 5 on ADC1 via jumper J40.

• The Ilimit pulse is generated by FlexPWM0 submodule 4; a pulse is generated every 10 to 15

periods of the PWM signals. It should be connected to the eTimer0 input via a jumper

connecting the pins PJ9[3] and PJ8[11].

Document Number: AN4794
Rev. 2

06/2016

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

Freescale, the Freescale logo, and Kinetis, are trademarks of NXP B.V. All other

product or service names are the property of their respective owners.

ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or

its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2016 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Control of a DC/DC Converter Using FlexPWM’s Force-Out Logic
	1. Introduction
	2. Control of a DC/DC Convertor
	2.1. Basic control
	2.2. Overcurrent control

	3. Implementation on MPC564xL
	3.1. Generation of the phase-shifted PWM
	3.2. Current acquisition with the CTU
	3.3. Overcurrent control with force-out logic
	3.4. Force-out logic reconfiguration by eDMA
	3.4.1. Generation of the eDMA requests by the FlexPWM module
	3.4.2. Description of the eDMA transfers

	3.5. Connection of the limit signal to the EXT_FORCE input

	4. Performance
	4.1. Reaction time
	4.2. Configuration time

	5. Revision History

