
Freescale Semiconductor Document Number: AN4793

Application Note Rev. 0, 09/2013

© 2013 Freescale Semiconductor, Inc.

Examples of using eTimer on Power

Architecture devices
by: Tomas Kulig

1 Introduction

This application note describes how to use the

Enhanced Motor Control Timer (eTimer)

module and what is necessary to set in the

device for using the eTimer. The base features

of the eTimer are shown in four examples which

were developed in a GreenHills project for

RAM memory; generating periodical signal,

generating periodical pulse, generating one-shot

signal and measure signal parameters. This

application note focuses on the eTimer module

on the MPC5744P MCU.

Contents
1 Introduction ... 1

2 Implementation of eTimer in the device .. 2

2.1 CGM module - for live – set clock .. 2

2.2 Enable clock in mode entry ... 2

2.3 SIUL2 module ... 4

3 Generating periodical signal .. 7

4 Generating periodical pulse (signal which has long period but thin pulse) 10

4.1 Check if it is possible to generate the signal with parameters width

and period with motc_clk input frequency... 12

4.2 Set registers for generating the pulse ... 12

4.3 Set registers for generating

short period ... 13

4.4 Set registers for generating long

period .. 14

5 Generating one-shot signal .. 15

5.1 Check if it is possible to generate the signal with parameters width

and delay with motc_clk input frequency .. 16

6 Measure signal parameters ... 17

6.1 Calculate the signal parameters 18

6.2 Calculate the signal parameters 19

6.3 Start measurement (second part of implementation) 19

7 Description of the Green Hills project .. 20

8 Reference ... 21

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc57xx-mcus/ultra-reliable-mpc574xp-mcu-for-automotive-industrial-safety-applications:MPC574xP?utm_medium=AN-2021

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

2 Freescale Semiconductor, Inc.

2 Implementation of eTimer in the device

There are three independent modules and each has six independent channels. All three modules are able

to generate external signals and work with input signals.

For using eTimer we need to configure following:

2.1 CGM module - for live – set clock

There is no special divider and clock selector for the eTimers modules. The eTimers use the Motor

Control clock which can be up to 160 MHz if the selector uses the PLL.

The selector CGM_AC0_SC can use internal oscillator, external oscillator (crystal) or PLL0. This

selector is valid for ADC and SWG clock. Figure 2 shows the field description of CGM_AC0_DC0

register.

Figure 1. MC_CGM_AC0_SC field description

Where SELSTAT can be 0 - internal oscillator 16 MHz, 1 - external oscillator/crystal 8-40 MHz or 2 –

PLL0.

The divider CGM_AC0_DC0 can enable/disable the clock and divide by 1 up to 16.

Warning: Use only odd DIV values (i.e., division factor of 2, 4, 6, 8, 10, 12, 14 or 16). Even values will

cause incorrect device behavior. Figure 2 shows the field description of CGM_AC0_DC0 register.

Figure 2. MC_CGM_AC0_DC0 field description

Where DE bit is for divider enable - 1/disable - 0. Div can be 0 up to 15. The motor control clock is

divided by value “DIV+1”.

2.2 Enable clock in mode entry

PCTLs registers select the group for non- low- power mode and for low-power modes, each peripheral

can be asserted only to one low-power group and one non-low-power group. Each group can be asserted

for one or more modes. There are eight groups for non-low-power modes (RUN_PC0 – RUN_PC7) and

eight groups for low-power modes (LP_PC0 – LP_PC7). See Figure 3 and code below which shows an

example of enabling the clocks for the eTimers. All eTimer have clocks enabled in modes RUN0,

RUN1, RUN2, RUN3 and DRUN. The eTimer0 has enable clock in modes STOP0 and HALT0 but

eTimer1 and eTimer2 have enable clock only in STOP0 mode.

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

Freescale Semiconductor, Inc. 3

Example code:

//enable group RUN_PC0

MC_ME.RUN_PC[0].R = 0xF8; //enable DRUN, RUN3, RUN2, RUN1 and RUN0

//enable group LP_PC0

MC_ME.LP_PC[0].R = 0x500 //enable STOP0 and HALT0

//enable group LP_PC1

MC_ME.LP_PC[1].R = 0x400 //enable HALT0

//set peripherals for group RUN_PC0

MC_ME.PCTL247.B.RUN_CFG = 0x0 //eTimer 0 - set group RUN_PC0 for enable clock

MC_ME.PCTL137.B.RUN_CFG = 0x0 //eTimer 1 - set group RUN_PC0 for enable clock

MC_ME.PCTL245.B.RUN_CFG = 0x0 //eTimer 2 - set group RUN_PC0 for enable clock

//set peripherals for group LP_PC0

MC_ME.PCTL247.B.LP_CFG = 0x0 //eTimer 0 - set group LP_PC0 for enable clock

//set peripherals for group LP_PC1

MC_ME.PCTL137.B.LP_CFG = 0x1 //eTimer 1 - set group LP_PC1 for enable clock

MC_ME.PCTL245.B.LP_CFG = 0x1 //eTimer 2 - set group LP_PC1 for enable clock

Figure 3. Example of clock enable

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

4 Freescale Semiconductor, Inc.

2.3 SIUL2 module

SIUL2 module provides communication with external world. Table 1, 2 and 3 show all pins which can

be used for eTimers modules. MSCR is used for output direction and IMCR is used for input direction.

Table 1. eTimer 0 pins

channel direction MSCR/IMCR SSS
PORT
PIN

PINS

144 LQFP 257MAPBGA

0

O 0/- 1 A0 73 P12

I
0/59 2 A0 73 P12

58/59 1 D10 76 R16

1

O 1/- 1 A1 74 T14

I
 1/60 2 A1 74 T14

59/60 1 D11 78 P17

2

O 2/- 1 A2 84 L14

I
2/61 2 A2 84 L14

80/61 1 F0 133 B6

3

O 3/- 1 A3 92 G15

I
3/62 2 A3 92 G15

62/62 1 D14 105 E17

4

O
4/- 3 A4 108 D16

43/- 1 C11 80 P16

I

4/63 3 A4 108 D16

30/63 1 B14 64 P11

43/63 4 C11 80 P16

99/63 2 G3 104 E16

5

O
44/- 1 C12 82 M14

77/- 1 E13 117 A11

I

24/64 1 B8 47 P7

44/64 3 C12 82 M14

77/64 4 E13 117 A11

100/64 2 G4 100 F16

Table 2. eTimer 1 pins

channel direction MSCR/IMCR SSS
PORT
PIN

PINS

144 LQFP 257MAPBGA

0

O
4/- 1 A4 108 D16

47/- 2 C15 124 A8

I
4/65 1 A4 108 D16

47/65 2 C15 124 FA8

1 O 45/- 1 C13 101 E15

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

Freescale Semiconductor, Inc. 5

channel direction MSCR/IMCR SSS
PORT
PIN

PINS

144 LQFP 257MAPBGA

48/- 2 D0 125 B8

I
45/66 1 C13 101 E15

48/66 2 D0 125 B8

2

O

16/- 2 B0 109 C16

46/- 1 C14 103 F14

49/- 2 D1 3 E3

I

16/67 1 B0 109 C16

46/67 2 C14 103 F14

49/67 3 D1 3 E3

3

O

17/- 2 B1 110 C14

50/- 2 D2 140 B4

92/- 1 F12 106 D17

I

17/68 1 B1 110 C14

50/68 2 D2 140 B4

92/68 3 F12 106 D17

4

O

14/- 2 A14 143 A3

51/- 2 D3 128 A5

56/- 2 D8 32 L4

93/- 1 F13 112 A15

I

14/69 1 A14 143 A3

51/69 2 D3 128 A5

56/69 3 D8 32 L4

93/69 4 F13 112 A15

5

O

5/- 2 A5 14 H4

15/- 2 A15 144 D3

52/- 2 D4 129 B7

78/- 1 E14 119 B10

I

5/70 1 A5 14 H4

15/70 2 A15 144 D3

52/70 3 D4 129 B7

78/70 4 E14 119 B10

Table 3. eTimer 2 pins

channel direction MSCR/IMCR SSS
PORT
PIN

PINS

144 LQFP 257MAPBGA

0
O

116/- 2 H4 - F4

128/- 1 I0 - C6

I 116/71 1 H4 - F4

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

6 Freescale Semiconductor, Inc.

channel direction MSCR/IMCR SSS
PORT
PIN

PINS

144 LQFP 257MAPBGA

128/71 2 I0 - C6

1

O
119/- 2 H7 - F2

129/- 1 I1 - T3

I
119/72 1 H7 - F2

129/72 2 I1 - T3

2

O

6/- 2 A6 2 D1

122/- 2 H10 - C7

130/- 1 I2 - D11

152/- 2 J8 95 G16

I

6/73 1 A6 2 D1

122/73 2 H10 - C7

130/72 3 I2 - D11

152/73 4 J8 95 G16

3

O

7/- 2 A7 10 G4

125/- 2 H13 - A14

131/- 1 I3 - A10

I

7/74 1 A7 10 G4

125/74 2 H13 - A14

131/74 3 I3 - A10

4

O

8/- 2 A8 12 H1

126/- 2 H14 - P13

137/- 1 I9 - L3

152/- 1 J8 95 G16

I

8/75 1 A8 12 H1

126/75 2 H14 - P13

137/75 3 I9 - L3

152/75 4 J8 95 G16

5

O

9/- 2 A9 134 A4

127/- 2 H15 - C17

138/- 1 I10 - M3

153/- 1 J9 16 K1

I

9/76 1 A9 134 A4

127/76 2 H15 - C17

138/76 3 I10 - M3

153/76 4 J9 16 K1

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

Freescale Semiconductor, Inc. 7

2.3.1 Set as input

Set the IMCR and MSCR register.

The IMCR registers select the input functionality of a pin and other parameters are set by the MSCR

registers. The MSCR register manages the following main parameters of a pin:
 input buffer enable (IBE)

 output buffer enable (OBE)

 slew rate (SRC)

 output functionality (SSS).

IMCR[number of IMCR register].SSS.B = SSS from table; //select the input

functionality

MSCR[number of MSCR register].IBE.B = 0x1; //enable input buffer

MSCR[number of MSCR register].OBE.B = 0x0; //disable output buffer

MSCR[number of MSCR register].SRC = slew_rate; //set slew rate

2.3.2 Set as output

Set the MSCR register.
MSCR[number of MSCR register].SSS.B = SSS from table; //select the output

functionality

MSCR[number of MSCR register].IBE.B = 0x0; //disable input buffer

MSCR[number of MSCR register].OBE.B = 0x1; //enable output buffer

MSCR[number of MSCR register].SRC = slew_rate; //set slew rate

3 Generating periodical signal

Description: This function is for generating periodical signal with variable duty cycle.

Minimum steps of duty cycle variance given by motor control clock (motc_clk) are given in the Table 4.

Table 4: Minimum step of duty cycle

Minimal frequency Maximum frequency Minimum variance of duty cycle

> 0 <= motc_clk/1000 0.1 %

> motc_clk/1000 <= motc_clk/100 1 %

> motc_clk/100 <= motc_clk/10 10 %

> motc_clk/10 <= motc_clk/2 50 %

What is needed: 1 channel, 1 pad

Implementation: The COMP1 register is used for driving the duty cycle, the CMPLD1 register is used

for driving the frequency of the signal. Figure 4 shows this. The output signal is set on a successful

compare of COMP1 and cleared on successful compare of COMP2.

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

8 Freescale Semiconductor, Inc.

Figure 4. Generating periodical signal waveforms

d- duty cycle

f- frequency

motc_clk- motor control clock

eTimer_div- eTimer internal divider

1. Check if it is possible to generate the signal with parameters d and f with input frequency of module

motc_clk:
 motc_clk[Hz]/(MAX_DIVIDER*MIN_FREQ[Hz]) < f[Hz] <= motc_clk[Hz]/2

where, MAX_DIVIDER is value 128, it is the maximal internal eTimer divider

MIN_FREQ is value 65000. The maximum value of counter is 65535. The value 535 is reserve.

The left side of equation is low frequency board and the right side is the high frequency board.

Example:
motc_clk = 160 MHz

160*10^6/(128*65000) < f <= 160*10^6/2

19 Hz < f <= 80 MHz

It means device is able to generate signal form 20 Hz up to 80 MHz.

2. Set the internal eTimer divider:
eTimer_div >= motc_clk/(f*MIN_FREQ)

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

Freescale Semiconductor, Inc. 9

but DIV can be only following: 1, 2, 4, 8, 16, 32, 64 or 128

Example:
motc_clk = 160 MHz

f = 50 Hz

eTimer_div >= 160*10^6/(50*65000)

eTimer_div >= 49

The closest possible value is DIV = 64.

3. Set the registers for generating signal with parameter d and f:

a) Set up the signal parameters:
CTRL1.B.PRISRC = this is given by eTimer_div; //See the table 5

Table 5: eTimer dividers values

eTimer_div PRISRC value

1 24

2 25

4 26

8 27

16 28

32 29

64 30

128 31

CTRL1.B.CNTMODE = 0x1; // count rising edges of primary source

CTRL1.B.LENGTH = 0x1; // count until compare then reinitialize

CCCTRL.B.CLC1 = 0x7; // reinitializing counter by value which is stored

in CMPLD1

COMP2.R = 0xFFFF; //

COMP1.R = 0xFFFF – (range*d)/1000; //

CMPLD1.R = 0xFFFF – range + 1; //

where range = motc_clk/(eTimer_div*frequency)

b) Output setting:
CTRL2.B.OEN = 0x1; //output enable
CTRL2.B.OUTMODE = 0x8; //set on successful compare on COMP1, clear on

 successful compare on COMP2

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

10 Freescale Semiconductor, Inc.

4 Generating periodical pulse (signal which has long period but thin
pulse)

Description: This function is for generating periodical signal with variable pulse width. One channel of

eTimer is used for generating the pulse. Period is given by 1 or 2 channels. It depends on length of the

period.

What is needed:

a) short period: 2 channel, 1 pad

b) long period: 3 channel, 1 pad, two chained channels are used for period

Implementation:

The Figure 5 shows the connection between the eTimer channels. The colors of blocks correspond with

the waveform on figures 6 and 7.

Short period

Channel C defines the period of the signal that triggers the channel A which generates the pulse. The

channel A COMP1 register is used for driving 50 % duty cycle and the CMPLD1 register is used for

driving period of signal. The output signal is set on successful compares of COMP1 and cleared on

successful compares of COMP2. The output signal of channel C is used as the secondary source for

channel A (as a trigger). This signal is only inside the device (inside the module). The channel A

COMP1 register is used for driving the width. The output signal is cleared on the secondary source input

edge and set on the compare with COMP1. The output signal is inverted and then is routed to the pin

(output). The waveforms are shown on the Figure 6.

Long Period

Channel C is used as a source of channel B which triggers the channel A which then generates the pulse.

The channels B and C define the period of signal. The channels B and C COMP1 registers are used for

driving 50 % duty cycle and CMPLD1 registers are used for driving period of signal. The output signals

of both channels are set on successful compare of COMP1s and cleared on successful compares of

COMP2s. The output signal of channel C is used as the source of clock for channel B. This signal is

only inside the device (inside the module). The output signal of channel B is used as the secondary

source for channel A (as a trigger). This signal is only inside the device (inside the module). The channel

A COMP1 register is used for driving the width. The output signal is cleared on the secondary source

input edge and set on compare with COMP1. The output signal is inverted and then is routed to the pin

(output). The waveforms are shown on the Figure 7.

Figure 5. Connection between channels

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

Freescale Semiconductor, Inc. 11

Figure 6. Short period waveforms

Figure 7. Long period waveforms

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

12 Freescale Semiconductor, Inc.

width -width of pulse

period - period of signal

range_b- range for channel of timer which defines the period – short period

range_c-range for channel of timer which defines the period, this is used only for longer period

div_pulse-value of channel divider which is used for pulse

div_period-divider of channel which is used for period

short x long period

motc_clk -motor control clock

4.1 Check if it is possible to generate the signal with parameters width and period

with motc_clk input frequency

a) Check the width

1000000/motc_clk [kHz] < width [ns] < MIN_FREQ*MAX_DIVIDER*1000000/motc_clk [kHz],

where MAX_DIVIDER is value 128, it is the maximal internal eTimer divider

 MIN_FREQ is value 65000, it is maximum value of counter (535 is reserve).

The left side of equation is the minimum period and the right side is the maximum period.

b) Check the period

2/motc_clk [kHz] < period [ms] < MIN_FREQ*MIN_FREQ*MAX_DIVIDER/motc_clk [kHz],

where MAX_DIVIDER is value 128, it is the maximal internal eTimer divider

MIN_FREQ is value 65000, it is maximum value of counter (535 is reserve).

The left side of equation is the minimum period and the right side is the maximum period.

It makes sense to check one more conclusion:

2*period [ms] *1000000 > width [ns]

Period must be at least twice bigger than width.

Decide if the signal has long or short period
short period < MIN_FREQ*MAX_DIV/motc_clk <= long period

Example:
motc_clk = 160 MHz

short period < 65000 * 128 / 160 [MHz] <= long period

short period < 52 [ms] <= long period

4.2 Set registers for generating the pulse

The width of the pulse does not depend on the number of channels which are used for generating the

period but the secondary source depends on this. It means that for short periods the output of channel C

is used and for long periods the output of channel B is used as the secondary source. The first channel is

used for short period (channel C) and the second channel (channel B) is used for long period.

Set the internal eTimer divider: div_pulse >= (width [ns] * motc_clk [GHz])/MIN_FREQ, but div can

be only following: 1, 2, 4, 8, 16, 32, 64 or 128.

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

Freescale Semiconductor, Inc. 13

Example:
a) motc_clk = 160 MHz

 width = 750 ns

 div_pulse >= (750 * 0.16)/65000

 div_pulse >= 0

 The closest possible value is div_pulse = 1.

b) Set up the pulse parameters:

 CTRL1.B.PRISRC = this is given by div_pulse; //See the table 5 - eTimer_div =

div_period

 CTRL1.B.CNTMODE = 0x6; //edge of secondary source triggers primary count till compare

 CTRL1.B.LENGTH = 0x1; //count until compare then reinitialize

 COMP2.R = 0xFFFF; // here is not use this comparator set out of working area

 COMP1.R = (motor_clk [GHz] * width [ns])/div_pulse;

The secondary source of channel A (channel which generates the pulse) is given by the length of period

generating signal. It is channel C for short period. It is channel B for long period.

Short:
CTRL1.B.SECSRC = 16 + number of channel C; //for period is use one channel (channel C)

Long:
CTRL1.B.SECSRC = 16 + number of channel B; //for this period is used two channels, here is

used the channel B which trigger channel A which create the pulse. The channel C is source of

primary clock for the channel B.

Output setting:
CTRL2.B.OEN = 0x1; //output enable

CTRL2.B.OUTMODE = 0x5; // set on successful compare on COMP1, clear on secondary

source

Input edge:
CTRL2.B.OPS = 0x1; // inverted output

4.3 Set registers for generating short period

Only one channel of eTimer is used (channel C on Figure 5).

a) Set the internal eTimer divider:
div_period >= motc_clk [kHz] * period [ms]/ MIN_FREQ

Example:
motc_clk = 160 MHz

period = 20 ms

div_period >= (160000 * 160000)/65000

div_period >= 49

The closest possible value is div_period = 64.

b) Set up the period parameters:
CTRL1.B.PRISRC = this is given by div_period; //See the table 5 - eTimer_div =

div_period

CTRL1.B.CNTMODE = 0x1; //count rising edges of primary source

CTRL1.B.LENGTH = 0x1; //count until compare then reinitialize

CCCTRL.B.CLC1 = 0x7; //reinitializing counter by value which is stored

in CMPLD1

COMP2.R = 0xFFFF; //

COMP1.R = 0xFFFF – range_b/2; //duty cycle is always 50 %

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

14 Freescale Semiconductor, Inc.

CMPLD1.R = 0xFFFF – range_b + 1; //

where range_b = motc_clk * period/div_period

c) Output setting
CTRL2.B.OUTMODE = 0x8; //set on successful compare on COMP1,

clear on successful compare on COMP2

This signal is not routed on the output pin. It is used as trigger of channel which creates pulse.

4.4 Set registers for generating long period

There are two channels for generating period channel C and channel B (Figure 5). The Setting period

has three level of latitude: internal eTimer divider (channel C), two counting values (channel C) and

(channels B).

a) Determine ranges of both counters and divider for the channels C for given period and motor

control:
period [ms] = div_period * range_b * range_c/motc_clk [kHz]

where range_b and range_c is from 2 up to MIN_FREQ and div_period 1, 2, 4, 8, 16, 32, 64 or

128

Example:
motc_clk = 160 MHz

period = 250 ms

250 = div_period * range_b * range_c/160000

4 * 10
7
 = div _period * range_b * range_c

Check the value of div_period:
range_b = range_c = MIN_FREQ

4*10
7
 = div_period * MIN_FREQ2

div_period = 4 * 10
7
/4225 * 10

6
 = 0,01 -> select dic_period = 1

range_b * range_c = 160000 * 250 / 1 = 4 * 10
7

Chose range_b = 40000

range_c = 4 * 10
7
/range_b

range_c = 4 * 10
7
/4 * 10

4

range_c = 1000

b) Channel C – internal
CTRL1.B.PRISRC = this is given by div_period; //See the table 5 - eTimer_div = div_period

CTRL1.B.CNTMODE = 0x1; //count rising edges of primary source

CTRL1.B.LENGTH = 0x1; //count until compare then reinitialize

CCCTRL.B.CLC1 = 0x7; //reinitializing counter by value which is stored

in CMPLD1

COMP2.R = 0xFFFF; //
COMP1.R = 0xFFFF – range_b/2; //duty cycle is always 50 %

CMPLD1.R = 0xFFFF – range_b + 1; //

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

Freescale Semiconductor, Inc. 15

Output setting
CTRL2.B.OUTMODE = 0x8; //set on successful compare on COMP1, clear on successful

compare on COMP2

c) Channel B – trigger for the channel A which creates the pulse
CTRL1.B.PRISRC = this is given by div_period; //See the table 5 - eTimer_div = div_period

CTRL1.B.CNTMODE = 0x1; //count rising edges of primary source

CTRL1.B.LENGTH = 0x1; //count until compare then reinitialize
CCCTRL.B.CLC1 = 0x7; //reinitializing counter by value which is stored in

CMPLD1

COMP2.R = 0xFFFF; //
COMP1.R = 0xFFFF – range_c/2; //duty cycle is always 50 %

CMPLD1.R = 0xFFFF – range_c + 1; //

d) Output setting
CTRL2.B.OUTMODE = 0x8; //set on successful compare on COMP1, clear on successful

compare on COMP2

5 Generating one-shot signal

Description: This function generates a single short pulse which has two parameters: delay and width.

The width expresses the width of the pulse and the delay expresses time between generating pulse start

and the function trigger. It is possible to select the active level of pulse – high or low.

What is needed: 1 channel, 1 pad

Implementation: The COMP1 register is used for the delay and the COMP2 register is used for driving

the width of the pulse.

Figure 8 shows this. The output signal is set on successful compare of COMP1 and cleared on successful

compare of COMP2.

The first part is used to set the eTimer channel and the second part is used for generating the signal.

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

16 Freescale Semiconductor, Inc.

Figure 8. Generating one-shot signal waveforms

5.1 Check if it is possible to generate the signal with parameters width and delay
with motc_clk input frequency

a) check delay 2/motor_freq [MHz] < delay [us] < MIN_FREQ* MAX_DIVIDER/ motor_freq

[MHz],Where MAX_DIVIDER is 128 and MIN_FREQ = 65000.

Example:
 motc_clk = 160 MHz

2/160 < delay [us] <128*65000/160

25 ns < delay < 52 ms

b) Check width

 width < delay

5.2. Setting of eTimer channel

a) Set the internal eTimer divider:
div_period >= motc_clk [MHz] * delay [us]/ MIN_FREQ

Example:
motc_clk = 160 MHz

delay = 1 ms

div_period >= 160 [MHz] * 1000 [us]/ 65000

div_period >= 2.46

The closest possible value is div_period = 4.

b) Set up the period parameters:

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

Freescale Semiconductor, Inc. 17

CTRL1.B.PRISRC = this is given by div_period; //See the table 5 - eTimer_div =

div_period

CNTR.R = 0x0 ; //clear counter for the new use

COMP1.R = range – delay; //

COMP2.R = range + (width [us] *motc_clk [MHz]/div_period) – delay + width;

c) Where range = delay [s]*motc_clk [MHz]/div_period

CTRL1.B.ONCE = 0x1; //count until compare and then stop

c) Output setting
CTRL2.B.OEN = 0x1; - enable output

CTRL2.B.OPS = output active level; // 0 – low, 1- high
CTRL2.B.OUTMODE = 0x4; // toggle OFLAG output using alternating compare

 registers

5.3. Start generating:
CNTR.R = 0x0; // clear counter for the new use
CTRL1.B.CNTMODE = 0x1; // count rising edges of primary source/start generating

 signal

6 Measure signal parameters

Description: This function is for measuring signal frequency and duty cycle.

What is needed: 1 channel, 1 pad

Implementation: One channel of the eTimer is used for measuring the frequency and duty cycle. The

function uses the capture functionality of the eTimer. The motor control clock is used as the primary

source of clock and the input signal as secondary source. Its edges drive the capturing values of internal

counter. The counter is counting repeatedly the primary source and captures its values on edges

produced by the secondary source or input. The capture 1 register is set for capture the counter value on

rising edge of signal and the capture 2 register is set for capture the counter value on falling edge of

input signal. The capture registers have two-deep FIFO so they are able to capture two values. The

frequency is calculated from the two values related to the rising edges and the duty cycle using the

difference between the values related to the first rising edge and the first falling edge. The

implementation is divided into two parts. First part is used for setting the eTimer channel and the second

part is used for doing the measurement (start capturing and calculate the frequency and duty cycle). The

Figure 9 shows the waveforms.

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

18 Freescale Semiconductor, Inc.

Figure 9. Measurement signal waveforms

The values in the brackets mean the position in the FIFO of the capture registers.

6.1 Calculate the signal parameters

a) Frequency:
 f [kHz] = motc_clk [kHz]/(CAPT1.R[1] - CAPT1.R[0]),

 where motc_clk is motor control clock.

 Example:

 The input signal was generated by function generator. Following setting has been used: 3 kHz,

11.26%, slewrates of falling and rising edge 150 ns.
motc_clk = 160 MHz

CAPT1.R[1] = 0xC642 = 50754

CAPT1.R[0] = 0xF5F0 = 62960

f [kHz] = 160000/(50754-62960) = 160000/53329 = 3.0002 kHz (3 kHz in device)

50754 – 62960 is equal 53329 because 16 bit unsigned format is used and the counter counts

repeatedly. So the counter counts from 62960 to 65535 – overflow to 0 (maximum 16 bit value) and

from 0 to 50754 so = 65535 – 62960 + 50754 = 53329.

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

Freescale Semiconductor, Inc. 19

b) Duty cycle

duty [per thousand] = ((CAPT2.R[0] - CAPT1.R[0])*1000)/(CAPT1.R[1] - CAPT1.R[0])

Example:
CAPT1.R[1] = 0xC642 = 50754

CAPT1.R[0] = 0xF5F0 = 62960

CAPT2.R[0] = 0x0D66 = 3430

duty [per thousand] = ((3430- 62960)*1000)/(50754 - 62960) = 6005*1000/53329 = 112.6 (112 in

device)

6.2 Calculate the signal parameters

CTRL1.B.PRISRC = IP_BUS_DIVIDER[0]; //maximum resolution

CCCTRL.B.CPT1MODE = 0x2; //capture counter by rising edge of secondary input (measure

 signal)

CCCTRL.B.CPT2MODE = 0x1; //capture counter by falling edge of secondary input (measure

 signal)

CCCTRL.B.CFWM = 0x2; //capture flag set as soon as more than 3 values will be

 in FIFOs

CTRL1.B.LENGTH = 0x0; //continue counting to roll over

CTRL1.B.ONCE = 0x0; //count repeatedly

CTRL1.B.SECSRC = channel; //counter "channel" input pin is use for trigger the

 capturing – measuring signal is connect to this pin

CTRL1.B.CNTMODE = 0x1; //count rising edge of primary source

6.3 Start measurement (second part of implementation)

a) Measure
CCCTRL.B.ARM = 0x1; //enable/start capturing

while ((STS.B.ICF1 == 0x0)||(STS.B.ICF2 == 0x0)); //wait for capture 2 cap1 values and 2 capt2

values

CCCTRL.B.ARM = 0x0; //disable/stop capturing

STS.B.ICF1 = 0x1; //clear capture 1 flag

STS.B.ICF2 = 0x1; //clear capture 2 flag

Read captures values from FIFOs:
measure[0] = CAPT1.R; //read first capture1 value
measure[1] = CAPT1.R; //read second capture 1 value
measure[2] = CAPT2.R; //read first capture2 value
measure[3] = CAPT2.R; //read second capture2 value

b) Calculate frequency
frequency [kHz] = motor_freq [kHz]/(uint16_t)((measure[1] - measure[0]));

It is very important to use uint16_t data type for captured values because the counter rolls over and if the

16 bit unsigned data type is used the counter overflow is not important. It has no effect on value

captured for frequency and duty. See “Calculate the signal parameters” for more details about this.

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

20 Freescale Semiconductor, Inc.

c) Calculate duty
duty = (uint16_t)((measure[2] - measure[0]))*1000/(uint16_t)((measure[1] -

measure[0]));

Duty cycle is calculated in per thousand.

7 Description of the Green Hills project

The example codes use the eTimer 0 module. Before using any of the function it is necessary to set up

the device for using the eTimer 0. The function Init_peripheral_eTimer() enables the clock for the

eTimer 0 module. The function eTimer_CONFIG_PINS() sets the pin for communication with external

world. Table 6 shows details about function which are in the project.

Table 6: Summary of functions which are in the project

Example name Function name Function parameters unit Description

Generating

periodical

signal

Generate_Signal

timer [-] which timer

channel [-] which channel of timer

frequency [Hz] frequency of the output signal

duty [‰] duty of the output signal

motor_freq [kHz] module frequency

Generating

periodical

pulse (signal

which has

long period

but thin pulse)

Generate_Signal2

timer [-] which timer

channel4period_b [-] base channel for period

channel4period_0 [-] output channel for period

channel4pulse [-] channel create the pulses

period [ms] period of the output signal

width [ns] width of the pulse

motor_freq [kHz] module frequency

Generating

one-shot

signal

Generate_OneShot

_signal_set

timer [-] which timer

channel [-] which channel of timer

delay [s] delay of the pulse

width [s] width of the pulse

motor_freq [kHz] module frequency

active_level [-] HIGH or LOW

Start_Generate

_OneShot_signal

timer [-] which timer

channel [-] which channel of timer

Measure signal Measure_signal timer [-] which timer

Examples of using eTimer on Power Architecture devices, Rev. 0, 09/2013

Freescale Semiconductor, Inc. 21

Example name Function name Function parameters unit Description

parameters

_parameters_set channel [-] which channel of timer

Start_Measure

_signal

timer [-] which timer

channel [-] which channel of timer

motor_freq [kHz] module frequency

*frequency
1
 [Hz] frequency of the measure signal

*duty
1
 [‰] duty of the measure signal

The project can be opened as follows:

“Location on computer”\ eTimer\build\ghs\blocks\eTimer\eTimer_sram.gpj

8 Reference

MPC5744PRM - Reference manual available at www.freescale.com

1
 These variables are returned by the function.

www.freescale.com

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. Freescale reserves the right to make changes without
further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does Freescale assume any liability arising out of
the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in Freescale data sheets and/or specifications can and
do vary in different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to standard terms and
conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg.
U.S. Pat. & Tm. Off. All other product or service names are the property of their respective
owners.

© 2013 Freescale Semiconductor, Inc. All rights reserved.

 Document Number: AN4793

 Rev. 0, 09/2013

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions

	1 Introduction
	2 Implementation of eTimer in the device
	2.1 CGM module - for live – set clock
	2.2 Enable clock in mode entry
	2.3 SIUL2 module

	3 Generating periodical signal
	4 Generating periodical pulse (signal which has long period but thin pulse)
	4.1 Check if it is possible to generate the signal with parameters width and period with motc_clk input frequency
	4.2 Set registers for generating the pulse
	4.3 Set registers for generating short period
	4.4 Set registers for generating long period

	5 Generating one-shot signal
	5.1 Check if it is possible to generate the signal with parameters width and delay with motc_clk input frequency
	6 Measure signal parameters
	6.1 Calculate the signal parameters
	6.2 Calculate the signal parameters
	6.3 Start measurement (second part of implementation)

	7 Description of the Green Hills project
	8 Reference

