Order this document
as AN476/D

Freescale Semiconductor

AN476

CPU16 and the configurable timer module
(CTM) in engine control

By Ross Mitchell,
MCU Applications,
Motorola Ltd.,

East Kilbride, Scotland

Introduction

Engine control is very demanding not only for the hardware that must survive the harsh environment, but
also for the MCU which may be used to manage the ignition, injectors and a number of other precisely
controlled signals. A CPU and some port pins are not enough to do the job and so special timer modules
have been developed to make the task of controlling ever more complex engines within the constraints of
ever tightening emissions regulations.

The configurable timer module (CTM) was developed for automotive applications which require fiexibility
and performance from the MCU together with the ability to be designed very quickly for a specnﬁc
customer’s requirements. The CTM is a modular approach to solving this problem.

The CTM is in fact a variety of possible timers that may be constructed from a number of smaller building
blocks. A version of the CTM, called CTM-2, is to be found on the M6BHC16W1 device. This version
contains 10 channels of flexible 16-bit double action capture/compare units plus 3 16-bit free running
counters with various capabilities. The CTM-2 module does not have an other existing sub-module which
is a single event capture/compare unit. Other modules are under development and as these become
available, they may be included in new designs just as easily.

The code described in this document was generated specifically to demonstrate the method and
performance of an application using the CTM timer module in a demanding environment. An engine
management application requires a great variety of different functions from a timer and so is ideal in
demonstrating how the CTM module may be used. The CPU16 is a very good match to this timer module
with fast interrupt handling and good 16-bit performance. It should be noted that the CTM is also designed
for use with CPU32 which provides significant improvements in CPU performance over CPU16, and
supports both 16- and 32-bit reads and writes to make it an excellent match to the CTM.

The example does not cover all aspects of engine management. Aside from the event table generation
code there are a number of demands on the software not explored here, such as prolonging or shortening
a pulse that has already begun, since these events are mainly dependent upon the way the software is
written rather than the specific features of the CTM. Some aspects of the engine control have been
simplified and modified to more clearly demonstrate the techniques employed by the software.

It is assumed that the reader has access to detailed information regarding the CTM module, however a
short description of the main elements of the CTM is provided to identify the functions associated with the
CTM sub-modules.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

freescale"

semiconductor

rxzb30
Rectangle

rxzb30
Rectangle

rxzb30
ForwardLine

rxzb30
Rectangle

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

rxzb30
Rectangle

4\ Freescale Semiconductor, Inc.

1 CTM-2 - a brief description

1.1 Architecture and modularity

The CTM is a module for the 68HC16 and 68300 family of micro-controllers. These are collectively known
as Inter Module Bus (IMB) devices due to their architecture of a silicon backplane off which hang all the
modules that make up the device. The CTM has a very similar approach with a backplane along the centre
line of the module and time base busses on the periphery of the CTM, thereby providing control and timing
signals to the CTM submaodules as efficiently as possible, while retaining maximum flexibility. All the sub-
modules that make up the timer have a pre-defined height and are rectangular just as with the IMB
modules. Figure 1.1 illustrates the physical layout of the CTM.

Since the sub-modules have been designed to fit together very easily (some designs can be completed in
a matter of days), defining the CTM module is basically a case of deciding on the numbers of each sub-
module and the order of the different sub-modules on the backplane. There are of course other things to
consider, but designing a new CTM module with existing sub-modules is a remarkably easy task.

X TM-2
7/III//, ZIIIIIIIIIIIIIIIIIIIIIIIIIII/’IIIIIIIIIIIIIIII‘IIIIIII

% TIME BASE BUSSES — TIME BASE BUSSES

v

NN\

Lo

UPPER
SUBMODULES

E E CTM CONTROL BUS
- .

LOWER
SUBMODULES

9lNSVa
SINSVa

STNSIH
YZNSON

SN R AR AR AR R AR AR RRRRNNA RN AN NN AN AN N NN N NN MNRN NN NN VAR NN SN NN NN NN
£ z
WSTTTE
|
<
od ewsva
]
4
5
39
)
[l
24
} [
IS URERRRRRARRRNR RN AU AR R AR ARAR AR NN NN NN NNNNNANANNANNA NN ANNNNN

' N
2
|-

N 31naoENs [~
+ 3INCOWENS [\

1+ 3INCGONENS

L TINGOWENS
NSO
olwsva

Lwsva |
ZInsva
YIWSYa

a

e ~{ LW TINGOWENS

o~ _WIIndowans
’a

Ya

o /-r cINSYa

I

TIME BASE BUSSES

IS

TIME BASE BUSSES

&

=d

spsrrss. |7

IMB

Figure 1.1 CTM-2 architecture

1.2 Bus Interface Unit Sub-module (BIUSM) -

In the same way that the SIM module interfaces to the external memory, the Bus Interface Unit Sub-
module (BIUSM) provides the interface between the timer sub-modules and the rest of the device. This
unit contains the clock sources derived from the system clock and allows the user to set up some of the
interrupt priority and arbitration control bits while the remainder are configured individually for each
submodule. The clock sources can be from system clock divided by 2 (nominal 8.38MHz) down to a divide
by 768 option (nominal 21.8kHz). Together with the control over the system clock frequency, this gives
endless possibilities for the selection of the timebases.

IszTOROLA Go to: www.freescale.com AN476/D

A Freescale Semiconductor, Inc.

1.3 Free-running Counter Sub-module (FCSM)

A 16-bit free-running up counter is basically the standard counter found on many other Motorola devices
(eg HC11 and HCO05) and very similar to the GPT free-running counter (found on the M68HC16Z1 and

M68331 devices).

1.4 Modulus Counter Sub-module (MCSM)

In addition to the free-running counter, this has the additional capability of pre-loading the 16-bit counter. It
remains an up counter but can be programmed to count from a specified value up to $FFFF before re-
loading the counter as it overflows. Remember that this counter cannot count down. Also note that the
counter load register is updated whenever the 16-bit up counter register is written and so saves updating
both the load and counter registers separately.

1.5 Double action Sub-module (DASM)

A function that generates both edges of a pulse from a single CPU intervention is very useful in reducing
the interrupt overhead where the pulse duration and start time are well defined before the pulse start edge.
Equally, the capability of deriving the period or width of a pulse from a single CPU intervention can
determine the input pulse characteristics with a minimum of interrupt overhead. These requirements are
central to engine management where many interrupt sources are present and the worst case combination
of events is of great importance.

The DASM sub-module was designed to perform these tasks and a few others with a minimum of CPU
activity. The DASM also provides PWM capability and standard timer capture and compare functions similar
to that of the HC11 timer.

AN476/D I ’ MOTOROLA

Go to: www.freescale.com 3

A Freescale Semiconductor, Inc.

2 Demands of engine management

Engine control involves a combination of fast responses to the rapid changes in engine demands required
to maintain a high level of efficiency, while at the same time being able to control events ranging from
seconds down to microseconds. Consequently, key factors for MCU performance are the maximum
interrupt latency for engine control functions and the overall performance at high engine speeds. There are
a number of boundary conditions, such as checking for overflows of timers for long or altered pulse periods
and coping with sudden changes in demand from the driver, which must be considered for a full engine
management system. The example described here is a basic engine control without checks for several
boundary conditions.

In the example used to demonstrate the CTM capability, the engine is considered to be a 6-cylinder petrol
engine with injection, ignition and knock gate signals provided by the CTM module. The engine parameters
are considered to be a 60-tooth crank wheel to make calculations simple (6 degrees between teeth) and it
is also the highest number of teeth normally found on petrol engines. Two missing teeth were again chosen
because this is the most severe case in normal use and a good demonstration of one of the functions of
the DASM sub-module.

CTMm-2

VY TILTATITIIS SIS SIS IS SIS TSI TSI IIITY,

DASM19 I DASM18 |

KNOCK SENSOR GATE

N

|

2 DASM17

INJECTORS

\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\ \\\

DASM15

%e

M SPARK PLUGS

SIS TTIIIITTSIITIITTTIS IS I SIS I TTII IS

\\\\\\t\\\\\\\t\'\\\\\\\\t
S

g

<

-h

(-]

Figure 2.1 Engine control with CTM-2

2AOTOROLA Go to: www.freescale.com ’ AN476/D

A Freescale Semiconductor, Inc.

3 System description

The hardware configuration of the CTM is simply to assign the 12 external pins of the CTM-2 module to
engine input and output functions. Figure 3.1 shows the arrangement of external connections which are
used for the demonstration software.

An engine has four phases to the engine cycle: induction, compression, ignition and exhaust. A 6-cylinder
engine usually has three pairs of pistons, with each pair on opposing halves of the engine cycle. Therefore
while one of the pair of pistons is compressing unburnt fuel for the ignition part of the engine cycle, the
other piston has reached the exhaust phase of the engine cycle. As a consequence, ignition and injector
control may be shared between these pairs of cylinders or be driven from individual outputs on the timer
module.

This application demonstrates the principle of independent outputs for all timing pulses for injection and
ignition. However, the CTM-2 module has a limited number of channels, and therefore some functions are
shared on an output. Figure 3.1 shows the channels that have shared functions on the right hand side. The
software is written as if these are separate outputs to acurately reflect the MCU activity and so could very
egsily t|>e modified to use independent outputs for all the timing functions on a CTM with sufficient
channels.

3.1 Hardware configuration

CRANK TOOTH PULSES
>»Missing tooth detect interrupt
—— Tooth count overflow interrupt
CTM2L® "
° ' cD13 ignition 1,4
—»D ; MCSM 24 DASM 13 |— D — ?
. Missing tooth . gnition 2,
: g DASM 14 : CTD14 .
> = MCSM 2 ' cro1s — lnition 3,6
: Tooth count DASM 15 N ||
: FCSM 25 N
. 2uS ti . Injector 1,4
ctD10 S timebase ——{ DASM 16 |— T8 1™ -
-»I : , DASM 10 N — Injector 2,5
. Tooth period - DASM 17 v L] -
. N Injector 3,6
o oaswn [y |—»{ oaswe +<2e '
- | : DASM 11 DASM 18 |— >
. CAM pulse \
. L)
ez [SASM 2 +_cro1g [— Knock gate

\

S 2 % T LTRSS

——3» CAM pulse interrupt
Tooth fill interrupt

. False tooth

LI SR I N . L B B N

CAM PULSE

Figure 3.1 Configuration of CTM-2 for engine control

AN476/D Go to: www.freescale.com MOTOROL;

4\ Freescale Semiconductor, Inc.

CTM initialisation

The timebase is chosen as 2uS (system clock divided by 32) to give 0.1 degrees resolution at 8,000 rpm
and also allows an event of up to 131mS to occur before the 16-bit counter overflows. This equates to an
engine speed of 460rpm for any signal that lasts half an engine cycle.

The crank pulses are input to a DASM and two MCSMs. The DASM gives a time for the rising edge of the
pulse in addition to providing the time for the previous rising edge, with the result that the period of the
pulse is easily determined. The first MCSM (MCSM2) will act as a pulse accumulator to accurately place
the output pulses from the CTM. The counts from MCSM2 increment until the overflow interrupts at the
desired tooth count. The second MCSM (MCSM24) will locate and verify the missing tooth position. The
CAM pulse will go to a DASM with flag set on the negative (falling) edge. During initial starting sequence,
the MCSM24 and DASM10 (input period mode) channels are used to locate the missing teeth and then
DASM11 (input pulse width mode) is used to check that the missing tooth is at the correct half of the
engine cycle before zeroing the tooth counter and synchronising the engine timing.

DASM12-19 are all configured in output pulse mode with either flag set on B (second edge) or flag set on
A and B (both edges). The ignition pulses are generated using 3 DASM channels (13, 14, 15) in flag set on
A and B mode and require an interrupt for both the rising and falling edges since these edges must be
within a tenth of a degree of the optimum position and require the edge to be set as late as possible. The
DASM is capable of generating a pulse from a single interrupt and so DASM 16,17 and 18 are used in flag
set on B mode for injection pulses which do not have a very critical falling edge time. The knock gate signal
is also generated using a single interrupt to set up DASM19 (flag set on B), since the first edge is most
important and the pulse duration is short.

3.2 Software control

The software consists of three separate modules: the CTM initialisation, exception handier and background
task.

To initialise the timing, the shortest period of tooth pulse is found and then it is assumed that the next
longer period is the missing tooth location. This places the engine timing at either 0 degrees or 360 degrees
of the 720 degrees full engine cycle so it is then necessary to confirm the presence of the CAM pulse.

Once the engine timing is synchronised, the crank pulses give a coarse angular position of the engine in
the engine cycle. The missing teeth synchronise with the CAM pulse every second engine revolution. A
modulus counter (MCSM2) counts the crank pulses, interrupting on overflow, while a double action
submodule (DASM12) generates an interrupt for each of the missing tooth positions. Thus there is a
possible interrupt every 6 degrees of engine revolution.

The missing teeth can be confirmed by setting the other modulus counter (MCSM24) to overflow between
the predicted times for teeth 58 and 59 and again at the end of the engine cycle between teeth 118 and
119. This will enable the match flag when the tooth counter is at 58 or 118. Therefore, when DASM12
generates an interrupt on pulse position 58 or 118, the modulus counter overflow flag should not be set,
but it will be set before pulse position 59 or 119. This provides a simple method of ensuring that the missing
tooth positions are where they are expected to be. See figure 4.2.

The ignition pulse is generated by DASM13,14,15 (one output for a pair of cylinders). The position of the
ignition pulse is normally determined by a number of sensors (engine load - vacuum, accelerator pedal
position, engine speed, air temperature, etc) and a look-up table may be used to provide a schedule for the
order and nature of the pulses to be generated. For example, the timing may be in terms of advance angle
for the engine ignition while the injector timing could be an angular offset with a time for the pulse width.

The ignition pulses are known and angle-angle pulses since both edges are based directly on engine angle
(ie the engine requires the falling edge at a given angle after top dead centre (TDC) and the rising edge at
another, larger angle after TDC). The first edge starts energising the low tension coil, while the second edge
cuts off the current supply abruptly to produce a high voltage in the high tension coil to produce a spark.

6 Go to: www.freescale.com AN476/D

Freescale Semiconductor, Inc.

Since this timing is very critical to an engine, the second edge must be related to an engine angle and the
low tension energising period is a time which is converted by the system software into an angle for the
current engine speed.

The crank pulses yield a figure for the instantaneous speed of the engine by subtracting the first rising edge
time from the 2nd rising edge time (DASM10 in period measurement mode).

The ignition output pulse timing is generated from this period and the table information to provide an
interrupt between 1 and 2 crank tooth pulses before the required falling (start) edge and then a further
interrupt prior to the rising (finish) edge to place this edge accurately for the ignition fire timing. This routine
makes a fractional calculation to place the edge at a precise time based on the engine angle and engine
speed. Similarly, the second edge of the pulse (rising edge) is a result of an angle to time calculation. In
this example, the ignition pulses are negative polarity.

The reason for placing the edge at least 1 crank tooth period away is to allow for the worst case latency in
the exception response time. In practice, this may be very much less than one tooth period, so the
background software may take advantage of this, and could easily be made to place edges closer to the
scheduling tooth.

cylinder 1 top dead centre
2 missing teet

I U l

1011 e MU

P E— 58 teeth > 58 teeth E—
full engine cycle (720 degrees revolution)

n CAM pulse ﬂ_
Ignition 1,4 DASM 13
Ignition 2,5 : DASM 14
Ignition 3,6 DlASMr1 5

|)
Injectors 1,4 DASM 16
. I
Injectors 2,5 DASM 17
| —
—

Injectors 3,6 DASM 18

—
1 r
Knoc.k gate signal DASM l 9

Figure 3.2 Engine control signals

AN476/D Go to: www.freescale.com MOTOROU;

4\ Freescale Semiconductor, Inc.

The knock sensor gate has the same criteria as the ignition timing but in this case the first edge is most
important and uses DASM19 in output pulse mode (flag set on B). This routine makes a fractional
calculation to place the start edge at a precise time based on the engine angle and engine speed. The
second edge of the pulse (falling edge) timing is also defined at this point and is again a conversion from
angle to time. The knock gate pulses are known as angle-angle pulses with both edges based directly on
engine angle. Because a single interrupt is used to set up the entire pulse, the second edge is calculated
from an engine angle much earlier than the equivalent pulse for the ignition pulse. This will lead to a poorer
estimate of the actual engine angle at the time of its second, falling edge but it reduces the interrupt
overhead and still has sufficient accuracy for the engine to run efficiently. This pulse is normally relatively
shortand so there is no problem with this approach. One thing to note is the amount of calculation possible
with CPU16, yet which still keeps the exception handler execution time much less than the shortest tooth
period.

The injectors’ pulse is not as critical as the ignition pulse and the more important parameter is the duration
of the pulse, so DASM16,17,18 are used to generate the pulses for each of the 6 cylinders individually. This
routine makes a fractional calculation to place the start edge at a precise time based on the engine angle
and engine speed. The second edge of the pulse (falling edge) timing is also defined at this point and is a
straight-forward duration of the pulse This is because the injector fire time is more important than the finish
angle of the pulse and takes less CPU time to perform this task. The injector pulses are known and angle-
time pulses with the first edge based on engine angle and the second on the duration of the pulse.

See section 5 for details of the performance figures relating to the different ways of generating a pulse.
Here it can be seen that there is a trade-off between CPU time and edge placement accuracy.

The background program would normally do a lot more than just loop on the same instruction. Since very
little of the CPU time is used to maintain the engine control signals, there is plenty of CPU performance
left to perform the complex calculations required to place the control pulses. Since this does not help
illustrate the CTM performance, such software was not written for this demonstration code.

8 Go to: www.freescale.com

Freescale Semiconductor, Inc.

4 The CTM modules in action

4.1 MCSM modes of operation

The tooth count is determined by using the MCSM as a pulse accumulator. Here the load pin is not used,
but the clock input pin (CTM2C) increments the counter on each rising edge of the tooth pulse signal. By
preloading the counter with a small negative number, an overflow indicates the occurrence of a particular
tooth position.

EVENTS

U
Cralnll< too'gh.sign?l

toothcount 30 31 32 33 34 35 36 37 38 39 40

o000 _ _MCSM2 counter cverlow ffom SFFFF 10800001 _ _ _ _ _
$FFFF -1 —

$FFFE -2

$FFFD -3 MCSM2 counter value

$FFFC 4 __
$FFFB 5

Fig 4.1 Angular position
4.1.1 Determining angular position

An interrupt is generated whenever the tooth counter (MCSM2) flag is set. This is controlied by the value
in the modulus latch register which is set to 2's complement of the number of pulses remaining for the
next scheduled event and so the modulus latch register is constantly updated to provide the interrupts at
the correct point in the engine cycle. See figure 4.1 for an illustration of the MCSM2 counter being pre-
loaded and then counting up to the overflow state. The exception handler then checks a table of events
which have been written in chronological order to determine the next event and set up the appropriate
pulse timing. The Y index register is used to point to the current data in this table. This table is normally
built by the background program during the previous engine cycle. In this example the table has been fixed
as constant data. The interrupt routine must execute in less than the minimum time between crank pulses
and also include the worst case entry latency. This gives a maximum time of 100uS (10,000 rpm and 60
teeth per engine revolution).

4.1.2 Missing tooth pulses

By pre-loading a modulus counter (MCSM24) with a 2's complement value greater than the current tooth
period and using the load pin (CTM2L) to reload the counter on each tooth pulse rising edge, it is possible
to detect a missing tooth simply by the presence of the overflow flag being set. A safe value for the
MCSM24 load register would be 1.5 times the current period as this would account for increasing and
decreasing engine speed. Figure 4.2 shows the MCSM24 counter being constantly redoaded until there is
a longer period where the missing tooth position exists.

AN476/D Go to: www.freescale.com MOTOROLQ

4\ Freescale Semiconductor, Inc.

In the example it is started 8 tooth pulses prior to a missing tooth so that any synchronisation problems are
detected and at the same time there is no chance for the engine to slow down sufficiently to cause an
erroneous missing tooth interrupt.

false tooth interrupts

DASM12 (interrupt on both edges)

2 missing teeth

n n TV
Crank tooth signal i
59 52 53 54 55 56 57

vrece
posss

tooth count49 50
- - —MCSM24 counter overlow (from $FFFF to $0000) — A— — — — —
1.5x A
t°°f‘2d " | MCSM24 counter value overflow during
per missing teeth
reloads counter on rising edge of crank tooth signal
Figure 4.2 Missing tooth detection
4.2 DASM modes of operation
Input pulse length

This mode is used with the CAM signal exception handler. This routine checks to see that the CAM signal
occurred at the correct time and saves the rising and falling edge times for the CAM pulse. In some
systems the CAM pulse may be used to derive other information about the engine and perhaps the width
of the pulse as well as the falling edge time is required for some calculations.

As can be seen this information is retrieved and stored in 1.2 microseconds with just two 32-bit HC16
instructions (LDED and STED).

Input period

A key parameter for the engine is the speed of rotation. By placing the DASM channel in input period
measurement mode, a single 32-bit read followed by a subtraction reveals this value. Thus capturing the
same edge on each pulse gives very fast determination of the engine speed with minimal interrupt
overhead.

Output pulse, flag set on B

Again, to reduce the interrupt overhead, the DASM channel can place a pulse from a single CPU
intervention. In this mode the injection pulses are determined before the start of the pulse and the flag is
only set after the second edge. In this example there is no interrupt following the pulse, but the flag could
be used to determine if the pulse is complete when there is a need to extend the puise.

1l‘:;O"'OROLA Go to: www.freescale.com - AN476/D

A Freescale Semiconductor, Inc.

Output pulse, flag set on A and B

This mode is useful when the missing teeth occur. By placing an edge at both missing tooth positions, it is
possible to generate an interrupt where the tooth pulses should have occurred from a single CPU
intervention. See figure 4.3 for an illustration of the tooth filler interrupt generation.

ylinder 1 top dead centre
CAM signal /

2 missing teeth

>~ s
N [

LR Y

A Y

PR

LI

PN

ssa00s
veee

M n n
Crank tooth signal
——] L —d L — L

DASM12 (interrupt on both edges)

false tooth interrupts
Figure 4.3 False tooth interrupt

This mode was also used for the ignition pulses since each edge is set up independently. Thus event A can
occur before event B is determined. In the example, there are no interrupts generated by the pulse, but the
flag is set each time there is a compare.

Prolonging or shortening a pulse that has already begun may be achieved very simply. Much depends upon
the way the events are controlled, but it would be necessary to first check that the falling edge of the pulse
was not imminent before scheduling another compare at the newly requested time. It is then simply a
matter of writing a new value into the B register with the new time for the end of the pulse. Since the
compare has not yet occurred, the revised match time can be rewritten and becomes effective
immediately.

Pulse width modulation

While this example does not use PWM mode, it is frequently used in automotive applications. The DASM
module has the capability of a wide range of periods and resolution, with a maximum of 62.5kHz PWM with
7 bits resolution.

4.2.1 Placing edges and pulses

In order to minimise interrupt handling 2 timebases are used; the first is effectively the tooth count rate
which increments the modulus counter (MCSM2) and then switches to the second timebase which is
derived from the much more stable and accurate system clock (15.991MHz in this example).

After finding the approximate position by counting the number of tooth pulses from cylinder 1 top dead
centre (TDC) it is possible to obtain a coarse angular position for an output pulse. For finer resolution it is
necessary to switch to @ more accurate timebase. In this case a 2 uS timebase is provided by the free
running counter (FCSM25).

The DASM10 channel provides the time for the past two crank tooth pulses and so gives much of the
information required to place an output pulse. By adding the difference between the two values to the last
tooth time, it is possible to immediately place the expected position of the next tooth pulse. By making a
fractional calculation of how far through the next tooth period the output pulse should change state, it is
possible to place an edge as accurately as the timebase will allow assuming the tooth period is
approximately constant.

AN476/D Eo to: www.!reescale.com MOTOROLA

n

4\ Freescale Semiconductor, Inc.

Crank tooth schedules an event to occur between one and two teeth from the current tooth. Tooth x
interrupts and the previous period (z) of the crank signal is added to the fraction of the tooth period (y) to
give an event z+Yy after tooth x. See fig 4.4 for an illustration on edge placement.

Thus one submodule (MCSM2) generates an interrupt a short time before the required time and the internal
timebase is then used to actually place the pulse.

current tQoth (interrupt)
tooth x-1 tooth x tooth x+1 tooth x+2

I Crank tooth signal I

z
< — 4
last measured tooth period

> Y
one complete tooth period ¢+=—————ui
P 24y pe fraction of tooth period

- >
Angle converted to time for edge placement

DASM13,14, etc

Figure 4.4 Edge placement

4.3 Exception handling

There are four sources of interrupt in the example. The highest interrupt mask was set at level 5 for the
crank tooth interrupt and the faise tooth interrupt since these events relate directly to the event scheduling
and are regarded as critical timing within the system. Level 5 is also used for the missing tooth interrupt
which should occur between the normal tooth pulse positions and so should normally occur when the false
-tooth pulse interrupt routine is complete. This interrupt could have been made level 6 to ensure it always
was seen immediately, but keeping it at level 5 means that the normal tooth interrupt routine will complete
before this routine starts and makes the worst case timing easier to define. Level 6 is reserved for other
unspecified and more important tasks, while level 7 is used when the system needs to resynchronise the
missing tooth position.

The CAM pulse interrupt is relatively unimportant and so has its interrupt mask at level 3.

12 Go to: www.freescale.com

A Freescale Semiconductor, Inc.

5 The partnership of CPU16 and CTM

The CPU16 and CTM make a good partnership. Firstly they are both 16-bit designs and secondly the fast
interrupt response of CPU16 makes best use of the CTM design. For software control, the GPT and CTM
are similar. The CTM requires that the CPU controls all but the PWM function continuously to maintain the
output signals, and so the improvements to reduce the interrupt handling overhead take advantage of
CPU16. The fast multiply capability of CPU16 also makes it possible to construct an event table with
fractions of an angle which can be converted to time immediately prior to the pulse to give the most
accurate value possible for the output pulses. Just 5 uS is required to make this calculation and write to the
DASM register.

5.1 Overall performance

The worst case latency is normally just the worst case entry delay into the exception handler of 38 cycles
(2.28uS) for the EDIVS command. Assuming a total latency of 2.28uS the crank pulse exception handler
must execute in less than 98uS.

The main exception handler has an interrupt priority of 5, but we must ensure that only one other interrupt
source can delay its entry into the main routine. All other exception handlers should be kept as short an
execution time as possible, with particular attention paid to exception handlers at level 5 and above. The
routine's worst case timing is when an ignition pulse coincides with the same tooth count as that for other
injector or ignition edges and where the crank tooth is present. It is assumed that the knock sensor gate is
always separate from the ignition pulse's edges and that the injectors may overlap with 2 rising edges and
2 falling edges at the same time plus the next ignition pulse falling edge at the same time as the rising edge
of a previous ignition pulse. A missing tooth interrupt takes this to 5 simultaneous edges from a single tooth
position.

All of the following timings are given twice.

The first number (1) is for fast termination (ie internal ROM)
The second number (2) is for zero wait states (ie external 85ns EPROM)

5.1.1 Worst case latency
Interrupt entry latency (including EDIVS) 38 cycles (1) + 20 cycles (1) = 58 cycles (1)
39 cycles (2) + 26 cycles (2) = 65 cycles (2)
Main routine takes the following plus subroutine time to execute ...
tooth 0 183 cycles (1), 230 cycles (2)
tooth 60 187 cycles (1), 236 cycles (2)
any other tooth 199 cycles (1), 252 cycles (2)
If entered from tooth filler interrupt then this routine takes the same number of cycles for teeth 59 and 119
and 14 fewer cycles for teeth 58,118

Tooth missed detector interrupt

If in synchronisation 54 cycles + 20 cycle entry latency = 64 cycles (1)
67 cycles + 26 cycle entry latency = 79 cycles (2)

Good cam position takes 20 cycles entry + 55 cycles = 74 cycles (1)
26 cycles entry + 66 cycles = 91 cycles (2)

tooth fill interrupt generator takes 55 cycles (1) and 70 cycles (2)

Ignition pulse - rising/falling takes 87 cycles (1) and 103 cycles (2)

Knock sensor gate pulse takes 203 cycles (1) and 244 cycles (2)

Injector - both edges min 916 rpm takes 99 cycles (1) and 118 cycles (2)

Injector - single edge min 8 rpm takes 87 cycles (1) and 103 cycles (2)

Missing tooth detect takes 38 cycles (1) and 53 cycles (2)

Worst case is interrupt entry + main routine + 2 ignition + 2 injector + missing tooth detect subroutines
With intemal ROM: 58 + 199 + 87 + 87 + 99 + 99 + 38 =667 cycles (40.0uS) (1)
With zero wait state memory: 65 + 252 + 103 + 103 + 118 + 118 + 53 =812 cycles (48.7uS) (2)

AN476/D Go to: www.freescale.com MOTOROE'IQ

4\ Freescale Semiconductor, Inc.

5.1.2 Overall interrupt overhead
Each engine cycle requires the following, assuming each edge is scheduled from a separate tooth count
(worst case interrupt overhead)

Missing tooth interrupt times 2

CAM interrupt times 1

Tooth filler interrupt times 4

tooth fill interrupt generator times 2
Ignition pulse - rising/falling times 12
Knock sensor gate pulse times 6

Injector - both edges min 916 pm times 6
Missing tooth detect times 2

Total of 35 interrupts per engine cycle
Total time in exception handlers is calculated as follows:

Time with internal ROM (1)

35 interrupts + 2 missing tooth exceptions + CAM detection + 4 tooth fill + 28 normal main routines
(35%20) + (2x54) + 55 + (183 + 187 + 2x175) + (28x199) = 7155 cycles (1)

2 tooth fill + 12 ignition + 6 injection + 6 knock gate + 2 missing tooth detect subroutines

(2x55) + (12x87) + (6x203) + (6x99) + (2x38) = 3042 cycles (1)

TOTAL = 10197 cycles (612uS) (1)

With engine cycle (10,000 rpm)=12mS, exception handlers represent 5.1% of CPU16 performance (1)

Time with external zero wait state memory (2)

(35x26) + (2x67) + 65 + (229 + 235 + 2x237) + (28x252) = 9103 cycles (2)

(2x70) + (12x103) + (6x244) + (6x118) + (2x53) = 3654 cycles (2)

TOTAL = 12757 cycles (765uS) (2)

With engine cycle (10,000 rpm)=12mS, exception handlers represent 6.4% of CPU16 performance (2)

5.1.3 Results of the above calculations
Note that although the example uses a system clock of 15.991MHz, the performance timings are related to
a system clock of 16.78MHz (the maximum system clock frequency for this device).

For fast termination (ie internal ROM) timings (1)

Total time for one ignition pulse (angle-angle with 2 interrupts) is 36uS (612 cycles)

Total time for one injector pulse (angle-time with a single interrupt) is19uS (318 cycles)

Total time for one knock gate pulse (angle-angle with a single interrupt) is 25uS (422 cycles)

Worst case interrupt latency of 40uS (much less than 100uS) plus the time of the longest exception handler
that could be invoked and interrupt handling taking 612uS at 10,000 rpm (5.1% of CPU16 performance)

For zero wait states (ie external 85ns EPROM) timings (2)

Total time for one ignition puise (angle-angle with 2 interrupts) is 43uS (714 cycles)

Total time for one injector pulse (angle-time with a single interrupt) is 24uS (396 cycles)

Total time for one knock gate pulse (angle-angle with a single interrupt) is 31uS (522 cycles)

Worst case interrupt latency of 49uS (much less than 100uS) plus the time of the longest exception handler
that could be invoked and interrupt handling taking 765uS at 10,000 rpm (6.4% of CPU16 performance)

Clearly the performance of the CTM and the CPU16 together allows for more comprehensive engine
control than has been demonstrated in this example. It shows that a high performance timer can be used
very efficiently with a 16-bit CPU and frees the CPU to perform the many other tasks required for modern
engine control.

14 Go to: www.freescale.com

Freescale Semiconductor, Inc.

Appendix A - Exception handler

TOOTH FILLER
INTERRUPT

C)

[PUSH DEX |

CLEAR DASM FLAG CLEAR TOOTH
. COMPARE FLAG
1
INC TOOTH COUNTER
AND SAVE VALUE IN RAM GET TOOTH COUNT
AND SAVE IN RAM
1

(CRANK PULSE INT)

I
| pusiDEx |
I

GET LAST PULSE TIME AND,
PERIOD AND SAVE IN RAM
GET CRANK PULSE
PERIOD FROM DASM
DID |
SECOND TOOTH SAVE PULSE
FILL gggng PERIOD IN RAM GET LAST MEASURED
sy CRANK PULSE PERIOD
DISBABLE DASM !
INTERRUPTS
(TOOTH FILLER) SAVE PERIOD IN RAM
»]
EVENT_LOOP I —»»-| GET TOOTH COUNT FOR
NEXT EVENT FROM TABLE
INITIALISE EVENT TABLE SCHEDULE I
POINTER SUBTRACT FROM CURRENT
I TOOTH NUMBER
GET TOOTH COUNT FROM [
RAM AND COMPARE WITH 2'S COMPLEMENT FOR
TABLE ENTRY MODULUS COUNTER
1S THIS N IS
THE SAME - THE VALUE
VALUE? LESS THAN
ZERO?
JUMP TO SUBROUTINE
INDICATED BY CODE IN SUBTRACT 120
EVENT TABLE FROM COUNT
- (NEW ENGINE CYCLE)
INITIALISE EVENT TABLE
MO N pDLE TO POINTER TO START OF e ——
JABLE INTTIALISE MODULUS
TOOTH COUNTER
HAS PULL D,EX
THE POINTER (RESTORE REGISTERS)
REACHED THE

END OF THE
EVENT
TABLE?

(RETURN FROM INTERRUPT)

AN476/D

Go to: www.freescale.com

MOTOROLA
1=

A Freescale Semiconductor, Inc.

Appendix B - Engine management software

AR R AR R AN T A NN NN AR NN R RN RN AN RN RN RN RCNIES AR ENTTNNY
**** MOTOROLA CONFIDENTIAL PROPRIETARY ##es

EA 222 222 s s s iR as s i i il sttt sl il s AR LEsREd 2]
ENGINE.ASM Rev 1.0 last edit : 8th September 1992

Demonstration code written for CTM-2 module to show how the Configurable Timer
Module may be used in an engine management application.

This program configures the CTM-2 module to run a petrol engine and

contains the major elements of the interrupt handling to perform this task.

All commented timings are for zero wait states access, assuming
external EPROM or RAM

Revision 1.0 Written for the 68HC16Wl which contains the CTM-2 module.

This code is written for demonstration purposes only and is not guaranteed
to function in a given application.
Copyright Motorola Inc 1991, 1992

GENERAL DESCRIPTION

The following code was generated specifically to demonstrate the methed and
performance of an application using the CTM timer module in a demanding
environment. An engine management application requires a great variety

of different functions from a timer and so is ideal in demonstrating

how the CT™™ module may be used. The CPUl16 is a very good match to this
timer module with fast interrupt handling and good 16-bit performance.

WWNNNDNDNNGNDR R R
POVONAUVMAEWOVOIOMBUWNKFHELOWVWO®OIOUVA
L N I I N B NN B B 2R A N N 2N N I N N BN 1

317 LA A A AR A A A Al Al sl dl il sl sl sl it i il st il s il didddddddd

318
00000 319 rom equ $1000
00000 320 ram equ $0
00000 321 vectors equ $0
00000 322 top_stack equ $0dfe

323 ¢
00000 324 sim equ $A00
00000 325 sram equ $B0O
00000 326 gsm equ $C00
00000 327 ctm equ $400
00000 328 ctm module equ $80 ; ctm module vectors start at vector 64

329 »

477 +vw** CTM Module Registers wrw*»
00000 478 CTMMCR equ $F400
00000 479 TBR equ S$F404
00000 480 CPSMCR equ $F408
00000 481 MCSM2SIC equ $F410
00000 482 MCSM2CNT equ $F412
00000 483 CMSM2MOD equ $F414
00000 496 daamlOsic equ $F450
00000 497 dasmiOa equ $F452
00000 498 dasmlOb equ $F454
00000 499 dasmllsic equ $F458
00000 S00 dasmlla equ $F45A
00000 501 dasmllb equ $F45C
00000 502 dasml2sic equ $F460
00000 503 dasml2a equ $F462
00000 S04 dasml2b equ $F464
00000 505 dasml3sic equ $F468
00000 506 dasml3a equ S$F46A
00000 507 dasmi3b equ $F46C
00000 508 dasmldsic equ $F470
00000 509 dasmlda equ $F472
00000 510 dasmldb equ S$F474
00000 511 dasmlSsic equ $F478
00000 512 dasmlSa equ S$F47A
00000 513 dasmiSb equ $F47C
00000 514 dasmlésic equ $F480
00000 515 dasmléa equ $F482
00000 516 dasml6db equ $F484
00000 517 dasml7sic equ $F488
00000 518 dasmi7a equ $F48A
00000 519 dasml7b equ $F48C
00000 520 dasml8sic equ $F490
00000 521 dasml8a equ $F492
00000 522 dasml8b equ $F494
00000 523 dasml9sic equ $F498
00000 524 dasmlS%a equ S$F49A
00000 525 dasml9b equ $F49C
00000 534 mcam24sic equ $F4CO

:V;OTOROLA Go to: www.freescale.com AN476/D

A Freescale Semiconductor, Inc.
00000 535 mcam24cnt equ $F4C2
00000 536 mcsm24mod equ SF4C4
00000 537 fcsm2Ssic equ $F4C8
00000 538 fcsm25cnt equ $F4CA
00000 932 org ram
00000 933 period mb 2 ; period of previous pulse
00002 934 next_pulse rmb 2 ; time predicted for next pulse from crank
00004 935 tenths mb 2 ; edge position as a number of tenths of a degree
00006 . 936 tooth mb 1 ; tooth count for current time
00007 937 next_tooth rmb 1 ; next tooth count for event
. 00008 938 cam tooth rmb 2 ; cam tooth position
0000A 939 cam pulse rmb 2 ; CAM pulse edges
0000C 940 knock_tooth rmb 2 ; knock tooth fraction for start edge
941 ~
942 * CONSTANTS
943 +*
0000E 944 event equ $400
0000E 945 table equ $500
0000E 946 sixty equ 60 ; constant value of value 60 (10 * 6 degrees)
0000E 948 dasm_fall equ $8010 ; change edge, use BCLRW
0000E 949 dasm_rise equ $00 ; change edge, use BSET (and clear flag with BCLR)
0000E 950 flag equ $80 ; flag for DASM and SASM
0000E 951 int_en equ $84 ; SASM interrupt enable bit
952 *
0000E 953 K equ $0110 ; not used, ZK=$0, SK=$1, PK=$0
0000E 954 SP equ $ODFE ; stack pointer starts at address $ODFE
0000E 955 IZ equ $0000 ; index pointer set for registers
956
00000 957 org vectors
00000 o110 958 aw K . ; initial 2K, SK, PK
00002 1000 959 aw reset ; initial program counter value
00004 ODFE 960 aw Sp ; initial stack pointer value
00006 0000 961 aw 12 ; initial direct page select (1Z)
962 *
963 * CTM module vectors
964 *
00008 965 reserved equ $0000
966 *
00080 967 org ctm_module
00080 156A 968 fdb ctm_dummy ; biusm (reserved)
00082 156A 969 £fdb ctm_dummy ; cpsm (reserved)
00084 11BO 970 fdb int ; mesm 2
00086 156A 971 fdb ctm_dummy ; mesm 2 (reserved)
00088 0000 972 fdb reserved ; sasm 4a (not available on CTM-2)
0008A 0000 973 fdb reserved ; sasm 4b (not available on CTM-2)
0008C 0000 974 fdb reserved ; sasm 6a (not available on CTM-2)
0008E 0000 975 fdb reserved ; sasm 6b (not available on CTM-2)
00090 0000 976 fdb reserved ; sasm 8a (not available on CTM-2)
00052 0000 977 fdb reserved ; sasm 8b (not available on CTM-2)
00094 156A 978 fdb ctm_dummy ; dasm 10
00096 116C 979 fdb cam ; dasm 11
00098 118a 980 fdb tooth_filler ; dasm 12
0009A 156a 981 fdb ctm_dummy ; dasm 13
0009C 156A 982 fdb ctm_dummy ; dasm 14
0009E 156A 983 fdb ctm_dummy ; dasm 15
000A0 156A 984 fdb ctm_Gummy ; dasm 16
000A2 156A 985 fdb ctm_dummy: ; dasm 17
000A4 156A 986 fdb ctm_dummy ; dasm 18
000A6 156A 987 fdb ctm_dummy ; dasm 19
000AS8 0000 988 fdb reserved ; sasm 20a (not available on CTM-2)
000AA 0000 989 fdb reserved ; sasm 20b (not available on CTM-2)
000AC 0000 990 fdb reserved ; sasm 22a (not available on CTM-2)
000AE 0000 991 fdb reserved ; sasm 22b (not available on CTM-2)
000BO 1142 992 fab tooth_missed ; mesm 24
000B2 156A 993 fab ctm_dummy ; fesm 25
994 ~*

AN476/D !or Hore In'ormallon !n 'HIS !ro!uct, MOTOROLA

Go to: www.freescale.com

A Freescale Semiconductor, Inc.
995 * EVENT correlation
996 * Table maps event code to a subroutine address
997 * event code is always an even number since the table is made up of word values
998 *
00400 999 org event
1000 event_list
00400 . 1568 1001 £db Gummy ; 00 dummy event
00402 11BO 1002 fdb int ; 02 mesm2 main interrupt routine
00404 1540 1003 - fdb checkmis ; 04 mcam24 check for missing tooth
00406 122E 1004 fdb tooth_fill ; 06 dasmil2 missing tooth position
00408 124A 1005 fdb ignitif ; 08 dasml3 ignition 1 falling edge
0040A 126A 1006 fdb ignit2f ; 10 dasml4 ignition 2 falling edge
0040¢C 128A 1007 fdb ignit3ft ; 12 dasmlS ignition 3 falling edge
0040E 12AA 1008 £fdb ignitds ;14 dasmi3 ignition 4 falling edge
00410 12CA 1009 £db ignitst ; 16 dasm14 ignition 5 falling edge
00412 12EA 1010 £db ignitéf ; 18 dasmlS ignition 6 falling edge
00414 130A 1011 fdb ignitir 3 20 dasml3 ignition 1 rising edge
00416 132A 1012 £fdb ignitar 3 22 dasmld ignition 2 rising edge
00418 134A 1013 fdb ignit3r ;24 dasmlS ignition 3 rising edge
0041A 136A 1014 £db ignitdr ; 26 dasml3 ignition 4 rising edge
0041C 138A 1015 tdb ignitSr ; 28 dasmld ignition 5 rising edge
0041E 13AA 1016 fdd ignitér ; 30 dasmlS ignition 6 rising edge
00420 13CA 1017 £db knock ;32 dasml9 knock sensor gate
00422 1568 1018 £db Gummy ; 34
00424 155C 1019 fab togglel ; 36 toggle port E-7 high
00426 1562 1020 £db toggled ; 38 toggle port E-7 low
00428 141¢C 1021 fdb injectl ; 40 dasml6 injector 1 both edges
0042A 1442 1022 £db inject2 ; 42 dasm17 injector 2 both edges
0042¢C 1468 1023 fdb inject3 ; 44 dasml8 injector 3 both edges
0042E 148E 1024 fdb injectd ; 46 dasml6 injector 4 both edges
00430 14B4 1025 fdb inject5 ; 48 dasml? injector 5 both edges
00432 14DA 1026 £db injecté ; SO dasml8 injector 6 both edges
00434 1568 1027 £db Qummy ; 52
00436 1568 1028 £db Qummy ; 54
00438 1500 1029 £db injectir ; 56 dasml6 injector 1 rising edge
0043A 1520 1030 £db injectif ; 58 dasmlé injector 1 falling edge
1031 + £fdb inject2r ; 60 dasml?7 injector 2 rising edge
1032 + fdb inject2f ; 62 dasml7 injector 2 falling edge
1033 + fdb inject3r ; 64 dasml8 injector 3 rising edge
1034 * fdb inject3f ; 66 dasml8 injector 3 falling edge
1035 * fdb injectd4r ; 68 dasmlé injector 4 rising edge
1036 * fdb injectdf ; 70 Gasml6 injector 4 falling edge
1037 * £db injectSr 3 72 dasml? injector 5 rising edge
1038 * £db injectSt ; 74 dasml?7 injector 5 falling edge
1039 * £db injectér ; 76 dasml8 injector 6 rising edge
1040 * £db inject6f ; 78 dasml8 injector 6 falling edge
1041 *
1042 *
1043 * Timing event schedule table
1044 *
1045 * This table would normally be calculated in background and built in RAM
1046 * to provide a continuously varying set of timings for the engine pulses.
1047 *
1048 * ignitx event, tooth, fraction
1049 * knock event, tooth, fractiom, tooth count duration, fraction duration
1050 * injectx event, tooth, fraction, time in units of 2uS, number of overflows
1051 * Missing tooth check flags missing teeth whem unexpected and can
1052 * be used to re-sync the system in the event of a missing tooth pulse.
1053 * Toggle is a marker for the start of the engine cycle
1054 * Table entry starts with first byte 0 to allow 16-bit load of tooth event type
1055 *
00500 1056 org table

Go to: www.freescale.com

A Freescale Semiconductor, Inc.

1057 event_table

00500 00080500 1058 db 0,08,05,00,0,0 ; ignition 1 falling edge
) 0000
00506 002E070C 1059 db 0,46,07,12,2,00 ; injector 4
0200 .
0050C 00140C00 1060 d 0,20,12,00,0,0 ; ignition 1 rising edge
0000 .
00512 00200F2C 1061 db 0,32,15,44,05,31 ; knock sensor gate
0S1F
00518 000A1932 1062 db 0,10,25,50,0,0 ; ignition 2 falling edge
0000
00S1E 00301BO0 1063 db 0,48,27,00,2,10 ; injector S
020A
00524 00162028 1064 db 0,22,32,40,0,0 ; ignition 2 rising edge
0000
0052A 00202322 1065 d 0,32,35,34,05,51 ; knock sensor gate
0533
00530 000C2D28 1066 d 0,12,45,40,0,0 ; ignition 3 falling edge
0000
00536 00322F17 1067 ab 0,50,47,23,2,00 ; injector 6
0200
00S3C 00043200 1068 d 0,04,50,0,0,0 ; missing tooth check
0000
00542 00183414 1069 db 0,24,52,20,0,0 ; ignition 3 rising edge
0000
00548 00203718 1070 dd 0,32,55,24,06,0 ; knock sensor gate
0600
00S4E 00043900 1071 d 0,04,57,0,0,0 ; missing tooth check
0000
00554 00063900 1072 db 0,06,57,0,0,0 ; tooth £ill interrupt
0000
0055A 00243B00 1073 db 0,36,59,0,0,0 ; toggle port E-7 high
0000
00560 000E4132 1074 d 0,14,65,50,0,0 ; ignition 4 falling edge
0000
1075 * d 0,56,65,00,0,0 ; injector 1 rising edge
00566 00284300 1076 db 0,40,67,00,2,20 ; injector 1
0214
0056C 001A4828 1077 -1 0,26,72,40,0,0 ; ignition 4 rising edge
0000
1078 ¢ db 0,58,73,40,0,0 ; injector 1 falling edge
00572 00204B2A 1079 b 0,32,75,42,05,39 ; knock sensor gate
0527
00578 00105528 1080 db 0,16,85,40,0,0 ; ignition 5 falling edge
0000
00S7E 002a571E 1081 b 0,42,87,30,2,10 ; injector 2
020a .
00584 001C5C14 1082 db 0,28,92,20,0,0 ; ignition 5 rising edge
0000
0058A 00205F24 1083 d 0,32,95,36,05,34 ; knock sensor gate
0522
00590 00126932 1084 b 0,18,105,50,0,0 ; ignition 6 falling edge
0000
00596 002C6B14 1085 d 0,44,107,20,2,10 ; injector 3
020A
00S9¢C 00046E00 1086 db 0,04,110,0,0,0 ; missing tooth check
0000
005a2 001E701E 1087 db 0,30,112,30,0,0 ; ignition 6 rising edge
0000
005A8 00207300 1088 db 0,32,115,00,06,00 ; knock sensor gate
0600
OOSAE 00067500 1089 db 0,06,117,0,0,0 ; missing tooth interrupt
0000
005B4 00067500 1090 d 0,06,117,0,0,0 ; tooth fill interrupt
0000
00SBA 00267700 1091 d 0,38,119,0,0,0 ; toggle port E-7 low
0000
1092 table_end
1093
01000 1094 org rom
01000 [02] 274C 1095 reset nop
1096 ;give initial values for extension registers
1097 ;and initialize system clock and COP
01002 [02] FSOF 1098 LDAB #SOF
01004 ([02] 27FA 1099 TBEK ; point EK to bank F for register access
01006 {02] FS00 1100 LDAB $$00
01008 [02] 379C 1101 TBXK ; point XK to bank 0
0100A [02] 379D 1102 TBYK ; point YK to bank 0
0100C (02} 379E 1103 TBZK ; point ZK to bank 0
1104
0100E ([04) 37B50003 1105 LDD #$0003 ; at reset, the CSBOOT block size is 512k.

AN476/D !!r IU|!!! InI!rm!L!!! U!! ”!'! !"’!“CL MOTOROLA

Go to: www.freescale.com 19

4\ Freescale Semiconductor, Inc.

01012 [06] 37FAFA48 1106 STD CSBARBT ; this line sets the block size to 64k since
1107 ; that is what physically comes with the EVB16
1108
01016 [02] 757C 1109 LDAA #$7C ; w=0, x=1, y=111100
01018 ([06] 177AFAO4 1110 STAA SYNCR ; set system clock to 15.991 Mhz
1111 \
0101C [08) 1735FA21 1112 CLR SYPCR ; turn COP (software watchdog) off,
) 1113 ; since COP is on after reset
1114
1115 ;initialize the SCI
01020 (04]) 37BS0037 1116 LDD $#50037
01024 [06] 37FAFC08 1117 STD SCCRO ;set the SCI baud rate to 9600 baud
1118
01028 [04) 37BS000C 1119 LDD #$000C
0102C [06) 37FAFCOA 1120 STD SCCR1 ;enable the SCI receiver and transmitter
1121
01030 {04) 37BSFF00 1122 LDD #SFF00 ; enable TPU RAM at $FF0000
01034 [06] 37FAFBO4 1123 STD RAMBAR ; store high ram array, bank 15 and enable RAM
01038 [08) 1735FBO0 1124 CLR RAMMCR ; Array operates normally
1125 :
0103C [02) FSOF 1126 LDAB #$0F
0103E [02] 379F 1127 TBSK ; set SK to bank 15 for system stack
01040 ([04] 37BFODFE 1128 LDS #top_stack ; put SP at top of 3.5k internal SRAM
1129 *
1130 * Initialisation of the SIM and CPU registers
1131+
01044 [04) 37BD0000 1132 ldy #0
01048 [04] 37BS7830 1133 lad #$7830
0104C (06) 37FAFA4A 1134 . std CSORBT ;8et up CSBOOT with 0 wait states
01050 (04) 37BE0000 1135 ldz #0000
1136 *
1137 * Set up RAM variables
1138 *
01054 [04) 37BDOS00 1139 ldy #event_table
01058 [04] 37BE0000 1140 1dz #0000
1141 *
1142 * set up real time debug pins on port E
1143 * Test purpcses only (for real-time debug)
1144
0105C [08) 173SFA17 1145 clr pepar ; set port E to data (DB8=0 at reset does this)
01060 [08] 39FOFA1S 1146 bset ddre, $#$F0 ; SIZ1/PE7: 1 = tooth 59, 0 = tooth 119
1147 ; SIZO/PE6: 1 = in CAM pulse exception handler
1148 ; AS/PES: 1 = in Tooth filler exception handler
1149 ; DS/PE4: 1 = in MCSM exception handler
01064 [08]) 1735FA13 1150 clr porte
1151
1152 * Set up the CT™M configuration
11537 ¢
01068 [04] 37BS0F20 1154 lad #$0F20 ; vectors set to $4x, IARBO-2 = 7
1155 ; time base 3 selected
0106C [06] 37FAF400 1156 std ctmmer
1157
1158 * Set up the counter prescaler module and free running counter
1159 * 2uS timebase on TBB2
1160 *
01070 [04) 37B50008 1161 lad #$0008 ; prescaler running, divide by 64 on VSPCLK6
01074 [06) 37FAF408 1162 - std cpemcr ; divide by 2
01078 [04] 37BS50904 1163 lad #50904 ; no interrupts, arb3=l, timebase B driven
1164 ; divide by 32 selected (2uS timebase).
0107C [06] 37FAF4C8 1165 std fcam258ic
1166 *
1167 * Tooth counter (crank pulse counter)
1168 * MCSM 2 counting external pulses
1169 * Tooth count on TBB4
1170 +*
01080 [04] 37BSSA07 1171 lad #$5a07 ; interrupt level 5, arb3x=l, drive timebase A
1172 ; positive edge input (IN2 pin)
1173 ; IN1 input disabled (no LOAD externally)
01084 [06] 37FAF410 1174 std mesm2sic
1175 *
1176 * Missing tooth detector
1177 * MCSM 24 generates interrupt on a missing tooth
1178 * Set interrupt level 6 to enable interrupts just prior to a missing tooth
1179 * to generate an interrupt on a missing tooth position.
1180 * Used to test missing tooth 58 (CAM interrupt synchronises tooth 117)
1181 ¢
01088 [04] 37B50814 1182 ldad #50814 ; iarb3=1, interrupt disabled, driving bus off
1183 ; positive edge load (IN1 pin)
1184 ; IN2 input disabled
1185 ; divide by 32 clock selected
0108C [06) 37FAF4CO 1186 std mesm24sic

%OTOROLA Go to: www.freescale.com ’ AN476/D

A Freescale Semiconductor, Inc.
1187
1188 *
1189 * CAM pulse capture
1190 * DASMI1 routine set up
1191 * DASMI1 captures the 2uS timebase on the falling edge of the cam pulse
1192 * This routine intialises the DASM11 channel in input pulse length mode and an
1193 * interrupt is generated on a capture of a negative edge
1194 *
01090 [04] 37BS53911 1195 ldd #$3911 ; interrupt level 3 arb3=1, interrupt enabled
1196 ; timebase B (2us)
1197 ; input pulse length mode, negative edge
01094 [06] 37FAF458 1198 std dasmllsic
1199 ~*
1200 * False tooth generation
1201 * DASM12 routine set up
1202 +* DASMI2 compares for a time when a pulse should have been seen but where
1203 * the tooth is missing.
1204 * This routine intialises the DASM12 channel in output mode and an interrupt
1205 * is generated on a compare
1206 *
01098 [04] 37B50905 1207 laa #$0905 ; interrupt level 5 (when active), IARB3sl
1208 ; timebase B (2uS timebase), polarity=0
1209 ; output compare mode (flag set on A or B)
0109C (06] 37FAF460 1210 © std dasmi2sic
1211 ¢
1212 * Crank pulse period capture
1213 * DASMIO routine set up
1214 * DASM10 gives the period of the crank timing signal
1215 * This routine intialises the DASM10 channel in period measurement mode
1216 * .
010A0 ([04) 37B50902 1217 ldad #$0902 ; interrupt level 0, arb3=1, positive edge i/p
1218 : ; timebase B (2uS), reset output flip-flop
1219 ; mode IPM, (mode = $2)
010A4 [06] 37FAF450 1220 std dasml0sic
1221 *
1222 * Ignition (CTD13,14,15)
1223 * DASMI3 routine set up
1224 * DASMI3 compares for a time the pulse goes either high or low.
1225 * chamnel A is the falling edge, channel B the rising edge
1226 *
010A8 [04]) 37B50915 1227 1ad #$0915 ; interrupts disabled, IARB3=1
1228 ; timebase B (2uS timebase), EDPOL=l
1229 ; output compare mode (flag set on A or B)
010AC [06] 37FAF468 1230 std dasml3sic .
1231 +
1232 * Ignition (CTD13,14,15)
1233 * DASM14 routine set up
1234 * DASM14 compares for a time the pulse goes either high or low.
1235 * channel A is the falling edge, channel B the rising edge
1236 ~*
010BO [04] 37BS50915 1237 1dd #$0915 ; interrupts disabled, IARB3=1
1238) ; timebase B (2uS timebase), EDPOL=l
1239 ; output compare mode (flag set on A or B)
010B4 [06] 37FAF470 1240 std dasmldsic
1241 ¢
1242 * Ignition (CTD13,14,15)
1243 * DASM1S routine set up
1244 * DASM1S compares for a time the pulse goes either high or low.
1245 * chamnel A is the falling edge, channel B the rising edge
1246 *
010B8 [04] 37B50915 1247 ldad #$0915 ; interrupts disabled, IARB3=1
1248 ; timebase B (2uS timebase), EDPOL=l
1249 ; output compare mode (flag set on A or B)
010BC [06] 37FAF478 1250 std dasmlSsic
1251 ~*
1252 * Injection (CTD16,17,18)
1253 * DASM16,17,18 routine set up
1254 * DASM16é compares for a time the pulse goes either high or low.
1255 * channel A is the rising edge, channel B the falling edge
1256 *
010CO [04]) 37B50904 1257 lad #$0904 ; interrupts disabled, IARB3=l
1258 ; timebase B (2uS timebase), EDPOL=0
1259 ; output compare mode (flag set on B)
010C4 [06] 37FAF480 1260 std dasmlésic
1261 ~
1262 * Injection (CTD16,17,18)
1263 * DASM17 routine set up
1264 * DASM17 compares for a time the pulse goes either high or low.
1265 * channel A is the rising edge, channel B the falling edge
1266 *
010C8 [04) 37B50904 1267 ldd #$0904 ; interrupts disabled, IARB3=1

AN&16/D Go to: www.freescale.com MOTORO%\

A Freescale Semiconductor, Inc.
1268 ; timebase B (2uS timebase), EDPOL=0
1269 ; output compare mode (flag set on B)
010CC [06] 37FAF488 1270 std dasml7sic
1271 0+
1272 * Injection (CTD16,17,18)
1273 * DASM18 routine set up
1274 * DASM18 compares for a time the pulse goes either high or low.
1275 * channel A is the rising edge, channel B the falling edge
1276 +*
010D0 (04] 37B50904 1277 lad #$0904 interrupts disabled, IARB3=1

1278 ; timebase B (2uS timebase), EDPOL=0

1279 output compare mode (flag set on B)
010D4 [(06] 37FAF4S0 1280 std dasml8sic

1281 *

1282 * knock gate (CTD19)

1283 * DASM19 routine set up

1284 * DASM1S compares for a time the pulse goes either high or low.

1285 * channel A is the rising edge, channel B the falling edge

1286 *
010D8 [04] 37B50904 1287 lad #$0904 ; interrupts disabled, IARB3=1

1288 ; timebase B (2uS timebase), EDPOL=0

1289 ; output compare mode (flag set on B)
010DC [06) 37FAF498 1290 std dasml9sic

1291

1292 * INITIALISATION CODE TO START UP SYSTEM

1293

1294 sync
010E0 (10] 3616 1295 bsr search_miss

1296

1297 = INTERRUPT ON MCSM2
010E2 [08] 3880F410 1298 . belr mcsm2sic, #flag
010E6 [04] 37BSFFFF 1299 1dd #SFFFF
010EA [06] 37FAF412 1300 std mcsm2ent ; interrupt om next crank pulse (overflow)

1301
010EE [02] 372C 1302 tpd
010F0 (04] 37B6FF1F 1303 andd $SELLE ; clear the interrupt mask
010F4 [02] 372D 1304 tdp

1305 +

1306 +* Starts with pending interrupts - highest interrupt mask is tooth counter

1307 * (MCSM2 = ILV 6) .

1308 ~* .

1309 main_loop ; this would normally calculate the event table
010F6 [08] 3870FA13 1310 belr porte, #bitd+bit5+bité ; CPU not in interrupt routine
010FA [06] BOF6 1311 bra main_loop :

1312 +

1313 *

1314 * Missing tooth search

1315 * MCSM 24 runs off 2uS timebase A

1316 +* Finds the shortest period and then exits from the routine when the gap

1317 * between pulses is greater that 1.5 times the previous pulse period

1318 ~*

1319 search miss
010FC [08] 2771F452 1320 1ded dasmiOa ; load dasmlOa and dasmiOb pulse times
01100 [02) 2779 1321 sde ; calculate the pulse period from the crank
01102 (02] 27FB 1322 ted ; save accE
01104 [02) 27FF 1323 1lsrd ; divide period by 2
01106 (02] 2778 1324 ade ; add to period of last pulse
01108 [02]) 2772 1325 nege ; obtain 2's complement for modulus counter
0110A [06] 377AF4C2 1326 ste mesm24cent ; place number in MCSM 24 modulus latch

1327 ; and initialise counter at same time
0110E (08] 3880F4CO 1328 belr mcsm24sic, #flag ; clear the overflow flag
01112 ({08) 3880F450 1329 belr dasmlOsic, #flag
01116 [10] 3B80OF450 1330 no_gap brset dasmlOsic, #flag, search_miss

FFEO
0111C (10] 3A80F4CO 1331 brclr mcsm24sic, #flag,no_gap
FFF4

1332 +

1333 * Find CAM signal as start condition

1334 * Could do the following, but could wait for 2 revolutions of the engine

1335 «*

01122 [10] 3A80F459 1336 brclr dasmllsicyl,#$80,no_gap ; check CTD1l pin state
FFEE

1337 . ; if =1 then at cam position

1338

1339
01128 [08] 2771F452 1340 1ded dasmllOa ;10 load dasmiOa and dasmlOb pulse times
0112C [02) 2779 1341 sde ; 3 calculate the pulse period from the crank
0112E ([06] 377A0000 1342 ste period ; 8 and save this in RAM
01132 ([06] 3771F452 1343 adde dasmi0a ; 8 add this pulse time to the period

1344 ; could use ALSE, ADE (4 cycles) but would

1345 ; overflow on ALSE when period >=$8000 (16rpm)

2 - Go to: www.freescale.com AN476/D

A Freescale Semiconductor, Inc.
01136 [06] 377A0002 1346 ste next_pulse ; 8 and save next pulse time in RAM
0113A (02) 7500 1347 ldaa 30 :
0113C [06] 177A0007 1348 staa next_tooth
01140 (12] 27F7 1349 rts

1350 *
01142 1351 PAGE

1352 RE AR IR R R RN E T R RN TN R AR RS R PR TR TR IR T ANENCL N RN AN NEAPORE

1353 TOOTH MISSED INTERRUPT ROUTINE
1354 * N
1355 = MCSM24 overflows 2uS timebase is missing tooth detected
1356 and then generates an interrupt.
1357 Normally run from tooth position 57.
1358 Once engine is running normally this routine just checks that
1359 the tooth count is 58 when the interrupt occurs (ie tooth filler
1360 edge at appropriate time)
1361 * If tooth filler in wrong position, tooth count will be 57
1362 *
1363 + If correct - 48 cycles + 20 cycle entry latency = 64 cycles (1)
1364 * 59 cycles + 20 cycle entry latency = 79 cycles (2)
1365 """"'Q"Q't""'"t'*""tt"t"""'QQ"'"QQ'..Q"".""’ L2223 22 2]
1366 * ; cycles
1367 tooth_missed
01142 [04] 3401 1368 pshm [} 1 7
01144 (08) 38FOF4ACO 1369 belr mcsm24dsic, #$F0 ; 8 clear the flag and disable interrupts
01148 {06] 17F50006 1370 1dab tooth ; 7 get the current tooth number
0114C [02] F83A 1371 cmpb #58 ; 3 is it tooth number 58?
0114E [02] B702 1372 beq miss_good ;7,3 If not then it must be a fault
01150 [02] F876 1373 cmpb #118 ; 3 is it tooth number 1182
01152 [02] B7FE 1374 beq miss_good ;7,3 If not then must be a fault
01154 [06] BOOO 1375 bra go_miss 1 7
1376 miss_good
01156 [04) 3540 1377 pulm 4 : 7
01158 [12] 2777 1378 rti ;14
1379 go_miss
0115A {08] 3SEQODFD 1380 bset top_stack-1, #$E0 ; interrupt mask will retrurn at level 7
011SE [04] 37BS10E6 1381 ldad #sync+6 ; RTI subtracts 4 from the PC on return
01162 [06) 37FAODFE 1382 std top_stack ; return address is start of sync routine
01166 (04] 37BFODFA 1383 1ds #top_stack-4
0116A [12] 2777 1384 rti ;14
1385

1386 R R R RN N NN CEE TR IR AR C AN E PR RN E R R R AN R RN CC R IR AT RN SRR TR PN R R ORI P ANPNT FPTEOIS

1387 ~ CAM PULSE INTERRUPT ROUTINE
1388 ~
1389 ¢ DASM11 used to capture timebase B (2uS)
1390 * Once engine is running normally this routine just checks that
1391 * the tooth count is 117 when the CAM pulse reaches the rising edge
1392
1393 ~* Good cam position takes 20 cycles entry + 55 cycles = 74 cycles (1)
1394 + 66 cycles = 85 cycles (2)
1395 Bad cam position is 78 cycles (this should not happen) .
1396 =
1397 E2 22T TRLRRTIRRTRITRT LS I I L I 2SI 22 A SIS S S 22 RS2 22 SR 2 L Nt lssd])
1398 * ; cycles
0116C [08] 3940FA13 1399 cam bset porte, #bité ; set SIZO/PE6 =1 as a marker (test omly)
01170 [04] 3403 1400 pshm d,e ;9
01172 (08) 3880F458 1401 bclr dasmlisic,#flag ;10 clear the flag
01176 [06] 17FS50006 1402 ldab tooth ;7
0117A [02] F800 1403 cmpb 0 ; 3 check which tooth number the CAM pulse
0117C (02] B604 1404 bne badcam ;7,3 occurs at
0117E [08] 2771F45A 1405 1ded dasmlla ;10
01182 [08] 27730002 1406 sted cam_pulse ;10 save the times for the CAM pulse edges
1407 badcam
01186 [04] 3560 1408 pulm d,e ;9
01188 (12] 2777 1409 rti ;14
0118A 1410 PAGE

AN476/D

Go to: www.freescale.com MOTOROLZQ

A Freescale Semiconductor, Inc.

1411 TR T TR RN R LR RN E R R R RN RN R R L RN R RN EE R NN RENTNN LR RLTRRTNRLES AR

1412 * TOOTH FILLER INTERRUPT ROUTINE
1413 *
1414 * Interrupt generated by DASM12 (2uS timebase).
1415 * Increments tooth count for teeth 58,59,118 and 119.
1416 * Teeth 59 and 119 are special cases since the interrupt must be
1417 * disabled after these to prevent a tooth filler interrupt at
1418 * teeth 0 and 60
1419 * This routine also calculates the next pulse position for the
1420 * missing teeth based on the most recent, valid period measurement
1421 * There is no need to use the MCSM counter interrupt in this case
1422 * as there is always an event following the tooth filler event
1423 *
1424 * EK = $F for this routine
1425 * 1Y points to event table.
1426
1427 interrupt handler execution times
1428 * tooth 58,118 56 cycles (1), 73 cycles (2)
1429 * tooth 59,119 65 cycles (1), 87 cycles (2)
1430 *
1431 P IIRTTRTIYIS 2SI RIS 2RI 2223222 LS A SRR AL LRI SIS S AL S L LA L N 2 gt] g
1432 ; cycles
1433 tooth_filler
0118A ([08] 3920FA13 1434 bset porte, #bit5 ; set AS/PES = 1 as a marker (test only)
0118E [04] 3407 1435 pshm d,e,x ;11 push D, E and IX onto stack
01190 [08] 3880F460 1436 belr dasml2sic, #flag ;10 clear flag
01194 [08] 17330006 1437 inc tooth ; 8 increment tooth count
01198 [06] 37F50002 1438 ldad next_pulse ; 8 Get this pulse time
0119C [06] 37F10000 1439 . addd period ; 8 and add last measured period
011A0 {[06] 37FA0002 1440 sta next_pulse ; 8 and save next pulse time in RAM
011A4 ([10]) 3B8OF461 1441 brset dasml2sic+l,#$80,event_a
0004
1442 ;13,17 if ctdi2=1 then first event
1443 event b ;if ctdl2=0 then must be 2nd tooth fill
011AA [08] 3870F460 1444 belr dasml2sic,#$70 ;10 disable interrupts from tooth filler
. 1445 event_a ; first tooth f£ill, so leave dasml2 running
011AE [06] BO36 1446 bra event_loop : 7
1447 +

1“8 REREE RPN TR R TR R R R RN RN IR C RN R AP E RPN NP RPN ER SRR F TR LS TENRTTRIS FEXTRSS

1449 * CRANK PULSE MATCH INTERRUPT ROUTINE

1450 *

1451 * Interrupt generated by MCSM2 (overflow on a tooth count)

1452 * Program first read the value of the tooth count (next_tooth) and then
1453 * selects the appropriate event to be set up. After each event has
1454 * been initialised the next table entry is checked until all events
1455 +* related to this tooth count are camplete. The routine then returns
1456 * control to the background task (RTI).

1457 *

1458 * Timebase is assumed to be 2uS

1459 With 60 teeth and a 16 bit counter, minimum engine speed is

1460 * 8rpm for ignition routines

1461 * approximately 120 rpm for knock routines since valid for up to 1/4th
1462 * of an engine revolution (15 teeth duration max)

1463 * 960 rpm for injector pulse (this can extend over 2 engine revolutions)
1464 * 8 rpm for independent rising and falling edges on injectors

1465 *

1466 * - EK = $F for this routine

1467 * IY points to event table.

1468 *

1469 * interrupt entry latency

1470 * 38 cycles (1), 39 cycles (2) (for EDIVS)

1471 * + 20 cycles (1), 26 cycles (2) interrupt routine entry
1472 = 58 cycles (1),=65 cycles (2)

1473 *

1474 * Main routine takes the following plus subroutine time to execute ...
1475 * tooth 0 183 cycles (1), 230 cycles (2)

1476 * tooth 60 187 cycles (1), 236 cycles (2)

1477 * any other tooth 199 cycles (1), 252 cycles (2)

1478 *

1479 * If entered from tooth filler interrupt then this routine takes

1480 * fewer cycles and so is not considered for worst case timing

14 *

14:; P22 IT L 2RI LTI IR LI IIIILLLLILI A 222222 2222 22 2 22 2 222 22 222 s il dlds)
1483 *

l;gOTOROLA Go to: www.freescale.com ANa76/D

4\ Freescale Semiconductor, Inc.
1484 * ; cycles
1485 int
* 011BO [08] 3910FAl13 1486 bset porte, #bit4 ;10 entering interrupt routine (test only)
011B4 [04] 3407 1487 pshm d,e.x ;11 push D, E and IX onto stack
011B6 (08] 3880F410 1488 belr mcsm2sic, #flag ;10 clear status reg flag
011BA [06] 17F50007 1489 1ldab next_tooth ; 7 get the tooth count
011BE [06] 17FA0006 1490 stab tooth ; 5 save the tooth count
011C2 [02] 3716 1491 tstb ; 3 check if tooth 0 or 60 since the missing
011C4 [02] B714 1492 beq tooth_060 ;7,3 teeth will corrupt the period measurement
011C6 [02] F83C 1493 anpb $#60 ;3
011C8 [02] B710 1494 beq tooth_060 i7.3
011CA [08] 2771F452 1495 lded dasmlOa ;10 load dasmlOa and dasmlOb pulse times
011CE (02]) 2779 1496 sde ; 3 calculate the pulse period from the crank
011DO [06] 377A0000 1497 ste period ; 8 and save this in RAM
011D4 (06] 3771F452 1498 adde dasmiOa ; 8 add this pulse time to the period
1499 ; could use ALSE, ADE (4 cycles) but would
1500 ; overflow on ALSE when period >=$8000 (16rpm)
011D8 [06] 377A0002 1501 ste next_pulse ; 8 and save next pulse time in RAM
011DC [06] BOOS 1502 bra event_loop ;7
1503 tooth_060
011DE [06] 37750002 1504 1de next_pulse ; 8 Get this pulse time
011E2 [06] 37710000 1505 adde period ; 8 and add last measured period
011E6 [06] 377A0002 1506 ste next_pulse ; 8 and save next pulse time in RAM
1507 +
1508 * now check which event(s) needs to be initialised
1509 *
1510 event_loop
011EA [04] 37BC0400 1511 ldx #event_list ; 6 IX points to top of event correlation table
011EE [06] 17750006 1512 1ldaa tooth ; 8 get tooth count again
011F2 [06] 5802 1513 cmpa | 2,Y ; 8 compare with next element in event table
011F4 [02) B614 1514 ne schedule ;7,3 quit int routine if no event scheduled
011F6 (06] 37550000 1515 lde 0,y ; 8 get the event code from the event table
011FA [06] 2785 1516 ldad e,x ; 7 get address
011FC (02] 37cC 1517 xgdx ; 3 and place in X
011FE [12] 89000000 1518 jsr 0,x ;14 jump to event interrupt handler
01202 (02] 3DO6 1519 aiy #6 ; 3 move event table pointer to next entry
01204 [04) 377D0OSCO 1520 cpy #table_end ; 6 check if past end of event table listing
01208 [02] BéDC 1521 bne event_loop ;7,3 if not then continue around loop
0120A [04]) 37BDOS00 1522 ldy #event_table ; 6 if yes then set pointer to start of table
1523 ; and return to main routine again
1524
1525 * Now that the pulses have been set up, load up MCSM2 modulus register
1526 * with the tooth count for the next interrupt
1527 * Don't worry about missing tooth position as this is self governing.
1528 * This is because the tooth filler handles the tooth count and
1529 * there are always events on teeth numbers 57,58,59,117,118,119
1530 * and teeth 0 and 60 are special cases where the tooth period is taken
1531 * from 3 teeth previously
1532
1533 schedule
0120E [06] D502 1534 ldab 2,y ; 7 subtract next tooth event
01210 [06] 17FA0007 1535 stab next_tooth ; S save this value in RAM
01214 [02] 3705 1536 clra ;3
01216 {06] 17F00006 1537 subb tooth ; 7 get current tooth number and then
0121A [02] BAFE 1538 bee no_neg ;7.3
0121C (02) 3700 1539 coma ;3
0121E (02] 27F2 1540 no_neg negd ; 3 2's compliment for modulus counter
01220 (02] BBOO 1541 bmi sched_ck ;7,3 check for going back to start of table
01222 [04] 37B00078 1542 subd $#120 ; 6 if yes, then subtract 120 teeth
1543 sched_ok
01226 [06] 37FAF412 1544 std mesm2ent ; 8 initialise modulus count
0122A ([04] 3570 1545 pulm d,e,x ;11 restore accumulators D and E and index IX
0122C (12] 2777 1546 rei ;14 return from interrupt
1547 *

AN476/D Go to: www.freescale.com MOTORO';:

0122E
01232
01236
0123A
0123E
01242
01244
01248

0124A
0124E
01252
01254
01256
01258
0125C
012SE
01260
01264
01268

0126A
0126E
01272
01274
01276
01278
0127C
0127E
01280
01284
01288

0128A
0128E
01292
01294
01296
01298
0129¢C
0129E
012A0
012a4
012a8

012AA
012AE
012B2
012B4
012B6
012B8
012BC

[06]
{06l
[06]
[06]
(o8]
[o2)
[06)
[12)

(o8]
[06)
[06]
02}
[(10]
[04)
[24)
{02}
[06)
[06])
[12]

{08}
[06)
[06)
[02)
[10]
[04]
[24]
[02]
[06]
(06]
[12]

(o8]
[06]
[06]
[02]
[10])
[04)
[24)

[02]

[06)
[06)
[12)

[08]
[06]
[06])
(o2}
[10]
[04)
[24]

37F50002
37FAF462
37F10000
37FAF464
3880F460
7549

177AF460
27F7

3880F468
37750000
D503
3705
3725
37BC0O03C
3728
37¢cC
37F10002
37FAF46A
27F7

3880F470
37750000
D503
3705
3725
37BCO03C
3728
37¢C
37F10002
37FAF472
27F7

3880F478
37750000
D503
3705
3725
37BCO03C
3728
37¢c
37F10002
37FAF47A
27F7

3880F468
37750000
D503
3705
3725
37BCO03C
3728

Freescale Semiconductor, Inc.

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576

1577°

1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628

R RN N AT R T RN RN IR TR R TR R L AR NN LR R TR ERN TR RN NN RN AR EAARNT SR TENS

SUBROUTINES FOR INITIALISING PULSES FOR IGNITION, INJECTION AND KNOCK GATE

tooth fill interrupt generator takes 55 cycles (1) and 70 cycles (2)
Ignition pulse - rising/falling takes 87 cycles (1) and 103 cycles (2)
Knock sensor gate pulse takes 203 cycles (1) and 244 cycles (2)
Injector - both edges min 916 rpm takes 99 cycles (1) and 118 cycles (2)
Injector - single edge min 8 rrm takes 87 cycles (1) and 103 cycles (2)
Missing tooth detect takes 38 cycles (1) and 53 cycles (2)

L2 2 B A B BN O B

P R 2R 2 R e R R YIRS RSS2 A LA S22 2 22 22222 2 a2 R e R 2SS 222 s R ddddddd
*

* missing tooth interrupt generator

* takes 55 cycles (1), 70 cycles (2)

*

* ;cycles

tooth_fill ; 06 dasml2 missing tooth position
laa next_pulse ; 7 set up an interrupt on the missing tooth
std dasml2a ; 8 set up campare on next tooth position
addd period ; 8 set up interrupt on 2nd missing tooth
std dasmi12b ; 8
beclr dasmi2sic, #flag ;10 clear flag of dasml2
1daa #3549 ;7
staa dasml2sic ; 8 enable interrupts on DASM12
rts 14

»*

* Ignition pulse - falling edge

* takes 87 cycles (1), 103 cycles (2)
*

* ;cycles
ignitif ; 08 dasmi3a ignition 1 falling edge
belr dasmi3sic, #flag ;10 set to logic 0 on compare also clears flag
1de period ; 8 get period from RAM
ldab 3,y ; 7 get dQuty as tenths of a degree
clra i3
emul ;11
1ldx #sixty ; 6 period * tenths
ediv 725 mmmmmmem—emoe—ea = edge offset
xgdx ;3 sixty
addd next_pulse ; 8 add time for next crank pulse
std dasml3a ; 8
rts ;14
L
A ;cycles
ignit2f ; 10 dasmlda ignition 1 falling edge
beclr dasmldsic, #flag ;10 set to logic 0 on compare also clears flag
1de period ; 8 get period from RAM
1dab 3.y ; 7 get duty as tenths of a degree
clra i3
emul 11
ldx #sixty ; 6 period * tenths
ediv 325 ===mmmmeme—o—e- = edge offset
xgax ;3 sixty
addd next_pulse ; 8 add time for next crank pulse
std dasmlda ; 8
- rts ;14
*
* ;cycles
ignit3f ; 12 dasmiSa ignition 1 falling edge
belr dasmiSsic, #flag ;10 set to logic 0 on compare also clears flag
1lde period ; 8 get period from RAM
1dab 3y ; 7 get duty as tenths of a degree
clra ;3
emul ;11
1ax #sixty ; 6 period * tenths
ediv 325 ~emmmcmcemcmeen = edge offset
xgdx 3 3 sixty
addad next_pulse ; 8 add time for next crank pulse
std dasmlSa ; 8
rts ;14
*
* ;cycles
ignit4f i 14 dasml3a ignition 1 falling edge
bclr dasml3sic, #flag ;10 set to logic 0 on compare also clears flag
lde period ; 8 get period from RAM
ldab 3.y ; 7 get duty as tenths of a degree
clra ;3
emul ;11
1ax #sixty ; 6 period * tenths
ediv 325 e=emeecmemcaeaa = edge offset

M
26

OTOROLA

H]
Go to: www.freescale.com

4

Freescale Semiconductor, Inc.

\

012BE [02] 37CC 1629 xgdx ;3 sixty
012C0 ([06] 37F10002 1630 addd next_pulse ; 8 add time for next crank pulse
012C4 [06] 37FAF46A 1631 std dasml3a ; 8
012c8 [12] 27F7 1632 res ;14
1633 ~*
1634 * ;cycles
1635 ignitSf ; 16 dasmlda ignition 1 falling edge
012CA [08] 3880F470 1636 beclr dasmldsic, #flag ;10 set to logic 0 on compare also clears flag
012CE [06) 37750000 1637 1de period ; 8 get period from RAM
012D2 ([06] D503 1638 1dab 3,y ; 7 get duty as tenths of a degree
012D4 (02] 3705 1639 clra ;3
012D6 (10) 3725 1640 emul ;11
012D8 [04) 37BCO03C 1641 ldax #sixty ; 6 period * tenths
012DC [24] 3728 1642 ediv 325 —-mcemecmemeeee = eodge offset
012DE ([02]) 37cC 1643 xgdx ;3 sixty
012E0 [06] 37F10002 1644 addd next_pulse ; 8 add time for next crank pulse
012E4 [06]) 37FAF472 1645 std dasmld4a ; 8
012E8 [12] 27F7 1646 res ;14
1647 *
1648 * ;cycles
1649 ignitéf H 18 dasmlSa ignition 1 falling edge
012EA [08] 3880F478 1650 belr dasmlSsic, #flag ;10 set to logic 0 on compare also clears flag
012EE [06] 37750000 1651 1de period " ; 8 get period from RAM
012F2 ([06] DS03 1652 1dab 3,y ; 7 get duty as tenths of a degree
012F4 [02] 3705 1653 clra ;3
012F6 (10] 3725 1654 emul :11
012F8 [04] 37BCOO3C 1655 1dx #sixty ; 6 period * tenths
012FC [24) 3728 1656 ediv 725 ~=cmececmme——— = edge offset
012FE [02] 37¢CC 1657 xgdx ;3 sixty
01300 [06] 37F10002 1658 adda next_pulse ; 8 add time for next crank pulse
01304 (06] 37FAF47A 1659 std dasmlSa ; 8
01308 [12] 27F7 1660 rts ;14
1661 *
1662 * Ignition pulse - rising edge
1663 * takes 87 cycles (1), 103 cycles (2)
1664 *
1665 * ;cycles
1666 1ignitlr ; 20 dasml3b ignition 1 rising edge
0130A [08) 3880F468 1667 belr dasml3sic, #flag ;10 set to logic 1 on compare also clears flag
0130E ([06] 37750000 1668 1lde periocd ; 8 get period from RAM
01312 (06] DSO3 1669 ldab 3,y ; 7 get duty as tenths of a degree
01314 [02] 3705 1670 clra ;3
01316 [10] 3725 16711 emul ;11
01318 [04] 37BCO03C 1672 lax #sixty ; 6 period * tenths
0131C [24]) 3728 1673 ediv 325 mmemmmecemm———— = edge offset
0131E [02] 37CC 1674 xgdx ;3 sixty
01320 [06] 37F10002 1675 addd next_pulse ; 8 add time for next crank pulse
01324 [06] 37FAF46C 1676 std dasml3b ; 8
01328 [12]) 27F7 1677 rts ;14
1678
1679 * ;cycles
1680 ignit2r ;22 dasml4b ignition 1 rising edge
0132A [08] 3880F470 1681 belr dasmldsic, #flag ;10 set to logic 1 on compare also clears flag
0132E (06] 37750000 1682 1de period ; 8 get period from RAM
01332 (06] D503 1683 1dab 3.y ; 7 get duty as tenths of a degree
01334 [02] 3705 1684 clra ;3
01336 [10] 3725 1685 emul ;11
01338 (04] 37BCO03C 1686 ldx #sixty ; 6 period * tenths
0133C [24] 3728 1687 ediv 725 wmemmmecm—————— = edge offset
0133E [02]) 37CC 1688 xgax ;3 sixty
01340 [06] 37F10002 1689 adad next_pulse ; 8 add time for next crank pulse
01344 [06]) 37FAF474 1690 std dasml4b ; 8
01348 [12] 27F7 1691 rts ;14
1692
1693 * ;cycles
1694 ignit3r ;24 dasm15b ignition 1 rising edge
0134A [08) 3880F478 1695 belr dasm1Ssic,#flag ;10 set to logic 1 on compare also clears flag
0134E (06) 37750000 1696 1lde period ; 8 get period from RAM
01352 [06] DSO03 1697 1dab 3,y ; 7 get duty as tenths of a degree
01354 {02] 3705 1698 clra ;3
01356 [10] 3725 1699 emul ;11
01358 [04] 37BCO03C 1700 1lax #sixty ; 6 period * tenths
0135C [24]) 3728 1701 ediv 325 mmmemmmmee e = edge offset
0135E (02] 37CC 1702 xgdx ;3 sixty
01360 [06] 37F10002 1703 addd next_pulse ; 8 add time for next crank pulse
01364 [06] 37FAF47C 1704 std dasm15b ; 8
01368 [12) 27F7 1705 res ;14
1706 *
1707 * ;cycles
1708 ignitdr ;26 dasm13b ignition 1 rising edge
0136A [08] 3880F468 1709 belr dasml3sic, #flag ;10 set to logic 1 on compare also clears flag
AN476/D For More Information On This Product, MOTOROLA

Go to: www.freescale.com 27

0136E
01372
01374
01376
01378
0137C
0137E
01380
01384
01388

0138A
0138E
01392
01394
01396
01398
0139¢C
0139E
013A0
013A4
013A8

013AA
013AE
013B2
013B4
013B6
013B8
013BC
013BE
013C0
013c4
013Cs8

013ca
013cc

013D0
013D4
013D6
013D8
013DA
013DE
013E0
013E2
013E6
013EA

O013EE
013F2
013F4
013F6
013F8
013FC

O13FE
01402
01404
01406
01408

0140a
0140C
01410
01414
01418
0141A

[06]
[06]
[02]
[10]
[04]
[24]
(02}
[06]
(06]
(12}

[08)
[06]
[o6]
102}
[10]
[04)
[24]
(02)
(06}
[06]
[12]

[08]
[06)
[06]
(021
[10]
[04]
[24]
[02]
[06}
[06]
(12}

[04]
[os]

[oe}
[oe}
(02}
(10}
[04]
[24]
[0z}
[06)
[06)
[06)

[06]
[06]
(02}
[10)
[04)
[24)

[06]
[o6]
[02]
[10}
[02]

[02]
[06]
[06]
[06]
{04
{12}

37750000
D503
3705
3725
37BC0O03C
3728
37¢c
37F10002
37FAF46C
27F7

3880F470
37750000
D503
3705
3725
37BC0O03C
3728
37¢cc
37F10002
37FAF474
27F7

3880F478
37750000
D503
3705
3725
37BC003C
3728
37¢cc
37F10002
37FAF47C
27F7

3420
3880F498

37750000
D503
3705
3725
37BC003C
3728
37¢C
37FA000C
37F10002
37FAF49A

37750000
D505
3705
3725
37BCO03C
3728

37750000
D504
3705
3725
37¢D

37¢cc
37F1000C
37F10002
37FAF49C
3502
27F7

Freescale Semiconductor, Inc.

1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737

1738

1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
17m7
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790

1lde
ldab
clra
emul
lax
ediv
xgdx
addd
std
rts

ignitSr

belr

clra

ignitér

+ % & % %

belr
1lde
1dab
clra
emul
lax
ediv
xgdx
addaa
std
rts

period
3Iy

#sixty

next_pulse
dasml3b

dasmldsic, #flag
period
3,y

#sixty
next_pulse

dasml4db

dasmiSsic, #flag
period
31y

#sixty

next_pulse
dasm1Sb

Knock sensor gate pulse

takes 203 cycles (1),

knock

* rising edge

* falling edge

L

pshm
belr

1de
1dab
clra
emul
1ldx
ediv
xgdx
std
addd
std

lde
1ldab
clra
emul
ldx
ediv

1lde
1dab
clra
emul
adx

xgdx
addd
addd
std
pulm
rts

#$20

dasml9sic, #flag

period
3'Y

#sixty

knock_tooth
next_pulse
dasml9a

period
S,y

#sixty

period
4,y

knock_tooth
next_pulse
dasm19b
#§02

Injector - both edges
minumum 916 rpm

takes 99 cycles (1),

8 get period from RAM

7 get duty as tenths of a degree
3

311

; 6 period * tenths

e s s

;3 sixty

; 8 add time for next crank pulse
; 8

;14

;cycles

;28 dasml4b ignition 1 rising edge

;10 set to logic 1 on compare also clears flag
8 get period from RAM

i 7 get duty as tenths of a degree

;3

;11

;: 6 period * tenths

325 —mmmmmeeem oo = edge offset

;3 sixty

; 8 add time for next crank pulse

;8

;14

;CycCles

;30 dasm1Sb ignition 1 rising edge

;10 set to logic 1 on compare also clears flag
; 8 get period from RAM

; 7 get duty as tenths of a degree
11

6 period * tenths
25 =e-mmmmmceeeeee = edge offset
sixty
add time for next crank pulse

244 cycles (2)

;cycles

i 32 dasmll knock sensor gate
; 7 Push K register

;10

get period from RAM

get duty as tenths of a degree

period * tenths
--------------- = edge offset
sixty
save the start edge fraction
add time for rising edge of next crank pulse

2

®OOWULAKR WI®

St Ne Se Ne Se Ne N we w0 v

get period from RAM
get the fractional offset

tenths of a degree
period * tenths
--------------- = edge offset
sixty
get period from RAM
get number of teeth

Vo Hr W

result (period * teeth) in accD (16 bits)
add partial tooth time to integer teeth time
note that ADX corrupts XK if accD msb set
put result in acc D

add the start edge fraction

add time for rising edge of next crank pulse

WeWw o

Pull K register

e SE N NP Se Se e Se Se e N Ne e Se Se Se o we Ne S

B <3 0 ® oW

118 cycles (2)

M
7R

OTOROLA

Go to: www.freescale.com

AN4Tt

Freescale Semiconductor, Inc.

1791 *
1792 ~* ;cycles
1793 injectl ; 40 dasm16 injector 1 both edges
0141C [08) 3880F480 1794 belr dasmlésic, #flag ;10
1795 * rising edge :
01420 [06] 37750000 1796 1de period ; 8 get period from RAM
01424 ([06] D503 1797 ldab 3,y ; 7 get duty as tenths of a degree
01426 [02] 3705 1798 clra ;3
01428 (10) 3725 1799 emul ;11
0142A [04) 37BCO03C 1800 lax #sixty ; 6 period * tenths
0142E [24] 3728 1801 ediv 725 —emmccmmm—————— = edge offset
01430 [02] 37CC 1802 xgdx 5 3 sixty
01432 (06] 37F10002 1803 addd next_pulse ; 8 add time for rising edge of next crank pulse
01436 [06] 37FAF482 1804 std dasmi6a ; 8
1805 * falling edge
0143A [06] 9104 1806 addd 4.y ; 7 add time for injector on
0143C (06] 37FAF484 1807 std dasml6b ; 8
01440 [12] 27F7 1808 rts ;14
1809 *
1810 * ;cycles
1811 inject2 B 42 dasml7 injector 1 both edges
01442 [08] 3880F488 1812 belr dasml7sic, #flag ;10
1813 * rising edge
01446 [(06] 37750000 1814 1de period ; 8 get period from RAM
0144A [(06] D503 1815 1dab 3,y ; 7 get duty as tenths of a degree
0144C [02] 3705 1816 clra i3
0144E (10} 3725 1817 emul ;11
01450 [04) 37BCO0O3C 1818 1ldax #sixty ; 6 period * tenths
01454 (24] 3728 1819 ediv A R = edge offset
01456 (02) 37CC 1820 xgdx ;3 sixty
01458 [06] 37F10002 1821 addd next_pulse ; 8 add time for rising edge of next crank pulse
0145C (06] 37FAF48A 1822 std dasml7a ; 8
1823 * falling edge
01460 (06] 9104 1824 addd 4,y ; 7 add time for injector on
01462 [06] 37FAF48C 1825 std dasml7b ; 8
01466 [12] 27F7 1826 rts ;14
1827
1828 = ;cycles
1829 inject3 ; 44 dasml8 injector 1 both edges
01468 [08] 3880F4950 1830 belr dasml8sic, #flag ;10
1831 * rising edge
0146C [06] 37750000 1832 1de period ; 8 get period from RAM
01470 [06] D503 1833 ldab 3,y ; 7 get duty as tenths of a degree
01472 [02] 3705 1834 clra i 3
01474 [10]) 3725 1835 emul ;11
01476 [04] 37BCO03C 1836 ldx #sixty ; 6 period * tenths
0147A [24]) 3728 1837 ediv 725 ==mmecemcm—ee—- = edge offset
0147C (02] 37CC 1838 xgdx i 3 sixty
0147E [06]) 37F10002 1839 addd next_pulse ; 8 add time for rising edge of next crank pulse
01482 [06] 37FAF492 1840 std dasml8a ; 8
1841 * falling edge
01486 [06] 9104 1842 addd 4,y ; 7 add time for injector on
01488 [06] 37FAF494 1843 std dasml8b ; 8
0148C [12] 27F7 1844 rts ;14
1845 *
1846 * ;cycles
1847 injectd H 46 dasm16 injector 1 both edges
0148E (08] 3880F480 1848 belr dasmlésic, #flag ;10
1849 * rising edge
01492 (06] 37750000 1850 lde period ; 8 get period from RAM
01496 [06] D503 1851 ldab 3,y ; 7 get duty as tenths of a degree
01498 [02] 3705 1852 clra ;3
0149A .[10] 3725 1853 emul ;11
0149C (04] 37BCOO3C 1854 1dx #sixty ; 6 period * tenths
014A0 [24] 3728 1855 ediv 125 =meememe—ce——ae— = edge offset.
014A2 [02] 37cCC 1856 xgdx ;3 sixty :
014A4 {06] 37F10002 1857 addd next_pulse ; 7 add time for rising edge of next crank pulse
014A8 [06) 37FAF482 1858 std dasmléa ; 8
1859 * falling edge
014AC [06] 9104 1860 addd 4,y ; 7 add time for injector on
014AE [06) 37FAF484 1861 std dasml6b ; 8
014B2 (12] 27F7 1862 rts ;14
1863 *
1864 * ;cycles
1865 injectS ; 48 dasml7 injector 1 both edges
014B4 [08] 3880F488 1866 bclr dasml7sic, #flag ;10
1867 * rising edge
014B8 [06]) 37750000 1868 1de pericd ; 8 get period from RAM
014BC [06] D503 1869 ldab 3,y ; 7 get duty as tenths of a degree
014BE ([02] 370S 1870 clra i 3
014C0 [10]} 3725 1871 emul ;11

Go to: www.freescale.com MOTOROng

Freescale Semiconductor, Inc.

014C2 [04] 37BCO03C 1872 lax #sixty ; 6 period * tenths
014C6 [24] 3728 1873 ediv 325 —-emmemmmee e = edge offset
014C8 [02] 37cC 1874 xgdx ;3 sixty
014CA [06] 37F10002 1875 addd next_pulse ; 8 add time for rising edge of next crank pulse
014CE [06] 37FAF48A 1876 std dasml7a ; 8
1877 * falling edge
014D2 ([06]) 9104 1878 adad 4.y ; 7 add time for injector on
014D4 ([06]) 37FAF48C 1879 std dasm17b ; 8 -
014D8 (12} 27F7 1880 rts ;14
1881 *
1882 * ;cycles
1883 injecté6 ;S0 dasml8 injector 1 both edges
014DA [08) 3880F450 1884 belr dasmi8sic, $#flag ;10
1885 * rising edge
014DE [06] 37750000 1886 1de period ; 8 get period from RAM
014E2 (06] D503 1887 ldab 3y ; 7 get duty as tenths of a degree
014E4 (02]) 3705 1888 clra ;3
014E6 [10] 3725 1889 amnul ;11
014E8 [04] 37BCO03C 1890 lax #8ixty ; 6 period * tenths
014EC [24] 3728 1891 ediv 125 —-cecmmccmeeeee = eodge offset
014EE [02] 37CC 1892 xgadx ;3 sixty
014F0 [06] 37F10002 1893 addd next_pulse ; 8 add time for rising edge of next crank pulse
014F4 ([06]) 37FAF492 1894 std dasmi8a ;8
1895 * falling edge
014F8 [06] 9104 1896 addd 4,y ; 7 add time for injector on
014FA [06] 37FAF494 1897 std dasml8b ; 8
014FE [12] 27F7 1898 rts ;14
1899 +*
1900 * Injector - rising edge
1901 * minumum 8 rpm
1902 * DASM in SSOP mode where event A is separately from event B
1903 * takes 87 cycles (1), 103 cycles (2)
1904 *
1905 ;cycles
1906 injectlr ; 56 dasmlé6a injector 1 rising edge
01500 [08) 3880F480 1907 belr dasmlésic, #flag ;10
01504 [06] 37750000 1908 1de period ; 8 get period from RAM -
01508 [06] DSO03 1909 1ldab 3,y ; 7 get duty as tenths of a degr
0150A [02] 3705 1910 clra ;3
0150C [10] 3725 1911 emul ;11
0150E [04] 37BCO03C 1912 1dx #sixty ; 6 period * tenths
01512 [24] 3728 1913 ediv A R e = edge offset
01514 [02] 37CC 1914 xgdx ;3 sixty
01516 [06] 37F10002 1915 addd next_pulse ; 8 add time for rising edge of next crank pulse
0151A ([06] 37FAF482 1916 std dasmléa ; 8
0151E (12]) 27F7 1917 rts ;14
1918 *
1919 * Injector - falling edge
1920 * minumum 8 rpm
1921 * DASM in SSOP mode where event B is separately from event A
1922 * takes 87 cycles (1), 103 cycles (2)
1923 *
1924 * ;cycles
1925 injectlf ; S8 dasml6b injector 1 falling edge
01520 [08) 3880F480 1926 bclr dasmiésic,#flag ;10
01524 [06] 37750000 1927 1lde period ; 8 get period from RAM
01528 [06] D503 1928 1dab 3y ; 7 get duty as tenths of a degree
0152A [02] 3705 1929 clra ;3
0152C [10] 3725 1930 emul ;11
0152E ([04]) 37BCO03C 1931 lax #sixty ; 6 period * tenths
01532 [24] 3728 1932 ediv 725 emmememmee————e = edge offset
01534 [02] 37CC 1933 xgdx i 3 sixty
01536 [06] 37F10002 1934 adda next_pulse ; 8 add time for rising edge of next crank pulse
0153A [06] 37FAF484 1935 std dasml6b ; 8
01S3E (12] 27F7 1936 res ;14
1937 +*
1938 +* Missing tooth detect
1939 * MCSM 24 runs off 2uS timebase A
1940 * Places an interrupt at 1.5 times the current tooth period.
1941 * If set at tooth 58, should interrupt between tooth position 59 and 60.
1942 * 38 cycles (1), 53 cycles (2)
1943 +
1944 * ;cycles
1945 checkmis
01540 [06) 37FS0000 1946 1ad period ; 7 get period
01544 [02] 277B 1947 tde ; 3 save in accE
01546 [02] 27FF 1948 lsrd ; 3 divide period by 2
01548 [02] 2778 1949 ade ; 3 add to period of last pulse
0154A [02] 2772 1950 nege ; 3 obtain 2's compliment for modulus counter
0154C [06] 377AF4C2 1951 ste mcsm24cnt ; 8 place number in MCSM 24 modulus latch
1952 ; and initialise counter at same time
MOTOROLA Go to: www.freescale.com

30

A Freescale Semiconductor, Inc.
01550 [02) 7550 1953 ldaa £#$50 ; 3 enable interrupts (level 5)
01552 [06] 177AF4CO 1954 staa mcsm24sic ; 8
01556 [08]) 3880F4CO 1955 beclr mcsm24sic, #flag ;10 clear the overflow flag
0155A [12] 27F7 1956 rts ;14

1957 *
1958 Toggle port E-7 (test only)
1959 *
0155C [08] 3980FA13 1960 togglel bset porte, #bit7 ; SIZ1
01560 [12] 27F7 1961 rts
01562 [08] 3880FA13 1962 toggle0 belr porte, #bit7 ; SIZ1
01566 [12] 27F7 1963 rts
1964 *
01568 [12) 27F7 1965 dummy rts ;14
1966 *
0156A [12] 2777 1967 ctm _dummy rti ;14 should really clear the offending flag
1968 ; but this is just test code
0156C [02] 274C 1969 BDM nop
0156E [02] 37A6 1970 bgnd
1971
1972

W

Go to: www.freescale.com MOTORO‘;\

.

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

z “freescale”

semiconductor

rxzb30
Rectangle

rxzb30
disclaimer

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

