
Freescale Semiconductor
Application Note

Document Number: AN4641
Rev. 0, 12/2012

Contents

Introduction . 1
BeeStack Consumer (RF4CE) BlackBox 2

2.1 HW connections . 2
2.2 Low level Driver . 4
2.3 JNI and driver . 5
Controlling an RF4CE node using BlackBox 6

3.1 Starting the Node . 6
3.2 Pairing with devices. 7
3.3 Saving and retrieving pairing information 8
3.4 Sending ZRC commands . 9
3.5 Handling responses. 10
Graphic User Interface (GUI). 10
Example Application Overview 11

5.1 Tab 1 — Device configuration 11
5.2 Tab 2 — List of paired devices 12
5.3 Tab 3 — Remote control . 12
Additional resources . 13

ppendix A Generating the RF4CE BlackBox for MC1323x 14
ppendix B Compiling the kernel with the MC1323x drivers . 17

Enabling Android devices to use
Freescale RF4CE BlackBox for
Final Applications
Angel Corona
Abisai Negrete
Guadalajara applications group
1 Introduction
Higher demand of smart devices has integrated them into
our everyday lives. Given the proliferation of these smart
devices, technologies such as RF4CE may be included to
provide consumers a richer experience while
maintaining low power consumption and therefore
battery life.

The i.MX family of devices offers a powerful yet low
cost solution for multimedia devices supporting different
Operating Systems such as Linux or Android. These
devices could be easily interfaced with a dedicated MCU
to manage other tasks like an RF4CE network in this
case.

This application note demonstrates how to develop an
RF4CE application using a Freescale 802.15.4
MC1323x device and the i.MX53 SABRE Tablet
reference design running Android OS. Users must be
familiar with the ZigBee RF4CE Specification available
from www.zigbee.org and be familiar with at least the

1
2

3

4
5

6
A
A

© Freescale Semiconductor, Inc., 2012. All rights reserved.

BeeStack Consumer (RF4CE) BlackBox
basic operation of the Freescale ZigBee/802.15.4 devices. See the appropriate data sheet or reference
manual as needed for more information available at www.freescale.com/zigbee.

NOTE
The actual implementation of this specific example described in Section 5,
“Example Application Overview,” was developed using the Freescale
i.mx53 SABRE reference design and MC13233C device, although any
other similar Freescale device could be used.

2 BeeStack Consumer (RF4CE) BlackBox
The BeeStack Consumer BlackBox is an embedded application built on the BeeStack Consumer Network
platform. The BeeStack Consumer BlackBox offers access to all the BeeStack Consumer Control Network
features over a UART or an I2C interface. This allows BeeStack Consumer Network connectivity to be
added to any system with limited modifications, because only a serial port is needed.

The BeeStack Consumer Network is a software networking layer that sits on top of the IEEE 802.15.4
MAC and PHY layers. It is designed for Wireless Personal Area Networks (WPANs) and conveys
information over short distances among the participants in the network. It enables small, power efficient,
inexpensive solutions to be implemented for a wide range of applications. Some key characteristics of a
BeeStack Consumer network are:

• An over the air data rate of 250 kbit/s in the 2.4 GHz band

• Three independent communication channels in the 2.4 GHz band

• Two network node types: controller node and target node

• Channel agility mechanism

• Provides robustness and ease of use

• Includes essential functionality to build and support a CE network

NOTE
For further details about the RF4CE capabilities and features please refer to
the RF4CE specification document from ZigBee Alliance or read the
Freescale BeeStack Consumer Reference Manual.

This application note covers the I2C interface with which the i.MX53
device communicates with the MC1323x device. For further details about
I2C packet structure please refer to the BlackBox reference manual.

2.1 HW connections
The i.MX53 SABRE Tablet reference design has the proper connections to communicate via I2C with the
on-board MC1323x device, thus allowing the i.mx MPU to monitor and control the RF4CE network via
I2C commands. This does not limit the usage of any different MCU/MPU because any other device could
be used as long as it has an I2C, SPI, or UART module available.
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor2

BeeStack Consumer (RF4CE) BlackBox
NOTE
The design uses the I2C2 port from the i.MX53 processor. The bus is shared
by SGTL5000, MAG3110, touch keys, and MC1323X devices.

Figure 1 is a block diagram of the necessary connections between the host MPU/MCU and the MC1323x
when using the BlackBox I2C interface.

Figure 1. Basic connections between the host and the I2C slave

• SDA and SCL — I2C Data and clock signals as required by I2C communication. These signals
are needed to send and receive commands and data to and from the MC1323x slave device.

• Data ready — GPIO used to indicate the host application that data is ready to be read from slave
(MC1323x) such as events, responses or request confirms. This connection might be optional when
using UART communication, but it becomes necessary when using I2C because the host
MCU/MPU should know when the slave has any data to transmit so it can provide the bus clock to
it.

• Reset (optional) — GPIO connected to RESET signal of MC1323x in case it is useful/necessary
to reset the device. It is recommendable to have this line connected, otherwise there would not be
any other way to reset the device unless you power off the whole system or the user implements a
way to execute a software reset in the BlackBox application.

• Wakeup INT (Optional) — The BlackBox application does not need this signal, but it is
necessary for sleeping devices. If low power is desired, a GPIO to wake up the MC1323x may
become necessary.

Figure 2 is an abstract of the tablet’s main board schematic illustrating the actual pins and their names
connected to the on-board MC1323x device. For further details about connections in the SABRE Tablet
design, please refer to the main board schematics.

Host

SDA

MC1323x

SCL

Data ready

Reset

Wakeup INT
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor 3

BeeStack Consumer (RF4CE) BlackBox
Figure 2. Actual connections between the i.MX53 and the on-board MC1323x device in SABRE Tablet
reference design

2.2 Low level Driver
When developing an application on top of Android OS (10.3.2 BSP), users may need to develop a
low-level driver to access the GPIOs involved in the BlackBox communication such as UART, SPI or I2C.
This driver’s development is completely up to the user and could be done in several ways.

NOTE
The Book “Linux Device Drivers” by Alessandro Rubini and Jonathan
Corbet is a good guide when developing a new driver. You can find this
document on Freescale’s website.

In this specific design, some changes were done to the Android BSP (10.3.2) in order to define some pins
as GPIOs and use them for the different signals needed in Blackbox communication (SeeSection 2.1, “HW
connections”). Such changes are listed below:

1. Define the ports in Myandroid/arch/arm/mach-mx5/mx53_smd.c

#define MX53_SMD_ZIGBEE_INT(1*32 + 6)/* GPIO2_6 */
#define MX53_SMD_ZIGBEE_RESET_B(1*32 + 7)/* GPIO2_7 */
#define MX53_SMD_WAKEUP_ZIGBEE(1*32 + 13)/* GPIO2_13 */

2. Such definitions should be included in iomux_v3_cfg_t mx53_smd_pads structure.

static iomux_v3_cfg_t mx53_smd_pads[] = {

/* ZigBee_INT*/

MX53_PAD_PATA_DATA6__GPIO2_6,

/* ZigBee_RESET_B */

MX53_PAD_PATA_DATA7__GPIO2_7,

/* WAKEUP_ZigBee */

MX53_PAD_PATA_DATA13__GPIO2_13,
/* I2C2 */
MX53_PAD_KEY_COL3__I2C2_SCL,
MX53_PAD_KEY_ROW3__I2C2_SDA,
}

i.MX53SMD I2C2_SDA
MC1323x

I2C2_SCL

ZigBee_INT

ZigBee_RESET_B

WAKEUP_ZigBee

KEY_ROW3

KEY_COL3

PATA_DATA6

PATA_DATA7

PATA_DATA13

PTA5/SDA

PTA6/SCL

PTB/KBI1P1

RESET

PTB0/KBI1P0
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor4

BeeStack Consumer (RF4CE) BlackBox
3. Add initialization information to I2C port of i.MX.

static struct i2c_board_info mxc_i2c1_board_info[] __initdata = {

…

…

 {

 .type = "MC1323",

 .addr = 0x76, /*Shifted MC1323´s address*/

 },

}

4. Create a new directory called MC1323 under myandroid/kernel_imx/drivers

5. Copy MC1323 files (driver source code and Makefile attached)

6. Modify myandroid/kernel_imx/drivers/Makefile

From
obj-y i2c/ /media

to
obj-y i2c/ /media MC1323/

7. Compile Kernel driver

NOTE
The driver simply receives/send I2C commands and control the GPIOs
described in Chapter 2.1 – HW connections. The BlackBox API
implementation is done in the Android application.

Please refer to Appendix B, “Compiling the kernel with the MC1323x
drivers,” for further details about how to include the attached driver and
Makefile to the kernel.

2.3 JNI and driver
The Java Native Interface (JNI) is a programming framework that enables Java code to be called by the
C-language GPIO/UART/SPI/I2C drivers. In this example, the JNI is used in order to call java functions
form the GPIO drivers described in Section 2.2, “Low level Driver.”

NOTE
Please refer to the attached zip file containing the driver source file for
further details about its implementation.
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor 5

http://en.wikipedia.org/wiki/Software_framework" \o "Software framework
http://en.wikipedia.org/wiki/Java_(programming_language)" \o "Java (programming language)

Controlling an RF4CE node using BlackBox
3 Controlling an RF4CE node using BlackBox

3.1 Starting the Node
To start using the MC1323x as an RF4CE node, you first must follow some necessary steps such as starting
the network layer, set the node capabilities, etc. Table 1 shows the proper commands in order that should
be executed before performing any other RF4CE command.

NOTE
Please refer to the BeeStack Consumer Application User’s guide – Chapter
4.3 for further details about the starting procedure (BSCONNAUG.pdf),
available from the Freescale website.

3.1.1 ZTC-WriteExtAddr.Request

Before starting the network on the RF4CE Controller device, you should write the MAC address to the
device unless it is predefined in the Firmware. For instance:

ZTC-WriteExtAddr.Request 02 A3 DB 08 00 AA AA AD FF CF CC EE AA 65

Sync [1 byte] = 02

OpGroup [1 byte] = A3

OpCode [1 byte] = DB

Length [2 bytes] = 08 00

Address [8 bytes] = AA EE CC CF FF AD AA AA

CRC [1 byte] = 65

3.1.2 RF4CE_NWK_Reset.Request

The network layer should be reset and all the entries from the pairing table will be removed unless the
SetDefaultNIB value is set to false. When SetDefaultNIB is set to false, the node will retrieve all paired
devices’ data from NVM.

RF4CE_NLME_Reset.Request 02 D0 00 01 00 01 D0

StartOfFrame [1 byte] = 02

Table 1. Starting procedure for a RF4CE BlackBox Node

Commands in order I2C data

ZTC-WriteExtAddr.Request 02 A3 DB 08 00 AA AA AD FF CF CC EE AA 65

RF4CE_NWK_Reset.Request 02 D0 00 01 00 01 D0

RF4CE_NWK_SetNodeCapabilities.Request 02 D4 04 01 00 08 D9

RF4CE_NLME_Start.Request 02 D0 01 00 00 D1

ZRCProfile_PushButtonPairOrig.Request 02 D6 00 10 00 FF FF FF FF FF 00 01 01 01 01 01 01 05 00 E8 03 D7
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor6

Controlling an RF4CE node using BlackBox
Header [2 bytes] = D0 00

PayloadLength [2 bytes] = 00 01

SetDefaultNIB [1 byte] = 01 (true)

Checksum [1 byte] = D0

3.1.3 RF4CE_NWK_SetNodeCapabilities.Request

The node type (target/controller) should be specified along other settings such as security enabled or power
source. The nwkcNodeCapabilities bit fields are described in the RF4CE specification as Table 2 shows.

RF4CE_NWK_SetNodeCapabilities.Request 02 D4 04 01 00 08 D9

StartOfFrame [1 byte] = 02

Header [2 bytes] = D4 04

PayloadLength [2 bytes] = 00 01

nwkcNodeCapabilities [1 byte] = 08 (Controller without security)

Checksum [1 byte] = D9

3.1.4 RF4CE_NLME_Start.Request

Start the network layer and thus the node. After this point, the node will be able to send any other RF4CE
command or perform any action such as pair with more devices.

RF4CE_NLME_Start.Request 02 D0 01 00 00 D1

StartOfFrame [1 byte] = 02

Header [2 bytes] = D0 01

PayloadLength [2 bytes] = 00 00

Checksum [1 byte] = D1

3.2 Pairing with devices
Once started, the controller device is now ready to start pairing with other devices. Notice that the pairing
process evaluates whether a target device could be paired or not. Whether it can will depend on each node’s
capabilities and supported profiles. Refer to the RF4CE specification for further details.

Table 2. nwkcNodeCapabilities bit fields

Bits

 0 1 2 3 4–7

Node Type Power Source Security capable Channel norm. capable Reserved
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor 7

Controlling an RF4CE node using BlackBox
3.2.1 ZRCProfile_PushButtonPairOrig.Request

Start a pushbutton pairing process in the controller. The target should start it within 30 seconds to be
successful.

ZRCProfile_PushButtonPairOrig.Request 02 D6 00 10 00 FF FF FF FF FF 00 01 01 01 01 01 01

 05 00 E8 03 D6

StartOfFrame [1 byte] = 02

Header [2 bytes] = D6 00

PayloadLength [2 bytes] = 00 10

RecipPanId [2 bytes] = FF FF

RecipShortAddress [2 bytes] = FF FF

RecipDeviceType [1 byte] = FF

OrigAppCapabilities_UserStringSpecified [1 byte] = 00 (UserStringNotIncludedInFrame)

OrigAppCapabilities_NoOfSupportedDeviceTypes [1 byte] = 01 (OneDeviceTypeInDeviceTypeList)

OrigAppCapabilities_NoOfSupportedProfiles [1 byte] = 01 (OneSupportedProfilesInProfileIdList)

OrigDevTypeList [1 byte] = 01

OrigDevTypeList[0] = 01

OrigProfileIdList [1 byte] = 01

OrigProfileIdList[0] = 01

DiscProfileIdListSize [1 byte] = 01

DiscProfileIdList [1 byte] = 01

DiscProfileIdList[0] = 01

KeyExTransferCount [1 byte] = 05

RequestAppAcceptToPair [1 byte] = 00 (FALSE)

TimeToWaitAppAcceptToPair [2 bytes] = 03 E8

Checksum [1 byte] = D7

3.3 Saving and retrieving pairing information
Although the RF4CE nodes already save some important data such as network address in the pairing table,
it is only the minimum required to establish a communication with such node again. It is up to the
application to save other data such as device type or user string if the application requires doing so.

This specific example saves all paired nodes information such as device type, vendor ID or user string, in
order to retrieve it in case the node is started with SetDefaultNIB set to false. This will allow the application
to not only recover the communication with all the already-paired devices, but also some specific
information such as device type or Vendor String, which are not normally stored in the RF4CE pairing
table.

An easy way to store application specific data is to use OutputStreamWriter in java. Something similar
to:

 public void StoreData(){
 try {

FileOutputStream fOut = openFileOutput("DevicesDataFile",MODE_WORLD_READABLE);
 OutputStreamWriter osw = new OutputStreamWriter(fOut);

osw.write(PairedDeviceType);
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor8

Controlling an RF4CE node using BlackBox
// …
// append any other data you would like to store
// …
// …

 osw.close();
 fOut.close();

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
 }

To retrieve the store data simply open the saved file ad use InputStreamReader instead.

3.4 Sending ZRC commands
Once paired, it may become necessary to send ZRC commands to other devices. For this, a
ZRCProfile_Command.Request will need to be used.

3.4.1 ZRCProfile_Command.Request

Send a command to the target device. If successful, the connection has been properly set and the
application will work as expected. If there is any error, please verify the devices paired table index and the
rest of the parameters are correct.

ZRCProfile_Command.Request 02 DD 00 0C 00 00 01 01 05 00 84 05 00 00 15 00 00 40

StartOfFrame [1 byte] = 02

Header [2 bytes] = DD 00

PayloadLength [2 bytes] = 00 0C

PairingRef [1 byte] = 00 (first device in pairing table)

CommandCode [1 byte] = 01 (gZRC_CmdCode_UserCtrlPressed_c)

Command [1 byte] = 01

VendorId [2 bytes] = 00 05

TxOptions [1 byte] = 84 (vendor specific, unicast, ack without security)

DataLength [1 byte] = 05

Data [5 bytes] = 00 00 15 00 00

Data[0] = 00

Data[1] = 00

Data[2] = 15

Data[3] = 00

Data[4] = 00

Checksum [1 byte] = 40
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor 9

Graphic User Interface (GUI)
NOTE
This application is intended to demonstrate how to send commands to the
RF4CE paired devices. Custom payloads and commands are application
specific and its implementation is up to the user.

3.5 Handling responses
Every BlackBox command request will generate a response from the slave. This response contains the
status of the operation or important data such as the paired device’s information. It is up to the application
to read such responses and handle them properly.

Because the I2C communication is asynchronous, the host will need a way to know there is some data
ready to be read from the MC1323x slave. This is done by monitoring the state of Data Ready PIN (see
Section 2.1, “HW connections”).

Figure 3 shows a basic flow chart illustration how the responses are handled. Notice that in this specific
example there is not any timeout or mechanism preventing the activity block when waiting for a response.
Using threading or implementing a timeout could be an improvement, but its implementation is application
specific.

Figure 3. BlackBox response handling flow chart

4 Graphic User Interface (GUI)
Users may take advantage of using a powerful MPU such as the i.MX53 and develop a graphic user
interface to manage the RF4CE node, thus making it user-friendly. Having an android application to
control and monitor an RF4CE network will enrich the user’s experience and make the solution usable in
several devices by simply installing the application.

Please refer to Android developer’s forum for further details about developing your own GUI. There is a
lot of documentation and examples to get familiar with the app development (try
http://developer.android.com).

SEND COMMAND

DATA READY
PIN SET?

HANDLE
RESPONSE

YES

NO

CONTINUE
EXECUTION

ACTIVITY
RUNNING
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor10

http://developer.android.com/

Example Application Overview
5 Example Application Overview
This application example was developed using Android 2.3 SDK (10.3.2 BSP), although it should work
with newer versions. The graphic interface has three different tabs in which users may configure the
device, pair/unpair remote devices, and send RF4CE commands to them.

5.1 Tab 1 — Device configuration
In the settings tab, users can initialize or reset the device. They are able to choose between enabling and
disabling security in RF4CE messages, clear or keep the already-paired devices (pairing table) and choose
the type of device you want the device to be, for example an RF4CE controller.

Figure 4. Example Application Tab 1 – Device Configuration
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor 11

Example Application Overview
5.2 Tab 2 — List of paired devices
Once started, you are able to pair with devices with a simple push of a button. All that is needed to start
the pushbutton pairing process in both the controller (tablet) and the target devices you want to be paired
with such as TV, STB, DVD, etc. RF4CE already defines the type of possible devices a node can operate
as.

Figure 5. Example Application Tab 2 – List of paired devices

5.3 Tab 3 — Remote control
Once the devices are paired, the Tab 3 allows users to start sending commands to each of the paired
devices. Users are able to choose between all the devices the controller was paired with. Back in Tab 2,
users can unpair a device they no longer want to communicate with.

Figure 6. Example Application Tab 3 – Remote control
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor12

Additional resources
With this application example, users will have a very simple, yet powerful universal remote control for
RF4CE devices in a smart device such as a tablet, a smart phone, or any device with a RF4CE-capable
device.

NOTE
This application is intended to demonstrate how to send commands to the
RF4CE paired devices. Custom payloads and commands are application
specific and its implementation is up to the user.

6 Additional resources
To develop and debug any application for the MC1323x device, you should have the proper Codewarrior
IDE version according to the codebase you want to use. To check what version needs to be used, please
refer to the RF4CE codebase release notes included in Freescale installation folder (i.e. C:\Program
Files\Freescale) under System Requirements.

NOTE
Please refer to the BeeKit User’s Guide for further details about generating,
exporting and loading BeeKit applications.

Please note that both RF4CE and ZigBee stack are bigger than 32KB, thus a special edition of Codewarrior
will not be enough. If you want to use either stack, you will need to have the proper license that allow you
to compile and load more than 32KB of code. The evaluation edition of Codewarrior does not limit you in
code size, but it is only available for 30 days.
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor 13

Generating the RF4CE BlackBox for MC1323x
Appendix A Generating the RF4CE BlackBox for MC1323x
The BlackBox application could be easily generated using BeeKit Wireless Connectivity tool and selecting
the ZTC Application. However, some settings need to be changed in order to use such application as a
BlackBox.

NOTE
For further details about BeeKit and how to generate solutions based in any
of Freescale codebases, please refer to the BeeKit User’s guide included in
the documentation folder.

By default, the ZTC application exposes MAC and RF4CE layers functionality through a serial
communication interface to a host system. To create an RF4CE Black Box application, the ZTC
application needs to be configured to expose only the RF4CE layer functionality using the following steps:

1. Select the “ZTC Node App” project from BeeStack Consumer Codebase.

Figure 7. Selecting RF4CE ZTC Node App

2. Select the host communication protocol. For this demo the I2C needs to be enabled. In the next
step, leave the I2C slave address as default (0x76). Click next.
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor14

Generating the RF4CE BlackBox for MC1323x
Figure 8. Selecting the I2C BlackBox communication protocol

3. For each profile (ZRC Profile, BeeStack Consumer Private Profile) enable the desired features.
Also, enable the Push button pair originator/recipient and the ZRC commands transmission and
reception features. By default, these profile features are disabled, because the ZTC Node App is
used to test (by default) the MAC and RF4CE primitives. Other features may be enabled if desired.

Figure 9. Enabling ZRC commands and profile specific features

4. Enable the BlackBox features for ZTC application by checking the box. Also, select the airing table
entries for the RF4CE device.
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor 15

Generating the RF4CE BlackBox for MC1323x
Figure 10. Enabling BlackBox features

Once finished and validated, the solution is now ready to be exported to an IDE (Codewarrior for the
appropriate MC1323x device) in order to compile it and load it to the device. The only chance that might
be needed to use it for the Android application developed for this demo, would be the pin definitions for
interfacing the i.MX53 and the MC1323x.

In this demo, only the Data Ready pin used (See Chapter 2.1 – Hardware connections) changed and it
should be defined in the IIC_Interface.h file of the BlackBox firmware. The application example uses
PTB1 pin for such purpose. This is done as follows:

 #ifndef gIIC_TxDataAvailablePortDataReg_c
 #define gIIC_TxDataAvailablePortDataReg_c PTBD
 #endif
 #ifndef gIIC_TxDataAvailablePortDDirReg_c
 #define gIIC_TxDataAvailablePortDDirReg_c PTBDD
 #endif
 #ifndef gIIC_TxDataAvailablePinMask_c
 #define gIIC_TxDataAvailablePinMask_c 0x02
 #endif
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor16

Compiling the kernel with the MC1323x drivers
Appendix B Compiling the kernel with the MC1323x drivers
Included in the zip file attached to this Application Note are the driver source file (MC1323.c) and Make
File. These files need to be added to the kernel image in order to use them in the Android application. This
is achieved by following the next steps:

1. Copy the MC1323 file to the Android drivers folder. This folder is located in
myandroid/kernel_imx/drivers. Please just notice that the android folder (myandroid in this case)
might have a different name and could also bee in a different location (Android/R10.3.2 folder in
this case).

Figure 11. Copying driver source file to Android drivers folder

NOTE
The location where this files where unzipped might be different than the one
shown in the figure. In this case, the files were located in
/home/tic_imx/Desktop/Desktop/MC1323 folder.

2. Once copied, the Make File should be edited to include such folder in the objects to be compiled.
To edit the file, simply type ‘gedit Makefile’ in the terminal.

Figure 12. Adding MC1323 folder to Makefile

In this example, the MC1323 was added to the I2C folder, but it can be done in any obj –y entry.
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor 17

Compiling the kernel with the MC1323x drivers
3. Once done, and after selecting the parent of the current directory (type ‘cd ..’ in terminal), the
kernel is ready to be compiled. For this, users may refer to the Android User’s guide available in
Freescale website, where this process is described in detail.

NOTE

This demo uses the Android 10.3.2, and the corresponding User’s guide could be downloaded from
SABRE Tablet documentation website under IMX5X_R10_32_ANDROID_DOCSBUNDLE.

Figure 13 shows the user’s guide chapter about how to build the kernel image, where the environment
variables needed are shown.

Figure 13. Build Kernel Image instructions from User’s Guide

Remember to update the PATH wherever your ‘myandoird’ folder is located. In this specific case, it is
located under /Android/R10.3.2/ folder, thus every PATH variable was updated as shown in next figure.

Figure 14. Environmental variables needed for compilation

4. Finally, simply use ‘make uImage’ and the new file including the recently-added drivers will be
generated. Figure 15 illustrates how it should look like after finishing the process.
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor18

Compiling the kernel with the MC1323x drivers
Figure 15. Making uImage file

5. It might become necessary to change device node permissions in order to work properly. Therefore,
after the uImage was compiled, users can simply use the following commands:

cd myandroid/out/target/product/imx53_smd

dd if=uramdisk.img of=ramdisk.img.gz skip=64 bs=1

gunzip ramdisk.img.gz

mkdir ramdisk; cd ramdisk

cpio -i < ../ramdisk.img

vim init.rc (modify the init.rc, add the line "chmod 0666

/dev/MC1323x_dev")

find . | cpio --create --format='newc' | gzip > ../ramdisk.img

mkimage -A arm -O linux -T ramdisk -C none -a 0x70308000 -n "Android Root

Filesystem" -d ./ramdisk.img ./uramdisk.img

6. To copy and replace the new uImage, users may have several options. One is to use the
manufacturing tool as described in the User’s guide - chapter 3.2.2 Download Images with MFG
tool.
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor 19

Compiling the kernel with the MC1323x drivers
Figure 16. Manufacturing tool for downloading images

Another option is to use a dd utility as described in chapter 3.2.3 Download Images with dd utility.

Figure 17. dd utilities for downloading images
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor20

THIS PAGE IS INTENTIONALLY BLANK
Enabling Android devices to use Freescale RF4CE BlackBox for Final Applications, Rev. 0

Freescale Semiconductor 21

Document Number: AN4641
Rev. 0
12/2012

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2012. All rights reserved.

http://www.freescale.com/epp

	1 Introduction
	2 BeeStack Consumer (RF4CE) BlackBox
	2.1 HW connections
	2.2 Low level Driver
	2.3 JNI and driver

	3 Controlling an RF4CE node using BlackBox
	3.1 Starting the Node
	3.1.1 ZTC-WriteExtAddr.Request
	3.1.2 RF4CE_NWK_Reset.Request
	3.1.3 RF4CE_NWK_SetNodeCapabilities.Request
	3.1.4 RF4CE_NLME_Start.Request

	3.2 Pairing with devices
	3.2.1 ZRCProfile_PushButtonPairOrig.Request

	3.3 Saving and retrieving pairing information
	3.4 Sending ZRC commands
	3.4.1 ZRCProfile_Command.Request

	3.5 Handling responses

	4 Graphic User Interface (GUI)
	5 Example Application Overview
	5.1 Tab 1 - Device configuration
	5.2 Tab 2 - List of paired devices
	5.3 Tab 3 - Remote control

	6 Additional resources

