

Freescale Semiconductor Document Number: AN4759
Application Note Rev. 0, 06/2013

© 2013 Freescale Semiconductor, Inc.

Boot Loader Implementation on

MC56F84xxx DSC Family
by: Xuwei Zhou

1 Introduction

Many applications require a piece of codes

called boot loader residing in the nonvolatile

memory besides the application codes. The boot

loader is completely independent of the

application codes, and its main function is to

communicate with a host to get the updated

application codes and program the codes into

the application codes area of nonvolatile

memory on the chip. In MC56F84xxx digital

signal controller (DSC) series, flash is the

nonvolatile memory and it’s different from the

flash memory in the earlier DSC series.

This application note aims to explain every

detail of how to implement a boot loader on

DSCs of MC56F84xxx series, taking

MC56F84789 as an example. CodeWarrior10.3

with Processer Expert (PE) is used as the

development environment.

Contents
1 Introduction ..1

2 Boot loader mechanism2

2.1 Memory map in MC56F84789 DSC2

2.2 Memory configuration for boot loader3

3 Boot loader implementation6

3.1 S-record for DSC series6

3.2 Circular buffer ..8

3.3 Boot loader state machine realization11

3.4 Decoding of s-record16

3.5 Erase/program flash memory17

4 Software introduction20

4.1 Linker file ...20

4.2 The do's and don'ts of implementing the

boot loader ..23

5 User application requirements24

6 Conclusion ..26

7 References ..26

8 Revision history ..27

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

2 Freescale Semiconductor

2 Boot loader mechanism

When a system is reset, the boot loader code is executed first and decides whether to reprogram the flash

memory or not. If the flash is to be reprogrammed, the system will communicate with a host to receive

the application code and update it. The updated application code will be started when the update is done.

If update is not required, the current application code will be executed after exiting from the boot loader.

2.1 Memory map in MC56F84789 DSC

It is essential to know the detailed memory map on the MC56F84789 MCU. This information can be

found in Chapter 4 “Memory Map” of MC56F847XXRM: MC56F847xx Reference Manual, available on

freescale.com. As for MC56F84789, there are two pieces of flash memories and two pieces of RAMs

inside the chip. Both the flash memories and one of the RAMs can be accessed through program

memory buses and data memory buses. This means that each of them has two sets of addresses that are

mapped into program memory and data memory. Figure 1 shows the exact memory map of

MC56F84789 MCU.

Note: It is just a convention to refer to these two pieces of flash memories as “program” and “data”

flash.

Program flash:

 It has a volume of 128 K words which is relatively large.

 It starts from address 0x0000 in the program memory map which makes it more suitable to store

codes.

 It can be used to store variables with constant values since it is also mapped into data memory as

indicated in Figure 1.

Data flash:

 The same naming rule applies to data flash; the reason it’s called “data” flash is that its volume is

16 K words which is smaller.

 It starts from 0x8000 in the data memory map which makes it more suitable to store variables

with constant values.

 It can be used to store codes since it is also mapped to program memory.

There’s a RAM of 16 K words mapped into both the program and data memories, so codes can also run

in it. FlexRAM is only mapped into data memory. It can be accessed as traditional RAM or configured

as enhanced EEPROM together with part of the data flash. See AN4689: EEPROM on MC56F84xxx

DSC, available on freescale.com, for EEPROM usage on MC56F84xxx.

http://www.freescale.com/
http://www.freescale.com/

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

Freescale Semiconductor 3

Data Flash

Program Flash

RAM

0x000000

0x01FFFF

0x060000

0x063FFF

0x068000

0x06BFFF

Data Flash

Program Flash

RAM

0x020000

0x03FFFF

0x000000

0x003FFF

0x008000

0x00BFFF

FlexRAM
0x01E000
0x01E3FF

Program

memory map

Data

 memory map

Figure 1. Memory map in MC56F84789 DSC

2.2 Memory configuration for boot loader

In this application, the boot loader is located at the top of the program flash and occupies 3 K words,

while the user application code is located in the rest of the program flash. It is up to the user’s

application whether to use data flash to run codes or store variables. Figure 2 shows how the memory is

configured for the boot loader.

 0x1F400–0x1FFFF in the program flash is used to store the boot loader code, and the initial

value of global variables (namely, .data section). The boot loader starts from the address

0x1F400.

 0x1F3FD–0x1F3FF in the program flash is used to store the start address of the user application

and a delay time value.

 0x00000–0x1F3FC in the program flash is reserved for the user application codes.

RAM is divided into two parts through the linker file:

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

4 Freescale Semiconductor

 the part with lower addresses is mapped into data memory 0x0000–0x1FFF, so it is used to store

variables and the stack

 the part with higher addresses is mapped into program memory 0x62000–0x63FFF; it is used to

run some functions that may be executed during the period of erasing/programming flash.

These are the steps involved in the memory configuration for the boot loader.

1. When the MCU is reset, the PC register is set to reset vector address, where a jump instruction is

placed.

2. It will jump to the start address of the boot loader which is 0x1F400, and the boot loader starts to

run.

3. SCI is used for communication with the host, so the SCI port is monitored once the boot loader is

started.

4. The monitoring will last for a couple of seconds, and it will jump to the address stored in

0x1F3FD–0x1F3FE, if there’s no effective data received during the monitoring. The data stored

in 0x1F3FF decides how many seconds this monitoring will last.

 For an MCU that has finished the updating, the 32-bit address value stored in

0x1F3FD–0x1F3FE must be the start address of the user application.

 For an MCU with no application code but only boot loader code, it should be the start

address of the boot loader; in this case, 0x1F400 is the start address of the boot loader.

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

Freescale Semiconductor 5

0x000000

0x01FFFF

0x062000

0x063FFF

Program

memory map

Data

 memory map

Bootloader
0x01F400

User app start address
0x01F3FD

0x01F3FE

0x01F3FF Delay time

0x01F3FC

User application codes

0x000000

0x0007FF
.bss

Global variables0x000800

0x0009FF

Stack and heap
0x000A00

0x001FFF

Functions

running in RAM

Program

flash

3Kwords

1 word

2 words

5.5K

words

0.5K

words

2Kwords

8Kwords

RAM

mapped

in data

memory

RAM

mapped

in

program

memory

Figure 2. Memory configuration in MC56F84789 for boot loader

Figure 3 shows the execution flow of the boot loader. If effective data is received during the monitoring,

the boot loader will be carried on and both the non-boot loader program flash and data flash will be

erased and programmed (0x1F400–0x1FFFF in the program flash is excluded).

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

6 Freescale Semiconductor

Start

Jump to 0x1F400 to execute bootloader

Time’s out?

Read data(time for monitoring) from 0x1F3FF

Monitor SCI port, get effective data?

Continue to get data from SCI and erase/

program program/data flash

Start to execute user’s

application code

N

Y

Y

N

Bootloader

Figure 3. Boot loader flowchart

3 Boot loader implementation

As mentioned above, the basic idea of realizing a boot loader is to get the application code from a host,

(which is usually a PC), and then program it into the flash memory. So, it is essential to know how the

application code is stored in the PC and how to erase/program the flash.

3.1 S-record for DSC series

An s-record file can be generated after the project in the CodeWarrior is built without errors. The s-

record file ends with an extension name of ‘.s’. The contents in this file follow the s-record format,

which is for encoding programs or data files in a printable format for transportation between computer

systems. This file contains a few records which are essentially character strings made of several fields

that identify the record type, record length, memory address, code/data, and checksum.

Each byte of binary data encodes as a two-character hexadecimal number: the first character represents

the high-order four bits, and the second character represents the low-order four bits of the byte. There

are three types of s-records generated for MC56F84xxx DSC series: S0 (type 0), S3 (type 3), and S7

(type 7). Following is a sketch of the s-record file. It must be noted that all the records are stored in the

file in the form of ASCII codes.

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

Freescale Semiconductor 7

S0110000000050524F4752414D264441544196

S3150000000054E100F454E100F454E22A0254E22A02D4

S3150000000854E22A0254E22A0254E22A0254E22A025A

S3150000001054E22A0254E22A0254E22A0254E22A0252

S3150000001854E22A0254E22A0254E22A0254E22A024A

…
S30B0000F3FD310200000C00C5

S70500000231C7

This figure explains the encoding scheme with appropriate labeling, taking one of the s-records as an

example.

S3150000001854E22A0254E22A0254E22A0254E22A024A

Checksum

Code/Data

Address

Record length

Type

Figure 4. S-record encoding scheme

 Type: There are eight types of s-records to accommodate the encoding, transportation, and

decoding functions. But only the following three of them will be generated here.

o S0: It is the header record for each block of s-records. The code/data field may contain

any descriptive information identifying the following block of s-records. The address

field is normally zeros. The S0 record generated in DSC series is:
S0110000000050524F4752414D264441544196

The code/data field “50524F4752414D2644415441” is actually the ASCII code of

“PROGRAM&DATA”.

o S3: This record contains code/data and the 32-bit start word address at which the

code/data is to reside.

o S7: It is a termination record for a block of S3 records. The address field may optionally

contain the 32-bit word address of the instruction to which control is to be passed. There

is no code/data field.

For example, in the s-record S70500000231C7,the address “00000231” is actually the

start address of function “F_EntryPoint”.

 Record length: The count of the character pairs in the record, excluding the type and record

length.

In the s-record shown in Figure 4, there are total 0x15 bytes (treat a pair of characters as a byte)

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

8 Freescale Semiconductor

of address, code, and checksum.

 Address: The 32-bit word address at which the code/data field is to be loaded into memory.

In the s-record shown in Figure 4, the active code/data will be placed from the address

0x00000018 in program flash. Since there are only 21 effective bits for the address in DSC

series, bit 25 is used to indicate program or data memory.

 If bit 25 is 0, it means this address is a program memory address.

 If bit 25 is 1, it means this address is a data memory address.

 Consider the s-record S31102000012000000000000000000000000DA.

 This record indicates that code/data section “000000000000000000000000” should be placed

 into data memory starting from address 0x00012. Since RAM is mapped into this area and

 together with the description of the linker file, this code/data section contains data but not code.

 Code/Data: From 0 to n bytes of executable code, memory loadable data, or descriptive

information.

It is descriptive information in S0 record, and code/data in S3 record. There’s no code/data in S7

record. There should be a 16-bit word in each memory cell of flash and RAM, but in the

code/data section of s-record, the byte order mode is little-endian. In the s-record shown in

Figure 4, “54E22A0254E22A0254E22A0254E22A02” means 0xE254 is placed into address

0x000018, and 0x022A into address 0x000019, and so on.

 Checksum: The least significant byte of the one’s complement of the sum of the values

represented by the pairs of characters making up the record length, address, and the code/data

fields.

 In the s-record shown in Figure 4, the checksum 0x4A is actually the one’s complement of

 “0x15+0x00+0x00+0x00+0x18+0x54+0xE2+…+0x2A+0x02”. This checksum can be used in

 the boot loader to check if received record is correct.

There is an EOL(End Of Line) mark at the end of each of these records.

3.2 Circular buffer

The following steps describe the circular buffer mechanism.

1. The S-record is transferred from host PC to the DSC through SCI and stored in a circular buffer.

2. The contents in the buffer will be parsed constantly to identify whether a new complete record is

received.

3. Once a new record is received, the transfer will stop temporarily and the code/data section in the

record will be programmed into the desired area. This figure shows how the buffer works.

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

Freescale Semiconductor 9

Data_in

Data_out

Data_in

Data_out

Receive data

Data_in

Data_out

Receive data

Data_in

Data_out

Receive data

Empty buffer

Buffer with only

input data

Buffer with data

input and read out

Buffer is full

Empty cell Cell with

new data

Cell with

obsolete data

Data_in

Data_out

Receive data

Buffer with

no new data

Figure 5. Circular buffer mechanisms

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

10 Freescale Semiconductor

Two pointers are used to manipulate this buffer.

 The pointer Data_in always points at the cell where the last received data is about to be stored.

 The pointer Data_out always points at the cell where the first received new data is stored.

There is no new data in the buffer if these two pointers are equal. The pointer Data_in operates in SCI

receive interrupt service routine, so the buffer is automatically filled with the received data from SCI in

the SCI receive interrupt routine. The contents in the buffer must be parsed constantly in the main loop

to make sure proper s-record is received and the buffer does not overflow. This buffer is realized using

the modulo addressing function of the core. See DSP56800E and DSP56800EX Reference Manual,

available on freescale.com for the details of modulo address operation.

Buffer.c and Buffer.h includes all the buffer-related functions and variables. The macro

RX_DATA_SIZE defines the size of the buffer in bytes. The following two functions are used to read

data out of the buffer:

 char get_char(char **ptr)

This function reads out the data that the pointer ptr points at and increases ptr by 1. Since the s-

record is stored in ASCII form, the data read out by get_char(ptr) is also an ASCII code. This figure

shows how it works.

S 3 1 5 0 0 0 0 0 0 1 8 5 4 E 2 2

Data_in

ptr
Before get_char(ptr) is invoked

S 3 1 5 0 0 0 0 0 0 1 8 5 4 E 2 2

Data_in

ptr
After get_char(ptr) is invoked.

A byte with value of ‘S’ is returned

Figure 6. get_char() function

 char get_byte(char **ptr)

This function reads out the current and next data that the pointer ptr points at and increases ptr by 2.

The two ASCII data are first transformed into corresponding integers and then concatenated together

to be the returned value. The following figure shows how it works.

http://www.freescale.com/

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

Freescale Semiconductor 11

S 3 1 5 0 0 0 0 0 0 1 8 5 4 E 2 2

Data_in

ptr
Before get_byte(ptr) is invoked

S 3 1 5 0 0 0 0 0 0 1 8 5 4 E 2 2

Data_in

ptr
After get_char(ptr) is invoked.

A byte with value of 0x15 is returned

Figure 7. get_byte() function

3.3 Boot loader state machine realization

The boot loader state machine performs the shadowed part of Figure 3. There are four states:

INITIAL_STATE, WAIT_FOR_S, WAIT_FOR_0, and WAIT_FOR_EOL. XON/XOFF protocol is

used so that hyperterminal on the PC can be used to transfer the s-record file.

A temporary pointer called temp_ptr is used to parse the received data in the circular buffer. Three

pointers data_in, data_out, and temp_ptr point to the same place in the buffer when the state machine

just starts, and the buffer is empty. The following figure shows the implementation of boot loader state

machine through the flowchart.

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

12 Freescale Semiconductor

INITIAL_STATE

WAIT_FOR_S

WAIT_FOR_0

WAIT_FOR_EOL

New data into the

buffer

Error occurs

Error occurs

Error occurs

‘S’ is received

 ‘0’ is next to ‘S’

The data next to ‘S’ in

the buffer isn’t ‘0’

 No ‘S’ is received by

parsing the buffer

Parse the buffer for ‘\r’

Send XON flag

Send XOFF flag if current state is XON.

Program the record into flash

Send XON flag if the

buffer has no new data

 ‘\r’ is found in the

buffer

Figure 8. State machine flowchart

The s-record file of DSC always starts with S0 record, followed by several S3 records, and ends with S7

record. So, if this file is transferred by host through SCI, the same sequence is followed. As indicated in

Figure 8, the state machine can be explained as follows.

1. In the INITIAL_STATE, XON flag is sent to the host telling it to start transferring the s-record file.

2. If the buffer stays empty after a specified period of time (~10 seconds), the program will jump to the

user application and the boot loader is bypassed.

3. If the buffer is updated within the specified time, WAIT_FOR_S state is entered and the timeout

counter is stopped. The buffer has new data input if the pointer data_in does not equal temp_ptr.

4. In the state WAIT_FOR_S, the buffer is parsed by invoking get_char (&temp_ptr). If ‘S’ is found in

the buffer, it will enter WAIT_FOR_0 state. If not, it will stay in WAIT_FOR_S state and buffer is

parsed to get ‘S’. It must be noted that the host keeps sending data to the DSC in this state since the

communication state is XON.

 If the baud rate is low, the buffer is parsed only if there are new data in it and so, there’s no

problem.

 If the baud rate is too high, there could be a problem since the new data may overlap the old ones

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

Freescale Semiconductor 13

before the old ones are parsed by invoking get_char(&temp_ptr). In this state, the pointer

data_out is always synchronized with temp_ptr, so that data_out will always point to the place

where ‘S’ resides.

5. In the state WAIT_FOR_0, if ‘0’ is found next to ‘S’ in the buffer, it will enter WAIT_FOR_EOL

state, else it will return back to WAIT_FOR_S state.

6. The code section in a record is programmed into flash memory in the WAIT_FOR_EOL state.

a) First, the buffer continues to be parsed by invoking get_char(&temp_ptr) until the EOL flag ‘\r’

is found in the buffer.

b) Once ‘\r’ is found, XOFF flag is sent to the host telling it to pause the data transfer, and the

code section in the record indicated by the EOL flag just found is programmed into the flash

memory. Since data_out points at the place where ‘S’ of this record resides, it can be used to

analyze the record to get the code section.

c) After current record is programmed into flash, data_out will point to the place where ‘S’ of next

record resides naturally, and temp_ptr is synchronized with data_out for the search of next

EOL, namely ‘\r’ character.

Figure 9 and Figure 10 show the circular buffer status of every boot loader state.

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

14 Freescale Semiconductor

Data_in

temp_ptrdata_out INITIAL_STATE

~ S 0 1 1 0 0

Data_in

temp_ptrdata_out Just enter WAIT_FOR_S state

~ S 0 1 1

Data_in

temp_ptrdata_out Parsing the data:’~’ isn’t wanted

~ S 0 1 1

Data_in

temp_ptrdata_out Synchronize data_out with temp_ptr

~ S 0 1 1 0

Data_in

temp_ptrdata_out
Parsing the data: ’S’ is received,

go to next state

INITIAL_STATE

WAIT_FOR_S

Empty cell

Old useless data

Unread new data

Parsed data

Figure 9. Buffer operation in INITIAL_STATE and WAIT_FOR_S states

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

Freescale Semiconductor 15

~ S 0 1 1 0

Data_in

temp_ptrdata_out
Parsing the data: ’0’ is received,

go to next state

~ S 0 1 1 0 0

Data_in

temp_ptrdata_out Parsing the data: search for ‘\r’

~ S 0 1 1 0 0 0 0 9 6
\

r
S 3

Data_in

temp_ptrdata_out ‘\r’ is found

~ S 0 1 1 0 0 0 0 9 6
\

r
S 3 1 5

Data_in

temp_ptr data_outdata_out is used to decode the

record and program it into flash

~ S 0 1 1 0 0 0 0 9 6
\

r
S 3 1 5

Data_in

temp_ptr data_outSynchronize temp_ptr with data_out,

and start to search for ‘\r’

0 2 D 4
\

r
~ S 0 1 1 0 0 0 0 9 6

\

r
S 3 1 5 0

Data_in

temp_ptrdata_outParsing goes on...

Empty cell

Old useless data

Unread new data

Parsed data

WAIT_FOR_0

WAIT_FOR_EOL

Figure 10. Buffer operation in WAIT_FOR_0 and WAIT_FOR_EOL states

Once S7 record is received, the boot loader execution is over and the program will jump to user

application as described in Memory configuration for boot loader. This figure shows the detailed

flowchart of this state machine realization.

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

16 Freescale Semiconductor

state == INITIAL_STATE?

Clear bootloader status.

Send ‘XON’ flag through SCI informing PC to transfer data

state = WAIT_FOR_S

data_in != temp_ptr?

Stop timer

State == WAIT_FOR_S?

temp_ptr = data_out.

Make temp_ptr point at the very first new data

in the buffer

get_char(&temp_ptr) == ‘S’?

state = WAIT_FOR_0

get_char(&data_out).

Synchronize data_out with temp_ptr.

State == WAIT_FOR_0?

get_char(&temp_ptr) == ‘0’?

state = WAIT_FOR_EOL

get_char(&data_out).

Synchronize data_out with temp_ptr.

state = WAIT_FOR_S

State == WAIT_FOR_EOL?

get_char(&temp_ptr) == ‘\r’?

PC’s sending data?

Send ‘XOFF’ flag

temp_ptr = data_out.

Make temp_ptr point at the very first new data

in the buffer

Decode the record and

program the code into flash

State = INITIAL_STATE

Y

Y,new data in the buffer

N

Y

Y

N

PC’s NOT sending data?

Any error occurs?

Bootloader is over?

N

Y

N

Y

N

Y

N

N

Y

Y

Y

N

N

state = INITIAL_STATE,

Display error code on PC.

Time’s up?

Jump to user’s

application

N

Y

Y

N

Send ‘XON’ flagN Y

N

Figure 11. Detailed flowchart of boot loader state machine

3.4 Decoding of s-record

As mentioned in Boot loader state machine realization, the record will be decoded and programmed into

flash once the corresponding EOL is found in the buffer. The following section describes how it works.

The pointer data_out always points at the first character of the record once the decoding starts, (as

shown in Figure 10). The function srec_decode() is used to decode the record together with the pointer

data_out. Following is a list of steps performed for decoding one s-record. Figure 12 shows the

flowchart of these steps.

1. The pointer data_out points at the beginning of the record which is ‘S’ when the decoding starts.

2. Invoke get_char(&data_out) twice to get the record type, and data_out points at the first character of

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

Freescale Semiconductor 17

the address section.

3. Invoke get_byte(&data_out) four times to fetch the address. Checksum is calculated every time

get_byte() is invoked.

4. Deal with code/data section of the record according to the type.

 For type 0 (S0), fetch the code/data section by invoking get_byte(&data_out) and send them

back to the host, so the host will receive a string “PROGRAM&DATA”.

 For type 3 (S3), fetch the code/data section and program them into the flash memory

according to the address.

 For type 7(S7), the code/data section is fetched but ignored.

5. Once the code/data section is processed, get_byte(&data_out) is invoked to get checksum and it is

compared with the calculated one. The pointer data_out is made to point at the beginning of next

record by invoking get_byte(&data_out) again.

6. Once the record of type 7 is processed, boot loader execution is over.

3.5 Erase/program flash memory

The flash memory is configured, erased, and programmed by simply entering proper values such as

command code and data to the FTFL_FCCOBn registers. The execution of this command is started by

clearing bit 7 of the FTFL_FSTAT register. For detailed description of manipulating the flash memory

of MC56F84xxx, see MC56F847XXRM: MC56F847xx Reference Manual, available on freescale.com.

The following three commands are essential during the boot loader execution (since all the commands

are not used).

 Erase Flash Block command

 Erase Flash Sector command

 Program Longword command

The flash address used in these commands is not the actual address that appears in the program memory

map or data memory map, as indicated in Figure 1.

The address used in the flash command is byte address, while the address mapped into program/data

memory is word address. For program flash, the command address starts from 0x000000 and for data

flash, it starts from 0x800000.

For instance, a 16-bit data of value 0x1122 is stored in the address of 0x0001 which is in the program

memory map. From the point of using flash commands, an 8-bit data of value 0x22 is stored in the byte

address of 0x0002 and an 8-bit value of 0x11 is stored in the byte address of 0x0003. The same rule

applies to the data flash. Figure 13 shows the relationship between word address and byte address.

http://www.freescale.com/

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

18 Freescale Semiconductor

Start to decode

Invoke get_char(&data_out),get ‘S’ and discard it.

Invoke get_char(&data_out), get record type

Invoke get_byte(&data_out), get record length

Invoke get_byte(&data_out) 4 times to get the 32-bit address.

Record type == ‘0’?

Invoke get_byte(&data_out) to get the code/data

part, and send them back to host through SCI.

Erase program flash(for user app.)

and data flash.

Any error during erase/prog?

Invoke get_byte(&data_out) to get checksum.

Calculated checksum ==

Received checksum?

Set checksum error flag.

Invoke get_byte(&data_out) to discard EOL.

Send ‘*’ through SCI to display progress.

Invoke get_byte(&data_out) to get the code part per

record length, padding the data into 16-bit format.

Record type == ‘3’?

Address effective?

Program the code into flash.

Record type == ‘7’?

Set bootloading end flag

Set wrong type error flag

Exit

Y

N

Y

N

Y

Y

Y

N

NY

N

N

Figure 12. Decoding one record

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

Freescale Semiconductor 19

...

0x1122

...

...

Address

In program memory map

0x0000

0x0001

0x0002

0x0003

Program Flash

...

...

0x22

0x11

...

...

...

...

Address for flash

commands

Program Flash

0x0000

0x0001

0x0002

0x0003

0x0004

0x0005

0x0006

0x0007

...

0x1122

...

...

Address

In program memory map

0x68000

0x68001

0x68002

0x68003

Data Flash

...

...

0x22

0x11

...

...

...

...

Address for flash

commands

Data Flash

0x800000

0x800001

0x800002

0x800003

0x800004

0x800005

0x800006

0x800007

Figure 13. Relationship between word address and byte address

It must be noted that the 32-bit address in the record uses bit 25 to indicate whether the address is in

program memory or in data memory. A value of 1 indicates data memory.

Once an ‘S3’ record is detected, the code/data section will be fetched and entered into a 16-bit array in

the srec_decode() function. This 16-bit array, the 32-bit address decoded from the record, and the length

of the record are passed down to the flash programming function hfm_command(). This function first

analyzes the 32-bit address to find out whether it is a program memory or data memory address by

checking its bit 25, and then changes it into byte address used by flash commands. The 16-bit array with

code inside is transformed into 8-bit array just by using a ‘Word8 *’ type pointer. The compiler will deal

with the relationship in Figure 13 automatically.

The program flash and data flash will be erased if the record under processing is type 0. Program

longword command is used while processing record of type 3. Program longword means programming

four bytes data into the flash starting with the command address, and the command address must be

longword-aligned, which means the last two bits of this address must be 0b00. There are circumstances

where the command address is not longword-aligned. Figure 14 shows how to deal with it.

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

20 Freescale Semiconductor

0x13 0x15 0xA4 0x45 0x15 0xE4 0x90 0x03

0x0082

0x13 0x15 0xA4 0x45 0x15 0xE4 0x90 0x03

0x0080

0xFF 0xFF

Addr (for cmd):

Addr (for cmd): 0x0082

0xFF 0xFF

Make it longword aligned and

the length to be a multiple of 4.

Figure 14. Dealing with the byte array without having longword-aligned address

As shown in Figure 14, the start address is 0x0082 which is not longword-aligned. Add 2-byte data of

0xFF in front of this array so that the start address is 0x0080, which is longword-aligned. Programming

0xFF into a cell actually has no meaning because ‘0’ can’t be changed into ‘1’ through Flash Program

command. 2-byte data of 0xFF are also added at the end of this array in order to make the length of this

array to be a multiple of four bytes, because Program Longword command always programs four bytes

at a time.

4 Software introduction

The code for this boot loader is developed in CodeWarrior v10.3 (build ID: 121211) based on PE. This

section will discuss some key points regarding development of this code in CW v10.3.

4.1 Linker file

The default linker file generated by PE doesn’t apply to this specific application. It must be modified

according to Figure 2. The MEMORY part is shown as the following code.

MEMORY {

 .pIntvectorBoot (RWX): ORIGIN = 0x00000000, LENGTH = 0x000000F0 # Reset and cop vectors

 .pFlashConfig (RWX): ORIGIN = 0x00000200, LENGTH = 0x00000008 # Reserved for Flash IFR value

 .ppFlash (RWX): ORIGIN = 0x00000208, LENGTH = 0x0001F1F5 # Primary flash for user code

 .DelayT (RWX): ORIGIN = 0x0001F3FD, LENGTH = 0x00000003 # Bootloading delay time & user code start position

 .pFlash (RWX): ORIGIN = 0x0001F400, LENGTH = 0x00000C00 # Primary flash for boot loader, 3Kwords

 .xRAM_bss (RW) : ORIGIN = 0x00000000, LENGTH = 0x00000800 # 2Kwords for bss

 .xRAM_data (RWX): ORIGIN = 0x00000800, LENGTH = 0x00000200 # 0.5Kwords for global variables

 .xRAM (RW) : ORIGIN = 0x00000A00, LENGTH = 0x00001600 # 5.5Kwords for heaps and stacks

 .pRAM_code (RWX): ORIGIN = 0x00062000, LENGTH = 0x00002000 # 8Kwords for code

 .xRAM_code (RW) : ORIGIN = 0x00002000, LENGTH = 0x00002000 # mirror of .pRAM_code

}

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

Freescale Semiconductor 21

It is recommended that the flash erase/program function hfm_command() (see Erase/program flash

memory) is executed in program RAM. So, this function must be stored in flash memory but run in

RAM, which is realized in the following code description of SECTIONS part.

.ApplicationCode :

{

 _pFlash_code_start = .;

 # Note: The function _EntryPoint should be placed at the beginning of the code

 OBJECT (F_EntryPoint, Cpu_c.obj)

 # Remaining .text sections

 * (rtlib.text)

 * (startup.text)

 * (fp_engine.text)

 * (user.text)

 * (.text)

 # save address for the data starting in pROM

 Fpflash_mirror = .;

 Fpflash_index = .;

} > .pFlash

.prog_in_p_flash_ROM : AT(Fpflash_mirror)

{

 Fpram_start = .;

 _pram_start = .;

 * (interrupt_vectors.text)

 * (pram_code.text)

 # save data end and calculate data block size

 Fpram_end = .;

 Fpram_size = Fpram_end - Fpram_start;

 _pram_size = Fpram_size;

 Fpflash_mirror2 = Fpflash_mirror + Fpram_size;

 Fpflash_index = Fpflash_mirror + Fpram_size;

 } > .pRAM_code

Global constants are defined in the linker file to identify the start address and the size of this function in

flash memory and RAM.

F_pflash_code_start = Fpflash_mirror; # start address in Flash

F_dram_code_start = _pram_start - 0x60000; # start address in RAM (the address mapped into data memory)

F_dram_code_size = _pram_size; # size

The function code is copied from flash memory to RAM using the mem_copy() function, the moment it

enters main() function. The default memory copy routine in “56F83x_init.asm” generated by PE is not

used, so two constants must be set to 0 in the linker file as shown in the following code.

F_xROM_to_xRAM = 0x0000;

F_pROM_to_xRAM = 0x0000;

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

22 Freescale Semiconductor

The mem_copy function is defined in the following code.

asm void mem_copy(long p_start,long x_start,unsigned int cnt)

{

 move.l a10,r2

 move.l b10,r3

 do y0,>>end_prom2xram // copy for 'cnt' times

 move.w p:(r2)+,x0 // fetch value at p-address

 nop

 nop

 nop

 move.w x0,x:(r3)+ // stash value at x-address

end_prom2xram:

 nop

 rts

}

The default configuration generated by PE is small data model, which means only 16-bit pointer can be

used and it speeds up the execution of the boot loader to a certain extent. As Figure 2 shows, the code

starts at 0x1F400 which is a 17-bit address; so, to avoid compile error, the functions

F_pflash_code_start and F_dram_code_start are divided into two parts as shown in the following code

lines.

F_pflash_code_start_h = (F_pflash_code_start/65536)&0xffff;

F_pflash_code_start_l = F_pflash_code_start &0xffff;

F_dram_code_start_h = (F_dram_code_start/65536) &0xffff;

F_dram_code_start_l = F_dram_code_start &0xffff;

The function mem_copy is invoked using the following code.

mem_copy(((Word32)(&_pflash_code_start_h)<<16) + (Word32)(&_pflash_code_start_l),\

 ((Word32)(&_dram_code_start_h)<<16) + (Word32)(&_dram_code_start_l),(UWord16)&_dram_code_size);

The .data sections are processed in the similar manner. Once the linker file is generated by PE, prohibit

PE from generating linker file every time the project is compiled by selecting ‘no’ in the “Generate

linker file” option. The following figure shows where to change this setting.

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

Freescale Semiconductor 23

Figure 15. PE Option to prohibit PE from generating linker file

For more information about code implementation, see the source code project AN4759SW, attached

with this application note.

4.2 The do's and don'ts of implementing the boot loader

For those who are not familiar with CodeWarrior v10.3 and MC56F84xxx DSC series, the following

key points need to be mentioned.

 The watchdog is enabled by default.

 The start address of the boot loader must be right on the border of a sector which is 1 K words in

program flash. This is because the flash is erased in the unit of sector which means that if you want

to erase some cells in the flash memory, you'll have to erase the whole 1 K words memory where the

cells belong to.

 When SCI is used for communication, and Init_SCI bean is used in PE, remember to disable its

DMA function, else there will be receiving error unless DMA function is indeed used.

 “Clean project” must be executed after linker file is changed, else it won’t take effect.

 The circular buffer used in this application is realized by modulo addressing function of the core,

and requires the start address to be an even value.

 SCI interrupt in this application is fast interrupt which means the program will go to the interrupt

service routine directly without jumping to the vector table first. So if fast interrupt is not used, the

start address of the interrupt vector table should be altered to avoid conflict between the user

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

24 Freescale Semiconductor

application and the boot loader.

5 User application requirements

If the user application is based on PE, the following two issues must be considered, so that the

application can be downloaded properly through the boot loader developed above, and the boot loader

can still function well together with user application:

 The linker file generated by PE should be prohibited to update automatically. Figure 15 shows the

setting. The memory for code can’t go beyond 0x1F3FF in program flash as indicated in Figure 2.

The start address of the user application and the delay time must be entered in the address range

0x1F3FD-0x1F3FF.

MEMORY {

 ……

 .p_Code (RWX) : ORIGIN = 0x00000208, LENGTH = 0x000F000

 ……

 .xBootCfg (RWX): ORIGIN = 0x1F3FD, LENGTH = 3

}

SECTIONS{

 .ApplicationConfiguration:

 {

 # Store the application entry point

 WRITEW(F_EntryPoint); # write 4 bytes

 # Boot loader start delay in seconds

 WRITEH(12); # write 2 bytes

 } > .xBootCfg

}

 Modification should be made to “Vector.c” generated by PE. The first two instructions in _vect()

function must be changed as shown in the following code, so that the program will first jump to the

boot loader once the chip is reset.

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

Freescale Semiconductor 25

#define boot_start 0x1f400

#pragma define_section interrupt_vectors "interrupt_vectors.text" RX

#pragma section interrupt_vectors begin

volatile asm void _vect(void) {

 JMP boot_start /* Interrupt no. 0 (Used) - ivINT_HW_RESET */

 JMP boot_start /* Interrupt no. 1 (Used) - ivINT_COP_RESET */

 ……

 ……

}

#pragma section interrupt_vectors end

Vector.c should remain this way once it is changed as above. The following figure shows how to freeze

the code generation function by PE.

Figure 16. Option to freeze the code generation function by PE

1. S-record won’t be generated by default; it should be enabled as shown in Figure 17. The option Sort

by Address must be selected and the max s-record length shouldn’t exceed 255. S-record EOL

character should be DOS(\\r\\n).

2. As for how to use hyperterminal together with this boot loader to realize the boot loader function,

see AN4275: Serial Boot loader for 56F82xx, available on freescale.com.

http://www.freescale.com/

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

26 Freescale Semiconductor

Figure 17. Configuration of generating s-record

6 Conclusion

This application note provides a method of realizing boot loader on 56F84xxx series. This document

also describes in detail, the working of the boot loader and its implementation using CodeWarrior v10.3

with Processor Expert. Both MC56F84xxx and MC56F827/3xx DSC series can take the sample code as

reference.

7 References

 MC56F847XXRM: MC56F847xx Reference Manual, available on freescale.com

 AN4689: EEPROM on MC56F84xxx DSC, available on freescale.com

 DSP56800E and DSP56800EX Reference Manual, available on freescale.com

 AN4275: Serial Boot loader for 56F82xx, available on freescale.com

http://www.freescale.com/
http://www.freescale.com/
http://www.freescale.com/
http://www.freescale.com/

 Boot Loader Implementation on MC56F84xxx DSC Family, Rev. 0, 06/2013

Freescale Semiconductor 27

8 Revision history

Revision number Date Substantive changes

0 06/2013 Initial release

How to Reach Us

Home Page:
freescale.com

Web Support:
freescale.com/support

Information contained in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. Freescale reserves the right to make changes without
further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does Freescale assume any liability arising out of
the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in Freescale data sheets and/or specifications can and
do vary in different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to standard terms and
conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and Processor Expert are trademarks of
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service
names are the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

 Document Number: AN4759

 Rev. 0, 06/2013

 June 23, 2013

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions

	Introduction
	Boot loader mechanism
	Memory map in MC56F84789 DSC
	Memory configuration for boot loader

	Boot loader implementation
	S-record for DSC series
	Circular buffer
	Boot loader state machine realization
	Decoding of s-record
	Erase/program flash memory

	Software introduction
	Linker file
	The do's and don'ts of implementing the boot loader

	User application requirements
	Conclusion
	References
	Revision history

