
NXP Semiconductors
Application Note

Document Number: AN4670
Rev. 0, 12/2016

Contents

Introduction . 1
Example Memory Partitioning . 2
Power-on Sequence . 3
DCF Records and Clients . 6
Boot Header . 13
Initialization Code . 15
C Language Initialization Sequence 24
Revision history . 32

Initializing the MPC5746R
by: Bill Terry
1 Introduction
MPC5746R MCU is part of a family of devices that
contain many new features coupled with high
performance 55 nm CMOS technology to provide a
substantial reduction of cost per feature and significant
performance improvement. Initially intended for
automotive powertrain applications, the MPC5746R is
a 32-bit microcontroller that implements multiple
e200z4 cores built on Power Architecture® technology
and that can run at up to 200 MHz.

This application note describes the procedure that occurs
during startup on the MPC5746R and describes the
software requirements for initializing the device and
starting code execution on multiple cores.

Example code is provided along with this application
note. This code is intended to be an example of how a
typical application can be configured to boot from flash
memory.

1
2
3
4
5
6
7
8

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc57xx-mcus/automotive-industrial-engine-management-mcu:MPC5746R?utm_medium=AN-2021

Example Memory Partitioning
1.1 Objective

After reading this application note the user should understand the following:

• The startup procedure of the MCU and the transition to execution of user software

• How to use DCF records to control initial device configurations

• How the boot header operates and how to create a boot header for a multicore application

• How to initialize SRAM memories

• How to configure the flash memory and to enable and use advanced performance features

• How to configure the PLLs and the clock tree

• How to use the Mode Entry module and boot the cores after a power on reset (POR).

2 Example Memory Partitioning
Multicore applications are usually configured to partition the device memory (both flash and SRAM) into
sections. Typically, the flash memory is broken up into smaller sections based on the system requirements
such as flash blocks that are dedicated program storage for a particular core. Other dedicated areas of the
flash may be blocks that contain shared program code segments, shared data blocks (such as constant
definitions), private data areas, and blocks that are used for EEPROM emulation. Additionally the various
on-chip SRAM memories may be allocated by core.

With multiple cores, there are trade-offs for having either separate flash and SRAM sections, or a common
memory section for flash and SRAM that is shared by all cores. A common memory pool allows easier
management of memory boundaries and shared code and data. Separate memory areas, however, offer
optimization options that are not available with shared memory pools.

This application note uses the separate memories approach. The flash, SRAM, and local memories are
allocated as shown in Table 1. For convenience, a single 256 KB flash block is dedicated to each core for
this simple example. The remainder of the flash memory is not defined for any particular use.

Table 1. Code memory allocation

Flash SRAM Local memory

Base Size Base Size
IMEM DMEM

Base Size Base Size

User DCF1
Records

1 Device Configuration Format records are discussed in Section 4, “DCF Records and Clients,” on page 6.

OTP2

2 OTP = One Time Programmable Flash memory

0x0040_0200 28 — — — — — —

Boot header
Flash

RW 0x0100_0000 20 — — — — — —

Core 0 RW 0x0104_0000 256 KB 0x4000_8000 112 KB 0x5100_0000 16K 0x5180_0000 32 KB

Core 1 RW 0x0100_0000 256 KB 0x4002_4000 112 KB 0x5000_0000 16K 0x5080_0000 32 KB
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors2

Power-on Sequence
2.1 Flash memory

The device is provided with 4 MB of flash memory. This memory includes flash for the application code
as well as blocks for TEST and UTEST data. Additionally, sections of the flash memory are provided for
EEPROM emulation.

The TEST and UTEST locations of flash memory contain DCF records that may be modified or added by
the user, as well as data that is programmed during factory testing.

2.2 Local memory

Each of the e200z425 cores provide 16 KB of tightly coupled instruction memory (I-MEM) and 32 KB of
tightly coupled data memory (D-MEM). These low latency memory resources allow fast core access to
instructions and data.

Within the scope of the application, I-MEM and D-MEM may be treated as normal SRAM. They are
memory mapped, and using the linker file, the application executable can be built to locate specific code
and data into these memory spaces to improve system performance. In the example included with this
application note, the linker files are used to locate the stack for each core in the local D-MEM to improve
system performance during context switching.

Optionally, the external interrupt vector handler code can be placed in I-MEM. This may be useful
improving performance in any application that requires heavy use of the peripheral and system interrupts.

Both I-MEM and D-MEM are provided with ECC error correction/detection and must be initialized before
use.

3 Power-on Sequence
This section explains the sequence of events from power on until the device begins execution of the
application code.

Powering up and booting the device involves a set modules that work together to ensure the correct
functionality:

• The Power Management Controller (PMC) ensures that all voltage levels are within specification

• The Reset Generation Module (MC_RGM) sequences the device through the steps of the reset
sequence and interacts with the System Status and Configuration Module (SSCM)

• The System Status and Configuration Module (SSCM) initializes various other modules and
configures the device to its default state

• The Boot Assist Flash (BAF) boots the device correctly by locating the boot header

• The Mode Entry Module (MC_ME) controls initial configurations for various modules

3.1 Power Management Controller

When power is applied to the microcontroller, the PMC controls and monitors the various voltage levels
around the device. Specifically, the PMC monitors its own supply voltage, the supply voltages to all the
high and low-voltage detect circuits, the trip points for all the high- and low-voltage detect circuits, the
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 3

Power-on Sequence
power supplies and reference voltages to the analog-to-digital converters as well as the major power
supplies to the MPC5746R. The PMC holds the device in the POWERUP phase of the reset state machine
until all required power domains reach their specified voltage levels. Power sequencing is not required.

3.2 Reset Generation Module

When the device is powered up correctly and exits the POWERUP phase, the MC_RGM takes over the
control of the device and manages the reset sequence. The MC_RGM provides a register interface and
various registers are available to monitor and control the chip reset sequence. The reset sequencer is a state
machine that controls the different phases (PHASE0, PHASE1, PHASE2, PHASE3, and IDLE) of the
reset sequence and controls the reset signals generated in the system. Figure 1 shows the reset sequence
state machine.

Note in Figure 1 that there are different types of reset that may be generated when the device has reached
an operational state. These different levels of reset (destructive, functional, and short) allow some system
resources to be maintained in their last state during the reset event.

Figure 1. Reset state machine diagram

After a power-on reset (PORST) or a destructive reset, the reset sequence starts at PHASE0. The following
phases are used for temporization and setup, flash initialization, and device configuration. The reset state
machine then reaches the IDLE phase where the Built-In Self-Test (BIST) is conducted. The BIST is

POWERUP

PHASE0

PHASE1[DEST]

PHASE2[DEST]

PHASE3[DEST]

IDLE[DEST]

Power On Reset

PHASE1[FUNC]

PHASE2[FUNC]

PHASE3[FUNC]

IDLE[FUNC]

Destructive Reset (includes PORST)

Functional Reset (includes RESET)

Short Reset

Enabled destructive reset
or test, auto-destructive
reset

self test

no self
test

temporization/setup

flash initialization

device configuration

execution (LBIST/MBIST)
application
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors4

Power-on Sequence
configured during PHASE3 controlled by DCF records. At the end of the BIST, a functional reset is
triggered. After a functional reset, the device proceeds at PHASE1[FUNC]. It is also possible to disable
the BIST. In this case, the device directly proceeds to phase IDLE[FUNC].

Three active-low reset signals are associated to the internal reset circuitry:

• PORST: released when the device leaves the POWERUP phase. The signal has a strong pull-down
when the device is in POWERUP state, and a weak pull-down when it is not in this phase; that is,
it has to pulled up externally to bring the device out of reset.

• RESET: released in phase IDLE[FUNC]. Forcing either of the two reset signals low keeps the
device in reset.

• RSTOUT: allows a software generated reset output to other devices, independent of internal resets.
This function is shared on a GPIO pin. See the MPC5746R Reference Manual for details.

NOTE

It is recommended to use 4.7 kresistors as pull-ups for each of the PORST
and RESET signals.

3.3 System Status and Configuration Module

The primary purposes of the SSCM are:

• To provide a mechanism for configuring and initializing the device during system boot

• To provide information about the current state of the system that is useful for configuring
application software and for debugging the system

During the reset sequence, the RGM enables the SSCM. The SSCM reads the DCF records in both the
TEST and UTEST flash memory areas. The DCF records contain device setup information that the SSCM
then uses to write data to various registers in the device. The DCF records are primarily concerned with
setting up the memory, configuring the Self-Test Control Unit (STCU), and providing initial device
configuration values.

One of the DCF records that the SSCM reads from the TEST flash area contains the vector that points to
the starting address of the BAF. This vector is sent to Core 1. Core 1 then executes the BAF to locate the
boot header that contains boot information and reset vectors for all cores.

3.4 Boot Assist Flash

The BAF is executable software that is programmed in a 16 KB block of flash memory, mapped adjacent
to the UTEST flash memory block (see Section 4.2, “UTEST flash memory,” on page 9). The BAF block
base address is 0040_4000h. It is one time programmable (OTP) and is programmed during factory test.
In the final stage of the reset sequence, phase IDLE[FUNC], the SSCM sets the Core 1 program counter
to the starting address of the BAF, which then executes the BAF code. The main purpose of the BAF is to
locate the boot header and copy the relevant information from the boot header into registers of the Mode
Entry Module. In the case where the BAF cannot find a valid header, a serial boot load process is started.
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 5

DCF Records and Clients
3.5 Mode Entry Module

The MC_ME is responsible for delivering initial values to many registers in the device. The MC_ME also
supplies reset vectors for all cores.

During the power-up sequence, the SSCM initializes the BAF to search for a valid boot header at
predefined locations in the flash memory. The BAF derives the necessary boot information and reset
vectors from the boot header. As the boot-up sequence progresses, the SSCM instructs the MC_ME to
transfer the reset vectors to the respective processor cores. All CPU cores always receive their reset vectors
from the MC_ME even though these reset vectors are in the boot header located in flash memory.

4 DCF Records and Clients
The Device Configuration Format (DCF) record is a mechanism to configure specific registers during
system boot and to set up an initial configuration for the device after reset or start up. The DCF records are
located in the UTEST section of flash memory. An on-chip register that can be configured by a DCF record
is a DCF client.

4.1 DCF records

A DCF record is a 64-bit wide data field that contains 32-bit data that is written to DCF clients, along with
address information and check bits as illustrated in Figure 2. DCF records are stored in both TEST and
UTEST flash, however only UTEST flash can be written by the user.

The DCF record bit fields are described below.

Offset 0x00 0x01 0x02 0x03

Bit no 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Data

Offset 0x04 0x05 0x06 0x07

Bit no 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

CS[n] Address[16:2]

P
ar

ity

S
to

p
Figure 2. DCF record format

Field Name Description

0–31 Data[0:31] 32 bits of data that is to be written to the DCF client

32–46 CS[n]
Chip Select n. One Chip select is asserted (0b1) per DCF record to select the target
module for the DCF client. All other Chip Selects should be negated (0b0).
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors6

DCF Records and Clients
The DCF records provide a method to configure many registers in the device, allowing these registers
(DCF clients) to be loaded with specific values during system boot.

There are two types of DCF records:

• TEST DCF records:

— Developed by the factory, used mainly to program registers involved in trimming trip points
for voltage comparators, adjusting analog to digital voltage supplies, trimming oscillator
frequencies, and enabling RAM repair. The TEST DCF records are programmed into TEST
flash during production and cannot be modified. TEST flash is not visible to the user.

• UTEST DCF records:

— Programmed into UTEST flash, some UTEST DCF records are written by the factory and
programmed during production testing. Others are written by the end user and programmed at
the same time application code is programmed into the main flash memory. User-supplied
UTEST DCF records are located at a specific address in UTEST memory (see Figure 5).

The relationship of TEST flash, UTEST flash, and factory test programming is shown in Figure 3 below.

47–61 Address

Address of the DCF client within the selected module.
Note: Address decoding for DCF clients may not match the standard software address

map decoding. Details of DCF client addresses are defined in each module
chapter of the device reference manual.

62 Parity
Parity Bit for the DCF Record. If the DCF record strategy (see the MPC5746R
Reference Manual) uses parity, this bit must be set to 0b1.

63 Stop

Indicates the end of DCF records.
0b0 NOT the end of the list
0b1 End of the list
Note: The erased state of flash is 0xFFFF_FFFF_FFFF_FFFF. Therefore, the list ends

with the first unprogrammed double word. This location can be programmed with
a new record to extend the list.

Field Name Description
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 7

DCF Records and Clients
Figure 3. TEST / UTEST flash memory

DCF clients are 32-bit wide hardware registers inside a module that receive and store the data from a DCF
record. This allows boot time initialization of registers and configuration. DCF clients have a default value
before any DCF records are written; additionally, they may have special writing constraints, such as Write
Once or only allow bits to be written from 0b1 to 0b0 or vice versa (see Section 4.3.1). DCF clients do not
need to implement all 32 bits.

Refer to the reference manual for a list of DCF clients and detailed descriptions of the various attributes
of the DCF clients.

In the UTEST flash memory the following structure for the DCF records must be present:

1. The first record must be a start record (this record is written to UTEST flash during factory test):

2. DCF records containing configuration data must immediately follow the start record with no blank
records between.

3. The end of the configuration records are indicated by the presence of a stop record (which is simply
an unprogrammed record).

There must never be an unprogrammed record in the DCF data structure, as it is interpreted as a stop record
and subsequent records are ignored. This allows the user to program the records in several sessions, each
time appending new records at the end of the list, as shown in Figure 4.

0x00
0–31

0x04
32–63

0x05AA55AF 0x00000000

TEST Flash

UTEST Flash

Not readable

Readable/one time
programmable by
user

by user Programmed
during factory
test
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors8

DCF Records and Clients
Figure 4. Programming DCF records

It is possible to have more than one DCF record that writes to the same DCF client. In this case, the later
record usually overrides a DCF client value set by a previous record. However, not all DCF clients allow
overwrites, this depends on the DCF client implementation. Please refer to MPC5746R reference manual
DCF Record chapter for details.

4.2 UTEST flash memory

The MPC5746R UTEST memory allocation is shown in Figure 5 below. UTEST memory for the
MPC5746R device is one time programmable (OTP) memory. There are two basic types of regions in
UTEST flash memory:

• Areas specifically written during factory test that contain a combination of calibration and default
data

• Areas allocated for DCF records (as discussed in the previous section) and other user programmed
data

Because UTEST is OTP memory, program operations to this area are simply “over programmed”; there is
no erase allowed. Note in Figure 4 that a new DCR record is added by simply overwriting (over
programming) the existing UTEST DCF record area. Additional details about programming DCF records
are covered in Section 4.4.

0xFFFF_FFFF Start Record Start Record

0xFFFF_FFFF Data Record - CS1, Address = 0 Data Record - CS1, Address = 0

0xFFFF_FFFF Data Record - CS2, Address = 0 Data Record - CS2, Address = 0 Overwrite

0xFFFF_FFFF Data Record - CS3, Address = 0 Data Record - CS3, Address = 0

0xFFFF_FFFF Stop Record Data Record - CS1, Address = 0

0xFFFF_FFFF 0xFFFF_FFFF Stop Record

0xFFFF_FFFF 0xFFFF_FFFF 0xFFFF_FFFF

Empty Flash Initial Programming Additional Programming
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 9

DCF Records and Clients
Figure 5. UTEST memory map

Address Range 32-bits
Size

(bytes)
Notes

0x0040_0000–0x0040_0003
Temp Sensor 1 Calibration

Constant K1
Temp Sensor 1 Calibration

Constant K2
8

4 x 16-bit constants
programmed during factory

test0x0040_0004–0x0040_0007
Temp Sensor 1 Calibration

Constant K3
Temp Sensor 1 Calibration

Constant K4

0x0040_0008–0x0040_000B Reserved 4

0x0040_000C–0x0040_000F Test Mode Disable Seal 4

User programmable
0x0040_0010–0x0040_001F Test Mode Disable Block Select A 16

0x0040_0020–0x0040_002F Factory erase diary 16

0x0040_0030–0x0040_003F Test Mode Disable Block Select B 16

0x0040_0040–0x0040_005F Customer Single Bit Correction Area 32

Programmed during factory
test

0x0040_0060–0x0040_007F Customer Double Bit Correction Area 32

0x0040_0080–0x0040_009F Customer EDC after ECC Area 32

0x0040_00A0–0x0040_00BF Unique ID 32

0x0040_00C0–0x0040_00C3 Soft DCF Record Start Address 4 User programmable

0x0040_00C4–0x0040_00C7
Temp Sensor 2 Calibration

Constant K1
Temp Sensor 2 Calibration

Constant K2
8

4 x 16-bit constants
programmed during factory

test0x0040_00C8–0x0040_00CB
Temp Sensor 2 Calibration

Constant K3
Temp Sensor 2 Calibration

Constant K4

0x0040_00CC–0x0040_00FF Reserved 52

0x0040_0100–0x0040_0103 Test Mode Override Passcode 4

Programmed by customer.
Protected from Read Access
once life cycle is advanced to

OEM_PROD or later.

0x0040_0104–0x0040_011F Reserved 28

0x0040_0120–0x0040_013F JTAG Password 32

0x0040_0140–0x0040_015F PASS Password Group 0 32

0x0040_0160–0x0040_017F PASS Password Group 1 32

0x0040_0180–0x0040_019F PASS Password Group 2 32

0x0040_01A0–0x0040_01BF PASS Password Group 3 32

0x0040_01C0–0x0040_01FF Reserved 64

0x0040_0200–0x0040_020F Life Cycle Slot 0 - PROD 16 Programmed by FSL during
test.0x0040_0210–0x0040_021F Life Cycle Slot 0 - CUST_DEL 16

0x0040_0220–0x0040_022F Life Cycle Slot 0 - OEM_PROD 16

Programmed by customer.0x0040_0230–0x0040_023F Life Cycle Slot 0 - IN_FIELD 16

0x0040_0240–0x0040_024F Life Cycle Slot 4 - FA 16

0x0040_0250–0x0040_02FF Reserved 176

0x0040_0300–0x0040_0307 DCF Start Record 8

0x0040_0308–0x0040_0FFF DCF Records 3320

0x0040_1000–0x0040_3FFF Customer OTP Data 12288

0x0040_4000–0x0040_7FFF BAF code 16384
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors10

DCF Records and Clients
4.3 DCF clients

The MPC5746R incorporates various DCF clients that may be configured by DCF records as described in
Section 4.1. The clients are generally grouped into four categories:

• Self Test Control Unit (STCU)

• Password and Device Security Module (PASS)

• Tamper Detection Module (TDM)

• Miscellaneous Clients (MISC)

Each category and the corresponding chip select bits are listed in Figure 6. The DCF record data field (bits
0–31 of the 64-bit DCF record) is not shown. See the DCF chapter of the MPC5746R Reference Manual
for the complete list of available client addresses for each DCF chip select.

Figure 6. DCF record chip selects

In the following example, this DCF record modifies the DCF_RES_CTRL client, corresponding to the
PMC_RES register in the PMC module.1 The bits in the data field of this register determine whether a
specific PMC detected event on the LVD/HVD circuit will cause a “destructive” reset or a “functional”
reset (see Section 3.2). A full description of destructive and functional resets is found in the MPC5746R
Reference Manual.

A value of 0b1 in the corresponding LVD/HVD reset configuration bit enables a functional reset on the
LVD/HVD event detect, while a value of 0b0 (default) causes the detected event to trigger a destructive
reset.

In this example, the following bits are set so that the corresponding event generates a functional reset:

• LVD_JTAG

• LVD_FEC

• LVD_MSC5

• LVD_MSC3

• LVD_SAR_ADC

DCF
Record

Bits 32-63
Chip Select Address P S

STCU 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

PASS 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

TDM 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

MISC 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1.Not all DCF clients have a corresponding memory mapped register.
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 11

DCF Records and Clients
• LVD_SD_ADC

• HVD_SAR_ADC

• HVD_SD_ADC

All remaining bits are left at the default value of 0b0, so the corresponding event generates a destructive
reset.

Figure 7. Example DCF record for the DCF_RES_CTL client

As shown in this example, the DCF record has a data field value of 0x0000_BF80, and a chip
select/address value of 0x0100_0060.

4.3.1 DCF client special strategies

Though all DCF records have the same format, they can be used in different ways, and some have different
methods, or write strategies, for writing the actual DCF record data:

• None: No special DCF strategy is used.

• Parity: Parity is enabled. (The corresponding DCF record parity bit must be set.)

• Write Once: A register using the Write Once strategy can only be written once. The DCF client
ignores subsequent writes.

• Triple Voting: These clients have three copies of the register. The SSCM will write to all three
registers in a single write cycle. The outputs of the three registers are majority-voted to determine
the correct data value. Triple voting allows for a bit flip error to occur without changing the DCF
client output data.

• Triple Voting with Second Write: DCF clients that use the Triple Voted with Second Write
strategy have three copies of the register. The SSCM will write to all three registers in a single write
cycle and the outputs of the three registers are majority-voted to determine the correct data value.
During the second execution of Phase 3 of the reset sequence (see Section 3.2), the SSCM attempts
to write the DCF client again. At this time, the DCF client checks to see that the register contains
the same data that is being written again.

DCF bit 0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31

Data
Reserved

LV
D

_J
TA

G

R
es

er
ve

d

LV
D

_
F

E
C

LV
D

_M
S

C
5

LV
D

_M
S

C
3

LV
D

_S
A

R
_A

D
C

LV
D

_
S

D
_A

D
C

H
V

D
_S

A
R

_A
D

C

H
V

D
_

S
D

_A
D

C

R
es

er
ve

d

H
V

D
_F

LA
S

H

R
es

er
ve

d

H
V

D
_P

M
C

H
V

D
_C

O
R

E

R
es

er
ve

d

LV
D

_C
O

R
E

_C
O

LD

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0

DCF bit 32 35 36 39 40 43 44 47 48 51 52 55 56 59 60 63

CS/Addr
Chip Select - MISC Address - DCF_PMC_RES_CTRL P S

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors12

Boot Header
• Write 0 only: A bit in a DCF client can only be written from a logic 1 to a logic 0. An attempt to
write a bit with this attribute to a logic 1 is ignored.

• Write 1 only: A bit in a DCF client can only be written from a logic 0 to a logic 1. An attempt to
write a bit with this attribute to a logic 0 is ignored.

• Spread Address (SPRD): There are three instances addressable separately on three different
addresses (that is, spread out). In addition to spreading the addresses to three separate locations,
SPRD_ADR also uses data transformation. This means that the data in the three sub-instances is
not the same, but is stored in a transformed format. If the normal payload data is X, then the three
sub-instances will store the data as a0 = X, a1= ~X and a2 = shift_rotate_right(X). (For example, if
X = 0b1011, then a1 = 0b0100, and a2 = 0b1101.)

There are additional parameters that are not the same for each DCF client, such as if the client is readable
by software and if there is any specific order in which the client(s) must be written. The DCF Record
chapter in the MPC5746R Reference Manual contains a complete list of the characteristics of each client
on the device.

4.4 Programming DCF records

During a typical application development, the way DCF records are used may be changed once or more
before the final software release.

The developer must maintain a history of what DCF records are already programmed when adding
additional DCF records. The flash programming tool used in the development environment must be
configured to only program the DCF record memory for new records, as opposed to a standard
erase/program sequence. Depending on the flash programmer used, attempting to erase or overprogram
OTP flash may result in a program failure, or other unpredictable behavior, and could leave the UTEST
flash in an indeterminate state. In some extreme cases, this can even leave the device inaccessible by the
debugger.

If you have any questions, consult with your tool vendor before programming DCF records to ensure that
the DCF records are programmed as expected and without errors.

5 Boot Header
The boot header allows cores to automatically be started by the Boot Assist Flash (BAF), each core starting
execution at user-defined addresses.

The boot header can be located in one of several blocks of the internal flash of the device. The boot header
must be the first information in the block (starting at the lowest address of the block). The following table
shows the base address of each block of the flash that can hold the boot header.
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 13

Boot Header
The first header found that contains the value 0x005A in the first half-word is valid for booting. The whole
header structure is shown in the following table.

The Boot Header is broken into two parts, the Boot Identifier (ID) and the CPU core enable bits.

Table 2. Boot Header Search Options

Search Order Flash Block Address

1 16 KB Code flash memory block 1 0x00F9_C000

2 16 KB Code flash memory block 2 0x00FA_0000

3 16 KB Code flash memory block 3 0x00FA_4000

4 16 KB Code flash memory block 4 0x00FA_8000

5 256 KB Code flash memory block 1 0x0100_0000

6 256 KB Code flash memory block 2 0x0104_0000

7 256 KB Code flash memory block 3 0x0108_0000

8 256 KB Code flash memory block 4 0x010C_0000

Table 3. Boot Header Structure

Address Offset Size (bits) Contents

0x00 16 Boot header ID (0x005A)

0x02 16 Boot_CPU

0x04 32 Reserved for future use

0x08 32 Configuration bits (reserved for future use)

0x0C 32 Configuration bits (reserved for future use)

0x10 32 Core Reset Vector (Core 0/CPU0)

0x14 32 Core Reset Vector (Core 1/CPU1)

0x18 32 Core Reset Vector (Lock Step core/CPU_LS)

Table 4. Boot Header

O
ff

s
et

 0
x0

Bit no 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0

Hex 0 0 5 A

Bit no 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary
CPU1 CPUC CPU0

Hex 0 0 0 0
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors14

Initialization Code
6 Initialization Code
This section describes and provides examples of the typical initialization code that would be executed by
a core from flash memory at startup. The boot header would direct the selected boot core to the start of this
software.

6.1 Assembly language initialization sequence

The initialization sequence implemented in the example software is split into two sections: initialization
code that is written in assembler, and initialization code that is written in C. The assembler code executes
first, and the initialization flow is shown in Figure 8.

Table 5. Boot Header Bit Field Descriptions

Bits Field Description

0–15 Boot Header ID[15:4] Boot header ID (0x005A)

16–27 — Reserved

28 CPU1 CPU1 is enabled (will start execution at CPU1 reset vector)

29 CPUC CPU_SC (safety core) is enabled (will start execution at CPU_SC reset vector)

30 CPU0 CPU0 is enabled (will start execution at CPU0 reset vector)

31 — Reserved

Table 6. Boot Header at 0x0100_0000

Field Address Value Comment

Boot Header 0x0100_0000 0x005A 0x0008 Enable only the boot core (CPU1)

Reserved 0x0100_0004 — Future use

Configuration Bits 0x0100_0008 0x0000 0x0000 Set to zeros, unused

Configuration Bits 0x0100_000C 0x0000 0x0000 Set to zeros, unused

Core 0 Reset Vector 0x0100_0010 0x01040000

Core 1 Reset Vector 0x0100_0014 0x01000000
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 15

Initialization Code
Figure 8. Assembly initialization flow—Core 1 (boot) and Core 0

6.2 Flash wait states and pipeline control

At power on reset, flash read wait states are set to add 6 additional clock cycles for a flash read operation
and subsequent pipeline accesses to the flash are disabled. To maximize performance, the wait states
should be reduced to match the target operating frequency of the MCU and the pipeline control enabled.
At power on reset, the MCU executes at 16 MHz from its IRC. In the example software provided with this
applications note, the MCU cores are configured to run at 200 MHz, so the wait states are initially
configured for the eventual target operating frequency of 200 MHz. Table 7 shows the wait states and
pipeline delay required for each operating frequency range.

Table 7. Flash Read Wait State and Address Pipeline Control guidelines

Frequency (fsys) RWSC APC

0 MHz  fsys  33.3 MHz 0 0

33.3 MHz  fsys  50.0 MHz 1 1

50.0 MHz  fsys  66.7 MHz 1 0

66.7 MHz  fsys  100 MHz 2 1

Start

Initialize
GPRs/SPRs

Enable
Instruction

Cache

Initialize
Stack

(local DMEM)

Go
main

Enable
Branch Target

Buffer

Initialize
local

IMEM/DMEM

Set
SDA pointers

Set
IVPR

Start
(after BAF)

Set up Flash
wait states

Initialize
shared System

SRAM

Copy
initialized

data (SDATA)

Enable
Peripherals and

Clocks

Enable
Instruction

Cache

Initialize
Stack

(local DMEM)

Go
main

Set up
Software

Watchdog Timer

Initialize
Branch Target

Buffer

Initialize
local

IMEM/DMEM

Set
SDA pointers

Set
IVPR

Core 1 Core 0

Run Mode Change
Starts Core 0
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors16

Initialization Code
The wait states and pipeline controls are configured in the flash memory controller’s Platform Flash
Configuration Register 1 (PFCR1) via the Address Pipeline Control (APC) and Read Wait State Control
(RWSC) bits.

The flash access timings should not be updated while executing software from flash memory. Therefore,
the code to write to this register must be copied into a RAM location and executed there. The following
example code copies the flash wait state modification code into IMEM for execution. Note that the RAM
(IMEM) is written in 32-bit words before being read to avoid an ECC error. This is discussed later in more
detail in Section 6.6, “SRAM and ECC.”
#**
Setup Flash wait states *
#**
branch to the copy routine

e_bl _Flash_WS_config

This is the code copied to I-MEM
reduce_flash_ws:

#RWSC=5, APC=2 for 200MHz
#Enable Data Prefetch, Instruction Prefetch but disable Line Read Buffers
e_lis r3, 0x0000
e_or2i r3, 0x4554

#Enable Data Prefetch, Instruction Prefetch but disable Line Read Buffers
e_lis r4, 0x0000
e_or2i r4, 0x0054

#PFLASH_PFCR1 address
e_lis r5, 0xFC03
e_or2i r5, 0x0000

#PFLASH_PFCR2 address
e_lis r6, 0xFC03
e_or2i r6, 0x0004

#Configure flash
e_stw r3, 0(r5)
e_stw r4, 0(r6)

#RWSC=5, APC=2 for 200MHz
#Enable Line Read Buffers to flush buffers
e_lis r3, 0x0000
e_or2i r3, 0x4555

#Enable Line Read Buffers to flush buffers
e_lis r4, 0x0000

100MHz < fsys < 133MHz 3 1

133MHz < fsys < 150MHz 4 2

150MHz < fsys < 167MHz 4 1

167MHz < fsys < 200MHz 5 2

Table 7. Flash Read Wait State and Address Pipeline Control guidelines (continued)

Frequency (fsys) RWSC APC
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 17

Initialization Code
e_or2i r4, 0x0055

#Configure flash again to flush&enable buffers
e_stw r3, 0(r5)
e_stw r4, 0(r6)
se_blr

Configuration code
_Flash_WS_config:

load I-MEM start address
e_lis r5, 0x5100
e_or2i r5, 0x0000

Initialize I-MEM
e_stmw r0,0(r5)

backup current link register to r9
mfspr r9, 8

Set link register to I-MEM start address
mtlr r5

Prepare addresses to copy instructions to IMEM
e_lis r3, reduce_flash_ws@h
e_or2i r3, reduce_flash_ws@l
e_lis r4, _Flash_WS_config@h
e_or2i r4, _Flash_WS_config@l
subf r4, r3, r4
mtctr r4

Copy to IMEM
copy:

e_lbz r6, 0(r3)
e_stb r6, 0(r5)
e_addi r3, r3, 1
e_addi r5, r5, 1
e_bdnz copy

Jump to I-MEM start address

se_blrl

Restore link register from r9 to LR and return
mtspr 8, r9

6.3 Branch Target Buffer

To resolve branch instructions and improve the accuracy of branch predictions, the e200z4 cores on the
MPC5746R implement a dynamic branch prediction mechanism using a branch target buffer (BTB), a
fully associative address cache of branch target addresses. Its purpose is to accelerate the execution of
software loops with some potential change of flow within the loop body.

By default, this feature is disabled following negation of reset and execution of the BAF. It is controlled
by the Branch Unit Control and Status Register (BUCSR). The BTB’s contents are flushed and invalidated
by writing BUSCR[BBFI] = 1 and it is enabled by writing BUSCR[BPEN] = 1.
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors18

Initialization Code
#**
Enable Branch Target Buffer *
#**
Flush and enable BTB - Set BBFI bit and BPEN bit
 e_li r3, 0x201
 mtspr 1013, r3
 se_isync

6.4 Disabling the SWT (in software)

The MPC5746R has a Software Watchdog Timer (SWT) for each of the cores. If the SWT is not required,
it can be disabled. In order to disable the SWT, a sequence of operations must be performed in the proper
order. Table 8 lists the addresses of the three SWTs in the MPC5746R devices. In addition, it is possible
for tools to disable or service SWT1 through the Debug and Calibration Interface (DCI). By default, out
of reset, only SWT1 is enabled.

6.4.1 SWT overview

The MPC5746R incorporates three software timer modules. The following table shows the association of
each of the SWT modules to the two cores that are available on the MPC5746R. Note that SWT1 is enabled
by default, so it must either be serviced or disabled during initialization. In this example SWT1, is disabled
in the crt0_core1_flash.s code.

Each of the SWT modules contains several registers. Only two of the registers are required to be written
to disable the SWT, the SWT Control Register (SWT_CR) and the SWT Service Register (SWT_SR).

Table 8. Software Watchdog Timer base addresses

Module Abbreviation Base Address Typical Association

Software Watchdog Timer 0 SWT0 0xFC05_0000 CPU0

Software Watchdog Timer 1 SWT1 0xFC05_4000 CPU1

Software Watchdog Timer 3 SWT3 0xFC05_C000 CPU0 and CPU1

Table 9. SWT registers

Address Register Abbreviation Access

Base Address + 0x0 SWT Control Register SWT_CR R/W

Base Address + 0x4 SWT Interrupt Register SWT_IR R/W

Base Address + 0x8 SWT Time-out Register SWT_TO R/W

Base Address + 0xc SWT Window Register SWT_WN R/W

Base Address + 0x10 SWT Service Register SWT_SR W

Base Address + 0x14 SWT Counter Output Register SWT_CO R

Base Address + 0x18 SWT Service Key Register SWT_SK R/W
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 19

Initialization Code
6.4.2 SWT disable sequence

Multiple steps are required to actually disable each of the SWT modules. The first step is to clear the soft
lock bit in the control register (SWT_CR) using the clear soft lock service code.1 See the following table
for an example of disabling of the SWT. This example uses the SWT1, which is associated with CPU 1.

6.4.3 SWT disable code

The following is an assembly code listing of example code for disabling the SWT. By default, only SWT1
is enabled out of reset. In the code that accompanies this Application Note, the SWTs are disabled in the
assembly code initialization, however this function may also be performed in C code after control is passed
to main().

1. The SWT Server Register supports two separate functions, soft lock clearing and servicing the watchdog. Clearing the soft
lock is covered in this section. To service the watchdog (when the SWT is enabled), two values must be written to the
SWT_SR[WSC], 0xA602 and 0xB480.

Table 10. Steps to Disable the SWT

Step Operation Description Pseudo Code

1
Clear the soft lock bit in
the Control register by
setting the SWT service
code

 • Write the first value of the soft lock
clear to the Watchdog Service Code,
WSC = 0xC520

SWT_SR = 0x0000_C520

2
 • Write the second value of the soft lock

clear to the Watchdog Service Code,
WSC = 0xD928

SWT_SR = 0x0000_D928

3 Disable the watchdog1

1 This is one example set of settings. There are other options that can be selected. Set WEN=0b1 to enable the watchdog.

 • Allow all masters to access the SWT,
MAP=0xFF

 • Select the oscillator as the clock
source, CSL=0b1

 • Stop the SWT when in debug mode,
FRZ=0b01

 • Disable SWT, WEN=0

SWT_CR = 0xFF00_000A
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors20

Initialization Code
#**
Disable watchdog timers *
#**
Disable SWT0 -
R4 holds base address of SWT0 (0xFC050000)
 e_lis r4, 0xFC05
 e_or2i r4, 0x0000
 e_li r3, 0xC520
 e_stw r3, 0x10(r4)
 e_li r3, 0xD928
 e_stw r3, 0x10(r4)
 e_lis r3, 0xFF00
 e_or2i r3, 0x010A
 e_stw r3, 0(r4)

Disable SWT1
R4 holds base address of SWT1 (0xFC054000)
 e_lis r4, 0xFC05
 e_or2i r4, 0x4000
 e_li r3, 0xC520
 e_stw r3, 0x10(r4)
 e_li r3, 0xD928
 e_stw r3, 0x10(r4)
 e_lis r3, 0xFF00
 e_or2i r3, 0x010A
 e_stw r3, 0(r4)

Disable SWT3
R4 holds base address of SWT3 (0xFC05C000)
 e_lis r4, 0xFC05
 e_or2i r4, 0xC000
 e_li r3, 0xC520
 e_stw r3, 0x10(r4)
 e_li r3, 0xD928
 e_stw r3, 0x10(r4)
 e_lis r3, 0xFF00
 e_or2i r3, 0x010A
 e_stw r3, 0(r4)

6.5 Initializing the core registers

Core 0 is coupled in lockstep with a checker core. Consequently, the core registers for both Core 0 and the
checker core must be “synchronized” at start up.

At power on reset the majority of core registers have random contents; therefore, the same registers on
Core 0 and its lockstep partner generally contain different values. To ensure that identical results are
returned when the registers from each core are read, such as during a context save to the stack, the registers
of each core must first be initialized. In other words, if a register is read from Core 0 while lock step is
enabled and the content of this register is different from the value in the same register of the lock step core,
then a lock error will be signaled to the Fault Collection and Control Unit (FCCU).

It is not necessary to initialize the registers of Core 1 although users may choose to do this. Generally, it
is good practice to initialize the registers to the value of 0x00000000. A complete list of the core registers
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 21

Initialization Code
that should be initialized in Core 0 when the lock step core is enabled is provided in the crt0_core0_flash.s
example file provided.

6.6 SRAM and ECC

The MPC5746R has 256 KB of general-purpose SRAM as well as local data and instruction SRAM within
each core. Refer to the MPC5746R Microcontroller Reference Manual for comprehensive details and the
MPC5746R SRAM map. All of the SRAM memories have 8-bit end-to-end error checking and correction
(e2eECC) with single-bit correction and 2-bit error detection for every 32-bit word.

SRAM must be initialized after POR by executing 64-bit writes to all memory space. This 64-bit write
causes the ECC syndrome bits to be calculated. Note that the SRAM does not have to be initialized after
all resets, only after POR resets. Refer to the MPC5746R Reference Manual to determine which resets
constitute a POR. Attempting to read any uninitialized SRAM normally generates a system exception.

To allow fast initialization, the store multiple word (stmw) instruction is used. This causes up to 32 GPRs
to be stored to memory starting at a given base address utilizing 64-writes. Initialization code is shown
below. The bounds of RAM to be initialized are provided by the compiler linker file. In this example, Core
1 is used to initialize the whole SRAM array.

Optionally, if multiple cores are started at POR and each core has a dedicated RAM space defined, then
each core can initialize only the SRAM it will use. This parallel SRAM initialization can reduce the time
required for all cores to finish initialization and begin execution of the application.
#***************** Initialize SRAM ECC ******************/
Store number of 128Byte (32GPRs) segments in Counter

e_lis r5, __SRAM_SIZE@h # Initialize r5 to size of SRAM (Bytes)
e_or2i r5, __SRAM_SIZE@l
e_srwi r5, r5, 0x8 # Divide SRAM size by 256
mtctr r5 # Move to counter for use with ‘bdnz’

Base Address of the internal SRAM
e_lis r5, __SRAM_BASE_ADDR@h
e_or2i r5, __SRAM_BASE_ADDR@l

Fill SRAM with writes of 32GPRs
sram_loop:

e_stmw r0,0(r5) # Write all 32 registers to SRAM
e_addi r5,r5,128 # Increment the RAM pointer to next 128bytes
e_bdnz sram_loop # Loop for all of SRAM

Local SRAM should also be initialized using the same method. It is recommended that each core initialize
its own local SRAM. This is shown in the included example software.

6.7 Cache

Each of the e200z425 cores provide 8 KB of instruction cache. The cache can improve system
performance by providing fast core access to instructions recently fetched from flash.

There are several stages to enabling the cache. Not only does the cache itself have to be invalidated then
enabled, but memory regions upon which it can operate must be configured in the System Memory
Protection Unit (SMPU). See the MPC5746R Reference Manual for details of the SMPU module.
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors22

Initialization Code
The control bits to configure, invalidate, and enable the instruction cache are contained within the core L1
Cache Control and Status Registers 0 (SPR1010) and 1 (SPR1011). First, the cache is invalidated, and once
the invalidation completes the cache is enabled.
invalidate and enable the instruction cache
__icache_cfg:

e_li r5, 0x2
mtspr 1011,r5
e_li r7, 0x4
e_li r8, 0x2
e_lwi r11, 0xFFFFFFFB

__icache_inv:
mfspr r9, 1011
and. r10, r7, r9
e_beq __icache_no_abort
and. r10, r11, r9
mtspr 1011, r10
e_b __icache_cfg

__icache_no_abort:
and. r10, r8, r9
e_bne __icache_inv
mfspr r5, 1011
e_ori r5, r5, 0x0001
se_isync
msync
mtspr 1011, r5
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 23

C Language Initialization Sequence
7 C Language Initialization Sequence
The C initialization sequence is shown in Figure 9. This could be performed in assembly if desired, but is
shown in C in this example for easier readability. This sequence is performed by the
Clock_and_Mode_Init() function in the mcu_init.c source code file.

Figure 9. C Initialization sequence

7.1 Mode Entry core control summary

The MC_ME is used to change the operating modes of the device. Changes to the clocks, enabled
peripherals, and cores can be changed with two writes to a register in the MC_ME module. The mode
change requires two writes with a key and an inverted key to prevent accidental mode changes.
MP

Either of the cores can be enabled independently for any of the operating modes. The Mode Entry Control
Register is used to configure in which modes each of the cores is enabled. The possible modes are:

• TEST

• SAFE

• DRUN

Table 11. MPC5746R cores

Core name Core reference
Processor Version

Register (PVR) value

Computational Core Core 0

0x815E_0000Checker Core (Lock Step Core) Core 0 Checker (CORE_LS)

Computational Core Core 1
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors24

C Language Initialization Sequence
• RUN0

• RUN1

• RUN2

• RUN3

• HALT0

• STOP0

NOTE

The MC_ME module uses the terms Core 1 and Core 2, but the actual
assignments of these terms to each of the cores in regards to the MC_ME
operation is different than the naming convention in the rest of the device
reference manual.

The start address for the each of the cores is stored in the corresponding Core Address Register. This can
be done automatically with the Boot Header via user software or, when running with a debugger, by the
debugger. When the BAF code is available, these can also be automatically loaded during the boot process.

To enable and start additional cores, a mode transition must be performed. The mode change requires an
interlock write to the Mode Entry Mode Control Register (ME_MCTL). The interlock key values are the
16-bit values, 0x5AF0 followed by 0xA50F.

Table 12. Core Control Registers (ME_CCTLn)

Core Device Reference
ME Core

Definition1

1 This is the name of the status bits in the MC_ME Core Status Register. The 0–2 numerals appended to S_CORE also
correspond to the number of the ME_CCTL and ME_CADDR0 registers.

ME_CCTRLn Address Register Full Address

Computational Core Core 1 S_CORE0 Base address + 0x1C4 ME_CCTL0 0XFFFB_81C4

Computational Core Core 0 S_CORE1 Base address + 0x1C6 ME_CCTL1 0XFFFB_81C6

Checker Core Core 0 checker S_CORE2 Base address + 0x1C8 ME_CCTL2 0XFFFB_81C8

Table 13. Core Control Registers (ME_CADDRn)

Core Core Reference ME_CADDRn Address Register1

1 Bit 31 (the least significant bit) must be set initially to reset the core and allow the core out of reset for cores
0 and 1.

Full Address

Computational Core Core 1 Base address + 0x1E0 ME_CADDR0 0XFFFB_81E0

Computational Core Core 0 Base address + 0x1E4 ME_CADDR1 0XFFFB_81E4

Checker Core Core 0 checker Base address + 0x1E8 ME_CADDR2 0XFFFB_81E8

Table 14. Mode change example

Register Address Write Value Description

ME_MCTL Base address + 0x4
0x40005AF0 Enable RUN0 mode for all

enabled in RUN0 mode.0x4000A50F
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 25

C Language Initialization Sequence
The Mode Entry Core Status Register (ME_CS address 0xFFFB_801C0) can be read to verify which cores
have been enabled.

7.2 Clock initialization

At POR, the MCU is clocked from the on-chip 16 MHz IRC oscillator. This section explains how to
configure the modules to use the clock from the higher speed PLLs. It also covers the setup of the clock
trees to distribute and divide the clock sources to the buses and peripherals on the MCU.

7.2.1 Clock tree

Figure 10 shows the clock tree configuration for the MPC5746R. In the example software used here, PLL0
is configured to run at 160 MHz and PLL1 at 200 MHz, both from the external oscillator.
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors26

C Language Initialization Sequence
Figure 10. MPC5746R clock tree

A summary of the clock tree settings that are configured in the example software is shown in Table 15.
Most module clocks are disabled in this configuration; however, an example configuration for SD_ADC
and the PER_CLK are included and are typical of the configuration for other modules.

Table 15. Example clock settings

Clocks
Aux selector and

divider
Source clock Div / multiply factor Frequency (MHz)

Slow XBAR System Clock PLL1 2 100

Fast XBAR System Clock PLL1 1 200
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 27

C Language Initialization Sequence
7.3 Mode Entry peripheral clock gating summary

During all chip modes, each peripheral can be associated with a particular clock gating policy determined
by two groups of peripheral configuration registers, ME_RUN_PC0..7 and ME_LP_PC0..7.

The run mode configuration registers are chosen during run modes RESET, TEST, SAFE, DRUN, and
RUN3..0. The low-power peripheral configuration registers ME_LP_PC0..7 are chosen only during the
low-power modes HALT0 and STOP0. The ME_LP_PC0..7 registers are not configured in this example.

All configurations are programmable by software according to the needs of the application. Each
configuration register contains a mode bit which determines whether or not a peripheral clock is to be
gated. Low-power configuration selection for each peripheral is done by the LP_CFG bit field of the
ME_PCTLn registers.

NOTE

Any modifications to the ME_RUN_PC0..7, ME_LP_PC0..7, and
ME_PCTLn registers do not affect the clock gating behavior until a new
mode transition request is generated.

The following registers and bitfields are used to control peripheral clock gating for run modes (DRUN,
TEST, SAFE, RUN0..3)

PBRIDGE_A
PBRIDGE_B

System Clock PLL1 4 40

PER_CLK AUX0–0 PLL0 4 50

SD_ADC AUX0–1 PLL0 10 16

SAR_ADC AUX0–2 Disabled — —

DSPI_M0/M1 AUX0–3 Disabled — —

DSPI_0/1/2/3/4 AUX0–4 Disabled — —

SENT AUX2–0 Disabled — —

CLKOUT AUX6–0 PLL1 10 20

CAN_CLK AUX8–0 Disabled — —

RTI_CLK AUX9–0 Disabled — —

FEC_REF_CLK AUX10–0 Disabled — —

Table 16. Detail of ME_RUN_PCn Registers

Register Bitfields Action

ME_RUN_PC0

RUN3..0, DRUN, SAFE, TEST, RESET Set each bit field to 0 or 1.

0 = Peripheral is frozen with clock gated

1 = Peripheral is active

Table 15. Example clock settings (continued)

Clocks
Aux selector and

divider
Source clock Div / multiply factor Frequency (MHz)
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors28

C Language Initialization Sequence
The following registers and bit fields are used to control peripheral clock gating for low-power modes
(HALT0, STOP0):

Once the user configures ME_RUN_PC0..7 and ME_LP_PC0..7, it may be desirable to configure
Peripheral Control Registers (ME_PCTLn). The MPC57xx eTPU-based devices contain a unique instance
of ME_PCTLn for every peripheral in the device implementation. Each ME_PCTLn register contains the
following bit fields:

• DBG_F: controls peripheral state after entering debug mode (either frozen or operation specified
by RUN_CFG/LP_CFG bits and chip mode)

• LP_CFG: controls which ME_LP_PC0..7 definition to use for the peripheral

ME_RUN_PC1

RUN3..0, DRUN, SAFE, TEST, RESET Set each bit field to 0 or 1.

0 = Peripheral is frozen with clock gated

1 = Peripheral is active

ME_RUN_PC2

RUN3..0, DRUN, SAFE, TEST, RESET Set each bit field to 0 or 1.

0 = Peripheral is frozen with clock gated

1 = Peripheral is active

.

ME_RUN_PC7

RUN3..0, DRUN, SAFE, TEST, RESET Set each bit field to 0 or 1.

0 = Peripheral is frozen with clock gated

1 = Peripheral is active

Table 17. Detail of ME_LP_PCn Registers

Register Bitfields Action

ME_RUN_PC0

STOP0, HALT0 Set each bit field to 0 or 1.

0 = Peripheral is frozen with clock gated

1 = Peripheral is active

ME_RUN_PC1

STOP0, HALT0 Set each bit field to 0 or 1.

0 = Peripheral is frozen with clock gated

1 = Peripheral is active

ME_RUN_PC2

STOP0, HALT0 Set each bit field to 0 or 1.

0 = Peripheral is frozen with clock gated

1 = Peripheral is active

.

ME_RUN_PC7

STOP0, HALT0 Set each bit field to 0 or 1.

0 = Peripheral is frozen with clock gated

1 = Peripheral is active

Table 16. Detail of ME_RUN_PCn Registers

Register Bitfields Action
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 29

C Language Initialization Sequence
• RUN_CFG: controls which ME_RUN_PC0..7 definition to use for the peripheral. By using the
above registers and fields, the user can create a variety of peripheral clock gating configurations
based on the operating modes of the device.

The ME_PCTL registers are not programmed in this example. See the MC_ME chapter of the reference
manual for additional details.

7.4 Mode Entry example

The Mode Entry example illustrates how a programmer configures peripheral clock gating, low-power
modes of operation, run modes of operation, clock dividers, PLLs, and CPU core enable / disable and start
addresses. The Mode Entry example finishes with programming of the run mode (DRUN in this case) and
the normal key / inverted key process for initiating a mode transition.

7.4.1 Mode Entry example design

The Mode Entry example includes the following major steps:

1. Clear RGM Functional Event Status and Destructive Event Status registers. Enable all ME modes
(RESET_DEST, STOP0, HALT0, RUN3..0, DRUN, SAFE, TEST, and RESET_FUNC). The user
can disable any modes not required by writing a 0b0 to the appropriate register bit.

2. Enable external crystal oscillator as clock by programming the DRUN_MC Register.

3. Configure PLL clock sources and setup the PLL dividers.

4. Set up the system clock.

5. Program the peripheral clock dividers.

6. Program the Run Peripheral Configuration Registers (ME_RUN_PC0..7) to define peripheral
behavior during run modes (RESET, TEST, SAFE, DRUN, RUN0..3) and Low-Power Peripheral
Configuration Registers (ME_LP_PC0..7) for operation during STOP0 and HALT0 modes.

7. Program per peripheral control registers (ME_PCTLn) to define peripheral behavior for low power
modes (defined by ME_LP_PC0..7) and run modes (defined by ME_RUN_PC0..7).

8. Enable CPU cores by programming the ME_CCTLn registers and set the start (boot) address (in
ME_CADDRn registers).

9. Trigger a mode transition to DRUN mode by programming the mode transition keys, waiting for
the setting of the mode entry change complete bit (MC_ME_GS[S_MTRANS]) and confirming
the DRUN mode has been entered (check the MC_ME_GS[S_CURRENT_MODE]).

The following table shows each step, the associated description, and pseudo code.
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors30

C Language Initialization Sequence
Table 18. Design of Mode Entry Example

Step Operation Description Psuedo Code

1

Clear RGM events, enable
ME modes

Clear RGM Functional Event and
Destructive Event fields by writing 1 to
clear.

Set MC_RGM.DES and MC_RGM.FES to
0xFFFF.

Enable RESET_DEST, STOP0, HALT0,
RUN3..0, DRUN, SAFE, TEST, and
RESET_FUNC modes in the ME_ME

SET MC_ME_ME to 0x000005E2

2
Enable XOSC clock Set the XOSC enable bit in the DRUN

Mode Configuration register
(ME_DRUN_MC)

Program ME_DRUN_MC = 0x001F0020

3

Configure PLL0 and PLL1
clock source.

• With PLL0 and PLL1 disabled, select
the clock source for each.

Set CGM_AC3_SC[SELCTL] for XTAL
sourcing PLL0

Set CGM_AC4[SELCTL] for XTAL sourcing to
PLL1

4

Set PLL dividers • Program desired PLL0 dividers

• Program desired PLL1 dividers

Set PLL0DIV[PREDIV, RFDPHI1, MFD,
RFDPHI] for 160MHz from 20MHz XTAL

Set PLL1DIV[PREDIV, RFDPHI1, MFD,
RFDPHI] for 200MHz from 20MHz XTAL

5

Configure System clock
dividers (Fast Crossbar,
Slow crossbar, PBRIDGE)

• Program fast XBAR—divide by 1 and
enable

• Program slow XBAR—divide by 2 and
enable

• Program PBRIDGE—divide by 4 and
enable

 • CGM.SC_DC[0] = 0x80000000
 • CGM.SC_DC[1] = 0x80010000
 • CGM.SC_DC[2] = 0x80030000

6

Enable and configure Aux
clocks supplied to
peripherals

Program Auxiliary Clock (AC) n and
Divider Configuration (DC) m Registers.
These assign divider values to peripheral
clocks.1

See sample code.

7
Configure peripheral run
modes.

Enable all run modes for all Run
Peripheral Configuration Registers
(ME_RUN_PC0..7)

Set ME_RUN_PC0..7 to 0xFE

8

Configure Low Power and
Run Modes in Peripheral
Control Registers.

Program Peripheral Control Registers
(ME_PCTLn) to define per peripheral
operation in RUN and Low Power
configs. ME_PCTLn[LP_CFG] and
ME_PCTLn[RUN_CFG] bit fields select
which of the LP_PC0..7 and
RUN_PC0..7 definitions to use for the
given peripheral, n.

No configuration required for this example,
reset values for ME_PCTLn[LP_CFG] =
ME_PCTLn[RUN_CFG] = 0b000, which
selects ME_LP_PC0 and ME_RUN_PC0
respectively.

9

enable CPU cores by
programming the
ME_CCTLn registers and
set the start (boot) address
and enable bit (in
ME_CADDRn registers

Enable cores 0 and 22 (lockstep core).
Set start address of cores 0 and 2 to
0x01040000. Start address of core 1 is in
defined in RCHW (See Section 5, “Boot
Header,” on page 13).

MC_ME.CADDR[1] =

0x01040001

MC_ME_CADDR[2] =

0x01040001

MC_ME.CCTL[1] = 0x00FE

MC_ME.CCTL[2] = 0x00FE
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors 31

Revision history
8 Revision history

10

Perform mode entry change Program mode and key, mode and
inverted key, wait for mode entry to
complete, check for DRUN mode
entered.

MC_ME.MCTL = 0x30005AF0

MC_ME.MCTL = 0x3000A50F

wait for (MC_ME.GS.S_MTRANS == 0)

check for:

MC_ME.GS.S_CURRENT_MODE = 0x3

11
Setup clock selectors to
allow CLKOUT to be viewed
on external pin

 • select PLL0 for CLKOUT
 • enable AC6 divider
 • divide by 10

 • CGM.AC6_SC[SELCTL]=2
 • CGM.AC6_DC0[DE]=1
 • CGM.AC6_DC0[DIV]=9

1 This step configures clock divider settings for PER_CLK, SD_CLK, SAR_CLK, DSPI_CLK0, DSPI_CLK1, LIN_CKLK,
SENT_CLK, etc.

2 Core 0 = index “1,” LS (checker) core = index “2,” Core 1 = index “0”

Table 19. Document revision history

Revision number Revision date Description of changes

0 12/2016 Initial public release.

Table 18. Design of Mode Entry Example (continued)

Step Operation Description Psuedo Code
Initializing the MPC5746R, Rev. 0, 12/2016

NXP Semiconductors32

Document Number: AN4670
Rev. 0
12/2016

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based

on the information in this document. NXP reserves the right to make changes
without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of

its products for any particular purpose, nor does NXP assume any liability arising

out of the application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in NXP data sheets and/or

specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customers technical experts. NXP

does not convey any license under its patent rights nor the rights of others. NXP

sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER

WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,

JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE

PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,

MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest,

CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo,

Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo,

StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. ARM, AMBA, ARM Powered,

Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and ìVision are

registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight,

DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and

Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks

and the Power and Power.org logos and related marks are trademarks and

service marks licensed by Power.org.

© 2016 NXP B.V.

http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com
http://www.nxp.com/support

	1 Introduction
	1.1 Objective

	2 Example Memory Partitioning
	2.1 Flash memory
	2.2 Local memory

	3 Power-on Sequence
	3.1 Power Management Controller
	3.2 Reset Generation Module
	3.3 System Status and Configuration Module
	3.4 Boot Assist Flash
	3.5 Mode Entry Module

	4 DCF Records and Clients
	4.1 DCF records
	4.2 UTEST flash memory
	4.3 DCF clients
	4.3.1 DCF client special strategies

	4.4 Programming DCF records

	5 Boot Header
	6 Initialization Code
	6.1 Assembly language initialization sequence
	6.2 Flash wait states and pipeline control
	6.3 Branch Target Buffer
	6.4 Disabling the SWT (in software)
	6.4.1 SWT overview
	6.4.2 SWT disable sequence
	6.4.3 SWT disable code

	6.5 Initializing the core registers
	6.6 SRAM and ECC
	6.7 Cache

	7 C Language Initialization Sequence
	7.1 Mode Entry core control summary
	7.2 Clock initialization
	7.2.1 Clock tree

	7.3 Mode Entry peripheral clock gating summary
	7.4 Mode Entry example
	7.4.1 Mode Entry example design

	8 Revision history

